1 | //===-- DataflowEnvironment.cpp ---------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines an Environment class that is used by dataflow analyses |
10 | // that run over Control-Flow Graphs (CFGs) to keep track of the state of the |
11 | // program at given program points. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "clang/Analysis/FlowSensitive/DataflowEnvironment.h" |
16 | #include "clang/AST/Decl.h" |
17 | #include "clang/AST/DeclCXX.h" |
18 | #include "clang/AST/ExprCXX.h" |
19 | #include "clang/AST/RecursiveASTVisitor.h" |
20 | #include "clang/AST/Stmt.h" |
21 | #include "clang/AST/Type.h" |
22 | #include "clang/Analysis/FlowSensitive/ASTOps.h" |
23 | #include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h" |
24 | #include "clang/Analysis/FlowSensitive/DataflowLattice.h" |
25 | #include "clang/Analysis/FlowSensitive/Value.h" |
26 | #include "llvm/ADT/DenseMap.h" |
27 | #include "llvm/ADT/DenseSet.h" |
28 | #include "llvm/ADT/MapVector.h" |
29 | #include "llvm/ADT/PointerUnion.h" |
30 | #include "llvm/ADT/STLExtras.h" |
31 | #include "llvm/ADT/ScopeExit.h" |
32 | #include "llvm/Support/ErrorHandling.h" |
33 | #include <algorithm> |
34 | #include <cassert> |
35 | #include <memory> |
36 | #include <utility> |
37 | |
38 | #define DEBUG_TYPE "dataflow" |
39 | |
40 | namespace clang { |
41 | namespace dataflow { |
42 | |
43 | // FIXME: convert these to parameters of the analysis or environment. Current |
44 | // settings have been experimentaly validated, but only for a particular |
45 | // analysis. |
46 | static constexpr int MaxCompositeValueDepth = 3; |
47 | static constexpr int MaxCompositeValueSize = 1000; |
48 | |
49 | /// Returns a map consisting of key-value entries that are present in both maps. |
50 | static llvm::DenseMap<const ValueDecl *, StorageLocation *> intersectDeclToLoc( |
51 | const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc1, |
52 | const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc2) { |
53 | llvm::DenseMap<const ValueDecl *, StorageLocation *> Result; |
54 | for (auto &Entry : DeclToLoc1) { |
55 | auto It = DeclToLoc2.find(Val: Entry.first); |
56 | if (It != DeclToLoc2.end() && Entry.second == It->second) |
57 | Result.insert(KV: {Entry.first, Entry.second}); |
58 | } |
59 | return Result; |
60 | } |
61 | |
62 | // Performs a join on either `ExprToLoc` or `ExprToVal`. |
63 | // The maps must be consistent in the sense that any entries for the same |
64 | // expression must map to the same location / value. This is the case if we are |
65 | // performing a join for control flow within a full-expression (which is the |
66 | // only case when this function should be used). |
67 | template <typename MapT> MapT joinExprMaps(const MapT &Map1, const MapT &Map2) { |
68 | MapT Result = Map1; |
69 | |
70 | for (const auto &Entry : Map2) { |
71 | [[maybe_unused]] auto [It, Inserted] = Result.insert(Entry); |
72 | // If there was an existing entry, its value should be the same as for the |
73 | // entry we were trying to insert. |
74 | assert(It->second == Entry.second); |
75 | } |
76 | |
77 | return Result; |
78 | } |
79 | |
80 | // Whether to consider equivalent two values with an unknown relation. |
81 | // |
82 | // FIXME: this function is a hack enabling unsoundness to support |
83 | // convergence. Once we have widening support for the reference/pointer and |
84 | // struct built-in models, this should be unconditionally `false` (and inlined |
85 | // as such at its call sites). |
86 | static bool equateUnknownValues(Value::Kind K) { |
87 | switch (K) { |
88 | case Value::Kind::Integer: |
89 | case Value::Kind::Pointer: |
90 | return true; |
91 | default: |
92 | return false; |
93 | } |
94 | } |
95 | |
96 | static bool compareDistinctValues(QualType Type, Value &Val1, |
97 | const Environment &Env1, Value &Val2, |
98 | const Environment &Env2, |
99 | Environment::ValueModel &Model) { |
100 | // Note: Potentially costly, but, for booleans, we could check whether both |
101 | // can be proven equivalent in their respective environments. |
102 | |
103 | // FIXME: move the reference/pointers logic from `areEquivalentValues` to here |
104 | // and implement separate, join/widen specific handling for |
105 | // reference/pointers. |
106 | switch (Model.compare(Type, Val1, Env1, Val2, Env2)) { |
107 | case ComparisonResult::Same: |
108 | return true; |
109 | case ComparisonResult::Different: |
110 | return false; |
111 | case ComparisonResult::Unknown: |
112 | return equateUnknownValues(K: Val1.getKind()); |
113 | } |
114 | llvm_unreachable("All cases covered in switch" ); |
115 | } |
116 | |
117 | /// Attempts to join distinct values `Val1` and `Val2` in `Env1` and `Env2`, |
118 | /// respectively, of the same type `Type`. Joining generally produces a single |
119 | /// value that (soundly) approximates the two inputs, although the actual |
120 | /// meaning depends on `Model`. |
121 | static Value *joinDistinctValues(QualType Type, Value &Val1, |
122 | const Environment &Env1, Value &Val2, |
123 | const Environment &Env2, |
124 | Environment &JoinedEnv, |
125 | Environment::ValueModel &Model) { |
126 | // Join distinct boolean values preserving information about the constraints |
127 | // in the respective path conditions. |
128 | if (isa<BoolValue>(Val: &Val1) && isa<BoolValue>(Val: &Val2)) { |
129 | // FIXME: Checking both values should be unnecessary, since they should have |
130 | // a consistent shape. However, right now we can end up with BoolValue's in |
131 | // integer-typed variables due to our incorrect handling of |
132 | // boolean-to-integer casts (we just propagate the BoolValue to the result |
133 | // of the cast). So, a join can encounter an integer in one branch but a |
134 | // bool in the other. |
135 | // For example: |
136 | // ``` |
137 | // std::optional<bool> o; |
138 | // int x; |
139 | // if (o.has_value()) |
140 | // x = o.value(); |
141 | // ``` |
142 | auto &Expr1 = cast<BoolValue>(Val&: Val1).formula(); |
143 | auto &Expr2 = cast<BoolValue>(Val&: Val2).formula(); |
144 | auto &A = JoinedEnv.arena(); |
145 | auto &JoinedVal = A.makeAtomRef(A: A.makeAtom()); |
146 | JoinedEnv.assume( |
147 | A.makeOr(LHS: A.makeAnd(LHS: A.makeAtomRef(A: Env1.getFlowConditionToken()), |
148 | RHS: A.makeEquals(LHS: JoinedVal, RHS: Expr1)), |
149 | RHS: A.makeAnd(LHS: A.makeAtomRef(A: Env2.getFlowConditionToken()), |
150 | RHS: A.makeEquals(LHS: JoinedVal, RHS: Expr2)))); |
151 | return &A.makeBoolValue(JoinedVal); |
152 | } |
153 | |
154 | Value *JoinedVal = JoinedEnv.createValue(Type); |
155 | if (JoinedVal) |
156 | Model.join(Type, Val1, Env1, Val2, Env2, JoinedVal&: *JoinedVal, JoinedEnv); |
157 | |
158 | return JoinedVal; |
159 | } |
160 | |
161 | static WidenResult widenDistinctValues(QualType Type, Value &Prev, |
162 | const Environment &PrevEnv, |
163 | Value &Current, Environment &CurrentEnv, |
164 | Environment::ValueModel &Model) { |
165 | // Boolean-model widening. |
166 | if (isa<BoolValue>(Val: Prev) && isa<BoolValue>(Val: Current)) { |
167 | // FIXME: Checking both values should be unnecessary, but we can currently |
168 | // end up with `BoolValue`s in integer-typed variables. See comment in |
169 | // `joinDistinctValues()` for details. |
170 | auto &PrevBool = cast<BoolValue>(Val&: Prev); |
171 | auto &CurBool = cast<BoolValue>(Val&: Current); |
172 | |
173 | if (isa<TopBoolValue>(Val: Prev)) |
174 | // Safe to return `Prev` here, because Top is never dependent on the |
175 | // environment. |
176 | return {.V: &Prev, .Effect: LatticeEffect::Unchanged}; |
177 | |
178 | // We may need to widen to Top, but before we do so, check whether both |
179 | // values are implied to be either true or false in the current environment. |
180 | // In that case, we can simply return a literal instead. |
181 | bool TruePrev = PrevEnv.proves(PrevBool.formula()); |
182 | bool TrueCur = CurrentEnv.proves(CurBool.formula()); |
183 | if (TruePrev && TrueCur) |
184 | return {.V: &CurrentEnv.getBoolLiteralValue(Value: true), .Effect: LatticeEffect::Unchanged}; |
185 | if (!TruePrev && !TrueCur && |
186 | PrevEnv.proves(PrevEnv.arena().makeNot(Val: PrevBool.formula())) && |
187 | CurrentEnv.proves(CurrentEnv.arena().makeNot(Val: CurBool.formula()))) |
188 | return {.V: &CurrentEnv.getBoolLiteralValue(Value: false), .Effect: LatticeEffect::Unchanged}; |
189 | |
190 | return {.V: &CurrentEnv.makeTopBoolValue(), .Effect: LatticeEffect::Changed}; |
191 | } |
192 | |
193 | // FIXME: Add other built-in model widening. |
194 | |
195 | // Custom-model widening. |
196 | if (auto Result = Model.widen(Type, Prev, PrevEnv, Current, CurrentEnv)) |
197 | return *Result; |
198 | |
199 | return {.V: &Current, .Effect: equateUnknownValues(K: Prev.getKind()) |
200 | ? LatticeEffect::Unchanged |
201 | : LatticeEffect::Changed}; |
202 | } |
203 | |
204 | // Returns whether the values in `Map1` and `Map2` compare equal for those |
205 | // keys that `Map1` and `Map2` have in common. |
206 | template <typename Key> |
207 | bool compareKeyToValueMaps(const llvm::MapVector<Key, Value *> &Map1, |
208 | const llvm::MapVector<Key, Value *> &Map2, |
209 | const Environment &Env1, const Environment &Env2, |
210 | Environment::ValueModel &Model) { |
211 | for (auto &Entry : Map1) { |
212 | Key K = Entry.first; |
213 | assert(K != nullptr); |
214 | |
215 | Value *Val = Entry.second; |
216 | assert(Val != nullptr); |
217 | |
218 | auto It = Map2.find(K); |
219 | if (It == Map2.end()) |
220 | continue; |
221 | assert(It->second != nullptr); |
222 | |
223 | if (!areEquivalentValues(*Val, *It->second) && |
224 | !compareDistinctValues(K->getType(), *Val, Env1, *It->second, Env2, |
225 | Model)) |
226 | return false; |
227 | } |
228 | |
229 | return true; |
230 | } |
231 | |
232 | // Perform a join on two `LocToVal` maps. |
233 | static llvm::MapVector<const StorageLocation *, Value *> |
234 | joinLocToVal(const llvm::MapVector<const StorageLocation *, Value *> &LocToVal, |
235 | const llvm::MapVector<const StorageLocation *, Value *> &LocToVal2, |
236 | const Environment &Env1, const Environment &Env2, |
237 | Environment &JoinedEnv, Environment::ValueModel &Model) { |
238 | llvm::MapVector<const StorageLocation *, Value *> Result; |
239 | for (auto &Entry : LocToVal) { |
240 | const StorageLocation *Loc = Entry.first; |
241 | assert(Loc != nullptr); |
242 | |
243 | Value *Val = Entry.second; |
244 | assert(Val != nullptr); |
245 | |
246 | auto It = LocToVal2.find(Key: Loc); |
247 | if (It == LocToVal2.end()) |
248 | continue; |
249 | assert(It->second != nullptr); |
250 | |
251 | if (Value *JoinedVal = Environment::joinValues( |
252 | Ty: Loc->getType(), Val1: Val, Env1, Val2: It->second, Env2, JoinedEnv, Model)) { |
253 | Result.insert(KV: {Loc, JoinedVal}); |
254 | } |
255 | } |
256 | |
257 | return Result; |
258 | } |
259 | |
260 | // Perform widening on either `LocToVal` or `ExprToVal`. `Key` must be either |
261 | // `const StorageLocation *` or `const Expr *`. |
262 | template <typename Key> |
263 | llvm::MapVector<Key, Value *> |
264 | widenKeyToValueMap(const llvm::MapVector<Key, Value *> &CurMap, |
265 | const llvm::MapVector<Key, Value *> &PrevMap, |
266 | Environment &CurEnv, const Environment &PrevEnv, |
267 | Environment::ValueModel &Model, LatticeEffect &Effect) { |
268 | llvm::MapVector<Key, Value *> WidenedMap; |
269 | for (auto &Entry : CurMap) { |
270 | Key K = Entry.first; |
271 | assert(K != nullptr); |
272 | |
273 | Value *Val = Entry.second; |
274 | assert(Val != nullptr); |
275 | |
276 | auto PrevIt = PrevMap.find(K); |
277 | if (PrevIt == PrevMap.end()) |
278 | continue; |
279 | assert(PrevIt->second != nullptr); |
280 | |
281 | if (areEquivalentValues(*Val, *PrevIt->second)) { |
282 | WidenedMap.insert({K, Val}); |
283 | continue; |
284 | } |
285 | |
286 | auto [WidenedVal, ValEffect] = widenDistinctValues( |
287 | K->getType(), *PrevIt->second, PrevEnv, *Val, CurEnv, Model); |
288 | WidenedMap.insert({K, WidenedVal}); |
289 | if (ValEffect == LatticeEffect::Changed) |
290 | Effect = LatticeEffect::Changed; |
291 | } |
292 | |
293 | return WidenedMap; |
294 | } |
295 | |
296 | namespace { |
297 | |
298 | // Visitor that builds a map from record prvalues to result objects. |
299 | // For each result object that it encounters, it propagates the storage location |
300 | // of the result object to all record prvalues that can initialize it. |
301 | class ResultObjectVisitor : public AnalysisASTVisitor<ResultObjectVisitor> { |
302 | public: |
303 | // `ResultObjectMap` will be filled with a map from record prvalues to result |
304 | // object. If this visitor will traverse a function that returns a record by |
305 | // value, `LocForRecordReturnVal` is the location to which this record should |
306 | // be written; otherwise, it is null. |
307 | explicit ResultObjectVisitor( |
308 | llvm::DenseMap<const Expr *, RecordStorageLocation *> &ResultObjectMap, |
309 | RecordStorageLocation *LocForRecordReturnVal, |
310 | DataflowAnalysisContext &DACtx) |
311 | : ResultObjectMap(ResultObjectMap), |
312 | LocForRecordReturnVal(LocForRecordReturnVal), DACtx(DACtx) {} |
313 | |
314 | // Traverse all member and base initializers of `Ctor`. This function is not |
315 | // called by `RecursiveASTVisitor`; it should be called manually if we are |
316 | // analyzing a constructor. `ThisPointeeLoc` is the storage location that |
317 | // `this` points to. |
318 | void TraverseConstructorInits(const CXXConstructorDecl *Ctor, |
319 | RecordStorageLocation *ThisPointeeLoc) { |
320 | assert(ThisPointeeLoc != nullptr); |
321 | for (const CXXCtorInitializer *Init : Ctor->inits()) { |
322 | Expr *InitExpr = Init->getInit(); |
323 | if (FieldDecl *Field = Init->getMember(); |
324 | Field != nullptr && Field->getType()->isRecordType()) { |
325 | PropagateResultObject(E: InitExpr, Loc: cast<RecordStorageLocation>( |
326 | Val: ThisPointeeLoc->getChild(D: *Field))); |
327 | } else if (Init->getBaseClass()) { |
328 | PropagateResultObject(E: InitExpr, Loc: ThisPointeeLoc); |
329 | } |
330 | |
331 | // Ensure that any result objects within `InitExpr` (e.g. temporaries) |
332 | // are also propagated to the prvalues that initialize them. |
333 | TraverseStmt(S: InitExpr); |
334 | |
335 | // If this is a `CXXDefaultInitExpr`, also propagate any result objects |
336 | // within the default expression. |
337 | if (auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(Val: InitExpr)) |
338 | TraverseStmt(S: DefaultInit->getExpr()); |
339 | } |
340 | } |
341 | |
342 | bool VisitVarDecl(VarDecl *VD) { |
343 | if (VD->getType()->isRecordType() && VD->hasInit()) |
344 | PropagateResultObject( |
345 | E: VD->getInit(), |
346 | Loc: &cast<RecordStorageLocation>(Val&: DACtx.getStableStorageLocation(D: *VD))); |
347 | return true; |
348 | } |
349 | |
350 | bool VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE) { |
351 | if (MTE->getType()->isRecordType()) |
352 | PropagateResultObject( |
353 | E: MTE->getSubExpr(), |
354 | Loc: &cast<RecordStorageLocation>(Val&: DACtx.getStableStorageLocation(E: *MTE))); |
355 | return true; |
356 | } |
357 | |
358 | bool VisitReturnStmt(ReturnStmt *Return) { |
359 | Expr *RetValue = Return->getRetValue(); |
360 | if (RetValue != nullptr && RetValue->getType()->isRecordType() && |
361 | RetValue->isPRValue()) |
362 | PropagateResultObject(E: RetValue, Loc: LocForRecordReturnVal); |
363 | return true; |
364 | } |
365 | |
366 | bool VisitExpr(Expr *E) { |
367 | // Clang's AST can have record-type prvalues without a result object -- for |
368 | // example as full-expressions contained in a compound statement or as |
369 | // arguments of call expressions. We notice this if we get here and a |
370 | // storage location has not yet been associated with `E`. In this case, |
371 | // treat this as if it was a `MaterializeTemporaryExpr`. |
372 | if (E->isPRValue() && E->getType()->isRecordType() && |
373 | !ResultObjectMap.contains(Val: E)) |
374 | PropagateResultObject( |
375 | E, Loc: &cast<RecordStorageLocation>(Val&: DACtx.getStableStorageLocation(E: *E))); |
376 | return true; |
377 | } |
378 | |
379 | void |
380 | PropagateResultObjectToRecordInitList(const RecordInitListHelper &InitList, |
381 | RecordStorageLocation *Loc) { |
382 | for (auto [Base, Init] : InitList.base_inits()) { |
383 | assert(Base->getType().getCanonicalType() == |
384 | Init->getType().getCanonicalType()); |
385 | |
386 | // Storage location for the base class is the same as that of the |
387 | // derived class because we "flatten" the object hierarchy and put all |
388 | // fields in `RecordStorageLocation` of the derived class. |
389 | PropagateResultObject(E: Init, Loc); |
390 | } |
391 | |
392 | for (auto [Field, Init] : InitList.field_inits()) { |
393 | // Fields of non-record type are handled in |
394 | // `TransferVisitor::VisitInitListExpr()`. |
395 | if (Field->getType()->isRecordType()) |
396 | PropagateResultObject( |
397 | E: Init, Loc: cast<RecordStorageLocation>(Val: Loc->getChild(D: *Field))); |
398 | } |
399 | } |
400 | |
401 | // Assigns `Loc` as the result object location of `E`, then propagates the |
402 | // location to all lower-level prvalues that initialize the same object as |
403 | // `E` (or one of its base classes or member variables). |
404 | void PropagateResultObject(Expr *E, RecordStorageLocation *Loc) { |
405 | if (!E->isPRValue() || !E->getType()->isRecordType()) { |
406 | assert(false); |
407 | // Ensure we don't propagate the result object if we hit this in a |
408 | // release build. |
409 | return; |
410 | } |
411 | |
412 | ResultObjectMap[E] = Loc; |
413 | |
414 | // The following AST node kinds are "original initializers": They are the |
415 | // lowest-level AST node that initializes a given object, and nothing |
416 | // below them can initialize the same object (or part of it). |
417 | if (isa<CXXConstructExpr>(Val: E) || isa<CallExpr>(Val: E) || isa<LambdaExpr>(Val: E) || |
418 | isa<CXXDefaultArgExpr>(Val: E) || isa<CXXStdInitializerListExpr>(Val: E) || |
419 | isa<AtomicExpr>(Val: E) || |
420 | // We treat `BuiltinBitCastExpr` as an "original initializer" too as |
421 | // it may not even be casting from a record type -- and even if it is, |
422 | // the two objects are in general of unrelated type. |
423 | isa<BuiltinBitCastExpr>(Val: E)) { |
424 | return; |
425 | } |
426 | if (auto *Op = dyn_cast<BinaryOperator>(Val: E); |
427 | Op && Op->getOpcode() == BO_Cmp) { |
428 | // Builtin `<=>` returns a `std::strong_ordering` object. |
429 | return; |
430 | } |
431 | |
432 | if (auto *InitList = dyn_cast<InitListExpr>(Val: E)) { |
433 | if (!InitList->isSemanticForm()) |
434 | return; |
435 | if (InitList->isTransparent()) { |
436 | PropagateResultObject(E: InitList->getInit(Init: 0), Loc); |
437 | return; |
438 | } |
439 | |
440 | PropagateResultObjectToRecordInitList(InitList: RecordInitListHelper(InitList), |
441 | Loc); |
442 | return; |
443 | } |
444 | |
445 | if (auto *ParenInitList = dyn_cast<CXXParenListInitExpr>(Val: E)) { |
446 | PropagateResultObjectToRecordInitList(InitList: RecordInitListHelper(ParenInitList), |
447 | Loc); |
448 | return; |
449 | } |
450 | |
451 | if (auto *Op = dyn_cast<BinaryOperator>(Val: E); Op && Op->isCommaOp()) { |
452 | PropagateResultObject(E: Op->getRHS(), Loc); |
453 | return; |
454 | } |
455 | |
456 | if (auto *Cond = dyn_cast<AbstractConditionalOperator>(Val: E)) { |
457 | PropagateResultObject(E: Cond->getTrueExpr(), Loc); |
458 | PropagateResultObject(E: Cond->getFalseExpr(), Loc); |
459 | return; |
460 | } |
461 | |
462 | if (auto *SE = dyn_cast<StmtExpr>(Val: E)) { |
463 | PropagateResultObject(E: cast<Expr>(Val: SE->getSubStmt()->body_back()), Loc); |
464 | return; |
465 | } |
466 | |
467 | if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Val: E)) { |
468 | PropagateResultObject(E: DIE->getExpr(), Loc); |
469 | return; |
470 | } |
471 | |
472 | // All other expression nodes that propagate a record prvalue should have |
473 | // exactly one child. |
474 | SmallVector<Stmt *, 1> Children(E->child_begin(), E->child_end()); |
475 | LLVM_DEBUG({ |
476 | if (Children.size() != 1) |
477 | E->dump(); |
478 | }); |
479 | assert(Children.size() == 1); |
480 | for (Stmt *S : Children) |
481 | PropagateResultObject(E: cast<Expr>(Val: S), Loc); |
482 | } |
483 | |
484 | private: |
485 | llvm::DenseMap<const Expr *, RecordStorageLocation *> &ResultObjectMap; |
486 | RecordStorageLocation *LocForRecordReturnVal; |
487 | DataflowAnalysisContext &DACtx; |
488 | }; |
489 | |
490 | } // namespace |
491 | |
492 | void Environment::initialize() { |
493 | if (InitialTargetStmt == nullptr) |
494 | return; |
495 | |
496 | if (InitialTargetFunc == nullptr) { |
497 | initFieldsGlobalsAndFuncs(Referenced: getReferencedDecls(S: *InitialTargetStmt)); |
498 | ResultObjectMap = |
499 | std::make_shared<PrValueToResultObject>(args: buildResultObjectMap( |
500 | DACtx, S: InitialTargetStmt, ThisPointeeLoc: getThisPointeeStorageLocation(), |
501 | /*LocForRecordReturnValue=*/LocForRecordReturnVal: nullptr)); |
502 | return; |
503 | } |
504 | |
505 | initFieldsGlobalsAndFuncs(Referenced: getReferencedDecls(FD: *InitialTargetFunc)); |
506 | |
507 | for (const auto *ParamDecl : InitialTargetFunc->parameters()) { |
508 | assert(ParamDecl != nullptr); |
509 | setStorageLocation(D: *ParamDecl, Loc&: createObject(D: *ParamDecl, InitExpr: nullptr)); |
510 | } |
511 | |
512 | if (InitialTargetFunc->getReturnType()->isRecordType()) |
513 | LocForRecordReturnVal = &cast<RecordStorageLocation>( |
514 | Val&: createStorageLocation(Type: InitialTargetFunc->getReturnType())); |
515 | |
516 | if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(Val: InitialTargetFunc)) { |
517 | auto *Parent = MethodDecl->getParent(); |
518 | assert(Parent != nullptr); |
519 | |
520 | if (Parent->isLambda()) { |
521 | for (const auto &Capture : Parent->captures()) { |
522 | if (Capture.capturesVariable()) { |
523 | const auto *VarDecl = Capture.getCapturedVar(); |
524 | assert(VarDecl != nullptr); |
525 | setStorageLocation(D: *VarDecl, Loc&: createObject(D: *VarDecl, InitExpr: nullptr)); |
526 | } else if (Capture.capturesThis()) { |
527 | if (auto *Ancestor = InitialTargetFunc->getNonClosureAncestor()) { |
528 | const auto *SurroundingMethodDecl = cast<CXXMethodDecl>(Val: Ancestor); |
529 | QualType ThisPointeeType = |
530 | SurroundingMethodDecl->getFunctionObjectParameterType(); |
531 | setThisPointeeStorageLocation( |
532 | cast<RecordStorageLocation>(Val&: createObject(Ty: ThisPointeeType))); |
533 | } else if (auto *FieldBeingInitialized = |
534 | dyn_cast<FieldDecl>(Val: Parent->getLambdaContextDecl())) { |
535 | // This is in a field initializer, rather than a method. |
536 | setThisPointeeStorageLocation( |
537 | cast<RecordStorageLocation>(Val&: createObject(Ty: QualType( |
538 | FieldBeingInitialized->getParent()->getTypeForDecl(), 0)))); |
539 | } else { |
540 | assert(false && "Unexpected this-capturing lambda context." ); |
541 | } |
542 | } |
543 | } |
544 | } else if (MethodDecl->isImplicitObjectMemberFunction()) { |
545 | QualType ThisPointeeType = MethodDecl->getFunctionObjectParameterType(); |
546 | auto &ThisLoc = |
547 | cast<RecordStorageLocation>(Val&: createStorageLocation(Type: ThisPointeeType)); |
548 | setThisPointeeStorageLocation(ThisLoc); |
549 | // Initialize fields of `*this` with values, but only if we're not |
550 | // analyzing a constructor; after all, it's the constructor's job to do |
551 | // this (and we want to be able to test that). |
552 | if (!isa<CXXConstructorDecl>(Val: MethodDecl)) |
553 | initializeFieldsWithValues(Loc&: ThisLoc); |
554 | } |
555 | } |
556 | |
557 | // We do this below the handling of `CXXMethodDecl` above so that we can |
558 | // be sure that the storage location for `this` has been set. |
559 | ResultObjectMap = |
560 | std::make_shared<PrValueToResultObject>(args: buildResultObjectMap( |
561 | DACtx, FuncDecl: InitialTargetFunc, ThisPointeeLoc: getThisPointeeStorageLocation(), |
562 | LocForRecordReturnVal)); |
563 | } |
564 | |
565 | // FIXME: Add support for resetting globals after function calls to enable the |
566 | // implementation of sound analyses. |
567 | |
568 | void Environment::initFieldsGlobalsAndFuncs(const ReferencedDecls &Referenced) { |
569 | // These have to be added before the lines that follow to ensure that |
570 | // `create*` work correctly for structs. |
571 | DACtx->addModeledFields(Fields: Referenced.Fields); |
572 | |
573 | for (const VarDecl *D : Referenced.Globals) { |
574 | if (getStorageLocation(D: *D) != nullptr) |
575 | continue; |
576 | |
577 | // We don't run transfer functions on the initializers of global variables, |
578 | // so they won't be associated with a value or storage location. We |
579 | // therefore intentionally don't pass an initializer to `createObject()`; in |
580 | // particular, this ensures that `createObject()` will initialize the fields |
581 | // of record-type variables with values. |
582 | setStorageLocation(D: *D, Loc&: createObject(D: *D, InitExpr: nullptr)); |
583 | } |
584 | |
585 | for (const FunctionDecl *FD : Referenced.Functions) { |
586 | if (getStorageLocation(D: *FD) != nullptr) |
587 | continue; |
588 | auto &Loc = createStorageLocation(D: *FD); |
589 | setStorageLocation(D: *FD, Loc); |
590 | } |
591 | } |
592 | |
593 | Environment Environment::fork() const { |
594 | Environment Copy(*this); |
595 | Copy.FlowConditionToken = DACtx->forkFlowCondition(Token: FlowConditionToken); |
596 | return Copy; |
597 | } |
598 | |
599 | bool Environment::canDescend(unsigned MaxDepth, |
600 | const FunctionDecl *Callee) const { |
601 | return CallStack.size() < MaxDepth && !llvm::is_contained(Range: CallStack, Element: Callee); |
602 | } |
603 | |
604 | Environment Environment::pushCall(const CallExpr *Call) const { |
605 | Environment Env(*this); |
606 | |
607 | if (const auto *MethodCall = dyn_cast<CXXMemberCallExpr>(Val: Call)) { |
608 | if (const Expr *Arg = MethodCall->getImplicitObjectArgument()) { |
609 | if (!isa<CXXThisExpr>(Val: Arg)) |
610 | Env.ThisPointeeLoc = |
611 | cast<RecordStorageLocation>(Val: getStorageLocation(E: *Arg)); |
612 | // Otherwise (when the argument is `this`), retain the current |
613 | // environment's `ThisPointeeLoc`. |
614 | } |
615 | } |
616 | |
617 | if (Call->getType()->isRecordType() && Call->isPRValue()) |
618 | Env.LocForRecordReturnVal = &Env.getResultObjectLocation(RecordPRValue: *Call); |
619 | |
620 | Env.pushCallInternal(FuncDecl: Call->getDirectCallee(), |
621 | Args: llvm::ArrayRef(Call->getArgs(), Call->getNumArgs())); |
622 | |
623 | return Env; |
624 | } |
625 | |
626 | Environment Environment::pushCall(const CXXConstructExpr *Call) const { |
627 | Environment Env(*this); |
628 | |
629 | Env.ThisPointeeLoc = &Env.getResultObjectLocation(RecordPRValue: *Call); |
630 | Env.LocForRecordReturnVal = &Env.getResultObjectLocation(RecordPRValue: *Call); |
631 | |
632 | Env.pushCallInternal(FuncDecl: Call->getConstructor(), |
633 | Args: llvm::ArrayRef(Call->getArgs(), Call->getNumArgs())); |
634 | |
635 | return Env; |
636 | } |
637 | |
638 | void Environment::pushCallInternal(const FunctionDecl *FuncDecl, |
639 | ArrayRef<const Expr *> Args) { |
640 | // Canonicalize to the definition of the function. This ensures that we're |
641 | // putting arguments into the same `ParamVarDecl`s` that the callee will later |
642 | // be retrieving them from. |
643 | assert(FuncDecl->getDefinition() != nullptr); |
644 | FuncDecl = FuncDecl->getDefinition(); |
645 | |
646 | CallStack.push_back(x: FuncDecl); |
647 | |
648 | initFieldsGlobalsAndFuncs(Referenced: getReferencedDecls(FD: *FuncDecl)); |
649 | |
650 | const auto *ParamIt = FuncDecl->param_begin(); |
651 | |
652 | // FIXME: Parameters don't always map to arguments 1:1; examples include |
653 | // overloaded operators implemented as member functions, and parameter packs. |
654 | for (unsigned ArgIndex = 0; ArgIndex < Args.size(); ++ParamIt, ++ArgIndex) { |
655 | assert(ParamIt != FuncDecl->param_end()); |
656 | const VarDecl *Param = *ParamIt; |
657 | setStorageLocation(D: *Param, Loc&: createObject(D: *Param, InitExpr: Args[ArgIndex])); |
658 | } |
659 | |
660 | ResultObjectMap = std::make_shared<PrValueToResultObject>( |
661 | args: buildResultObjectMap(DACtx, FuncDecl, ThisPointeeLoc: getThisPointeeStorageLocation(), |
662 | LocForRecordReturnVal)); |
663 | } |
664 | |
665 | void Environment::popCall(const CallExpr *Call, const Environment &CalleeEnv) { |
666 | // We ignore some entries of `CalleeEnv`: |
667 | // - `DACtx` because is already the same in both |
668 | // - We don't want the callee's `DeclCtx`, `ReturnVal`, `ReturnLoc` or |
669 | // `ThisPointeeLoc` because they don't apply to us. |
670 | // - `DeclToLoc`, `ExprToLoc`, and `ExprToVal` capture information from the |
671 | // callee's local scope, so when popping that scope, we do not propagate |
672 | // the maps. |
673 | this->LocToVal = std::move(CalleeEnv.LocToVal); |
674 | this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken); |
675 | |
676 | if (Call->isGLValue()) { |
677 | if (CalleeEnv.ReturnLoc != nullptr) |
678 | setStorageLocation(E: *Call, Loc&: *CalleeEnv.ReturnLoc); |
679 | } else if (!Call->getType()->isVoidType()) { |
680 | if (CalleeEnv.ReturnVal != nullptr) |
681 | setValue(E: *Call, Val&: *CalleeEnv.ReturnVal); |
682 | } |
683 | } |
684 | |
685 | void Environment::popCall(const CXXConstructExpr *Call, |
686 | const Environment &CalleeEnv) { |
687 | // See also comment in `popCall(const CallExpr *, const Environment &)` above. |
688 | this->LocToVal = std::move(CalleeEnv.LocToVal); |
689 | this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken); |
690 | } |
691 | |
692 | bool Environment::equivalentTo(const Environment &Other, |
693 | Environment::ValueModel &Model) const { |
694 | assert(DACtx == Other.DACtx); |
695 | |
696 | if (ReturnVal != Other.ReturnVal) |
697 | return false; |
698 | |
699 | if (ReturnLoc != Other.ReturnLoc) |
700 | return false; |
701 | |
702 | if (LocForRecordReturnVal != Other.LocForRecordReturnVal) |
703 | return false; |
704 | |
705 | if (ThisPointeeLoc != Other.ThisPointeeLoc) |
706 | return false; |
707 | |
708 | if (DeclToLoc != Other.DeclToLoc) |
709 | return false; |
710 | |
711 | if (ExprToLoc != Other.ExprToLoc) |
712 | return false; |
713 | |
714 | if (!compareKeyToValueMaps(Map1: ExprToVal, Map2: Other.ExprToVal, Env1: *this, Env2: Other, Model)) |
715 | return false; |
716 | |
717 | if (!compareKeyToValueMaps(Map1: LocToVal, Map2: Other.LocToVal, Env1: *this, Env2: Other, Model)) |
718 | return false; |
719 | |
720 | return true; |
721 | } |
722 | |
723 | LatticeEffect Environment::widen(const Environment &PrevEnv, |
724 | Environment::ValueModel &Model) { |
725 | assert(DACtx == PrevEnv.DACtx); |
726 | assert(ReturnVal == PrevEnv.ReturnVal); |
727 | assert(ReturnLoc == PrevEnv.ReturnLoc); |
728 | assert(LocForRecordReturnVal == PrevEnv.LocForRecordReturnVal); |
729 | assert(ThisPointeeLoc == PrevEnv.ThisPointeeLoc); |
730 | assert(CallStack == PrevEnv.CallStack); |
731 | assert(ResultObjectMap == PrevEnv.ResultObjectMap); |
732 | assert(InitialTargetFunc == PrevEnv.InitialTargetFunc); |
733 | assert(InitialTargetStmt == PrevEnv.InitialTargetStmt); |
734 | |
735 | auto Effect = LatticeEffect::Unchanged; |
736 | |
737 | // By the API, `PrevEnv` is a previous version of the environment for the same |
738 | // block, so we have some guarantees about its shape. In particular, it will |
739 | // be the result of a join or widen operation on previous values for this |
740 | // block. For `DeclToLoc`, `ExprToVal`, and `ExprToLoc`, join guarantees that |
741 | // these maps are subsets of the maps in `PrevEnv`. So, as long as we maintain |
742 | // this property here, we don't need change their current values to widen. |
743 | assert(DeclToLoc.size() <= PrevEnv.DeclToLoc.size()); |
744 | assert(ExprToVal.size() <= PrevEnv.ExprToVal.size()); |
745 | assert(ExprToLoc.size() <= PrevEnv.ExprToLoc.size()); |
746 | |
747 | ExprToVal = widenKeyToValueMap(CurMap: ExprToVal, PrevMap: PrevEnv.ExprToVal, CurEnv&: *this, PrevEnv, |
748 | Model, Effect); |
749 | |
750 | LocToVal = widenKeyToValueMap(CurMap: LocToVal, PrevMap: PrevEnv.LocToVal, CurEnv&: *this, PrevEnv, |
751 | Model, Effect); |
752 | if (DeclToLoc.size() != PrevEnv.DeclToLoc.size() || |
753 | ExprToLoc.size() != PrevEnv.ExprToLoc.size() || |
754 | ExprToVal.size() != PrevEnv.ExprToVal.size() || |
755 | LocToVal.size() != PrevEnv.LocToVal.size()) |
756 | Effect = LatticeEffect::Changed; |
757 | |
758 | return Effect; |
759 | } |
760 | |
761 | Environment Environment::join(const Environment &EnvA, const Environment &EnvB, |
762 | Environment::ValueModel &Model, |
763 | ExprJoinBehavior ExprBehavior) { |
764 | assert(EnvA.DACtx == EnvB.DACtx); |
765 | assert(EnvA.LocForRecordReturnVal == EnvB.LocForRecordReturnVal); |
766 | assert(EnvA.ThisPointeeLoc == EnvB.ThisPointeeLoc); |
767 | assert(EnvA.CallStack == EnvB.CallStack); |
768 | assert(EnvA.ResultObjectMap == EnvB.ResultObjectMap); |
769 | assert(EnvA.InitialTargetFunc == EnvB.InitialTargetFunc); |
770 | assert(EnvA.InitialTargetStmt == EnvB.InitialTargetStmt); |
771 | |
772 | Environment JoinedEnv(*EnvA.DACtx); |
773 | |
774 | JoinedEnv.CallStack = EnvA.CallStack; |
775 | JoinedEnv.ResultObjectMap = EnvA.ResultObjectMap; |
776 | JoinedEnv.LocForRecordReturnVal = EnvA.LocForRecordReturnVal; |
777 | JoinedEnv.ThisPointeeLoc = EnvA.ThisPointeeLoc; |
778 | JoinedEnv.InitialTargetFunc = EnvA.InitialTargetFunc; |
779 | JoinedEnv.InitialTargetStmt = EnvA.InitialTargetStmt; |
780 | |
781 | const FunctionDecl *Func = EnvA.getCurrentFunc(); |
782 | if (!Func) { |
783 | JoinedEnv.ReturnVal = nullptr; |
784 | } else { |
785 | JoinedEnv.ReturnVal = |
786 | joinValues(Ty: Func->getReturnType(), Val1: EnvA.ReturnVal, Env1: EnvA, Val2: EnvB.ReturnVal, |
787 | Env2: EnvB, JoinedEnv, Model); |
788 | } |
789 | |
790 | if (EnvA.ReturnLoc == EnvB.ReturnLoc) |
791 | JoinedEnv.ReturnLoc = EnvA.ReturnLoc; |
792 | else |
793 | JoinedEnv.ReturnLoc = nullptr; |
794 | |
795 | JoinedEnv.DeclToLoc = intersectDeclToLoc(DeclToLoc1: EnvA.DeclToLoc, DeclToLoc2: EnvB.DeclToLoc); |
796 | |
797 | // FIXME: update join to detect backedges and simplify the flow condition |
798 | // accordingly. |
799 | JoinedEnv.FlowConditionToken = EnvA.DACtx->joinFlowConditions( |
800 | FirstToken: EnvA.FlowConditionToken, SecondToken: EnvB.FlowConditionToken); |
801 | |
802 | JoinedEnv.LocToVal = |
803 | joinLocToVal(LocToVal: EnvA.LocToVal, LocToVal2: EnvB.LocToVal, Env1: EnvA, Env2: EnvB, JoinedEnv, Model); |
804 | |
805 | if (ExprBehavior == KeepExprState) { |
806 | JoinedEnv.ExprToVal = joinExprMaps(Map1: EnvA.ExprToVal, Map2: EnvB.ExprToVal); |
807 | JoinedEnv.ExprToLoc = joinExprMaps(Map1: EnvA.ExprToLoc, Map2: EnvB.ExprToLoc); |
808 | } |
809 | |
810 | return JoinedEnv; |
811 | } |
812 | |
813 | Value *Environment::joinValues(QualType Ty, Value *Val1, |
814 | const Environment &Env1, Value *Val2, |
815 | const Environment &Env2, Environment &JoinedEnv, |
816 | Environment::ValueModel &Model) { |
817 | if (Val1 == nullptr || Val2 == nullptr) |
818 | // We can't say anything about the joined value -- even if one of the values |
819 | // is non-null, we don't want to simply propagate it, because it would be |
820 | // too specific: Because the other value is null, that means we have no |
821 | // information at all about the value (i.e. the value is unconstrained). |
822 | return nullptr; |
823 | |
824 | if (areEquivalentValues(Val1: *Val1, Val2: *Val2)) |
825 | // Arbitrarily return one of the two values. |
826 | return Val1; |
827 | |
828 | return joinDistinctValues(Type: Ty, Val1&: *Val1, Env1, Val2&: *Val2, Env2, JoinedEnv, Model); |
829 | } |
830 | |
831 | StorageLocation &Environment::createStorageLocation(QualType Type) { |
832 | return DACtx->createStorageLocation(Type); |
833 | } |
834 | |
835 | StorageLocation &Environment::createStorageLocation(const ValueDecl &D) { |
836 | // Evaluated declarations are always assigned the same storage locations to |
837 | // ensure that the environment stabilizes across loop iterations. Storage |
838 | // locations for evaluated declarations are stored in the analysis context. |
839 | return DACtx->getStableStorageLocation(D); |
840 | } |
841 | |
842 | StorageLocation &Environment::createStorageLocation(const Expr &E) { |
843 | // Evaluated expressions are always assigned the same storage locations to |
844 | // ensure that the environment stabilizes across loop iterations. Storage |
845 | // locations for evaluated expressions are stored in the analysis context. |
846 | return DACtx->getStableStorageLocation(E); |
847 | } |
848 | |
849 | void Environment::setStorageLocation(const ValueDecl &D, StorageLocation &Loc) { |
850 | assert(!DeclToLoc.contains(&D)); |
851 | // The only kinds of declarations that may have a "variable" storage location |
852 | // are declarations of reference type and `BindingDecl`. For all other |
853 | // declaration, the storage location should be the stable storage location |
854 | // returned by `createStorageLocation()`. |
855 | assert(D.getType()->isReferenceType() || isa<BindingDecl>(D) || |
856 | &Loc == &createStorageLocation(D)); |
857 | DeclToLoc[&D] = &Loc; |
858 | } |
859 | |
860 | StorageLocation *Environment::getStorageLocation(const ValueDecl &D) const { |
861 | auto It = DeclToLoc.find(Val: &D); |
862 | if (It == DeclToLoc.end()) |
863 | return nullptr; |
864 | |
865 | StorageLocation *Loc = It->second; |
866 | |
867 | return Loc; |
868 | } |
869 | |
870 | void Environment::removeDecl(const ValueDecl &D) { DeclToLoc.erase(Val: &D); } |
871 | |
872 | void Environment::setStorageLocation(const Expr &E, StorageLocation &Loc) { |
873 | // `DeclRefExpr`s to builtin function types aren't glvalues, for some reason, |
874 | // but we still want to be able to associate a `StorageLocation` with them, |
875 | // so allow these as an exception. |
876 | assert(E.isGLValue() || |
877 | E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)); |
878 | const Expr &CanonE = ignoreCFGOmittedNodes(E); |
879 | assert(!ExprToLoc.contains(&CanonE)); |
880 | ExprToLoc[&CanonE] = &Loc; |
881 | } |
882 | |
883 | StorageLocation *Environment::getStorageLocation(const Expr &E) const { |
884 | // See comment in `setStorageLocation()`. |
885 | assert(E.isGLValue() || |
886 | E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)); |
887 | auto It = ExprToLoc.find(Val: &ignoreCFGOmittedNodes(E)); |
888 | return It == ExprToLoc.end() ? nullptr : &*It->second; |
889 | } |
890 | |
891 | RecordStorageLocation & |
892 | Environment::getResultObjectLocation(const Expr &RecordPRValue) const { |
893 | assert(RecordPRValue.getType()->isRecordType()); |
894 | assert(RecordPRValue.isPRValue()); |
895 | |
896 | assert(ResultObjectMap != nullptr); |
897 | RecordStorageLocation *Loc = ResultObjectMap->lookup(Val: &RecordPRValue); |
898 | assert(Loc != nullptr); |
899 | // In release builds, use the "stable" storage location if the map lookup |
900 | // failed. |
901 | if (Loc == nullptr) |
902 | return cast<RecordStorageLocation>( |
903 | Val&: DACtx->getStableStorageLocation(E: RecordPRValue)); |
904 | return *Loc; |
905 | } |
906 | |
907 | PointerValue &Environment::getOrCreateNullPointerValue(QualType PointeeType) { |
908 | return DACtx->getOrCreateNullPointerValue(PointeeType); |
909 | } |
910 | |
911 | void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc, |
912 | QualType Type) { |
913 | llvm::DenseSet<QualType> Visited; |
914 | int CreatedValuesCount = 0; |
915 | initializeFieldsWithValues(Loc, Type, Visited, Depth: 0, CreatedValuesCount); |
916 | if (CreatedValuesCount > MaxCompositeValueSize) { |
917 | llvm::errs() << "Attempting to initialize a huge value of type: " << Type |
918 | << '\n'; |
919 | } |
920 | } |
921 | |
922 | void Environment::setValue(const StorageLocation &Loc, Value &Val) { |
923 | // Records should not be associated with values. |
924 | assert(!isa<RecordStorageLocation>(Loc)); |
925 | LocToVal[&Loc] = &Val; |
926 | } |
927 | |
928 | void Environment::setValue(const Expr &E, Value &Val) { |
929 | const Expr &CanonE = ignoreCFGOmittedNodes(E); |
930 | |
931 | assert(CanonE.isPRValue()); |
932 | // Records should not be associated with values. |
933 | assert(!CanonE.getType()->isRecordType()); |
934 | ExprToVal[&CanonE] = &Val; |
935 | } |
936 | |
937 | Value *Environment::getValue(const StorageLocation &Loc) const { |
938 | // Records should not be associated with values. |
939 | assert(!isa<RecordStorageLocation>(Loc)); |
940 | return LocToVal.lookup(Key: &Loc); |
941 | } |
942 | |
943 | Value *Environment::getValue(const ValueDecl &D) const { |
944 | auto *Loc = getStorageLocation(D); |
945 | if (Loc == nullptr) |
946 | return nullptr; |
947 | return getValue(Loc: *Loc); |
948 | } |
949 | |
950 | Value *Environment::getValue(const Expr &E) const { |
951 | // Records should not be associated with values. |
952 | assert(!E.getType()->isRecordType()); |
953 | |
954 | if (E.isPRValue()) { |
955 | auto It = ExprToVal.find(Key: &ignoreCFGOmittedNodes(E)); |
956 | return It == ExprToVal.end() ? nullptr : It->second; |
957 | } |
958 | |
959 | auto It = ExprToLoc.find(Val: &ignoreCFGOmittedNodes(E)); |
960 | if (It == ExprToLoc.end()) |
961 | return nullptr; |
962 | return getValue(Loc: *It->second); |
963 | } |
964 | |
965 | Value *Environment::createValue(QualType Type) { |
966 | llvm::DenseSet<QualType> Visited; |
967 | int CreatedValuesCount = 0; |
968 | Value *Val = createValueUnlessSelfReferential(Type, Visited, /*Depth=*/0, |
969 | CreatedValuesCount); |
970 | if (CreatedValuesCount > MaxCompositeValueSize) { |
971 | llvm::errs() << "Attempting to initialize a huge value of type: " << Type |
972 | << '\n'; |
973 | } |
974 | return Val; |
975 | } |
976 | |
977 | Value *Environment::createValueUnlessSelfReferential( |
978 | QualType Type, llvm::DenseSet<QualType> &Visited, int Depth, |
979 | int &CreatedValuesCount) { |
980 | assert(!Type.isNull()); |
981 | assert(!Type->isReferenceType()); |
982 | assert(!Type->isRecordType()); |
983 | |
984 | // Allow unlimited fields at depth 1; only cap at deeper nesting levels. |
985 | if ((Depth > 1 && CreatedValuesCount > MaxCompositeValueSize) || |
986 | Depth > MaxCompositeValueDepth) |
987 | return nullptr; |
988 | |
989 | if (Type->isBooleanType()) { |
990 | CreatedValuesCount++; |
991 | return &makeAtomicBoolValue(); |
992 | } |
993 | |
994 | if (Type->isIntegerType()) { |
995 | // FIXME: consider instead `return nullptr`, given that we do nothing useful |
996 | // with integers, and so distinguishing them serves no purpose, but could |
997 | // prevent convergence. |
998 | CreatedValuesCount++; |
999 | return &arena().create<IntegerValue>(); |
1000 | } |
1001 | |
1002 | if (Type->isPointerType()) { |
1003 | CreatedValuesCount++; |
1004 | QualType PointeeType = Type->getPointeeType(); |
1005 | StorageLocation &PointeeLoc = |
1006 | createLocAndMaybeValue(Ty: PointeeType, Visited, Depth, CreatedValuesCount); |
1007 | |
1008 | return &arena().create<PointerValue>(args&: PointeeLoc); |
1009 | } |
1010 | |
1011 | return nullptr; |
1012 | } |
1013 | |
1014 | StorageLocation & |
1015 | Environment::createLocAndMaybeValue(QualType Ty, |
1016 | llvm::DenseSet<QualType> &Visited, |
1017 | int Depth, int &CreatedValuesCount) { |
1018 | if (!Visited.insert(V: Ty.getCanonicalType()).second) |
1019 | return createStorageLocation(Type: Ty.getNonReferenceType()); |
1020 | auto EraseVisited = llvm::make_scope_exit( |
1021 | F: [&Visited, Ty] { Visited.erase(V: Ty.getCanonicalType()); }); |
1022 | |
1023 | Ty = Ty.getNonReferenceType(); |
1024 | |
1025 | if (Ty->isRecordType()) { |
1026 | auto &Loc = cast<RecordStorageLocation>(Val&: createStorageLocation(Type: Ty)); |
1027 | initializeFieldsWithValues(Loc, Type: Ty, Visited, Depth, CreatedValuesCount); |
1028 | return Loc; |
1029 | } |
1030 | |
1031 | StorageLocation &Loc = createStorageLocation(Type: Ty); |
1032 | |
1033 | if (Value *Val = createValueUnlessSelfReferential(Type: Ty, Visited, Depth, |
1034 | CreatedValuesCount)) |
1035 | setValue(Loc, Val&: *Val); |
1036 | |
1037 | return Loc; |
1038 | } |
1039 | |
1040 | void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc, |
1041 | QualType Type, |
1042 | llvm::DenseSet<QualType> &Visited, |
1043 | int Depth, |
1044 | int &CreatedValuesCount) { |
1045 | auto initField = [&](QualType FieldType, StorageLocation &FieldLoc) { |
1046 | if (FieldType->isRecordType()) { |
1047 | auto &FieldRecordLoc = cast<RecordStorageLocation>(Val&: FieldLoc); |
1048 | initializeFieldsWithValues(Loc&: FieldRecordLoc, Type: FieldRecordLoc.getType(), |
1049 | Visited, Depth: Depth + 1, CreatedValuesCount); |
1050 | } else { |
1051 | if (getValue(Loc: FieldLoc) != nullptr) |
1052 | return; |
1053 | if (!Visited.insert(V: FieldType.getCanonicalType()).second) |
1054 | return; |
1055 | if (Value *Val = createValueUnlessSelfReferential( |
1056 | Type: FieldType, Visited, Depth: Depth + 1, CreatedValuesCount)) |
1057 | setValue(Loc: FieldLoc, Val&: *Val); |
1058 | Visited.erase(V: FieldType.getCanonicalType()); |
1059 | } |
1060 | }; |
1061 | |
1062 | for (const FieldDecl *Field : DACtx->getModeledFields(Type)) { |
1063 | assert(Field != nullptr); |
1064 | QualType FieldType = Field->getType(); |
1065 | |
1066 | if (FieldType->isReferenceType()) { |
1067 | Loc.setChild(D: *Field, |
1068 | Loc: &createLocAndMaybeValue(Ty: FieldType, Visited, Depth: Depth + 1, |
1069 | CreatedValuesCount)); |
1070 | } else { |
1071 | StorageLocation *FieldLoc = Loc.getChild(D: *Field); |
1072 | assert(FieldLoc != nullptr); |
1073 | initField(FieldType, *FieldLoc); |
1074 | } |
1075 | } |
1076 | for (const auto &[FieldName, FieldType] : DACtx->getSyntheticFields(Type)) { |
1077 | // Synthetic fields cannot have reference type, so we don't need to deal |
1078 | // with this case. |
1079 | assert(!FieldType->isReferenceType()); |
1080 | initField(FieldType, Loc.getSyntheticField(Name: FieldName)); |
1081 | } |
1082 | } |
1083 | |
1084 | StorageLocation &Environment::createObjectInternal(const ValueDecl *D, |
1085 | QualType Ty, |
1086 | const Expr *InitExpr) { |
1087 | if (Ty->isReferenceType()) { |
1088 | // Although variables of reference type always need to be initialized, it |
1089 | // can happen that we can't see the initializer, so `InitExpr` may still |
1090 | // be null. |
1091 | if (InitExpr) { |
1092 | if (auto *InitExprLoc = getStorageLocation(E: *InitExpr)) |
1093 | return *InitExprLoc; |
1094 | } |
1095 | |
1096 | // Even though we have an initializer, we might not get an |
1097 | // InitExprLoc, for example if the InitExpr is a CallExpr for which we |
1098 | // don't have a function body. In this case, we just invent a storage |
1099 | // location and value -- it's the best we can do. |
1100 | return createObjectInternal(D, Ty: Ty.getNonReferenceType(), InitExpr: nullptr); |
1101 | } |
1102 | |
1103 | StorageLocation &Loc = |
1104 | D ? createStorageLocation(D: *D) : createStorageLocation(Type: Ty); |
1105 | |
1106 | if (Ty->isRecordType()) { |
1107 | auto &RecordLoc = cast<RecordStorageLocation>(Val&: Loc); |
1108 | if (!InitExpr) |
1109 | initializeFieldsWithValues(Loc&: RecordLoc); |
1110 | } else { |
1111 | Value *Val = nullptr; |
1112 | if (InitExpr) |
1113 | // In the (few) cases where an expression is intentionally |
1114 | // "uninterpreted", `InitExpr` is not associated with a value. There are |
1115 | // two ways to handle this situation: propagate the status, so that |
1116 | // uninterpreted initializers result in uninterpreted variables, or |
1117 | // provide a default value. We choose the latter so that later refinements |
1118 | // of the variable can be used for reasoning about the surrounding code. |
1119 | // For this reason, we let this case be handled by the `createValue()` |
1120 | // call below. |
1121 | // |
1122 | // FIXME. If and when we interpret all language cases, change this to |
1123 | // assert that `InitExpr` is interpreted, rather than supplying a |
1124 | // default value (assuming we don't update the environment API to return |
1125 | // references). |
1126 | Val = getValue(E: *InitExpr); |
1127 | if (!Val) |
1128 | Val = createValue(Type: Ty); |
1129 | if (Val) |
1130 | setValue(Loc, Val&: *Val); |
1131 | } |
1132 | |
1133 | return Loc; |
1134 | } |
1135 | |
1136 | void Environment::assume(const Formula &F) { |
1137 | DACtx->addFlowConditionConstraint(Token: FlowConditionToken, Constraint: F); |
1138 | } |
1139 | |
1140 | bool Environment::proves(const Formula &F) const { |
1141 | return DACtx->flowConditionImplies(Token: FlowConditionToken, F); |
1142 | } |
1143 | |
1144 | bool Environment::allows(const Formula &F) const { |
1145 | return DACtx->flowConditionAllows(Token: FlowConditionToken, F); |
1146 | } |
1147 | |
1148 | void Environment::dump(raw_ostream &OS) const { |
1149 | llvm::DenseMap<const StorageLocation *, std::string> LocToName; |
1150 | if (LocForRecordReturnVal != nullptr) |
1151 | LocToName[LocForRecordReturnVal] = "(returned record)" ; |
1152 | if (ThisPointeeLoc != nullptr) |
1153 | LocToName[ThisPointeeLoc] = "this" ; |
1154 | |
1155 | OS << "DeclToLoc:\n" ; |
1156 | for (auto [D, L] : DeclToLoc) { |
1157 | auto Iter = LocToName.insert(KV: {L, D->getNameAsString()}).first; |
1158 | OS << " [" << Iter->second << ", " << L << "]\n" ; |
1159 | } |
1160 | OS << "ExprToLoc:\n" ; |
1161 | for (auto [E, L] : ExprToLoc) |
1162 | OS << " [" << E << ", " << L << "]\n" ; |
1163 | |
1164 | OS << "ExprToVal:\n" ; |
1165 | for (auto [E, V] : ExprToVal) |
1166 | OS << " [" << E << ", " << V << ": " << *V << "]\n" ; |
1167 | |
1168 | OS << "LocToVal:\n" ; |
1169 | for (auto [L, V] : LocToVal) { |
1170 | OS << " [" << L; |
1171 | if (auto Iter = LocToName.find(Val: L); Iter != LocToName.end()) |
1172 | OS << " (" << Iter->second << ")" ; |
1173 | OS << ", " << V << ": " << *V << "]\n" ; |
1174 | } |
1175 | |
1176 | if (const FunctionDecl *Func = getCurrentFunc()) { |
1177 | if (Func->getReturnType()->isReferenceType()) { |
1178 | OS << "ReturnLoc: " << ReturnLoc; |
1179 | if (auto Iter = LocToName.find(Val: ReturnLoc); Iter != LocToName.end()) |
1180 | OS << " (" << Iter->second << ")" ; |
1181 | OS << "\n" ; |
1182 | } else if (Func->getReturnType()->isRecordType() || |
1183 | isa<CXXConstructorDecl>(Val: Func)) { |
1184 | OS << "LocForRecordReturnVal: " << LocForRecordReturnVal << "\n" ; |
1185 | } else if (!Func->getReturnType()->isVoidType()) { |
1186 | if (ReturnVal == nullptr) |
1187 | OS << "ReturnVal: nullptr\n" ; |
1188 | else |
1189 | OS << "ReturnVal: " << *ReturnVal << "\n" ; |
1190 | } |
1191 | |
1192 | if (isa<CXXMethodDecl>(Val: Func)) { |
1193 | OS << "ThisPointeeLoc: " << ThisPointeeLoc << "\n" ; |
1194 | } |
1195 | } |
1196 | |
1197 | OS << "\n" ; |
1198 | DACtx->dumpFlowCondition(Token: FlowConditionToken, OS); |
1199 | } |
1200 | |
1201 | void Environment::dump() const { dump(OS&: llvm::dbgs()); } |
1202 | |
1203 | Environment::PrValueToResultObject Environment::buildResultObjectMap( |
1204 | DataflowAnalysisContext *DACtx, const FunctionDecl *FuncDecl, |
1205 | RecordStorageLocation *ThisPointeeLoc, |
1206 | RecordStorageLocation *LocForRecordReturnVal) { |
1207 | assert(FuncDecl->doesThisDeclarationHaveABody()); |
1208 | |
1209 | PrValueToResultObject Map = buildResultObjectMap( |
1210 | DACtx, S: FuncDecl->getBody(), ThisPointeeLoc, LocForRecordReturnVal); |
1211 | |
1212 | ResultObjectVisitor Visitor(Map, LocForRecordReturnVal, *DACtx); |
1213 | if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Val: FuncDecl)) |
1214 | Visitor.TraverseConstructorInits(Ctor, ThisPointeeLoc); |
1215 | |
1216 | return Map; |
1217 | } |
1218 | |
1219 | Environment::PrValueToResultObject Environment::buildResultObjectMap( |
1220 | DataflowAnalysisContext *DACtx, Stmt *S, |
1221 | RecordStorageLocation *ThisPointeeLoc, |
1222 | RecordStorageLocation *LocForRecordReturnVal) { |
1223 | PrValueToResultObject Map; |
1224 | ResultObjectVisitor Visitor(Map, LocForRecordReturnVal, *DACtx); |
1225 | Visitor.TraverseStmt(S); |
1226 | return Map; |
1227 | } |
1228 | |
1229 | RecordStorageLocation *getImplicitObjectLocation(const CXXMemberCallExpr &MCE, |
1230 | const Environment &Env) { |
1231 | Expr *ImplicitObject = MCE.getImplicitObjectArgument(); |
1232 | if (ImplicitObject == nullptr) |
1233 | return nullptr; |
1234 | if (ImplicitObject->getType()->isPointerType()) { |
1235 | if (auto *Val = Env.get<PointerValue>(E: *ImplicitObject)) |
1236 | return &cast<RecordStorageLocation>(Val&: Val->getPointeeLoc()); |
1237 | return nullptr; |
1238 | } |
1239 | return cast_or_null<RecordStorageLocation>( |
1240 | Val: Env.getStorageLocation(E: *ImplicitObject)); |
1241 | } |
1242 | |
1243 | RecordStorageLocation *getBaseObjectLocation(const MemberExpr &ME, |
1244 | const Environment &Env) { |
1245 | Expr *Base = ME.getBase(); |
1246 | if (Base == nullptr) |
1247 | return nullptr; |
1248 | if (ME.isArrow()) { |
1249 | if (auto *Val = Env.get<PointerValue>(E: *Base)) |
1250 | return &cast<RecordStorageLocation>(Val&: Val->getPointeeLoc()); |
1251 | return nullptr; |
1252 | } |
1253 | return Env.get<RecordStorageLocation>(E: *Base); |
1254 | } |
1255 | |
1256 | } // namespace dataflow |
1257 | } // namespace clang |
1258 | |