| 1 | // class template regex -*- C++ -*- |
| 2 | |
| 3 | // Copyright (C) 2013-2024 Free Software Foundation, Inc. |
| 4 | // |
| 5 | // This file is part of the GNU ISO C++ Library. This library is free |
| 6 | // software; you can redistribute it and/or modify it under the |
| 7 | // terms of the GNU General Public License as published by the |
| 8 | // Free Software Foundation; either version 3, or (at your option) |
| 9 | // any later version. |
| 10 | |
| 11 | // This library is distributed in the hope that it will be useful, |
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | // GNU General Public License for more details. |
| 15 | |
| 16 | // Under Section 7 of GPL version 3, you are granted additional |
| 17 | // permissions described in the GCC Runtime Library Exception, version |
| 18 | // 3.1, as published by the Free Software Foundation. |
| 19 | |
| 20 | // You should have received a copy of the GNU General Public License and |
| 21 | // a copy of the GCC Runtime Library Exception along with this program; |
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 | // <http://www.gnu.org/licenses/>. |
| 24 | |
| 25 | /** |
| 26 | * @file bits/regex_executor.tcc |
| 27 | * This is an internal header file, included by other library headers. |
| 28 | * Do not attempt to use it directly. @headername{regex} |
| 29 | */ |
| 30 | |
| 31 | namespace std _GLIBCXX_VISIBILITY(default) |
| 32 | { |
| 33 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 34 | |
| 35 | namespace __detail |
| 36 | { |
| 37 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 38 | bool __dfs_mode> |
| 39 | bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 40 | _M_search() |
| 41 | { |
| 42 | if (_M_search_from_first()) |
| 43 | return true; |
| 44 | if (_M_flags & regex_constants::match_continuous) |
| 45 | return false; |
| 46 | _M_flags |= regex_constants::match_prev_avail; |
| 47 | while (_M_begin != _M_end) |
| 48 | { |
| 49 | ++_M_begin; |
| 50 | if (_M_search_from_first()) |
| 51 | return true; |
| 52 | } |
| 53 | return false; |
| 54 | } |
| 55 | |
| 56 | // The _M_main function operates in different modes, DFS mode or BFS mode, |
| 57 | // indicated by template parameter __dfs_mode, and dispatches to one of the |
| 58 | // _M_main_dispatch overloads. |
| 59 | // |
| 60 | // ------------------------------------------------------------ |
| 61 | // |
| 62 | // DFS mode: |
| 63 | // |
| 64 | // It applies a Depth-First-Search (aka backtracking) on given NFA and input |
| 65 | // string. |
| 66 | // At the very beginning the executor stands in the start state, then it |
| 67 | // tries every possible state transition in current state recursively. Some |
| 68 | // state transitions consume input string, say, a single-char-matcher or a |
| 69 | // back-reference matcher; some don't, like assertion or other anchor nodes. |
| 70 | // When the input is exhausted and/or the current state is an accepting |
| 71 | // state, the whole executor returns true. |
| 72 | // |
| 73 | // TODO: This approach is exponentially slow for certain input. |
| 74 | // Try to compile the NFA to a DFA. |
| 75 | // |
| 76 | // Time complexity: \Omega(match_length), O(2^(_M_nfa.size())) |
| 77 | // Space complexity: \theta(match_results.size() + match_length) |
| 78 | // |
| 79 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 80 | bool __dfs_mode> |
| 81 | bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 82 | _M_main_dispatch(_Match_mode __match_mode, __dfs) |
| 83 | { |
| 84 | _M_has_sol = false; |
| 85 | *_M_states._M_get_sol_pos() = _BiIter(); |
| 86 | _M_cur_results = _M_results; |
| 87 | _M_dfs(__match_mode, start: _M_states._M_start); |
| 88 | return _M_has_sol; |
| 89 | } |
| 90 | |
| 91 | // ------------------------------------------------------------ |
| 92 | // |
| 93 | // BFS mode: |
| 94 | // |
| 95 | // Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html) |
| 96 | // explained this algorithm clearly. |
| 97 | // |
| 98 | // It first computes epsilon closure (states that can be achieved without |
| 99 | // consuming characters) for every state that's still matching, |
| 100 | // using the same DFS algorithm, but doesn't re-enter states (using |
| 101 | // _M_states._M_visited to check), nor follow _S_opcode_match. |
| 102 | // |
| 103 | // Then apply DFS using every _S_opcode_match (in _M_states._M_match_queue) |
| 104 | // as the start state. |
| 105 | // |
| 106 | // It significantly reduces potential duplicate states, so has a better |
| 107 | // upper bound; but it requires more overhead. |
| 108 | // |
| 109 | // Time complexity: \Omega(match_length * match_results.size()) |
| 110 | // O(match_length * _M_nfa.size() * match_results.size()) |
| 111 | // Space complexity: \Omega(_M_nfa.size() + match_results.size()) |
| 112 | // O(_M_nfa.size() * match_results.size()) |
| 113 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 114 | bool __dfs_mode> |
| 115 | bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 116 | _M_main_dispatch(_Match_mode __match_mode, __bfs) |
| 117 | { |
| 118 | _M_states._M_queue(_M_states._M_start, _M_results); |
| 119 | bool __ret = false; |
| 120 | while (1) |
| 121 | { |
| 122 | _M_has_sol = false; |
| 123 | if (_M_states._M_match_queue.empty()) |
| 124 | break; |
| 125 | std::fill_n(_M_states._M_visited_states, _M_nfa.size(), false); |
| 126 | auto __old_queue = std::move(_M_states._M_match_queue); |
| 127 | auto __alloc = _M_cur_results.get_allocator(); |
| 128 | for (auto& __task : __old_queue) |
| 129 | { |
| 130 | _M_cur_results = _ResultsVec(std::move(__task.second), __alloc); |
| 131 | _M_dfs(__match_mode, start: __task.first); |
| 132 | } |
| 133 | if (__match_mode == _Match_mode::_Prefix) |
| 134 | __ret |= _M_has_sol; |
| 135 | if (_M_current == _M_end) |
| 136 | break; |
| 137 | ++_M_current; |
| 138 | } |
| 139 | if (__match_mode == _Match_mode::_Exact) |
| 140 | __ret = _M_has_sol; |
| 141 | _M_states._M_match_queue.clear(); |
| 142 | return __ret; |
| 143 | } |
| 144 | |
| 145 | // Return whether now match the given sub-NFA. |
| 146 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 147 | bool __dfs_mode> |
| 148 | bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 149 | _M_lookahead(_StateIdT __next) |
| 150 | { |
| 151 | // Backreferences may refer to captured content. |
| 152 | // We may want to make this faster by not copying, |
| 153 | // but let's not be clever prematurely. |
| 154 | _ResultsVec __what(_M_cur_results); |
| 155 | _Executor __sub(_M_current, _M_end, __what, _M_re, _M_flags); |
| 156 | __sub._M_states._M_start = __next; |
| 157 | if (__sub._M_search_from_first()) |
| 158 | { |
| 159 | for (size_t __i = 0; __i < __what.size(); __i++) |
| 160 | if (__what[__i].matched) |
| 161 | _M_cur_results[__i] = __what[__i]; |
| 162 | return true; |
| 163 | } |
| 164 | return false; |
| 165 | } |
| 166 | |
| 167 | // __rep_count records how many times (__rep_count.second) |
| 168 | // this node is visited under certain input iterator |
| 169 | // (__rep_count.first). This prevent the executor from entering |
| 170 | // infinite loop by refusing to continue when it's already been |
| 171 | // visited more than twice. It's `twice` instead of `once` because |
| 172 | // we need to spare one more time for potential group capture. |
| 173 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 174 | bool __dfs_mode> |
| 175 | void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 176 | _M_rep_once_more(_Match_mode __match_mode, _StateIdT __i) |
| 177 | { |
| 178 | const auto& __state = _M_nfa[__i]; |
| 179 | auto& __rep_count = _M_rep_count[__i]; |
| 180 | if (__rep_count.second == 0 || __rep_count.first != _M_current) |
| 181 | { |
| 182 | auto __back = __rep_count; |
| 183 | __rep_count.first = _M_current; |
| 184 | __rep_count.second = 1; |
| 185 | _M_dfs(__match_mode, start: __state._M_alt); |
| 186 | __rep_count = __back; |
| 187 | } |
| 188 | else |
| 189 | { |
| 190 | if (__rep_count.second < 2) |
| 191 | { |
| 192 | __rep_count.second++; |
| 193 | _M_dfs(__match_mode, start: __state._M_alt); |
| 194 | __rep_count.second--; |
| 195 | } |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | // _M_alt branch is "match once more", while _M_next is "get me out |
| 200 | // of this quantifier". Executing _M_next first or _M_alt first don't |
| 201 | // mean the same thing, and we need to choose the correct order under |
| 202 | // given greedy mode. |
| 203 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 204 | bool __dfs_mode> |
| 205 | void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 206 | _M_handle_repeat(_Match_mode __match_mode, _StateIdT __i) |
| 207 | { |
| 208 | const auto& __state = _M_nfa[__i]; |
| 209 | |
| 210 | // Greedy. |
| 211 | if (!__state._M_neg) |
| 212 | { |
| 213 | _M_rep_once_more(__match_mode, __i); |
| 214 | // If it's DFS executor and already accepted, we're done. |
| 215 | if (!__dfs_mode || !_M_has_sol) |
| 216 | _M_dfs(__match_mode, start: __state._M_next); |
| 217 | } |
| 218 | else // Non-greedy mode |
| 219 | { |
| 220 | if (__dfs_mode) |
| 221 | { |
| 222 | // vice-versa. |
| 223 | _M_dfs(__match_mode, start: __state._M_next); |
| 224 | if (!_M_has_sol) |
| 225 | _M_rep_once_more(__match_mode, __i); |
| 226 | } |
| 227 | else |
| 228 | { |
| 229 | // DON'T attempt anything, because there's already another |
| 230 | // state with higher priority accepted. This state cannot |
| 231 | // be better by attempting its next node. |
| 232 | if (!_M_has_sol) |
| 233 | { |
| 234 | _M_dfs(__match_mode, start: __state._M_next); |
| 235 | // DON'T attempt anything if it's already accepted. An |
| 236 | // accepted state *must* be better than a solution that |
| 237 | // matches a non-greedy quantifier one more time. |
| 238 | if (!_M_has_sol) |
| 239 | _M_rep_once_more(__match_mode, __i); |
| 240 | } |
| 241 | } |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 246 | bool __dfs_mode> |
| 247 | void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 248 | _M_handle_subexpr_begin(_Match_mode __match_mode, _StateIdT __i) |
| 249 | { |
| 250 | const auto& __state = _M_nfa[__i]; |
| 251 | |
| 252 | auto& __res = _M_cur_results[__state._M_subexpr]; |
| 253 | auto __back = __res.first; |
| 254 | __res.first = _M_current; |
| 255 | _M_dfs(__match_mode, start: __state._M_next); |
| 256 | __res.first = __back; |
| 257 | } |
| 258 | |
| 259 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 260 | bool __dfs_mode> |
| 261 | void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 262 | _M_handle_subexpr_end(_Match_mode __match_mode, _StateIdT __i) |
| 263 | { |
| 264 | const auto& __state = _M_nfa[__i]; |
| 265 | |
| 266 | auto& __res = _M_cur_results[__state._M_subexpr]; |
| 267 | auto __back = __res; |
| 268 | __res.second = _M_current; |
| 269 | __res.matched = true; |
| 270 | _M_dfs(__match_mode, start: __state._M_next); |
| 271 | __res = __back; |
| 272 | } |
| 273 | |
| 274 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 275 | bool __dfs_mode> |
| 276 | inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 277 | _M_handle_line_begin_assertion(_Match_mode __match_mode, _StateIdT __i) |
| 278 | { |
| 279 | const auto& __state = _M_nfa[__i]; |
| 280 | if (_M_at_begin()) |
| 281 | _M_dfs(__match_mode, start: __state._M_next); |
| 282 | } |
| 283 | |
| 284 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 285 | bool __dfs_mode> |
| 286 | inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 287 | _M_handle_line_end_assertion(_Match_mode __match_mode, _StateIdT __i) |
| 288 | { |
| 289 | const auto& __state = _M_nfa[__i]; |
| 290 | if (_M_at_end()) |
| 291 | _M_dfs(__match_mode, start: __state._M_next); |
| 292 | } |
| 293 | |
| 294 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 295 | bool __dfs_mode> |
| 296 | inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 297 | _M_handle_word_boundary(_Match_mode __match_mode, _StateIdT __i) |
| 298 | { |
| 299 | const auto& __state = _M_nfa[__i]; |
| 300 | if (_M_word_boundary() == !__state._M_neg) |
| 301 | _M_dfs(__match_mode, start: __state._M_next); |
| 302 | } |
| 303 | |
| 304 | // Here __state._M_alt offers a single start node for a sub-NFA. |
| 305 | // We recursively invoke our algorithm to match the sub-NFA. |
| 306 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 307 | bool __dfs_mode> |
| 308 | void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 309 | _M_handle_subexpr_lookahead(_Match_mode __match_mode, _StateIdT __i) |
| 310 | { |
| 311 | const auto& __state = _M_nfa[__i]; |
| 312 | if (_M_lookahead(next: __state._M_alt) == !__state._M_neg) |
| 313 | _M_dfs(__match_mode, start: __state._M_next); |
| 314 | } |
| 315 | |
| 316 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 317 | bool __dfs_mode> |
| 318 | void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 319 | _M_handle_match(_Match_mode __match_mode, _StateIdT __i) |
| 320 | { |
| 321 | const auto& __state = _M_nfa[__i]; |
| 322 | |
| 323 | if (_M_current == _M_end) |
| 324 | return; |
| 325 | if (__dfs_mode) |
| 326 | { |
| 327 | if (__state._M_matches(*_M_current)) |
| 328 | { |
| 329 | ++_M_current; |
| 330 | _M_dfs(__match_mode, start: __state._M_next); |
| 331 | --_M_current; |
| 332 | } |
| 333 | } |
| 334 | else |
| 335 | if (__state._M_matches(*_M_current)) |
| 336 | _M_states._M_queue(__state._M_next, _M_cur_results); |
| 337 | } |
| 338 | |
| 339 | template<typename _BiIter, typename _TraitsT> |
| 340 | struct _Backref_matcher |
| 341 | { |
| 342 | _Backref_matcher(bool /* __icase */, const _TraitsT& __traits) |
| 343 | : _M_traits(__traits) { } |
| 344 | |
| 345 | bool |
| 346 | _M_apply(_BiIter __expected_begin, |
| 347 | _BiIter __expected_end, _BiIter __actual_begin, |
| 348 | _BiIter __actual_end) |
| 349 | { |
| 350 | return _M_traits.transform(__expected_begin, __expected_end) |
| 351 | == _M_traits.transform(__actual_begin, __actual_end); |
| 352 | } |
| 353 | |
| 354 | const _TraitsT& _M_traits; |
| 355 | }; |
| 356 | |
| 357 | template<typename _BiIter, typename _CharT> |
| 358 | struct _Backref_matcher<_BiIter, std::regex_traits<_CharT>> |
| 359 | { |
| 360 | using _TraitsT = std::regex_traits<_CharT>; |
| 361 | _Backref_matcher(bool __icase, const _TraitsT& __traits) |
| 362 | : _M_icase(__icase), _M_traits(__traits) { } |
| 363 | |
| 364 | bool |
| 365 | _M_apply(_BiIter __expected_begin, |
| 366 | _BiIter __expected_end, _BiIter __actual_begin, |
| 367 | _BiIter __actual_end) |
| 368 | { |
| 369 | if (!_M_icase) |
| 370 | return _GLIBCXX_STD_A::__equal4(__expected_begin, __expected_end, |
| 371 | __actual_begin, __actual_end); |
| 372 | typedef std::ctype<_CharT> __ctype_type; |
| 373 | const auto& __fctyp = use_facet<__ctype_type>(_M_traits.getloc()); |
| 374 | return _GLIBCXX_STD_A::__equal4(__expected_begin, __expected_end, |
| 375 | __actual_begin, __actual_end, |
| 376 | [this, &__fctyp](_CharT __lhs, _CharT __rhs) |
| 377 | { |
| 378 | return __fctyp.tolower(__lhs) |
| 379 | == __fctyp.tolower(__rhs); |
| 380 | }); |
| 381 | } |
| 382 | |
| 383 | bool _M_icase; |
| 384 | const _TraitsT& _M_traits; |
| 385 | }; |
| 386 | |
| 387 | // First fetch the matched result from _M_cur_results as __submatch; |
| 388 | // then compare it with |
| 389 | // (_M_current, _M_current + (__submatch.second - __submatch.first)). |
| 390 | // If matched, keep going; else just return and try another state. |
| 391 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 392 | bool __dfs_mode> |
| 393 | void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 394 | _M_handle_backref(_Match_mode __match_mode, _StateIdT __i) |
| 395 | { |
| 396 | __glibcxx_assert(__dfs_mode); |
| 397 | |
| 398 | const auto& __state = _M_nfa[__i]; |
| 399 | auto& __submatch = _M_cur_results[__state._M_backref_index]; |
| 400 | if (!__submatch.matched) |
| 401 | return; |
| 402 | auto __last = _M_current; |
| 403 | for (auto __tmp = __submatch.first; |
| 404 | __last != _M_end && __tmp != __submatch.second; |
| 405 | ++__tmp) |
| 406 | ++__last; |
| 407 | if (_Backref_matcher<_BiIter, _TraitsT>( |
| 408 | _M_re.flags() & regex_constants::icase, |
| 409 | _M_re._M_automaton->_M_traits)._M_apply( |
| 410 | __submatch.first, __submatch.second, _M_current, __last)) |
| 411 | { |
| 412 | if (__last != _M_current) |
| 413 | { |
| 414 | auto __backup = _M_current; |
| 415 | _M_current = __last; |
| 416 | _M_dfs(__match_mode, start: __state._M_next); |
| 417 | _M_current = __backup; |
| 418 | } |
| 419 | else |
| 420 | _M_dfs(__match_mode, start: __state._M_next); |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 425 | bool __dfs_mode> |
| 426 | void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 427 | _M_handle_accept(_Match_mode __match_mode, _StateIdT) |
| 428 | { |
| 429 | if _GLIBCXX17_CONSTEXPR (__dfs_mode) |
| 430 | { |
| 431 | __glibcxx_assert(!_M_has_sol); |
| 432 | if (__match_mode == _Match_mode::_Exact) |
| 433 | _M_has_sol = _M_current == _M_end; |
| 434 | else |
| 435 | _M_has_sol = true; |
| 436 | if (_M_current == _M_begin |
| 437 | && (_M_flags & regex_constants::match_not_null)) |
| 438 | _M_has_sol = false; |
| 439 | if (_M_has_sol) |
| 440 | { |
| 441 | if (_M_nfa._M_flags & regex_constants::ECMAScript) |
| 442 | _M_results = _M_cur_results; |
| 443 | else // POSIX |
| 444 | { |
| 445 | __glibcxx_assert(_M_states._M_get_sol_pos()); |
| 446 | // Here's POSIX's logic: match the longest one. However |
| 447 | // we never know which one (lhs or rhs of "|") is longer |
| 448 | // unless we try both of them and compare the results. |
| 449 | // The member variable _M_sol_pos records the end |
| 450 | // position of the last successful match. It's better |
| 451 | // to be larger, because POSIX regex is always greedy. |
| 452 | // TODO: This could be slow. |
| 453 | if (*_M_states._M_get_sol_pos() == _BiIter() |
| 454 | || std::distance(_M_begin, |
| 455 | *_M_states._M_get_sol_pos()) |
| 456 | < std::distance(_M_begin, _M_current)) |
| 457 | { |
| 458 | *_M_states._M_get_sol_pos() = _M_current; |
| 459 | _M_results = _M_cur_results; |
| 460 | } |
| 461 | } |
| 462 | } |
| 463 | } |
| 464 | else |
| 465 | { |
| 466 | if (_M_current == _M_begin |
| 467 | && (_M_flags & regex_constants::match_not_null)) |
| 468 | return; |
| 469 | if (__match_mode == _Match_mode::_Prefix || _M_current == _M_end) |
| 470 | if (!_M_has_sol) |
| 471 | { |
| 472 | _M_has_sol = true; |
| 473 | _M_results = _M_cur_results; |
| 474 | } |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 479 | bool __dfs_mode> |
| 480 | void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 481 | _M_handle_alternative(_Match_mode __match_mode, _StateIdT __i) |
| 482 | { |
| 483 | const auto& __state = _M_nfa[__i]; |
| 484 | |
| 485 | if (_M_nfa._M_flags & regex_constants::ECMAScript) |
| 486 | { |
| 487 | // TODO: Fix BFS support. It is wrong. |
| 488 | _M_dfs(__match_mode, start: __state._M_alt); |
| 489 | // Pick lhs if it matches. Only try rhs if it doesn't. |
| 490 | if (!_M_has_sol) |
| 491 | _M_dfs(__match_mode, start: __state._M_next); |
| 492 | } |
| 493 | else |
| 494 | { |
| 495 | // Try both and compare the result. |
| 496 | // See "case _S_opcode_accept:" handling above. |
| 497 | _M_dfs(__match_mode, start: __state._M_alt); |
| 498 | auto __has_sol = _M_has_sol; |
| 499 | _M_has_sol = false; |
| 500 | _M_dfs(__match_mode, start: __state._M_next); |
| 501 | _M_has_sol |= __has_sol; |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 506 | bool __dfs_mode> |
| 507 | void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 508 | _M_dfs(_Match_mode __match_mode, _StateIdT __i) |
| 509 | { |
| 510 | if (_M_states._M_visited(__i)) |
| 511 | return; |
| 512 | |
| 513 | switch (_M_nfa[__i]._M_opcode()) |
| 514 | { |
| 515 | case _S_opcode_repeat: |
| 516 | _M_handle_repeat(__match_mode, __i); break; |
| 517 | case _S_opcode_subexpr_begin: |
| 518 | _M_handle_subexpr_begin(__match_mode, __i); break; |
| 519 | case _S_opcode_subexpr_end: |
| 520 | _M_handle_subexpr_end(__match_mode, __i); break; |
| 521 | case _S_opcode_line_begin_assertion: |
| 522 | _M_handle_line_begin_assertion(__match_mode, __i); break; |
| 523 | case _S_opcode_line_end_assertion: |
| 524 | _M_handle_line_end_assertion(__match_mode, __i); break; |
| 525 | case _S_opcode_word_boundary: |
| 526 | _M_handle_word_boundary(__match_mode, __i); break; |
| 527 | case _S_opcode_subexpr_lookahead: |
| 528 | _M_handle_subexpr_lookahead(__match_mode, __i); break; |
| 529 | case _S_opcode_match: |
| 530 | _M_handle_match(__match_mode, __i); break; |
| 531 | case _S_opcode_backref: |
| 532 | _M_handle_backref(__match_mode, __i); break; |
| 533 | case _S_opcode_accept: |
| 534 | _M_handle_accept(__match_mode, __i); break; |
| 535 | case _S_opcode_alternative: |
| 536 | _M_handle_alternative(__match_mode, __i); break; |
| 537 | default: |
| 538 | __glibcxx_assert(false); |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | // Return whether now is at some word boundary. |
| 543 | template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 544 | bool __dfs_mode> |
| 545 | bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 546 | _M_word_boundary() const |
| 547 | { |
| 548 | if (_M_current == _M_begin && (_M_flags & regex_constants::match_not_bow)) |
| 549 | return false; |
| 550 | if (_M_current == _M_end && (_M_flags & regex_constants::match_not_eow)) |
| 551 | return false; |
| 552 | |
| 553 | bool __left_is_word = false; |
| 554 | if (_M_current != _M_begin |
| 555 | || (_M_flags & regex_constants::match_prev_avail)) |
| 556 | { |
| 557 | auto __prev = _M_current; |
| 558 | if (_M_is_word(ch: *std::prev(__prev))) |
| 559 | __left_is_word = true; |
| 560 | } |
| 561 | bool __right_is_word = |
| 562 | _M_current != _M_end && _M_is_word(ch: *_M_current); |
| 563 | |
| 564 | return __left_is_word != __right_is_word; |
| 565 | } |
| 566 | } // namespace __detail |
| 567 | |
| 568 | _GLIBCXX_END_NAMESPACE_VERSION |
| 569 | } // namespace |
| 570 | |