| 1 | //===- ThreadSafetyTIL.cpp ------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" |
| 10 | #include "clang/Basic/LLVM.h" |
| 11 | #include <cassert> |
| 12 | #include <cstddef> |
| 13 | |
| 14 | using namespace clang; |
| 15 | using namespace threadSafety; |
| 16 | using namespace til; |
| 17 | |
| 18 | StringRef til::getUnaryOpcodeString(TIL_UnaryOpcode Op) { |
| 19 | switch (Op) { |
| 20 | case UOP_Minus: return "-" ; |
| 21 | case UOP_BitNot: return "~" ; |
| 22 | case UOP_LogicNot: return "!" ; |
| 23 | } |
| 24 | return {}; |
| 25 | } |
| 26 | |
| 27 | StringRef til::getBinaryOpcodeString(TIL_BinaryOpcode Op) { |
| 28 | switch (Op) { |
| 29 | case BOP_Mul: return "*" ; |
| 30 | case BOP_Div: return "/" ; |
| 31 | case BOP_Rem: return "%" ; |
| 32 | case BOP_Add: return "+" ; |
| 33 | case BOP_Sub: return "-" ; |
| 34 | case BOP_Shl: return "<<" ; |
| 35 | case BOP_Shr: return ">>" ; |
| 36 | case BOP_BitAnd: return "&" ; |
| 37 | case BOP_BitXor: return "^" ; |
| 38 | case BOP_BitOr: return "|" ; |
| 39 | case BOP_Eq: return "==" ; |
| 40 | case BOP_Neq: return "!=" ; |
| 41 | case BOP_Lt: return "<" ; |
| 42 | case BOP_Leq: return "<=" ; |
| 43 | case BOP_Cmp: return "<=>" ; |
| 44 | case BOP_LogicAnd: return "&&" ; |
| 45 | case BOP_LogicOr: return "||" ; |
| 46 | } |
| 47 | return {}; |
| 48 | } |
| 49 | |
| 50 | SExpr* Future::force() { |
| 51 | Status = FS_evaluating; |
| 52 | Result = compute(); |
| 53 | Status = FS_done; |
| 54 | return Result; |
| 55 | } |
| 56 | |
| 57 | unsigned BasicBlock::addPredecessor(BasicBlock *Pred) { |
| 58 | unsigned Idx = Predecessors.size(); |
| 59 | Predecessors.reserveCheck(N: 1, A: Arena); |
| 60 | Predecessors.push_back(Elem: Pred); |
| 61 | for (auto *E : Args) { |
| 62 | if (auto *Ph = dyn_cast<Phi>(Val: E)) { |
| 63 | Ph->values().reserveCheck(N: 1, A: Arena); |
| 64 | Ph->values().push_back(Elem: nullptr); |
| 65 | } |
| 66 | } |
| 67 | return Idx; |
| 68 | } |
| 69 | |
| 70 | void BasicBlock::reservePredecessors(unsigned NumPreds) { |
| 71 | Predecessors.reserve(Ncp: NumPreds, A: Arena); |
| 72 | for (auto *E : Args) { |
| 73 | if (auto *Ph = dyn_cast<Phi>(Val: E)) { |
| 74 | Ph->values().reserve(Ncp: NumPreds, A: Arena); |
| 75 | } |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | // If E is a variable, then trace back through any aliases or redundant |
| 80 | // Phi nodes to find the canonical definition. |
| 81 | const SExpr *til::getCanonicalVal(const SExpr *E) { |
| 82 | while (true) { |
| 83 | if (const auto *V = dyn_cast<Variable>(Val: E)) { |
| 84 | if (V->kind() == Variable::VK_Let) { |
| 85 | E = V->definition(); |
| 86 | continue; |
| 87 | } |
| 88 | } |
| 89 | if (const auto *Ph = dyn_cast<Phi>(Val: E)) { |
| 90 | if (Ph->status() == Phi::PH_SingleVal) { |
| 91 | E = Ph->values()[0]; |
| 92 | continue; |
| 93 | } |
| 94 | } |
| 95 | break; |
| 96 | } |
| 97 | return E; |
| 98 | } |
| 99 | |
| 100 | // If E is a variable, then trace back through any aliases or redundant |
| 101 | // Phi nodes to find the canonical definition. |
| 102 | // The non-const version will simplify incomplete Phi nodes. |
| 103 | SExpr *til::simplifyToCanonicalVal(SExpr *E) { |
| 104 | while (true) { |
| 105 | if (auto *V = dyn_cast<Variable>(Val: E)) { |
| 106 | if (V->kind() != Variable::VK_Let) |
| 107 | return V; |
| 108 | // Eliminate redundant variables, e.g. x = y, or x = 5, |
| 109 | // but keep anything more complicated. |
| 110 | if (til::ThreadSafetyTIL::isTrivial(E: V->definition())) { |
| 111 | E = V->definition(); |
| 112 | continue; |
| 113 | } |
| 114 | return V; |
| 115 | } |
| 116 | if (auto *Ph = dyn_cast<Phi>(Val: E)) { |
| 117 | if (Ph->status() == Phi::PH_Incomplete) |
| 118 | simplifyIncompleteArg(Ph); |
| 119 | // Eliminate redundant Phi nodes. |
| 120 | if (Ph->status() == Phi::PH_SingleVal) { |
| 121 | E = Ph->values()[0]; |
| 122 | continue; |
| 123 | } |
| 124 | } |
| 125 | return E; |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | // Trace the arguments of an incomplete Phi node to see if they have the same |
| 130 | // canonical definition. If so, mark the Phi node as redundant. |
| 131 | // getCanonicalVal() will recursively call simplifyIncompletePhi(). |
| 132 | void til::simplifyIncompleteArg(til::Phi *Ph) { |
| 133 | assert(Ph && Ph->status() == Phi::PH_Incomplete); |
| 134 | |
| 135 | // eliminate infinite recursion -- assume that this node is not redundant. |
| 136 | Ph->setStatus(Phi::PH_MultiVal); |
| 137 | |
| 138 | SExpr *E0 = simplifyToCanonicalVal(E: Ph->values()[0]); |
| 139 | for (unsigned i = 1, n = Ph->values().size(); i < n; ++i) { |
| 140 | SExpr *Ei = simplifyToCanonicalVal(E: Ph->values()[i]); |
| 141 | if (Ei == Ph) |
| 142 | continue; // Recursive reference to itself. Don't count. |
| 143 | if (Ei != E0) { |
| 144 | return; // Status is already set to MultiVal. |
| 145 | } |
| 146 | } |
| 147 | Ph->setStatus(Phi::PH_SingleVal); |
| 148 | } |
| 149 | |
| 150 | // Renumbers the arguments and instructions to have unique, sequential IDs. |
| 151 | unsigned BasicBlock::renumberInstrs(unsigned ID) { |
| 152 | for (auto *Arg : Args) |
| 153 | Arg->setID(B: this, id: ID++); |
| 154 | for (auto *Instr : Instrs) |
| 155 | Instr->setID(B: this, id: ID++); |
| 156 | TermInstr->setID(B: this, id: ID++); |
| 157 | return ID; |
| 158 | } |
| 159 | |
| 160 | // Sorts the CFGs blocks using a reverse post-order depth-first traversal. |
| 161 | // Each block will be written into the Blocks array in order, and its BlockID |
| 162 | // will be set to the index in the array. Sorting should start from the entry |
| 163 | // block, and ID should be the total number of blocks. |
| 164 | unsigned BasicBlock::topologicalSort(SimpleArray<BasicBlock *> &Blocks, |
| 165 | unsigned ID) { |
| 166 | if (Visited) return ID; |
| 167 | Visited = true; |
| 168 | for (auto *Block : successors()) |
| 169 | ID = Block->topologicalSort(Blocks, ID); |
| 170 | // set ID and update block array in place. |
| 171 | // We may lose pointers to unreachable blocks. |
| 172 | assert(ID > 0); |
| 173 | BlockID = --ID; |
| 174 | Blocks[BlockID] = this; |
| 175 | return ID; |
| 176 | } |
| 177 | |
| 178 | // Performs a reverse topological traversal, starting from the exit block and |
| 179 | // following back-edges. The dominator is serialized before any predecessors, |
| 180 | // which guarantees that all blocks are serialized after their dominator and |
| 181 | // before their post-dominator (because it's a reverse topological traversal). |
| 182 | // ID should be initially set to 0. |
| 183 | // |
| 184 | // This sort assumes that (1) dominators have been computed, (2) there are no |
| 185 | // critical edges, and (3) the entry block is reachable from the exit block |
| 186 | // and no blocks are accessible via traversal of back-edges from the exit that |
| 187 | // weren't accessible via forward edges from the entry. |
| 188 | unsigned BasicBlock::topologicalFinalSort(SimpleArray<BasicBlock *> &Blocks, |
| 189 | unsigned ID) { |
| 190 | // Visited is assumed to have been set by the topologicalSort. This pass |
| 191 | // assumes !Visited means that we've visited this node before. |
| 192 | if (!Visited) return ID; |
| 193 | Visited = false; |
| 194 | if (DominatorNode.Parent) |
| 195 | ID = DominatorNode.Parent->topologicalFinalSort(Blocks, ID); |
| 196 | for (auto *Pred : Predecessors) |
| 197 | ID = Pred->topologicalFinalSort(Blocks, ID); |
| 198 | assert(static_cast<size_t>(ID) < Blocks.size()); |
| 199 | BlockID = ID++; |
| 200 | Blocks[BlockID] = this; |
| 201 | return ID; |
| 202 | } |
| 203 | |
| 204 | // Computes the immediate dominator of the current block. Assumes that all of |
| 205 | // its predecessors have already computed their dominators. This is achieved |
| 206 | // by visiting the nodes in topological order. |
| 207 | void BasicBlock::computeDominator() { |
| 208 | BasicBlock *Candidate = nullptr; |
| 209 | // Walk backwards from each predecessor to find the common dominator node. |
| 210 | for (auto *Pred : Predecessors) { |
| 211 | // Skip back-edges |
| 212 | if (Pred->BlockID >= BlockID) continue; |
| 213 | // If we don't yet have a candidate for dominator yet, take this one. |
| 214 | if (Candidate == nullptr) { |
| 215 | Candidate = Pred; |
| 216 | continue; |
| 217 | } |
| 218 | // Walk the alternate and current candidate back to find a common ancestor. |
| 219 | auto *Alternate = Pred; |
| 220 | while (Alternate != Candidate) { |
| 221 | if (Candidate->BlockID > Alternate->BlockID) |
| 222 | Candidate = Candidate->DominatorNode.Parent; |
| 223 | else |
| 224 | Alternate = Alternate->DominatorNode.Parent; |
| 225 | } |
| 226 | } |
| 227 | DominatorNode.Parent = Candidate; |
| 228 | DominatorNode.SizeOfSubTree = 1; |
| 229 | } |
| 230 | |
| 231 | // Computes the immediate post-dominator of the current block. Assumes that all |
| 232 | // of its successors have already computed their post-dominators. This is |
| 233 | // achieved visiting the nodes in reverse topological order. |
| 234 | void BasicBlock::computePostDominator() { |
| 235 | BasicBlock *Candidate = nullptr; |
| 236 | // Walk back from each predecessor to find the common post-dominator node. |
| 237 | for (auto *Succ : successors()) { |
| 238 | // Skip back-edges |
| 239 | if (Succ->BlockID <= BlockID) continue; |
| 240 | // If we don't yet have a candidate for post-dominator yet, take this one. |
| 241 | if (Candidate == nullptr) { |
| 242 | Candidate = Succ; |
| 243 | continue; |
| 244 | } |
| 245 | // Walk the alternate and current candidate back to find a common ancestor. |
| 246 | auto *Alternate = Succ; |
| 247 | while (Alternate != Candidate) { |
| 248 | if (Candidate->BlockID < Alternate->BlockID) |
| 249 | Candidate = Candidate->PostDominatorNode.Parent; |
| 250 | else |
| 251 | Alternate = Alternate->PostDominatorNode.Parent; |
| 252 | } |
| 253 | } |
| 254 | PostDominatorNode.Parent = Candidate; |
| 255 | PostDominatorNode.SizeOfSubTree = 1; |
| 256 | } |
| 257 | |
| 258 | // Renumber instructions in all blocks |
| 259 | void SCFG::renumberInstrs() { |
| 260 | unsigned InstrID = 0; |
| 261 | for (auto *Block : Blocks) |
| 262 | InstrID = Block->renumberInstrs(ID: InstrID); |
| 263 | } |
| 264 | |
| 265 | static inline void computeNodeSize(BasicBlock *B, |
| 266 | BasicBlock::TopologyNode BasicBlock::*TN) { |
| 267 | BasicBlock::TopologyNode *N = &(B->*TN); |
| 268 | if (N->Parent) { |
| 269 | BasicBlock::TopologyNode *P = &(N->Parent->*TN); |
| 270 | // Initially set ID relative to the (as yet uncomputed) parent ID |
| 271 | N->NodeID = P->SizeOfSubTree; |
| 272 | P->SizeOfSubTree += N->SizeOfSubTree; |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | static inline void computeNodeID(BasicBlock *B, |
| 277 | BasicBlock::TopologyNode BasicBlock::*TN) { |
| 278 | BasicBlock::TopologyNode *N = &(B->*TN); |
| 279 | if (N->Parent) { |
| 280 | BasicBlock::TopologyNode *P = &(N->Parent->*TN); |
| 281 | N->NodeID += P->NodeID; // Fix NodeIDs relative to starting node. |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | // Normalizes a CFG. Normalization has a few major components: |
| 286 | // 1) Removing unreachable blocks. |
| 287 | // 2) Computing dominators and post-dominators |
| 288 | // 3) Topologically sorting the blocks into the "Blocks" array. |
| 289 | void SCFG::computeNormalForm() { |
| 290 | // Topologically sort the blocks starting from the entry block. |
| 291 | unsigned NumUnreachableBlocks = Entry->topologicalSort(Blocks, ID: Blocks.size()); |
| 292 | if (NumUnreachableBlocks > 0) { |
| 293 | // If there were unreachable blocks shift everything down, and delete them. |
| 294 | for (unsigned I = NumUnreachableBlocks, E = Blocks.size(); I < E; ++I) { |
| 295 | unsigned NI = I - NumUnreachableBlocks; |
| 296 | Blocks[NI] = Blocks[I]; |
| 297 | Blocks[NI]->BlockID = NI; |
| 298 | // FIXME: clean up predecessor pointers to unreachable blocks? |
| 299 | } |
| 300 | Blocks.drop(n: NumUnreachableBlocks); |
| 301 | } |
| 302 | |
| 303 | // Compute dominators. |
| 304 | for (auto *Block : Blocks) |
| 305 | Block->computeDominator(); |
| 306 | |
| 307 | // Once dominators have been computed, the final sort may be performed. |
| 308 | unsigned NumBlocks = Exit->topologicalFinalSort(Blocks, ID: 0); |
| 309 | assert(static_cast<size_t>(NumBlocks) == Blocks.size()); |
| 310 | (void) NumBlocks; |
| 311 | |
| 312 | // Renumber the instructions now that we have a final sort. |
| 313 | renumberInstrs(); |
| 314 | |
| 315 | // Compute post-dominators and compute the sizes of each node in the |
| 316 | // dominator tree. |
| 317 | for (auto *Block : Blocks.reverse()) { |
| 318 | Block->computePostDominator(); |
| 319 | computeNodeSize(B: Block, TN: &BasicBlock::DominatorNode); |
| 320 | } |
| 321 | // Compute the sizes of each node in the post-dominator tree and assign IDs in |
| 322 | // the dominator tree. |
| 323 | for (auto *Block : Blocks) { |
| 324 | computeNodeID(B: Block, TN: &BasicBlock::DominatorNode); |
| 325 | computeNodeSize(B: Block, TN: &BasicBlock::PostDominatorNode); |
| 326 | } |
| 327 | // Assign IDs in the post-dominator tree. |
| 328 | for (auto *Block : Blocks.reverse()) { |
| 329 | computeNodeID(B: Block, TN: &BasicBlock::PostDominatorNode); |
| 330 | } |
| 331 | } |
| 332 | |