| 1 | //===-------- cfi.cpp -----------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the runtime support for the cross-DSO CFI. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include <assert.h> |
| 14 | #include <elf.h> |
| 15 | |
| 16 | #include "sanitizer_common/sanitizer_common.h" |
| 17 | #if SANITIZER_FREEBSD |
| 18 | #include <sys/link_elf.h> |
| 19 | #endif |
| 20 | #include <link.h> |
| 21 | #include <string.h> |
| 22 | #include <stdlib.h> |
| 23 | #include <sys/mman.h> |
| 24 | |
| 25 | #if SANITIZER_LINUX |
| 26 | typedef ElfW(Phdr) Elf_Phdr; |
| 27 | typedef ElfW(Ehdr) Elf_Ehdr; |
| 28 | typedef ElfW(Addr) Elf_Addr; |
| 29 | typedef ElfW(Sym) Elf_Sym; |
| 30 | typedef ElfW(Dyn) Elf_Dyn; |
| 31 | #elif SANITIZER_FREEBSD |
| 32 | #if SANITIZER_WORDSIZE == 64 |
| 33 | #define ElfW64_Dyn Elf_Dyn |
| 34 | #define ElfW64_Sym Elf_Sym |
| 35 | #else |
| 36 | #define ElfW32_Dyn Elf_Dyn |
| 37 | #define ElfW32_Sym Elf_Sym |
| 38 | #endif |
| 39 | #endif |
| 40 | |
| 41 | #include "interception/interception.h" |
| 42 | #include "sanitizer_common/sanitizer_flag_parser.h" |
| 43 | #include "ubsan/ubsan_init.h" |
| 44 | #include "ubsan/ubsan_flags.h" |
| 45 | |
| 46 | #ifdef CFI_ENABLE_DIAG |
| 47 | #include "ubsan/ubsan_handlers.h" |
| 48 | #endif |
| 49 | |
| 50 | using namespace __sanitizer; |
| 51 | |
| 52 | namespace __cfi { |
| 53 | |
| 54 | #if SANITIZER_LOONGARCH64 |
| 55 | #define kCfiShadowLimitsStorageSize 16384 // 16KiB on loongarch64 per page |
| 56 | #else |
| 57 | #define kCfiShadowLimitsStorageSize 4096 // 1 page |
| 58 | #endif |
| 59 | // Lets hope that the data segment is mapped with 4K pages. |
| 60 | // The pointer to the cfi shadow region is stored at the start of this page. |
| 61 | // The rest of the page is unused and re-mapped read-only. |
| 62 | static union { |
| 63 | char space[kCfiShadowLimitsStorageSize]; |
| 64 | struct { |
| 65 | uptr start; |
| 66 | uptr size; |
| 67 | } limits; |
| 68 | } cfi_shadow_limits_storage |
| 69 | __attribute__((aligned(kCfiShadowLimitsStorageSize))); |
| 70 | static constexpr uptr kShadowGranularity = 12; |
| 71 | static constexpr uptr kShadowAlign = 1UL << kShadowGranularity; // 4096 |
| 72 | |
| 73 | static constexpr uint16_t kInvalidShadow = 0; |
| 74 | static constexpr uint16_t kUncheckedShadow = 0xFFFFU; |
| 75 | |
| 76 | // Get the start address of the CFI shadow region. |
| 77 | uptr GetShadow() { |
| 78 | return cfi_shadow_limits_storage.limits.start; |
| 79 | } |
| 80 | |
| 81 | uptr GetShadowSize() { |
| 82 | return cfi_shadow_limits_storage.limits.size; |
| 83 | } |
| 84 | |
| 85 | // This will only work while the shadow is not allocated. |
| 86 | void SetShadowSize(uptr size) { |
| 87 | cfi_shadow_limits_storage.limits.size = size; |
| 88 | } |
| 89 | |
| 90 | uptr MemToShadowOffset(uptr x) { |
| 91 | return (x >> kShadowGranularity) << 1; |
| 92 | } |
| 93 | |
| 94 | uint16_t *MemToShadow(uptr x, uptr shadow_base) { |
| 95 | return (uint16_t *)(shadow_base + MemToShadowOffset(x)); |
| 96 | } |
| 97 | |
| 98 | typedef int (*CFICheckFn)(u64, void *, void *); |
| 99 | |
| 100 | // This class reads and decodes the shadow contents. |
| 101 | class ShadowValue { |
| 102 | uptr addr; |
| 103 | uint16_t v; |
| 104 | explicit ShadowValue(uptr addr, uint16_t v) : addr(addr), v(v) {} |
| 105 | |
| 106 | public: |
| 107 | bool is_invalid() const { return v == kInvalidShadow; } |
| 108 | |
| 109 | bool is_unchecked() const { return v == kUncheckedShadow; } |
| 110 | |
| 111 | CFICheckFn get_cfi_check() const { |
| 112 | assert(!is_invalid() && !is_unchecked()); |
| 113 | uptr aligned_addr = addr & ~(kShadowAlign - 1); |
| 114 | uptr p = aligned_addr - (((uptr)v - 1) << kShadowGranularity); |
| 115 | return reinterpret_cast<CFICheckFn>(p); |
| 116 | } |
| 117 | |
| 118 | // Load a shadow value for the given application memory address. |
| 119 | static const ShadowValue load(uptr addr) { |
| 120 | uptr shadow_base = GetShadow(); |
| 121 | uptr shadow_offset = MemToShadowOffset(x: addr); |
| 122 | if (shadow_offset > GetShadowSize()) |
| 123 | return ShadowValue(addr, kInvalidShadow); |
| 124 | else |
| 125 | return ShadowValue( |
| 126 | addr, *reinterpret_cast<uint16_t *>(shadow_base + shadow_offset)); |
| 127 | } |
| 128 | }; |
| 129 | |
| 130 | class ShadowBuilder { |
| 131 | uptr shadow_; |
| 132 | |
| 133 | public: |
| 134 | // Allocate a new empty shadow (for the entire address space) on the side. |
| 135 | void Start(); |
| 136 | // Mark the given address range as unchecked. |
| 137 | // This is used for uninstrumented libraries like libc. |
| 138 | // Any CFI check with a target in that range will pass. |
| 139 | void AddUnchecked(uptr begin, uptr end); |
| 140 | // Mark the given address range as belonging to a library with the given |
| 141 | // cfi_check function. |
| 142 | void Add(uptr begin, uptr end, uptr cfi_check); |
| 143 | // Finish shadow construction. Atomically switch the current active shadow |
| 144 | // region with the newly constructed one and deallocate the former. |
| 145 | void Install(); |
| 146 | }; |
| 147 | |
| 148 | void ShadowBuilder::Start() { |
| 149 | shadow_ = (uptr)MmapNoReserveOrDie(size: GetShadowSize(), mem_type: "CFI shadow" ); |
| 150 | VReport(1, "CFI: shadow at %zx .. %zx\n" , shadow_, shadow_ + GetShadowSize()); |
| 151 | } |
| 152 | |
| 153 | void ShadowBuilder::AddUnchecked(uptr begin, uptr end) { |
| 154 | uint16_t *shadow_begin = MemToShadow(x: begin, shadow_base: shadow_); |
| 155 | uint16_t *shadow_end = MemToShadow(x: end - 1, shadow_base: shadow_) + 1; |
| 156 | // memset takes a byte, so our unchecked shadow value requires both bytes to |
| 157 | // be the same. Make sure we're ok during compilation. |
| 158 | static_assert((kUncheckedShadow & 0xff) == ((kUncheckedShadow >> 8) & 0xff), |
| 159 | "Both bytes of the 16-bit value must be the same!" ); |
| 160 | memset(s: shadow_begin, c: kUncheckedShadow & 0xff, |
| 161 | n: (shadow_end - shadow_begin) * sizeof(*shadow_begin)); |
| 162 | } |
| 163 | |
| 164 | void ShadowBuilder::Add(uptr begin, uptr end, uptr cfi_check) { |
| 165 | assert((cfi_check & (kShadowAlign - 1)) == 0); |
| 166 | |
| 167 | // Don't fill anything below cfi_check. We can not represent those addresses |
| 168 | // in the shadow, and must make sure at codegen to place all valid call |
| 169 | // targets above cfi_check. |
| 170 | begin = Max(a: begin, b: cfi_check); |
| 171 | uint16_t *s = MemToShadow(x: begin, shadow_base: shadow_); |
| 172 | uint16_t *s_end = MemToShadow(x: end - 1, shadow_base: shadow_) + 1; |
| 173 | uint16_t sv = ((begin - cfi_check) >> kShadowGranularity) + 1; |
| 174 | for (; s < s_end; s++, sv++) |
| 175 | *s = sv; |
| 176 | } |
| 177 | |
| 178 | #if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD |
| 179 | void ShadowBuilder::Install() { |
| 180 | MprotectReadOnly(addr: shadow_, size: GetShadowSize()); |
| 181 | uptr main_shadow = GetShadow(); |
| 182 | if (main_shadow) { |
| 183 | // Update. |
| 184 | #if SANITIZER_LINUX |
| 185 | void *res = mremap(addr: (void *)shadow_, old_len: GetShadowSize(), new_len: GetShadowSize(), |
| 186 | MREMAP_MAYMOVE | MREMAP_FIXED, (void *)main_shadow); |
| 187 | CHECK(res != MAP_FAILED); |
| 188 | #elif SANITIZER_NETBSD |
| 189 | void *res = mremap((void *)shadow_, GetShadowSize(), (void *)main_shadow, |
| 190 | GetShadowSize(), MAP_FIXED); |
| 191 | CHECK(res != MAP_FAILED); |
| 192 | #else |
| 193 | void *res = MmapFixedOrDie(shadow_, GetShadowSize(), "cfi shadow" ); |
| 194 | CHECK(res != MAP_FAILED); |
| 195 | ::memcpy(&shadow_, &main_shadow, GetShadowSize()); |
| 196 | #endif |
| 197 | } else { |
| 198 | // Initial setup. |
| 199 | CHECK_EQ(kCfiShadowLimitsStorageSize, GetPageSizeCached()); |
| 200 | CHECK_EQ(0, GetShadow()); |
| 201 | cfi_shadow_limits_storage.limits.start = shadow_; |
| 202 | MprotectReadOnly(addr: (uptr)&cfi_shadow_limits_storage, |
| 203 | size: sizeof(cfi_shadow_limits_storage)); |
| 204 | CHECK_EQ(shadow_, GetShadow()); |
| 205 | } |
| 206 | } |
| 207 | #else |
| 208 | #error not implemented |
| 209 | #endif |
| 210 | |
| 211 | // This is a workaround for a glibc bug: |
| 212 | // https://sourceware.org/bugzilla/show_bug.cgi?id=15199 |
| 213 | // Other platforms can, hopefully, just do |
| 214 | // dlopen(RTLD_NOLOAD | RTLD_LAZY) |
| 215 | // dlsym("__cfi_check"). |
| 216 | uptr find_cfi_check_in_dso(dl_phdr_info *info) { |
| 217 | const Elf_Dyn *dynamic = nullptr; |
| 218 | for (int i = 0; i < info->dlpi_phnum; ++i) { |
| 219 | if (info->dlpi_phdr[i].p_type == PT_DYNAMIC) { |
| 220 | dynamic = |
| 221 | (const Elf_Dyn *)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr); |
| 222 | break; |
| 223 | } |
| 224 | } |
| 225 | if (!dynamic) return 0; |
| 226 | uptr strtab = 0, symtab = 0, strsz = 0; |
| 227 | for (const Elf_Dyn *p = dynamic; p->d_tag != PT_NULL; ++p) { |
| 228 | if (p->d_tag == DT_SYMTAB) |
| 229 | symtab = p->d_un.d_ptr; |
| 230 | else if (p->d_tag == DT_STRTAB) |
| 231 | strtab = p->d_un.d_ptr; |
| 232 | else if (p->d_tag == DT_STRSZ) |
| 233 | strsz = p->d_un.d_ptr; |
| 234 | } |
| 235 | |
| 236 | if (symtab > strtab) { |
| 237 | VReport(1, "Can not handle: symtab > strtab (%zx > %zx)\n" , symtab, strtab); |
| 238 | return 0; |
| 239 | } |
| 240 | |
| 241 | // Verify that strtab and symtab are inside of the same LOAD segment. |
| 242 | // This excludes VDSO, which has (very high) bogus strtab and symtab pointers. |
| 243 | int phdr_idx; |
| 244 | for (phdr_idx = 0; phdr_idx < info->dlpi_phnum; phdr_idx++) { |
| 245 | const Elf_Phdr *phdr = &info->dlpi_phdr[phdr_idx]; |
| 246 | if (phdr->p_type == PT_LOAD) { |
| 247 | uptr beg = info->dlpi_addr + phdr->p_vaddr; |
| 248 | uptr end = beg + phdr->p_memsz; |
| 249 | if (strtab >= beg && strtab + strsz < end && symtab >= beg && |
| 250 | symtab < end) |
| 251 | break; |
| 252 | } |
| 253 | } |
| 254 | if (phdr_idx == info->dlpi_phnum) { |
| 255 | // Nope, either different segments or just bogus pointers. |
| 256 | // Can not handle this. |
| 257 | VReport(1, "Can not handle: symtab %zx, strtab %zx\n" , symtab, strtab); |
| 258 | return 0; |
| 259 | } |
| 260 | |
| 261 | for (const Elf_Sym *p = (const Elf_Sym *)symtab; (Elf_Addr)p < strtab; |
| 262 | ++p) { |
| 263 | // There is no reliable way to find the end of the symbol table. In |
| 264 | // lld-produces files, there are other sections between symtab and strtab. |
| 265 | // Stop looking when the symbol name is not inside strtab. |
| 266 | if (p->st_name >= strsz) break; |
| 267 | char *name = (char*)(strtab + p->st_name); |
| 268 | if (strcmp(s1: name, s2: "__cfi_check" ) == 0) { |
| 269 | assert(p->st_info == ELF32_ST_INFO(STB_GLOBAL, STT_FUNC) || |
| 270 | p->st_info == ELF32_ST_INFO(STB_WEAK, STT_FUNC)); |
| 271 | uptr addr = info->dlpi_addr + p->st_value; |
| 272 | return addr; |
| 273 | } |
| 274 | } |
| 275 | return 0; |
| 276 | } |
| 277 | |
| 278 | int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *data) { |
| 279 | uptr cfi_check = find_cfi_check_in_dso(info); |
| 280 | if (cfi_check) |
| 281 | VReport(1, "Module '%s' __cfi_check %zx\n" , info->dlpi_name, cfi_check); |
| 282 | |
| 283 | ShadowBuilder *b = reinterpret_cast<ShadowBuilder *>(data); |
| 284 | |
| 285 | for (int i = 0; i < info->dlpi_phnum; i++) { |
| 286 | const Elf_Phdr *phdr = &info->dlpi_phdr[i]; |
| 287 | if (phdr->p_type == PT_LOAD) { |
| 288 | // Jump tables are in the executable segment. |
| 289 | // VTables are in the non-executable one. |
| 290 | // Need to fill shadow for both. |
| 291 | // FIXME: reject writable if vtables are in the r/o segment. Depend on |
| 292 | // PT_RELRO? |
| 293 | uptr cur_beg = info->dlpi_addr + phdr->p_vaddr; |
| 294 | uptr cur_end = cur_beg + phdr->p_memsz; |
| 295 | if (cfi_check) { |
| 296 | VReport(1, " %zx .. %zx\n" , cur_beg, cur_end); |
| 297 | b->Add(begin: cur_beg, end: cur_end, cfi_check); |
| 298 | } else { |
| 299 | b->AddUnchecked(begin: cur_beg, end: cur_end); |
| 300 | } |
| 301 | } |
| 302 | } |
| 303 | return 0; |
| 304 | } |
| 305 | |
| 306 | // Init or update shadow for the current set of loaded libraries. |
| 307 | void UpdateShadow() { |
| 308 | ShadowBuilder b; |
| 309 | b.Start(); |
| 310 | dl_iterate_phdr(callback: dl_iterate_phdr_cb, data: &b); |
| 311 | b.Install(); |
| 312 | } |
| 313 | |
| 314 | void InitShadow() { |
| 315 | CHECK_EQ(0, GetShadow()); |
| 316 | CHECK_EQ(0, GetShadowSize()); |
| 317 | |
| 318 | uptr vma = GetMaxUserVirtualAddress(); |
| 319 | // Shadow is 2 -> 2**kShadowGranularity. |
| 320 | SetShadowSize((vma >> (kShadowGranularity - 1)) + 1); |
| 321 | VReport(1, "CFI: VMA size %zx, shadow size %zx\n" , vma, GetShadowSize()); |
| 322 | |
| 323 | UpdateShadow(); |
| 324 | } |
| 325 | |
| 326 | THREADLOCAL int in_loader; |
| 327 | Mutex shadow_update_lock; |
| 328 | |
| 329 | void EnterLoader() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { |
| 330 | if (in_loader == 0) { |
| 331 | shadow_update_lock.Lock(); |
| 332 | } |
| 333 | ++in_loader; |
| 334 | } |
| 335 | |
| 336 | void ExitLoader() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { |
| 337 | CHECK(in_loader > 0); |
| 338 | --in_loader; |
| 339 | UpdateShadow(); |
| 340 | if (in_loader == 0) { |
| 341 | shadow_update_lock.Unlock(); |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | ALWAYS_INLINE void CfiSlowPathCommon(u64 CallSiteTypeId, void *Ptr, |
| 346 | void *DiagData) { |
| 347 | uptr Addr = (uptr)Ptr; |
| 348 | VReport(3, "__cfi_slowpath: %llx, %p\n" , CallSiteTypeId, Ptr); |
| 349 | ShadowValue sv = ShadowValue::load(addr: Addr); |
| 350 | if (sv.is_invalid()) { |
| 351 | VReport(1, "CFI: invalid memory region for a check target: %p\n" , Ptr); |
| 352 | #ifdef CFI_ENABLE_DIAG |
| 353 | if (DiagData) { |
| 354 | __ubsan_handle_cfi_check_fail( |
| 355 | reinterpret_cast<__ubsan::CFICheckFailData *>(DiagData), Addr, false); |
| 356 | return; |
| 357 | } |
| 358 | #endif |
| 359 | Trap(); |
| 360 | } |
| 361 | if (sv.is_unchecked()) { |
| 362 | VReport(2, "CFI: unchecked call (shadow=FFFF): %p\n" , Ptr); |
| 363 | return; |
| 364 | } |
| 365 | CFICheckFn cfi_check = sv.get_cfi_check(); |
| 366 | VReport(2, "__cfi_check at %p\n" , (void *)cfi_check); |
| 367 | cfi_check(CallSiteTypeId, Ptr, DiagData); |
| 368 | } |
| 369 | |
| 370 | void InitializeFlags() { |
| 371 | SetCommonFlagsDefaults(); |
| 372 | #ifdef CFI_ENABLE_DIAG |
| 373 | __ubsan::Flags *uf = __ubsan::flags(); |
| 374 | uf->SetDefaults(); |
| 375 | #endif |
| 376 | |
| 377 | FlagParser cfi_parser; |
| 378 | RegisterCommonFlags(parser: &cfi_parser); |
| 379 | cfi_parser.ParseStringFromEnv(env_name: "CFI_OPTIONS" ); |
| 380 | |
| 381 | #ifdef CFI_ENABLE_DIAG |
| 382 | FlagParser ubsan_parser; |
| 383 | __ubsan::RegisterUbsanFlags(&ubsan_parser, uf); |
| 384 | RegisterCommonFlags(&ubsan_parser); |
| 385 | |
| 386 | const char *ubsan_default_options = __ubsan_default_options(); |
| 387 | ubsan_parser.ParseString(ubsan_default_options); |
| 388 | ubsan_parser.ParseStringFromEnv("UBSAN_OPTIONS" ); |
| 389 | #endif |
| 390 | |
| 391 | InitializeCommonFlags(); |
| 392 | |
| 393 | if (Verbosity()) |
| 394 | ReportUnrecognizedFlags(); |
| 395 | |
| 396 | if (common_flags()->help) { |
| 397 | cfi_parser.PrintFlagDescriptions(); |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | } // namespace __cfi |
| 402 | |
| 403 | using namespace __cfi; |
| 404 | |
| 405 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void |
| 406 | __cfi_slowpath(u64 CallSiteTypeId, void *Ptr) { |
| 407 | CfiSlowPathCommon(CallSiteTypeId, Ptr, DiagData: nullptr); |
| 408 | } |
| 409 | |
| 410 | #ifdef CFI_ENABLE_DIAG |
| 411 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void |
| 412 | __cfi_slowpath_diag(u64 CallSiteTypeId, void *Ptr, void *DiagData) { |
| 413 | CfiSlowPathCommon(CallSiteTypeId, Ptr, DiagData); |
| 414 | } |
| 415 | #endif |
| 416 | |
| 417 | static void EnsureInterceptorsInitialized(); |
| 418 | |
| 419 | // Setup shadow for dlopen()ed libraries. |
| 420 | // The actual shadow setup happens after dlopen() returns, which means that |
| 421 | // a library can not be a target of any CFI checks while its constructors are |
| 422 | // running. It's unclear how to fix this without some extra help from libc. |
| 423 | // In glibc, mmap inside dlopen is not interceptable. |
| 424 | // Maybe a seccomp-bpf filter? |
| 425 | // We could insert a high-priority constructor into the library, but that would |
| 426 | // not help with the uninstrumented libraries. |
| 427 | INTERCEPTOR(void*, dlopen, const char *filename, int flag) { |
| 428 | EnsureInterceptorsInitialized(); |
| 429 | EnterLoader(); |
| 430 | void *handle = REAL(dlopen)(filename, flag); |
| 431 | ExitLoader(); |
| 432 | return handle; |
| 433 | } |
| 434 | |
| 435 | INTERCEPTOR(int, dlclose, void *handle) { |
| 436 | EnsureInterceptorsInitialized(); |
| 437 | EnterLoader(); |
| 438 | int res = REAL(dlclose)(handle); |
| 439 | ExitLoader(); |
| 440 | return res; |
| 441 | } |
| 442 | |
| 443 | static Mutex interceptor_init_lock; |
| 444 | static bool interceptors_inited = false; |
| 445 | |
| 446 | static void EnsureInterceptorsInitialized() { |
| 447 | Lock lock(&interceptor_init_lock); |
| 448 | if (interceptors_inited) |
| 449 | return; |
| 450 | |
| 451 | INTERCEPT_FUNCTION(dlopen); |
| 452 | INTERCEPT_FUNCTION(dlclose); |
| 453 | |
| 454 | interceptors_inited = true; |
| 455 | } |
| 456 | |
| 457 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE |
| 458 | #if !SANITIZER_CAN_USE_PREINIT_ARRAY |
| 459 | // On ELF platforms, the constructor is invoked using .preinit_array (see below) |
| 460 | __attribute__((constructor(0))) |
| 461 | #endif |
| 462 | void __cfi_init() { |
| 463 | SanitizerToolName = "CFI" ; |
| 464 | InitializeFlags(); |
| 465 | InitShadow(); |
| 466 | |
| 467 | #ifdef CFI_ENABLE_DIAG |
| 468 | __ubsan::InitAsPlugin(); |
| 469 | #endif |
| 470 | } |
| 471 | |
| 472 | #if SANITIZER_CAN_USE_PREINIT_ARRAY |
| 473 | // On ELF platforms, run cfi initialization before any other constructors. |
| 474 | // On other platforms we use the constructor attribute to arrange to run our |
| 475 | // initialization early. |
| 476 | extern "C" { |
| 477 | __attribute__((section(".preinit_array" ), |
| 478 | used)) void (*__cfi_preinit)(void) = __cfi_init; |
| 479 | } |
| 480 | #endif |
| 481 | |