1 | //===-- interception_win.cpp ------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file is a part of AddressSanitizer, an address sanity checker. |
10 | // |
11 | // Windows-specific interception methods. |
12 | // |
13 | // This file is implementing several hooking techniques to intercept calls |
14 | // to functions. The hooks are dynamically installed by modifying the assembly |
15 | // code. |
16 | // |
17 | // The hooking techniques are making assumptions on the way the code is |
18 | // generated and are safe under these assumptions. |
19 | // |
20 | // On 64-bit architecture, there is no direct 64-bit jump instruction. To allow |
21 | // arbitrary branching on the whole memory space, the notion of trampoline |
22 | // region is used. A trampoline region is a memory space withing 2G boundary |
23 | // where it is safe to add custom assembly code to build 64-bit jumps. |
24 | // |
25 | // Hooking techniques |
26 | // ================== |
27 | // |
28 | // 1) Detour |
29 | // |
30 | // The Detour hooking technique is assuming the presence of a header with |
31 | // padding and an overridable 2-bytes nop instruction (mov edi, edi). The |
32 | // nop instruction can safely be replaced by a 2-bytes jump without any need |
33 | // to save the instruction. A jump to the target is encoded in the function |
34 | // header and the nop instruction is replaced by a short jump to the header. |
35 | // |
36 | // head: 5 x nop head: jmp <hook> |
37 | // func: mov edi, edi --> func: jmp short <head> |
38 | // [...] real: [...] |
39 | // |
40 | // This technique is only implemented on 32-bit architecture. |
41 | // Most of the time, Windows API are hookable with the detour technique. |
42 | // |
43 | // 2) Redirect Jump |
44 | // |
45 | // The redirect jump is applicable when the first instruction is a direct |
46 | // jump. The instruction is replaced by jump to the hook. |
47 | // |
48 | // func: jmp <label> --> func: jmp <hook> |
49 | // |
50 | // On a 64-bit architecture, a trampoline is inserted. |
51 | // |
52 | // func: jmp <label> --> func: jmp <tramp> |
53 | // [...] |
54 | // |
55 | // [trampoline] |
56 | // tramp: jmp QWORD [addr] |
57 | // addr: .bytes <hook> |
58 | // |
59 | // Note: <real> is equivalent to <label>. |
60 | // |
61 | // 3) HotPatch |
62 | // |
63 | // The HotPatch hooking is assuming the presence of a header with padding |
64 | // and a first instruction with at least 2-bytes. |
65 | // |
66 | // The reason to enforce the 2-bytes limitation is to provide the minimal |
67 | // space to encode a short jump. HotPatch technique is only rewriting one |
68 | // instruction to avoid breaking a sequence of instructions containing a |
69 | // branching target. |
70 | // |
71 | // Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag. |
72 | // see: https://msdn.microsoft.com/en-us/library/ms173507.aspx |
73 | // Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits. |
74 | // |
75 | // head: 5 x nop head: jmp <hook> |
76 | // func: <instr> --> func: jmp short <head> |
77 | // [...] body: [...] |
78 | // |
79 | // [trampoline] |
80 | // real: <instr> |
81 | // jmp <body> |
82 | // |
83 | // On a 64-bit architecture: |
84 | // |
85 | // head: 6 x nop head: jmp QWORD [addr1] |
86 | // func: <instr> --> func: jmp short <head> |
87 | // [...] body: [...] |
88 | // |
89 | // [trampoline] |
90 | // addr1: .bytes <hook> |
91 | // real: <instr> |
92 | // jmp QWORD [addr2] |
93 | // addr2: .bytes <body> |
94 | // |
95 | // 4) Trampoline |
96 | // |
97 | // The Trampoline hooking technique is the most aggressive one. It is |
98 | // assuming that there is a sequence of instructions that can be safely |
99 | // replaced by a jump (enough room and no incoming branches). |
100 | // |
101 | // Unfortunately, these assumptions can't be safely presumed and code may |
102 | // be broken after hooking. |
103 | // |
104 | // func: <instr> --> func: jmp <hook> |
105 | // <instr> |
106 | // [...] body: [...] |
107 | // |
108 | // [trampoline] |
109 | // real: <instr> |
110 | // <instr> |
111 | // jmp <body> |
112 | // |
113 | // On a 64-bit architecture: |
114 | // |
115 | // func: <instr> --> func: jmp QWORD [addr1] |
116 | // <instr> |
117 | // [...] body: [...] |
118 | // |
119 | // [trampoline] |
120 | // addr1: .bytes <hook> |
121 | // real: <instr> |
122 | // <instr> |
123 | // jmp QWORD [addr2] |
124 | // addr2: .bytes <body> |
125 | //===----------------------------------------------------------------------===// |
126 | |
127 | #include "interception.h" |
128 | |
129 | #if SANITIZER_WINDOWS |
130 | #include "sanitizer_common/sanitizer_platform.h" |
131 | #define WIN32_LEAN_AND_MEAN |
132 | #include <windows.h> |
133 | #include <psapi.h> |
134 | |
135 | namespace __interception { |
136 | |
137 | static const int kAddressLength = FIRST_32_SECOND_64(4, 8); |
138 | static const int kJumpInstructionLength = 5; |
139 | static const int kShortJumpInstructionLength = 2; |
140 | UNUSED static const int kIndirectJumpInstructionLength = 6; |
141 | static const int kBranchLength = |
142 | FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength); |
143 | static const int kDirectBranchLength = kBranchLength + kAddressLength; |
144 | |
145 | # if defined(_MSC_VER) |
146 | # define INTERCEPTION_FORMAT(f, a) |
147 | # else |
148 | # define INTERCEPTION_FORMAT(f, a) __attribute__((format(printf, f, a))) |
149 | # endif |
150 | |
151 | static void (*ErrorReportCallback)(const char *format, ...) |
152 | INTERCEPTION_FORMAT(1, 2); |
153 | |
154 | void SetErrorReportCallback(void (*callback)(const char *format, ...)) { |
155 | ErrorReportCallback = callback; |
156 | } |
157 | |
158 | # define ReportError(...) \ |
159 | do { \ |
160 | if (ErrorReportCallback) \ |
161 | ErrorReportCallback(__VA_ARGS__); \ |
162 | } while (0) |
163 | |
164 | static void InterceptionFailed() { |
165 | ReportError("interception_win: failed due to an unrecoverable error.\n" ); |
166 | // This acts like an abort when no debugger is attached. According to an old |
167 | // comment, calling abort() leads to an infinite recursion in CheckFailed. |
168 | __debugbreak(); |
169 | } |
170 | |
171 | static bool DistanceIsWithin2Gig(uptr from, uptr target) { |
172 | #if SANITIZER_WINDOWS64 |
173 | if (from < target) |
174 | return target - from <= (uptr)0x7FFFFFFFU; |
175 | else |
176 | return from - target <= (uptr)0x80000000U; |
177 | #else |
178 | // In a 32-bit address space, the address calculation will wrap, so this check |
179 | // is unnecessary. |
180 | return true; |
181 | #endif |
182 | } |
183 | |
184 | static uptr GetMmapGranularity() { |
185 | SYSTEM_INFO si; |
186 | GetSystemInfo(&si); |
187 | return si.dwAllocationGranularity; |
188 | } |
189 | |
190 | UNUSED static uptr RoundDownTo(uptr size, uptr boundary) { |
191 | return size & ~(boundary - 1); |
192 | } |
193 | |
194 | UNUSED static uptr RoundUpTo(uptr size, uptr boundary) { |
195 | return RoundDownTo(size + boundary - 1, boundary); |
196 | } |
197 | |
198 | // FIXME: internal_str* and internal_mem* functions should be moved from the |
199 | // ASan sources into interception/. |
200 | |
201 | static size_t _strlen(const char *str) { |
202 | const char* p = str; |
203 | while (*p != '\0') ++p; |
204 | return p - str; |
205 | } |
206 | |
207 | static char* _strchr(char* str, char c) { |
208 | while (*str) { |
209 | if (*str == c) |
210 | return str; |
211 | ++str; |
212 | } |
213 | return nullptr; |
214 | } |
215 | |
216 | static int _strcmp(const char *s1, const char *s2) { |
217 | while (true) { |
218 | unsigned c1 = *s1; |
219 | unsigned c2 = *s2; |
220 | if (c1 != c2) return (c1 < c2) ? -1 : 1; |
221 | if (c1 == 0) break; |
222 | s1++; |
223 | s2++; |
224 | } |
225 | return 0; |
226 | } |
227 | |
228 | static void _memset(void *p, int value, size_t sz) { |
229 | for (size_t i = 0; i < sz; ++i) |
230 | ((char*)p)[i] = (char)value; |
231 | } |
232 | |
233 | static void _memcpy(void *dst, void *src, size_t sz) { |
234 | char *dst_c = (char*)dst, |
235 | *src_c = (char*)src; |
236 | for (size_t i = 0; i < sz; ++i) |
237 | dst_c[i] = src_c[i]; |
238 | } |
239 | |
240 | static bool ChangeMemoryProtection( |
241 | uptr address, uptr size, DWORD *old_protection) { |
242 | return ::VirtualProtect((void*)address, size, |
243 | PAGE_EXECUTE_READWRITE, |
244 | old_protection) != FALSE; |
245 | } |
246 | |
247 | static bool RestoreMemoryProtection( |
248 | uptr address, uptr size, DWORD old_protection) { |
249 | DWORD unused; |
250 | return ::VirtualProtect((void*)address, size, |
251 | old_protection, |
252 | &unused) != FALSE; |
253 | } |
254 | |
255 | static bool IsMemoryPadding(uptr address, uptr size) { |
256 | u8* function = (u8*)address; |
257 | for (size_t i = 0; i < size; ++i) |
258 | if (function[i] != 0x90 && function[i] != 0xCC) |
259 | return false; |
260 | return true; |
261 | } |
262 | |
263 | static const u8 kHintNop8Bytes[] = { |
264 | 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00 |
265 | }; |
266 | |
267 | template<class T> |
268 | static bool FunctionHasPrefix(uptr address, const T &pattern) { |
269 | u8* function = (u8*)address - sizeof(pattern); |
270 | for (size_t i = 0; i < sizeof(pattern); ++i) |
271 | if (function[i] != pattern[i]) |
272 | return false; |
273 | return true; |
274 | } |
275 | |
276 | static bool FunctionHasPadding(uptr address, uptr size) { |
277 | if (IsMemoryPadding(address - size, size)) |
278 | return true; |
279 | if (size <= sizeof(kHintNop8Bytes) && |
280 | FunctionHasPrefix(address, kHintNop8Bytes)) |
281 | return true; |
282 | return false; |
283 | } |
284 | |
285 | static void WritePadding(uptr from, uptr size) { |
286 | _memset((void*)from, 0xCC, (size_t)size); |
287 | } |
288 | |
289 | static void WriteJumpInstruction(uptr from, uptr target) { |
290 | if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target)) { |
291 | ReportError( |
292 | "interception_win: cannot write jmp further than 2GB away, from %p to " |
293 | "%p.\n" , |
294 | (void *)from, (void *)target); |
295 | InterceptionFailed(); |
296 | } |
297 | ptrdiff_t offset = target - from - kJumpInstructionLength; |
298 | *(u8*)from = 0xE9; |
299 | *(u32*)(from + 1) = offset; |
300 | } |
301 | |
302 | static void WriteShortJumpInstruction(uptr from, uptr target) { |
303 | sptr offset = target - from - kShortJumpInstructionLength; |
304 | if (offset < -128 || offset > 127) { |
305 | ReportError("interception_win: cannot write short jmp from %p to %p\n" , |
306 | (void *)from, (void *)target); |
307 | InterceptionFailed(); |
308 | } |
309 | *(u8*)from = 0xEB; |
310 | *(u8*)(from + 1) = (u8)offset; |
311 | } |
312 | |
313 | #if SANITIZER_WINDOWS64 |
314 | static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) { |
315 | // jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative |
316 | // offset. |
317 | // The offset is the distance from then end of the jump instruction to the |
318 | // memory location containing the targeted address. The displacement is still |
319 | // 32-bit in x64, so indirect_target must be located within +/- 2GB range. |
320 | int offset = indirect_target - from - kIndirectJumpInstructionLength; |
321 | if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength, |
322 | indirect_target)) { |
323 | ReportError( |
324 | "interception_win: cannot write indirect jmp with target further than " |
325 | "2GB away, from %p to %p.\n" , |
326 | (void *)from, (void *)indirect_target); |
327 | InterceptionFailed(); |
328 | } |
329 | *(u16*)from = 0x25FF; |
330 | *(u32*)(from + 2) = offset; |
331 | } |
332 | #endif |
333 | |
334 | static void WriteBranch( |
335 | uptr from, uptr indirect_target, uptr target) { |
336 | #if SANITIZER_WINDOWS64 |
337 | WriteIndirectJumpInstruction(from, indirect_target); |
338 | *(u64*)indirect_target = target; |
339 | #else |
340 | (void)indirect_target; |
341 | WriteJumpInstruction(from, target); |
342 | #endif |
343 | } |
344 | |
345 | static void WriteDirectBranch(uptr from, uptr target) { |
346 | #if SANITIZER_WINDOWS64 |
347 | // Emit an indirect jump through immediately following bytes: |
348 | // jmp [rip + kBranchLength] |
349 | // .quad <target> |
350 | WriteBranch(from, from + kBranchLength, target); |
351 | #else |
352 | WriteJumpInstruction(from, target); |
353 | #endif |
354 | } |
355 | |
356 | struct TrampolineMemoryRegion { |
357 | uptr content; |
358 | uptr allocated_size; |
359 | uptr max_size; |
360 | }; |
361 | |
362 | UNUSED static const uptr kTrampolineRangeLimit = 1ull << 31; // 2 gig |
363 | static const int kMaxTrampolineRegion = 1024; |
364 | static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion]; |
365 | |
366 | static void *AllocateTrampolineRegion(uptr min_addr, uptr max_addr, |
367 | uptr func_addr, size_t granularity) { |
368 | # if SANITIZER_WINDOWS64 |
369 | // Clamp {min,max}_addr to the accessible address space. |
370 | SYSTEM_INFO system_info; |
371 | ::GetSystemInfo(&system_info); |
372 | uptr min_virtual_addr = |
373 | RoundUpTo((uptr)system_info.lpMinimumApplicationAddress, granularity); |
374 | uptr max_virtual_addr = |
375 | RoundDownTo((uptr)system_info.lpMaximumApplicationAddress, granularity); |
376 | if (min_addr < min_virtual_addr) |
377 | min_addr = min_virtual_addr; |
378 | if (max_addr > max_virtual_addr) |
379 | max_addr = max_virtual_addr; |
380 | |
381 | // This loop probes the virtual address space to find free memory in the |
382 | // [min_addr, max_addr] interval. The search starts from func_addr and |
383 | // proceeds "outwards" towards the interval bounds using two probes, lo_addr |
384 | // and hi_addr, for addresses lower/higher than func_addr. At each step, it |
385 | // considers the probe closest to func_addr. If that address is not free, the |
386 | // probe is advanced (lower or higher depending on the probe) to the next |
387 | // memory block and the search continues. |
388 | uptr lo_addr = RoundDownTo(func_addr, granularity); |
389 | uptr hi_addr = RoundUpTo(func_addr, granularity); |
390 | while (lo_addr >= min_addr || hi_addr <= max_addr) { |
391 | // Consider the in-range address closest to func_addr. |
392 | uptr addr; |
393 | if (lo_addr < min_addr) |
394 | addr = hi_addr; |
395 | else if (hi_addr > max_addr) |
396 | addr = lo_addr; |
397 | else |
398 | addr = (hi_addr - func_addr < func_addr - lo_addr) ? hi_addr : lo_addr; |
399 | |
400 | MEMORY_BASIC_INFORMATION info; |
401 | if (!::VirtualQuery((void *)addr, &info, sizeof(info))) { |
402 | ReportError( |
403 | "interception_win: VirtualQuery in AllocateTrampolineRegion failed " |
404 | "for %p\n" , |
405 | (void *)addr); |
406 | return nullptr; |
407 | } |
408 | |
409 | // Check whether a region can be allocated at |addr|. |
410 | if (info.State == MEM_FREE && info.RegionSize >= granularity) { |
411 | void *page = |
412 | ::VirtualAlloc((void *)addr, granularity, MEM_RESERVE | MEM_COMMIT, |
413 | PAGE_EXECUTE_READWRITE); |
414 | if (page == nullptr) |
415 | ReportError( |
416 | "interception_win: VirtualAlloc in AllocateTrampolineRegion failed " |
417 | "for %p\n" , |
418 | (void *)addr); |
419 | return page; |
420 | } |
421 | |
422 | if (addr == lo_addr) |
423 | lo_addr = |
424 | RoundDownTo((uptr)info.AllocationBase - granularity, granularity); |
425 | if (addr == hi_addr) |
426 | hi_addr = |
427 | RoundUpTo((uptr)info.BaseAddress + info.RegionSize, granularity); |
428 | } |
429 | |
430 | ReportError( |
431 | "interception_win: AllocateTrampolineRegion failed to find free memory; " |
432 | "min_addr: %p, max_addr: %p, func_addr: %p, granularity: %zu\n" , |
433 | (void *)min_addr, (void *)max_addr, (void *)func_addr, granularity); |
434 | return nullptr; |
435 | #else |
436 | return ::VirtualAlloc(nullptr, |
437 | granularity, |
438 | MEM_RESERVE | MEM_COMMIT, |
439 | PAGE_EXECUTE_READWRITE); |
440 | #endif |
441 | } |
442 | |
443 | // Used by unittests to release mapped memory space. |
444 | void TestOnlyReleaseTrampolineRegions() { |
445 | for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) { |
446 | TrampolineMemoryRegion *current = &TrampolineRegions[bucket]; |
447 | if (current->content == 0) |
448 | return; |
449 | ::VirtualFree((void*)current->content, 0, MEM_RELEASE); |
450 | current->content = 0; |
451 | } |
452 | } |
453 | |
454 | static uptr AllocateMemoryForTrampoline(uptr func_address, size_t size) { |
455 | # if SANITIZER_WINDOWS64 |
456 | uptr min_addr = func_address - kTrampolineRangeLimit; |
457 | uptr max_addr = func_address + kTrampolineRangeLimit - size; |
458 | |
459 | // Allocate memory within 2GB of the module (DLL or EXE file) so that any |
460 | // address within the module can be referenced with PC-relative operands. |
461 | // This allows us to not just jump to the trampoline with a PC-relative |
462 | // offset, but to relocate any instructions that we copy to the trampoline |
463 | // which have references to the original module. If we can't find the base |
464 | // address of the module (e.g. if func_address is in mmap'ed memory), just |
465 | // stay within 2GB of func_address. |
466 | HMODULE module; |
467 | if (::GetModuleHandleExW(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | |
468 | GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT, |
469 | (LPCWSTR)func_address, &module)) { |
470 | MODULEINFO module_info; |
471 | if (::GetModuleInformation(::GetCurrentProcess(), module, |
472 | &module_info, sizeof(module_info))) { |
473 | min_addr = (uptr)module_info.lpBaseOfDll + module_info.SizeOfImage - |
474 | kTrampolineRangeLimit; |
475 | max_addr = (uptr)module_info.lpBaseOfDll + kTrampolineRangeLimit - size; |
476 | } |
477 | } |
478 | |
479 | // Check for overflow. |
480 | if (min_addr > func_address) |
481 | min_addr = 0; |
482 | if (max_addr < func_address) |
483 | max_addr = ~(uptr)0; |
484 | # else |
485 | uptr min_addr = 0; |
486 | uptr max_addr = ~min_addr; |
487 | # endif |
488 | |
489 | // Find a region within [min_addr,max_addr] with enough space to allocate |
490 | // |size| bytes. |
491 | TrampolineMemoryRegion *region = nullptr; |
492 | for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) { |
493 | TrampolineMemoryRegion* current = &TrampolineRegions[bucket]; |
494 | if (current->content == 0) { |
495 | // No valid region found, allocate a new region. |
496 | size_t bucket_size = GetMmapGranularity(); |
497 | void *content = AllocateTrampolineRegion(min_addr, max_addr, func_address, |
498 | bucket_size); |
499 | if (content == nullptr) |
500 | return 0U; |
501 | |
502 | current->content = (uptr)content; |
503 | current->allocated_size = 0; |
504 | current->max_size = bucket_size; |
505 | region = current; |
506 | break; |
507 | } else if (current->max_size - current->allocated_size > size) { |
508 | uptr next_address = current->content + current->allocated_size; |
509 | if (next_address < min_addr || next_address > max_addr) |
510 | continue; |
511 | // The space can be allocated in the current region. |
512 | region = current; |
513 | break; |
514 | } |
515 | } |
516 | |
517 | // Failed to find a region. |
518 | if (region == nullptr) |
519 | return 0U; |
520 | |
521 | // Allocate the space in the current region. |
522 | uptr allocated_space = region->content + region->allocated_size; |
523 | region->allocated_size += size; |
524 | WritePadding(allocated_space, size); |
525 | |
526 | return allocated_space; |
527 | } |
528 | |
529 | // The following prologues cannot be patched because of the short jump |
530 | // jumping to the patching region. |
531 | |
532 | // Short jump patterns below are only for x86_64. |
533 | # if SANITIZER_WINDOWS_x64 |
534 | // ntdll!wcslen in Win11 |
535 | // 488bc1 mov rax,rcx |
536 | // 0fb710 movzx edx,word ptr [rax] |
537 | // 4883c002 add rax,2 |
538 | // 6685d2 test dx,dx |
539 | // 75f4 jne -12 |
540 | static const u8 kPrologueWithShortJump1[] = { |
541 | 0x48, 0x8b, 0xc1, 0x0f, 0xb7, 0x10, 0x48, 0x83, |
542 | 0xc0, 0x02, 0x66, 0x85, 0xd2, 0x75, 0xf4, |
543 | }; |
544 | |
545 | // ntdll!strrchr in Win11 |
546 | // 4c8bc1 mov r8,rcx |
547 | // 8a01 mov al,byte ptr [rcx] |
548 | // 48ffc1 inc rcx |
549 | // 84c0 test al,al |
550 | // 75f7 jne -9 |
551 | static const u8 kPrologueWithShortJump2[] = { |
552 | 0x4c, 0x8b, 0xc1, 0x8a, 0x01, 0x48, 0xff, 0xc1, |
553 | 0x84, 0xc0, 0x75, 0xf7, |
554 | }; |
555 | #endif |
556 | |
557 | // Returns 0 on error. |
558 | static size_t GetInstructionSize(uptr address, size_t* rel_offset = nullptr) { |
559 | if (rel_offset) { |
560 | *rel_offset = 0; |
561 | } |
562 | |
563 | #if SANITIZER_ARM64 |
564 | // An ARM64 instruction is 4 bytes long. |
565 | return 4; |
566 | #endif |
567 | |
568 | # if SANITIZER_WINDOWS_x64 |
569 | if (memcmp((u8*)address, kPrologueWithShortJump1, |
570 | sizeof(kPrologueWithShortJump1)) == 0 || |
571 | memcmp((u8*)address, kPrologueWithShortJump2, |
572 | sizeof(kPrologueWithShortJump2)) == 0) { |
573 | return 0; |
574 | } |
575 | #endif |
576 | |
577 | switch (*(u64*)address) { |
578 | case 0x90909090909006EB: // stub: jmp over 6 x nop. |
579 | return 8; |
580 | } |
581 | |
582 | switch (*(u8*)address) { |
583 | case 0x90: // 90 : nop |
584 | case 0xC3: // C3 : ret (for small/empty function interception |
585 | case 0xCC: // CC : int 3 i.e. registering weak functions) |
586 | return 1; |
587 | |
588 | case 0x50: // push eax / rax |
589 | case 0x51: // push ecx / rcx |
590 | case 0x52: // push edx / rdx |
591 | case 0x53: // push ebx / rbx |
592 | case 0x54: // push esp / rsp |
593 | case 0x55: // push ebp / rbp |
594 | case 0x56: // push esi / rsi |
595 | case 0x57: // push edi / rdi |
596 | case 0x5D: // pop ebp / rbp |
597 | return 1; |
598 | |
599 | case 0x6A: // 6A XX = push XX |
600 | return 2; |
601 | |
602 | // This instruction can be encoded with a 16-bit immediate but that is |
603 | // incredibly unlikely. |
604 | case 0x68: // 68 XX XX XX XX : push imm32 |
605 | return 5; |
606 | |
607 | case 0xb8: // b8 XX XX XX XX : mov eax, XX XX XX XX |
608 | case 0xB9: // b9 XX XX XX XX : mov ecx, XX XX XX XX |
609 | case 0xBA: // ba XX XX XX XX : mov edx, XX XX XX XX |
610 | return 5; |
611 | |
612 | // Cannot overwrite control-instruction. Return 0 to indicate failure. |
613 | case 0xE9: // E9 XX XX XX XX : jmp <label> |
614 | case 0xE8: // E8 XX XX XX XX : call <func> |
615 | case 0xEB: // EB XX : jmp XX (short jump) |
616 | case 0x70: // 7Y YY : jy XX (short conditional jump) |
617 | case 0x71: |
618 | case 0x72: |
619 | case 0x73: |
620 | case 0x74: |
621 | case 0x75: |
622 | case 0x76: |
623 | case 0x77: |
624 | case 0x78: |
625 | case 0x79: |
626 | case 0x7A: |
627 | case 0x7B: |
628 | case 0x7C: |
629 | case 0x7D: |
630 | case 0x7E: |
631 | case 0x7F: |
632 | return 0; |
633 | } |
634 | |
635 | switch (*(u16*)(address)) { |
636 | case 0x018A: // 8A 01 : mov al, byte ptr [ecx] |
637 | case 0xFF8B: // 8B FF : mov edi, edi |
638 | case 0xEC8B: // 8B EC : mov ebp, esp |
639 | case 0xc889: // 89 C8 : mov eax, ecx |
640 | case 0xD189: // 89 D1 : mov ecx, edx |
641 | case 0xE589: // 89 E5 : mov ebp, esp |
642 | case 0xC18B: // 8B C1 : mov eax, ecx |
643 | case 0xC031: // 31 C0 : xor eax, eax |
644 | case 0xC931: // 31 C9 : xor ecx, ecx |
645 | case 0xD231: // 31 D2 : xor edx, edx |
646 | case 0xC033: // 33 C0 : xor eax, eax |
647 | case 0xC933: // 33 C9 : xor ecx, ecx |
648 | case 0xD233: // 33 D2 : xor edx, edx |
649 | case 0x9066: // 66 90 : xchg %ax,%ax (Two-byte NOP) |
650 | case 0xDB84: // 84 DB : test bl,bl |
651 | case 0xC084: // 84 C0 : test al,al |
652 | case 0xC984: // 84 C9 : test cl,cl |
653 | case 0xD284: // 84 D2 : test dl,dl |
654 | return 2; |
655 | |
656 | case 0x3980: // 80 39 XX : cmp BYTE PTR [rcx], XX |
657 | case 0x4D8B: // 8B 4D XX : mov XX(%ebp), ecx |
658 | case 0x558B: // 8B 55 XX : mov XX(%ebp), edx |
659 | case 0x758B: // 8B 75 XX : mov XX(%ebp), esp |
660 | case 0xE483: // 83 E4 XX : and esp, XX |
661 | case 0xEC83: // 83 EC XX : sub esp, XX |
662 | case 0xC1F6: // F6 C1 XX : test cl, XX |
663 | return 3; |
664 | |
665 | case 0x89FF: // FF 89 XX XX XX XX : dec dword ptr [ecx + XX XX XX XX] |
666 | case 0xEC81: // 81 EC XX XX XX XX : sub esp, XX XX XX XX |
667 | return 6; |
668 | |
669 | // Cannot overwrite control-instruction. Return 0 to indicate failure. |
670 | case 0x25FF: // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX] |
671 | return 0; |
672 | } |
673 | |
674 | switch (0x00FFFFFF & *(u32 *)address) { |
675 | case 0x244C8D: // 8D 4C 24 XX : lea ecx, [esp + XX] |
676 | case 0x2474FF: // FF 74 24 XX : push qword ptr [rsp + XX] |
677 | return 4; |
678 | case 0x24A48D: // 8D A4 24 XX XX XX XX : lea esp, [esp + XX XX XX XX] |
679 | return 7; |
680 | } |
681 | |
682 | switch (0x000000FF & *(u32 *)address) { |
683 | case 0xc2: // C2 XX XX : ret XX (needed for registering weak functions) |
684 | return 3; |
685 | } |
686 | |
687 | # if SANITIZER_WINDOWS_x64 |
688 | switch (*(u8*)address) { |
689 | case 0xA1: // A1 XX XX XX XX XX XX XX XX : |
690 | // movabs eax, dword ptr ds:[XXXXXXXX] |
691 | return 9; |
692 | case 0xF2: |
693 | switch (*(u32 *)(address + 1)) { |
694 | case 0x2444110f: // f2 0f 11 44 24 XX movsd QWORD PTR |
695 | // [rsp + XX], xmm0 |
696 | case 0x244c110f: // f2 0f 11 4c 24 XX movsd QWORD PTR |
697 | // [rsp + XX], xmm1 |
698 | case 0x2454110f: // f2 0f 11 54 24 XX movsd QWORD PTR |
699 | // [rsp + XX], xmm2 |
700 | case 0x245c110f: // f2 0f 11 5c 24 XX movsd QWORD PTR |
701 | // [rsp + XX], xmm3 |
702 | case 0x2464110f: // f2 0f 11 64 24 XX movsd QWORD PTR |
703 | // [rsp + XX], xmm4 |
704 | return 6; |
705 | } |
706 | break; |
707 | |
708 | case 0x83: |
709 | const u8 next_byte = *(u8*)(address + 1); |
710 | const u8 mod = next_byte >> 6; |
711 | const u8 rm = next_byte & 7; |
712 | if (mod == 1 && rm == 4) |
713 | return 5; // 83 ModR/M SIB Disp8 Imm8 |
714 | // add|or|adc|sbb|and|sub|xor|cmp [r+disp8], imm8 |
715 | } |
716 | |
717 | switch (*(u16*)address) { |
718 | case 0x5040: // push rax |
719 | case 0x5140: // push rcx |
720 | case 0x5240: // push rdx |
721 | case 0x5340: // push rbx |
722 | case 0x5440: // push rsp |
723 | case 0x5540: // push rbp |
724 | case 0x5640: // push rsi |
725 | case 0x5740: // push rdi |
726 | case 0x5441: // push r12 |
727 | case 0x5541: // push r13 |
728 | case 0x5641: // push r14 |
729 | case 0x5741: // push r15 |
730 | case 0xc084: // test al, al |
731 | case 0x018a: // mov al, byte ptr [rcx] |
732 | return 2; |
733 | |
734 | case 0x7E80: // 80 7E YY XX cmp BYTE PTR [rsi+YY], XX |
735 | case 0x7D80: // 80 7D YY XX cmp BYTE PTR [rbp+YY], XX |
736 | case 0x7A80: // 80 7A YY XX cmp BYTE PTR [rdx+YY], XX |
737 | case 0x7880: // 80 78 YY XX cmp BYTE PTR [rax+YY], XX |
738 | case 0x7B80: // 80 7B YY XX cmp BYTE PTR [rbx+YY], XX |
739 | case 0x7980: // 80 79 YY XX cmp BYTE ptr [rcx+YY], XX |
740 | return 4; |
741 | |
742 | case 0x058A: // 8A 05 XX XX XX XX : mov al, byte ptr [XX XX XX XX] |
743 | case 0x058B: // 8B 05 XX XX XX XX : mov eax, dword ptr [XX XX XX XX] |
744 | if (rel_offset) |
745 | *rel_offset = 2; |
746 | FALLTHROUGH; |
747 | case 0xB841: // 41 B8 XX XX XX XX : mov r8d, XX XX XX XX |
748 | return 6; |
749 | |
750 | case 0x7E81: // 81 7E YY XX XX XX XX cmp DWORD PTR [rsi+YY], XX XX XX XX |
751 | case 0x7D81: // 81 7D YY XX XX XX XX cmp DWORD PTR [rbp+YY], XX XX XX XX |
752 | case 0x7A81: // 81 7A YY XX XX XX XX cmp DWORD PTR [rdx+YY], XX XX XX XX |
753 | case 0x7881: // 81 78 YY XX XX XX XX cmp DWORD PTR [rax+YY], XX XX XX XX |
754 | case 0x7B81: // 81 7B YY XX XX XX XX cmp DWORD PTR [rbx+YY], XX XX XX XX |
755 | case 0x7981: // 81 79 YY XX XX XX XX cmp dword ptr [rcx+YY], XX XX XX XX |
756 | return 7; |
757 | |
758 | case 0xb848: // 48 b8 XX XX XX XX XX XX XX XX : |
759 | // movabsq XX XX XX XX XX XX XX XX, rax |
760 | case 0xba48: // 48 ba XX XX XX XX XX XX XX XX : |
761 | // movabsq XX XX XX XX XX XX XX XX, rdx |
762 | return 10; |
763 | } |
764 | |
765 | switch (0x00FFFFFF & *(u32 *)address) { |
766 | case 0x10b70f: // 0f b7 10 : movzx edx, WORD PTR [rax] |
767 | case 0xc00b4d: // 4d 0b c0 : or r8, r8 |
768 | case 0xc03345: // 45 33 c0 : xor r8d, r8d |
769 | case 0xc08548: // 48 85 c0 : test rax, rax |
770 | case 0xc0854d: // 4d 85 c0 : test r8, r8 |
771 | case 0xc08b41: // 41 8b c0 : mov eax, r8d |
772 | case 0xc0ff48: // 48 ff c0 : inc rax |
773 | case 0xc0ff49: // 49 ff c0 : inc r8 |
774 | case 0xc18b41: // 41 8b c1 : mov eax, r9d |
775 | case 0xc18b48: // 48 8b c1 : mov rax, rcx |
776 | case 0xc18b4c: // 4c 8b c1 : mov r8, rcx |
777 | case 0xc1ff48: // 48 ff c1 : inc rcx |
778 | case 0xc1ff49: // 49 ff c1 : inc r9 |
779 | case 0xc28b41: // 41 8b c2 : mov eax, r10d |
780 | case 0x01b60f: // 0f b6 01 : movzx eax, BYTE PTR [rcx] |
781 | case 0x09b60f: // 0f b6 09 : movzx ecx, BYTE PTR [rcx] |
782 | case 0x11b60f: // 0f b6 11 : movzx edx, BYTE PTR [rcx] |
783 | case 0xc2b60f: // 0f b6 c2 : movzx eax, dl |
784 | case 0xc2ff48: // 48 ff c2 : inc rdx |
785 | case 0xc2ff49: // 49 ff c2 : inc r10 |
786 | case 0xc38b41: // 41 8b c3 : mov eax, r11d |
787 | case 0xc3ff48: // 48 ff c3 : inc rbx |
788 | case 0xc3ff49: // 49 ff c3 : inc r11 |
789 | case 0xc48b41: // 41 8b c4 : mov eax, r12d |
790 | case 0xc48b48: // 48 8b c4 : mov rax, rsp |
791 | case 0xc4ff49: // 49 ff c4 : inc r12 |
792 | case 0xc5ff49: // 49 ff c5 : inc r13 |
793 | case 0xc6ff48: // 48 ff c6 : inc rsi |
794 | case 0xc6ff49: // 49 ff c6 : inc r14 |
795 | case 0xc7ff48: // 48 ff c7 : inc rdi |
796 | case 0xc7ff49: // 49 ff c7 : inc r15 |
797 | case 0xc93345: // 45 33 c9 : xor r9d, r9d |
798 | case 0xc98548: // 48 85 c9 : test rcx, rcx |
799 | case 0xc9854d: // 4d 85 c9 : test r9, r9 |
800 | case 0xc98b4c: // 4c 8b c9 : mov r9, rcx |
801 | case 0xd12948: // 48 29 d1 : sub rcx, rdx |
802 | case 0xca2b48: // 48 2b ca : sub rcx, rdx |
803 | case 0xca3b48: // 48 3b ca : cmp rcx, rdx |
804 | case 0xd12b48: // 48 2b d1 : sub rdx, rcx |
805 | case 0xd18b48: // 48 8b d1 : mov rdx, rcx |
806 | case 0xd18b4c: // 4c 8b d1 : mov r10, rcx |
807 | case 0xd28548: // 48 85 d2 : test rdx, rdx |
808 | case 0xd2854d: // 4d 85 d2 : test r10, r10 |
809 | case 0xd28b4c: // 4c 8b d2 : mov r10, rdx |
810 | case 0xd2b60f: // 0f b6 d2 : movzx edx, dl |
811 | case 0xd2be0f: // 0f be d2 : movsx edx, dl |
812 | case 0xd98b4c: // 4c 8b d9 : mov r11, rcx |
813 | case 0xd9f748: // 48 f7 d9 : neg rcx |
814 | case 0xc03145: // 45 31 c0 : xor r8d,r8d |
815 | case 0xc93145: // 45 31 c9 : xor r9d,r9d |
816 | case 0xdb3345: // 45 33 db : xor r11d, r11d |
817 | case 0xc08445: // 45 84 c0 : test r8b,r8b |
818 | case 0xd28445: // 45 84 d2 : test r10b,r10b |
819 | case 0xdb8548: // 48 85 db : test rbx, rbx |
820 | case 0xdb854d: // 4d 85 db : test r11, r11 |
821 | case 0xdc8b4c: // 4c 8b dc : mov r11, rsp |
822 | case 0xe48548: // 48 85 e4 : test rsp, rsp |
823 | case 0xe4854d: // 4d 85 e4 : test r12, r12 |
824 | case 0xc88948: // 48 89 c8 : mov rax,rcx |
825 | case 0xcb8948: // 48 89 cb : mov rbx,rcx |
826 | case 0xd08948: // 48 89 d0 : mov rax,rdx |
827 | case 0xd18948: // 48 89 d1 : mov rcx,rdx |
828 | case 0xd38948: // 48 89 d3 : mov rbx,rdx |
829 | case 0xe58948: // 48 89 e5 : mov rbp, rsp |
830 | case 0xed8548: // 48 85 ed : test rbp, rbp |
831 | case 0xc88949: // 49 89 c8 : mov r8, rcx |
832 | case 0xc98949: // 49 89 c9 : mov r9, rcx |
833 | case 0xca8949: // 49 89 ca : mov r10,rcx |
834 | case 0xd08949: // 49 89 d0 : mov r8, rdx |
835 | case 0xd18949: // 49 89 d1 : mov r9, rdx |
836 | case 0xd28949: // 49 89 d2 : mov r10, rdx |
837 | case 0xd38949: // 49 89 d3 : mov r11, rdx |
838 | case 0xed854d: // 4d 85 ed : test r13, r13 |
839 | case 0xf6854d: // 4d 85 f6 : test r14, r14 |
840 | case 0xff854d: // 4d 85 ff : test r15, r15 |
841 | return 3; |
842 | |
843 | case 0x245489: // 89 54 24 XX : mov DWORD PTR[rsp + XX], edx |
844 | case 0x428d44: // 44 8d 42 XX : lea r8d , [rdx + XX] |
845 | case 0x588948: // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx |
846 | case 0xec8348: // 48 83 ec XX : sub rsp, XX |
847 | case 0xf88349: // 49 83 f8 XX : cmp r8, XX |
848 | case 0x488d49: // 49 8d 48 XX : lea rcx, [...] |
849 | case 0x048d4c: // 4c 8d 04 XX : lea r8, [...] |
850 | case 0x148d4e: // 4e 8d 14 XX : lea r10, [...] |
851 | case 0x398366: // 66 83 39 XX : cmp WORD PTR [rcx], XX |
852 | return 4; |
853 | |
854 | case 0x441F0F: // 0F 1F 44 XX XX : nop DWORD PTR [...] |
855 | case 0x246483: // 83 64 24 XX YY : and DWORD PTR [rsp+XX], YY |
856 | return 5; |
857 | |
858 | case 0x788166: // 66 81 78 XX YY YY cmp WORD PTR [rax+XX], YY YY |
859 | case 0x798166: // 66 81 79 XX YY YY cmp WORD PTR [rcx+XX], YY YY |
860 | case 0x7a8166: // 66 81 7a XX YY YY cmp WORD PTR [rdx+XX], YY YY |
861 | case 0x7b8166: // 66 81 7b XX YY YY cmp WORD PTR [rbx+XX], YY YY |
862 | case 0x7e8166: // 66 81 7e XX YY YY cmp WORD PTR [rsi+XX], YY YY |
863 | case 0x7f8166: // 66 81 7f XX YY YY cmp WORD PTR [rdi+XX], YY YY |
864 | return 6; |
865 | |
866 | case 0xec8148: // 48 81 EC XX XX XX XX : sub rsp, XXXXXXXX |
867 | case 0xc0c748: // 48 C7 C0 XX XX XX XX : mov rax, XX XX XX XX |
868 | return 7; |
869 | |
870 | // clang-format off |
871 | case 0x788141: // 41 81 78 XX YY YY YY YY : cmp DWORD PTR [r8+YY], XX XX XX XX |
872 | case 0x798141: // 41 81 79 XX YY YY YY YY : cmp DWORD PTR [r9+YY], XX XX XX XX |
873 | case 0x7a8141: // 41 81 7a XX YY YY YY YY : cmp DWORD PTR [r10+YY], XX XX XX XX |
874 | case 0x7b8141: // 41 81 7b XX YY YY YY YY : cmp DWORD PTR [r11+YY], XX XX XX XX |
875 | case 0x7d8141: // 41 81 7d XX YY YY YY YY : cmp DWORD PTR [r13+YY], XX XX XX XX |
876 | case 0x7e8141: // 41 81 7e XX YY YY YY YY : cmp DWORD PTR [r14+YY], XX XX XX XX |
877 | case 0x7f8141: // 41 81 7f YY XX XX XX XX : cmp DWORD PTR [r15+YY], XX XX XX XX |
878 | case 0x247c81: // 81 7c 24 YY XX XX XX XX : cmp DWORD PTR [rsp+YY], XX XX XX XX |
879 | return 8; |
880 | // clang-format on |
881 | |
882 | case 0x058b48: // 48 8b 05 XX XX XX XX : |
883 | // mov rax, QWORD PTR [rip + XXXXXXXX] |
884 | case 0x058d48: // 48 8d 05 XX XX XX XX : |
885 | // lea rax, QWORD PTR [rip + XXXXXXXX] |
886 | case 0x0d8948: // 48 89 0d XX XX XX XX : |
887 | // mov QWORD PTR [rip + XXXXXXXX], rcx |
888 | case 0x158948: // 48 89 15 XX XX XX XX : |
889 | // mov QWORD PTR [rip + XXXXXXXX], rdx |
890 | case 0x25ff48: // 48 ff 25 XX XX XX XX : |
891 | // rex.W jmp QWORD PTR [rip + XXXXXXXX] |
892 | case 0x158D4C: // 4c 8d 15 XX XX XX XX : lea r10, [rip + XX] |
893 | // Instructions having offset relative to 'rip' need offset adjustment. |
894 | if (rel_offset) |
895 | *rel_offset = 3; |
896 | return 7; |
897 | |
898 | case 0x2444c7: // C7 44 24 XX YY YY YY YY |
899 | // mov dword ptr [rsp + XX], YYYYYYYY |
900 | return 8; |
901 | |
902 | case 0x7c8141: // 41 81 7c ZZ YY XX XX XX XX |
903 | // cmp DWORD PTR [reg+reg*n+YY], XX XX XX XX |
904 | return 9; |
905 | } |
906 | |
907 | switch (*(u32*)(address)) { |
908 | case 0x01b60f44: // 44 0f b6 01 : movzx r8d, BYTE PTR [rcx] |
909 | case 0x09b60f44: // 44 0f b6 09 : movzx r9d, BYTE PTR [rcx] |
910 | case 0x0ab60f44: // 44 0f b6 0a : movzx r8d, BYTE PTR [rdx] |
911 | case 0x11b60f44: // 44 0f b6 11 : movzx r10d, BYTE PTR [rcx] |
912 | case 0x1ab60f44: // 44 0f b6 1a : movzx r11d, BYTE PTR [rdx] |
913 | return 4; |
914 | case 0x24448b48: // 48 8b 44 24 XX : mov rax, QWORD ptr [rsp + XX] |
915 | case 0x246c8948: // 48 89 6C 24 XX : mov QWORD ptr [rsp + XX], rbp |
916 | case 0x245c8948: // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx |
917 | case 0x24748948: // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi |
918 | case 0x247c8948: // 48 89 7c 24 XX : mov QWORD PTR [rsp + XX], rdi |
919 | case 0x244C8948: // 48 89 4C 24 XX : mov QWORD PTR [rsp + XX], rcx |
920 | case 0x24548948: // 48 89 54 24 XX : mov QWORD PTR [rsp + XX], rdx |
921 | case 0x244c894c: // 4c 89 4c 24 XX : mov QWORD PTR [rsp + XX], r9 |
922 | case 0x2444894c: // 4c 89 44 24 XX : mov QWORD PTR [rsp + XX], r8 |
923 | case 0x244c8944: // 44 89 4c 24 XX mov DWORD PTR [rsp + XX], r9d |
924 | case 0x24448944: // 44 89 44 24 XX mov DWORD PTR [rsp + XX], r8d |
925 | case 0x246c8d48: // 48 8d 6c 24 XX : lea rbp, [rsp + XX] |
926 | return 5; |
927 | case 0x24648348: // 48 83 64 24 XX YY : and QWORD PTR [rsp + XX], YY |
928 | return 6; |
929 | case 0x24A48D48: // 48 8D A4 24 XX XX XX XX : lea rsp, [rsp + XX XX XX XX] |
930 | return 8; |
931 | } |
932 | |
933 | switch (0xFFFFFFFFFFULL & *(u64 *)(address)) { |
934 | case 0xC07E0F4866: // 66 48 0F 7E C0 : movq rax, xmm0 |
935 | return 5; |
936 | } |
937 | |
938 | #else |
939 | |
940 | switch (*(u8*)address) { |
941 | case 0xA1: // A1 XX XX XX XX : mov eax, dword ptr ds:[XXXXXXXX] |
942 | return 5; |
943 | } |
944 | switch (*(u16*)address) { |
945 | case 0x458B: // 8B 45 XX : mov eax, dword ptr [ebp + XX] |
946 | case 0x5D8B: // 8B 5D XX : mov ebx, dword ptr [ebp + XX] |
947 | case 0x7D8B: // 8B 7D XX : mov edi, dword ptr [ebp + XX] |
948 | case 0x758B: // 8B 75 XX : mov esi, dword ptr [ebp + XX] |
949 | case 0x75FF: // FF 75 XX : push dword ptr [ebp + XX] |
950 | return 3; |
951 | case 0xC1F7: // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX |
952 | return 6; |
953 | case 0x3D83: // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX |
954 | return 7; |
955 | case 0x7D83: // 83 7D XX YY : cmp dword ptr [ebp + XX], YY |
956 | return 4; |
957 | } |
958 | |
959 | switch (0x00FFFFFF & *(u32*)address) { |
960 | case 0x24448A: // 8A 44 24 XX : mov eal, dword ptr [esp + XX] |
961 | case 0x24448B: // 8B 44 24 XX : mov eax, dword ptr [esp + XX] |
962 | case 0x244C8B: // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX] |
963 | case 0x24548B: // 8B 54 24 XX : mov edx, dword ptr [esp + XX] |
964 | case 0x245C8B: // 8B 5C 24 XX : mov ebx, dword ptr [esp + XX] |
965 | case 0x246C8B: // 8B 6C 24 XX : mov ebp, dword ptr [esp + XX] |
966 | case 0x24748B: // 8B 74 24 XX : mov esi, dword ptr [esp + XX] |
967 | case 0x247C8B: // 8B 7C 24 XX : mov edi, dword ptr [esp + XX] |
968 | return 4; |
969 | } |
970 | |
971 | switch (*(u32*)address) { |
972 | case 0x2444B60F: // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX] |
973 | return 5; |
974 | } |
975 | #endif |
976 | |
977 | // Unknown instruction! This might happen when we add a new interceptor, use |
978 | // a new compiler version, or if Windows changed how some functions are |
979 | // compiled. In either case, we print the address and 8 bytes of instructions |
980 | // to notify the user about the error and to help identify the unknown |
981 | // instruction. Don't treat this as a fatal error, though we can break the |
982 | // debugger if one has been attached. |
983 | u8 *bytes = (u8 *)address; |
984 | ReportError( |
985 | "interception_win: unhandled instruction at %p: %02x %02x %02x %02x %02x " |
986 | "%02x %02x %02x\n" , |
987 | (void *)address, bytes[0], bytes[1], bytes[2], bytes[3], bytes[4], |
988 | bytes[5], bytes[6], bytes[7]); |
989 | if (::IsDebuggerPresent()) |
990 | __debugbreak(); |
991 | return 0; |
992 | } |
993 | |
994 | size_t TestOnlyGetInstructionSize(uptr address, size_t *rel_offset) { |
995 | return GetInstructionSize(address, rel_offset); |
996 | } |
997 | |
998 | // Returns 0 on error. |
999 | static size_t RoundUpToInstrBoundary(size_t size, uptr address) { |
1000 | size_t cursor = 0; |
1001 | while (cursor < size) { |
1002 | size_t instruction_size = GetInstructionSize(address + cursor); |
1003 | if (!instruction_size) |
1004 | return 0; |
1005 | cursor += instruction_size; |
1006 | } |
1007 | return cursor; |
1008 | } |
1009 | |
1010 | static bool CopyInstructions(uptr to, uptr from, size_t size) { |
1011 | size_t cursor = 0; |
1012 | while (cursor != size) { |
1013 | size_t rel_offset = 0; |
1014 | size_t instruction_size = GetInstructionSize(from + cursor, &rel_offset); |
1015 | if (!instruction_size) |
1016 | return false; |
1017 | _memcpy((void *)(to + cursor), (void *)(from + cursor), |
1018 | (size_t)instruction_size); |
1019 | if (rel_offset) { |
1020 | # if SANITIZER_WINDOWS64 |
1021 | // we want to make sure that the new relative offset still fits in 32-bits |
1022 | // this will be untrue if relocated_offset \notin [-2**31, 2**31) |
1023 | s64 delta = to - from; |
1024 | s64 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta; |
1025 | if (-0x8000'0000ll > relocated_offset || |
1026 | relocated_offset > 0x7FFF'FFFFll) { |
1027 | ReportError( |
1028 | "interception_win: CopyInstructions relocated_offset %lld outside " |
1029 | "32-bit range\n" , |
1030 | (long long)relocated_offset); |
1031 | return false; |
1032 | } |
1033 | # else |
1034 | // on 32-bit, the relative offset will always be correct |
1035 | s32 delta = to - from; |
1036 | s32 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta; |
1037 | # endif |
1038 | *(s32 *)(to + cursor + rel_offset) = relocated_offset; |
1039 | } |
1040 | cursor += instruction_size; |
1041 | } |
1042 | return true; |
1043 | } |
1044 | |
1045 | |
1046 | #if !SANITIZER_WINDOWS64 |
1047 | bool OverrideFunctionWithDetour( |
1048 | uptr old_func, uptr new_func, uptr *orig_old_func) { |
1049 | const int kDetourHeaderLen = 5; |
1050 | const u16 kDetourInstruction = 0xFF8B; |
1051 | |
1052 | uptr header = (uptr)old_func - kDetourHeaderLen; |
1053 | uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength; |
1054 | |
1055 | // Validate that the function is hookable. |
1056 | if (*(u16*)old_func != kDetourInstruction || |
1057 | !IsMemoryPadding(header, kDetourHeaderLen)) |
1058 | return false; |
1059 | |
1060 | // Change memory protection to writable. |
1061 | DWORD protection = 0; |
1062 | if (!ChangeMemoryProtection(header, patch_length, &protection)) |
1063 | return false; |
1064 | |
1065 | // Write a relative jump to the redirected function. |
1066 | WriteJumpInstruction(header, new_func); |
1067 | |
1068 | // Write the short jump to the function prefix. |
1069 | WriteShortJumpInstruction(old_func, header); |
1070 | |
1071 | // Restore previous memory protection. |
1072 | if (!RestoreMemoryProtection(header, patch_length, protection)) |
1073 | return false; |
1074 | |
1075 | if (orig_old_func) |
1076 | *orig_old_func = old_func + kShortJumpInstructionLength; |
1077 | |
1078 | return true; |
1079 | } |
1080 | #endif |
1081 | |
1082 | bool OverrideFunctionWithRedirectJump( |
1083 | uptr old_func, uptr new_func, uptr *orig_old_func) { |
1084 | // Check whether the first instruction is a relative jump. |
1085 | if (*(u8*)old_func != 0xE9) |
1086 | return false; |
1087 | |
1088 | if (orig_old_func) { |
1089 | sptr relative_offset = *(s32 *)(old_func + 1); |
1090 | uptr absolute_target = old_func + relative_offset + kJumpInstructionLength; |
1091 | *orig_old_func = absolute_target; |
1092 | } |
1093 | |
1094 | #if SANITIZER_WINDOWS64 |
1095 | // If needed, get memory space for a trampoline jump. |
1096 | uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength); |
1097 | if (!trampoline) |
1098 | return false; |
1099 | WriteDirectBranch(trampoline, new_func); |
1100 | #endif |
1101 | |
1102 | // Change memory protection to writable. |
1103 | DWORD protection = 0; |
1104 | if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection)) |
1105 | return false; |
1106 | |
1107 | // Write a relative jump to the redirected function. |
1108 | WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline)); |
1109 | |
1110 | // Restore previous memory protection. |
1111 | if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection)) |
1112 | return false; |
1113 | |
1114 | return true; |
1115 | } |
1116 | |
1117 | bool OverrideFunctionWithHotPatch( |
1118 | uptr old_func, uptr new_func, uptr *orig_old_func) { |
1119 | const int kHotPatchHeaderLen = kBranchLength; |
1120 | |
1121 | uptr header = (uptr)old_func - kHotPatchHeaderLen; |
1122 | uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength; |
1123 | |
1124 | // Validate that the function is hot patchable. |
1125 | size_t instruction_size = GetInstructionSize(old_func); |
1126 | if (instruction_size < kShortJumpInstructionLength || |
1127 | !FunctionHasPadding(old_func, kHotPatchHeaderLen)) |
1128 | return false; |
1129 | |
1130 | if (orig_old_func) { |
1131 | // Put the needed instructions into the trampoline bytes. |
1132 | uptr trampoline_length = instruction_size + kDirectBranchLength; |
1133 | uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length); |
1134 | if (!trampoline) |
1135 | return false; |
1136 | if (!CopyInstructions(trampoline, old_func, instruction_size)) |
1137 | return false; |
1138 | WriteDirectBranch(trampoline + instruction_size, |
1139 | old_func + instruction_size); |
1140 | *orig_old_func = trampoline; |
1141 | } |
1142 | |
1143 | // If needed, get memory space for indirect address. |
1144 | uptr indirect_address = 0; |
1145 | #if SANITIZER_WINDOWS64 |
1146 | indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength); |
1147 | if (!indirect_address) |
1148 | return false; |
1149 | #endif |
1150 | |
1151 | // Change memory protection to writable. |
1152 | DWORD protection = 0; |
1153 | if (!ChangeMemoryProtection(header, patch_length, &protection)) |
1154 | return false; |
1155 | |
1156 | // Write jumps to the redirected function. |
1157 | WriteBranch(header, indirect_address, new_func); |
1158 | WriteShortJumpInstruction(old_func, header); |
1159 | |
1160 | // Restore previous memory protection. |
1161 | if (!RestoreMemoryProtection(header, patch_length, protection)) |
1162 | return false; |
1163 | |
1164 | return true; |
1165 | } |
1166 | |
1167 | bool OverrideFunctionWithTrampoline( |
1168 | uptr old_func, uptr new_func, uptr *orig_old_func) { |
1169 | |
1170 | size_t instructions_length = kBranchLength; |
1171 | size_t padding_length = 0; |
1172 | uptr indirect_address = 0; |
1173 | |
1174 | if (orig_old_func) { |
1175 | // Find out the number of bytes of the instructions we need to copy |
1176 | // to the trampoline. |
1177 | instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func); |
1178 | if (!instructions_length) |
1179 | return false; |
1180 | |
1181 | // Put the needed instructions into the trampoline bytes. |
1182 | uptr trampoline_length = instructions_length + kDirectBranchLength; |
1183 | uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length); |
1184 | if (!trampoline) |
1185 | return false; |
1186 | if (!CopyInstructions(trampoline, old_func, instructions_length)) |
1187 | return false; |
1188 | WriteDirectBranch(trampoline + instructions_length, |
1189 | old_func + instructions_length); |
1190 | *orig_old_func = trampoline; |
1191 | } |
1192 | |
1193 | #if SANITIZER_WINDOWS64 |
1194 | // Check if the targeted address can be encoded in the function padding. |
1195 | // Otherwise, allocate it in the trampoline region. |
1196 | if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) { |
1197 | indirect_address = old_func - kAddressLength; |
1198 | padding_length = kAddressLength; |
1199 | } else { |
1200 | indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength); |
1201 | if (!indirect_address) |
1202 | return false; |
1203 | } |
1204 | #endif |
1205 | |
1206 | // Change memory protection to writable. |
1207 | uptr patch_address = old_func - padding_length; |
1208 | uptr patch_length = instructions_length + padding_length; |
1209 | DWORD protection = 0; |
1210 | if (!ChangeMemoryProtection(patch_address, patch_length, &protection)) |
1211 | return false; |
1212 | |
1213 | // Patch the original function. |
1214 | WriteBranch(old_func, indirect_address, new_func); |
1215 | |
1216 | // Restore previous memory protection. |
1217 | if (!RestoreMemoryProtection(patch_address, patch_length, protection)) |
1218 | return false; |
1219 | |
1220 | return true; |
1221 | } |
1222 | |
1223 | bool OverrideFunction( |
1224 | uptr old_func, uptr new_func, uptr *orig_old_func) { |
1225 | #if !SANITIZER_WINDOWS64 |
1226 | if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func)) |
1227 | return true; |
1228 | #endif |
1229 | if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func)) |
1230 | return true; |
1231 | if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func)) |
1232 | return true; |
1233 | if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func)) |
1234 | return true; |
1235 | return false; |
1236 | } |
1237 | |
1238 | static void **InterestingDLLsAvailable() { |
1239 | static const char *InterestingDLLs[] = { |
1240 | "kernel32.dll" , |
1241 | "msvcr100d.dll" , // VS2010 |
1242 | "msvcr110d.dll" , // VS2012 |
1243 | "msvcr120d.dll" , // VS2013 |
1244 | "vcruntime140d.dll" , // VS2015 |
1245 | "ucrtbased.dll" , // Universal CRT |
1246 | "msvcr100.dll" , // VS2010 |
1247 | "msvcr110.dll" , // VS2012 |
1248 | "msvcr120.dll" , // VS2013 |
1249 | "vcruntime140.dll" , // VS2015 |
1250 | "ucrtbase.dll" , // Universal CRT |
1251 | # if (defined(__MINGW32__) && defined(__i386__)) |
1252 | "libc++.dll" , // libc++ |
1253 | "libunwind.dll" , // libunwind |
1254 | # endif |
1255 | // NTDLL must go last as it gets special treatment in OverrideFunction. |
1256 | "ntdll.dll" , |
1257 | NULL |
1258 | }; |
1259 | static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 }; |
1260 | if (!result[0]) { |
1261 | for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) { |
1262 | if (HMODULE h = GetModuleHandleA(InterestingDLLs[i])) |
1263 | result[j++] = (void *)h; |
1264 | } |
1265 | } |
1266 | return &result[0]; |
1267 | } |
1268 | |
1269 | namespace { |
1270 | // Utility for reading loaded PE images. |
1271 | template <typename T> class RVAPtr { |
1272 | public: |
1273 | RVAPtr(void *module, uptr rva) |
1274 | : ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {} |
1275 | operator T *() { return ptr_; } |
1276 | T *operator->() { return ptr_; } |
1277 | T *operator++() { return ++ptr_; } |
1278 | |
1279 | private: |
1280 | T *ptr_; |
1281 | }; |
1282 | } // namespace |
1283 | |
1284 | // Internal implementation of GetProcAddress. At least since Windows 8, |
1285 | // GetProcAddress appears to initialize DLLs before returning function pointers |
1286 | // into them. This is problematic for the sanitizers, because they typically |
1287 | // want to intercept malloc *before* MSVCRT initializes. Our internal |
1288 | // implementation walks the export list manually without doing initialization. |
1289 | uptr InternalGetProcAddress(void *module, const char *func_name) { |
1290 | // Check that the module header is full and present. |
1291 | RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0); |
1292 | RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew); |
1293 | if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ" |
1294 | headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0" |
1295 | headers->FileHeader.SizeOfOptionalHeader < |
1296 | sizeof(IMAGE_OPTIONAL_HEADER)) { |
1297 | return 0; |
1298 | } |
1299 | |
1300 | IMAGE_DATA_DIRECTORY *export_directory = |
1301 | &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]; |
1302 | if (export_directory->Size == 0) |
1303 | return 0; |
1304 | RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module, |
1305 | export_directory->VirtualAddress); |
1306 | RVAPtr<DWORD> functions(module, exports->AddressOfFunctions); |
1307 | RVAPtr<DWORD> names(module, exports->AddressOfNames); |
1308 | RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals); |
1309 | |
1310 | for (DWORD i = 0; i < exports->NumberOfNames; i++) { |
1311 | RVAPtr<char> name(module, names[i]); |
1312 | if (!_strcmp(func_name, name)) { |
1313 | DWORD index = ordinals[i]; |
1314 | RVAPtr<char> func(module, functions[index]); |
1315 | |
1316 | // Handle forwarded functions. |
1317 | DWORD offset = functions[index]; |
1318 | if (offset >= export_directory->VirtualAddress && |
1319 | offset < export_directory->VirtualAddress + export_directory->Size) { |
1320 | // An entry for a forwarded function is a string with the following |
1321 | // format: "<module> . <function_name>" that is stored into the |
1322 | // exported directory. |
1323 | char function_name[256]; |
1324 | size_t funtion_name_length = _strlen(func); |
1325 | if (funtion_name_length >= sizeof(function_name) - 1) { |
1326 | ReportError("interception_win: func too long: '%s'\n" , (char *)func); |
1327 | InterceptionFailed(); |
1328 | } |
1329 | |
1330 | _memcpy(function_name, func, funtion_name_length); |
1331 | function_name[funtion_name_length] = '\0'; |
1332 | char* separator = _strchr(function_name, '.'); |
1333 | if (!separator) { |
1334 | ReportError("interception_win: no separator in '%s'\n" , |
1335 | function_name); |
1336 | InterceptionFailed(); |
1337 | } |
1338 | *separator = '\0'; |
1339 | |
1340 | void* redirected_module = GetModuleHandleA(function_name); |
1341 | if (!redirected_module) { |
1342 | ReportError("interception_win: GetModuleHandleA failed for '%s'\n" , |
1343 | function_name); |
1344 | InterceptionFailed(); |
1345 | } |
1346 | return InternalGetProcAddress(redirected_module, separator + 1); |
1347 | } |
1348 | |
1349 | return (uptr)(char *)func; |
1350 | } |
1351 | } |
1352 | |
1353 | return 0; |
1354 | } |
1355 | |
1356 | bool OverrideFunction( |
1357 | const char *func_name, uptr new_func, uptr *orig_old_func) { |
1358 | static const char *kNtDllIgnore[] = { |
1359 | "memcmp" , "memcpy" , "memmove" , "memset" |
1360 | }; |
1361 | |
1362 | bool hooked = false; |
1363 | void **DLLs = InterestingDLLsAvailable(); |
1364 | for (size_t i = 0; DLLs[i]; ++i) { |
1365 | if (DLLs[i + 1] == nullptr) { |
1366 | // This is the last DLL, i.e. NTDLL. It exports some functions that |
1367 | // we only want to override in the CRT. |
1368 | for (const char *ignored : kNtDllIgnore) { |
1369 | if (_strcmp(func_name, ignored) == 0) |
1370 | return hooked; |
1371 | } |
1372 | } |
1373 | |
1374 | uptr func_addr = InternalGetProcAddress(DLLs[i], func_name); |
1375 | if (func_addr && |
1376 | OverrideFunction(func_addr, new_func, orig_old_func)) { |
1377 | hooked = true; |
1378 | } |
1379 | } |
1380 | return hooked; |
1381 | } |
1382 | |
1383 | bool OverrideImportedFunction(const char *module_to_patch, |
1384 | const char *imported_module, |
1385 | const char *function_name, uptr new_function, |
1386 | uptr *orig_old_func) { |
1387 | HMODULE module = GetModuleHandleA(module_to_patch); |
1388 | if (!module) |
1389 | return false; |
1390 | |
1391 | // Check that the module header is full and present. |
1392 | RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0); |
1393 | RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew); |
1394 | if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ" |
1395 | headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0" |
1396 | headers->FileHeader.SizeOfOptionalHeader < |
1397 | sizeof(IMAGE_OPTIONAL_HEADER)) { |
1398 | return false; |
1399 | } |
1400 | |
1401 | IMAGE_DATA_DIRECTORY *import_directory = |
1402 | &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT]; |
1403 | |
1404 | // Iterate the list of imported DLLs. FirstThunk will be null for the last |
1405 | // entry. |
1406 | RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module, |
1407 | import_directory->VirtualAddress); |
1408 | for (; imports->FirstThunk != 0; ++imports) { |
1409 | RVAPtr<const char> modname(module, imports->Name); |
1410 | if (_stricmp(&*modname, imported_module) == 0) |
1411 | break; |
1412 | } |
1413 | if (imports->FirstThunk == 0) |
1414 | return false; |
1415 | |
1416 | // We have two parallel arrays: the import address table (IAT) and the table |
1417 | // of names. They start out containing the same data, but the loader rewrites |
1418 | // the IAT to hold imported addresses and leaves the name table in |
1419 | // OriginalFirstThunk alone. |
1420 | RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk); |
1421 | RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk); |
1422 | for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) { |
1423 | if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) { |
1424 | RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name( |
1425 | module, name_table->u1.ForwarderString); |
1426 | const char *funcname = &import_by_name->Name[0]; |
1427 | if (_strcmp(funcname, function_name) == 0) |
1428 | break; |
1429 | } |
1430 | } |
1431 | if (name_table->u1.Ordinal == 0) |
1432 | return false; |
1433 | |
1434 | // Now we have the correct IAT entry. Do the swap. We have to make the page |
1435 | // read/write first. |
1436 | if (orig_old_func) |
1437 | *orig_old_func = iat->u1.AddressOfData; |
1438 | DWORD old_prot, unused_prot; |
1439 | if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE, |
1440 | &old_prot)) |
1441 | return false; |
1442 | iat->u1.AddressOfData = new_function; |
1443 | if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot)) |
1444 | return false; // Not clear if this failure bothers us. |
1445 | return true; |
1446 | } |
1447 | |
1448 | } // namespace __interception |
1449 | |
1450 | #endif // SANITIZER_WINDOWS |
1451 | |