| 1 | //===-- interception_win.cpp ------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file is a part of AddressSanitizer, an address sanity checker. |
| 10 | // |
| 11 | // Windows-specific interception methods. |
| 12 | // |
| 13 | // This file is implementing several hooking techniques to intercept calls |
| 14 | // to functions. The hooks are dynamically installed by modifying the assembly |
| 15 | // code. |
| 16 | // |
| 17 | // The hooking techniques are making assumptions on the way the code is |
| 18 | // generated and are safe under these assumptions. |
| 19 | // |
| 20 | // On 64-bit architecture, there is no direct 64-bit jump instruction. To allow |
| 21 | // arbitrary branching on the whole memory space, the notion of trampoline |
| 22 | // region is used. A trampoline region is a memory space withing 2G boundary |
| 23 | // where it is safe to add custom assembly code to build 64-bit jumps. |
| 24 | // |
| 25 | // Hooking techniques |
| 26 | // ================== |
| 27 | // |
| 28 | // 1) Detour |
| 29 | // |
| 30 | // The Detour hooking technique is assuming the presence of a header with |
| 31 | // padding and an overridable 2-bytes nop instruction (mov edi, edi). The |
| 32 | // nop instruction can safely be replaced by a 2-bytes jump without any need |
| 33 | // to save the instruction. A jump to the target is encoded in the function |
| 34 | // header and the nop instruction is replaced by a short jump to the header. |
| 35 | // |
| 36 | // head: 5 x nop head: jmp <hook> |
| 37 | // func: mov edi, edi --> func: jmp short <head> |
| 38 | // [...] real: [...] |
| 39 | // |
| 40 | // This technique is only implemented on 32-bit architecture. |
| 41 | // Most of the time, Windows API are hookable with the detour technique. |
| 42 | // |
| 43 | // 2) Redirect Jump |
| 44 | // |
| 45 | // The redirect jump is applicable when the first instruction is a direct |
| 46 | // jump. The instruction is replaced by jump to the hook. |
| 47 | // |
| 48 | // func: jmp <label> --> func: jmp <hook> |
| 49 | // |
| 50 | // On a 64-bit architecture, a trampoline is inserted. |
| 51 | // |
| 52 | // func: jmp <label> --> func: jmp <tramp> |
| 53 | // [...] |
| 54 | // |
| 55 | // [trampoline] |
| 56 | // tramp: jmp QWORD [addr] |
| 57 | // addr: .bytes <hook> |
| 58 | // |
| 59 | // Note: <real> is equivalent to <label>. |
| 60 | // |
| 61 | // 3) HotPatch |
| 62 | // |
| 63 | // The HotPatch hooking is assuming the presence of a header with padding |
| 64 | // and a first instruction with at least 2-bytes. |
| 65 | // |
| 66 | // The reason to enforce the 2-bytes limitation is to provide the minimal |
| 67 | // space to encode a short jump. HotPatch technique is only rewriting one |
| 68 | // instruction to avoid breaking a sequence of instructions containing a |
| 69 | // branching target. |
| 70 | // |
| 71 | // Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag. |
| 72 | // see: https://msdn.microsoft.com/en-us/library/ms173507.aspx |
| 73 | // Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits. |
| 74 | // |
| 75 | // head: 5 x nop head: jmp <hook> |
| 76 | // func: <instr> --> func: jmp short <head> |
| 77 | // [...] body: [...] |
| 78 | // |
| 79 | // [trampoline] |
| 80 | // real: <instr> |
| 81 | // jmp <body> |
| 82 | // |
| 83 | // On a 64-bit architecture: |
| 84 | // |
| 85 | // head: 6 x nop head: jmp QWORD [addr1] |
| 86 | // func: <instr> --> func: jmp short <head> |
| 87 | // [...] body: [...] |
| 88 | // |
| 89 | // [trampoline] |
| 90 | // addr1: .bytes <hook> |
| 91 | // real: <instr> |
| 92 | // jmp QWORD [addr2] |
| 93 | // addr2: .bytes <body> |
| 94 | // |
| 95 | // 4) Trampoline |
| 96 | // |
| 97 | // The Trampoline hooking technique is the most aggressive one. It is |
| 98 | // assuming that there is a sequence of instructions that can be safely |
| 99 | // replaced by a jump (enough room and no incoming branches). |
| 100 | // |
| 101 | // Unfortunately, these assumptions can't be safely presumed and code may |
| 102 | // be broken after hooking. |
| 103 | // |
| 104 | // func: <instr> --> func: jmp <hook> |
| 105 | // <instr> |
| 106 | // [...] body: [...] |
| 107 | // |
| 108 | // [trampoline] |
| 109 | // real: <instr> |
| 110 | // <instr> |
| 111 | // jmp <body> |
| 112 | // |
| 113 | // On a 64-bit architecture: |
| 114 | // |
| 115 | // func: <instr> --> func: jmp QWORD [addr1] |
| 116 | // <instr> |
| 117 | // [...] body: [...] |
| 118 | // |
| 119 | // [trampoline] |
| 120 | // addr1: .bytes <hook> |
| 121 | // real: <instr> |
| 122 | // <instr> |
| 123 | // jmp QWORD [addr2] |
| 124 | // addr2: .bytes <body> |
| 125 | //===----------------------------------------------------------------------===// |
| 126 | |
| 127 | #include "interception.h" |
| 128 | |
| 129 | #if SANITIZER_WINDOWS |
| 130 | #include "sanitizer_common/sanitizer_platform.h" |
| 131 | #define WIN32_LEAN_AND_MEAN |
| 132 | #include <windows.h> |
| 133 | #include <psapi.h> |
| 134 | |
| 135 | namespace __interception { |
| 136 | |
| 137 | static const int kAddressLength = FIRST_32_SECOND_64(4, 8); |
| 138 | static const int kJumpInstructionLength = 5; |
| 139 | static const int kShortJumpInstructionLength = 2; |
| 140 | UNUSED static const int kIndirectJumpInstructionLength = 6; |
| 141 | static const int kBranchLength = |
| 142 | FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength); |
| 143 | static const int kDirectBranchLength = kBranchLength + kAddressLength; |
| 144 | |
| 145 | # if defined(_MSC_VER) |
| 146 | # define INTERCEPTION_FORMAT(f, a) |
| 147 | # else |
| 148 | # define INTERCEPTION_FORMAT(f, a) __attribute__((format(printf, f, a))) |
| 149 | # endif |
| 150 | |
| 151 | static void (*ErrorReportCallback)(const char *format, ...) |
| 152 | INTERCEPTION_FORMAT(1, 2); |
| 153 | |
| 154 | void SetErrorReportCallback(void (*callback)(const char *format, ...)) { |
| 155 | ErrorReportCallback = callback; |
| 156 | } |
| 157 | |
| 158 | # define ReportError(...) \ |
| 159 | do { \ |
| 160 | if (ErrorReportCallback) \ |
| 161 | ErrorReportCallback(__VA_ARGS__); \ |
| 162 | } while (0) |
| 163 | |
| 164 | static void InterceptionFailed() { |
| 165 | ReportError("interception_win: failed due to an unrecoverable error.\n" ); |
| 166 | // This acts like an abort when no debugger is attached. According to an old |
| 167 | // comment, calling abort() leads to an infinite recursion in CheckFailed. |
| 168 | __debugbreak(); |
| 169 | } |
| 170 | |
| 171 | static bool DistanceIsWithin2Gig(uptr from, uptr target) { |
| 172 | #if SANITIZER_WINDOWS64 |
| 173 | if (from < target) |
| 174 | return target - from <= (uptr)0x7FFFFFFFU; |
| 175 | else |
| 176 | return from - target <= (uptr)0x80000000U; |
| 177 | #else |
| 178 | // In a 32-bit address space, the address calculation will wrap, so this check |
| 179 | // is unnecessary. |
| 180 | return true; |
| 181 | #endif |
| 182 | } |
| 183 | |
| 184 | static uptr GetMmapGranularity() { |
| 185 | SYSTEM_INFO si; |
| 186 | GetSystemInfo(&si); |
| 187 | return si.dwAllocationGranularity; |
| 188 | } |
| 189 | |
| 190 | UNUSED static uptr RoundDownTo(uptr size, uptr boundary) { |
| 191 | return size & ~(boundary - 1); |
| 192 | } |
| 193 | |
| 194 | UNUSED static uptr RoundUpTo(uptr size, uptr boundary) { |
| 195 | return RoundDownTo(size + boundary - 1, boundary); |
| 196 | } |
| 197 | |
| 198 | // FIXME: internal_str* and internal_mem* functions should be moved from the |
| 199 | // ASan sources into interception/. |
| 200 | |
| 201 | static size_t _strlen(const char *str) { |
| 202 | const char* p = str; |
| 203 | while (*p != '\0') ++p; |
| 204 | return p - str; |
| 205 | } |
| 206 | |
| 207 | static char* _strchr(char* str, char c) { |
| 208 | while (*str) { |
| 209 | if (*str == c) |
| 210 | return str; |
| 211 | ++str; |
| 212 | } |
| 213 | return nullptr; |
| 214 | } |
| 215 | |
| 216 | static int _strcmp(const char *s1, const char *s2) { |
| 217 | while (true) { |
| 218 | unsigned c1 = *s1; |
| 219 | unsigned c2 = *s2; |
| 220 | if (c1 != c2) return (c1 < c2) ? -1 : 1; |
| 221 | if (c1 == 0) break; |
| 222 | s1++; |
| 223 | s2++; |
| 224 | } |
| 225 | return 0; |
| 226 | } |
| 227 | |
| 228 | static void _memset(void *p, int value, size_t sz) { |
| 229 | for (size_t i = 0; i < sz; ++i) |
| 230 | ((char*)p)[i] = (char)value; |
| 231 | } |
| 232 | |
| 233 | static void _memcpy(void *dst, void *src, size_t sz) { |
| 234 | char *dst_c = (char*)dst, |
| 235 | *src_c = (char*)src; |
| 236 | for (size_t i = 0; i < sz; ++i) |
| 237 | dst_c[i] = src_c[i]; |
| 238 | } |
| 239 | |
| 240 | static bool ChangeMemoryProtection( |
| 241 | uptr address, uptr size, DWORD *old_protection) { |
| 242 | return ::VirtualProtect((void*)address, size, |
| 243 | PAGE_EXECUTE_READWRITE, |
| 244 | old_protection) != FALSE; |
| 245 | } |
| 246 | |
| 247 | static bool RestoreMemoryProtection( |
| 248 | uptr address, uptr size, DWORD old_protection) { |
| 249 | DWORD unused; |
| 250 | return ::VirtualProtect((void*)address, size, |
| 251 | old_protection, |
| 252 | &unused) != FALSE; |
| 253 | } |
| 254 | |
| 255 | static bool IsMemoryPadding(uptr address, uptr size) { |
| 256 | u8* function = (u8*)address; |
| 257 | for (size_t i = 0; i < size; ++i) |
| 258 | if (function[i] != 0x90 && function[i] != 0xCC) |
| 259 | return false; |
| 260 | return true; |
| 261 | } |
| 262 | |
| 263 | static const u8 kHintNop8Bytes[] = { |
| 264 | 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00 |
| 265 | }; |
| 266 | |
| 267 | template<class T> |
| 268 | static bool FunctionHasPrefix(uptr address, const T &pattern) { |
| 269 | u8* function = (u8*)address - sizeof(pattern); |
| 270 | for (size_t i = 0; i < sizeof(pattern); ++i) |
| 271 | if (function[i] != pattern[i]) |
| 272 | return false; |
| 273 | return true; |
| 274 | } |
| 275 | |
| 276 | static bool FunctionHasPadding(uptr address, uptr size) { |
| 277 | if (IsMemoryPadding(address - size, size)) |
| 278 | return true; |
| 279 | if (size <= sizeof(kHintNop8Bytes) && |
| 280 | FunctionHasPrefix(address, kHintNop8Bytes)) |
| 281 | return true; |
| 282 | return false; |
| 283 | } |
| 284 | |
| 285 | static void WritePadding(uptr from, uptr size) { |
| 286 | _memset((void*)from, 0xCC, (size_t)size); |
| 287 | } |
| 288 | |
| 289 | static void WriteJumpInstruction(uptr from, uptr target) { |
| 290 | if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target)) { |
| 291 | ReportError( |
| 292 | "interception_win: cannot write jmp further than 2GB away, from %p to " |
| 293 | "%p.\n" , |
| 294 | (void *)from, (void *)target); |
| 295 | InterceptionFailed(); |
| 296 | } |
| 297 | ptrdiff_t offset = target - from - kJumpInstructionLength; |
| 298 | *(u8*)from = 0xE9; |
| 299 | *(u32*)(from + 1) = offset; |
| 300 | } |
| 301 | |
| 302 | static void WriteShortJumpInstruction(uptr from, uptr target) { |
| 303 | sptr offset = target - from - kShortJumpInstructionLength; |
| 304 | if (offset < -128 || offset > 127) { |
| 305 | ReportError("interception_win: cannot write short jmp from %p to %p\n" , |
| 306 | (void *)from, (void *)target); |
| 307 | InterceptionFailed(); |
| 308 | } |
| 309 | *(u8*)from = 0xEB; |
| 310 | *(u8*)(from + 1) = (u8)offset; |
| 311 | } |
| 312 | |
| 313 | #if SANITIZER_WINDOWS64 |
| 314 | static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) { |
| 315 | // jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative |
| 316 | // offset. |
| 317 | // The offset is the distance from then end of the jump instruction to the |
| 318 | // memory location containing the targeted address. The displacement is still |
| 319 | // 32-bit in x64, so indirect_target must be located within +/- 2GB range. |
| 320 | int offset = indirect_target - from - kIndirectJumpInstructionLength; |
| 321 | if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength, |
| 322 | indirect_target)) { |
| 323 | ReportError( |
| 324 | "interception_win: cannot write indirect jmp with target further than " |
| 325 | "2GB away, from %p to %p.\n" , |
| 326 | (void *)from, (void *)indirect_target); |
| 327 | InterceptionFailed(); |
| 328 | } |
| 329 | *(u16*)from = 0x25FF; |
| 330 | *(u32*)(from + 2) = offset; |
| 331 | } |
| 332 | #endif |
| 333 | |
| 334 | static void WriteBranch( |
| 335 | uptr from, uptr indirect_target, uptr target) { |
| 336 | #if SANITIZER_WINDOWS64 |
| 337 | WriteIndirectJumpInstruction(from, indirect_target); |
| 338 | *(u64*)indirect_target = target; |
| 339 | #else |
| 340 | (void)indirect_target; |
| 341 | WriteJumpInstruction(from, target); |
| 342 | #endif |
| 343 | } |
| 344 | |
| 345 | static void WriteDirectBranch(uptr from, uptr target) { |
| 346 | #if SANITIZER_WINDOWS64 |
| 347 | // Emit an indirect jump through immediately following bytes: |
| 348 | // jmp [rip + kBranchLength] |
| 349 | // .quad <target> |
| 350 | WriteBranch(from, from + kBranchLength, target); |
| 351 | #else |
| 352 | WriteJumpInstruction(from, target); |
| 353 | #endif |
| 354 | } |
| 355 | |
| 356 | struct TrampolineMemoryRegion { |
| 357 | uptr content; |
| 358 | uptr allocated_size; |
| 359 | uptr max_size; |
| 360 | }; |
| 361 | |
| 362 | UNUSED static const uptr kTrampolineRangeLimit = 1ull << 31; // 2 gig |
| 363 | static const int kMaxTrampolineRegion = 1024; |
| 364 | static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion]; |
| 365 | |
| 366 | static void *AllocateTrampolineRegion(uptr min_addr, uptr max_addr, |
| 367 | uptr func_addr, size_t granularity) { |
| 368 | # if SANITIZER_WINDOWS64 |
| 369 | // Clamp {min,max}_addr to the accessible address space. |
| 370 | SYSTEM_INFO system_info; |
| 371 | ::GetSystemInfo(&system_info); |
| 372 | uptr min_virtual_addr = |
| 373 | RoundUpTo((uptr)system_info.lpMinimumApplicationAddress, granularity); |
| 374 | uptr max_virtual_addr = |
| 375 | RoundDownTo((uptr)system_info.lpMaximumApplicationAddress, granularity); |
| 376 | if (min_addr < min_virtual_addr) |
| 377 | min_addr = min_virtual_addr; |
| 378 | if (max_addr > max_virtual_addr) |
| 379 | max_addr = max_virtual_addr; |
| 380 | |
| 381 | // This loop probes the virtual address space to find free memory in the |
| 382 | // [min_addr, max_addr] interval. The search starts from func_addr and |
| 383 | // proceeds "outwards" towards the interval bounds using two probes, lo_addr |
| 384 | // and hi_addr, for addresses lower/higher than func_addr. At each step, it |
| 385 | // considers the probe closest to func_addr. If that address is not free, the |
| 386 | // probe is advanced (lower or higher depending on the probe) to the next |
| 387 | // memory block and the search continues. |
| 388 | uptr lo_addr = RoundDownTo(func_addr, granularity); |
| 389 | uptr hi_addr = RoundUpTo(func_addr, granularity); |
| 390 | while (lo_addr >= min_addr || hi_addr <= max_addr) { |
| 391 | // Consider the in-range address closest to func_addr. |
| 392 | uptr addr; |
| 393 | if (lo_addr < min_addr) |
| 394 | addr = hi_addr; |
| 395 | else if (hi_addr > max_addr) |
| 396 | addr = lo_addr; |
| 397 | else |
| 398 | addr = (hi_addr - func_addr < func_addr - lo_addr) ? hi_addr : lo_addr; |
| 399 | |
| 400 | MEMORY_BASIC_INFORMATION info; |
| 401 | if (!::VirtualQuery((void *)addr, &info, sizeof(info))) { |
| 402 | ReportError( |
| 403 | "interception_win: VirtualQuery in AllocateTrampolineRegion failed " |
| 404 | "for %p\n" , |
| 405 | (void *)addr); |
| 406 | return nullptr; |
| 407 | } |
| 408 | |
| 409 | // Check whether a region can be allocated at |addr|. |
| 410 | if (info.State == MEM_FREE && info.RegionSize >= granularity) { |
| 411 | void *page = |
| 412 | ::VirtualAlloc((void *)addr, granularity, MEM_RESERVE | MEM_COMMIT, |
| 413 | PAGE_EXECUTE_READWRITE); |
| 414 | if (page == nullptr) |
| 415 | ReportError( |
| 416 | "interception_win: VirtualAlloc in AllocateTrampolineRegion failed " |
| 417 | "for %p\n" , |
| 418 | (void *)addr); |
| 419 | return page; |
| 420 | } |
| 421 | |
| 422 | if (addr == lo_addr) |
| 423 | lo_addr = |
| 424 | RoundDownTo((uptr)info.AllocationBase - granularity, granularity); |
| 425 | if (addr == hi_addr) |
| 426 | hi_addr = |
| 427 | RoundUpTo((uptr)info.BaseAddress + info.RegionSize, granularity); |
| 428 | } |
| 429 | |
| 430 | ReportError( |
| 431 | "interception_win: AllocateTrampolineRegion failed to find free memory; " |
| 432 | "min_addr: %p, max_addr: %p, func_addr: %p, granularity: %zu\n" , |
| 433 | (void *)min_addr, (void *)max_addr, (void *)func_addr, granularity); |
| 434 | return nullptr; |
| 435 | #else |
| 436 | return ::VirtualAlloc(nullptr, |
| 437 | granularity, |
| 438 | MEM_RESERVE | MEM_COMMIT, |
| 439 | PAGE_EXECUTE_READWRITE); |
| 440 | #endif |
| 441 | } |
| 442 | |
| 443 | // Used by unittests to release mapped memory space. |
| 444 | void TestOnlyReleaseTrampolineRegions() { |
| 445 | for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) { |
| 446 | TrampolineMemoryRegion *current = &TrampolineRegions[bucket]; |
| 447 | if (current->content == 0) |
| 448 | return; |
| 449 | ::VirtualFree((void*)current->content, 0, MEM_RELEASE); |
| 450 | current->content = 0; |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | static uptr AllocateMemoryForTrampoline(uptr func_address, size_t size) { |
| 455 | # if SANITIZER_WINDOWS64 |
| 456 | uptr min_addr = func_address - kTrampolineRangeLimit; |
| 457 | uptr max_addr = func_address + kTrampolineRangeLimit - size; |
| 458 | |
| 459 | // Allocate memory within 2GB of the module (DLL or EXE file) so that any |
| 460 | // address within the module can be referenced with PC-relative operands. |
| 461 | // This allows us to not just jump to the trampoline with a PC-relative |
| 462 | // offset, but to relocate any instructions that we copy to the trampoline |
| 463 | // which have references to the original module. If we can't find the base |
| 464 | // address of the module (e.g. if func_address is in mmap'ed memory), just |
| 465 | // stay within 2GB of func_address. |
| 466 | HMODULE module; |
| 467 | if (::GetModuleHandleExW(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | |
| 468 | GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT, |
| 469 | (LPCWSTR)func_address, &module)) { |
| 470 | MODULEINFO module_info; |
| 471 | if (::GetModuleInformation(::GetCurrentProcess(), module, |
| 472 | &module_info, sizeof(module_info))) { |
| 473 | min_addr = (uptr)module_info.lpBaseOfDll + module_info.SizeOfImage - |
| 474 | kTrampolineRangeLimit; |
| 475 | max_addr = (uptr)module_info.lpBaseOfDll + kTrampolineRangeLimit - size; |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | // Check for overflow. |
| 480 | if (min_addr > func_address) |
| 481 | min_addr = 0; |
| 482 | if (max_addr < func_address) |
| 483 | max_addr = ~(uptr)0; |
| 484 | # else |
| 485 | uptr min_addr = 0; |
| 486 | uptr max_addr = ~min_addr; |
| 487 | # endif |
| 488 | |
| 489 | // Find a region within [min_addr,max_addr] with enough space to allocate |
| 490 | // |size| bytes. |
| 491 | TrampolineMemoryRegion *region = nullptr; |
| 492 | for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) { |
| 493 | TrampolineMemoryRegion* current = &TrampolineRegions[bucket]; |
| 494 | if (current->content == 0) { |
| 495 | // No valid region found, allocate a new region. |
| 496 | size_t bucket_size = GetMmapGranularity(); |
| 497 | void *content = AllocateTrampolineRegion(min_addr, max_addr, func_address, |
| 498 | bucket_size); |
| 499 | if (content == nullptr) |
| 500 | return 0U; |
| 501 | |
| 502 | current->content = (uptr)content; |
| 503 | current->allocated_size = 0; |
| 504 | current->max_size = bucket_size; |
| 505 | region = current; |
| 506 | break; |
| 507 | } else if (current->max_size - current->allocated_size > size) { |
| 508 | uptr next_address = current->content + current->allocated_size; |
| 509 | if (next_address < min_addr || next_address > max_addr) |
| 510 | continue; |
| 511 | // The space can be allocated in the current region. |
| 512 | region = current; |
| 513 | break; |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | // Failed to find a region. |
| 518 | if (region == nullptr) |
| 519 | return 0U; |
| 520 | |
| 521 | // Allocate the space in the current region. |
| 522 | uptr allocated_space = region->content + region->allocated_size; |
| 523 | region->allocated_size += size; |
| 524 | WritePadding(allocated_space, size); |
| 525 | |
| 526 | return allocated_space; |
| 527 | } |
| 528 | |
| 529 | // The following prologues cannot be patched because of the short jump |
| 530 | // jumping to the patching region. |
| 531 | |
| 532 | // Short jump patterns below are only for x86_64. |
| 533 | # if SANITIZER_WINDOWS_x64 |
| 534 | // ntdll!wcslen in Win11 |
| 535 | // 488bc1 mov rax,rcx |
| 536 | // 0fb710 movzx edx,word ptr [rax] |
| 537 | // 4883c002 add rax,2 |
| 538 | // 6685d2 test dx,dx |
| 539 | // 75f4 jne -12 |
| 540 | static const u8 kPrologueWithShortJump1[] = { |
| 541 | 0x48, 0x8b, 0xc1, 0x0f, 0xb7, 0x10, 0x48, 0x83, |
| 542 | 0xc0, 0x02, 0x66, 0x85, 0xd2, 0x75, 0xf4, |
| 543 | }; |
| 544 | |
| 545 | // ntdll!strrchr in Win11 |
| 546 | // 4c8bc1 mov r8,rcx |
| 547 | // 8a01 mov al,byte ptr [rcx] |
| 548 | // 48ffc1 inc rcx |
| 549 | // 84c0 test al,al |
| 550 | // 75f7 jne -9 |
| 551 | static const u8 kPrologueWithShortJump2[] = { |
| 552 | 0x4c, 0x8b, 0xc1, 0x8a, 0x01, 0x48, 0xff, 0xc1, |
| 553 | 0x84, 0xc0, 0x75, 0xf7, |
| 554 | }; |
| 555 | #endif |
| 556 | |
| 557 | // Returns 0 on error. |
| 558 | static size_t GetInstructionSize(uptr address, size_t* rel_offset = nullptr) { |
| 559 | if (rel_offset) { |
| 560 | *rel_offset = 0; |
| 561 | } |
| 562 | |
| 563 | #if SANITIZER_ARM64 |
| 564 | // An ARM64 instruction is 4 bytes long. |
| 565 | return 4; |
| 566 | #endif |
| 567 | |
| 568 | # if SANITIZER_WINDOWS_x64 |
| 569 | if (memcmp((u8*)address, kPrologueWithShortJump1, |
| 570 | sizeof(kPrologueWithShortJump1)) == 0 || |
| 571 | memcmp((u8*)address, kPrologueWithShortJump2, |
| 572 | sizeof(kPrologueWithShortJump2)) == 0) { |
| 573 | return 0; |
| 574 | } |
| 575 | #endif |
| 576 | |
| 577 | switch (*(u64*)address) { |
| 578 | case 0x90909090909006EB: // stub: jmp over 6 x nop. |
| 579 | return 8; |
| 580 | } |
| 581 | |
| 582 | switch (*(u8*)address) { |
| 583 | case 0x90: // 90 : nop |
| 584 | case 0xC3: // C3 : ret (for small/empty function interception |
| 585 | case 0xCC: // CC : int 3 i.e. registering weak functions) |
| 586 | return 1; |
| 587 | |
| 588 | case 0x50: // push eax / rax |
| 589 | case 0x51: // push ecx / rcx |
| 590 | case 0x52: // push edx / rdx |
| 591 | case 0x53: // push ebx / rbx |
| 592 | case 0x54: // push esp / rsp |
| 593 | case 0x55: // push ebp / rbp |
| 594 | case 0x56: // push esi / rsi |
| 595 | case 0x57: // push edi / rdi |
| 596 | case 0x5D: // pop ebp / rbp |
| 597 | return 1; |
| 598 | |
| 599 | case 0x6A: // 6A XX = push XX |
| 600 | return 2; |
| 601 | |
| 602 | // This instruction can be encoded with a 16-bit immediate but that is |
| 603 | // incredibly unlikely. |
| 604 | case 0x68: // 68 XX XX XX XX : push imm32 |
| 605 | return 5; |
| 606 | |
| 607 | case 0xb8: // b8 XX XX XX XX : mov eax, XX XX XX XX |
| 608 | case 0xB9: // b9 XX XX XX XX : mov ecx, XX XX XX XX |
| 609 | case 0xBA: // ba XX XX XX XX : mov edx, XX XX XX XX |
| 610 | return 5; |
| 611 | |
| 612 | // Cannot overwrite control-instruction. Return 0 to indicate failure. |
| 613 | case 0xE9: // E9 XX XX XX XX : jmp <label> |
| 614 | case 0xE8: // E8 XX XX XX XX : call <func> |
| 615 | case 0xEB: // EB XX : jmp XX (short jump) |
| 616 | case 0x70: // 7Y YY : jy XX (short conditional jump) |
| 617 | case 0x71: |
| 618 | case 0x72: |
| 619 | case 0x73: |
| 620 | case 0x74: |
| 621 | case 0x75: |
| 622 | case 0x76: |
| 623 | case 0x77: |
| 624 | case 0x78: |
| 625 | case 0x79: |
| 626 | case 0x7A: |
| 627 | case 0x7B: |
| 628 | case 0x7C: |
| 629 | case 0x7D: |
| 630 | case 0x7E: |
| 631 | case 0x7F: |
| 632 | return 0; |
| 633 | } |
| 634 | |
| 635 | switch (*(u16*)(address)) { |
| 636 | case 0x018A: // 8A 01 : mov al, byte ptr [ecx] |
| 637 | case 0xFF8B: // 8B FF : mov edi, edi |
| 638 | case 0xEC8B: // 8B EC : mov ebp, esp |
| 639 | case 0xc889: // 89 C8 : mov eax, ecx |
| 640 | case 0xD189: // 89 D1 : mov ecx, edx |
| 641 | case 0xE589: // 89 E5 : mov ebp, esp |
| 642 | case 0xC18B: // 8B C1 : mov eax, ecx |
| 643 | case 0xC031: // 31 C0 : xor eax, eax |
| 644 | case 0xC931: // 31 C9 : xor ecx, ecx |
| 645 | case 0xD231: // 31 D2 : xor edx, edx |
| 646 | case 0xC033: // 33 C0 : xor eax, eax |
| 647 | case 0xC933: // 33 C9 : xor ecx, ecx |
| 648 | case 0xD233: // 33 D2 : xor edx, edx |
| 649 | case 0x9066: // 66 90 : xchg %ax,%ax (Two-byte NOP) |
| 650 | case 0xDB84: // 84 DB : test bl,bl |
| 651 | case 0xC084: // 84 C0 : test al,al |
| 652 | case 0xC984: // 84 C9 : test cl,cl |
| 653 | case 0xD284: // 84 D2 : test dl,dl |
| 654 | return 2; |
| 655 | |
| 656 | case 0x3980: // 80 39 XX : cmp BYTE PTR [rcx], XX |
| 657 | case 0x4D8B: // 8B 4D XX : mov XX(%ebp), ecx |
| 658 | case 0x558B: // 8B 55 XX : mov XX(%ebp), edx |
| 659 | case 0x758B: // 8B 75 XX : mov XX(%ebp), esp |
| 660 | case 0xE483: // 83 E4 XX : and esp, XX |
| 661 | case 0xEC83: // 83 EC XX : sub esp, XX |
| 662 | case 0xC1F6: // F6 C1 XX : test cl, XX |
| 663 | return 3; |
| 664 | |
| 665 | case 0x89FF: // FF 89 XX XX XX XX : dec dword ptr [ecx + XX XX XX XX] |
| 666 | case 0xEC81: // 81 EC XX XX XX XX : sub esp, XX XX XX XX |
| 667 | return 6; |
| 668 | |
| 669 | // Cannot overwrite control-instruction. Return 0 to indicate failure. |
| 670 | case 0x25FF: // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX] |
| 671 | return 0; |
| 672 | } |
| 673 | |
| 674 | switch (0x00FFFFFF & *(u32 *)address) { |
| 675 | case 0x244C8D: // 8D 4C 24 XX : lea ecx, [esp + XX] |
| 676 | case 0x2474FF: // FF 74 24 XX : push qword ptr [rsp + XX] |
| 677 | return 4; |
| 678 | case 0x24A48D: // 8D A4 24 XX XX XX XX : lea esp, [esp + XX XX XX XX] |
| 679 | return 7; |
| 680 | } |
| 681 | |
| 682 | switch (0x000000FF & *(u32 *)address) { |
| 683 | case 0xc2: // C2 XX XX : ret XX (needed for registering weak functions) |
| 684 | return 3; |
| 685 | } |
| 686 | |
| 687 | # if SANITIZER_WINDOWS_x64 |
| 688 | switch (*(u8*)address) { |
| 689 | case 0xA1: // A1 XX XX XX XX XX XX XX XX : |
| 690 | // movabs eax, dword ptr ds:[XXXXXXXX] |
| 691 | return 9; |
| 692 | case 0xF2: |
| 693 | switch (*(u32 *)(address + 1)) { |
| 694 | case 0x2444110f: // f2 0f 11 44 24 XX movsd QWORD PTR |
| 695 | // [rsp + XX], xmm0 |
| 696 | case 0x244c110f: // f2 0f 11 4c 24 XX movsd QWORD PTR |
| 697 | // [rsp + XX], xmm1 |
| 698 | case 0x2454110f: // f2 0f 11 54 24 XX movsd QWORD PTR |
| 699 | // [rsp + XX], xmm2 |
| 700 | case 0x245c110f: // f2 0f 11 5c 24 XX movsd QWORD PTR |
| 701 | // [rsp + XX], xmm3 |
| 702 | case 0x2464110f: // f2 0f 11 64 24 XX movsd QWORD PTR |
| 703 | // [rsp + XX], xmm4 |
| 704 | return 6; |
| 705 | } |
| 706 | break; |
| 707 | |
| 708 | case 0x83: |
| 709 | const u8 next_byte = *(u8*)(address + 1); |
| 710 | const u8 mod = next_byte >> 6; |
| 711 | const u8 rm = next_byte & 7; |
| 712 | if (mod == 1 && rm == 4) |
| 713 | return 5; // 83 ModR/M SIB Disp8 Imm8 |
| 714 | // add|or|adc|sbb|and|sub|xor|cmp [r+disp8], imm8 |
| 715 | } |
| 716 | |
| 717 | switch (*(u16*)address) { |
| 718 | case 0x5040: // push rax |
| 719 | case 0x5140: // push rcx |
| 720 | case 0x5240: // push rdx |
| 721 | case 0x5340: // push rbx |
| 722 | case 0x5440: // push rsp |
| 723 | case 0x5540: // push rbp |
| 724 | case 0x5640: // push rsi |
| 725 | case 0x5740: // push rdi |
| 726 | case 0x5441: // push r12 |
| 727 | case 0x5541: // push r13 |
| 728 | case 0x5641: // push r14 |
| 729 | case 0x5741: // push r15 |
| 730 | case 0xc084: // test al, al |
| 731 | case 0x018a: // mov al, byte ptr [rcx] |
| 732 | return 2; |
| 733 | |
| 734 | case 0x7E80: // 80 7E YY XX cmp BYTE PTR [rsi+YY], XX |
| 735 | case 0x7D80: // 80 7D YY XX cmp BYTE PTR [rbp+YY], XX |
| 736 | case 0x7A80: // 80 7A YY XX cmp BYTE PTR [rdx+YY], XX |
| 737 | case 0x7880: // 80 78 YY XX cmp BYTE PTR [rax+YY], XX |
| 738 | case 0x7B80: // 80 7B YY XX cmp BYTE PTR [rbx+YY], XX |
| 739 | case 0x7980: // 80 79 YY XX cmp BYTE ptr [rcx+YY], XX |
| 740 | return 4; |
| 741 | |
| 742 | case 0x058A: // 8A 05 XX XX XX XX : mov al, byte ptr [XX XX XX XX] |
| 743 | case 0x058B: // 8B 05 XX XX XX XX : mov eax, dword ptr [XX XX XX XX] |
| 744 | if (rel_offset) |
| 745 | *rel_offset = 2; |
| 746 | FALLTHROUGH; |
| 747 | case 0xB841: // 41 B8 XX XX XX XX : mov r8d, XX XX XX XX |
| 748 | return 6; |
| 749 | |
| 750 | case 0x7E81: // 81 7E YY XX XX XX XX cmp DWORD PTR [rsi+YY], XX XX XX XX |
| 751 | case 0x7D81: // 81 7D YY XX XX XX XX cmp DWORD PTR [rbp+YY], XX XX XX XX |
| 752 | case 0x7A81: // 81 7A YY XX XX XX XX cmp DWORD PTR [rdx+YY], XX XX XX XX |
| 753 | case 0x7881: // 81 78 YY XX XX XX XX cmp DWORD PTR [rax+YY], XX XX XX XX |
| 754 | case 0x7B81: // 81 7B YY XX XX XX XX cmp DWORD PTR [rbx+YY], XX XX XX XX |
| 755 | case 0x7981: // 81 79 YY XX XX XX XX cmp dword ptr [rcx+YY], XX XX XX XX |
| 756 | return 7; |
| 757 | |
| 758 | case 0xb848: // 48 b8 XX XX XX XX XX XX XX XX : |
| 759 | // movabsq XX XX XX XX XX XX XX XX, rax |
| 760 | case 0xba48: // 48 ba XX XX XX XX XX XX XX XX : |
| 761 | // movabsq XX XX XX XX XX XX XX XX, rdx |
| 762 | return 10; |
| 763 | } |
| 764 | |
| 765 | switch (0x00FFFFFF & *(u32 *)address) { |
| 766 | case 0x10b70f: // 0f b7 10 : movzx edx, WORD PTR [rax] |
| 767 | case 0xc00b4d: // 4d 0b c0 : or r8, r8 |
| 768 | case 0xc03345: // 45 33 c0 : xor r8d, r8d |
| 769 | case 0xc08548: // 48 85 c0 : test rax, rax |
| 770 | case 0xc0854d: // 4d 85 c0 : test r8, r8 |
| 771 | case 0xc08b41: // 41 8b c0 : mov eax, r8d |
| 772 | case 0xc0ff48: // 48 ff c0 : inc rax |
| 773 | case 0xc0ff49: // 49 ff c0 : inc r8 |
| 774 | case 0xc18b41: // 41 8b c1 : mov eax, r9d |
| 775 | case 0xc18b48: // 48 8b c1 : mov rax, rcx |
| 776 | case 0xc18b4c: // 4c 8b c1 : mov r8, rcx |
| 777 | case 0xc1ff48: // 48 ff c1 : inc rcx |
| 778 | case 0xc1ff49: // 49 ff c1 : inc r9 |
| 779 | case 0xc28b41: // 41 8b c2 : mov eax, r10d |
| 780 | case 0x01b60f: // 0f b6 01 : movzx eax, BYTE PTR [rcx] |
| 781 | case 0x09b60f: // 0f b6 09 : movzx ecx, BYTE PTR [rcx] |
| 782 | case 0x11b60f: // 0f b6 11 : movzx edx, BYTE PTR [rcx] |
| 783 | case 0xc2b60f: // 0f b6 c2 : movzx eax, dl |
| 784 | case 0xc2ff48: // 48 ff c2 : inc rdx |
| 785 | case 0xc2ff49: // 49 ff c2 : inc r10 |
| 786 | case 0xc38b41: // 41 8b c3 : mov eax, r11d |
| 787 | case 0xc3ff48: // 48 ff c3 : inc rbx |
| 788 | case 0xc3ff49: // 49 ff c3 : inc r11 |
| 789 | case 0xc48b41: // 41 8b c4 : mov eax, r12d |
| 790 | case 0xc48b48: // 48 8b c4 : mov rax, rsp |
| 791 | case 0xc4ff49: // 49 ff c4 : inc r12 |
| 792 | case 0xc5ff49: // 49 ff c5 : inc r13 |
| 793 | case 0xc6ff48: // 48 ff c6 : inc rsi |
| 794 | case 0xc6ff49: // 49 ff c6 : inc r14 |
| 795 | case 0xc7ff48: // 48 ff c7 : inc rdi |
| 796 | case 0xc7ff49: // 49 ff c7 : inc r15 |
| 797 | case 0xc93345: // 45 33 c9 : xor r9d, r9d |
| 798 | case 0xc98548: // 48 85 c9 : test rcx, rcx |
| 799 | case 0xc9854d: // 4d 85 c9 : test r9, r9 |
| 800 | case 0xc98b4c: // 4c 8b c9 : mov r9, rcx |
| 801 | case 0xd12948: // 48 29 d1 : sub rcx, rdx |
| 802 | case 0xca2b48: // 48 2b ca : sub rcx, rdx |
| 803 | case 0xca3b48: // 48 3b ca : cmp rcx, rdx |
| 804 | case 0xd12b48: // 48 2b d1 : sub rdx, rcx |
| 805 | case 0xd18b48: // 48 8b d1 : mov rdx, rcx |
| 806 | case 0xd18b4c: // 4c 8b d1 : mov r10, rcx |
| 807 | case 0xd28548: // 48 85 d2 : test rdx, rdx |
| 808 | case 0xd2854d: // 4d 85 d2 : test r10, r10 |
| 809 | case 0xd28b4c: // 4c 8b d2 : mov r10, rdx |
| 810 | case 0xd2b60f: // 0f b6 d2 : movzx edx, dl |
| 811 | case 0xd2be0f: // 0f be d2 : movsx edx, dl |
| 812 | case 0xd98b4c: // 4c 8b d9 : mov r11, rcx |
| 813 | case 0xd9f748: // 48 f7 d9 : neg rcx |
| 814 | case 0xc03145: // 45 31 c0 : xor r8d,r8d |
| 815 | case 0xc93145: // 45 31 c9 : xor r9d,r9d |
| 816 | case 0xdb3345: // 45 33 db : xor r11d, r11d |
| 817 | case 0xc08445: // 45 84 c0 : test r8b,r8b |
| 818 | case 0xd28445: // 45 84 d2 : test r10b,r10b |
| 819 | case 0xdb8548: // 48 85 db : test rbx, rbx |
| 820 | case 0xdb854d: // 4d 85 db : test r11, r11 |
| 821 | case 0xdc8b4c: // 4c 8b dc : mov r11, rsp |
| 822 | case 0xe48548: // 48 85 e4 : test rsp, rsp |
| 823 | case 0xe4854d: // 4d 85 e4 : test r12, r12 |
| 824 | case 0xc88948: // 48 89 c8 : mov rax,rcx |
| 825 | case 0xcb8948: // 48 89 cb : mov rbx,rcx |
| 826 | case 0xd08948: // 48 89 d0 : mov rax,rdx |
| 827 | case 0xd18948: // 48 89 d1 : mov rcx,rdx |
| 828 | case 0xd38948: // 48 89 d3 : mov rbx,rdx |
| 829 | case 0xe58948: // 48 89 e5 : mov rbp, rsp |
| 830 | case 0xed8548: // 48 85 ed : test rbp, rbp |
| 831 | case 0xc88949: // 49 89 c8 : mov r8, rcx |
| 832 | case 0xc98949: // 49 89 c9 : mov r9, rcx |
| 833 | case 0xca8949: // 49 89 ca : mov r10,rcx |
| 834 | case 0xd08949: // 49 89 d0 : mov r8, rdx |
| 835 | case 0xd18949: // 49 89 d1 : mov r9, rdx |
| 836 | case 0xd28949: // 49 89 d2 : mov r10, rdx |
| 837 | case 0xd38949: // 49 89 d3 : mov r11, rdx |
| 838 | case 0xed854d: // 4d 85 ed : test r13, r13 |
| 839 | case 0xf6854d: // 4d 85 f6 : test r14, r14 |
| 840 | case 0xff854d: // 4d 85 ff : test r15, r15 |
| 841 | return 3; |
| 842 | |
| 843 | case 0x245489: // 89 54 24 XX : mov DWORD PTR[rsp + XX], edx |
| 844 | case 0x428d44: // 44 8d 42 XX : lea r8d , [rdx + XX] |
| 845 | case 0x588948: // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx |
| 846 | case 0xec8348: // 48 83 ec XX : sub rsp, XX |
| 847 | case 0xf88349: // 49 83 f8 XX : cmp r8, XX |
| 848 | case 0x488d49: // 49 8d 48 XX : lea rcx, [...] |
| 849 | case 0x048d4c: // 4c 8d 04 XX : lea r8, [...] |
| 850 | case 0x148d4e: // 4e 8d 14 XX : lea r10, [...] |
| 851 | case 0x398366: // 66 83 39 XX : cmp WORD PTR [rcx], XX |
| 852 | return 4; |
| 853 | |
| 854 | case 0x441F0F: // 0F 1F 44 XX XX : nop DWORD PTR [...] |
| 855 | case 0x246483: // 83 64 24 XX YY : and DWORD PTR [rsp+XX], YY |
| 856 | return 5; |
| 857 | |
| 858 | case 0x788166: // 66 81 78 XX YY YY cmp WORD PTR [rax+XX], YY YY |
| 859 | case 0x798166: // 66 81 79 XX YY YY cmp WORD PTR [rcx+XX], YY YY |
| 860 | case 0x7a8166: // 66 81 7a XX YY YY cmp WORD PTR [rdx+XX], YY YY |
| 861 | case 0x7b8166: // 66 81 7b XX YY YY cmp WORD PTR [rbx+XX], YY YY |
| 862 | case 0x7e8166: // 66 81 7e XX YY YY cmp WORD PTR [rsi+XX], YY YY |
| 863 | case 0x7f8166: // 66 81 7f XX YY YY cmp WORD PTR [rdi+XX], YY YY |
| 864 | return 6; |
| 865 | |
| 866 | case 0xec8148: // 48 81 EC XX XX XX XX : sub rsp, XXXXXXXX |
| 867 | case 0xc0c748: // 48 C7 C0 XX XX XX XX : mov rax, XX XX XX XX |
| 868 | return 7; |
| 869 | |
| 870 | // clang-format off |
| 871 | case 0x788141: // 41 81 78 XX YY YY YY YY : cmp DWORD PTR [r8+YY], XX XX XX XX |
| 872 | case 0x798141: // 41 81 79 XX YY YY YY YY : cmp DWORD PTR [r9+YY], XX XX XX XX |
| 873 | case 0x7a8141: // 41 81 7a XX YY YY YY YY : cmp DWORD PTR [r10+YY], XX XX XX XX |
| 874 | case 0x7b8141: // 41 81 7b XX YY YY YY YY : cmp DWORD PTR [r11+YY], XX XX XX XX |
| 875 | case 0x7d8141: // 41 81 7d XX YY YY YY YY : cmp DWORD PTR [r13+YY], XX XX XX XX |
| 876 | case 0x7e8141: // 41 81 7e XX YY YY YY YY : cmp DWORD PTR [r14+YY], XX XX XX XX |
| 877 | case 0x7f8141: // 41 81 7f YY XX XX XX XX : cmp DWORD PTR [r15+YY], XX XX XX XX |
| 878 | case 0x247c81: // 81 7c 24 YY XX XX XX XX : cmp DWORD PTR [rsp+YY], XX XX XX XX |
| 879 | return 8; |
| 880 | // clang-format on |
| 881 | |
| 882 | case 0x058b48: // 48 8b 05 XX XX XX XX : |
| 883 | // mov rax, QWORD PTR [rip + XXXXXXXX] |
| 884 | case 0x058d48: // 48 8d 05 XX XX XX XX : |
| 885 | // lea rax, QWORD PTR [rip + XXXXXXXX] |
| 886 | case 0x0d8948: // 48 89 0d XX XX XX XX : |
| 887 | // mov QWORD PTR [rip + XXXXXXXX], rcx |
| 888 | case 0x158948: // 48 89 15 XX XX XX XX : |
| 889 | // mov QWORD PTR [rip + XXXXXXXX], rdx |
| 890 | case 0x25ff48: // 48 ff 25 XX XX XX XX : |
| 891 | // rex.W jmp QWORD PTR [rip + XXXXXXXX] |
| 892 | case 0x158D4C: // 4c 8d 15 XX XX XX XX : lea r10, [rip + XX] |
| 893 | // Instructions having offset relative to 'rip' need offset adjustment. |
| 894 | if (rel_offset) |
| 895 | *rel_offset = 3; |
| 896 | return 7; |
| 897 | |
| 898 | case 0x2444c7: // C7 44 24 XX YY YY YY YY |
| 899 | // mov dword ptr [rsp + XX], YYYYYYYY |
| 900 | return 8; |
| 901 | |
| 902 | case 0x7c8141: // 41 81 7c ZZ YY XX XX XX XX |
| 903 | // cmp DWORD PTR [reg+reg*n+YY], XX XX XX XX |
| 904 | return 9; |
| 905 | } |
| 906 | |
| 907 | switch (*(u32*)(address)) { |
| 908 | case 0x01b60f44: // 44 0f b6 01 : movzx r8d, BYTE PTR [rcx] |
| 909 | case 0x09b60f44: // 44 0f b6 09 : movzx r9d, BYTE PTR [rcx] |
| 910 | case 0x0ab60f44: // 44 0f b6 0a : movzx r8d, BYTE PTR [rdx] |
| 911 | case 0x11b60f44: // 44 0f b6 11 : movzx r10d, BYTE PTR [rcx] |
| 912 | case 0x1ab60f44: // 44 0f b6 1a : movzx r11d, BYTE PTR [rdx] |
| 913 | return 4; |
| 914 | case 0x24448b48: // 48 8b 44 24 XX : mov rax, QWORD ptr [rsp + XX] |
| 915 | case 0x246c8948: // 48 89 6C 24 XX : mov QWORD ptr [rsp + XX], rbp |
| 916 | case 0x245c8948: // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx |
| 917 | case 0x24748948: // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi |
| 918 | case 0x247c8948: // 48 89 7c 24 XX : mov QWORD PTR [rsp + XX], rdi |
| 919 | case 0x244C8948: // 48 89 4C 24 XX : mov QWORD PTR [rsp + XX], rcx |
| 920 | case 0x24548948: // 48 89 54 24 XX : mov QWORD PTR [rsp + XX], rdx |
| 921 | case 0x244c894c: // 4c 89 4c 24 XX : mov QWORD PTR [rsp + XX], r9 |
| 922 | case 0x2444894c: // 4c 89 44 24 XX : mov QWORD PTR [rsp + XX], r8 |
| 923 | case 0x244c8944: // 44 89 4c 24 XX mov DWORD PTR [rsp + XX], r9d |
| 924 | case 0x24448944: // 44 89 44 24 XX mov DWORD PTR [rsp + XX], r8d |
| 925 | case 0x246c8d48: // 48 8d 6c 24 XX : lea rbp, [rsp + XX] |
| 926 | return 5; |
| 927 | case 0x24648348: // 48 83 64 24 XX YY : and QWORD PTR [rsp + XX], YY |
| 928 | return 6; |
| 929 | case 0x24A48D48: // 48 8D A4 24 XX XX XX XX : lea rsp, [rsp + XX XX XX XX] |
| 930 | return 8; |
| 931 | } |
| 932 | |
| 933 | switch (0xFFFFFFFFFFULL & *(u64 *)(address)) { |
| 934 | case 0xC07E0F4866: // 66 48 0F 7E C0 : movq rax, xmm0 |
| 935 | return 5; |
| 936 | } |
| 937 | |
| 938 | #else |
| 939 | |
| 940 | switch (*(u8*)address) { |
| 941 | case 0xA1: // A1 XX XX XX XX : mov eax, dword ptr ds:[XXXXXXXX] |
| 942 | return 5; |
| 943 | } |
| 944 | switch (*(u16*)address) { |
| 945 | case 0x458B: // 8B 45 XX : mov eax, dword ptr [ebp + XX] |
| 946 | case 0x5D8B: // 8B 5D XX : mov ebx, dword ptr [ebp + XX] |
| 947 | case 0x7D8B: // 8B 7D XX : mov edi, dword ptr [ebp + XX] |
| 948 | case 0x758B: // 8B 75 XX : mov esi, dword ptr [ebp + XX] |
| 949 | case 0x75FF: // FF 75 XX : push dword ptr [ebp + XX] |
| 950 | return 3; |
| 951 | case 0xC1F7: // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX |
| 952 | return 6; |
| 953 | case 0x3D83: // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX |
| 954 | return 7; |
| 955 | case 0x7D83: // 83 7D XX YY : cmp dword ptr [ebp + XX], YY |
| 956 | return 4; |
| 957 | } |
| 958 | |
| 959 | switch (0x00FFFFFF & *(u32*)address) { |
| 960 | case 0x24448A: // 8A 44 24 XX : mov eal, dword ptr [esp + XX] |
| 961 | case 0x24448B: // 8B 44 24 XX : mov eax, dword ptr [esp + XX] |
| 962 | case 0x244C8B: // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX] |
| 963 | case 0x24548B: // 8B 54 24 XX : mov edx, dword ptr [esp + XX] |
| 964 | case 0x245C8B: // 8B 5C 24 XX : mov ebx, dword ptr [esp + XX] |
| 965 | case 0x246C8B: // 8B 6C 24 XX : mov ebp, dword ptr [esp + XX] |
| 966 | case 0x24748B: // 8B 74 24 XX : mov esi, dword ptr [esp + XX] |
| 967 | case 0x247C8B: // 8B 7C 24 XX : mov edi, dword ptr [esp + XX] |
| 968 | return 4; |
| 969 | } |
| 970 | |
| 971 | switch (*(u32*)address) { |
| 972 | case 0x2444B60F: // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX] |
| 973 | return 5; |
| 974 | } |
| 975 | #endif |
| 976 | |
| 977 | // Unknown instruction! This might happen when we add a new interceptor, use |
| 978 | // a new compiler version, or if Windows changed how some functions are |
| 979 | // compiled. In either case, we print the address and 8 bytes of instructions |
| 980 | // to notify the user about the error and to help identify the unknown |
| 981 | // instruction. Don't treat this as a fatal error, though we can break the |
| 982 | // debugger if one has been attached. |
| 983 | u8 *bytes = (u8 *)address; |
| 984 | ReportError( |
| 985 | "interception_win: unhandled instruction at %p: %02x %02x %02x %02x %02x " |
| 986 | "%02x %02x %02x\n" , |
| 987 | (void *)address, bytes[0], bytes[1], bytes[2], bytes[3], bytes[4], |
| 988 | bytes[5], bytes[6], bytes[7]); |
| 989 | if (::IsDebuggerPresent()) |
| 990 | __debugbreak(); |
| 991 | return 0; |
| 992 | } |
| 993 | |
| 994 | size_t TestOnlyGetInstructionSize(uptr address, size_t *rel_offset) { |
| 995 | return GetInstructionSize(address, rel_offset); |
| 996 | } |
| 997 | |
| 998 | // Returns 0 on error. |
| 999 | static size_t RoundUpToInstrBoundary(size_t size, uptr address) { |
| 1000 | size_t cursor = 0; |
| 1001 | while (cursor < size) { |
| 1002 | size_t instruction_size = GetInstructionSize(address + cursor); |
| 1003 | if (!instruction_size) |
| 1004 | return 0; |
| 1005 | cursor += instruction_size; |
| 1006 | } |
| 1007 | return cursor; |
| 1008 | } |
| 1009 | |
| 1010 | static bool CopyInstructions(uptr to, uptr from, size_t size) { |
| 1011 | size_t cursor = 0; |
| 1012 | while (cursor != size) { |
| 1013 | size_t rel_offset = 0; |
| 1014 | size_t instruction_size = GetInstructionSize(from + cursor, &rel_offset); |
| 1015 | if (!instruction_size) |
| 1016 | return false; |
| 1017 | _memcpy((void *)(to + cursor), (void *)(from + cursor), |
| 1018 | (size_t)instruction_size); |
| 1019 | if (rel_offset) { |
| 1020 | # if SANITIZER_WINDOWS64 |
| 1021 | // we want to make sure that the new relative offset still fits in 32-bits |
| 1022 | // this will be untrue if relocated_offset \notin [-2**31, 2**31) |
| 1023 | s64 delta = to - from; |
| 1024 | s64 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta; |
| 1025 | if (-0x8000'0000ll > relocated_offset || |
| 1026 | relocated_offset > 0x7FFF'FFFFll) { |
| 1027 | ReportError( |
| 1028 | "interception_win: CopyInstructions relocated_offset %lld outside " |
| 1029 | "32-bit range\n" , |
| 1030 | (long long)relocated_offset); |
| 1031 | return false; |
| 1032 | } |
| 1033 | # else |
| 1034 | // on 32-bit, the relative offset will always be correct |
| 1035 | s32 delta = to - from; |
| 1036 | s32 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta; |
| 1037 | # endif |
| 1038 | *(s32 *)(to + cursor + rel_offset) = relocated_offset; |
| 1039 | } |
| 1040 | cursor += instruction_size; |
| 1041 | } |
| 1042 | return true; |
| 1043 | } |
| 1044 | |
| 1045 | |
| 1046 | #if !SANITIZER_WINDOWS64 |
| 1047 | bool OverrideFunctionWithDetour( |
| 1048 | uptr old_func, uptr new_func, uptr *orig_old_func) { |
| 1049 | const int kDetourHeaderLen = 5; |
| 1050 | const u16 kDetourInstruction = 0xFF8B; |
| 1051 | |
| 1052 | uptr header = (uptr)old_func - kDetourHeaderLen; |
| 1053 | uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength; |
| 1054 | |
| 1055 | // Validate that the function is hookable. |
| 1056 | if (*(u16*)old_func != kDetourInstruction || |
| 1057 | !IsMemoryPadding(header, kDetourHeaderLen)) |
| 1058 | return false; |
| 1059 | |
| 1060 | // Change memory protection to writable. |
| 1061 | DWORD protection = 0; |
| 1062 | if (!ChangeMemoryProtection(header, patch_length, &protection)) |
| 1063 | return false; |
| 1064 | |
| 1065 | // Write a relative jump to the redirected function. |
| 1066 | WriteJumpInstruction(header, new_func); |
| 1067 | |
| 1068 | // Write the short jump to the function prefix. |
| 1069 | WriteShortJumpInstruction(old_func, header); |
| 1070 | |
| 1071 | // Restore previous memory protection. |
| 1072 | if (!RestoreMemoryProtection(header, patch_length, protection)) |
| 1073 | return false; |
| 1074 | |
| 1075 | if (orig_old_func) |
| 1076 | *orig_old_func = old_func + kShortJumpInstructionLength; |
| 1077 | |
| 1078 | return true; |
| 1079 | } |
| 1080 | #endif |
| 1081 | |
| 1082 | bool OverrideFunctionWithRedirectJump( |
| 1083 | uptr old_func, uptr new_func, uptr *orig_old_func) { |
| 1084 | // Check whether the first instruction is a relative jump. |
| 1085 | if (*(u8*)old_func != 0xE9) |
| 1086 | return false; |
| 1087 | |
| 1088 | if (orig_old_func) { |
| 1089 | sptr relative_offset = *(s32 *)(old_func + 1); |
| 1090 | uptr absolute_target = old_func + relative_offset + kJumpInstructionLength; |
| 1091 | *orig_old_func = absolute_target; |
| 1092 | } |
| 1093 | |
| 1094 | #if SANITIZER_WINDOWS64 |
| 1095 | // If needed, get memory space for a trampoline jump. |
| 1096 | uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength); |
| 1097 | if (!trampoline) |
| 1098 | return false; |
| 1099 | WriteDirectBranch(trampoline, new_func); |
| 1100 | #endif |
| 1101 | |
| 1102 | // Change memory protection to writable. |
| 1103 | DWORD protection = 0; |
| 1104 | if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection)) |
| 1105 | return false; |
| 1106 | |
| 1107 | // Write a relative jump to the redirected function. |
| 1108 | WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline)); |
| 1109 | |
| 1110 | // Restore previous memory protection. |
| 1111 | if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection)) |
| 1112 | return false; |
| 1113 | |
| 1114 | return true; |
| 1115 | } |
| 1116 | |
| 1117 | bool OverrideFunctionWithHotPatch( |
| 1118 | uptr old_func, uptr new_func, uptr *orig_old_func) { |
| 1119 | const int kHotPatchHeaderLen = kBranchLength; |
| 1120 | |
| 1121 | uptr header = (uptr)old_func - kHotPatchHeaderLen; |
| 1122 | uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength; |
| 1123 | |
| 1124 | // Validate that the function is hot patchable. |
| 1125 | size_t instruction_size = GetInstructionSize(old_func); |
| 1126 | if (instruction_size < kShortJumpInstructionLength || |
| 1127 | !FunctionHasPadding(old_func, kHotPatchHeaderLen)) |
| 1128 | return false; |
| 1129 | |
| 1130 | if (orig_old_func) { |
| 1131 | // Put the needed instructions into the trampoline bytes. |
| 1132 | uptr trampoline_length = instruction_size + kDirectBranchLength; |
| 1133 | uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length); |
| 1134 | if (!trampoline) |
| 1135 | return false; |
| 1136 | if (!CopyInstructions(trampoline, old_func, instruction_size)) |
| 1137 | return false; |
| 1138 | WriteDirectBranch(trampoline + instruction_size, |
| 1139 | old_func + instruction_size); |
| 1140 | *orig_old_func = trampoline; |
| 1141 | } |
| 1142 | |
| 1143 | // If needed, get memory space for indirect address. |
| 1144 | uptr indirect_address = 0; |
| 1145 | #if SANITIZER_WINDOWS64 |
| 1146 | indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength); |
| 1147 | if (!indirect_address) |
| 1148 | return false; |
| 1149 | #endif |
| 1150 | |
| 1151 | // Change memory protection to writable. |
| 1152 | DWORD protection = 0; |
| 1153 | if (!ChangeMemoryProtection(header, patch_length, &protection)) |
| 1154 | return false; |
| 1155 | |
| 1156 | // Write jumps to the redirected function. |
| 1157 | WriteBranch(header, indirect_address, new_func); |
| 1158 | WriteShortJumpInstruction(old_func, header); |
| 1159 | |
| 1160 | // Restore previous memory protection. |
| 1161 | if (!RestoreMemoryProtection(header, patch_length, protection)) |
| 1162 | return false; |
| 1163 | |
| 1164 | return true; |
| 1165 | } |
| 1166 | |
| 1167 | bool OverrideFunctionWithTrampoline( |
| 1168 | uptr old_func, uptr new_func, uptr *orig_old_func) { |
| 1169 | |
| 1170 | size_t instructions_length = kBranchLength; |
| 1171 | size_t padding_length = 0; |
| 1172 | uptr indirect_address = 0; |
| 1173 | |
| 1174 | if (orig_old_func) { |
| 1175 | // Find out the number of bytes of the instructions we need to copy |
| 1176 | // to the trampoline. |
| 1177 | instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func); |
| 1178 | if (!instructions_length) |
| 1179 | return false; |
| 1180 | |
| 1181 | // Put the needed instructions into the trampoline bytes. |
| 1182 | uptr trampoline_length = instructions_length + kDirectBranchLength; |
| 1183 | uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length); |
| 1184 | if (!trampoline) |
| 1185 | return false; |
| 1186 | if (!CopyInstructions(trampoline, old_func, instructions_length)) |
| 1187 | return false; |
| 1188 | WriteDirectBranch(trampoline + instructions_length, |
| 1189 | old_func + instructions_length); |
| 1190 | *orig_old_func = trampoline; |
| 1191 | } |
| 1192 | |
| 1193 | #if SANITIZER_WINDOWS64 |
| 1194 | // Check if the targeted address can be encoded in the function padding. |
| 1195 | // Otherwise, allocate it in the trampoline region. |
| 1196 | if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) { |
| 1197 | indirect_address = old_func - kAddressLength; |
| 1198 | padding_length = kAddressLength; |
| 1199 | } else { |
| 1200 | indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength); |
| 1201 | if (!indirect_address) |
| 1202 | return false; |
| 1203 | } |
| 1204 | #endif |
| 1205 | |
| 1206 | // Change memory protection to writable. |
| 1207 | uptr patch_address = old_func - padding_length; |
| 1208 | uptr patch_length = instructions_length + padding_length; |
| 1209 | DWORD protection = 0; |
| 1210 | if (!ChangeMemoryProtection(patch_address, patch_length, &protection)) |
| 1211 | return false; |
| 1212 | |
| 1213 | // Patch the original function. |
| 1214 | WriteBranch(old_func, indirect_address, new_func); |
| 1215 | |
| 1216 | // Restore previous memory protection. |
| 1217 | if (!RestoreMemoryProtection(patch_address, patch_length, protection)) |
| 1218 | return false; |
| 1219 | |
| 1220 | return true; |
| 1221 | } |
| 1222 | |
| 1223 | bool OverrideFunction( |
| 1224 | uptr old_func, uptr new_func, uptr *orig_old_func) { |
| 1225 | #if !SANITIZER_WINDOWS64 |
| 1226 | if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func)) |
| 1227 | return true; |
| 1228 | #endif |
| 1229 | if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func)) |
| 1230 | return true; |
| 1231 | if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func)) |
| 1232 | return true; |
| 1233 | if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func)) |
| 1234 | return true; |
| 1235 | return false; |
| 1236 | } |
| 1237 | |
| 1238 | static void **InterestingDLLsAvailable() { |
| 1239 | static const char *InterestingDLLs[] = { |
| 1240 | "kernel32.dll" , |
| 1241 | "msvcr100d.dll" , // VS2010 |
| 1242 | "msvcr110d.dll" , // VS2012 |
| 1243 | "msvcr120d.dll" , // VS2013 |
| 1244 | "vcruntime140d.dll" , // VS2015 |
| 1245 | "ucrtbased.dll" , // Universal CRT |
| 1246 | "msvcr100.dll" , // VS2010 |
| 1247 | "msvcr110.dll" , // VS2012 |
| 1248 | "msvcr120.dll" , // VS2013 |
| 1249 | "vcruntime140.dll" , // VS2015 |
| 1250 | "ucrtbase.dll" , // Universal CRT |
| 1251 | # if (defined(__MINGW32__) && defined(__i386__)) |
| 1252 | "libc++.dll" , // libc++ |
| 1253 | "libunwind.dll" , // libunwind |
| 1254 | # endif |
| 1255 | // NTDLL must go last as it gets special treatment in OverrideFunction. |
| 1256 | "ntdll.dll" , |
| 1257 | NULL |
| 1258 | }; |
| 1259 | static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 }; |
| 1260 | if (!result[0]) { |
| 1261 | for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) { |
| 1262 | if (HMODULE h = GetModuleHandleA(InterestingDLLs[i])) |
| 1263 | result[j++] = (void *)h; |
| 1264 | } |
| 1265 | } |
| 1266 | return &result[0]; |
| 1267 | } |
| 1268 | |
| 1269 | namespace { |
| 1270 | // Utility for reading loaded PE images. |
| 1271 | template <typename T> class RVAPtr { |
| 1272 | public: |
| 1273 | RVAPtr(void *module, uptr rva) |
| 1274 | : ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {} |
| 1275 | operator T *() { return ptr_; } |
| 1276 | T *operator->() { return ptr_; } |
| 1277 | T *operator++() { return ++ptr_; } |
| 1278 | |
| 1279 | private: |
| 1280 | T *ptr_; |
| 1281 | }; |
| 1282 | } // namespace |
| 1283 | |
| 1284 | // Internal implementation of GetProcAddress. At least since Windows 8, |
| 1285 | // GetProcAddress appears to initialize DLLs before returning function pointers |
| 1286 | // into them. This is problematic for the sanitizers, because they typically |
| 1287 | // want to intercept malloc *before* MSVCRT initializes. Our internal |
| 1288 | // implementation walks the export list manually without doing initialization. |
| 1289 | uptr InternalGetProcAddress(void *module, const char *func_name) { |
| 1290 | // Check that the module header is full and present. |
| 1291 | RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0); |
| 1292 | RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew); |
| 1293 | if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ" |
| 1294 | headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0" |
| 1295 | headers->FileHeader.SizeOfOptionalHeader < |
| 1296 | sizeof(IMAGE_OPTIONAL_HEADER)) { |
| 1297 | return 0; |
| 1298 | } |
| 1299 | |
| 1300 | IMAGE_DATA_DIRECTORY *export_directory = |
| 1301 | &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]; |
| 1302 | if (export_directory->Size == 0) |
| 1303 | return 0; |
| 1304 | RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module, |
| 1305 | export_directory->VirtualAddress); |
| 1306 | RVAPtr<DWORD> functions(module, exports->AddressOfFunctions); |
| 1307 | RVAPtr<DWORD> names(module, exports->AddressOfNames); |
| 1308 | RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals); |
| 1309 | |
| 1310 | for (DWORD i = 0; i < exports->NumberOfNames; i++) { |
| 1311 | RVAPtr<char> name(module, names[i]); |
| 1312 | if (!_strcmp(func_name, name)) { |
| 1313 | DWORD index = ordinals[i]; |
| 1314 | RVAPtr<char> func(module, functions[index]); |
| 1315 | |
| 1316 | // Handle forwarded functions. |
| 1317 | DWORD offset = functions[index]; |
| 1318 | if (offset >= export_directory->VirtualAddress && |
| 1319 | offset < export_directory->VirtualAddress + export_directory->Size) { |
| 1320 | // An entry for a forwarded function is a string with the following |
| 1321 | // format: "<module> . <function_name>" that is stored into the |
| 1322 | // exported directory. |
| 1323 | char function_name[256]; |
| 1324 | size_t funtion_name_length = _strlen(func); |
| 1325 | if (funtion_name_length >= sizeof(function_name) - 1) { |
| 1326 | ReportError("interception_win: func too long: '%s'\n" , (char *)func); |
| 1327 | InterceptionFailed(); |
| 1328 | } |
| 1329 | |
| 1330 | _memcpy(function_name, func, funtion_name_length); |
| 1331 | function_name[funtion_name_length] = '\0'; |
| 1332 | char* separator = _strchr(function_name, '.'); |
| 1333 | if (!separator) { |
| 1334 | ReportError("interception_win: no separator in '%s'\n" , |
| 1335 | function_name); |
| 1336 | InterceptionFailed(); |
| 1337 | } |
| 1338 | *separator = '\0'; |
| 1339 | |
| 1340 | void* redirected_module = GetModuleHandleA(function_name); |
| 1341 | if (!redirected_module) { |
| 1342 | ReportError("interception_win: GetModuleHandleA failed for '%s'\n" , |
| 1343 | function_name); |
| 1344 | InterceptionFailed(); |
| 1345 | } |
| 1346 | return InternalGetProcAddress(redirected_module, separator + 1); |
| 1347 | } |
| 1348 | |
| 1349 | return (uptr)(char *)func; |
| 1350 | } |
| 1351 | } |
| 1352 | |
| 1353 | return 0; |
| 1354 | } |
| 1355 | |
| 1356 | bool OverrideFunction( |
| 1357 | const char *func_name, uptr new_func, uptr *orig_old_func) { |
| 1358 | static const char *kNtDllIgnore[] = { |
| 1359 | "memcmp" , "memcpy" , "memmove" , "memset" |
| 1360 | }; |
| 1361 | |
| 1362 | bool hooked = false; |
| 1363 | void **DLLs = InterestingDLLsAvailable(); |
| 1364 | for (size_t i = 0; DLLs[i]; ++i) { |
| 1365 | if (DLLs[i + 1] == nullptr) { |
| 1366 | // This is the last DLL, i.e. NTDLL. It exports some functions that |
| 1367 | // we only want to override in the CRT. |
| 1368 | for (const char *ignored : kNtDllIgnore) { |
| 1369 | if (_strcmp(func_name, ignored) == 0) |
| 1370 | return hooked; |
| 1371 | } |
| 1372 | } |
| 1373 | |
| 1374 | uptr func_addr = InternalGetProcAddress(DLLs[i], func_name); |
| 1375 | if (func_addr && |
| 1376 | OverrideFunction(func_addr, new_func, orig_old_func)) { |
| 1377 | hooked = true; |
| 1378 | } |
| 1379 | } |
| 1380 | return hooked; |
| 1381 | } |
| 1382 | |
| 1383 | bool OverrideImportedFunction(const char *module_to_patch, |
| 1384 | const char *imported_module, |
| 1385 | const char *function_name, uptr new_function, |
| 1386 | uptr *orig_old_func) { |
| 1387 | HMODULE module = GetModuleHandleA(module_to_patch); |
| 1388 | if (!module) |
| 1389 | return false; |
| 1390 | |
| 1391 | // Check that the module header is full and present. |
| 1392 | RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0); |
| 1393 | RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew); |
| 1394 | if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ" |
| 1395 | headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0" |
| 1396 | headers->FileHeader.SizeOfOptionalHeader < |
| 1397 | sizeof(IMAGE_OPTIONAL_HEADER)) { |
| 1398 | return false; |
| 1399 | } |
| 1400 | |
| 1401 | IMAGE_DATA_DIRECTORY *import_directory = |
| 1402 | &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT]; |
| 1403 | |
| 1404 | // Iterate the list of imported DLLs. FirstThunk will be null for the last |
| 1405 | // entry. |
| 1406 | RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module, |
| 1407 | import_directory->VirtualAddress); |
| 1408 | for (; imports->FirstThunk != 0; ++imports) { |
| 1409 | RVAPtr<const char> modname(module, imports->Name); |
| 1410 | if (_stricmp(&*modname, imported_module) == 0) |
| 1411 | break; |
| 1412 | } |
| 1413 | if (imports->FirstThunk == 0) |
| 1414 | return false; |
| 1415 | |
| 1416 | // We have two parallel arrays: the import address table (IAT) and the table |
| 1417 | // of names. They start out containing the same data, but the loader rewrites |
| 1418 | // the IAT to hold imported addresses and leaves the name table in |
| 1419 | // OriginalFirstThunk alone. |
| 1420 | RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk); |
| 1421 | RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk); |
| 1422 | for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) { |
| 1423 | if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) { |
| 1424 | RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name( |
| 1425 | module, name_table->u1.ForwarderString); |
| 1426 | const char *funcname = &import_by_name->Name[0]; |
| 1427 | if (_strcmp(funcname, function_name) == 0) |
| 1428 | break; |
| 1429 | } |
| 1430 | } |
| 1431 | if (name_table->u1.Ordinal == 0) |
| 1432 | return false; |
| 1433 | |
| 1434 | // Now we have the correct IAT entry. Do the swap. We have to make the page |
| 1435 | // read/write first. |
| 1436 | if (orig_old_func) |
| 1437 | *orig_old_func = iat->u1.AddressOfData; |
| 1438 | DWORD old_prot, unused_prot; |
| 1439 | if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE, |
| 1440 | &old_prot)) |
| 1441 | return false; |
| 1442 | iat->u1.AddressOfData = new_function; |
| 1443 | if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot)) |
| 1444 | return false; // Not clear if this failure bothers us. |
| 1445 | return true; |
| 1446 | } |
| 1447 | |
| 1448 | } // namespace __interception |
| 1449 | |
| 1450 | #endif // SANITIZER_WINDOWS |
| 1451 | |