| 1 | //===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Part of the Sanitizer Allocator. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | #ifndef SANITIZER_ALLOCATOR_H |
| 13 | #error This file must be included inside sanitizer_allocator.h |
| 14 | #endif |
| 15 | |
| 16 | template<class SizeClassAllocator> struct SizeClassAllocator64LocalCache; |
| 17 | |
| 18 | // SizeClassAllocator64 -- allocator for 64-bit address space. |
| 19 | // The template parameter Params is a class containing the actual parameters. |
| 20 | // |
| 21 | // Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg. |
| 22 | // If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically by mmap. |
| 23 | // Otherwise SpaceBeg=kSpaceBeg (fixed address). |
| 24 | // kSpaceSize is a power of two. |
| 25 | // At the beginning the entire space is mprotect-ed, then small parts of it |
| 26 | // are mapped on demand. |
| 27 | // |
| 28 | // Region: a part of Space dedicated to a single size class. |
| 29 | // There are kNumClasses Regions of equal size. |
| 30 | // |
| 31 | // UserChunk: a piece of memory returned to user. |
| 32 | // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk. |
| 33 | |
| 34 | // FreeArray is an array free-d chunks (stored as 4-byte offsets) |
| 35 | // |
| 36 | // A Region looks like this: |
| 37 | // UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray |
| 38 | |
| 39 | struct SizeClassAllocator64FlagMasks { // Bit masks. |
| 40 | enum { |
| 41 | kRandomShuffleChunks = 1, |
| 42 | }; |
| 43 | }; |
| 44 | |
| 45 | template <typename Allocator> |
| 46 | class MemoryMapper { |
| 47 | public: |
| 48 | typedef typename Allocator::CompactPtrT CompactPtrT; |
| 49 | |
| 50 | explicit MemoryMapper(const Allocator &allocator) : allocator_(allocator) {} |
| 51 | |
| 52 | bool GetAndResetStats(uptr &ranges, uptr &bytes) { |
| 53 | ranges = released_ranges_count_; |
| 54 | released_ranges_count_ = 0; |
| 55 | bytes = released_bytes_; |
| 56 | released_bytes_ = 0; |
| 57 | return ranges != 0; |
| 58 | } |
| 59 | |
| 60 | u64 *MapPackedCounterArrayBuffer(uptr count) { |
| 61 | buffer_.clear(); |
| 62 | buffer_.resize(new_size: count); |
| 63 | return buffer_.data(); |
| 64 | } |
| 65 | |
| 66 | // Releases [from, to) range of pages back to OS. |
| 67 | void (uptr class_id, CompactPtrT from, CompactPtrT to) { |
| 68 | const uptr region_base = allocator_.GetRegionBeginBySizeClass(class_id); |
| 69 | const uptr from_page = allocator_.CompactPtrToPointer(region_base, from); |
| 70 | const uptr to_page = allocator_.CompactPtrToPointer(region_base, to); |
| 71 | ReleaseMemoryPagesToOS(beg: from_page, end: to_page); |
| 72 | released_ranges_count_++; |
| 73 | released_bytes_ += to_page - from_page; |
| 74 | } |
| 75 | |
| 76 | private: |
| 77 | const Allocator &allocator_; |
| 78 | uptr released_ranges_count_ = 0; |
| 79 | uptr released_bytes_ = 0; |
| 80 | InternalMmapVector<u64> buffer_; |
| 81 | }; |
| 82 | |
| 83 | template <class Params> |
| 84 | class SizeClassAllocator64 { |
| 85 | public: |
| 86 | using AddressSpaceView = typename Params::AddressSpaceView; |
| 87 | static const uptr kSpaceBeg = Params::kSpaceBeg; |
| 88 | static const uptr kSpaceSize = Params::kSpaceSize; |
| 89 | static const uptr kMetadataSize = Params::kMetadataSize; |
| 90 | typedef typename Params::SizeClassMap SizeClassMap; |
| 91 | typedef typename Params::MapUnmapCallback MapUnmapCallback; |
| 92 | |
| 93 | static const bool kRandomShuffleChunks = |
| 94 | Params::kFlags & SizeClassAllocator64FlagMasks::kRandomShuffleChunks; |
| 95 | |
| 96 | typedef SizeClassAllocator64<Params> ThisT; |
| 97 | typedef SizeClassAllocator64LocalCache<ThisT> AllocatorCache; |
| 98 | typedef MemoryMapper<ThisT> MemoryMapperT; |
| 99 | |
| 100 | // When we know the size class (the region base) we can represent a pointer |
| 101 | // as a 4-byte integer (offset from the region start shifted right by 4). |
| 102 | typedef u32 CompactPtrT; |
| 103 | static const uptr kCompactPtrScale = 4; |
| 104 | CompactPtrT PointerToCompactPtr(uptr base, uptr ptr) const { |
| 105 | return static_cast<CompactPtrT>((ptr - base) >> kCompactPtrScale); |
| 106 | } |
| 107 | uptr CompactPtrToPointer(uptr base, CompactPtrT ptr32) const { |
| 108 | return base + (static_cast<uptr>(ptr32) << kCompactPtrScale); |
| 109 | } |
| 110 | |
| 111 | // If heap_start is nonzero, assumes kSpaceSize bytes are already mapped R/W |
| 112 | // at heap_start and places the heap there. This mode requires kSpaceBeg == |
| 113 | // ~(uptr)0. |
| 114 | void Init(s32 release_to_os_interval_ms, uptr heap_start = 0) { |
| 115 | uptr TotalSpaceSize = kSpaceSize + AdditionalSize(); |
| 116 | PremappedHeap = heap_start != 0; |
| 117 | if (PremappedHeap) { |
| 118 | CHECK(!kUsingConstantSpaceBeg); |
| 119 | NonConstSpaceBeg = heap_start; |
| 120 | uptr RegionInfoSize = AdditionalSize(); |
| 121 | RegionInfoSpace = |
| 122 | address_range.Init(size: RegionInfoSize, name: PrimaryAllocatorName); |
| 123 | CHECK_NE(RegionInfoSpace, ~(uptr)0); |
| 124 | CHECK_EQ(RegionInfoSpace, |
| 125 | address_range.MapOrDie(RegionInfoSpace, RegionInfoSize, |
| 126 | "SizeClassAllocator: region info" )); |
| 127 | MapUnmapCallback().OnMap(RegionInfoSpace, RegionInfoSize); |
| 128 | } else { |
| 129 | if (kUsingConstantSpaceBeg) { |
| 130 | CHECK(IsAligned(kSpaceBeg, SizeClassMap::kMaxSize)); |
| 131 | CHECK_EQ(kSpaceBeg, |
| 132 | address_range.Init(TotalSpaceSize, PrimaryAllocatorName, |
| 133 | kSpaceBeg)); |
| 134 | } else { |
| 135 | // Combined allocator expects that an 2^N allocation is always aligned |
| 136 | // to 2^N. For this to work, the start of the space needs to be aligned |
| 137 | // as high as the largest size class (which also needs to be a power of |
| 138 | // 2). |
| 139 | NonConstSpaceBeg = address_range.InitAligned( |
| 140 | size: TotalSpaceSize, align: SizeClassMap::kMaxSize, name: PrimaryAllocatorName); |
| 141 | CHECK_NE(NonConstSpaceBeg, ~(uptr)0); |
| 142 | } |
| 143 | RegionInfoSpace = SpaceEnd(); |
| 144 | MapWithCallbackOrDie(beg: RegionInfoSpace, size: AdditionalSize(), |
| 145 | name: "SizeClassAllocator: region info" ); |
| 146 | } |
| 147 | SetReleaseToOSIntervalMs(release_to_os_interval_ms); |
| 148 | // Check that the RegionInfo array is aligned on the CacheLine size. |
| 149 | DCHECK_EQ(RegionInfoSpace % kCacheLineSize, 0); |
| 150 | } |
| 151 | |
| 152 | s32 ReleaseToOSIntervalMs() const { |
| 153 | return atomic_load(a: &release_to_os_interval_ms_, mo: memory_order_relaxed); |
| 154 | } |
| 155 | |
| 156 | void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) { |
| 157 | atomic_store(a: &release_to_os_interval_ms_, v: release_to_os_interval_ms, |
| 158 | mo: memory_order_relaxed); |
| 159 | } |
| 160 | |
| 161 | void ForceReleaseToOS() { |
| 162 | MemoryMapperT memory_mapper(*this); |
| 163 | for (uptr class_id = 1; class_id < kNumClasses; class_id++) { |
| 164 | Lock l(&GetRegionInfo(class_id)->mutex); |
| 165 | MaybeReleaseToOS(memory_mapper: &memory_mapper, class_id, force: true /*force*/); |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | static bool CanAllocate(uptr size, uptr alignment) { |
| 170 | return size <= SizeClassMap::kMaxSize && |
| 171 | alignment <= SizeClassMap::kMaxSize; |
| 172 | } |
| 173 | |
| 174 | NOINLINE void ReturnToAllocator(MemoryMapperT *memory_mapper, |
| 175 | AllocatorStats *stat, uptr class_id, |
| 176 | const CompactPtrT *chunks, uptr n_chunks) { |
| 177 | RegionInfo *region = GetRegionInfo(class_id); |
| 178 | uptr region_beg = GetRegionBeginBySizeClass(class_id); |
| 179 | CompactPtrT *free_array = GetFreeArray(region_beg); |
| 180 | |
| 181 | Lock l(®ion->mutex); |
| 182 | uptr old_num_chunks = region->num_freed_chunks; |
| 183 | uptr new_num_freed_chunks = old_num_chunks + n_chunks; |
| 184 | // Failure to allocate free array space while releasing memory is non |
| 185 | // recoverable. |
| 186 | if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg, |
| 187 | new_num_freed_chunks))) { |
| 188 | Report( |
| 189 | format: "FATAL: Internal error: %s's allocator exhausted the free list " |
| 190 | "space for size class %zu (%zu bytes).\n" , |
| 191 | SanitizerToolName, class_id, ClassIdToSize(class_id)); |
| 192 | Die(); |
| 193 | } |
| 194 | for (uptr i = 0; i < n_chunks; i++) |
| 195 | free_array[old_num_chunks + i] = chunks[i]; |
| 196 | region->num_freed_chunks = new_num_freed_chunks; |
| 197 | region->stats.n_freed += n_chunks; |
| 198 | |
| 199 | MaybeReleaseToOS(memory_mapper, class_id, force: false /*force*/); |
| 200 | } |
| 201 | |
| 202 | NOINLINE bool GetFromAllocator(AllocatorStats *stat, uptr class_id, |
| 203 | CompactPtrT *chunks, uptr n_chunks) { |
| 204 | RegionInfo *region = GetRegionInfo(class_id); |
| 205 | uptr region_beg = GetRegionBeginBySizeClass(class_id); |
| 206 | CompactPtrT *free_array = GetFreeArray(region_beg); |
| 207 | |
| 208 | Lock l(®ion->mutex); |
| 209 | #if SANITIZER_WINDOWS |
| 210 | /* On Windows unmapping of memory during __sanitizer_purge_allocator is |
| 211 | explicit and immediate, so unmapped regions must be explicitly mapped back |
| 212 | in when they are accessed again. */ |
| 213 | if (region->rtoi.last_released_bytes > 0) { |
| 214 | MmapFixedOrDie(region_beg, region->mapped_user, |
| 215 | "SizeClassAllocator: region data" ); |
| 216 | region->rtoi.n_freed_at_last_release = 0; |
| 217 | region->rtoi.last_released_bytes = 0; |
| 218 | } |
| 219 | #endif |
| 220 | if (UNLIKELY(region->num_freed_chunks < n_chunks)) { |
| 221 | if (UNLIKELY(!PopulateFreeArray(stat, class_id, region, |
| 222 | n_chunks - region->num_freed_chunks))) |
| 223 | return false; |
| 224 | CHECK_GE(region->num_freed_chunks, n_chunks); |
| 225 | } |
| 226 | region->num_freed_chunks -= n_chunks; |
| 227 | uptr base_idx = region->num_freed_chunks; |
| 228 | for (uptr i = 0; i < n_chunks; i++) |
| 229 | chunks[i] = free_array[base_idx + i]; |
| 230 | region->stats.n_allocated += n_chunks; |
| 231 | return true; |
| 232 | } |
| 233 | |
| 234 | bool PointerIsMine(const void *p) const { |
| 235 | uptr P = reinterpret_cast<uptr>(p); |
| 236 | if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0) |
| 237 | return P / kSpaceSize == kSpaceBeg / kSpaceSize; |
| 238 | return P >= SpaceBeg() && P < SpaceEnd(); |
| 239 | } |
| 240 | |
| 241 | uptr GetRegionBegin(const void *p) { |
| 242 | if (kUsingConstantSpaceBeg) |
| 243 | return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1); |
| 244 | uptr space_beg = SpaceBeg(); |
| 245 | return ((reinterpret_cast<uptr>(p) - space_beg) & ~(kRegionSize - 1)) + |
| 246 | space_beg; |
| 247 | } |
| 248 | |
| 249 | uptr GetRegionBeginBySizeClass(uptr class_id) const { |
| 250 | return SpaceBeg() + kRegionSize * class_id; |
| 251 | } |
| 252 | |
| 253 | uptr GetSizeClass(const void *p) { |
| 254 | if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0) |
| 255 | return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded; |
| 256 | return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) % |
| 257 | kNumClassesRounded; |
| 258 | } |
| 259 | |
| 260 | void *GetBlockBegin(const void *p) { |
| 261 | uptr class_id = GetSizeClass(p); |
| 262 | if (class_id >= kNumClasses) return nullptr; |
| 263 | uptr size = ClassIdToSize(class_id); |
| 264 | if (!size) return nullptr; |
| 265 | uptr chunk_idx = GetChunkIdx(chunk: (uptr)p, size); |
| 266 | uptr reg_beg = GetRegionBegin(p); |
| 267 | uptr beg = chunk_idx * size; |
| 268 | uptr next_beg = beg + size; |
| 269 | const RegionInfo *region = AddressSpaceView::Load(GetRegionInfo(class_id)); |
| 270 | if (region->mapped_user >= next_beg) |
| 271 | return reinterpret_cast<void*>(reg_beg + beg); |
| 272 | return nullptr; |
| 273 | } |
| 274 | |
| 275 | uptr GetActuallyAllocatedSize(void *p) { |
| 276 | CHECK(PointerIsMine(p)); |
| 277 | return ClassIdToSize(class_id: GetSizeClass(p)); |
| 278 | } |
| 279 | |
| 280 | static uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); } |
| 281 | |
| 282 | void *GetMetaData(const void *p) { |
| 283 | CHECK(kMetadataSize); |
| 284 | uptr class_id = GetSizeClass(p); |
| 285 | uptr size = ClassIdToSize(class_id); |
| 286 | if (!size) |
| 287 | return nullptr; |
| 288 | uptr chunk_idx = GetChunkIdx(chunk: reinterpret_cast<uptr>(p), size); |
| 289 | uptr region_beg = GetRegionBeginBySizeClass(class_id); |
| 290 | return reinterpret_cast<void *>(GetMetadataEnd(region_beg) - |
| 291 | (1 + chunk_idx) * kMetadataSize); |
| 292 | } |
| 293 | |
| 294 | uptr TotalMemoryUsed() { |
| 295 | uptr res = 0; |
| 296 | for (uptr i = 0; i < kNumClasses; i++) |
| 297 | res += GetRegionInfo(class_id: i)->allocated_user; |
| 298 | return res; |
| 299 | } |
| 300 | |
| 301 | // Test-only. |
| 302 | void TestOnlyUnmap() { |
| 303 | UnmapWithCallbackOrDie(beg: (uptr)address_range.base(), size: address_range.size()); |
| 304 | } |
| 305 | |
| 306 | static void FillMemoryProfile(uptr start, uptr , bool file, uptr *stats) { |
| 307 | for (uptr class_id = 0; class_id < kNumClasses; class_id++) |
| 308 | if (stats[class_id] == start) |
| 309 | stats[class_id] = rss; |
| 310 | } |
| 311 | |
| 312 | void PrintStats(uptr class_id, uptr ) { |
| 313 | RegionInfo *region = GetRegionInfo(class_id); |
| 314 | if (region->mapped_user == 0) return; |
| 315 | uptr in_use = region->stats.n_allocated - region->stats.n_freed; |
| 316 | uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id); |
| 317 | Printf( |
| 318 | "%s %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd " |
| 319 | "num_freed_chunks %7zd avail: %6zd rss: %6zdK releases: %6zd " |
| 320 | "last released: %6lldK region: %p\n" , |
| 321 | region->exhausted ? "F" : " " , class_id, ClassIdToSize(class_id), |
| 322 | region->mapped_user >> 10, region->stats.n_allocated, |
| 323 | region->stats.n_freed, in_use, region->num_freed_chunks, avail_chunks, |
| 324 | rss >> 10, region->rtoi.num_releases, |
| 325 | region->rtoi.last_released_bytes >> 10, |
| 326 | (void *)(SpaceBeg() + kRegionSize * class_id)); |
| 327 | } |
| 328 | |
| 329 | void PrintStats() { |
| 330 | uptr [kNumClasses]; |
| 331 | for (uptr class_id = 0; class_id < kNumClasses; class_id++) |
| 332 | rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id; |
| 333 | GetMemoryProfile(FillMemoryProfile, rss_stats); |
| 334 | |
| 335 | uptr total_mapped = 0; |
| 336 | uptr = 0; |
| 337 | uptr n_allocated = 0; |
| 338 | uptr n_freed = 0; |
| 339 | for (uptr class_id = 1; class_id < kNumClasses; class_id++) { |
| 340 | RegionInfo *region = GetRegionInfo(class_id); |
| 341 | if (region->mapped_user != 0) { |
| 342 | total_mapped += region->mapped_user; |
| 343 | total_rss += rss_stats[class_id]; |
| 344 | } |
| 345 | n_allocated += region->stats.n_allocated; |
| 346 | n_freed += region->stats.n_freed; |
| 347 | } |
| 348 | |
| 349 | Printf(format: "Stats: SizeClassAllocator64: %zdM mapped (%zdM rss) in " |
| 350 | "%zd allocations; remains %zd\n" , total_mapped >> 20, |
| 351 | total_rss >> 20, n_allocated, n_allocated - n_freed); |
| 352 | for (uptr class_id = 1; class_id < kNumClasses; class_id++) |
| 353 | PrintStats(class_id, rss_stats[class_id]); |
| 354 | } |
| 355 | |
| 356 | // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone |
| 357 | // introspection API. |
| 358 | void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { |
| 359 | for (uptr i = 0; i < kNumClasses; i++) { |
| 360 | GetRegionInfo(class_id: i)->mutex.Lock(); |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { |
| 365 | for (int i = (int)kNumClasses - 1; i >= 0; i--) { |
| 366 | GetRegionInfo(class_id: i)->mutex.Unlock(); |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | // Iterate over all existing chunks. |
| 371 | // The allocator must be locked when calling this function. |
| 372 | void ForEachChunk(ForEachChunkCallback callback, void *arg) { |
| 373 | for (uptr class_id = 1; class_id < kNumClasses; class_id++) { |
| 374 | RegionInfo *region = GetRegionInfo(class_id); |
| 375 | uptr chunk_size = ClassIdToSize(class_id); |
| 376 | uptr region_beg = SpaceBeg() + class_id * kRegionSize; |
| 377 | uptr region_allocated_user_size = |
| 378 | AddressSpaceView::Load(region)->allocated_user; |
| 379 | for (uptr chunk = region_beg; |
| 380 | chunk < region_beg + region_allocated_user_size; |
| 381 | chunk += chunk_size) { |
| 382 | // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk)); |
| 383 | callback(chunk, arg); |
| 384 | } |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | static uptr ClassIdToSize(uptr class_id) { |
| 389 | return SizeClassMap::Size(class_id); |
| 390 | } |
| 391 | |
| 392 | static uptr AdditionalSize() { |
| 393 | return RoundUpTo(size: sizeof(RegionInfo) * kNumClassesRounded, |
| 394 | boundary: GetPageSizeCached()); |
| 395 | } |
| 396 | |
| 397 | typedef SizeClassMap SizeClassMapT; |
| 398 | static const uptr kNumClasses = SizeClassMap::kNumClasses; |
| 399 | static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded; |
| 400 | |
| 401 | // A packed array of counters. Each counter occupies 2^n bits, enough to store |
| 402 | // counter's max_value. Ctor will try to allocate the required buffer via |
| 403 | // mapper->MapPackedCounterArrayBuffer and the caller is expected to check |
| 404 | // whether the initialization was successful by checking IsAllocated() result. |
| 405 | // For the performance sake, none of the accessors check the validity of the |
| 406 | // arguments, it is assumed that index is always in [0, n) range and the value |
| 407 | // is not incremented past max_value. |
| 408 | class PackedCounterArray { |
| 409 | public: |
| 410 | template <typename MemoryMapper> |
| 411 | PackedCounterArray(u64 num_counters, u64 max_value, MemoryMapper *mapper) |
| 412 | : n(num_counters) { |
| 413 | CHECK_GT(num_counters, 0); |
| 414 | CHECK_GT(max_value, 0); |
| 415 | constexpr u64 kMaxCounterBits = sizeof(*buffer) * 8ULL; |
| 416 | // Rounding counter storage size up to the power of two allows for using |
| 417 | // bit shifts calculating particular counter's index and offset. |
| 418 | uptr counter_size_bits = |
| 419 | RoundUpToPowerOfTwo(size: MostSignificantSetBitIndex(x: max_value) + 1); |
| 420 | CHECK_LE(counter_size_bits, kMaxCounterBits); |
| 421 | counter_size_bits_log = Log2(x: counter_size_bits); |
| 422 | counter_mask = ~0ULL >> (kMaxCounterBits - counter_size_bits); |
| 423 | |
| 424 | uptr packing_ratio = kMaxCounterBits >> counter_size_bits_log; |
| 425 | CHECK_GT(packing_ratio, 0); |
| 426 | packing_ratio_log = Log2(x: packing_ratio); |
| 427 | bit_offset_mask = packing_ratio - 1; |
| 428 | |
| 429 | buffer = mapper->MapPackedCounterArrayBuffer( |
| 430 | RoundUpTo(size: n, boundary: 1ULL << packing_ratio_log) >> packing_ratio_log); |
| 431 | } |
| 432 | |
| 433 | bool IsAllocated() const { |
| 434 | return !!buffer; |
| 435 | } |
| 436 | |
| 437 | u64 GetCount() const { |
| 438 | return n; |
| 439 | } |
| 440 | |
| 441 | uptr Get(uptr i) const { |
| 442 | DCHECK_LT(i, n); |
| 443 | uptr index = i >> packing_ratio_log; |
| 444 | uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log; |
| 445 | return (buffer[index] >> bit_offset) & counter_mask; |
| 446 | } |
| 447 | |
| 448 | void Inc(uptr i) const { |
| 449 | DCHECK_LT(Get(i), counter_mask); |
| 450 | uptr index = i >> packing_ratio_log; |
| 451 | uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log; |
| 452 | buffer[index] += 1ULL << bit_offset; |
| 453 | } |
| 454 | |
| 455 | void IncRange(uptr from, uptr to) const { |
| 456 | DCHECK_LE(from, to); |
| 457 | for (uptr i = from; i <= to; i++) |
| 458 | Inc(i); |
| 459 | } |
| 460 | |
| 461 | private: |
| 462 | const u64 n; |
| 463 | u64 counter_size_bits_log; |
| 464 | u64 counter_mask; |
| 465 | u64 packing_ratio_log; |
| 466 | u64 bit_offset_mask; |
| 467 | u64* buffer; |
| 468 | }; |
| 469 | |
| 470 | template <class MemoryMapperT> |
| 471 | class FreePagesRangeTracker { |
| 472 | public: |
| 473 | FreePagesRangeTracker(MemoryMapperT *mapper, uptr class_id) |
| 474 | : memory_mapper(mapper), |
| 475 | class_id(class_id), |
| 476 | page_size_scaled_log(Log2(x: GetPageSizeCached() >> kCompactPtrScale)) {} |
| 477 | |
| 478 | void NextPage(bool freed) { |
| 479 | if (freed) { |
| 480 | if (!in_the_range) { |
| 481 | current_range_start_page = current_page; |
| 482 | in_the_range = true; |
| 483 | } |
| 484 | } else { |
| 485 | CloseOpenedRange(); |
| 486 | } |
| 487 | current_page++; |
| 488 | } |
| 489 | |
| 490 | void Done() { |
| 491 | CloseOpenedRange(); |
| 492 | } |
| 493 | |
| 494 | private: |
| 495 | void CloseOpenedRange() { |
| 496 | if (in_the_range) { |
| 497 | memory_mapper->ReleasePageRangeToOS( |
| 498 | class_id, current_range_start_page << page_size_scaled_log, |
| 499 | current_page << page_size_scaled_log); |
| 500 | in_the_range = false; |
| 501 | } |
| 502 | } |
| 503 | |
| 504 | MemoryMapperT *const memory_mapper = nullptr; |
| 505 | const uptr class_id = 0; |
| 506 | const uptr page_size_scaled_log = 0; |
| 507 | bool in_the_range = false; |
| 508 | uptr current_page = 0; |
| 509 | uptr current_range_start_page = 0; |
| 510 | }; |
| 511 | |
| 512 | // Iterates over the free_array to identify memory pages containing freed |
| 513 | // chunks only and returns these pages back to OS. |
| 514 | // allocated_pages_count is the total number of pages allocated for the |
| 515 | // current bucket. |
| 516 | template <typename MemoryMapper> |
| 517 | static void ReleaseFreeMemoryToOS(CompactPtrT *free_array, |
| 518 | uptr free_array_count, uptr chunk_size, |
| 519 | uptr allocated_pages_count, |
| 520 | MemoryMapper *memory_mapper, |
| 521 | uptr class_id) { |
| 522 | const uptr page_size = GetPageSizeCached(); |
| 523 | |
| 524 | // Figure out the number of chunks per page and whether we can take a fast |
| 525 | // path (the number of chunks per page is the same for all pages). |
| 526 | uptr full_pages_chunk_count_max; |
| 527 | bool same_chunk_count_per_page; |
| 528 | if (chunk_size <= page_size && page_size % chunk_size == 0) { |
| 529 | // Same number of chunks per page, no cross overs. |
| 530 | full_pages_chunk_count_max = page_size / chunk_size; |
| 531 | same_chunk_count_per_page = true; |
| 532 | } else if (chunk_size <= page_size && page_size % chunk_size != 0 && |
| 533 | chunk_size % (page_size % chunk_size) == 0) { |
| 534 | // Some chunks are crossing page boundaries, which means that the page |
| 535 | // contains one or two partial chunks, but all pages contain the same |
| 536 | // number of chunks. |
| 537 | full_pages_chunk_count_max = page_size / chunk_size + 1; |
| 538 | same_chunk_count_per_page = true; |
| 539 | } else if (chunk_size <= page_size) { |
| 540 | // Some chunks are crossing page boundaries, which means that the page |
| 541 | // contains one or two partial chunks. |
| 542 | full_pages_chunk_count_max = page_size / chunk_size + 2; |
| 543 | same_chunk_count_per_page = false; |
| 544 | } else if (chunk_size > page_size && chunk_size % page_size == 0) { |
| 545 | // One chunk covers multiple pages, no cross overs. |
| 546 | full_pages_chunk_count_max = 1; |
| 547 | same_chunk_count_per_page = true; |
| 548 | } else if (chunk_size > page_size) { |
| 549 | // One chunk covers multiple pages, Some chunks are crossing page |
| 550 | // boundaries. Some pages contain one chunk, some contain two. |
| 551 | full_pages_chunk_count_max = 2; |
| 552 | same_chunk_count_per_page = false; |
| 553 | } else { |
| 554 | UNREACHABLE("All chunk_size/page_size ratios must be handled." ); |
| 555 | } |
| 556 | |
| 557 | PackedCounterArray counters(allocated_pages_count, |
| 558 | full_pages_chunk_count_max, memory_mapper); |
| 559 | if (!counters.IsAllocated()) |
| 560 | return; |
| 561 | |
| 562 | const uptr chunk_size_scaled = chunk_size >> kCompactPtrScale; |
| 563 | const uptr page_size_scaled = page_size >> kCompactPtrScale; |
| 564 | const uptr page_size_scaled_log = Log2(x: page_size_scaled); |
| 565 | |
| 566 | // Iterate over free chunks and count how many free chunks affect each |
| 567 | // allocated page. |
| 568 | if (chunk_size <= page_size && page_size % chunk_size == 0) { |
| 569 | // Each chunk affects one page only. |
| 570 | for (uptr i = 0; i < free_array_count; i++) |
| 571 | counters.Inc(free_array[i] >> page_size_scaled_log); |
| 572 | } else { |
| 573 | // In all other cases chunks might affect more than one page. |
| 574 | for (uptr i = 0; i < free_array_count; i++) { |
| 575 | counters.IncRange( |
| 576 | free_array[i] >> page_size_scaled_log, |
| 577 | (free_array[i] + chunk_size_scaled - 1) >> page_size_scaled_log); |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | // Iterate over pages detecting ranges of pages with chunk counters equal |
| 582 | // to the expected number of chunks for the particular page. |
| 583 | FreePagesRangeTracker<MemoryMapper> range_tracker(memory_mapper, class_id); |
| 584 | if (same_chunk_count_per_page) { |
| 585 | // Fast path, every page has the same number of chunks affecting it. |
| 586 | for (uptr i = 0; i < counters.GetCount(); i++) |
| 587 | range_tracker.NextPage(counters.Get(i) == full_pages_chunk_count_max); |
| 588 | } else { |
| 589 | // Show path, go through the pages keeping count how many chunks affect |
| 590 | // each page. |
| 591 | const uptr pn = |
| 592 | chunk_size < page_size ? page_size_scaled / chunk_size_scaled : 1; |
| 593 | const uptr pnc = pn * chunk_size_scaled; |
| 594 | // The idea is to increment the current page pointer by the first chunk |
| 595 | // size, middle portion size (the portion of the page covered by chunks |
| 596 | // except the first and the last one) and then the last chunk size, adding |
| 597 | // up the number of chunks on the current page and checking on every step |
| 598 | // whether the page boundary was crossed. |
| 599 | uptr prev_page_boundary = 0; |
| 600 | uptr current_boundary = 0; |
| 601 | for (uptr i = 0; i < counters.GetCount(); i++) { |
| 602 | uptr page_boundary = prev_page_boundary + page_size_scaled; |
| 603 | uptr chunks_per_page = pn; |
| 604 | if (current_boundary < page_boundary) { |
| 605 | if (current_boundary > prev_page_boundary) |
| 606 | chunks_per_page++; |
| 607 | current_boundary += pnc; |
| 608 | if (current_boundary < page_boundary) { |
| 609 | chunks_per_page++; |
| 610 | current_boundary += chunk_size_scaled; |
| 611 | } |
| 612 | } |
| 613 | prev_page_boundary = page_boundary; |
| 614 | |
| 615 | range_tracker.NextPage(counters.Get(i) == chunks_per_page); |
| 616 | } |
| 617 | } |
| 618 | range_tracker.Done(); |
| 619 | } |
| 620 | |
| 621 | private: |
| 622 | friend class MemoryMapper<ThisT>; |
| 623 | |
| 624 | ReservedAddressRange address_range; |
| 625 | |
| 626 | static const uptr kRegionSize = kSpaceSize / kNumClassesRounded; |
| 627 | // FreeArray is the array of free-d chunks (stored as 4-byte offsets). |
| 628 | // In the worst case it may require kRegionSize/SizeClassMap::kMinSize |
| 629 | // elements, but in reality this will not happen. For simplicity we |
| 630 | // dedicate 1/8 of the region's virtual space to FreeArray. |
| 631 | static const uptr kFreeArraySize = kRegionSize / 8; |
| 632 | |
| 633 | static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0; |
| 634 | uptr NonConstSpaceBeg; |
| 635 | uptr SpaceBeg() const { |
| 636 | return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg; |
| 637 | } |
| 638 | uptr SpaceEnd() const { return SpaceBeg() + kSpaceSize; } |
| 639 | // kRegionSize should be able to satisfy the largest size class. |
| 640 | static_assert(kRegionSize >= SizeClassMap::kMaxSize, |
| 641 | "Region size exceed largest size" ); |
| 642 | // kRegionSize must be <= 2^36, see CompactPtrT. |
| 643 | COMPILER_CHECK((kRegionSize) <= |
| 644 | (1ULL << (sizeof(CompactPtrT) * 8 + kCompactPtrScale))); |
| 645 | // Call mmap for user memory with at least this size. |
| 646 | static const uptr kUserMapSize = 1 << 18; |
| 647 | // Call mmap for metadata memory with at least this size. |
| 648 | static const uptr kMetaMapSize = 1 << 16; |
| 649 | // Call mmap for free array memory with at least this size. |
| 650 | static const uptr kFreeArrayMapSize = 1 << 18; |
| 651 | |
| 652 | atomic_sint32_t release_to_os_interval_ms_; |
| 653 | |
| 654 | uptr RegionInfoSpace; |
| 655 | |
| 656 | // True if the user has already mapped the entire heap R/W. |
| 657 | bool PremappedHeap; |
| 658 | |
| 659 | struct Stats { |
| 660 | uptr n_allocated; |
| 661 | uptr n_freed; |
| 662 | }; |
| 663 | |
| 664 | struct ReleaseToOsInfo { |
| 665 | uptr n_freed_at_last_release; |
| 666 | uptr num_releases; |
| 667 | u64 last_release_at_ns; |
| 668 | u64 last_released_bytes; |
| 669 | }; |
| 670 | |
| 671 | struct alignas(SANITIZER_CACHE_LINE_SIZE) RegionInfo { |
| 672 | Mutex mutex; |
| 673 | uptr num_freed_chunks; // Number of elements in the freearray. |
| 674 | uptr mapped_free_array; // Bytes mapped for freearray. |
| 675 | uptr allocated_user; // Bytes allocated for user memory. |
| 676 | uptr allocated_meta; // Bytes allocated for metadata. |
| 677 | uptr mapped_user; // Bytes mapped for user memory. |
| 678 | uptr mapped_meta; // Bytes mapped for metadata. |
| 679 | u32 rand_state; // Seed for random shuffle, used if kRandomShuffleChunks. |
| 680 | bool exhausted; // Whether region is out of space for new chunks. |
| 681 | Stats stats; |
| 682 | ReleaseToOsInfo rtoi; |
| 683 | }; |
| 684 | COMPILER_CHECK(sizeof(RegionInfo) % kCacheLineSize == 0); |
| 685 | |
| 686 | RegionInfo *GetRegionInfo(uptr class_id) const { |
| 687 | DCHECK_LT(class_id, kNumClasses); |
| 688 | RegionInfo *regions = reinterpret_cast<RegionInfo *>(RegionInfoSpace); |
| 689 | return ®ions[class_id]; |
| 690 | } |
| 691 | |
| 692 | uptr GetMetadataEnd(uptr region_beg) const { |
| 693 | return region_beg + kRegionSize - kFreeArraySize; |
| 694 | } |
| 695 | |
| 696 | uptr GetChunkIdx(uptr chunk, uptr size) const { |
| 697 | if (!kUsingConstantSpaceBeg) |
| 698 | chunk -= SpaceBeg(); |
| 699 | |
| 700 | uptr offset = chunk % kRegionSize; |
| 701 | // Here we divide by a non-constant. This is costly. |
| 702 | // size always fits into 32-bits. If the offset fits too, use 32-bit div. |
| 703 | if (offset >> (SANITIZER_WORDSIZE / 2)) |
| 704 | return offset / size; |
| 705 | return (u32)offset / (u32)size; |
| 706 | } |
| 707 | |
| 708 | CompactPtrT *GetFreeArray(uptr region_beg) const { |
| 709 | return reinterpret_cast<CompactPtrT *>(GetMetadataEnd(region_beg)); |
| 710 | } |
| 711 | |
| 712 | bool MapWithCallback(uptr beg, uptr size, const char *name) { |
| 713 | if (PremappedHeap) |
| 714 | return beg >= NonConstSpaceBeg && |
| 715 | beg + size <= NonConstSpaceBeg + kSpaceSize; |
| 716 | uptr mapped = address_range.Map(fixed_addr: beg, size, name); |
| 717 | if (UNLIKELY(!mapped)) |
| 718 | return false; |
| 719 | CHECK_EQ(beg, mapped); |
| 720 | MapUnmapCallback().OnMap(beg, size); |
| 721 | return true; |
| 722 | } |
| 723 | |
| 724 | void MapWithCallbackOrDie(uptr beg, uptr size, const char *name) { |
| 725 | if (PremappedHeap) { |
| 726 | CHECK_GE(beg, NonConstSpaceBeg); |
| 727 | CHECK_LE(beg + size, NonConstSpaceBeg + kSpaceSize); |
| 728 | return; |
| 729 | } |
| 730 | CHECK_EQ(beg, address_range.MapOrDie(beg, size, name)); |
| 731 | MapUnmapCallback().OnMap(beg, size); |
| 732 | } |
| 733 | |
| 734 | void UnmapWithCallbackOrDie(uptr beg, uptr size) { |
| 735 | if (PremappedHeap) |
| 736 | return; |
| 737 | MapUnmapCallback().OnUnmap(beg, size); |
| 738 | address_range.Unmap(addr: beg, size); |
| 739 | } |
| 740 | |
| 741 | bool EnsureFreeArraySpace(RegionInfo *region, uptr region_beg, |
| 742 | uptr num_freed_chunks) { |
| 743 | uptr needed_space = num_freed_chunks * sizeof(CompactPtrT); |
| 744 | if (region->mapped_free_array < needed_space) { |
| 745 | uptr new_mapped_free_array = RoundUpTo(size: needed_space, boundary: kFreeArrayMapSize); |
| 746 | CHECK_LE(new_mapped_free_array, kFreeArraySize); |
| 747 | uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) + |
| 748 | region->mapped_free_array; |
| 749 | uptr new_map_size = new_mapped_free_array - region->mapped_free_array; |
| 750 | if (UNLIKELY(!MapWithCallback(current_map_end, new_map_size, |
| 751 | "SizeClassAllocator: freearray" ))) |
| 752 | return false; |
| 753 | region->mapped_free_array = new_mapped_free_array; |
| 754 | } |
| 755 | return true; |
| 756 | } |
| 757 | |
| 758 | // Check whether this size class is exhausted. |
| 759 | bool IsRegionExhausted(RegionInfo *region, uptr class_id, |
| 760 | uptr additional_map_size) { |
| 761 | if (LIKELY(region->mapped_user + region->mapped_meta + |
| 762 | additional_map_size <= kRegionSize - kFreeArraySize)) |
| 763 | return false; |
| 764 | if (!region->exhausted) { |
| 765 | region->exhausted = true; |
| 766 | Printf(format: "%s: Out of memory. " , SanitizerToolName); |
| 767 | Printf( |
| 768 | format: "The process has exhausted %zu MB for size class %zu (%zu bytes).\n" , |
| 769 | kRegionSize >> 20, class_id, ClassIdToSize(class_id)); |
| 770 | } |
| 771 | return true; |
| 772 | } |
| 773 | |
| 774 | NOINLINE bool PopulateFreeArray(AllocatorStats *stat, uptr class_id, |
| 775 | RegionInfo *region, uptr requested_count) { |
| 776 | // region->mutex is held. |
| 777 | const uptr region_beg = GetRegionBeginBySizeClass(class_id); |
| 778 | const uptr size = ClassIdToSize(class_id); |
| 779 | |
| 780 | const uptr total_user_bytes = |
| 781 | region->allocated_user + requested_count * size; |
| 782 | // Map more space for chunks, if necessary. |
| 783 | if (LIKELY(total_user_bytes > region->mapped_user)) { |
| 784 | if (UNLIKELY(region->mapped_user == 0)) { |
| 785 | if (!kUsingConstantSpaceBeg && kRandomShuffleChunks) |
| 786 | // The random state is initialized from ASLR. |
| 787 | region->rand_state = static_cast<u32>(region_beg >> 12); |
| 788 | // Postpone the first release to OS attempt for ReleaseToOSIntervalMs, |
| 789 | // preventing just allocated memory from being released sooner than |
| 790 | // necessary and also preventing extraneous ReleaseMemoryPagesToOS calls |
| 791 | // for short lived processes. |
| 792 | // Do it only when the feature is turned on, to avoid a potentially |
| 793 | // extraneous syscall. |
| 794 | if (ReleaseToOSIntervalMs() >= 0) |
| 795 | region->rtoi.last_release_at_ns = MonotonicNanoTime(); |
| 796 | } |
| 797 | // Do the mmap for the user memory. |
| 798 | const uptr user_map_size = |
| 799 | RoundUpTo(total_user_bytes - region->mapped_user, kUserMapSize); |
| 800 | if (UNLIKELY(IsRegionExhausted(region, class_id, user_map_size))) |
| 801 | return false; |
| 802 | if (UNLIKELY(!MapWithCallback(region_beg + region->mapped_user, |
| 803 | user_map_size, |
| 804 | "SizeClassAllocator: region data" ))) |
| 805 | return false; |
| 806 | stat->Add(i: AllocatorStatMapped, v: user_map_size); |
| 807 | region->mapped_user += user_map_size; |
| 808 | } |
| 809 | const uptr new_chunks_count = |
| 810 | (region->mapped_user - region->allocated_user) / size; |
| 811 | |
| 812 | if (kMetadataSize) { |
| 813 | // Calculate the required space for metadata. |
| 814 | const uptr total_meta_bytes = |
| 815 | region->allocated_meta + new_chunks_count * kMetadataSize; |
| 816 | const uptr meta_map_size = (total_meta_bytes > region->mapped_meta) ? |
| 817 | RoundUpTo(total_meta_bytes - region->mapped_meta, kMetaMapSize) : 0; |
| 818 | // Map more space for metadata, if necessary. |
| 819 | if (meta_map_size) { |
| 820 | if (UNLIKELY(IsRegionExhausted(region, class_id, meta_map_size))) |
| 821 | return false; |
| 822 | if (UNLIKELY(!MapWithCallback( |
| 823 | GetMetadataEnd(region_beg) - region->mapped_meta - meta_map_size, |
| 824 | meta_map_size, "SizeClassAllocator: region metadata" ))) |
| 825 | return false; |
| 826 | region->mapped_meta += meta_map_size; |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | // If necessary, allocate more space for the free array and populate it with |
| 831 | // newly allocated chunks. |
| 832 | const uptr total_freed_chunks = region->num_freed_chunks + new_chunks_count; |
| 833 | if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg, total_freed_chunks))) |
| 834 | return false; |
| 835 | CompactPtrT *free_array = GetFreeArray(region_beg); |
| 836 | for (uptr i = 0, chunk = region->allocated_user; i < new_chunks_count; |
| 837 | i++, chunk += size) |
| 838 | free_array[total_freed_chunks - 1 - i] = PointerToCompactPtr(base: 0, ptr: chunk); |
| 839 | if (kRandomShuffleChunks) |
| 840 | RandomShuffle(&free_array[region->num_freed_chunks], new_chunks_count, |
| 841 | ®ion->rand_state); |
| 842 | |
| 843 | // All necessary memory is mapped and now it is safe to advance all |
| 844 | // 'allocated_*' counters. |
| 845 | region->num_freed_chunks += new_chunks_count; |
| 846 | region->allocated_user += new_chunks_count * size; |
| 847 | CHECK_LE(region->allocated_user, region->mapped_user); |
| 848 | region->allocated_meta += new_chunks_count * kMetadataSize; |
| 849 | CHECK_LE(region->allocated_meta, region->mapped_meta); |
| 850 | region->exhausted = false; |
| 851 | |
| 852 | // TODO(alekseyshl): Consider bumping last_release_at_ns here to prevent |
| 853 | // MaybeReleaseToOS from releasing just allocated pages or protect these |
| 854 | // not yet used chunks some other way. |
| 855 | |
| 856 | return true; |
| 857 | } |
| 858 | |
| 859 | // Attempts to release RAM occupied by freed chunks back to OS. The region is |
| 860 | // expected to be locked. |
| 861 | // |
| 862 | // TODO(morehouse): Support a callback on memory release so HWASan can release |
| 863 | // aliases as well. |
| 864 | void MaybeReleaseToOS(MemoryMapperT *memory_mapper, uptr class_id, |
| 865 | bool force) { |
| 866 | RegionInfo *region = GetRegionInfo(class_id); |
| 867 | const uptr chunk_size = ClassIdToSize(class_id); |
| 868 | const uptr page_size = GetPageSizeCached(); |
| 869 | |
| 870 | uptr n = region->num_freed_chunks; |
| 871 | if (n * chunk_size < page_size) |
| 872 | return; // No chance to release anything. |
| 873 | if ((region->stats.n_freed - |
| 874 | region->rtoi.n_freed_at_last_release) * chunk_size < page_size) { |
| 875 | return; // Nothing new to release. |
| 876 | } |
| 877 | |
| 878 | if (!force) { |
| 879 | s32 interval_ms = ReleaseToOSIntervalMs(); |
| 880 | if (interval_ms < 0) |
| 881 | return; |
| 882 | |
| 883 | if (region->rtoi.last_release_at_ns + interval_ms * 1000000ULL > |
| 884 | MonotonicNanoTime()) { |
| 885 | return; // Memory was returned recently. |
| 886 | } |
| 887 | } |
| 888 | |
| 889 | ReleaseFreeMemoryToOS( |
| 890 | GetFreeArray(region_beg: GetRegionBeginBySizeClass(class_id)), n, chunk_size, |
| 891 | RoundUpTo(region->allocated_user, page_size) / page_size, memory_mapper, |
| 892 | class_id); |
| 893 | |
| 894 | uptr ranges, bytes; |
| 895 | if (memory_mapper->GetAndResetStats(ranges, bytes)) { |
| 896 | region->rtoi.n_freed_at_last_release = region->stats.n_freed; |
| 897 | region->rtoi.num_releases += ranges; |
| 898 | region->rtoi.last_released_bytes = bytes; |
| 899 | } |
| 900 | region->rtoi.last_release_at_ns = MonotonicNanoTime(); |
| 901 | } |
| 902 | }; |
| 903 | |