| 1 | //===-- sanitizer_deadlock_detector.h ---------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file is a part of Sanitizer runtime. |
| 10 | // The deadlock detector maintains a directed graph of lock acquisitions. |
| 11 | // When a lock event happens, the detector checks if the locks already held by |
| 12 | // the current thread are reachable from the newly acquired lock. |
| 13 | // |
| 14 | // The detector can handle only a fixed amount of simultaneously live locks |
| 15 | // (a lock is alive if it has been locked at least once and has not been |
| 16 | // destroyed). When the maximal number of locks is reached the entire graph |
| 17 | // is flushed and the new lock epoch is started. The node ids from the old |
| 18 | // epochs can not be used with any of the detector methods except for |
| 19 | // nodeBelongsToCurrentEpoch(). |
| 20 | // |
| 21 | // FIXME: this is work in progress, nothing really works yet. |
| 22 | // |
| 23 | //===----------------------------------------------------------------------===// |
| 24 | |
| 25 | #ifndef SANITIZER_DEADLOCK_DETECTOR_H |
| 26 | #define SANITIZER_DEADLOCK_DETECTOR_H |
| 27 | |
| 28 | #include "sanitizer_bvgraph.h" |
| 29 | #include "sanitizer_common.h" |
| 30 | |
| 31 | namespace __sanitizer { |
| 32 | |
| 33 | // Thread-local state for DeadlockDetector. |
| 34 | // It contains the locks currently held by the owning thread. |
| 35 | template <class BV> |
| 36 | class DeadlockDetectorTLS { |
| 37 | public: |
| 38 | // No CTOR. |
| 39 | void clear() { |
| 40 | bv_.clear(); |
| 41 | epoch_ = 0; |
| 42 | n_recursive_locks = 0; |
| 43 | n_all_locks_ = 0; |
| 44 | } |
| 45 | |
| 46 | bool empty() const { return bv_.empty(); } |
| 47 | |
| 48 | void ensureCurrentEpoch(uptr current_epoch) { |
| 49 | if (epoch_ == current_epoch) return; |
| 50 | bv_.clear(); |
| 51 | epoch_ = current_epoch; |
| 52 | n_recursive_locks = 0; |
| 53 | n_all_locks_ = 0; |
| 54 | } |
| 55 | |
| 56 | uptr getEpoch() const { return epoch_; } |
| 57 | |
| 58 | // Returns true if this is the first (non-recursive) acquisition of this lock. |
| 59 | bool addLock(uptr lock_id, uptr current_epoch, u32 stk) { |
| 60 | CHECK_EQ(epoch_, current_epoch); |
| 61 | if (!bv_.setBit(lock_id)) { |
| 62 | // The lock is already held by this thread, it must be recursive. |
| 63 | CHECK_LT(n_recursive_locks, ARRAY_SIZE(recursive_locks)); |
| 64 | recursive_locks[n_recursive_locks++] = lock_id; |
| 65 | return false; |
| 66 | } |
| 67 | CHECK_LT(n_all_locks_, ARRAY_SIZE(all_locks_with_contexts_)); |
| 68 | // lock_id < BV::kSize, can cast to a smaller int. |
| 69 | u32 lock_id_short = static_cast<u32>(lock_id); |
| 70 | LockWithContext l = {lock_id_short, stk}; |
| 71 | all_locks_with_contexts_[n_all_locks_++] = l; |
| 72 | return true; |
| 73 | } |
| 74 | |
| 75 | void removeLock(uptr lock_id) { |
| 76 | if (n_recursive_locks) { |
| 77 | for (sptr i = n_recursive_locks - 1; i >= 0; i--) { |
| 78 | if (recursive_locks[i] == lock_id) { |
| 79 | n_recursive_locks--; |
| 80 | Swap(a&: recursive_locks[i], b&: recursive_locks[n_recursive_locks]); |
| 81 | return; |
| 82 | } |
| 83 | } |
| 84 | } |
| 85 | if (!bv_.clearBit(lock_id)) |
| 86 | return; // probably addLock happened before flush |
| 87 | if (n_all_locks_) { |
| 88 | for (sptr i = n_all_locks_ - 1; i >= 0; i--) { |
| 89 | if (all_locks_with_contexts_[i].lock == static_cast<u32>(lock_id)) { |
| 90 | Swap(all_locks_with_contexts_[i], |
| 91 | all_locks_with_contexts_[n_all_locks_ - 1]); |
| 92 | n_all_locks_--; |
| 93 | break; |
| 94 | } |
| 95 | } |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | u32 findLockContext(uptr lock_id) { |
| 100 | for (uptr i = 0; i < n_all_locks_; i++) |
| 101 | if (all_locks_with_contexts_[i].lock == static_cast<u32>(lock_id)) |
| 102 | return all_locks_with_contexts_[i].stk; |
| 103 | return 0; |
| 104 | } |
| 105 | |
| 106 | const BV &getLocks(uptr current_epoch) const { |
| 107 | CHECK_EQ(epoch_, current_epoch); |
| 108 | return bv_; |
| 109 | } |
| 110 | |
| 111 | uptr getNumLocks() const { return n_all_locks_; } |
| 112 | uptr getLock(uptr idx) const { return all_locks_with_contexts_[idx].lock; } |
| 113 | |
| 114 | private: |
| 115 | BV bv_; |
| 116 | uptr epoch_; |
| 117 | uptr recursive_locks[64]; |
| 118 | uptr n_recursive_locks; |
| 119 | struct LockWithContext { |
| 120 | u32 lock; |
| 121 | u32 stk; |
| 122 | }; |
| 123 | LockWithContext all_locks_with_contexts_[128]; |
| 124 | uptr n_all_locks_; |
| 125 | }; |
| 126 | |
| 127 | // DeadlockDetector. |
| 128 | // For deadlock detection to work we need one global DeadlockDetector object |
| 129 | // and one DeadlockDetectorTLS object per evey thread. |
| 130 | // This class is not thread safe, all concurrent accesses should be guarded |
| 131 | // by an external lock. |
| 132 | // Most of the methods of this class are not thread-safe (i.e. should |
| 133 | // be protected by an external lock) unless explicitly told otherwise. |
| 134 | template <class BV> |
| 135 | class DeadlockDetector { |
| 136 | public: |
| 137 | typedef BV BitVector; |
| 138 | |
| 139 | uptr size() const { return g_.size(); } |
| 140 | |
| 141 | // No CTOR. |
| 142 | void clear() { |
| 143 | current_epoch_ = 0; |
| 144 | available_nodes_.clear(); |
| 145 | recycled_nodes_.clear(); |
| 146 | g_.clear(); |
| 147 | n_edges_ = 0; |
| 148 | } |
| 149 | |
| 150 | // Allocate new deadlock detector node. |
| 151 | // If we are out of available nodes first try to recycle some. |
| 152 | // If there is nothing to recycle, flush the graph and increment the epoch. |
| 153 | // Associate 'data' (opaque user's object) with the new node. |
| 154 | uptr newNode(uptr data) { |
| 155 | if (!available_nodes_.empty()) |
| 156 | return getAvailableNode(data); |
| 157 | if (!recycled_nodes_.empty()) { |
| 158 | for (sptr i = n_edges_ - 1; i >= 0; i--) { |
| 159 | if (recycled_nodes_.getBit(edges_[i].from) || |
| 160 | recycled_nodes_.getBit(edges_[i].to)) { |
| 161 | Swap(edges_[i], edges_[n_edges_ - 1]); |
| 162 | n_edges_--; |
| 163 | } |
| 164 | } |
| 165 | CHECK(available_nodes_.empty()); |
| 166 | // removeEdgesFrom was called in removeNode. |
| 167 | g_.removeEdgesTo(recycled_nodes_); |
| 168 | available_nodes_.setUnion(recycled_nodes_); |
| 169 | recycled_nodes_.clear(); |
| 170 | return getAvailableNode(data); |
| 171 | } |
| 172 | // We are out of vacant nodes. Flush and increment the current_epoch_. |
| 173 | current_epoch_ += size(); |
| 174 | recycled_nodes_.clear(); |
| 175 | available_nodes_.setAll(); |
| 176 | g_.clear(); |
| 177 | n_edges_ = 0; |
| 178 | return getAvailableNode(data); |
| 179 | } |
| 180 | |
| 181 | // Get data associated with the node created by newNode(). |
| 182 | uptr getData(uptr node) const { return data_[nodeToIndex(node)]; } |
| 183 | |
| 184 | bool nodeBelongsToCurrentEpoch(uptr node) { |
| 185 | return node && (node / size() * size()) == current_epoch_; |
| 186 | } |
| 187 | |
| 188 | void removeNode(uptr node) { |
| 189 | uptr idx = nodeToIndex(node); |
| 190 | CHECK(!available_nodes_.getBit(idx)); |
| 191 | CHECK(recycled_nodes_.setBit(idx)); |
| 192 | g_.removeEdgesFrom(idx); |
| 193 | } |
| 194 | |
| 195 | void ensureCurrentEpoch(DeadlockDetectorTLS<BV> *dtls) { |
| 196 | dtls->ensureCurrentEpoch(current_epoch_); |
| 197 | } |
| 198 | |
| 199 | // Returns true if there is a cycle in the graph after this lock event. |
| 200 | // Ideally should be called before the lock is acquired so that we can |
| 201 | // report a deadlock before a real deadlock happens. |
| 202 | bool onLockBefore(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) { |
| 203 | ensureCurrentEpoch(dtls); |
| 204 | uptr cur_idx = nodeToIndex(node: cur_node); |
| 205 | return g_.isReachable(cur_idx, dtls->getLocks(current_epoch_)); |
| 206 | } |
| 207 | |
| 208 | u32 findLockContext(DeadlockDetectorTLS<BV> *dtls, uptr node) { |
| 209 | return dtls->findLockContext(nodeToIndex(node)); |
| 210 | } |
| 211 | |
| 212 | // Add cur_node to the set of locks held currently by dtls. |
| 213 | void onLockAfter(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) { |
| 214 | ensureCurrentEpoch(dtls); |
| 215 | uptr cur_idx = nodeToIndex(node: cur_node); |
| 216 | dtls->addLock(cur_idx, current_epoch_, stk); |
| 217 | } |
| 218 | |
| 219 | // Experimental *racy* fast path function. |
| 220 | // Returns true if all edges from the currently held locks to cur_node exist. |
| 221 | bool hasAllEdges(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) { |
| 222 | uptr local_epoch = dtls->getEpoch(); |
| 223 | // Read from current_epoch_ is racy. |
| 224 | if (cur_node && local_epoch == current_epoch_ && |
| 225 | local_epoch == nodeToEpoch(node: cur_node)) { |
| 226 | uptr cur_idx = nodeToIndexUnchecked(node: cur_node); |
| 227 | for (uptr i = 0, n = dtls->getNumLocks(); i < n; i++) { |
| 228 | if (!g_.hasEdge(dtls->getLock(i), cur_idx)) |
| 229 | return false; |
| 230 | } |
| 231 | return true; |
| 232 | } |
| 233 | return false; |
| 234 | } |
| 235 | |
| 236 | // Adds edges from currently held locks to cur_node, |
| 237 | // returns the number of added edges, and puts the sources of added edges |
| 238 | // into added_edges[]. |
| 239 | // Should be called before onLockAfter. |
| 240 | uptr addEdges(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk, |
| 241 | int unique_tid) { |
| 242 | ensureCurrentEpoch(dtls); |
| 243 | uptr cur_idx = nodeToIndex(node: cur_node); |
| 244 | uptr added_edges[40]; |
| 245 | uptr n_added_edges = g_.addEdges(dtls->getLocks(current_epoch_), cur_idx, |
| 246 | added_edges, ARRAY_SIZE(added_edges)); |
| 247 | for (uptr i = 0; i < n_added_edges; i++) { |
| 248 | if (n_edges_ < ARRAY_SIZE(edges_)) { |
| 249 | Edge e = {(u16)added_edges[i], (u16)cur_idx, |
| 250 | dtls->findLockContext(added_edges[i]), stk, |
| 251 | unique_tid}; |
| 252 | edges_[n_edges_++] = e; |
| 253 | } |
| 254 | } |
| 255 | return n_added_edges; |
| 256 | } |
| 257 | |
| 258 | bool findEdge(uptr from_node, uptr to_node, u32 *stk_from, u32 *stk_to, |
| 259 | int *unique_tid) { |
| 260 | uptr from_idx = nodeToIndex(node: from_node); |
| 261 | uptr to_idx = nodeToIndex(node: to_node); |
| 262 | for (uptr i = 0; i < n_edges_; i++) { |
| 263 | if (edges_[i].from == from_idx && edges_[i].to == to_idx) { |
| 264 | *stk_from = edges_[i].stk_from; |
| 265 | *stk_to = edges_[i].stk_to; |
| 266 | *unique_tid = edges_[i].unique_tid; |
| 267 | return true; |
| 268 | } |
| 269 | } |
| 270 | return false; |
| 271 | } |
| 272 | |
| 273 | // Test-only function. Handles the before/after lock events, |
| 274 | // returns true if there is a cycle. |
| 275 | bool onLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) { |
| 276 | ensureCurrentEpoch(dtls); |
| 277 | bool is_reachable = !isHeld(dtls, node: cur_node) && onLockBefore(dtls, cur_node); |
| 278 | addEdges(dtls, cur_node, stk, unique_tid: 0); |
| 279 | onLockAfter(dtls, cur_node, stk); |
| 280 | return is_reachable; |
| 281 | } |
| 282 | |
| 283 | // Handles the try_lock event, returns false. |
| 284 | // When a try_lock event happens (i.e. a try_lock call succeeds) we need |
| 285 | // to add this lock to the currently held locks, but we should not try to |
| 286 | // change the lock graph or to detect a cycle. We may want to investigate |
| 287 | // whether a more aggressive strategy is possible for try_lock. |
| 288 | bool onTryLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) { |
| 289 | ensureCurrentEpoch(dtls); |
| 290 | uptr cur_idx = nodeToIndex(node: cur_node); |
| 291 | dtls->addLock(cur_idx, current_epoch_, stk); |
| 292 | return false; |
| 293 | } |
| 294 | |
| 295 | // Returns true iff dtls is empty (no locks are currently held) and we can |
| 296 | // add the node to the currently held locks w/o changing the global state. |
| 297 | // This operation is thread-safe as it only touches the dtls. |
| 298 | bool onFirstLock(DeadlockDetectorTLS<BV> *dtls, uptr node, u32 stk = 0) { |
| 299 | if (!dtls->empty()) return false; |
| 300 | if (dtls->getEpoch() && dtls->getEpoch() == nodeToEpoch(node)) { |
| 301 | dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk); |
| 302 | return true; |
| 303 | } |
| 304 | return false; |
| 305 | } |
| 306 | |
| 307 | // Finds a path between the lock 'cur_node' (currently not held in dtls) |
| 308 | // and some currently held lock, returns the length of the path |
| 309 | // or 0 on failure. |
| 310 | uptr findPathToLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, uptr *path, |
| 311 | uptr path_size) { |
| 312 | tmp_bv_.copyFrom(dtls->getLocks(current_epoch_)); |
| 313 | uptr idx = nodeToIndex(node: cur_node); |
| 314 | CHECK(!tmp_bv_.getBit(idx)); |
| 315 | uptr res = g_.findShortestPath(idx, tmp_bv_, path, path_size); |
| 316 | for (uptr i = 0; i < res; i++) |
| 317 | path[i] = indexToNode(idx: path[i]); |
| 318 | if (res) |
| 319 | CHECK_EQ(path[0], cur_node); |
| 320 | return res; |
| 321 | } |
| 322 | |
| 323 | // Handle the unlock event. |
| 324 | // This operation is thread-safe as it only touches the dtls. |
| 325 | void onUnlock(DeadlockDetectorTLS<BV> *dtls, uptr node) { |
| 326 | if (dtls->getEpoch() == nodeToEpoch(node)) |
| 327 | dtls->removeLock(nodeToIndexUnchecked(node)); |
| 328 | } |
| 329 | |
| 330 | // Tries to handle the lock event w/o writing to global state. |
| 331 | // Returns true on success. |
| 332 | // This operation is thread-safe as it only touches the dtls |
| 333 | // (modulo racy nature of hasAllEdges). |
| 334 | bool onLockFast(DeadlockDetectorTLS<BV> *dtls, uptr node, u32 stk = 0) { |
| 335 | if (hasAllEdges(dtls, cur_node: node)) { |
| 336 | dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk); |
| 337 | return true; |
| 338 | } |
| 339 | return false; |
| 340 | } |
| 341 | |
| 342 | bool isHeld(DeadlockDetectorTLS<BV> *dtls, uptr node) const { |
| 343 | return dtls->getLocks(current_epoch_).getBit(nodeToIndex(node)); |
| 344 | } |
| 345 | |
| 346 | uptr testOnlyGetEpoch() const { return current_epoch_; } |
| 347 | bool testOnlyHasEdge(uptr l1, uptr l2) { |
| 348 | return g_.hasEdge(nodeToIndex(node: l1), nodeToIndex(node: l2)); |
| 349 | } |
| 350 | // idx1 and idx2 are raw indices to g_, not lock IDs. |
| 351 | bool testOnlyHasEdgeRaw(uptr idx1, uptr idx2) { |
| 352 | return g_.hasEdge(idx1, idx2); |
| 353 | } |
| 354 | |
| 355 | void Print() { |
| 356 | for (uptr from = 0; from < size(); from++) |
| 357 | for (uptr to = 0; to < size(); to++) |
| 358 | if (g_.hasEdge(from, to)) |
| 359 | Printf(format: " %zx => %zx\n" , from, to); |
| 360 | } |
| 361 | |
| 362 | private: |
| 363 | void check_idx(uptr idx) const { CHECK_LT(idx, size()); } |
| 364 | |
| 365 | void check_node(uptr node) const { |
| 366 | CHECK_GE(node, size()); |
| 367 | CHECK_EQ(current_epoch_, nodeToEpoch(node)); |
| 368 | } |
| 369 | |
| 370 | uptr indexToNode(uptr idx) const { |
| 371 | check_idx(idx); |
| 372 | return idx + current_epoch_; |
| 373 | } |
| 374 | |
| 375 | uptr nodeToIndexUnchecked(uptr node) const { return node % size(); } |
| 376 | |
| 377 | uptr nodeToIndex(uptr node) const { |
| 378 | check_node(node); |
| 379 | return nodeToIndexUnchecked(node); |
| 380 | } |
| 381 | |
| 382 | uptr nodeToEpoch(uptr node) const { return node / size() * size(); } |
| 383 | |
| 384 | uptr getAvailableNode(uptr data) { |
| 385 | uptr idx = available_nodes_.getAndClearFirstOne(); |
| 386 | data_[idx] = data; |
| 387 | return indexToNode(idx); |
| 388 | } |
| 389 | |
| 390 | struct Edge { |
| 391 | u16 from; |
| 392 | u16 to; |
| 393 | u32 stk_from; |
| 394 | u32 stk_to; |
| 395 | int unique_tid; |
| 396 | }; |
| 397 | |
| 398 | uptr current_epoch_; |
| 399 | BV available_nodes_; |
| 400 | BV recycled_nodes_; |
| 401 | BV tmp_bv_; |
| 402 | BVGraph<BV> g_; |
| 403 | uptr data_[BV::kSize]; |
| 404 | Edge edges_[BV::kSize * 32]; |
| 405 | uptr n_edges_; |
| 406 | }; |
| 407 | |
| 408 | } // namespace __sanitizer |
| 409 | |
| 410 | #endif // SANITIZER_DEADLOCK_DETECTOR_H |
| 411 | |