| 1 | //===-- list.h --------------------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef SCUDO_LIST_H_ |
| 10 | #define SCUDO_LIST_H_ |
| 11 | |
| 12 | #include "internal_defs.h" |
| 13 | #include "type_traits.h" |
| 14 | |
| 15 | namespace scudo { |
| 16 | |
| 17 | // Intrusive POD singly and doubly linked list. |
| 18 | // An object with all zero fields should represent a valid empty list. clear() |
| 19 | // should be called on all non-zero-initialized objects before using. |
| 20 | // |
| 21 | // The intrusive list requires the member `Next` (and `Prev` if doubly linked |
| 22 | // list)` defined in the node type. The type of `Next`/`Prev` can be a pointer |
| 23 | // or an index to an array. For example, if the storage of the nodes is an |
| 24 | // array, instead of using a pointer type, linking with an index type can save |
| 25 | // some space. |
| 26 | // |
| 27 | // There are two things to be noticed while using an index type, |
| 28 | // 1. Call init() to set up the base address of the array. |
| 29 | // 2. Define `EndOfListVal` as the nil of the list. |
| 30 | |
| 31 | template <class T, bool LinkWithPtr = isPointer<decltype(T::Next)>::value> |
| 32 | class LinkOp { |
| 33 | public: |
| 34 | LinkOp() = default; |
| 35 | LinkOp(UNUSED T *BaseT, UNUSED uptr BaseSize) {} |
| 36 | void init(UNUSED T *LinkBase, UNUSED uptr Size) {} |
| 37 | T *getBase() const { return nullptr; } |
| 38 | uptr getSize() const { return 0; } |
| 39 | |
| 40 | T *getNext(T *X) const { return X->Next; } |
| 41 | void setNext(T *X, T *Next) const { X->Next = Next; } |
| 42 | |
| 43 | T *getPrev(T *X) const { return X->Prev; } |
| 44 | void setPrev(T *X, T *Prev) const { X->Prev = Prev; } |
| 45 | |
| 46 | T *getEndOfListVal() const { return nullptr; } |
| 47 | }; |
| 48 | |
| 49 | template <class T> class LinkOp<T, /*LinkWithPtr=*/false> { |
| 50 | public: |
| 51 | using LinkTy = typename assertSameType< |
| 52 | typename removeConst<decltype(T::Next)>::type, |
| 53 | typename removeConst<decltype(T::EndOfListVal)>::type>::type; |
| 54 | |
| 55 | LinkOp() = default; |
| 56 | LinkOp(T *BaseT, uptr BaseSize) |
| 57 | : Base(BaseT), Size(static_cast<LinkTy>(BaseSize)) {} |
| 58 | void init(T *LinkBase, uptr BaseSize) { |
| 59 | Base = LinkBase; |
| 60 | Size = static_cast<LinkTy>(BaseSize); |
| 61 | } |
| 62 | T *getBase() const { return Base; } |
| 63 | LinkTy getSize() const { return Size; } |
| 64 | |
| 65 | T *getNext(T *X) const { |
| 66 | DCHECK_NE(getBase(), nullptr); |
| 67 | if (X->Next == getEndOfListVal()) |
| 68 | return nullptr; |
| 69 | DCHECK_LT(X->Next, Size); |
| 70 | return &Base[X->Next]; |
| 71 | } |
| 72 | // Set `X->Next` to `Next`. |
| 73 | void setNext(T *X, T *Next) const { |
| 74 | if (Next == nullptr) { |
| 75 | X->Next = getEndOfListVal(); |
| 76 | } else { |
| 77 | assertElementInRange(X: Next); |
| 78 | X->Next = static_cast<LinkTy>(Next - Base); |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | T *getPrev(T *X) const { |
| 83 | DCHECK_NE(getBase(), nullptr); |
| 84 | if (X->Prev == getEndOfListVal()) |
| 85 | return nullptr; |
| 86 | DCHECK_LT(X->Prev, Size); |
| 87 | return &Base[X->Prev]; |
| 88 | } |
| 89 | // Set `X->Prev` to `Prev`. |
| 90 | void setPrev(T *X, T *Prev) const { |
| 91 | if (Prev == nullptr) { |
| 92 | X->Prev = getEndOfListVal(); |
| 93 | } else { |
| 94 | assertElementInRange(X: Prev); |
| 95 | X->Prev = static_cast<LinkTy>(Prev - Base); |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | LinkTy getEndOfListVal() const { return T::EndOfListVal; } |
| 100 | |
| 101 | private: |
| 102 | void assertElementInRange(T *X) const { |
| 103 | DCHECK_GE(reinterpret_cast<uptr>(X), reinterpret_cast<uptr>(Base)); |
| 104 | DCHECK_LE(static_cast<LinkTy>(X - Base), Size); |
| 105 | } |
| 106 | |
| 107 | protected: |
| 108 | T *Base = nullptr; |
| 109 | LinkTy Size = 0; |
| 110 | }; |
| 111 | |
| 112 | template <class T> class IteratorBase : public LinkOp<T> { |
| 113 | public: |
| 114 | IteratorBase(const LinkOp<T> &Link, T *CurrentT) |
| 115 | : LinkOp<T>(Link), Current(CurrentT) {} |
| 116 | |
| 117 | IteratorBase &operator++() { |
| 118 | Current = this->getNext(Current); |
| 119 | return *this; |
| 120 | } |
| 121 | bool operator!=(IteratorBase Other) const { return Current != Other.Current; } |
| 122 | T &operator*() { return *Current; } |
| 123 | |
| 124 | private: |
| 125 | T *Current; |
| 126 | }; |
| 127 | |
| 128 | template <class T> struct IntrusiveList : public LinkOp<T> { |
| 129 | IntrusiveList() = default; |
| 130 | void init(T *Base, uptr BaseSize) { LinkOp<T>::init(Base, BaseSize); } |
| 131 | |
| 132 | bool empty() const { return Size == 0; } |
| 133 | uptr size() const { return Size; } |
| 134 | |
| 135 | T *front() { return First; } |
| 136 | const T *front() const { return First; } |
| 137 | T *back() { return Last; } |
| 138 | const T *back() const { return Last; } |
| 139 | |
| 140 | void clear() { |
| 141 | First = Last = nullptr; |
| 142 | Size = 0; |
| 143 | } |
| 144 | |
| 145 | typedef IteratorBase<T> Iterator; |
| 146 | typedef IteratorBase<const T> ConstIterator; |
| 147 | |
| 148 | Iterator begin() { |
| 149 | return Iterator(LinkOp<T>(this->getBase(), this->getSize()), First); |
| 150 | } |
| 151 | Iterator end() { |
| 152 | return Iterator(LinkOp<T>(this->getBase(), this->getSize()), nullptr); |
| 153 | } |
| 154 | |
| 155 | ConstIterator begin() const { |
| 156 | return ConstIterator(LinkOp<const T>(this->getBase(), this->getSize()), |
| 157 | First); |
| 158 | } |
| 159 | ConstIterator end() const { |
| 160 | return ConstIterator(LinkOp<const T>(this->getBase(), this->getSize()), |
| 161 | nullptr); |
| 162 | } |
| 163 | |
| 164 | void checkConsistency() const; |
| 165 | |
| 166 | protected: |
| 167 | uptr Size = 0; |
| 168 | T *First = nullptr; |
| 169 | T *Last = nullptr; |
| 170 | }; |
| 171 | |
| 172 | template <class T> void IntrusiveList<T>::checkConsistency() const { |
| 173 | if (Size == 0) { |
| 174 | CHECK_EQ(First, nullptr); |
| 175 | CHECK_EQ(Last, nullptr); |
| 176 | } else { |
| 177 | uptr Count = 0; |
| 178 | for (T *I = First;; I = this->getNext(I)) { |
| 179 | Count++; |
| 180 | if (I == Last) |
| 181 | break; |
| 182 | } |
| 183 | CHECK_EQ(this->size(), Count); |
| 184 | CHECK_EQ(this->getNext(Last), nullptr); |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | template <class T> struct SinglyLinkedList : public IntrusiveList<T> { |
| 189 | using IntrusiveList<T>::First; |
| 190 | using IntrusiveList<T>::Last; |
| 191 | using IntrusiveList<T>::Size; |
| 192 | using IntrusiveList<T>::empty; |
| 193 | using IntrusiveList<T>::setNext; |
| 194 | using IntrusiveList<T>::getNext; |
| 195 | using IntrusiveList<T>::getEndOfListVal; |
| 196 | |
| 197 | void push_back(T *X) { |
| 198 | setNext(X, nullptr); |
| 199 | if (empty()) |
| 200 | First = X; |
| 201 | else |
| 202 | setNext(Last, X); |
| 203 | Last = X; |
| 204 | Size++; |
| 205 | } |
| 206 | |
| 207 | void push_front(T *X) { |
| 208 | if (empty()) |
| 209 | Last = X; |
| 210 | setNext(X, First); |
| 211 | First = X; |
| 212 | Size++; |
| 213 | } |
| 214 | |
| 215 | void pop_front() { |
| 216 | DCHECK(!empty()); |
| 217 | First = getNext(First); |
| 218 | if (!First) |
| 219 | Last = nullptr; |
| 220 | Size--; |
| 221 | } |
| 222 | |
| 223 | // Insert X next to Prev |
| 224 | void insert(T *Prev, T *X) { |
| 225 | DCHECK(!empty()); |
| 226 | DCHECK_NE(Prev, nullptr); |
| 227 | DCHECK_NE(X, nullptr); |
| 228 | setNext(X, getNext(Prev)); |
| 229 | setNext(Prev, X); |
| 230 | if (Last == Prev) |
| 231 | Last = X; |
| 232 | ++Size; |
| 233 | } |
| 234 | |
| 235 | void (T *Prev, T *X) { |
| 236 | DCHECK(!empty()); |
| 237 | DCHECK_NE(Prev, nullptr); |
| 238 | DCHECK_NE(X, nullptr); |
| 239 | DCHECK_EQ(getNext(Prev), X); |
| 240 | setNext(Prev, getNext(X)); |
| 241 | if (Last == X) |
| 242 | Last = Prev; |
| 243 | Size--; |
| 244 | } |
| 245 | |
| 246 | void append_back(SinglyLinkedList<T> *L) { |
| 247 | DCHECK_NE(this, L); |
| 248 | if (L->empty()) |
| 249 | return; |
| 250 | if (empty()) { |
| 251 | *this = *L; |
| 252 | } else { |
| 253 | setNext(Last, L->First); |
| 254 | Last = L->Last; |
| 255 | Size += L->size(); |
| 256 | } |
| 257 | L->clear(); |
| 258 | } |
| 259 | }; |
| 260 | |
| 261 | template <class T> struct DoublyLinkedList : IntrusiveList<T> { |
| 262 | using IntrusiveList<T>::First; |
| 263 | using IntrusiveList<T>::Last; |
| 264 | using IntrusiveList<T>::Size; |
| 265 | using IntrusiveList<T>::empty; |
| 266 | using IntrusiveList<T>::setNext; |
| 267 | using IntrusiveList<T>::getNext; |
| 268 | using IntrusiveList<T>::setPrev; |
| 269 | using IntrusiveList<T>::getPrev; |
| 270 | using IntrusiveList<T>::getEndOfListVal; |
| 271 | |
| 272 | void push_front(T *X) { |
| 273 | setPrev(X, nullptr); |
| 274 | if (empty()) { |
| 275 | Last = X; |
| 276 | } else { |
| 277 | DCHECK_EQ(getPrev(First), nullptr); |
| 278 | setPrev(First, X); |
| 279 | } |
| 280 | setNext(X, First); |
| 281 | First = X; |
| 282 | Size++; |
| 283 | } |
| 284 | |
| 285 | // Inserts X before Y. |
| 286 | void insert(T *X, T *Y) { |
| 287 | if (Y == First) |
| 288 | return push_front(X); |
| 289 | T *Prev = getPrev(Y); |
| 290 | // This is a hard CHECK to ensure consistency in the event of an intentional |
| 291 | // corruption of Y->Prev, to prevent a potential write-{4,8}. |
| 292 | CHECK_EQ(getNext(Prev), Y); |
| 293 | setNext(Prev, X); |
| 294 | setPrev(X, Prev); |
| 295 | setNext(X, Y); |
| 296 | setPrev(Y, X); |
| 297 | Size++; |
| 298 | } |
| 299 | |
| 300 | void push_back(T *X) { |
| 301 | setNext(X, nullptr); |
| 302 | if (empty()) { |
| 303 | First = X; |
| 304 | } else { |
| 305 | DCHECK_EQ(getNext(Last), nullptr); |
| 306 | setNext(Last, X); |
| 307 | } |
| 308 | setPrev(X, Last); |
| 309 | Last = X; |
| 310 | Size++; |
| 311 | } |
| 312 | |
| 313 | void pop_front() { |
| 314 | DCHECK(!empty()); |
| 315 | First = getNext(First); |
| 316 | if (!First) |
| 317 | Last = nullptr; |
| 318 | else |
| 319 | setPrev(First, nullptr); |
| 320 | Size--; |
| 321 | } |
| 322 | |
| 323 | // The consistency of the adjacent links is aggressively checked in order to |
| 324 | // catch potential corruption attempts, that could yield a mirrored |
| 325 | // write-{4,8} primitive. nullptr checks are deemed less vital. |
| 326 | void remove(T *X) { |
| 327 | T *Prev = getPrev(X); |
| 328 | T *Next = getNext(X); |
| 329 | if (Prev) { |
| 330 | CHECK_EQ(getNext(Prev), X); |
| 331 | setNext(Prev, Next); |
| 332 | } |
| 333 | if (Next) { |
| 334 | CHECK_EQ(getPrev(Next), X); |
| 335 | setPrev(Next, Prev); |
| 336 | } |
| 337 | if (First == X) { |
| 338 | DCHECK_EQ(Prev, nullptr); |
| 339 | First = Next; |
| 340 | } else { |
| 341 | DCHECK_NE(Prev, nullptr); |
| 342 | } |
| 343 | if (Last == X) { |
| 344 | DCHECK_EQ(Next, nullptr); |
| 345 | Last = Prev; |
| 346 | } else { |
| 347 | DCHECK_NE(Next, nullptr); |
| 348 | } |
| 349 | Size--; |
| 350 | } |
| 351 | }; |
| 352 | |
| 353 | } // namespace scudo |
| 354 | |
| 355 | #endif // SCUDO_LIST_H_ |
| 356 | |