| 1 | //===-- timing.h ------------------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef SCUDO_TIMING_H_ |
| 10 | #define SCUDO_TIMING_H_ |
| 11 | |
| 12 | #include "common.h" |
| 13 | #include "mutex.h" |
| 14 | #include "string_utils.h" |
| 15 | #include "thread_annotations.h" |
| 16 | |
| 17 | #ifndef __STDC_FORMAT_MACROS |
| 18 | // Ensure PRId64 macro is available |
| 19 | #define __STDC_FORMAT_MACROS 1 |
| 20 | #endif |
| 21 | #include <inttypes.h> |
| 22 | #include <string.h> |
| 23 | |
| 24 | namespace scudo { |
| 25 | |
| 26 | class TimingManager; |
| 27 | |
| 28 | // A simple timer for evaluating execution time of code snippets. It can be used |
| 29 | // along with TimingManager or standalone. |
| 30 | class Timer { |
| 31 | public: |
| 32 | // The use of Timer without binding to a TimingManager is supposed to do the |
| 33 | // timer logging manually. Otherwise, TimingManager will do the logging stuff |
| 34 | // for you. |
| 35 | Timer() = default; |
| 36 | Timer(Timer &&Other) |
| 37 | : StartTime(0), AccTime(Other.AccTime), Manager(Other.Manager), |
| 38 | HandleId(Other.HandleId) { |
| 39 | Other.Manager = nullptr; |
| 40 | } |
| 41 | |
| 42 | Timer(const Timer &) = delete; |
| 43 | |
| 44 | ~Timer(); |
| 45 | |
| 46 | void start() { |
| 47 | CHECK_EQ(StartTime, 0U); |
| 48 | StartTime = getMonotonicTime(); |
| 49 | } |
| 50 | void stop() { |
| 51 | AccTime += getMonotonicTime() - StartTime; |
| 52 | StartTime = 0; |
| 53 | } |
| 54 | u64 getAccumulatedTime() const { return AccTime; } |
| 55 | |
| 56 | // Unset the bound TimingManager so that we don't report the data back. This |
| 57 | // is useful if we only want to track subset of certain scope events. |
| 58 | void ignore() { |
| 59 | StartTime = 0; |
| 60 | AccTime = 0; |
| 61 | Manager = nullptr; |
| 62 | } |
| 63 | |
| 64 | protected: |
| 65 | friend class TimingManager; |
| 66 | Timer(TimingManager &Manager, u32 HandleId) |
| 67 | : Manager(&Manager), HandleId(HandleId) {} |
| 68 | |
| 69 | u64 StartTime = 0; |
| 70 | u64 AccTime = 0; |
| 71 | TimingManager *Manager = nullptr; |
| 72 | u32 HandleId; |
| 73 | }; |
| 74 | |
| 75 | // A RAII-style wrapper for easy scope execution measurement. Note that in order |
| 76 | // not to take additional space for the message like `Name`. It only works with |
| 77 | // TimingManager. |
| 78 | class ScopedTimer : public Timer { |
| 79 | public: |
| 80 | ScopedTimer(TimingManager &Manager, const char *Name); |
| 81 | ScopedTimer(TimingManager &Manager, const Timer &Nest, const char *Name); |
| 82 | ~ScopedTimer() { stop(); } |
| 83 | }; |
| 84 | |
| 85 | // In Scudo, the execution time of single run of code snippets may not be |
| 86 | // useful, we are more interested in the average time from several runs. |
| 87 | // TimingManager lets the registered timer report their data and reports the |
| 88 | // average execution time for each timer periodically. |
| 89 | class TimingManager { |
| 90 | public: |
| 91 | TimingManager(u32 PrintingInterval = DefaultPrintingInterval) |
| 92 | : PrintingInterval(PrintingInterval) {} |
| 93 | ~TimingManager() { |
| 94 | if (NumAllocatedTimers != 0) |
| 95 | printAll(); |
| 96 | } |
| 97 | |
| 98 | Timer getOrCreateTimer(const char *Name) EXCLUDES(Mutex) { |
| 99 | ScopedLock L(Mutex); |
| 100 | |
| 101 | CHECK_LT(strlen(Name), MaxLenOfTimerName); |
| 102 | for (u32 I = 0; I < NumAllocatedTimers; ++I) { |
| 103 | if (strncmp(s1: Name, s2: Timers[I].Name, n: MaxLenOfTimerName) == 0) |
| 104 | return Timer(*this, I); |
| 105 | } |
| 106 | |
| 107 | CHECK_LT(NumAllocatedTimers, MaxNumberOfTimers); |
| 108 | strncpy(dest: Timers[NumAllocatedTimers].Name, src: Name, n: MaxLenOfTimerName); |
| 109 | TimerRecords[NumAllocatedTimers].AccumulatedTime = 0; |
| 110 | TimerRecords[NumAllocatedTimers].Occurrence = 0; |
| 111 | TimerRecords[NumAllocatedTimers].MaxTime = 0; |
| 112 | return Timer(*this, NumAllocatedTimers++); |
| 113 | } |
| 114 | |
| 115 | // Add a sub-Timer associated with another Timer. This is used when we want to |
| 116 | // detail the execution time in the scope of a Timer. |
| 117 | // For example, |
| 118 | // void Foo() { |
| 119 | // // T1 records the time spent in both first and second tasks. |
| 120 | // ScopedTimer T1(getTimingManager(), "Task1"); |
| 121 | // { |
| 122 | // // T2 records the time spent in first task |
| 123 | // ScopedTimer T2(getTimingManager, T1, "Task2"); |
| 124 | // // Do first task. |
| 125 | // } |
| 126 | // // Do second task. |
| 127 | // } |
| 128 | // |
| 129 | // The report will show proper indents to indicate the nested relation like, |
| 130 | // -- Average Operation Time -- -- Name (# of Calls) -- |
| 131 | // 10.0(ns) Task1 (1) |
| 132 | // 5.0(ns) Task2 (1) |
| 133 | Timer nest(const Timer &T, const char *Name) EXCLUDES(Mutex) { |
| 134 | CHECK_EQ(T.Manager, this); |
| 135 | Timer Nesting = getOrCreateTimer(Name); |
| 136 | |
| 137 | ScopedLock L(Mutex); |
| 138 | CHECK_NE(Nesting.HandleId, T.HandleId); |
| 139 | Timers[Nesting.HandleId].Nesting = T.HandleId; |
| 140 | return Nesting; |
| 141 | } |
| 142 | |
| 143 | void report(const Timer &T) EXCLUDES(Mutex) { |
| 144 | ScopedLock L(Mutex); |
| 145 | |
| 146 | const u32 HandleId = T.HandleId; |
| 147 | CHECK_LT(HandleId, MaxNumberOfTimers); |
| 148 | u64 AccTime = T.getAccumulatedTime(); |
| 149 | TimerRecords[HandleId].AccumulatedTime += AccTime; |
| 150 | if (AccTime > TimerRecords[HandleId].MaxTime) { |
| 151 | TimerRecords[HandleId].MaxTime = AccTime; |
| 152 | } |
| 153 | ++TimerRecords[HandleId].Occurrence; |
| 154 | ++NumEventsReported; |
| 155 | if (NumEventsReported % PrintingInterval == 0) { |
| 156 | ScopedString Str; |
| 157 | getAllImpl(Str); |
| 158 | Str.output(); |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | void printAll() EXCLUDES(Mutex) { |
| 163 | ScopedString Str; |
| 164 | getAll(Str); |
| 165 | Str.output(); |
| 166 | } |
| 167 | |
| 168 | void getAll(ScopedString &Str) EXCLUDES(Mutex) { |
| 169 | ScopedLock L(Mutex); |
| 170 | getAllImpl(Str); |
| 171 | } |
| 172 | |
| 173 | private: |
| 174 | void getAllImpl(ScopedString &Str) REQUIRES(Mutex) { |
| 175 | static char [] = "-- Average Operation Time --" ; |
| 176 | static char [] = "-- Maximum Operation Time --" ; |
| 177 | static char [] = "-- Name (# of Calls) --" ; |
| 178 | Str.append(Format: "%-15s %-15s %-15s\n" , AvgHeader, MaxHeader, NameHeader); |
| 179 | |
| 180 | for (u32 I = 0; I < NumAllocatedTimers; ++I) { |
| 181 | if (Timers[I].Nesting != MaxNumberOfTimers) |
| 182 | continue; |
| 183 | getImpl(Str, HandleId: I); |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | void getImpl(ScopedString &Str, const u32 HandleId, const u32 = 0) |
| 188 | REQUIRES(Mutex) { |
| 189 | const u64 AccumulatedTime = TimerRecords[HandleId].AccumulatedTime; |
| 190 | const u64 Occurrence = TimerRecords[HandleId].Occurrence; |
| 191 | const u64 Integral = Occurrence == 0 ? 0 : AccumulatedTime / Occurrence; |
| 192 | // Only keep single digit of fraction is enough and it enables easier layout |
| 193 | // maintenance. |
| 194 | const u64 Fraction = |
| 195 | Occurrence == 0 ? 0 |
| 196 | : ((AccumulatedTime % Occurrence) * 10) / Occurrence; |
| 197 | |
| 198 | // Average time. |
| 199 | Str.append(Format: "%14" PRId64 ".%" PRId64 "(ns) %-8s" , Integral, Fraction, " " ); |
| 200 | |
| 201 | // Maximum time. |
| 202 | Str.append(Format: "%16" PRId64 "(ns) %-11s" , TimerRecords[HandleId].MaxTime, " " ); |
| 203 | |
| 204 | // Name and num occurrences. |
| 205 | for (u32 I = 0; I < ExtraIndent; ++I) |
| 206 | Str.append(Format: "%s" , " " ); |
| 207 | Str.append(Format: "%s (%" PRId64 ")\n" , Timers[HandleId].Name, Occurrence); |
| 208 | |
| 209 | for (u32 I = 0; I < NumAllocatedTimers; ++I) |
| 210 | if (Timers[I].Nesting == HandleId) |
| 211 | getImpl(Str, HandleId: I, ExtraIndent: ExtraIndent + 1); |
| 212 | } |
| 213 | |
| 214 | // Instead of maintaining pages for timer registration, a static buffer is |
| 215 | // sufficient for most use cases in Scudo. |
| 216 | static constexpr u32 MaxNumberOfTimers = 50; |
| 217 | static constexpr u32 MaxLenOfTimerName = 50; |
| 218 | static constexpr u32 DefaultPrintingInterval = 100; |
| 219 | |
| 220 | struct Record { |
| 221 | u64 AccumulatedTime = 0; |
| 222 | u64 Occurrence = 0; |
| 223 | u64 MaxTime = 0; |
| 224 | }; |
| 225 | |
| 226 | struct TimerInfo { |
| 227 | char Name[MaxLenOfTimerName + 1]; |
| 228 | u32 Nesting = MaxNumberOfTimers; |
| 229 | }; |
| 230 | |
| 231 | HybridMutex Mutex; |
| 232 | // The frequency of proactively dumping the timer statistics. For example, the |
| 233 | // default setting is to dump the statistics every 100 reported events. |
| 234 | u32 PrintingInterval GUARDED_BY(Mutex); |
| 235 | u64 NumEventsReported GUARDED_BY(Mutex) = 0; |
| 236 | u32 NumAllocatedTimers GUARDED_BY(Mutex) = 0; |
| 237 | TimerInfo Timers[MaxNumberOfTimers] GUARDED_BY(Mutex); |
| 238 | Record TimerRecords[MaxNumberOfTimers] GUARDED_BY(Mutex); |
| 239 | }; |
| 240 | |
| 241 | } // namespace scudo |
| 242 | |
| 243 | #endif // SCUDO_TIMING_H_ |
| 244 | |