| 1 | //===-- High Precision Decimal ----------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See httpss//llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | // ----------------------------------------------------------------------------- |
| 10 | // **** WARNING **** |
| 11 | // This file is shared with libc++. You should also be careful when adding |
| 12 | // dependencies to this file, since it needs to build for all libc++ targets. |
| 13 | // ----------------------------------------------------------------------------- |
| 14 | |
| 15 | #ifndef LLVM_LIBC_SRC___SUPPORT_HIGH_PRECISION_DECIMAL_H |
| 16 | #define LLVM_LIBC_SRC___SUPPORT_HIGH_PRECISION_DECIMAL_H |
| 17 | |
| 18 | #include "src/__support/CPP/limits.h" |
| 19 | #include "src/__support/ctype_utils.h" |
| 20 | #include "src/__support/macros/config.h" |
| 21 | #include "src/__support/str_to_integer.h" |
| 22 | #include <stdint.h> |
| 23 | |
| 24 | namespace LIBC_NAMESPACE_DECL { |
| 25 | namespace internal { |
| 26 | |
| 27 | struct LShiftTableEntry { |
| 28 | uint32_t new_digits; |
| 29 | char const *power_of_five; |
| 30 | }; |
| 31 | |
| 32 | // ----------------------------------------------------------------------------- |
| 33 | // **** WARNING **** |
| 34 | // This interface is shared with libc++, if you change this interface you need |
| 35 | // to update it in both libc and libc++. |
| 36 | // ----------------------------------------------------------------------------- |
| 37 | // This is used in both this file and in the main str_to_float.h. |
| 38 | // TODO: Figure out where to put this. |
| 39 | enum class RoundDirection { Up, Down, Nearest }; |
| 40 | |
| 41 | // This is based on the HPD data structure described as part of the Simple |
| 42 | // Decimal Conversion algorithm by Nigel Tao, described at this link: |
| 43 | // https://nigeltao.github.io/blog/2020/parse-number-f64-simple.html |
| 44 | class HighPrecisionDecimal { |
| 45 | |
| 46 | // This precomputed table speeds up left shifts by having the number of new |
| 47 | // digits that will be added by multiplying 5^i by 2^i. If the number is less |
| 48 | // than 5^i then it will add one fewer digit. There are only 60 entries since |
| 49 | // that's the max shift amount. |
| 50 | // This table was generated by the script at |
| 51 | // libc/utils/mathtools/GenerateHPDConstants.py |
| 52 | static constexpr LShiftTableEntry LEFT_SHIFT_DIGIT_TABLE[] = { |
| 53 | {.new_digits: 0, .power_of_five: "" }, |
| 54 | {.new_digits: 1, .power_of_five: "5" }, |
| 55 | {.new_digits: 1, .power_of_five: "25" }, |
| 56 | {.new_digits: 1, .power_of_five: "125" }, |
| 57 | {.new_digits: 2, .power_of_five: "625" }, |
| 58 | {.new_digits: 2, .power_of_five: "3125" }, |
| 59 | {.new_digits: 2, .power_of_five: "15625" }, |
| 60 | {.new_digits: 3, .power_of_five: "78125" }, |
| 61 | {.new_digits: 3, .power_of_five: "390625" }, |
| 62 | {.new_digits: 3, .power_of_five: "1953125" }, |
| 63 | {.new_digits: 4, .power_of_five: "9765625" }, |
| 64 | {.new_digits: 4, .power_of_five: "48828125" }, |
| 65 | {.new_digits: 4, .power_of_five: "244140625" }, |
| 66 | {.new_digits: 4, .power_of_five: "1220703125" }, |
| 67 | {.new_digits: 5, .power_of_five: "6103515625" }, |
| 68 | {.new_digits: 5, .power_of_five: "30517578125" }, |
| 69 | {.new_digits: 5, .power_of_five: "152587890625" }, |
| 70 | {.new_digits: 6, .power_of_five: "762939453125" }, |
| 71 | {.new_digits: 6, .power_of_five: "3814697265625" }, |
| 72 | {.new_digits: 6, .power_of_five: "19073486328125" }, |
| 73 | {.new_digits: 7, .power_of_five: "95367431640625" }, |
| 74 | {.new_digits: 7, .power_of_five: "476837158203125" }, |
| 75 | {.new_digits: 7, .power_of_five: "2384185791015625" }, |
| 76 | {.new_digits: 7, .power_of_five: "11920928955078125" }, |
| 77 | {.new_digits: 8, .power_of_five: "59604644775390625" }, |
| 78 | {.new_digits: 8, .power_of_five: "298023223876953125" }, |
| 79 | {.new_digits: 8, .power_of_five: "1490116119384765625" }, |
| 80 | {.new_digits: 9, .power_of_five: "7450580596923828125" }, |
| 81 | {.new_digits: 9, .power_of_five: "37252902984619140625" }, |
| 82 | {.new_digits: 9, .power_of_five: "186264514923095703125" }, |
| 83 | {.new_digits: 10, .power_of_five: "931322574615478515625" }, |
| 84 | {.new_digits: 10, .power_of_five: "4656612873077392578125" }, |
| 85 | {.new_digits: 10, .power_of_five: "23283064365386962890625" }, |
| 86 | {.new_digits: 10, .power_of_five: "116415321826934814453125" }, |
| 87 | {.new_digits: 11, .power_of_five: "582076609134674072265625" }, |
| 88 | {.new_digits: 11, .power_of_five: "2910383045673370361328125" }, |
| 89 | {.new_digits: 11, .power_of_five: "14551915228366851806640625" }, |
| 90 | {.new_digits: 12, .power_of_five: "72759576141834259033203125" }, |
| 91 | {.new_digits: 12, .power_of_five: "363797880709171295166015625" }, |
| 92 | {.new_digits: 12, .power_of_five: "1818989403545856475830078125" }, |
| 93 | {.new_digits: 13, .power_of_five: "9094947017729282379150390625" }, |
| 94 | {.new_digits: 13, .power_of_five: "45474735088646411895751953125" }, |
| 95 | {.new_digits: 13, .power_of_five: "227373675443232059478759765625" }, |
| 96 | {.new_digits: 13, .power_of_five: "1136868377216160297393798828125" }, |
| 97 | {.new_digits: 14, .power_of_five: "5684341886080801486968994140625" }, |
| 98 | {.new_digits: 14, .power_of_five: "28421709430404007434844970703125" }, |
| 99 | {.new_digits: 14, .power_of_five: "142108547152020037174224853515625" }, |
| 100 | {.new_digits: 15, .power_of_five: "710542735760100185871124267578125" }, |
| 101 | {.new_digits: 15, .power_of_five: "3552713678800500929355621337890625" }, |
| 102 | {.new_digits: 15, .power_of_five: "17763568394002504646778106689453125" }, |
| 103 | {.new_digits: 16, .power_of_five: "88817841970012523233890533447265625" }, |
| 104 | {.new_digits: 16, .power_of_five: "444089209850062616169452667236328125" }, |
| 105 | {.new_digits: 16, .power_of_five: "2220446049250313080847263336181640625" }, |
| 106 | {.new_digits: 16, .power_of_five: "11102230246251565404236316680908203125" }, |
| 107 | {.new_digits: 17, .power_of_five: "55511151231257827021181583404541015625" }, |
| 108 | {.new_digits: 17, .power_of_five: "277555756156289135105907917022705078125" }, |
| 109 | {.new_digits: 17, .power_of_five: "1387778780781445675529539585113525390625" }, |
| 110 | {.new_digits: 18, .power_of_five: "6938893903907228377647697925567626953125" }, |
| 111 | {.new_digits: 18, .power_of_five: "34694469519536141888238489627838134765625" }, |
| 112 | {.new_digits: 18, .power_of_five: "173472347597680709441192448139190673828125" }, |
| 113 | {.new_digits: 19, .power_of_five: "867361737988403547205962240695953369140625" }, |
| 114 | }; |
| 115 | |
| 116 | // The maximum amount we can shift is the number of bits used in the |
| 117 | // accumulator, minus the number of bits needed to represent the base (in this |
| 118 | // case 4). |
| 119 | static constexpr uint32_t MAX_SHIFT_AMOUNT = sizeof(uint64_t) - 4; |
| 120 | |
| 121 | // 800 is an arbitrary number of digits, but should be |
| 122 | // large enough for any practical number. |
| 123 | static constexpr uint32_t MAX_NUM_DIGITS = 800; |
| 124 | |
| 125 | uint32_t num_digits = 0; |
| 126 | int32_t decimal_point = 0; |
| 127 | bool truncated = false; |
| 128 | uint8_t digits[MAX_NUM_DIGITS]; |
| 129 | |
| 130 | private: |
| 131 | LIBC_INLINE bool should_round_up(int32_t round_to_digit, |
| 132 | RoundDirection round) { |
| 133 | if (round_to_digit < 0 || |
| 134 | static_cast<uint32_t>(round_to_digit) >= this->num_digits) { |
| 135 | return false; |
| 136 | } |
| 137 | |
| 138 | // The above condition handles all cases where all of the trailing digits |
| 139 | // are zero. In that case, if the rounding mode is up, then this number |
| 140 | // should be rounded up. Similarly, if the rounding mode is down, then it |
| 141 | // should always round down. |
| 142 | if (round == RoundDirection::Up) { |
| 143 | return true; |
| 144 | } else if (round == RoundDirection::Down) { |
| 145 | return false; |
| 146 | } |
| 147 | // Else round to nearest. |
| 148 | |
| 149 | // If we're right in the middle and there are no extra digits |
| 150 | if (this->digits[round_to_digit] == 5 && |
| 151 | static_cast<uint32_t>(round_to_digit + 1) == this->num_digits) { |
| 152 | |
| 153 | // Round up if we've truncated (since that means the result is slightly |
| 154 | // higher than what's represented.) |
| 155 | if (this->truncated) { |
| 156 | return true; |
| 157 | } |
| 158 | |
| 159 | // If this exactly halfway, round to even. |
| 160 | if (round_to_digit == 0) |
| 161 | // When the input is ".5". |
| 162 | return false; |
| 163 | return this->digits[round_to_digit - 1] % 2 != 0; |
| 164 | } |
| 165 | // If there are digits after round_to_digit, they must be non-zero since we |
| 166 | // trim trailing zeroes after all operations that change digits. |
| 167 | return this->digits[round_to_digit] >= 5; |
| 168 | } |
| 169 | |
| 170 | // Takes an amount to left shift and returns the number of new digits needed |
| 171 | // to store the result based on LEFT_SHIFT_DIGIT_TABLE. |
| 172 | LIBC_INLINE uint32_t get_num_new_digits(uint32_t lshift_amount) { |
| 173 | const char *power_of_five = |
| 174 | LEFT_SHIFT_DIGIT_TABLE[lshift_amount].power_of_five; |
| 175 | uint32_t new_digits = LEFT_SHIFT_DIGIT_TABLE[lshift_amount].new_digits; |
| 176 | uint32_t digit_index = 0; |
| 177 | while (power_of_five[digit_index] != 0) { |
| 178 | if (digit_index >= this->num_digits) { |
| 179 | return new_digits - 1; |
| 180 | } |
| 181 | if (this->digits[digit_index] != |
| 182 | internal::b36_char_to_int(ch: power_of_five[digit_index])) { |
| 183 | return new_digits - |
| 184 | ((this->digits[digit_index] < |
| 185 | internal::b36_char_to_int(ch: power_of_five[digit_index])) |
| 186 | ? 1 |
| 187 | : 0); |
| 188 | } |
| 189 | ++digit_index; |
| 190 | } |
| 191 | return new_digits; |
| 192 | } |
| 193 | |
| 194 | // Trim all trailing 0s |
| 195 | LIBC_INLINE void trim_trailing_zeroes() { |
| 196 | while (this->num_digits > 0 && this->digits[this->num_digits - 1] == 0) { |
| 197 | --this->num_digits; |
| 198 | } |
| 199 | if (this->num_digits == 0) { |
| 200 | this->decimal_point = 0; |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | // Perform a digitwise binary non-rounding right shift on this value by |
| 205 | // shift_amount. The shift_amount can't be more than MAX_SHIFT_AMOUNT to |
| 206 | // prevent overflow. |
| 207 | LIBC_INLINE void right_shift(uint32_t shift_amount) { |
| 208 | uint32_t read_index = 0; |
| 209 | uint32_t write_index = 0; |
| 210 | |
| 211 | uint64_t accumulator = 0; |
| 212 | |
| 213 | const uint64_t shift_mask = (uint64_t(1) << shift_amount) - 1; |
| 214 | |
| 215 | // Warm Up phase: we don't have enough digits to start writing, so just |
| 216 | // read them into the accumulator. |
| 217 | while (accumulator >> shift_amount == 0) { |
| 218 | uint64_t read_digit = 0; |
| 219 | // If there are still digits to read, read the next one, else the digit is |
| 220 | // assumed to be 0. |
| 221 | if (read_index < this->num_digits) { |
| 222 | read_digit = this->digits[read_index]; |
| 223 | } |
| 224 | accumulator = accumulator * 10 + read_digit; |
| 225 | ++read_index; |
| 226 | } |
| 227 | |
| 228 | // Shift the decimal point by the number of digits it took to fill the |
| 229 | // accumulator. |
| 230 | this->decimal_point -= read_index - 1; |
| 231 | |
| 232 | // Middle phase: we have enough digits to write, as well as more digits to |
| 233 | // read. Keep reading until we run out of digits. |
| 234 | while (read_index < this->num_digits) { |
| 235 | uint64_t read_digit = this->digits[read_index]; |
| 236 | uint64_t write_digit = accumulator >> shift_amount; |
| 237 | accumulator &= shift_mask; |
| 238 | this->digits[write_index] = static_cast<uint8_t>(write_digit); |
| 239 | accumulator = accumulator * 10 + read_digit; |
| 240 | ++read_index; |
| 241 | ++write_index; |
| 242 | } |
| 243 | |
| 244 | // Cool Down phase: All of the readable digits have been read, so just write |
| 245 | // the remainder, while treating any more digits as 0. |
| 246 | while (accumulator > 0) { |
| 247 | uint64_t write_digit = accumulator >> shift_amount; |
| 248 | accumulator &= shift_mask; |
| 249 | if (write_index < MAX_NUM_DIGITS) { |
| 250 | this->digits[write_index] = static_cast<uint8_t>(write_digit); |
| 251 | ++write_index; |
| 252 | } else if (write_digit > 0) { |
| 253 | this->truncated = true; |
| 254 | } |
| 255 | accumulator = accumulator * 10; |
| 256 | } |
| 257 | this->num_digits = write_index; |
| 258 | this->trim_trailing_zeroes(); |
| 259 | } |
| 260 | |
| 261 | // Perform a digitwise binary non-rounding left shift on this value by |
| 262 | // shift_amount. The shift_amount can't be more than MAX_SHIFT_AMOUNT to |
| 263 | // prevent overflow. |
| 264 | LIBC_INLINE void left_shift(uint32_t shift_amount) { |
| 265 | uint32_t new_digits = this->get_num_new_digits(lshift_amount: shift_amount); |
| 266 | |
| 267 | int32_t read_index = static_cast<int32_t>(this->num_digits - 1); |
| 268 | uint32_t write_index = this->num_digits + new_digits; |
| 269 | |
| 270 | uint64_t accumulator = 0; |
| 271 | |
| 272 | // No Warm Up phase. Since we're putting digits in at the top and taking |
| 273 | // digits from the bottom we don't have to wait for the accumulator to fill. |
| 274 | |
| 275 | // Middle phase: while we have more digits to read, keep reading as well as |
| 276 | // writing. |
| 277 | while (read_index >= 0) { |
| 278 | accumulator += static_cast<uint64_t>(this->digits[read_index]) |
| 279 | << shift_amount; |
| 280 | uint64_t next_accumulator = accumulator / 10; |
| 281 | uint64_t write_digit = accumulator - (10 * next_accumulator); |
| 282 | --write_index; |
| 283 | if (write_index < MAX_NUM_DIGITS) { |
| 284 | this->digits[write_index] = static_cast<uint8_t>(write_digit); |
| 285 | } else if (write_digit != 0) { |
| 286 | this->truncated = true; |
| 287 | } |
| 288 | accumulator = next_accumulator; |
| 289 | --read_index; |
| 290 | } |
| 291 | |
| 292 | // Cool Down phase: there are no more digits to read, so just write the |
| 293 | // remaining digits in the accumulator. |
| 294 | while (accumulator > 0) { |
| 295 | uint64_t next_accumulator = accumulator / 10; |
| 296 | uint64_t write_digit = accumulator - (10 * next_accumulator); |
| 297 | --write_index; |
| 298 | if (write_index < MAX_NUM_DIGITS) { |
| 299 | this->digits[write_index] = static_cast<uint8_t>(write_digit); |
| 300 | } else if (write_digit != 0) { |
| 301 | this->truncated = true; |
| 302 | } |
| 303 | accumulator = next_accumulator; |
| 304 | } |
| 305 | |
| 306 | this->num_digits += new_digits; |
| 307 | if (this->num_digits > MAX_NUM_DIGITS) { |
| 308 | this->num_digits = MAX_NUM_DIGITS; |
| 309 | } |
| 310 | this->decimal_point += new_digits; |
| 311 | this->trim_trailing_zeroes(); |
| 312 | } |
| 313 | |
| 314 | public: |
| 315 | // num_string is assumed to be a string of numeric characters. It doesn't |
| 316 | // handle leading spaces. |
| 317 | LIBC_INLINE |
| 318 | HighPrecisionDecimal( |
| 319 | const char *__restrict num_string, |
| 320 | const size_t num_len = cpp::numeric_limits<size_t>::max()) { |
| 321 | bool saw_dot = false; |
| 322 | size_t num_cur = 0; |
| 323 | // This counts the digits in the number, even if there isn't space to store |
| 324 | // them all. |
| 325 | uint32_t total_digits = 0; |
| 326 | while (num_cur < num_len && |
| 327 | (isdigit(ch: num_string[num_cur]) || num_string[num_cur] == '.')) { |
| 328 | if (num_string[num_cur] == '.') { |
| 329 | if (saw_dot) { |
| 330 | break; |
| 331 | } |
| 332 | this->decimal_point = static_cast<int32_t>(total_digits); |
| 333 | saw_dot = true; |
| 334 | } else { |
| 335 | if (num_string[num_cur] == '0' && this->num_digits == 0) { |
| 336 | --this->decimal_point; |
| 337 | ++num_cur; |
| 338 | continue; |
| 339 | } |
| 340 | ++total_digits; |
| 341 | if (this->num_digits < MAX_NUM_DIGITS) { |
| 342 | this->digits[this->num_digits] = static_cast<uint8_t>( |
| 343 | internal::b36_char_to_int(ch: num_string[num_cur])); |
| 344 | ++this->num_digits; |
| 345 | } else if (num_string[num_cur] != '0') { |
| 346 | this->truncated = true; |
| 347 | } |
| 348 | } |
| 349 | ++num_cur; |
| 350 | } |
| 351 | |
| 352 | if (!saw_dot) |
| 353 | this->decimal_point = static_cast<int32_t>(total_digits); |
| 354 | |
| 355 | if (num_cur < num_len && |
| 356 | (num_string[num_cur] == 'e' || num_string[num_cur] == 'E')) { |
| 357 | ++num_cur; |
| 358 | if (isdigit(ch: num_string[num_cur]) || num_string[num_cur] == '+' || |
| 359 | num_string[num_cur] == '-') { |
| 360 | auto result = |
| 361 | strtointeger<int32_t>(src: num_string + num_cur, base: 10, src_len: num_len - num_cur); |
| 362 | if (result.has_error()) { |
| 363 | // TODO: handle error |
| 364 | } |
| 365 | int32_t add_to_exponent = result.value; |
| 366 | |
| 367 | // Here we do this operation as int64 to avoid overflow. |
| 368 | int64_t temp_exponent = static_cast<int64_t>(this->decimal_point) + |
| 369 | static_cast<int64_t>(add_to_exponent); |
| 370 | |
| 371 | // Theoretically these numbers should be MAX_BIASED_EXPONENT for long |
| 372 | // double, but that should be ~16,000 which is much less than 1 << 30. |
| 373 | if (temp_exponent > (1 << 30)) { |
| 374 | temp_exponent = (1 << 30); |
| 375 | } else if (temp_exponent < -(1 << 30)) { |
| 376 | temp_exponent = -(1 << 30); |
| 377 | } |
| 378 | this->decimal_point = static_cast<int32_t>(temp_exponent); |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | this->trim_trailing_zeroes(); |
| 383 | } |
| 384 | |
| 385 | // Binary shift left (shift_amount > 0) or right (shift_amount < 0) |
| 386 | LIBC_INLINE void shift(int shift_amount) { |
| 387 | if (shift_amount == 0) { |
| 388 | return; |
| 389 | } |
| 390 | // Left |
| 391 | else if (shift_amount > 0) { |
| 392 | while (static_cast<uint32_t>(shift_amount) > MAX_SHIFT_AMOUNT) { |
| 393 | this->left_shift(shift_amount: MAX_SHIFT_AMOUNT); |
| 394 | shift_amount -= MAX_SHIFT_AMOUNT; |
| 395 | } |
| 396 | this->left_shift(shift_amount: static_cast<uint32_t>(shift_amount)); |
| 397 | } |
| 398 | // Right |
| 399 | else { |
| 400 | while (static_cast<uint32_t>(shift_amount) < -MAX_SHIFT_AMOUNT) { |
| 401 | this->right_shift(shift_amount: MAX_SHIFT_AMOUNT); |
| 402 | shift_amount += MAX_SHIFT_AMOUNT; |
| 403 | } |
| 404 | this->right_shift(shift_amount: static_cast<uint32_t>(-shift_amount)); |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | // Round the number represented to the closest value of unsigned int type T. |
| 409 | // This is done ignoring overflow. |
| 410 | template <class T> |
| 411 | LIBC_INLINE T |
| 412 | round_to_integer_type(RoundDirection round = RoundDirection::Nearest) { |
| 413 | T result = 0; |
| 414 | uint32_t cur_digit = 0; |
| 415 | |
| 416 | while (static_cast<int32_t>(cur_digit) < this->decimal_point && |
| 417 | cur_digit < this->num_digits) { |
| 418 | result = result * 10 + (this->digits[cur_digit]); |
| 419 | ++cur_digit; |
| 420 | } |
| 421 | |
| 422 | // If there are implicit 0s at the end of the number, include those. |
| 423 | while (static_cast<int32_t>(cur_digit) < this->decimal_point) { |
| 424 | result *= 10; |
| 425 | ++cur_digit; |
| 426 | } |
| 427 | return result + |
| 428 | static_cast<T>(this->should_round_up(round_to_digit: this->decimal_point, round)); |
| 429 | } |
| 430 | |
| 431 | // Extra functions for testing. |
| 432 | |
| 433 | LIBC_INLINE uint8_t *get_digits() { return this->digits; } |
| 434 | LIBC_INLINE uint32_t get_num_digits() { return this->num_digits; } |
| 435 | LIBC_INLINE int32_t get_decimal_point() { return this->decimal_point; } |
| 436 | LIBC_INLINE void set_truncated(bool trunc) { this->truncated = trunc; } |
| 437 | }; |
| 438 | |
| 439 | } // namespace internal |
| 440 | } // namespace LIBC_NAMESPACE_DECL |
| 441 | |
| 442 | #endif // LLVM_LIBC_SRC___SUPPORT_HIGH_PRECISION_DECIMAL_H |
| 443 | |