1 | //===-- High Precision Decimal ----------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See httpss//llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // ----------------------------------------------------------------------------- |
10 | // **** WARNING **** |
11 | // This file is shared with libc++. You should also be careful when adding |
12 | // dependencies to this file, since it needs to build for all libc++ targets. |
13 | // ----------------------------------------------------------------------------- |
14 | |
15 | #ifndef LLVM_LIBC_SRC___SUPPORT_HIGH_PRECISION_DECIMAL_H |
16 | #define LLVM_LIBC_SRC___SUPPORT_HIGH_PRECISION_DECIMAL_H |
17 | |
18 | #include "src/__support/CPP/limits.h" |
19 | #include "src/__support/ctype_utils.h" |
20 | #include "src/__support/macros/config.h" |
21 | #include "src/__support/str_to_integer.h" |
22 | #include <stdint.h> |
23 | |
24 | namespace LIBC_NAMESPACE_DECL { |
25 | namespace internal { |
26 | |
27 | struct LShiftTableEntry { |
28 | uint32_t new_digits; |
29 | char const *power_of_five; |
30 | }; |
31 | |
32 | // ----------------------------------------------------------------------------- |
33 | // **** WARNING **** |
34 | // This interface is shared with libc++, if you change this interface you need |
35 | // to update it in both libc and libc++. |
36 | // ----------------------------------------------------------------------------- |
37 | // This is used in both this file and in the main str_to_float.h. |
38 | // TODO: Figure out where to put this. |
39 | enum class RoundDirection { Up, Down, Nearest }; |
40 | |
41 | // This is based on the HPD data structure described as part of the Simple |
42 | // Decimal Conversion algorithm by Nigel Tao, described at this link: |
43 | // https://nigeltao.github.io/blog/2020/parse-number-f64-simple.html |
44 | class HighPrecisionDecimal { |
45 | |
46 | // This precomputed table speeds up left shifts by having the number of new |
47 | // digits that will be added by multiplying 5^i by 2^i. If the number is less |
48 | // than 5^i then it will add one fewer digit. There are only 60 entries since |
49 | // that's the max shift amount. |
50 | // This table was generated by the script at |
51 | // libc/utils/mathtools/GenerateHPDConstants.py |
52 | static constexpr LShiftTableEntry LEFT_SHIFT_DIGIT_TABLE[] = { |
53 | {.new_digits: 0, .power_of_five: "" }, |
54 | {.new_digits: 1, .power_of_five: "5" }, |
55 | {.new_digits: 1, .power_of_five: "25" }, |
56 | {.new_digits: 1, .power_of_five: "125" }, |
57 | {.new_digits: 2, .power_of_five: "625" }, |
58 | {.new_digits: 2, .power_of_five: "3125" }, |
59 | {.new_digits: 2, .power_of_five: "15625" }, |
60 | {.new_digits: 3, .power_of_five: "78125" }, |
61 | {.new_digits: 3, .power_of_five: "390625" }, |
62 | {.new_digits: 3, .power_of_five: "1953125" }, |
63 | {.new_digits: 4, .power_of_five: "9765625" }, |
64 | {.new_digits: 4, .power_of_five: "48828125" }, |
65 | {.new_digits: 4, .power_of_five: "244140625" }, |
66 | {.new_digits: 4, .power_of_five: "1220703125" }, |
67 | {.new_digits: 5, .power_of_five: "6103515625" }, |
68 | {.new_digits: 5, .power_of_five: "30517578125" }, |
69 | {.new_digits: 5, .power_of_five: "152587890625" }, |
70 | {.new_digits: 6, .power_of_five: "762939453125" }, |
71 | {.new_digits: 6, .power_of_five: "3814697265625" }, |
72 | {.new_digits: 6, .power_of_five: "19073486328125" }, |
73 | {.new_digits: 7, .power_of_five: "95367431640625" }, |
74 | {.new_digits: 7, .power_of_five: "476837158203125" }, |
75 | {.new_digits: 7, .power_of_five: "2384185791015625" }, |
76 | {.new_digits: 7, .power_of_five: "11920928955078125" }, |
77 | {.new_digits: 8, .power_of_five: "59604644775390625" }, |
78 | {.new_digits: 8, .power_of_five: "298023223876953125" }, |
79 | {.new_digits: 8, .power_of_five: "1490116119384765625" }, |
80 | {.new_digits: 9, .power_of_five: "7450580596923828125" }, |
81 | {.new_digits: 9, .power_of_five: "37252902984619140625" }, |
82 | {.new_digits: 9, .power_of_five: "186264514923095703125" }, |
83 | {.new_digits: 10, .power_of_five: "931322574615478515625" }, |
84 | {.new_digits: 10, .power_of_five: "4656612873077392578125" }, |
85 | {.new_digits: 10, .power_of_five: "23283064365386962890625" }, |
86 | {.new_digits: 10, .power_of_five: "116415321826934814453125" }, |
87 | {.new_digits: 11, .power_of_five: "582076609134674072265625" }, |
88 | {.new_digits: 11, .power_of_five: "2910383045673370361328125" }, |
89 | {.new_digits: 11, .power_of_five: "14551915228366851806640625" }, |
90 | {.new_digits: 12, .power_of_five: "72759576141834259033203125" }, |
91 | {.new_digits: 12, .power_of_five: "363797880709171295166015625" }, |
92 | {.new_digits: 12, .power_of_five: "1818989403545856475830078125" }, |
93 | {.new_digits: 13, .power_of_five: "9094947017729282379150390625" }, |
94 | {.new_digits: 13, .power_of_five: "45474735088646411895751953125" }, |
95 | {.new_digits: 13, .power_of_five: "227373675443232059478759765625" }, |
96 | {.new_digits: 13, .power_of_five: "1136868377216160297393798828125" }, |
97 | {.new_digits: 14, .power_of_five: "5684341886080801486968994140625" }, |
98 | {.new_digits: 14, .power_of_five: "28421709430404007434844970703125" }, |
99 | {.new_digits: 14, .power_of_five: "142108547152020037174224853515625" }, |
100 | {.new_digits: 15, .power_of_five: "710542735760100185871124267578125" }, |
101 | {.new_digits: 15, .power_of_five: "3552713678800500929355621337890625" }, |
102 | {.new_digits: 15, .power_of_five: "17763568394002504646778106689453125" }, |
103 | {.new_digits: 16, .power_of_five: "88817841970012523233890533447265625" }, |
104 | {.new_digits: 16, .power_of_five: "444089209850062616169452667236328125" }, |
105 | {.new_digits: 16, .power_of_five: "2220446049250313080847263336181640625" }, |
106 | {.new_digits: 16, .power_of_five: "11102230246251565404236316680908203125" }, |
107 | {.new_digits: 17, .power_of_five: "55511151231257827021181583404541015625" }, |
108 | {.new_digits: 17, .power_of_five: "277555756156289135105907917022705078125" }, |
109 | {.new_digits: 17, .power_of_five: "1387778780781445675529539585113525390625" }, |
110 | {.new_digits: 18, .power_of_five: "6938893903907228377647697925567626953125" }, |
111 | {.new_digits: 18, .power_of_five: "34694469519536141888238489627838134765625" }, |
112 | {.new_digits: 18, .power_of_five: "173472347597680709441192448139190673828125" }, |
113 | {.new_digits: 19, .power_of_five: "867361737988403547205962240695953369140625" }, |
114 | }; |
115 | |
116 | // The maximum amount we can shift is the number of bits used in the |
117 | // accumulator, minus the number of bits needed to represent the base (in this |
118 | // case 4). |
119 | static constexpr uint32_t MAX_SHIFT_AMOUNT = sizeof(uint64_t) - 4; |
120 | |
121 | // 800 is an arbitrary number of digits, but should be |
122 | // large enough for any practical number. |
123 | static constexpr uint32_t MAX_NUM_DIGITS = 800; |
124 | |
125 | uint32_t num_digits = 0; |
126 | int32_t decimal_point = 0; |
127 | bool truncated = false; |
128 | uint8_t digits[MAX_NUM_DIGITS]; |
129 | |
130 | private: |
131 | LIBC_INLINE bool should_round_up(int32_t round_to_digit, |
132 | RoundDirection round) { |
133 | if (round_to_digit < 0 || |
134 | static_cast<uint32_t>(round_to_digit) >= this->num_digits) { |
135 | return false; |
136 | } |
137 | |
138 | // The above condition handles all cases where all of the trailing digits |
139 | // are zero. In that case, if the rounding mode is up, then this number |
140 | // should be rounded up. Similarly, if the rounding mode is down, then it |
141 | // should always round down. |
142 | if (round == RoundDirection::Up) { |
143 | return true; |
144 | } else if (round == RoundDirection::Down) { |
145 | return false; |
146 | } |
147 | // Else round to nearest. |
148 | |
149 | // If we're right in the middle and there are no extra digits |
150 | if (this->digits[round_to_digit] == 5 && |
151 | static_cast<uint32_t>(round_to_digit + 1) == this->num_digits) { |
152 | |
153 | // Round up if we've truncated (since that means the result is slightly |
154 | // higher than what's represented.) |
155 | if (this->truncated) { |
156 | return true; |
157 | } |
158 | |
159 | // If this exactly halfway, round to even. |
160 | if (round_to_digit == 0) |
161 | // When the input is ".5". |
162 | return false; |
163 | return this->digits[round_to_digit - 1] % 2 != 0; |
164 | } |
165 | // If there are digits after round_to_digit, they must be non-zero since we |
166 | // trim trailing zeroes after all operations that change digits. |
167 | return this->digits[round_to_digit] >= 5; |
168 | } |
169 | |
170 | // Takes an amount to left shift and returns the number of new digits needed |
171 | // to store the result based on LEFT_SHIFT_DIGIT_TABLE. |
172 | LIBC_INLINE uint32_t get_num_new_digits(uint32_t lshift_amount) { |
173 | const char *power_of_five = |
174 | LEFT_SHIFT_DIGIT_TABLE[lshift_amount].power_of_five; |
175 | uint32_t new_digits = LEFT_SHIFT_DIGIT_TABLE[lshift_amount].new_digits; |
176 | uint32_t digit_index = 0; |
177 | while (power_of_five[digit_index] != 0) { |
178 | if (digit_index >= this->num_digits) { |
179 | return new_digits - 1; |
180 | } |
181 | if (this->digits[digit_index] != |
182 | internal::b36_char_to_int(ch: power_of_five[digit_index])) { |
183 | return new_digits - |
184 | ((this->digits[digit_index] < |
185 | internal::b36_char_to_int(ch: power_of_five[digit_index])) |
186 | ? 1 |
187 | : 0); |
188 | } |
189 | ++digit_index; |
190 | } |
191 | return new_digits; |
192 | } |
193 | |
194 | // Trim all trailing 0s |
195 | LIBC_INLINE void trim_trailing_zeroes() { |
196 | while (this->num_digits > 0 && this->digits[this->num_digits - 1] == 0) { |
197 | --this->num_digits; |
198 | } |
199 | if (this->num_digits == 0) { |
200 | this->decimal_point = 0; |
201 | } |
202 | } |
203 | |
204 | // Perform a digitwise binary non-rounding right shift on this value by |
205 | // shift_amount. The shift_amount can't be more than MAX_SHIFT_AMOUNT to |
206 | // prevent overflow. |
207 | LIBC_INLINE void right_shift(uint32_t shift_amount) { |
208 | uint32_t read_index = 0; |
209 | uint32_t write_index = 0; |
210 | |
211 | uint64_t accumulator = 0; |
212 | |
213 | const uint64_t shift_mask = (uint64_t(1) << shift_amount) - 1; |
214 | |
215 | // Warm Up phase: we don't have enough digits to start writing, so just |
216 | // read them into the accumulator. |
217 | while (accumulator >> shift_amount == 0) { |
218 | uint64_t read_digit = 0; |
219 | // If there are still digits to read, read the next one, else the digit is |
220 | // assumed to be 0. |
221 | if (read_index < this->num_digits) { |
222 | read_digit = this->digits[read_index]; |
223 | } |
224 | accumulator = accumulator * 10 + read_digit; |
225 | ++read_index; |
226 | } |
227 | |
228 | // Shift the decimal point by the number of digits it took to fill the |
229 | // accumulator. |
230 | this->decimal_point -= read_index - 1; |
231 | |
232 | // Middle phase: we have enough digits to write, as well as more digits to |
233 | // read. Keep reading until we run out of digits. |
234 | while (read_index < this->num_digits) { |
235 | uint64_t read_digit = this->digits[read_index]; |
236 | uint64_t write_digit = accumulator >> shift_amount; |
237 | accumulator &= shift_mask; |
238 | this->digits[write_index] = static_cast<uint8_t>(write_digit); |
239 | accumulator = accumulator * 10 + read_digit; |
240 | ++read_index; |
241 | ++write_index; |
242 | } |
243 | |
244 | // Cool Down phase: All of the readable digits have been read, so just write |
245 | // the remainder, while treating any more digits as 0. |
246 | while (accumulator > 0) { |
247 | uint64_t write_digit = accumulator >> shift_amount; |
248 | accumulator &= shift_mask; |
249 | if (write_index < MAX_NUM_DIGITS) { |
250 | this->digits[write_index] = static_cast<uint8_t>(write_digit); |
251 | ++write_index; |
252 | } else if (write_digit > 0) { |
253 | this->truncated = true; |
254 | } |
255 | accumulator = accumulator * 10; |
256 | } |
257 | this->num_digits = write_index; |
258 | this->trim_trailing_zeroes(); |
259 | } |
260 | |
261 | // Perform a digitwise binary non-rounding left shift on this value by |
262 | // shift_amount. The shift_amount can't be more than MAX_SHIFT_AMOUNT to |
263 | // prevent overflow. |
264 | LIBC_INLINE void left_shift(uint32_t shift_amount) { |
265 | uint32_t new_digits = this->get_num_new_digits(lshift_amount: shift_amount); |
266 | |
267 | int32_t read_index = static_cast<int32_t>(this->num_digits - 1); |
268 | uint32_t write_index = this->num_digits + new_digits; |
269 | |
270 | uint64_t accumulator = 0; |
271 | |
272 | // No Warm Up phase. Since we're putting digits in at the top and taking |
273 | // digits from the bottom we don't have to wait for the accumulator to fill. |
274 | |
275 | // Middle phase: while we have more digits to read, keep reading as well as |
276 | // writing. |
277 | while (read_index >= 0) { |
278 | accumulator += static_cast<uint64_t>(this->digits[read_index]) |
279 | << shift_amount; |
280 | uint64_t next_accumulator = accumulator / 10; |
281 | uint64_t write_digit = accumulator - (10 * next_accumulator); |
282 | --write_index; |
283 | if (write_index < MAX_NUM_DIGITS) { |
284 | this->digits[write_index] = static_cast<uint8_t>(write_digit); |
285 | } else if (write_digit != 0) { |
286 | this->truncated = true; |
287 | } |
288 | accumulator = next_accumulator; |
289 | --read_index; |
290 | } |
291 | |
292 | // Cool Down phase: there are no more digits to read, so just write the |
293 | // remaining digits in the accumulator. |
294 | while (accumulator > 0) { |
295 | uint64_t next_accumulator = accumulator / 10; |
296 | uint64_t write_digit = accumulator - (10 * next_accumulator); |
297 | --write_index; |
298 | if (write_index < MAX_NUM_DIGITS) { |
299 | this->digits[write_index] = static_cast<uint8_t>(write_digit); |
300 | } else if (write_digit != 0) { |
301 | this->truncated = true; |
302 | } |
303 | accumulator = next_accumulator; |
304 | } |
305 | |
306 | this->num_digits += new_digits; |
307 | if (this->num_digits > MAX_NUM_DIGITS) { |
308 | this->num_digits = MAX_NUM_DIGITS; |
309 | } |
310 | this->decimal_point += new_digits; |
311 | this->trim_trailing_zeroes(); |
312 | } |
313 | |
314 | public: |
315 | // num_string is assumed to be a string of numeric characters. It doesn't |
316 | // handle leading spaces. |
317 | LIBC_INLINE |
318 | HighPrecisionDecimal( |
319 | const char *__restrict num_string, |
320 | const size_t num_len = cpp::numeric_limits<size_t>::max()) { |
321 | bool saw_dot = false; |
322 | size_t num_cur = 0; |
323 | // This counts the digits in the number, even if there isn't space to store |
324 | // them all. |
325 | uint32_t total_digits = 0; |
326 | while (num_cur < num_len && |
327 | (isdigit(ch: num_string[num_cur]) || num_string[num_cur] == '.')) { |
328 | if (num_string[num_cur] == '.') { |
329 | if (saw_dot) { |
330 | break; |
331 | } |
332 | this->decimal_point = static_cast<int32_t>(total_digits); |
333 | saw_dot = true; |
334 | } else { |
335 | if (num_string[num_cur] == '0' && this->num_digits == 0) { |
336 | --this->decimal_point; |
337 | ++num_cur; |
338 | continue; |
339 | } |
340 | ++total_digits; |
341 | if (this->num_digits < MAX_NUM_DIGITS) { |
342 | this->digits[this->num_digits] = static_cast<uint8_t>( |
343 | internal::b36_char_to_int(ch: num_string[num_cur])); |
344 | ++this->num_digits; |
345 | } else if (num_string[num_cur] != '0') { |
346 | this->truncated = true; |
347 | } |
348 | } |
349 | ++num_cur; |
350 | } |
351 | |
352 | if (!saw_dot) |
353 | this->decimal_point = static_cast<int32_t>(total_digits); |
354 | |
355 | if (num_cur < num_len && |
356 | (num_string[num_cur] == 'e' || num_string[num_cur] == 'E')) { |
357 | ++num_cur; |
358 | if (isdigit(ch: num_string[num_cur]) || num_string[num_cur] == '+' || |
359 | num_string[num_cur] == '-') { |
360 | auto result = |
361 | strtointeger<int32_t>(src: num_string + num_cur, base: 10, src_len: num_len - num_cur); |
362 | if (result.has_error()) { |
363 | // TODO: handle error |
364 | } |
365 | int32_t add_to_exponent = result.value; |
366 | |
367 | // Here we do this operation as int64 to avoid overflow. |
368 | int64_t temp_exponent = static_cast<int64_t>(this->decimal_point) + |
369 | static_cast<int64_t>(add_to_exponent); |
370 | |
371 | // Theoretically these numbers should be MAX_BIASED_EXPONENT for long |
372 | // double, but that should be ~16,000 which is much less than 1 << 30. |
373 | if (temp_exponent > (1 << 30)) { |
374 | temp_exponent = (1 << 30); |
375 | } else if (temp_exponent < -(1 << 30)) { |
376 | temp_exponent = -(1 << 30); |
377 | } |
378 | this->decimal_point = static_cast<int32_t>(temp_exponent); |
379 | } |
380 | } |
381 | |
382 | this->trim_trailing_zeroes(); |
383 | } |
384 | |
385 | // Binary shift left (shift_amount > 0) or right (shift_amount < 0) |
386 | LIBC_INLINE void shift(int shift_amount) { |
387 | if (shift_amount == 0) { |
388 | return; |
389 | } |
390 | // Left |
391 | else if (shift_amount > 0) { |
392 | while (static_cast<uint32_t>(shift_amount) > MAX_SHIFT_AMOUNT) { |
393 | this->left_shift(shift_amount: MAX_SHIFT_AMOUNT); |
394 | shift_amount -= MAX_SHIFT_AMOUNT; |
395 | } |
396 | this->left_shift(shift_amount: static_cast<uint32_t>(shift_amount)); |
397 | } |
398 | // Right |
399 | else { |
400 | while (static_cast<uint32_t>(shift_amount) < -MAX_SHIFT_AMOUNT) { |
401 | this->right_shift(shift_amount: MAX_SHIFT_AMOUNT); |
402 | shift_amount += MAX_SHIFT_AMOUNT; |
403 | } |
404 | this->right_shift(shift_amount: static_cast<uint32_t>(-shift_amount)); |
405 | } |
406 | } |
407 | |
408 | // Round the number represented to the closest value of unsigned int type T. |
409 | // This is done ignoring overflow. |
410 | template <class T> |
411 | LIBC_INLINE T |
412 | round_to_integer_type(RoundDirection round = RoundDirection::Nearest) { |
413 | T result = 0; |
414 | uint32_t cur_digit = 0; |
415 | |
416 | while (static_cast<int32_t>(cur_digit) < this->decimal_point && |
417 | cur_digit < this->num_digits) { |
418 | result = result * 10 + (this->digits[cur_digit]); |
419 | ++cur_digit; |
420 | } |
421 | |
422 | // If there are implicit 0s at the end of the number, include those. |
423 | while (static_cast<int32_t>(cur_digit) < this->decimal_point) { |
424 | result *= 10; |
425 | ++cur_digit; |
426 | } |
427 | return result + |
428 | static_cast<T>(this->should_round_up(round_to_digit: this->decimal_point, round)); |
429 | } |
430 | |
431 | // Extra functions for testing. |
432 | |
433 | LIBC_INLINE uint8_t *get_digits() { return this->digits; } |
434 | LIBC_INLINE uint32_t get_num_digits() { return this->num_digits; } |
435 | LIBC_INLINE int32_t get_decimal_point() { return this->decimal_point; } |
436 | LIBC_INLINE void set_truncated(bool trunc) { this->truncated = trunc; } |
437 | }; |
438 | |
439 | } // namespace internal |
440 | } // namespace LIBC_NAMESPACE_DECL |
441 | |
442 | #endif // LLVM_LIBC_SRC___SUPPORT_HIGH_PRECISION_DECIMAL_H |
443 | |