| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include <__hash_table> |
| 10 | #include <algorithm> |
| 11 | #include <stdexcept> |
| 12 | |
| 13 | _LIBCPP_CLANG_DIAGNOSTIC_IGNORED("-Wtautological-constant-out-of-range-compare" ) |
| 14 | |
| 15 | _LIBCPP_BEGIN_NAMESPACE_STD |
| 16 | |
| 17 | namespace { |
| 18 | |
| 19 | // handle all next_prime(i) for i in [1, 210), special case 0 |
| 20 | const unsigned small_primes[] = { |
| 21 | 0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, |
| 22 | 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, |
| 23 | 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211}; |
| 24 | |
| 25 | // potential primes = 210*k + indices[i], k >= 1 |
| 26 | // these numbers are not divisible by 2, 3, 5 or 7 |
| 27 | // (or any integer 2 <= j <= 10 for that matter). |
| 28 | const unsigned indices[] = { |
| 29 | 1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, |
| 30 | 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, |
| 31 | 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209}; |
| 32 | |
| 33 | } // namespace |
| 34 | |
| 35 | // Returns: If n == 0, returns 0. Else returns the lowest prime number that |
| 36 | // is greater than or equal to n. |
| 37 | // |
| 38 | // The algorithm creates a list of small primes, plus an open-ended list of |
| 39 | // potential primes. All prime numbers are potential prime numbers. However |
| 40 | // some potential prime numbers are not prime. In an ideal world, all potential |
| 41 | // prime numbers would be prime. Candidate prime numbers are chosen as the next |
| 42 | // highest potential prime. Then this number is tested for prime by dividing it |
| 43 | // by all potential prime numbers less than the sqrt of the candidate. |
| 44 | // |
| 45 | // This implementation defines potential primes as those numbers not divisible |
| 46 | // by 2, 3, 5, and 7. Other (common) implementations define potential primes |
| 47 | // as those not divisible by 2. A few other implementations define potential |
| 48 | // primes as those not divisible by 2 or 3. By raising the number of small |
| 49 | // primes which the potential prime is not divisible by, the set of potential |
| 50 | // primes more closely approximates the set of prime numbers. And thus there |
| 51 | // are fewer potential primes to search, and fewer potential primes to divide |
| 52 | // against. |
| 53 | |
| 54 | inline void __check_for_overflow(size_t N) { |
| 55 | if constexpr (sizeof(size_t) == 4) { |
| 56 | if (N > 0xFFFFFFFB) |
| 57 | std::__throw_overflow_error(msg: "__next_prime overflow" ); |
| 58 | } else { |
| 59 | if (N > 0xFFFFFFFFFFFFFFC5ull) |
| 60 | std::__throw_overflow_error(msg: "__next_prime overflow" ); |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | size_t __next_prime(size_t n) { |
| 65 | const size_t L = 210; |
| 66 | const size_t N = sizeof(small_primes) / sizeof(small_primes[0]); |
| 67 | // If n is small enough, search in small_primes |
| 68 | if (n <= small_primes[N - 1]) |
| 69 | return *std::lower_bound(first: small_primes, last: small_primes + N, value: n); |
| 70 | // Else n > largest small_primes |
| 71 | // Check for overflow |
| 72 | __check_for_overflow(N: n); |
| 73 | // Start searching list of potential primes: L * k0 + indices[in] |
| 74 | const size_t M = sizeof(indices) / sizeof(indices[0]); |
| 75 | // Select first potential prime >= n |
| 76 | // Known a-priori n >= L |
| 77 | size_t k0 = n / L; |
| 78 | size_t in = static_cast<size_t>(std::lower_bound(first: indices, last: indices + M, value: n - k0 * L) - indices); |
| 79 | n = L * k0 + indices[in]; |
| 80 | while (true) { |
| 81 | // Divide n by all primes or potential primes (i) until: |
| 82 | // 1. The division is even, so try next potential prime. |
| 83 | // 2. The i > sqrt(n), in which case n is prime. |
| 84 | // It is known a-priori that n is not divisible by 2, 3, 5 or 7, |
| 85 | // so don't test those (j == 5 -> divide by 11 first). And the |
| 86 | // potential primes start with 211, so don't test against the last |
| 87 | // small prime. |
| 88 | for (size_t j = 5; j < N - 1; ++j) { |
| 89 | const std::size_t p = small_primes[j]; |
| 90 | const std::size_t q = n / p; |
| 91 | if (q < p) |
| 92 | return n; |
| 93 | if (n == q * p) |
| 94 | goto next; |
| 95 | } |
| 96 | // n wasn't divisible by small primes, try potential primes |
| 97 | { |
| 98 | size_t i = 211; |
| 99 | while (true) { |
| 100 | std::size_t q = n / i; |
| 101 | if (q < i) |
| 102 | return n; |
| 103 | if (n == q * i) |
| 104 | break; |
| 105 | |
| 106 | i += 10; |
| 107 | q = n / i; |
| 108 | if (q < i) |
| 109 | return n; |
| 110 | if (n == q * i) |
| 111 | break; |
| 112 | |
| 113 | i += 2; |
| 114 | q = n / i; |
| 115 | if (q < i) |
| 116 | return n; |
| 117 | if (n == q * i) |
| 118 | break; |
| 119 | |
| 120 | i += 4; |
| 121 | q = n / i; |
| 122 | if (q < i) |
| 123 | return n; |
| 124 | if (n == q * i) |
| 125 | break; |
| 126 | |
| 127 | i += 2; |
| 128 | q = n / i; |
| 129 | if (q < i) |
| 130 | return n; |
| 131 | if (n == q * i) |
| 132 | break; |
| 133 | |
| 134 | i += 4; |
| 135 | q = n / i; |
| 136 | if (q < i) |
| 137 | return n; |
| 138 | if (n == q * i) |
| 139 | break; |
| 140 | |
| 141 | i += 6; |
| 142 | q = n / i; |
| 143 | if (q < i) |
| 144 | return n; |
| 145 | if (n == q * i) |
| 146 | break; |
| 147 | |
| 148 | i += 2; |
| 149 | q = n / i; |
| 150 | if (q < i) |
| 151 | return n; |
| 152 | if (n == q * i) |
| 153 | break; |
| 154 | |
| 155 | i += 6; |
| 156 | q = n / i; |
| 157 | if (q < i) |
| 158 | return n; |
| 159 | if (n == q * i) |
| 160 | break; |
| 161 | |
| 162 | i += 4; |
| 163 | q = n / i; |
| 164 | if (q < i) |
| 165 | return n; |
| 166 | if (n == q * i) |
| 167 | break; |
| 168 | |
| 169 | i += 2; |
| 170 | q = n / i; |
| 171 | if (q < i) |
| 172 | return n; |
| 173 | if (n == q * i) |
| 174 | break; |
| 175 | |
| 176 | i += 4; |
| 177 | q = n / i; |
| 178 | if (q < i) |
| 179 | return n; |
| 180 | if (n == q * i) |
| 181 | break; |
| 182 | |
| 183 | i += 6; |
| 184 | q = n / i; |
| 185 | if (q < i) |
| 186 | return n; |
| 187 | if (n == q * i) |
| 188 | break; |
| 189 | |
| 190 | i += 6; |
| 191 | q = n / i; |
| 192 | if (q < i) |
| 193 | return n; |
| 194 | if (n == q * i) |
| 195 | break; |
| 196 | |
| 197 | i += 2; |
| 198 | q = n / i; |
| 199 | if (q < i) |
| 200 | return n; |
| 201 | if (n == q * i) |
| 202 | break; |
| 203 | |
| 204 | i += 6; |
| 205 | q = n / i; |
| 206 | if (q < i) |
| 207 | return n; |
| 208 | if (n == q * i) |
| 209 | break; |
| 210 | |
| 211 | i += 4; |
| 212 | q = n / i; |
| 213 | if (q < i) |
| 214 | return n; |
| 215 | if (n == q * i) |
| 216 | break; |
| 217 | |
| 218 | i += 2; |
| 219 | q = n / i; |
| 220 | if (q < i) |
| 221 | return n; |
| 222 | if (n == q * i) |
| 223 | break; |
| 224 | |
| 225 | i += 6; |
| 226 | q = n / i; |
| 227 | if (q < i) |
| 228 | return n; |
| 229 | if (n == q * i) |
| 230 | break; |
| 231 | |
| 232 | i += 4; |
| 233 | q = n / i; |
| 234 | if (q < i) |
| 235 | return n; |
| 236 | if (n == q * i) |
| 237 | break; |
| 238 | |
| 239 | i += 6; |
| 240 | q = n / i; |
| 241 | if (q < i) |
| 242 | return n; |
| 243 | if (n == q * i) |
| 244 | break; |
| 245 | |
| 246 | i += 8; |
| 247 | q = n / i; |
| 248 | if (q < i) |
| 249 | return n; |
| 250 | if (n == q * i) |
| 251 | break; |
| 252 | |
| 253 | i += 4; |
| 254 | q = n / i; |
| 255 | if (q < i) |
| 256 | return n; |
| 257 | if (n == q * i) |
| 258 | break; |
| 259 | |
| 260 | i += 2; |
| 261 | q = n / i; |
| 262 | if (q < i) |
| 263 | return n; |
| 264 | if (n == q * i) |
| 265 | break; |
| 266 | |
| 267 | i += 4; |
| 268 | q = n / i; |
| 269 | if (q < i) |
| 270 | return n; |
| 271 | if (n == q * i) |
| 272 | break; |
| 273 | |
| 274 | i += 2; |
| 275 | q = n / i; |
| 276 | if (q < i) |
| 277 | return n; |
| 278 | if (n == q * i) |
| 279 | break; |
| 280 | |
| 281 | i += 4; |
| 282 | q = n / i; |
| 283 | if (q < i) |
| 284 | return n; |
| 285 | if (n == q * i) |
| 286 | break; |
| 287 | |
| 288 | i += 8; |
| 289 | q = n / i; |
| 290 | if (q < i) |
| 291 | return n; |
| 292 | if (n == q * i) |
| 293 | break; |
| 294 | |
| 295 | i += 6; |
| 296 | q = n / i; |
| 297 | if (q < i) |
| 298 | return n; |
| 299 | if (n == q * i) |
| 300 | break; |
| 301 | |
| 302 | i += 4; |
| 303 | q = n / i; |
| 304 | if (q < i) |
| 305 | return n; |
| 306 | if (n == q * i) |
| 307 | break; |
| 308 | |
| 309 | i += 6; |
| 310 | q = n / i; |
| 311 | if (q < i) |
| 312 | return n; |
| 313 | if (n == q * i) |
| 314 | break; |
| 315 | |
| 316 | i += 2; |
| 317 | q = n / i; |
| 318 | if (q < i) |
| 319 | return n; |
| 320 | if (n == q * i) |
| 321 | break; |
| 322 | |
| 323 | i += 4; |
| 324 | q = n / i; |
| 325 | if (q < i) |
| 326 | return n; |
| 327 | if (n == q * i) |
| 328 | break; |
| 329 | |
| 330 | i += 6; |
| 331 | q = n / i; |
| 332 | if (q < i) |
| 333 | return n; |
| 334 | if (n == q * i) |
| 335 | break; |
| 336 | |
| 337 | i += 2; |
| 338 | q = n / i; |
| 339 | if (q < i) |
| 340 | return n; |
| 341 | if (n == q * i) |
| 342 | break; |
| 343 | |
| 344 | i += 6; |
| 345 | q = n / i; |
| 346 | if (q < i) |
| 347 | return n; |
| 348 | if (n == q * i) |
| 349 | break; |
| 350 | |
| 351 | i += 6; |
| 352 | q = n / i; |
| 353 | if (q < i) |
| 354 | return n; |
| 355 | if (n == q * i) |
| 356 | break; |
| 357 | |
| 358 | i += 4; |
| 359 | q = n / i; |
| 360 | if (q < i) |
| 361 | return n; |
| 362 | if (n == q * i) |
| 363 | break; |
| 364 | |
| 365 | i += 2; |
| 366 | q = n / i; |
| 367 | if (q < i) |
| 368 | return n; |
| 369 | if (n == q * i) |
| 370 | break; |
| 371 | |
| 372 | i += 4; |
| 373 | q = n / i; |
| 374 | if (q < i) |
| 375 | return n; |
| 376 | if (n == q * i) |
| 377 | break; |
| 378 | |
| 379 | i += 6; |
| 380 | q = n / i; |
| 381 | if (q < i) |
| 382 | return n; |
| 383 | if (n == q * i) |
| 384 | break; |
| 385 | |
| 386 | i += 2; |
| 387 | q = n / i; |
| 388 | if (q < i) |
| 389 | return n; |
| 390 | if (n == q * i) |
| 391 | break; |
| 392 | |
| 393 | i += 6; |
| 394 | q = n / i; |
| 395 | if (q < i) |
| 396 | return n; |
| 397 | if (n == q * i) |
| 398 | break; |
| 399 | |
| 400 | i += 4; |
| 401 | q = n / i; |
| 402 | if (q < i) |
| 403 | return n; |
| 404 | if (n == q * i) |
| 405 | break; |
| 406 | |
| 407 | i += 2; |
| 408 | q = n / i; |
| 409 | if (q < i) |
| 410 | return n; |
| 411 | if (n == q * i) |
| 412 | break; |
| 413 | |
| 414 | i += 4; |
| 415 | q = n / i; |
| 416 | if (q < i) |
| 417 | return n; |
| 418 | if (n == q * i) |
| 419 | break; |
| 420 | |
| 421 | i += 2; |
| 422 | q = n / i; |
| 423 | if (q < i) |
| 424 | return n; |
| 425 | if (n == q * i) |
| 426 | break; |
| 427 | |
| 428 | i += 10; |
| 429 | q = n / i; |
| 430 | if (q < i) |
| 431 | return n; |
| 432 | if (n == q * i) |
| 433 | break; |
| 434 | |
| 435 | // This will loop i to the next "plane" of potential primes |
| 436 | i += 2; |
| 437 | } |
| 438 | } |
| 439 | next: |
| 440 | // n is not prime. Increment n to next potential prime. |
| 441 | if (++in == M) { |
| 442 | ++k0; |
| 443 | in = 0; |
| 444 | } |
| 445 | n = L * k0 + indices[in]; |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | _LIBCPP_END_NAMESPACE_STD |
| 450 | |