1 | //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// This file defines the DenseMap class. |
11 | /// |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_ADT_DENSEMAP_H |
15 | #define LLVM_ADT_DENSEMAP_H |
16 | |
17 | #include "llvm/ADT/ADL.h" |
18 | #include "llvm/ADT/DenseMapInfo.h" |
19 | #include "llvm/ADT/EpochTracker.h" |
20 | #include "llvm/ADT/STLExtras.h" |
21 | #include "llvm/Support/AlignOf.h" |
22 | #include "llvm/Support/Compiler.h" |
23 | #include "llvm/Support/MathExtras.h" |
24 | #include "llvm/Support/MemAlloc.h" |
25 | #include "llvm/Support/ReverseIteration.h" |
26 | #include "llvm/Support/type_traits.h" |
27 | #include <algorithm> |
28 | #include <cassert> |
29 | #include <cstddef> |
30 | #include <cstring> |
31 | #include <initializer_list> |
32 | #include <iterator> |
33 | #include <new> |
34 | #include <type_traits> |
35 | #include <utility> |
36 | |
37 | namespace llvm { |
38 | |
39 | namespace detail { |
40 | |
41 | // We extend a pair to allow users to override the bucket type with their own |
42 | // implementation without requiring two members. |
43 | template <typename KeyT, typename ValueT> |
44 | struct DenseMapPair : public std::pair<KeyT, ValueT> { |
45 | using std::pair<KeyT, ValueT>::pair; |
46 | |
47 | KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; } |
48 | const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; } |
49 | ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; } |
50 | const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; } |
51 | }; |
52 | |
53 | } // end namespace detail |
54 | |
55 | template <typename KeyT, typename ValueT, |
56 | typename KeyInfoT = DenseMapInfo<KeyT>, |
57 | typename Bucket = llvm::detail::DenseMapPair<KeyT, ValueT>, |
58 | bool IsConst = false> |
59 | class DenseMapIterator; |
60 | |
61 | template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, |
62 | typename BucketT> |
63 | class DenseMapBase : public DebugEpochBase { |
64 | template <typename T> |
65 | using const_arg_type_t = typename const_pointer_or_const_ref<T>::type; |
66 | |
67 | public: |
68 | using size_type = unsigned; |
69 | using key_type = KeyT; |
70 | using mapped_type = ValueT; |
71 | using value_type = BucketT; |
72 | |
73 | using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>; |
74 | using const_iterator = |
75 | DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>; |
76 | |
77 | inline iterator begin() { |
78 | // When the map is empty, avoid the overhead of advancing/retreating past |
79 | // empty buckets. |
80 | if (empty()) |
81 | return end(); |
82 | if (shouldReverseIterate<KeyT>()) |
83 | return makeIterator(P: getBucketsEnd() - 1, E: getBuckets(), Epoch&: *this); |
84 | return makeIterator(P: getBuckets(), E: getBucketsEnd(), Epoch&: *this); |
85 | } |
86 | inline iterator end() { |
87 | return makeIterator(P: getBucketsEnd(), E: getBucketsEnd(), Epoch&: *this, NoAdvance: true); |
88 | } |
89 | inline const_iterator begin() const { |
90 | if (empty()) |
91 | return end(); |
92 | if (shouldReverseIterate<KeyT>()) |
93 | return makeConstIterator(P: getBucketsEnd() - 1, E: getBuckets(), Epoch: *this); |
94 | return makeConstIterator(P: getBuckets(), E: getBucketsEnd(), Epoch: *this); |
95 | } |
96 | inline const_iterator end() const { |
97 | return makeConstIterator(P: getBucketsEnd(), E: getBucketsEnd(), Epoch: *this, NoAdvance: true); |
98 | } |
99 | |
100 | // Return an iterator to iterate over keys in the map. |
101 | inline auto keys() { |
102 | return map_range(*this, [](const BucketT &P) { return P.getFirst(); }); |
103 | } |
104 | |
105 | // Return an iterator to iterate over values in the map. |
106 | inline auto values() { |
107 | return map_range(*this, [](const BucketT &P) { return P.getSecond(); }); |
108 | } |
109 | |
110 | inline auto keys() const { |
111 | return map_range(*this, [](const BucketT &P) { return P.getFirst(); }); |
112 | } |
113 | |
114 | inline auto values() const { |
115 | return map_range(*this, [](const BucketT &P) { return P.getSecond(); }); |
116 | } |
117 | |
118 | [[nodiscard]] bool empty() const { return getNumEntries() == 0; } |
119 | unsigned size() const { return getNumEntries(); } |
120 | |
121 | /// Grow the densemap so that it can contain at least \p NumEntries items |
122 | /// before resizing again. |
123 | void reserve(size_type NumEntries) { |
124 | auto NumBuckets = getMinBucketToReserveForEntries(NumEntries); |
125 | incrementEpoch(); |
126 | if (NumBuckets > getNumBuckets()) |
127 | grow(AtLeast: NumBuckets); |
128 | } |
129 | |
130 | void clear() { |
131 | incrementEpoch(); |
132 | if (getNumEntries() == 0 && getNumTombstones() == 0) |
133 | return; |
134 | |
135 | // If the capacity of the array is huge, and the # elements used is small, |
136 | // shrink the array. |
137 | if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) { |
138 | shrink_and_clear(); |
139 | return; |
140 | } |
141 | |
142 | const KeyT EmptyKey = getEmptyKey(); |
143 | if constexpr (std::is_trivially_destructible_v<ValueT>) { |
144 | // Use a simpler loop when values don't need destruction. |
145 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) |
146 | P->getFirst() = EmptyKey; |
147 | } else { |
148 | const KeyT TombstoneKey = getTombstoneKey(); |
149 | unsigned NumEntries = getNumEntries(); |
150 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { |
151 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) { |
152 | if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { |
153 | P->getSecond().~ValueT(); |
154 | --NumEntries; |
155 | } |
156 | P->getFirst() = EmptyKey; |
157 | } |
158 | } |
159 | assert(NumEntries == 0 && "Node count imbalance!" ); |
160 | (void)NumEntries; |
161 | } |
162 | setNumEntries(0); |
163 | setNumTombstones(0); |
164 | } |
165 | |
166 | /// Return true if the specified key is in the map, false otherwise. |
167 | bool contains(const_arg_type_t<KeyT> Val) const { |
168 | return doFind(Val) != nullptr; |
169 | } |
170 | |
171 | /// Return 1 if the specified key is in the map, 0 otherwise. |
172 | size_type count(const_arg_type_t<KeyT> Val) const { |
173 | return contains(Val) ? 1 : 0; |
174 | } |
175 | |
176 | iterator find(const_arg_type_t<KeyT> Val) { |
177 | if (BucketT *Bucket = doFind(Val)) |
178 | return makeIterator( |
179 | P: Bucket, E: shouldReverseIterate<KeyT>() ? getBuckets() : getBucketsEnd(), |
180 | Epoch&: *this, NoAdvance: true); |
181 | return end(); |
182 | } |
183 | const_iterator find(const_arg_type_t<KeyT> Val) const { |
184 | if (const BucketT *Bucket = doFind(Val)) |
185 | return makeConstIterator( |
186 | P: Bucket, E: shouldReverseIterate<KeyT>() ? getBuckets() : getBucketsEnd(), |
187 | Epoch: *this, NoAdvance: true); |
188 | return end(); |
189 | } |
190 | |
191 | /// Alternate version of find() which allows a different, and possibly |
192 | /// less expensive, key type. |
193 | /// The DenseMapInfo is responsible for supplying methods |
194 | /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key |
195 | /// type used. |
196 | template <class LookupKeyT> iterator find_as(const LookupKeyT &Val) { |
197 | if (BucketT *Bucket = doFind(Val)) |
198 | return makeIterator( |
199 | P: Bucket, E: shouldReverseIterate<KeyT>() ? getBuckets() : getBucketsEnd(), |
200 | Epoch&: *this, NoAdvance: true); |
201 | return end(); |
202 | } |
203 | template <class LookupKeyT> |
204 | const_iterator find_as(const LookupKeyT &Val) const { |
205 | if (const BucketT *Bucket = doFind(Val)) |
206 | return makeConstIterator( |
207 | P: Bucket, E: shouldReverseIterate<KeyT>() ? getBuckets() : getBucketsEnd(), |
208 | Epoch: *this, NoAdvance: true); |
209 | return end(); |
210 | } |
211 | |
212 | /// lookup - Return the entry for the specified key, or a default |
213 | /// constructed value if no such entry exists. |
214 | ValueT lookup(const_arg_type_t<KeyT> Val) const { |
215 | if (const BucketT *Bucket = doFind(Val)) |
216 | return Bucket->getSecond(); |
217 | return ValueT(); |
218 | } |
219 | |
220 | // Return the entry with the specified key, or \p Default. This variant is |
221 | // useful, because `lookup` cannot be used with non-default-constructible |
222 | // values. |
223 | template <typename U = std::remove_cv_t<ValueT>> |
224 | ValueT lookup_or(const_arg_type_t<KeyT> Val, U &&Default) const { |
225 | if (const BucketT *Bucket = doFind(Val)) |
226 | return Bucket->getSecond(); |
227 | return Default; |
228 | } |
229 | |
230 | /// at - Return the entry for the specified key, or abort if no such |
231 | /// entry exists. |
232 | const ValueT &at(const_arg_type_t<KeyT> Val) const { |
233 | auto Iter = this->find(std::move(Val)); |
234 | assert(Iter != this->end() && "DenseMap::at failed due to a missing key" ); |
235 | return Iter->second; |
236 | } |
237 | |
238 | // Inserts key,value pair into the map if the key isn't already in the map. |
239 | // If the key is already in the map, it returns false and doesn't update the |
240 | // value. |
241 | std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) { |
242 | return try_emplace(KV.first, KV.second); |
243 | } |
244 | |
245 | // Inserts key,value pair into the map if the key isn't already in the map. |
246 | // If the key is already in the map, it returns false and doesn't update the |
247 | // value. |
248 | std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) { |
249 | return try_emplace(std::move(KV.first), std::move(KV.second)); |
250 | } |
251 | |
252 | // Inserts key,value pair into the map if the key isn't already in the map. |
253 | // The value is constructed in-place if the key is not in the map, otherwise |
254 | // it is not moved. |
255 | template <typename... Ts> |
256 | std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&...Args) { |
257 | BucketT *TheBucket; |
258 | if (LookupBucketFor(Key, TheBucket)) |
259 | return std::make_pair(makeIterator(P: TheBucket, |
260 | E: shouldReverseIterate<KeyT>() |
261 | ? getBuckets() |
262 | : getBucketsEnd(), |
263 | Epoch&: *this, NoAdvance: true), |
264 | false); // Already in map. |
265 | |
266 | // Otherwise, insert the new element. |
267 | TheBucket = |
268 | InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...); |
269 | return std::make_pair(makeIterator(P: TheBucket, |
270 | E: shouldReverseIterate<KeyT>() |
271 | ? getBuckets() |
272 | : getBucketsEnd(), |
273 | Epoch&: *this, NoAdvance: true), |
274 | true); |
275 | } |
276 | |
277 | // Inserts key,value pair into the map if the key isn't already in the map. |
278 | // The value is constructed in-place if the key is not in the map, otherwise |
279 | // it is not moved. |
280 | template <typename... Ts> |
281 | std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&...Args) { |
282 | BucketT *TheBucket; |
283 | if (LookupBucketFor(Key, TheBucket)) |
284 | return std::make_pair(makeIterator(P: TheBucket, |
285 | E: shouldReverseIterate<KeyT>() |
286 | ? getBuckets() |
287 | : getBucketsEnd(), |
288 | Epoch&: *this, NoAdvance: true), |
289 | false); // Already in map. |
290 | |
291 | // Otherwise, insert the new element. |
292 | TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...); |
293 | return std::make_pair(makeIterator(P: TheBucket, |
294 | E: shouldReverseIterate<KeyT>() |
295 | ? getBuckets() |
296 | : getBucketsEnd(), |
297 | Epoch&: *this, NoAdvance: true), |
298 | true); |
299 | } |
300 | |
301 | /// Alternate version of insert() which allows a different, and possibly |
302 | /// less expensive, key type. |
303 | /// The DenseMapInfo is responsible for supplying methods |
304 | /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key |
305 | /// type used. |
306 | template <typename LookupKeyT> |
307 | std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV, |
308 | const LookupKeyT &Val) { |
309 | BucketT *TheBucket; |
310 | if (LookupBucketFor(Val, TheBucket)) |
311 | return std::make_pair(makeIterator(P: TheBucket, |
312 | E: shouldReverseIterate<KeyT>() |
313 | ? getBuckets() |
314 | : getBucketsEnd(), |
315 | Epoch&: *this, NoAdvance: true), |
316 | false); // Already in map. |
317 | |
318 | // Otherwise, insert the new element. |
319 | TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first), |
320 | std::move(KV.second), Val); |
321 | return std::make_pair(makeIterator(P: TheBucket, |
322 | E: shouldReverseIterate<KeyT>() |
323 | ? getBuckets() |
324 | : getBucketsEnd(), |
325 | Epoch&: *this, NoAdvance: true), |
326 | true); |
327 | } |
328 | |
329 | /// insert - Range insertion of pairs. |
330 | template <typename InputIt> void insert(InputIt I, InputIt E) { |
331 | for (; I != E; ++I) |
332 | insert(*I); |
333 | } |
334 | |
335 | /// Inserts range of 'std::pair<KeyT, ValueT>' values into the map. |
336 | template <typename Range> void insert_range(Range &&R) { |
337 | insert(adl_begin(R), adl_end(R)); |
338 | } |
339 | |
340 | template <typename V> |
341 | std::pair<iterator, bool> insert_or_assign(const KeyT &Key, V &&Val) { |
342 | auto Ret = try_emplace(Key, std::forward<V>(Val)); |
343 | if (!Ret.second) |
344 | Ret.first->second = std::forward<V>(Val); |
345 | return Ret; |
346 | } |
347 | |
348 | template <typename V> |
349 | std::pair<iterator, bool> insert_or_assign(KeyT &&Key, V &&Val) { |
350 | auto Ret = try_emplace(std::move(Key), std::forward<V>(Val)); |
351 | if (!Ret.second) |
352 | Ret.first->second = std::forward<V>(Val); |
353 | return Ret; |
354 | } |
355 | |
356 | template <typename... Ts> |
357 | std::pair<iterator, bool> emplace_or_assign(const KeyT &Key, Ts &&...Args) { |
358 | auto Ret = try_emplace(Key, std::forward<Ts>(Args)...); |
359 | if (!Ret.second) |
360 | Ret.first->second = ValueT(std::forward<Ts>(Args)...); |
361 | return Ret; |
362 | } |
363 | |
364 | template <typename... Ts> |
365 | std::pair<iterator, bool> emplace_or_assign(KeyT &&Key, Ts &&...Args) { |
366 | auto Ret = try_emplace(std::move(Key), std::forward<Ts>(Args)...); |
367 | if (!Ret.second) |
368 | Ret.first->second = ValueT(std::forward<Ts>(Args)...); |
369 | return Ret; |
370 | } |
371 | |
372 | bool erase(const KeyT &Val) { |
373 | BucketT *TheBucket = doFind(Val); |
374 | if (!TheBucket) |
375 | return false; // not in map. |
376 | |
377 | TheBucket->getSecond().~ValueT(); |
378 | TheBucket->getFirst() = getTombstoneKey(); |
379 | decrementNumEntries(); |
380 | incrementNumTombstones(); |
381 | return true; |
382 | } |
383 | void erase(iterator I) { |
384 | BucketT *TheBucket = &*I; |
385 | TheBucket->getSecond().~ValueT(); |
386 | TheBucket->getFirst() = getTombstoneKey(); |
387 | decrementNumEntries(); |
388 | incrementNumTombstones(); |
389 | } |
390 | |
391 | ValueT &operator[](const KeyT &Key) { |
392 | BucketT *TheBucket; |
393 | if (LookupBucketFor(Key, TheBucket)) |
394 | return TheBucket->second; |
395 | |
396 | return InsertIntoBucket(TheBucket, Key)->second; |
397 | } |
398 | |
399 | ValueT &operator[](KeyT &&Key) { |
400 | BucketT *TheBucket; |
401 | if (LookupBucketFor(Key, TheBucket)) |
402 | return TheBucket->second; |
403 | |
404 | return InsertIntoBucket(TheBucket, std::move(Key))->second; |
405 | } |
406 | |
407 | /// isPointerIntoBucketsArray - Return true if the specified pointer points |
408 | /// somewhere into the DenseMap's array of buckets (i.e. either to a key or |
409 | /// value in the DenseMap). |
410 | bool isPointerIntoBucketsArray(const void *Ptr) const { |
411 | return Ptr >= getBuckets() && Ptr < getBucketsEnd(); |
412 | } |
413 | |
414 | /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets |
415 | /// array. In conjunction with the previous method, this can be used to |
416 | /// determine whether an insertion caused the DenseMap to reallocate. |
417 | const void *getPointerIntoBucketsArray() const { return getBuckets(); } |
418 | |
419 | protected: |
420 | DenseMapBase() = default; |
421 | |
422 | void destroyAll() { |
423 | if (getNumBuckets() == 0) // Nothing to do. |
424 | return; |
425 | |
426 | const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); |
427 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { |
428 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && |
429 | !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) |
430 | P->getSecond().~ValueT(); |
431 | P->getFirst().~KeyT(); |
432 | } |
433 | } |
434 | |
435 | void initEmpty() { |
436 | setNumEntries(0); |
437 | setNumTombstones(0); |
438 | |
439 | assert((getNumBuckets() & (getNumBuckets() - 1)) == 0 && |
440 | "# initial buckets must be a power of two!" ); |
441 | const KeyT EmptyKey = getEmptyKey(); |
442 | for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B) |
443 | ::new (&B->getFirst()) KeyT(EmptyKey); |
444 | } |
445 | |
446 | /// Returns the number of buckets to allocate to ensure that the DenseMap can |
447 | /// accommodate \p NumEntries without need to grow(). |
448 | unsigned getMinBucketToReserveForEntries(unsigned NumEntries) { |
449 | // Ensure that "NumEntries * 4 < NumBuckets * 3" |
450 | if (NumEntries == 0) |
451 | return 0; |
452 | // +1 is required because of the strict equality. |
453 | // For example if NumEntries is 48, we need to return 401. |
454 | return NextPowerOf2(A: NumEntries * 4 / 3 + 1); |
455 | } |
456 | |
457 | void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) { |
458 | initEmpty(); |
459 | |
460 | // Insert all the old elements. |
461 | const KeyT EmptyKey = getEmptyKey(); |
462 | const KeyT TombstoneKey = getTombstoneKey(); |
463 | for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) { |
464 | if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) && |
465 | !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) { |
466 | // Insert the key/value into the new table. |
467 | BucketT *DestBucket; |
468 | bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket); |
469 | (void)FoundVal; // silence warning. |
470 | assert(!FoundVal && "Key already in new map?" ); |
471 | DestBucket->getFirst() = std::move(B->getFirst()); |
472 | ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond())); |
473 | incrementNumEntries(); |
474 | |
475 | // Free the value. |
476 | B->getSecond().~ValueT(); |
477 | } |
478 | B->getFirst().~KeyT(); |
479 | } |
480 | } |
481 | |
482 | template <typename OtherBaseT> |
483 | void copyFrom( |
484 | const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) { |
485 | assert(&other != this); |
486 | assert(getNumBuckets() == other.getNumBuckets()); |
487 | |
488 | setNumEntries(other.getNumEntries()); |
489 | setNumTombstones(other.getNumTombstones()); |
490 | |
491 | BucketT *Buckets = getBuckets(); |
492 | const BucketT *OtherBuckets = other.getBuckets(); |
493 | const size_t NumBuckets = getNumBuckets(); |
494 | if constexpr (std::is_trivially_copyable_v<KeyT> && |
495 | std::is_trivially_copyable_v<ValueT>) { |
496 | memcpy(reinterpret_cast<void *>(Buckets), OtherBuckets, |
497 | NumBuckets * sizeof(BucketT)); |
498 | } else { |
499 | const KeyT EmptyKey = getEmptyKey(); |
500 | const KeyT TombstoneKey = getTombstoneKey(); |
501 | for (size_t I = 0; I < NumBuckets; ++I) { |
502 | ::new (&Buckets[I].getFirst()) KeyT(OtherBuckets[I].getFirst()); |
503 | if (!KeyInfoT::isEqual(Buckets[I].getFirst(), EmptyKey) && |
504 | !KeyInfoT::isEqual(Buckets[I].getFirst(), TombstoneKey)) |
505 | ::new (&Buckets[I].getSecond()) ValueT(OtherBuckets[I].getSecond()); |
506 | } |
507 | } |
508 | } |
509 | |
510 | static unsigned getHashValue(const KeyT &Val) { |
511 | return KeyInfoT::getHashValue(Val); |
512 | } |
513 | |
514 | template <typename LookupKeyT> |
515 | static unsigned getHashValue(const LookupKeyT &Val) { |
516 | return KeyInfoT::getHashValue(Val); |
517 | } |
518 | |
519 | static const KeyT getEmptyKey() { |
520 | static_assert(std::is_base_of_v<DenseMapBase, DerivedT>, |
521 | "Must pass the derived type to this template!" ); |
522 | return KeyInfoT::getEmptyKey(); |
523 | } |
524 | |
525 | static const KeyT getTombstoneKey() { return KeyInfoT::getTombstoneKey(); } |
526 | |
527 | private: |
528 | iterator makeIterator(BucketT *P, BucketT *E, DebugEpochBase &Epoch, |
529 | bool NoAdvance = false) { |
530 | if (shouldReverseIterate<KeyT>()) { |
531 | BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1; |
532 | return iterator(B, E, Epoch, NoAdvance); |
533 | } |
534 | return iterator(P, E, Epoch, NoAdvance); |
535 | } |
536 | |
537 | const_iterator makeConstIterator(const BucketT *P, const BucketT *E, |
538 | const DebugEpochBase &Epoch, |
539 | const bool NoAdvance = false) const { |
540 | if (shouldReverseIterate<KeyT>()) { |
541 | const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1; |
542 | return const_iterator(B, E, Epoch, NoAdvance); |
543 | } |
544 | return const_iterator(P, E, Epoch, NoAdvance); |
545 | } |
546 | |
547 | unsigned getNumEntries() const { |
548 | return static_cast<const DerivedT *>(this)->getNumEntries(); |
549 | } |
550 | |
551 | void setNumEntries(unsigned Num) { |
552 | static_cast<DerivedT *>(this)->setNumEntries(Num); |
553 | } |
554 | |
555 | void incrementNumEntries() { setNumEntries(getNumEntries() + 1); } |
556 | |
557 | void decrementNumEntries() { setNumEntries(getNumEntries() - 1); } |
558 | |
559 | unsigned getNumTombstones() const { |
560 | return static_cast<const DerivedT *>(this)->getNumTombstones(); |
561 | } |
562 | |
563 | void setNumTombstones(unsigned Num) { |
564 | static_cast<DerivedT *>(this)->setNumTombstones(Num); |
565 | } |
566 | |
567 | void incrementNumTombstones() { setNumTombstones(getNumTombstones() + 1); } |
568 | |
569 | void decrementNumTombstones() { setNumTombstones(getNumTombstones() - 1); } |
570 | |
571 | const BucketT *getBuckets() const { |
572 | return static_cast<const DerivedT *>(this)->getBuckets(); |
573 | } |
574 | |
575 | BucketT *getBuckets() { return static_cast<DerivedT *>(this)->getBuckets(); } |
576 | |
577 | unsigned getNumBuckets() const { |
578 | return static_cast<const DerivedT *>(this)->getNumBuckets(); |
579 | } |
580 | |
581 | BucketT *getBucketsEnd() { return getBuckets() + getNumBuckets(); } |
582 | |
583 | const BucketT *getBucketsEnd() const { |
584 | return getBuckets() + getNumBuckets(); |
585 | } |
586 | |
587 | void grow(unsigned AtLeast) { static_cast<DerivedT *>(this)->grow(AtLeast); } |
588 | |
589 | void shrink_and_clear() { static_cast<DerivedT *>(this)->shrink_and_clear(); } |
590 | |
591 | template <typename KeyArg, typename... ValueArgs> |
592 | BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key, |
593 | ValueArgs &&...Values) { |
594 | TheBucket = InsertIntoBucketImpl(Key, TheBucket); |
595 | |
596 | TheBucket->getFirst() = std::forward<KeyArg>(Key); |
597 | ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...); |
598 | return TheBucket; |
599 | } |
600 | |
601 | template <typename LookupKeyT> |
602 | BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key, |
603 | ValueT &&Value, LookupKeyT &Lookup) { |
604 | TheBucket = InsertIntoBucketImpl(Lookup, TheBucket); |
605 | |
606 | TheBucket->getFirst() = std::move(Key); |
607 | ::new (&TheBucket->getSecond()) ValueT(std::move(Value)); |
608 | return TheBucket; |
609 | } |
610 | |
611 | template <typename LookupKeyT> |
612 | BucketT *InsertIntoBucketImpl(const LookupKeyT &Lookup, BucketT *TheBucket) { |
613 | incrementEpoch(); |
614 | |
615 | // If the load of the hash table is more than 3/4, or if fewer than 1/8 of |
616 | // the buckets are empty (meaning that many are filled with tombstones), |
617 | // grow the table. |
618 | // |
619 | // The later case is tricky. For example, if we had one empty bucket with |
620 | // tons of tombstones, failing lookups (e.g. for insertion) would have to |
621 | // probe almost the entire table until it found the empty bucket. If the |
622 | // table completely filled with tombstones, no lookup would ever succeed, |
623 | // causing infinite loops in lookup. |
624 | unsigned NewNumEntries = getNumEntries() + 1; |
625 | unsigned NumBuckets = getNumBuckets(); |
626 | if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) { |
627 | this->grow(NumBuckets * 2); |
628 | LookupBucketFor(Lookup, TheBucket); |
629 | NumBuckets = getNumBuckets(); |
630 | } else if (LLVM_UNLIKELY(NumBuckets - |
631 | (NewNumEntries + getNumTombstones()) <= |
632 | NumBuckets / 8)) { |
633 | this->grow(NumBuckets); |
634 | LookupBucketFor(Lookup, TheBucket); |
635 | } |
636 | assert(TheBucket); |
637 | |
638 | // Only update the state after we've grown our bucket space appropriately |
639 | // so that when growing buckets we have self-consistent entry count. |
640 | incrementNumEntries(); |
641 | |
642 | // If we are writing over a tombstone, remember this. |
643 | const KeyT EmptyKey = getEmptyKey(); |
644 | if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey)) |
645 | decrementNumTombstones(); |
646 | |
647 | return TheBucket; |
648 | } |
649 | |
650 | template <typename LookupKeyT> BucketT *doFind(const LookupKeyT &Val) { |
651 | BucketT *BucketsPtr = getBuckets(); |
652 | const unsigned NumBuckets = getNumBuckets(); |
653 | if (NumBuckets == 0) |
654 | return nullptr; |
655 | |
656 | const KeyT EmptyKey = getEmptyKey(); |
657 | unsigned BucketNo = getHashValue(Val) & (NumBuckets - 1); |
658 | unsigned ProbeAmt = 1; |
659 | while (true) { |
660 | BucketT *Bucket = BucketsPtr + BucketNo; |
661 | if (LLVM_LIKELY(KeyInfoT::isEqual(Val, Bucket->getFirst()))) |
662 | return Bucket; |
663 | if (LLVM_LIKELY(KeyInfoT::isEqual(Bucket->getFirst(), EmptyKey))) |
664 | return nullptr; |
665 | |
666 | // Otherwise, it's a hash collision or a tombstone, continue quadratic |
667 | // probing. |
668 | BucketNo += ProbeAmt++; |
669 | BucketNo &= NumBuckets - 1; |
670 | } |
671 | } |
672 | |
673 | template <typename LookupKeyT> |
674 | const BucketT *doFind(const LookupKeyT &Val) const { |
675 | return const_cast<DenseMapBase *>(this)->doFind(Val); // NOLINT |
676 | } |
677 | |
678 | /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in |
679 | /// FoundBucket. If the bucket contains the key and a value, this returns |
680 | /// true, otherwise it returns a bucket with an empty marker or tombstone and |
681 | /// returns false. |
682 | template <typename LookupKeyT> |
683 | bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) { |
684 | BucketT *BucketsPtr = getBuckets(); |
685 | const unsigned NumBuckets = getNumBuckets(); |
686 | |
687 | if (NumBuckets == 0) { |
688 | FoundBucket = nullptr; |
689 | return false; |
690 | } |
691 | |
692 | // FoundTombstone - Keep track of whether we find a tombstone while probing. |
693 | BucketT *FoundTombstone = nullptr; |
694 | const KeyT EmptyKey = getEmptyKey(); |
695 | const KeyT TombstoneKey = getTombstoneKey(); |
696 | assert(!KeyInfoT::isEqual(Val, EmptyKey) && |
697 | !KeyInfoT::isEqual(Val, TombstoneKey) && |
698 | "Empty/Tombstone value shouldn't be inserted into map!" ); |
699 | |
700 | unsigned BucketNo = getHashValue(Val) & (NumBuckets - 1); |
701 | unsigned ProbeAmt = 1; |
702 | while (true) { |
703 | BucketT *ThisBucket = BucketsPtr + BucketNo; |
704 | // Found Val's bucket? If so, return it. |
705 | if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) { |
706 | FoundBucket = ThisBucket; |
707 | return true; |
708 | } |
709 | |
710 | // If we found an empty bucket, the key doesn't exist in the set. |
711 | // Insert it and return the default value. |
712 | if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) { |
713 | // If we've already seen a tombstone while probing, fill it in instead |
714 | // of the empty bucket we eventually probed to. |
715 | FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket; |
716 | return false; |
717 | } |
718 | |
719 | // If this is a tombstone, remember it. If Val ends up not in the map, we |
720 | // prefer to return it than something that would require more probing. |
721 | if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) && |
722 | !FoundTombstone) |
723 | FoundTombstone = ThisBucket; // Remember the first tombstone found. |
724 | |
725 | // Otherwise, it's a hash collision or a tombstone, continue quadratic |
726 | // probing. |
727 | BucketNo += ProbeAmt++; |
728 | BucketNo &= (NumBuckets - 1); |
729 | } |
730 | } |
731 | |
732 | public: |
733 | /// Return the approximate size (in bytes) of the actual map. |
734 | /// This is just the raw memory used by DenseMap. |
735 | /// If entries are pointers to objects, the size of the referenced objects |
736 | /// are not included. |
737 | size_t getMemorySize() const { return getNumBuckets() * sizeof(BucketT); } |
738 | }; |
739 | |
740 | /// Equality comparison for DenseMap. |
741 | /// |
742 | /// Iterates over elements of LHS confirming that each (key, value) pair in LHS |
743 | /// is also in RHS, and that no additional pairs are in RHS. |
744 | /// Equivalent to N calls to RHS.find and N value comparisons. Amortized |
745 | /// complexity is linear, worst case is O(N^2) (if every hash collides). |
746 | template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, |
747 | typename BucketT> |
748 | bool operator==( |
749 | const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS, |
750 | const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) { |
751 | if (LHS.size() != RHS.size()) |
752 | return false; |
753 | |
754 | for (auto &KV : LHS) { |
755 | auto I = RHS.find(KV.first); |
756 | if (I == RHS.end() || I->second != KV.second) |
757 | return false; |
758 | } |
759 | |
760 | return true; |
761 | } |
762 | |
763 | /// Inequality comparison for DenseMap. |
764 | /// |
765 | /// Equivalent to !(LHS == RHS). See operator== for performance notes. |
766 | template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, |
767 | typename BucketT> |
768 | bool operator!=( |
769 | const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS, |
770 | const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) { |
771 | return !(LHS == RHS); |
772 | } |
773 | |
774 | template <typename KeyT, typename ValueT, |
775 | typename KeyInfoT = DenseMapInfo<KeyT>, |
776 | typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>> |
777 | class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>, |
778 | KeyT, ValueT, KeyInfoT, BucketT> { |
779 | friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
780 | |
781 | // Lift some types from the dependent base class into this class for |
782 | // simplicity of referring to them. |
783 | using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
784 | |
785 | BucketT *Buckets; |
786 | unsigned NumEntries; |
787 | unsigned NumTombstones; |
788 | unsigned NumBuckets; |
789 | |
790 | public: |
791 | /// Create a DenseMap with an optional \p InitialReserve that guarantee that |
792 | /// this number of elements can be inserted in the map without grow() |
793 | explicit DenseMap(unsigned InitialReserve = 0) { init(InitNumEntries: InitialReserve); } |
794 | |
795 | DenseMap(const DenseMap &other) : BaseT() { |
796 | init(InitNumEntries: 0); |
797 | copyFrom(other); |
798 | } |
799 | |
800 | DenseMap(DenseMap &&other) : BaseT() { |
801 | init(InitNumEntries: 0); |
802 | swap(RHS&: other); |
803 | } |
804 | |
805 | template <typename InputIt> DenseMap(const InputIt &I, const InputIt &E) { |
806 | init(InitNumEntries: std::distance(I, E)); |
807 | this->insert(I, E); |
808 | } |
809 | |
810 | DenseMap(std::initializer_list<typename BaseT::value_type> Vals) { |
811 | init(InitNumEntries: Vals.size()); |
812 | this->insert(Vals.begin(), Vals.end()); |
813 | } |
814 | |
815 | ~DenseMap() { |
816 | this->destroyAll(); |
817 | deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT)); |
818 | } |
819 | |
820 | void swap(DenseMap &RHS) { |
821 | this->incrementEpoch(); |
822 | RHS.incrementEpoch(); |
823 | std::swap(Buckets, RHS.Buckets); |
824 | std::swap(NumEntries, RHS.NumEntries); |
825 | std::swap(NumTombstones, RHS.NumTombstones); |
826 | std::swap(NumBuckets, RHS.NumBuckets); |
827 | } |
828 | |
829 | DenseMap &operator=(const DenseMap &other) { |
830 | if (&other != this) |
831 | copyFrom(other); |
832 | return *this; |
833 | } |
834 | |
835 | DenseMap &operator=(DenseMap &&other) { |
836 | this->destroyAll(); |
837 | deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT)); |
838 | init(InitNumEntries: 0); |
839 | swap(RHS&: other); |
840 | return *this; |
841 | } |
842 | |
843 | void copyFrom(const DenseMap &other) { |
844 | this->destroyAll(); |
845 | deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT)); |
846 | if (allocateBuckets(Num: other.NumBuckets)) { |
847 | this->BaseT::copyFrom(other); |
848 | } else { |
849 | NumEntries = 0; |
850 | NumTombstones = 0; |
851 | } |
852 | } |
853 | |
854 | void grow(unsigned AtLeast) { |
855 | unsigned OldNumBuckets = NumBuckets; |
856 | BucketT *OldBuckets = Buckets; |
857 | |
858 | allocateBuckets(Num: std::max<unsigned>( |
859 | a: 64, b: static_cast<unsigned>(NextPowerOf2(A: AtLeast - 1)))); |
860 | assert(Buckets); |
861 | if (!OldBuckets) { |
862 | this->BaseT::initEmpty(); |
863 | return; |
864 | } |
865 | |
866 | this->moveFromOldBuckets(OldBuckets, OldBuckets + OldNumBuckets); |
867 | |
868 | // Free the old table. |
869 | deallocate_buffer(OldBuckets, sizeof(BucketT) * OldNumBuckets, |
870 | alignof(BucketT)); |
871 | } |
872 | |
873 | void shrink_and_clear() { |
874 | unsigned OldNumBuckets = NumBuckets; |
875 | unsigned OldNumEntries = NumEntries; |
876 | this->destroyAll(); |
877 | |
878 | // Reduce the number of buckets. |
879 | unsigned NewNumBuckets = 0; |
880 | if (OldNumEntries) |
881 | NewNumBuckets = std::max(a: 64, b: 1 << (Log2_32_Ceil(Value: OldNumEntries) + 1)); |
882 | if (NewNumBuckets == NumBuckets) { |
883 | this->BaseT::initEmpty(); |
884 | return; |
885 | } |
886 | |
887 | deallocate_buffer(Buckets, sizeof(BucketT) * OldNumBuckets, |
888 | alignof(BucketT)); |
889 | init(InitNumEntries: NewNumBuckets); |
890 | } |
891 | |
892 | private: |
893 | unsigned getNumEntries() const { return NumEntries; } |
894 | |
895 | void setNumEntries(unsigned Num) { NumEntries = Num; } |
896 | |
897 | unsigned getNumTombstones() const { return NumTombstones; } |
898 | |
899 | void setNumTombstones(unsigned Num) { NumTombstones = Num; } |
900 | |
901 | BucketT *getBuckets() const { return Buckets; } |
902 | |
903 | unsigned getNumBuckets() const { return NumBuckets; } |
904 | |
905 | bool allocateBuckets(unsigned Num) { |
906 | NumBuckets = Num; |
907 | if (NumBuckets == 0) { |
908 | Buckets = nullptr; |
909 | return false; |
910 | } |
911 | |
912 | Buckets = static_cast<BucketT *>( |
913 | allocate_buffer(Size: sizeof(BucketT) * NumBuckets, Alignment: alignof(BucketT))); |
914 | return true; |
915 | } |
916 | |
917 | void init(unsigned InitNumEntries) { |
918 | auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries); |
919 | if (allocateBuckets(Num: InitBuckets)) { |
920 | this->BaseT::initEmpty(); |
921 | } else { |
922 | NumEntries = 0; |
923 | NumTombstones = 0; |
924 | } |
925 | } |
926 | }; |
927 | |
928 | template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4, |
929 | typename KeyInfoT = DenseMapInfo<KeyT>, |
930 | typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>> |
931 | class SmallDenseMap |
932 | : public DenseMapBase< |
933 | SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT, |
934 | ValueT, KeyInfoT, BucketT> { |
935 | friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
936 | |
937 | // Lift some types from the dependent base class into this class for |
938 | // simplicity of referring to them. |
939 | using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
940 | |
941 | static_assert(isPowerOf2_64(Value: InlineBuckets), |
942 | "InlineBuckets must be a power of 2." ); |
943 | |
944 | unsigned Small : 1; |
945 | unsigned NumEntries : 31; |
946 | unsigned NumTombstones; |
947 | |
948 | struct LargeRep { |
949 | BucketT *Buckets; |
950 | unsigned NumBuckets; |
951 | }; |
952 | |
953 | /// A "union" of an inline bucket array and the struct representing |
954 | /// a large bucket. This union will be discriminated by the 'Small' bit. |
955 | AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage; |
956 | |
957 | public: |
958 | explicit SmallDenseMap(unsigned NumInitBuckets = 0) { |
959 | if (NumInitBuckets > InlineBuckets) |
960 | NumInitBuckets = llvm::bit_ceil(Value: NumInitBuckets); |
961 | init(InitBuckets: NumInitBuckets); |
962 | } |
963 | |
964 | SmallDenseMap(const SmallDenseMap &other) : BaseT() { |
965 | init(InitBuckets: 0); |
966 | copyFrom(other); |
967 | } |
968 | |
969 | SmallDenseMap(SmallDenseMap &&other) : BaseT() { |
970 | init(InitBuckets: 0); |
971 | swap(RHS&: other); |
972 | } |
973 | |
974 | template <typename InputIt> |
975 | SmallDenseMap(const InputIt &I, const InputIt &E) { |
976 | init(InitBuckets: NextPowerOf2(std::distance(I, E))); |
977 | this->insert(I, E); |
978 | } |
979 | |
980 | SmallDenseMap(std::initializer_list<typename BaseT::value_type> Vals) |
981 | : SmallDenseMap(Vals.begin(), Vals.end()) {} |
982 | |
983 | ~SmallDenseMap() { |
984 | this->destroyAll(); |
985 | deallocateBuckets(); |
986 | } |
987 | |
988 | void swap(SmallDenseMap &RHS) { |
989 | unsigned TmpNumEntries = RHS.NumEntries; |
990 | RHS.NumEntries = NumEntries; |
991 | NumEntries = TmpNumEntries; |
992 | std::swap(NumTombstones, RHS.NumTombstones); |
993 | |
994 | const KeyT EmptyKey = this->getEmptyKey(); |
995 | const KeyT TombstoneKey = this->getTombstoneKey(); |
996 | if (Small && RHS.Small) { |
997 | // If we're swapping inline bucket arrays, we have to cope with some of |
998 | // the tricky bits of DenseMap's storage system: the buckets are not |
999 | // fully initialized. Thus we swap every key, but we may have |
1000 | // a one-directional move of the value. |
1001 | for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { |
1002 | BucketT *LHSB = &getInlineBuckets()[i], |
1003 | *RHSB = &RHS.getInlineBuckets()[i]; |
1004 | bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) && |
1005 | !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey)); |
1006 | bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) && |
1007 | !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey)); |
1008 | if (hasLHSValue && hasRHSValue) { |
1009 | // Swap together if we can... |
1010 | std::swap(*LHSB, *RHSB); |
1011 | continue; |
1012 | } |
1013 | // Swap separately and handle any asymmetry. |
1014 | std::swap(LHSB->getFirst(), RHSB->getFirst()); |
1015 | if (hasLHSValue) { |
1016 | ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond())); |
1017 | LHSB->getSecond().~ValueT(); |
1018 | } else if (hasRHSValue) { |
1019 | ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond())); |
1020 | RHSB->getSecond().~ValueT(); |
1021 | } |
1022 | } |
1023 | return; |
1024 | } |
1025 | if (!Small && !RHS.Small) { |
1026 | std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets); |
1027 | std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets); |
1028 | return; |
1029 | } |
1030 | |
1031 | SmallDenseMap &SmallSide = Small ? *this : RHS; |
1032 | SmallDenseMap &LargeSide = Small ? RHS : *this; |
1033 | |
1034 | // First stash the large side's rep and move the small side across. |
1035 | LargeRep TmpRep = std::move(*LargeSide.getLargeRep()); |
1036 | LargeSide.getLargeRep()->~LargeRep(); |
1037 | LargeSide.Small = true; |
1038 | // This is similar to the standard move-from-old-buckets, but the bucket |
1039 | // count hasn't actually rotated in this case. So we have to carefully |
1040 | // move construct the keys and values into their new locations, but there |
1041 | // is no need to re-hash things. |
1042 | for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { |
1043 | BucketT *NewB = &LargeSide.getInlineBuckets()[i], |
1044 | *OldB = &SmallSide.getInlineBuckets()[i]; |
1045 | ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst())); |
1046 | OldB->getFirst().~KeyT(); |
1047 | if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) && |
1048 | !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) { |
1049 | ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond())); |
1050 | OldB->getSecond().~ValueT(); |
1051 | } |
1052 | } |
1053 | |
1054 | // The hard part of moving the small buckets across is done, just move |
1055 | // the TmpRep into its new home. |
1056 | SmallSide.Small = false; |
1057 | new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep)); |
1058 | } |
1059 | |
1060 | SmallDenseMap &operator=(const SmallDenseMap &other) { |
1061 | if (&other != this) |
1062 | copyFrom(other); |
1063 | return *this; |
1064 | } |
1065 | |
1066 | SmallDenseMap &operator=(SmallDenseMap &&other) { |
1067 | this->destroyAll(); |
1068 | deallocateBuckets(); |
1069 | init(InitBuckets: 0); |
1070 | swap(RHS&: other); |
1071 | return *this; |
1072 | } |
1073 | |
1074 | void copyFrom(const SmallDenseMap &other) { |
1075 | this->destroyAll(); |
1076 | deallocateBuckets(); |
1077 | Small = true; |
1078 | if (other.getNumBuckets() > InlineBuckets) { |
1079 | Small = false; |
1080 | new (getLargeRep()) LargeRep(allocateBuckets(Num: other.getNumBuckets())); |
1081 | } |
1082 | this->BaseT::copyFrom(other); |
1083 | } |
1084 | |
1085 | void init(unsigned InitBuckets) { |
1086 | Small = true; |
1087 | if (InitBuckets > InlineBuckets) { |
1088 | Small = false; |
1089 | new (getLargeRep()) LargeRep(allocateBuckets(Num: InitBuckets)); |
1090 | } |
1091 | this->BaseT::initEmpty(); |
1092 | } |
1093 | |
1094 | void grow(unsigned AtLeast) { |
1095 | if (AtLeast > InlineBuckets) |
1096 | AtLeast = std::max<unsigned>(a: 64, b: NextPowerOf2(A: AtLeast - 1)); |
1097 | |
1098 | if (Small) { |
1099 | // First move the inline buckets into a temporary storage. |
1100 | AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage; |
1101 | BucketT *TmpBegin = reinterpret_cast<BucketT *>(&TmpStorage); |
1102 | BucketT *TmpEnd = TmpBegin; |
1103 | |
1104 | // Loop over the buckets, moving non-empty, non-tombstones into the |
1105 | // temporary storage. Have the loop move the TmpEnd forward as it goes. |
1106 | const KeyT EmptyKey = this->getEmptyKey(); |
1107 | const KeyT TombstoneKey = this->getTombstoneKey(); |
1108 | for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) { |
1109 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && |
1110 | !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { |
1111 | assert(size_t(TmpEnd - TmpBegin) < InlineBuckets && |
1112 | "Too many inline buckets!" ); |
1113 | ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst())); |
1114 | ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond())); |
1115 | ++TmpEnd; |
1116 | P->getSecond().~ValueT(); |
1117 | } |
1118 | P->getFirst().~KeyT(); |
1119 | } |
1120 | |
1121 | // AtLeast == InlineBuckets can happen if there are many tombstones, |
1122 | // and grow() is used to remove them. Usually we always switch to the |
1123 | // large rep here. |
1124 | if (AtLeast > InlineBuckets) { |
1125 | Small = false; |
1126 | new (getLargeRep()) LargeRep(allocateBuckets(Num: AtLeast)); |
1127 | } |
1128 | this->moveFromOldBuckets(TmpBegin, TmpEnd); |
1129 | return; |
1130 | } |
1131 | |
1132 | LargeRep OldRep = std::move(*getLargeRep()); |
1133 | getLargeRep()->~LargeRep(); |
1134 | if (AtLeast <= InlineBuckets) { |
1135 | Small = true; |
1136 | } else { |
1137 | new (getLargeRep()) LargeRep(allocateBuckets(Num: AtLeast)); |
1138 | } |
1139 | |
1140 | this->moveFromOldBuckets(OldRep.Buckets, |
1141 | OldRep.Buckets + OldRep.NumBuckets); |
1142 | |
1143 | // Free the old table. |
1144 | deallocate_buffer(OldRep.Buckets, sizeof(BucketT) * OldRep.NumBuckets, |
1145 | alignof(BucketT)); |
1146 | } |
1147 | |
1148 | void shrink_and_clear() { |
1149 | unsigned OldSize = this->size(); |
1150 | this->destroyAll(); |
1151 | |
1152 | // Reduce the number of buckets. |
1153 | unsigned NewNumBuckets = 0; |
1154 | if (OldSize) { |
1155 | NewNumBuckets = 1 << (Log2_32_Ceil(Value: OldSize) + 1); |
1156 | if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u) |
1157 | NewNumBuckets = 64; |
1158 | } |
1159 | if ((Small && NewNumBuckets <= InlineBuckets) || |
1160 | (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) { |
1161 | this->BaseT::initEmpty(); |
1162 | return; |
1163 | } |
1164 | |
1165 | deallocateBuckets(); |
1166 | init(InitBuckets: NewNumBuckets); |
1167 | } |
1168 | |
1169 | private: |
1170 | unsigned getNumEntries() const { return NumEntries; } |
1171 | |
1172 | void setNumEntries(unsigned Num) { |
1173 | // NumEntries is hardcoded to be 31 bits wide. |
1174 | assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries" ); |
1175 | NumEntries = Num; |
1176 | } |
1177 | |
1178 | unsigned getNumTombstones() const { return NumTombstones; } |
1179 | |
1180 | void setNumTombstones(unsigned Num) { NumTombstones = Num; } |
1181 | |
1182 | const BucketT *getInlineBuckets() const { |
1183 | assert(Small); |
1184 | // Note that this cast does not violate aliasing rules as we assert that |
1185 | // the memory's dynamic type is the small, inline bucket buffer, and the |
1186 | // 'storage' is a POD containing a char buffer. |
1187 | return reinterpret_cast<const BucketT *>(&storage); |
1188 | } |
1189 | |
1190 | BucketT *getInlineBuckets() { |
1191 | return const_cast<BucketT *>( |
1192 | const_cast<const SmallDenseMap *>(this)->getInlineBuckets()); |
1193 | } |
1194 | |
1195 | const LargeRep *getLargeRep() const { |
1196 | assert(!Small); |
1197 | // Note, same rule about aliasing as with getInlineBuckets. |
1198 | return reinterpret_cast<const LargeRep *>(&storage); |
1199 | } |
1200 | |
1201 | LargeRep *getLargeRep() { |
1202 | return const_cast<LargeRep *>( |
1203 | const_cast<const SmallDenseMap *>(this)->getLargeRep()); |
1204 | } |
1205 | |
1206 | const BucketT *getBuckets() const { |
1207 | return Small ? getInlineBuckets() : getLargeRep()->Buckets; |
1208 | } |
1209 | |
1210 | BucketT *getBuckets() { |
1211 | return const_cast<BucketT *>( |
1212 | const_cast<const SmallDenseMap *>(this)->getBuckets()); |
1213 | } |
1214 | |
1215 | unsigned getNumBuckets() const { |
1216 | return Small ? InlineBuckets : getLargeRep()->NumBuckets; |
1217 | } |
1218 | |
1219 | void deallocateBuckets() { |
1220 | if (Small) |
1221 | return; |
1222 | |
1223 | deallocate_buffer(getLargeRep()->Buckets, |
1224 | sizeof(BucketT) * getLargeRep()->NumBuckets, |
1225 | alignof(BucketT)); |
1226 | getLargeRep()->~LargeRep(); |
1227 | } |
1228 | |
1229 | LargeRep allocateBuckets(unsigned Num) { |
1230 | assert(Num > InlineBuckets && "Must allocate more buckets than are inline" ); |
1231 | LargeRep Rep = {static_cast<BucketT *>(allocate_buffer( |
1232 | Size: sizeof(BucketT) * Num, Alignment: alignof(BucketT))), |
1233 | Num}; |
1234 | return Rep; |
1235 | } |
1236 | }; |
1237 | |
1238 | template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket, |
1239 | bool IsConst> |
1240 | class DenseMapIterator : DebugEpochBase::HandleBase { |
1241 | friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>; |
1242 | friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>; |
1243 | |
1244 | public: |
1245 | using difference_type = ptrdiff_t; |
1246 | using value_type = std::conditional_t<IsConst, const Bucket, Bucket>; |
1247 | using pointer = value_type *; |
1248 | using reference = value_type &; |
1249 | using iterator_category = std::forward_iterator_tag; |
1250 | |
1251 | private: |
1252 | pointer Ptr = nullptr; |
1253 | pointer End = nullptr; |
1254 | |
1255 | public: |
1256 | DenseMapIterator() = default; |
1257 | |
1258 | DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch, |
1259 | bool NoAdvance = false) |
1260 | : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) { |
1261 | assert(isHandleInSync() && "invalid construction!" ); |
1262 | |
1263 | if (NoAdvance) |
1264 | return; |
1265 | if (shouldReverseIterate<KeyT>()) { |
1266 | RetreatPastEmptyBuckets(); |
1267 | return; |
1268 | } |
1269 | AdvancePastEmptyBuckets(); |
1270 | } |
1271 | |
1272 | // Converting ctor from non-const iterators to const iterators. SFINAE'd out |
1273 | // for const iterator destinations so it doesn't end up as a user defined copy |
1274 | // constructor. |
1275 | template <bool IsConstSrc, |
1276 | typename = std::enable_if_t<!IsConstSrc && IsConst>> |
1277 | DenseMapIterator( |
1278 | const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I) |
1279 | : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {} |
1280 | |
1281 | reference operator*() const { |
1282 | assert(isHandleInSync() && "invalid iterator access!" ); |
1283 | assert(Ptr != End && "dereferencing end() iterator" ); |
1284 | if (shouldReverseIterate<KeyT>()) |
1285 | return Ptr[-1]; |
1286 | return *Ptr; |
1287 | } |
1288 | pointer operator->() const { |
1289 | assert(isHandleInSync() && "invalid iterator access!" ); |
1290 | assert(Ptr != End && "dereferencing end() iterator" ); |
1291 | if (shouldReverseIterate<KeyT>()) |
1292 | return &(Ptr[-1]); |
1293 | return Ptr; |
1294 | } |
1295 | |
1296 | friend bool operator==(const DenseMapIterator &LHS, |
1297 | const DenseMapIterator &RHS) { |
1298 | assert((!LHS.Ptr || LHS.isHandleInSync()) && "handle not in sync!" ); |
1299 | assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!" ); |
1300 | assert(LHS.getEpochAddress() == RHS.getEpochAddress() && |
1301 | "comparing incomparable iterators!" ); |
1302 | return LHS.Ptr == RHS.Ptr; |
1303 | } |
1304 | |
1305 | friend bool operator!=(const DenseMapIterator &LHS, |
1306 | const DenseMapIterator &RHS) { |
1307 | return !(LHS == RHS); |
1308 | } |
1309 | |
1310 | inline DenseMapIterator &operator++() { // Preincrement |
1311 | assert(isHandleInSync() && "invalid iterator access!" ); |
1312 | assert(Ptr != End && "incrementing end() iterator" ); |
1313 | if (shouldReverseIterate<KeyT>()) { |
1314 | --Ptr; |
1315 | RetreatPastEmptyBuckets(); |
1316 | return *this; |
1317 | } |
1318 | ++Ptr; |
1319 | AdvancePastEmptyBuckets(); |
1320 | return *this; |
1321 | } |
1322 | DenseMapIterator operator++(int) { // Postincrement |
1323 | assert(isHandleInSync() && "invalid iterator access!" ); |
1324 | DenseMapIterator tmp = *this; |
1325 | ++*this; |
1326 | return tmp; |
1327 | } |
1328 | |
1329 | private: |
1330 | void AdvancePastEmptyBuckets() { |
1331 | assert(Ptr <= End); |
1332 | const KeyT Empty = KeyInfoT::getEmptyKey(); |
1333 | const KeyT Tombstone = KeyInfoT::getTombstoneKey(); |
1334 | |
1335 | while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) || |
1336 | KeyInfoT::isEqual(Ptr->getFirst(), Tombstone))) |
1337 | ++Ptr; |
1338 | } |
1339 | |
1340 | void RetreatPastEmptyBuckets() { |
1341 | assert(Ptr >= End); |
1342 | const KeyT Empty = KeyInfoT::getEmptyKey(); |
1343 | const KeyT Tombstone = KeyInfoT::getTombstoneKey(); |
1344 | |
1345 | while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) || |
1346 | KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone))) |
1347 | --Ptr; |
1348 | } |
1349 | }; |
1350 | |
1351 | template <typename KeyT, typename ValueT, typename KeyInfoT> |
1352 | inline size_t capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) { |
1353 | return X.getMemorySize(); |
1354 | } |
1355 | |
1356 | } // end namespace llvm |
1357 | |
1358 | #endif // LLVM_ADT_DENSEMAP_H |
1359 | |