| 1 | //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file defines the DenseMap class. |
| 11 | /// |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_ADT_DENSEMAP_H |
| 15 | #define LLVM_ADT_DENSEMAP_H |
| 16 | |
| 17 | #include "llvm/ADT/ADL.h" |
| 18 | #include "llvm/ADT/DenseMapInfo.h" |
| 19 | #include "llvm/ADT/EpochTracker.h" |
| 20 | #include "llvm/ADT/STLExtras.h" |
| 21 | #include "llvm/Support/AlignOf.h" |
| 22 | #include "llvm/Support/Compiler.h" |
| 23 | #include "llvm/Support/MathExtras.h" |
| 24 | #include "llvm/Support/MemAlloc.h" |
| 25 | #include "llvm/Support/ReverseIteration.h" |
| 26 | #include "llvm/Support/type_traits.h" |
| 27 | #include <algorithm> |
| 28 | #include <cassert> |
| 29 | #include <cstddef> |
| 30 | #include <cstring> |
| 31 | #include <initializer_list> |
| 32 | #include <iterator> |
| 33 | #include <new> |
| 34 | #include <type_traits> |
| 35 | #include <utility> |
| 36 | |
| 37 | namespace llvm { |
| 38 | |
| 39 | namespace detail { |
| 40 | |
| 41 | // We extend a pair to allow users to override the bucket type with their own |
| 42 | // implementation without requiring two members. |
| 43 | template <typename KeyT, typename ValueT> |
| 44 | struct DenseMapPair : public std::pair<KeyT, ValueT> { |
| 45 | using std::pair<KeyT, ValueT>::pair; |
| 46 | |
| 47 | KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; } |
| 48 | const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; } |
| 49 | ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; } |
| 50 | const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; } |
| 51 | }; |
| 52 | |
| 53 | } // end namespace detail |
| 54 | |
| 55 | template <typename KeyT, typename ValueT, |
| 56 | typename KeyInfoT = DenseMapInfo<KeyT>, |
| 57 | typename Bucket = llvm::detail::DenseMapPair<KeyT, ValueT>, |
| 58 | bool IsConst = false> |
| 59 | class DenseMapIterator; |
| 60 | |
| 61 | template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, |
| 62 | typename BucketT> |
| 63 | class DenseMapBase : public DebugEpochBase { |
| 64 | template <typename T> |
| 65 | using const_arg_type_t = typename const_pointer_or_const_ref<T>::type; |
| 66 | |
| 67 | public: |
| 68 | using size_type = unsigned; |
| 69 | using key_type = KeyT; |
| 70 | using mapped_type = ValueT; |
| 71 | using value_type = BucketT; |
| 72 | |
| 73 | using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>; |
| 74 | using const_iterator = |
| 75 | DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>; |
| 76 | |
| 77 | inline iterator begin() { |
| 78 | // When the map is empty, avoid the overhead of advancing/retreating past |
| 79 | // empty buckets. |
| 80 | if (empty()) |
| 81 | return end(); |
| 82 | if (shouldReverseIterate<KeyT>()) |
| 83 | return makeIterator(P: getBucketsEnd() - 1, E: getBuckets(), Epoch&: *this); |
| 84 | return makeIterator(P: getBuckets(), E: getBucketsEnd(), Epoch&: *this); |
| 85 | } |
| 86 | inline iterator end() { |
| 87 | return makeIterator(P: getBucketsEnd(), E: getBucketsEnd(), Epoch&: *this, NoAdvance: true); |
| 88 | } |
| 89 | inline const_iterator begin() const { |
| 90 | if (empty()) |
| 91 | return end(); |
| 92 | if (shouldReverseIterate<KeyT>()) |
| 93 | return makeConstIterator(P: getBucketsEnd() - 1, E: getBuckets(), Epoch: *this); |
| 94 | return makeConstIterator(P: getBuckets(), E: getBucketsEnd(), Epoch: *this); |
| 95 | } |
| 96 | inline const_iterator end() const { |
| 97 | return makeConstIterator(P: getBucketsEnd(), E: getBucketsEnd(), Epoch: *this, NoAdvance: true); |
| 98 | } |
| 99 | |
| 100 | // Return an iterator to iterate over keys in the map. |
| 101 | inline auto keys() { |
| 102 | return map_range(*this, [](const BucketT &P) { return P.getFirst(); }); |
| 103 | } |
| 104 | |
| 105 | // Return an iterator to iterate over values in the map. |
| 106 | inline auto values() { |
| 107 | return map_range(*this, [](const BucketT &P) { return P.getSecond(); }); |
| 108 | } |
| 109 | |
| 110 | inline auto keys() const { |
| 111 | return map_range(*this, [](const BucketT &P) { return P.getFirst(); }); |
| 112 | } |
| 113 | |
| 114 | inline auto values() const { |
| 115 | return map_range(*this, [](const BucketT &P) { return P.getSecond(); }); |
| 116 | } |
| 117 | |
| 118 | [[nodiscard]] bool empty() const { return getNumEntries() == 0; } |
| 119 | unsigned size() const { return getNumEntries(); } |
| 120 | |
| 121 | /// Grow the densemap so that it can contain at least \p NumEntries items |
| 122 | /// before resizing again. |
| 123 | void reserve(size_type NumEntries) { |
| 124 | auto NumBuckets = getMinBucketToReserveForEntries(NumEntries); |
| 125 | incrementEpoch(); |
| 126 | if (NumBuckets > getNumBuckets()) |
| 127 | grow(AtLeast: NumBuckets); |
| 128 | } |
| 129 | |
| 130 | void clear() { |
| 131 | incrementEpoch(); |
| 132 | if (getNumEntries() == 0 && getNumTombstones() == 0) |
| 133 | return; |
| 134 | |
| 135 | // If the capacity of the array is huge, and the # elements used is small, |
| 136 | // shrink the array. |
| 137 | if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) { |
| 138 | shrink_and_clear(); |
| 139 | return; |
| 140 | } |
| 141 | |
| 142 | const KeyT EmptyKey = getEmptyKey(); |
| 143 | if constexpr (std::is_trivially_destructible_v<ValueT>) { |
| 144 | // Use a simpler loop when values don't need destruction. |
| 145 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) |
| 146 | P->getFirst() = EmptyKey; |
| 147 | } else { |
| 148 | const KeyT TombstoneKey = getTombstoneKey(); |
| 149 | unsigned NumEntries = getNumEntries(); |
| 150 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { |
| 151 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) { |
| 152 | if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { |
| 153 | P->getSecond().~ValueT(); |
| 154 | --NumEntries; |
| 155 | } |
| 156 | P->getFirst() = EmptyKey; |
| 157 | } |
| 158 | } |
| 159 | assert(NumEntries == 0 && "Node count imbalance!" ); |
| 160 | (void)NumEntries; |
| 161 | } |
| 162 | setNumEntries(0); |
| 163 | setNumTombstones(0); |
| 164 | } |
| 165 | |
| 166 | /// Return true if the specified key is in the map, false otherwise. |
| 167 | bool contains(const_arg_type_t<KeyT> Val) const { |
| 168 | return doFind(Val) != nullptr; |
| 169 | } |
| 170 | |
| 171 | /// Return 1 if the specified key is in the map, 0 otherwise. |
| 172 | size_type count(const_arg_type_t<KeyT> Val) const { |
| 173 | return contains(Val) ? 1 : 0; |
| 174 | } |
| 175 | |
| 176 | iterator find(const_arg_type_t<KeyT> Val) { |
| 177 | if (BucketT *Bucket = doFind(Val)) |
| 178 | return makeIterator( |
| 179 | P: Bucket, E: shouldReverseIterate<KeyT>() ? getBuckets() : getBucketsEnd(), |
| 180 | Epoch&: *this, NoAdvance: true); |
| 181 | return end(); |
| 182 | } |
| 183 | const_iterator find(const_arg_type_t<KeyT> Val) const { |
| 184 | if (const BucketT *Bucket = doFind(Val)) |
| 185 | return makeConstIterator( |
| 186 | P: Bucket, E: shouldReverseIterate<KeyT>() ? getBuckets() : getBucketsEnd(), |
| 187 | Epoch: *this, NoAdvance: true); |
| 188 | return end(); |
| 189 | } |
| 190 | |
| 191 | /// Alternate version of find() which allows a different, and possibly |
| 192 | /// less expensive, key type. |
| 193 | /// The DenseMapInfo is responsible for supplying methods |
| 194 | /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key |
| 195 | /// type used. |
| 196 | template <class LookupKeyT> iterator find_as(const LookupKeyT &Val) { |
| 197 | if (BucketT *Bucket = doFind(Val)) |
| 198 | return makeIterator( |
| 199 | P: Bucket, E: shouldReverseIterate<KeyT>() ? getBuckets() : getBucketsEnd(), |
| 200 | Epoch&: *this, NoAdvance: true); |
| 201 | return end(); |
| 202 | } |
| 203 | template <class LookupKeyT> |
| 204 | const_iterator find_as(const LookupKeyT &Val) const { |
| 205 | if (const BucketT *Bucket = doFind(Val)) |
| 206 | return makeConstIterator( |
| 207 | P: Bucket, E: shouldReverseIterate<KeyT>() ? getBuckets() : getBucketsEnd(), |
| 208 | Epoch: *this, NoAdvance: true); |
| 209 | return end(); |
| 210 | } |
| 211 | |
| 212 | /// lookup - Return the entry for the specified key, or a default |
| 213 | /// constructed value if no such entry exists. |
| 214 | ValueT lookup(const_arg_type_t<KeyT> Val) const { |
| 215 | if (const BucketT *Bucket = doFind(Val)) |
| 216 | return Bucket->getSecond(); |
| 217 | return ValueT(); |
| 218 | } |
| 219 | |
| 220 | // Return the entry with the specified key, or \p Default. This variant is |
| 221 | // useful, because `lookup` cannot be used with non-default-constructible |
| 222 | // values. |
| 223 | template <typename U = std::remove_cv_t<ValueT>> |
| 224 | ValueT lookup_or(const_arg_type_t<KeyT> Val, U &&Default) const { |
| 225 | if (const BucketT *Bucket = doFind(Val)) |
| 226 | return Bucket->getSecond(); |
| 227 | return Default; |
| 228 | } |
| 229 | |
| 230 | /// at - Return the entry for the specified key, or abort if no such |
| 231 | /// entry exists. |
| 232 | const ValueT &at(const_arg_type_t<KeyT> Val) const { |
| 233 | auto Iter = this->find(std::move(Val)); |
| 234 | assert(Iter != this->end() && "DenseMap::at failed due to a missing key" ); |
| 235 | return Iter->second; |
| 236 | } |
| 237 | |
| 238 | // Inserts key,value pair into the map if the key isn't already in the map. |
| 239 | // If the key is already in the map, it returns false and doesn't update the |
| 240 | // value. |
| 241 | std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) { |
| 242 | return try_emplace(KV.first, KV.second); |
| 243 | } |
| 244 | |
| 245 | // Inserts key,value pair into the map if the key isn't already in the map. |
| 246 | // If the key is already in the map, it returns false and doesn't update the |
| 247 | // value. |
| 248 | std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) { |
| 249 | return try_emplace(std::move(KV.first), std::move(KV.second)); |
| 250 | } |
| 251 | |
| 252 | // Inserts key,value pair into the map if the key isn't already in the map. |
| 253 | // The value is constructed in-place if the key is not in the map, otherwise |
| 254 | // it is not moved. |
| 255 | template <typename... Ts> |
| 256 | std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&...Args) { |
| 257 | BucketT *TheBucket; |
| 258 | if (LookupBucketFor(Key, TheBucket)) |
| 259 | return std::make_pair(makeIterator(P: TheBucket, |
| 260 | E: shouldReverseIterate<KeyT>() |
| 261 | ? getBuckets() |
| 262 | : getBucketsEnd(), |
| 263 | Epoch&: *this, NoAdvance: true), |
| 264 | false); // Already in map. |
| 265 | |
| 266 | // Otherwise, insert the new element. |
| 267 | TheBucket = |
| 268 | InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...); |
| 269 | return std::make_pair(makeIterator(P: TheBucket, |
| 270 | E: shouldReverseIterate<KeyT>() |
| 271 | ? getBuckets() |
| 272 | : getBucketsEnd(), |
| 273 | Epoch&: *this, NoAdvance: true), |
| 274 | true); |
| 275 | } |
| 276 | |
| 277 | // Inserts key,value pair into the map if the key isn't already in the map. |
| 278 | // The value is constructed in-place if the key is not in the map, otherwise |
| 279 | // it is not moved. |
| 280 | template <typename... Ts> |
| 281 | std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&...Args) { |
| 282 | BucketT *TheBucket; |
| 283 | if (LookupBucketFor(Key, TheBucket)) |
| 284 | return std::make_pair(makeIterator(P: TheBucket, |
| 285 | E: shouldReverseIterate<KeyT>() |
| 286 | ? getBuckets() |
| 287 | : getBucketsEnd(), |
| 288 | Epoch&: *this, NoAdvance: true), |
| 289 | false); // Already in map. |
| 290 | |
| 291 | // Otherwise, insert the new element. |
| 292 | TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...); |
| 293 | return std::make_pair(makeIterator(P: TheBucket, |
| 294 | E: shouldReverseIterate<KeyT>() |
| 295 | ? getBuckets() |
| 296 | : getBucketsEnd(), |
| 297 | Epoch&: *this, NoAdvance: true), |
| 298 | true); |
| 299 | } |
| 300 | |
| 301 | /// Alternate version of insert() which allows a different, and possibly |
| 302 | /// less expensive, key type. |
| 303 | /// The DenseMapInfo is responsible for supplying methods |
| 304 | /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key |
| 305 | /// type used. |
| 306 | template <typename LookupKeyT> |
| 307 | std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV, |
| 308 | const LookupKeyT &Val) { |
| 309 | BucketT *TheBucket; |
| 310 | if (LookupBucketFor(Val, TheBucket)) |
| 311 | return std::make_pair(makeIterator(P: TheBucket, |
| 312 | E: shouldReverseIterate<KeyT>() |
| 313 | ? getBuckets() |
| 314 | : getBucketsEnd(), |
| 315 | Epoch&: *this, NoAdvance: true), |
| 316 | false); // Already in map. |
| 317 | |
| 318 | // Otherwise, insert the new element. |
| 319 | TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first), |
| 320 | std::move(KV.second), Val); |
| 321 | return std::make_pair(makeIterator(P: TheBucket, |
| 322 | E: shouldReverseIterate<KeyT>() |
| 323 | ? getBuckets() |
| 324 | : getBucketsEnd(), |
| 325 | Epoch&: *this, NoAdvance: true), |
| 326 | true); |
| 327 | } |
| 328 | |
| 329 | /// insert - Range insertion of pairs. |
| 330 | template <typename InputIt> void insert(InputIt I, InputIt E) { |
| 331 | for (; I != E; ++I) |
| 332 | insert(*I); |
| 333 | } |
| 334 | |
| 335 | /// Inserts range of 'std::pair<KeyT, ValueT>' values into the map. |
| 336 | template <typename Range> void insert_range(Range &&R) { |
| 337 | insert(adl_begin(R), adl_end(R)); |
| 338 | } |
| 339 | |
| 340 | template <typename V> |
| 341 | std::pair<iterator, bool> insert_or_assign(const KeyT &Key, V &&Val) { |
| 342 | auto Ret = try_emplace(Key, std::forward<V>(Val)); |
| 343 | if (!Ret.second) |
| 344 | Ret.first->second = std::forward<V>(Val); |
| 345 | return Ret; |
| 346 | } |
| 347 | |
| 348 | template <typename V> |
| 349 | std::pair<iterator, bool> insert_or_assign(KeyT &&Key, V &&Val) { |
| 350 | auto Ret = try_emplace(std::move(Key), std::forward<V>(Val)); |
| 351 | if (!Ret.second) |
| 352 | Ret.first->second = std::forward<V>(Val); |
| 353 | return Ret; |
| 354 | } |
| 355 | |
| 356 | template <typename... Ts> |
| 357 | std::pair<iterator, bool> emplace_or_assign(const KeyT &Key, Ts &&...Args) { |
| 358 | auto Ret = try_emplace(Key, std::forward<Ts>(Args)...); |
| 359 | if (!Ret.second) |
| 360 | Ret.first->second = ValueT(std::forward<Ts>(Args)...); |
| 361 | return Ret; |
| 362 | } |
| 363 | |
| 364 | template <typename... Ts> |
| 365 | std::pair<iterator, bool> emplace_or_assign(KeyT &&Key, Ts &&...Args) { |
| 366 | auto Ret = try_emplace(std::move(Key), std::forward<Ts>(Args)...); |
| 367 | if (!Ret.second) |
| 368 | Ret.first->second = ValueT(std::forward<Ts>(Args)...); |
| 369 | return Ret; |
| 370 | } |
| 371 | |
| 372 | bool erase(const KeyT &Val) { |
| 373 | BucketT *TheBucket = doFind(Val); |
| 374 | if (!TheBucket) |
| 375 | return false; // not in map. |
| 376 | |
| 377 | TheBucket->getSecond().~ValueT(); |
| 378 | TheBucket->getFirst() = getTombstoneKey(); |
| 379 | decrementNumEntries(); |
| 380 | incrementNumTombstones(); |
| 381 | return true; |
| 382 | } |
| 383 | void erase(iterator I) { |
| 384 | BucketT *TheBucket = &*I; |
| 385 | TheBucket->getSecond().~ValueT(); |
| 386 | TheBucket->getFirst() = getTombstoneKey(); |
| 387 | decrementNumEntries(); |
| 388 | incrementNumTombstones(); |
| 389 | } |
| 390 | |
| 391 | ValueT &operator[](const KeyT &Key) { |
| 392 | BucketT *TheBucket; |
| 393 | if (LookupBucketFor(Key, TheBucket)) |
| 394 | return TheBucket->second; |
| 395 | |
| 396 | return InsertIntoBucket(TheBucket, Key)->second; |
| 397 | } |
| 398 | |
| 399 | ValueT &operator[](KeyT &&Key) { |
| 400 | BucketT *TheBucket; |
| 401 | if (LookupBucketFor(Key, TheBucket)) |
| 402 | return TheBucket->second; |
| 403 | |
| 404 | return InsertIntoBucket(TheBucket, std::move(Key))->second; |
| 405 | } |
| 406 | |
| 407 | /// isPointerIntoBucketsArray - Return true if the specified pointer points |
| 408 | /// somewhere into the DenseMap's array of buckets (i.e. either to a key or |
| 409 | /// value in the DenseMap). |
| 410 | bool isPointerIntoBucketsArray(const void *Ptr) const { |
| 411 | return Ptr >= getBuckets() && Ptr < getBucketsEnd(); |
| 412 | } |
| 413 | |
| 414 | /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets |
| 415 | /// array. In conjunction with the previous method, this can be used to |
| 416 | /// determine whether an insertion caused the DenseMap to reallocate. |
| 417 | const void *getPointerIntoBucketsArray() const { return getBuckets(); } |
| 418 | |
| 419 | protected: |
| 420 | DenseMapBase() = default; |
| 421 | |
| 422 | void destroyAll() { |
| 423 | if (getNumBuckets() == 0) // Nothing to do. |
| 424 | return; |
| 425 | |
| 426 | const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); |
| 427 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { |
| 428 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && |
| 429 | !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) |
| 430 | P->getSecond().~ValueT(); |
| 431 | P->getFirst().~KeyT(); |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | void initEmpty() { |
| 436 | setNumEntries(0); |
| 437 | setNumTombstones(0); |
| 438 | |
| 439 | assert((getNumBuckets() & (getNumBuckets() - 1)) == 0 && |
| 440 | "# initial buckets must be a power of two!" ); |
| 441 | const KeyT EmptyKey = getEmptyKey(); |
| 442 | for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B) |
| 443 | ::new (&B->getFirst()) KeyT(EmptyKey); |
| 444 | } |
| 445 | |
| 446 | /// Returns the number of buckets to allocate to ensure that the DenseMap can |
| 447 | /// accommodate \p NumEntries without need to grow(). |
| 448 | unsigned getMinBucketToReserveForEntries(unsigned NumEntries) { |
| 449 | // Ensure that "NumEntries * 4 < NumBuckets * 3" |
| 450 | if (NumEntries == 0) |
| 451 | return 0; |
| 452 | // +1 is required because of the strict equality. |
| 453 | // For example if NumEntries is 48, we need to return 401. |
| 454 | return NextPowerOf2(A: NumEntries * 4 / 3 + 1); |
| 455 | } |
| 456 | |
| 457 | void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) { |
| 458 | initEmpty(); |
| 459 | |
| 460 | // Insert all the old elements. |
| 461 | const KeyT EmptyKey = getEmptyKey(); |
| 462 | const KeyT TombstoneKey = getTombstoneKey(); |
| 463 | for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) { |
| 464 | if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) && |
| 465 | !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) { |
| 466 | // Insert the key/value into the new table. |
| 467 | BucketT *DestBucket; |
| 468 | bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket); |
| 469 | (void)FoundVal; // silence warning. |
| 470 | assert(!FoundVal && "Key already in new map?" ); |
| 471 | DestBucket->getFirst() = std::move(B->getFirst()); |
| 472 | ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond())); |
| 473 | incrementNumEntries(); |
| 474 | |
| 475 | // Free the value. |
| 476 | B->getSecond().~ValueT(); |
| 477 | } |
| 478 | B->getFirst().~KeyT(); |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | template <typename OtherBaseT> |
| 483 | void copyFrom( |
| 484 | const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) { |
| 485 | assert(&other != this); |
| 486 | assert(getNumBuckets() == other.getNumBuckets()); |
| 487 | |
| 488 | setNumEntries(other.getNumEntries()); |
| 489 | setNumTombstones(other.getNumTombstones()); |
| 490 | |
| 491 | BucketT *Buckets = getBuckets(); |
| 492 | const BucketT *OtherBuckets = other.getBuckets(); |
| 493 | const size_t NumBuckets = getNumBuckets(); |
| 494 | if constexpr (std::is_trivially_copyable_v<KeyT> && |
| 495 | std::is_trivially_copyable_v<ValueT>) { |
| 496 | memcpy(reinterpret_cast<void *>(Buckets), OtherBuckets, |
| 497 | NumBuckets * sizeof(BucketT)); |
| 498 | } else { |
| 499 | const KeyT EmptyKey = getEmptyKey(); |
| 500 | const KeyT TombstoneKey = getTombstoneKey(); |
| 501 | for (size_t I = 0; I < NumBuckets; ++I) { |
| 502 | ::new (&Buckets[I].getFirst()) KeyT(OtherBuckets[I].getFirst()); |
| 503 | if (!KeyInfoT::isEqual(Buckets[I].getFirst(), EmptyKey) && |
| 504 | !KeyInfoT::isEqual(Buckets[I].getFirst(), TombstoneKey)) |
| 505 | ::new (&Buckets[I].getSecond()) ValueT(OtherBuckets[I].getSecond()); |
| 506 | } |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | static unsigned getHashValue(const KeyT &Val) { |
| 511 | return KeyInfoT::getHashValue(Val); |
| 512 | } |
| 513 | |
| 514 | template <typename LookupKeyT> |
| 515 | static unsigned getHashValue(const LookupKeyT &Val) { |
| 516 | return KeyInfoT::getHashValue(Val); |
| 517 | } |
| 518 | |
| 519 | static const KeyT getEmptyKey() { |
| 520 | static_assert(std::is_base_of_v<DenseMapBase, DerivedT>, |
| 521 | "Must pass the derived type to this template!" ); |
| 522 | return KeyInfoT::getEmptyKey(); |
| 523 | } |
| 524 | |
| 525 | static const KeyT getTombstoneKey() { return KeyInfoT::getTombstoneKey(); } |
| 526 | |
| 527 | private: |
| 528 | iterator makeIterator(BucketT *P, BucketT *E, DebugEpochBase &Epoch, |
| 529 | bool NoAdvance = false) { |
| 530 | if (shouldReverseIterate<KeyT>()) { |
| 531 | BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1; |
| 532 | return iterator(B, E, Epoch, NoAdvance); |
| 533 | } |
| 534 | return iterator(P, E, Epoch, NoAdvance); |
| 535 | } |
| 536 | |
| 537 | const_iterator makeConstIterator(const BucketT *P, const BucketT *E, |
| 538 | const DebugEpochBase &Epoch, |
| 539 | const bool NoAdvance = false) const { |
| 540 | if (shouldReverseIterate<KeyT>()) { |
| 541 | const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1; |
| 542 | return const_iterator(B, E, Epoch, NoAdvance); |
| 543 | } |
| 544 | return const_iterator(P, E, Epoch, NoAdvance); |
| 545 | } |
| 546 | |
| 547 | unsigned getNumEntries() const { |
| 548 | return static_cast<const DerivedT *>(this)->getNumEntries(); |
| 549 | } |
| 550 | |
| 551 | void setNumEntries(unsigned Num) { |
| 552 | static_cast<DerivedT *>(this)->setNumEntries(Num); |
| 553 | } |
| 554 | |
| 555 | void incrementNumEntries() { setNumEntries(getNumEntries() + 1); } |
| 556 | |
| 557 | void decrementNumEntries() { setNumEntries(getNumEntries() - 1); } |
| 558 | |
| 559 | unsigned getNumTombstones() const { |
| 560 | return static_cast<const DerivedT *>(this)->getNumTombstones(); |
| 561 | } |
| 562 | |
| 563 | void setNumTombstones(unsigned Num) { |
| 564 | static_cast<DerivedT *>(this)->setNumTombstones(Num); |
| 565 | } |
| 566 | |
| 567 | void incrementNumTombstones() { setNumTombstones(getNumTombstones() + 1); } |
| 568 | |
| 569 | void decrementNumTombstones() { setNumTombstones(getNumTombstones() - 1); } |
| 570 | |
| 571 | const BucketT *getBuckets() const { |
| 572 | return static_cast<const DerivedT *>(this)->getBuckets(); |
| 573 | } |
| 574 | |
| 575 | BucketT *getBuckets() { return static_cast<DerivedT *>(this)->getBuckets(); } |
| 576 | |
| 577 | unsigned getNumBuckets() const { |
| 578 | return static_cast<const DerivedT *>(this)->getNumBuckets(); |
| 579 | } |
| 580 | |
| 581 | BucketT *getBucketsEnd() { return getBuckets() + getNumBuckets(); } |
| 582 | |
| 583 | const BucketT *getBucketsEnd() const { |
| 584 | return getBuckets() + getNumBuckets(); |
| 585 | } |
| 586 | |
| 587 | void grow(unsigned AtLeast) { static_cast<DerivedT *>(this)->grow(AtLeast); } |
| 588 | |
| 589 | void shrink_and_clear() { static_cast<DerivedT *>(this)->shrink_and_clear(); } |
| 590 | |
| 591 | template <typename KeyArg, typename... ValueArgs> |
| 592 | BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key, |
| 593 | ValueArgs &&...Values) { |
| 594 | TheBucket = InsertIntoBucketImpl(Key, TheBucket); |
| 595 | |
| 596 | TheBucket->getFirst() = std::forward<KeyArg>(Key); |
| 597 | ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...); |
| 598 | return TheBucket; |
| 599 | } |
| 600 | |
| 601 | template <typename LookupKeyT> |
| 602 | BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key, |
| 603 | ValueT &&Value, LookupKeyT &Lookup) { |
| 604 | TheBucket = InsertIntoBucketImpl(Lookup, TheBucket); |
| 605 | |
| 606 | TheBucket->getFirst() = std::move(Key); |
| 607 | ::new (&TheBucket->getSecond()) ValueT(std::move(Value)); |
| 608 | return TheBucket; |
| 609 | } |
| 610 | |
| 611 | template <typename LookupKeyT> |
| 612 | BucketT *InsertIntoBucketImpl(const LookupKeyT &Lookup, BucketT *TheBucket) { |
| 613 | incrementEpoch(); |
| 614 | |
| 615 | // If the load of the hash table is more than 3/4, or if fewer than 1/8 of |
| 616 | // the buckets are empty (meaning that many are filled with tombstones), |
| 617 | // grow the table. |
| 618 | // |
| 619 | // The later case is tricky. For example, if we had one empty bucket with |
| 620 | // tons of tombstones, failing lookups (e.g. for insertion) would have to |
| 621 | // probe almost the entire table until it found the empty bucket. If the |
| 622 | // table completely filled with tombstones, no lookup would ever succeed, |
| 623 | // causing infinite loops in lookup. |
| 624 | unsigned NewNumEntries = getNumEntries() + 1; |
| 625 | unsigned NumBuckets = getNumBuckets(); |
| 626 | if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) { |
| 627 | this->grow(NumBuckets * 2); |
| 628 | LookupBucketFor(Lookup, TheBucket); |
| 629 | NumBuckets = getNumBuckets(); |
| 630 | } else if (LLVM_UNLIKELY(NumBuckets - |
| 631 | (NewNumEntries + getNumTombstones()) <= |
| 632 | NumBuckets / 8)) { |
| 633 | this->grow(NumBuckets); |
| 634 | LookupBucketFor(Lookup, TheBucket); |
| 635 | } |
| 636 | assert(TheBucket); |
| 637 | |
| 638 | // Only update the state after we've grown our bucket space appropriately |
| 639 | // so that when growing buckets we have self-consistent entry count. |
| 640 | incrementNumEntries(); |
| 641 | |
| 642 | // If we are writing over a tombstone, remember this. |
| 643 | const KeyT EmptyKey = getEmptyKey(); |
| 644 | if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey)) |
| 645 | decrementNumTombstones(); |
| 646 | |
| 647 | return TheBucket; |
| 648 | } |
| 649 | |
| 650 | template <typename LookupKeyT> BucketT *doFind(const LookupKeyT &Val) { |
| 651 | BucketT *BucketsPtr = getBuckets(); |
| 652 | const unsigned NumBuckets = getNumBuckets(); |
| 653 | if (NumBuckets == 0) |
| 654 | return nullptr; |
| 655 | |
| 656 | const KeyT EmptyKey = getEmptyKey(); |
| 657 | unsigned BucketNo = getHashValue(Val) & (NumBuckets - 1); |
| 658 | unsigned ProbeAmt = 1; |
| 659 | while (true) { |
| 660 | BucketT *Bucket = BucketsPtr + BucketNo; |
| 661 | if (LLVM_LIKELY(KeyInfoT::isEqual(Val, Bucket->getFirst()))) |
| 662 | return Bucket; |
| 663 | if (LLVM_LIKELY(KeyInfoT::isEqual(Bucket->getFirst(), EmptyKey))) |
| 664 | return nullptr; |
| 665 | |
| 666 | // Otherwise, it's a hash collision or a tombstone, continue quadratic |
| 667 | // probing. |
| 668 | BucketNo += ProbeAmt++; |
| 669 | BucketNo &= NumBuckets - 1; |
| 670 | } |
| 671 | } |
| 672 | |
| 673 | template <typename LookupKeyT> |
| 674 | const BucketT *doFind(const LookupKeyT &Val) const { |
| 675 | return const_cast<DenseMapBase *>(this)->doFind(Val); // NOLINT |
| 676 | } |
| 677 | |
| 678 | /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in |
| 679 | /// FoundBucket. If the bucket contains the key and a value, this returns |
| 680 | /// true, otherwise it returns a bucket with an empty marker or tombstone and |
| 681 | /// returns false. |
| 682 | template <typename LookupKeyT> |
| 683 | bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) { |
| 684 | BucketT *BucketsPtr = getBuckets(); |
| 685 | const unsigned NumBuckets = getNumBuckets(); |
| 686 | |
| 687 | if (NumBuckets == 0) { |
| 688 | FoundBucket = nullptr; |
| 689 | return false; |
| 690 | } |
| 691 | |
| 692 | // FoundTombstone - Keep track of whether we find a tombstone while probing. |
| 693 | BucketT *FoundTombstone = nullptr; |
| 694 | const KeyT EmptyKey = getEmptyKey(); |
| 695 | const KeyT TombstoneKey = getTombstoneKey(); |
| 696 | assert(!KeyInfoT::isEqual(Val, EmptyKey) && |
| 697 | !KeyInfoT::isEqual(Val, TombstoneKey) && |
| 698 | "Empty/Tombstone value shouldn't be inserted into map!" ); |
| 699 | |
| 700 | unsigned BucketNo = getHashValue(Val) & (NumBuckets - 1); |
| 701 | unsigned ProbeAmt = 1; |
| 702 | while (true) { |
| 703 | BucketT *ThisBucket = BucketsPtr + BucketNo; |
| 704 | // Found Val's bucket? If so, return it. |
| 705 | if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) { |
| 706 | FoundBucket = ThisBucket; |
| 707 | return true; |
| 708 | } |
| 709 | |
| 710 | // If we found an empty bucket, the key doesn't exist in the set. |
| 711 | // Insert it and return the default value. |
| 712 | if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) { |
| 713 | // If we've already seen a tombstone while probing, fill it in instead |
| 714 | // of the empty bucket we eventually probed to. |
| 715 | FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket; |
| 716 | return false; |
| 717 | } |
| 718 | |
| 719 | // If this is a tombstone, remember it. If Val ends up not in the map, we |
| 720 | // prefer to return it than something that would require more probing. |
| 721 | if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) && |
| 722 | !FoundTombstone) |
| 723 | FoundTombstone = ThisBucket; // Remember the first tombstone found. |
| 724 | |
| 725 | // Otherwise, it's a hash collision or a tombstone, continue quadratic |
| 726 | // probing. |
| 727 | BucketNo += ProbeAmt++; |
| 728 | BucketNo &= (NumBuckets - 1); |
| 729 | } |
| 730 | } |
| 731 | |
| 732 | public: |
| 733 | /// Return the approximate size (in bytes) of the actual map. |
| 734 | /// This is just the raw memory used by DenseMap. |
| 735 | /// If entries are pointers to objects, the size of the referenced objects |
| 736 | /// are not included. |
| 737 | size_t getMemorySize() const { return getNumBuckets() * sizeof(BucketT); } |
| 738 | }; |
| 739 | |
| 740 | /// Equality comparison for DenseMap. |
| 741 | /// |
| 742 | /// Iterates over elements of LHS confirming that each (key, value) pair in LHS |
| 743 | /// is also in RHS, and that no additional pairs are in RHS. |
| 744 | /// Equivalent to N calls to RHS.find and N value comparisons. Amortized |
| 745 | /// complexity is linear, worst case is O(N^2) (if every hash collides). |
| 746 | template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, |
| 747 | typename BucketT> |
| 748 | bool operator==( |
| 749 | const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS, |
| 750 | const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) { |
| 751 | if (LHS.size() != RHS.size()) |
| 752 | return false; |
| 753 | |
| 754 | for (auto &KV : LHS) { |
| 755 | auto I = RHS.find(KV.first); |
| 756 | if (I == RHS.end() || I->second != KV.second) |
| 757 | return false; |
| 758 | } |
| 759 | |
| 760 | return true; |
| 761 | } |
| 762 | |
| 763 | /// Inequality comparison for DenseMap. |
| 764 | /// |
| 765 | /// Equivalent to !(LHS == RHS). See operator== for performance notes. |
| 766 | template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, |
| 767 | typename BucketT> |
| 768 | bool operator!=( |
| 769 | const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS, |
| 770 | const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) { |
| 771 | return !(LHS == RHS); |
| 772 | } |
| 773 | |
| 774 | template <typename KeyT, typename ValueT, |
| 775 | typename KeyInfoT = DenseMapInfo<KeyT>, |
| 776 | typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>> |
| 777 | class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>, |
| 778 | KeyT, ValueT, KeyInfoT, BucketT> { |
| 779 | friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| 780 | |
| 781 | // Lift some types from the dependent base class into this class for |
| 782 | // simplicity of referring to them. |
| 783 | using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| 784 | |
| 785 | BucketT *Buckets; |
| 786 | unsigned NumEntries; |
| 787 | unsigned NumTombstones; |
| 788 | unsigned NumBuckets; |
| 789 | |
| 790 | public: |
| 791 | /// Create a DenseMap with an optional \p InitialReserve that guarantee that |
| 792 | /// this number of elements can be inserted in the map without grow() |
| 793 | explicit DenseMap(unsigned InitialReserve = 0) { init(InitNumEntries: InitialReserve); } |
| 794 | |
| 795 | DenseMap(const DenseMap &other) : BaseT() { |
| 796 | init(InitNumEntries: 0); |
| 797 | copyFrom(other); |
| 798 | } |
| 799 | |
| 800 | DenseMap(DenseMap &&other) : BaseT() { |
| 801 | init(InitNumEntries: 0); |
| 802 | swap(RHS&: other); |
| 803 | } |
| 804 | |
| 805 | template <typename InputIt> DenseMap(const InputIt &I, const InputIt &E) { |
| 806 | init(InitNumEntries: std::distance(I, E)); |
| 807 | this->insert(I, E); |
| 808 | } |
| 809 | |
| 810 | DenseMap(std::initializer_list<typename BaseT::value_type> Vals) { |
| 811 | init(InitNumEntries: Vals.size()); |
| 812 | this->insert(Vals.begin(), Vals.end()); |
| 813 | } |
| 814 | |
| 815 | ~DenseMap() { |
| 816 | this->destroyAll(); |
| 817 | deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT)); |
| 818 | } |
| 819 | |
| 820 | void swap(DenseMap &RHS) { |
| 821 | this->incrementEpoch(); |
| 822 | RHS.incrementEpoch(); |
| 823 | std::swap(Buckets, RHS.Buckets); |
| 824 | std::swap(NumEntries, RHS.NumEntries); |
| 825 | std::swap(NumTombstones, RHS.NumTombstones); |
| 826 | std::swap(NumBuckets, RHS.NumBuckets); |
| 827 | } |
| 828 | |
| 829 | DenseMap &operator=(const DenseMap &other) { |
| 830 | if (&other != this) |
| 831 | copyFrom(other); |
| 832 | return *this; |
| 833 | } |
| 834 | |
| 835 | DenseMap &operator=(DenseMap &&other) { |
| 836 | this->destroyAll(); |
| 837 | deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT)); |
| 838 | init(InitNumEntries: 0); |
| 839 | swap(RHS&: other); |
| 840 | return *this; |
| 841 | } |
| 842 | |
| 843 | void copyFrom(const DenseMap &other) { |
| 844 | this->destroyAll(); |
| 845 | deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT)); |
| 846 | if (allocateBuckets(Num: other.NumBuckets)) { |
| 847 | this->BaseT::copyFrom(other); |
| 848 | } else { |
| 849 | NumEntries = 0; |
| 850 | NumTombstones = 0; |
| 851 | } |
| 852 | } |
| 853 | |
| 854 | void grow(unsigned AtLeast) { |
| 855 | unsigned OldNumBuckets = NumBuckets; |
| 856 | BucketT *OldBuckets = Buckets; |
| 857 | |
| 858 | allocateBuckets(Num: std::max<unsigned>( |
| 859 | a: 64, b: static_cast<unsigned>(NextPowerOf2(A: AtLeast - 1)))); |
| 860 | assert(Buckets); |
| 861 | if (!OldBuckets) { |
| 862 | this->BaseT::initEmpty(); |
| 863 | return; |
| 864 | } |
| 865 | |
| 866 | this->moveFromOldBuckets(OldBuckets, OldBuckets + OldNumBuckets); |
| 867 | |
| 868 | // Free the old table. |
| 869 | deallocate_buffer(OldBuckets, sizeof(BucketT) * OldNumBuckets, |
| 870 | alignof(BucketT)); |
| 871 | } |
| 872 | |
| 873 | void shrink_and_clear() { |
| 874 | unsigned OldNumBuckets = NumBuckets; |
| 875 | unsigned OldNumEntries = NumEntries; |
| 876 | this->destroyAll(); |
| 877 | |
| 878 | // Reduce the number of buckets. |
| 879 | unsigned NewNumBuckets = 0; |
| 880 | if (OldNumEntries) |
| 881 | NewNumBuckets = std::max(a: 64, b: 1 << (Log2_32_Ceil(Value: OldNumEntries) + 1)); |
| 882 | if (NewNumBuckets == NumBuckets) { |
| 883 | this->BaseT::initEmpty(); |
| 884 | return; |
| 885 | } |
| 886 | |
| 887 | deallocate_buffer(Buckets, sizeof(BucketT) * OldNumBuckets, |
| 888 | alignof(BucketT)); |
| 889 | init(InitNumEntries: NewNumBuckets); |
| 890 | } |
| 891 | |
| 892 | private: |
| 893 | unsigned getNumEntries() const { return NumEntries; } |
| 894 | |
| 895 | void setNumEntries(unsigned Num) { NumEntries = Num; } |
| 896 | |
| 897 | unsigned getNumTombstones() const { return NumTombstones; } |
| 898 | |
| 899 | void setNumTombstones(unsigned Num) { NumTombstones = Num; } |
| 900 | |
| 901 | BucketT *getBuckets() const { return Buckets; } |
| 902 | |
| 903 | unsigned getNumBuckets() const { return NumBuckets; } |
| 904 | |
| 905 | bool allocateBuckets(unsigned Num) { |
| 906 | NumBuckets = Num; |
| 907 | if (NumBuckets == 0) { |
| 908 | Buckets = nullptr; |
| 909 | return false; |
| 910 | } |
| 911 | |
| 912 | Buckets = static_cast<BucketT *>( |
| 913 | allocate_buffer(Size: sizeof(BucketT) * NumBuckets, Alignment: alignof(BucketT))); |
| 914 | return true; |
| 915 | } |
| 916 | |
| 917 | void init(unsigned InitNumEntries) { |
| 918 | auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries); |
| 919 | if (allocateBuckets(Num: InitBuckets)) { |
| 920 | this->BaseT::initEmpty(); |
| 921 | } else { |
| 922 | NumEntries = 0; |
| 923 | NumTombstones = 0; |
| 924 | } |
| 925 | } |
| 926 | }; |
| 927 | |
| 928 | template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4, |
| 929 | typename KeyInfoT = DenseMapInfo<KeyT>, |
| 930 | typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>> |
| 931 | class SmallDenseMap |
| 932 | : public DenseMapBase< |
| 933 | SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT, |
| 934 | ValueT, KeyInfoT, BucketT> { |
| 935 | friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| 936 | |
| 937 | // Lift some types from the dependent base class into this class for |
| 938 | // simplicity of referring to them. |
| 939 | using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| 940 | |
| 941 | static_assert(isPowerOf2_64(Value: InlineBuckets), |
| 942 | "InlineBuckets must be a power of 2." ); |
| 943 | |
| 944 | unsigned Small : 1; |
| 945 | unsigned NumEntries : 31; |
| 946 | unsigned NumTombstones; |
| 947 | |
| 948 | struct LargeRep { |
| 949 | BucketT *Buckets; |
| 950 | unsigned NumBuckets; |
| 951 | }; |
| 952 | |
| 953 | /// A "union" of an inline bucket array and the struct representing |
| 954 | /// a large bucket. This union will be discriminated by the 'Small' bit. |
| 955 | AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage; |
| 956 | |
| 957 | public: |
| 958 | explicit SmallDenseMap(unsigned NumInitBuckets = 0) { |
| 959 | if (NumInitBuckets > InlineBuckets) |
| 960 | NumInitBuckets = llvm::bit_ceil(Value: NumInitBuckets); |
| 961 | init(InitBuckets: NumInitBuckets); |
| 962 | } |
| 963 | |
| 964 | SmallDenseMap(const SmallDenseMap &other) : BaseT() { |
| 965 | init(InitBuckets: 0); |
| 966 | copyFrom(other); |
| 967 | } |
| 968 | |
| 969 | SmallDenseMap(SmallDenseMap &&other) : BaseT() { |
| 970 | init(InitBuckets: 0); |
| 971 | swap(RHS&: other); |
| 972 | } |
| 973 | |
| 974 | template <typename InputIt> |
| 975 | SmallDenseMap(const InputIt &I, const InputIt &E) { |
| 976 | init(InitBuckets: NextPowerOf2(std::distance(I, E))); |
| 977 | this->insert(I, E); |
| 978 | } |
| 979 | |
| 980 | SmallDenseMap(std::initializer_list<typename BaseT::value_type> Vals) |
| 981 | : SmallDenseMap(Vals.begin(), Vals.end()) {} |
| 982 | |
| 983 | ~SmallDenseMap() { |
| 984 | this->destroyAll(); |
| 985 | deallocateBuckets(); |
| 986 | } |
| 987 | |
| 988 | void swap(SmallDenseMap &RHS) { |
| 989 | unsigned TmpNumEntries = RHS.NumEntries; |
| 990 | RHS.NumEntries = NumEntries; |
| 991 | NumEntries = TmpNumEntries; |
| 992 | std::swap(NumTombstones, RHS.NumTombstones); |
| 993 | |
| 994 | const KeyT EmptyKey = this->getEmptyKey(); |
| 995 | const KeyT TombstoneKey = this->getTombstoneKey(); |
| 996 | if (Small && RHS.Small) { |
| 997 | // If we're swapping inline bucket arrays, we have to cope with some of |
| 998 | // the tricky bits of DenseMap's storage system: the buckets are not |
| 999 | // fully initialized. Thus we swap every key, but we may have |
| 1000 | // a one-directional move of the value. |
| 1001 | for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { |
| 1002 | BucketT *LHSB = &getInlineBuckets()[i], |
| 1003 | *RHSB = &RHS.getInlineBuckets()[i]; |
| 1004 | bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) && |
| 1005 | !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey)); |
| 1006 | bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) && |
| 1007 | !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey)); |
| 1008 | if (hasLHSValue && hasRHSValue) { |
| 1009 | // Swap together if we can... |
| 1010 | std::swap(*LHSB, *RHSB); |
| 1011 | continue; |
| 1012 | } |
| 1013 | // Swap separately and handle any asymmetry. |
| 1014 | std::swap(LHSB->getFirst(), RHSB->getFirst()); |
| 1015 | if (hasLHSValue) { |
| 1016 | ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond())); |
| 1017 | LHSB->getSecond().~ValueT(); |
| 1018 | } else if (hasRHSValue) { |
| 1019 | ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond())); |
| 1020 | RHSB->getSecond().~ValueT(); |
| 1021 | } |
| 1022 | } |
| 1023 | return; |
| 1024 | } |
| 1025 | if (!Small && !RHS.Small) { |
| 1026 | std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets); |
| 1027 | std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets); |
| 1028 | return; |
| 1029 | } |
| 1030 | |
| 1031 | SmallDenseMap &SmallSide = Small ? *this : RHS; |
| 1032 | SmallDenseMap &LargeSide = Small ? RHS : *this; |
| 1033 | |
| 1034 | // First stash the large side's rep and move the small side across. |
| 1035 | LargeRep TmpRep = std::move(*LargeSide.getLargeRep()); |
| 1036 | LargeSide.getLargeRep()->~LargeRep(); |
| 1037 | LargeSide.Small = true; |
| 1038 | // This is similar to the standard move-from-old-buckets, but the bucket |
| 1039 | // count hasn't actually rotated in this case. So we have to carefully |
| 1040 | // move construct the keys and values into their new locations, but there |
| 1041 | // is no need to re-hash things. |
| 1042 | for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { |
| 1043 | BucketT *NewB = &LargeSide.getInlineBuckets()[i], |
| 1044 | *OldB = &SmallSide.getInlineBuckets()[i]; |
| 1045 | ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst())); |
| 1046 | OldB->getFirst().~KeyT(); |
| 1047 | if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) && |
| 1048 | !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) { |
| 1049 | ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond())); |
| 1050 | OldB->getSecond().~ValueT(); |
| 1051 | } |
| 1052 | } |
| 1053 | |
| 1054 | // The hard part of moving the small buckets across is done, just move |
| 1055 | // the TmpRep into its new home. |
| 1056 | SmallSide.Small = false; |
| 1057 | new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep)); |
| 1058 | } |
| 1059 | |
| 1060 | SmallDenseMap &operator=(const SmallDenseMap &other) { |
| 1061 | if (&other != this) |
| 1062 | copyFrom(other); |
| 1063 | return *this; |
| 1064 | } |
| 1065 | |
| 1066 | SmallDenseMap &operator=(SmallDenseMap &&other) { |
| 1067 | this->destroyAll(); |
| 1068 | deallocateBuckets(); |
| 1069 | init(InitBuckets: 0); |
| 1070 | swap(RHS&: other); |
| 1071 | return *this; |
| 1072 | } |
| 1073 | |
| 1074 | void copyFrom(const SmallDenseMap &other) { |
| 1075 | this->destroyAll(); |
| 1076 | deallocateBuckets(); |
| 1077 | Small = true; |
| 1078 | if (other.getNumBuckets() > InlineBuckets) { |
| 1079 | Small = false; |
| 1080 | new (getLargeRep()) LargeRep(allocateBuckets(Num: other.getNumBuckets())); |
| 1081 | } |
| 1082 | this->BaseT::copyFrom(other); |
| 1083 | } |
| 1084 | |
| 1085 | void init(unsigned InitBuckets) { |
| 1086 | Small = true; |
| 1087 | if (InitBuckets > InlineBuckets) { |
| 1088 | Small = false; |
| 1089 | new (getLargeRep()) LargeRep(allocateBuckets(Num: InitBuckets)); |
| 1090 | } |
| 1091 | this->BaseT::initEmpty(); |
| 1092 | } |
| 1093 | |
| 1094 | void grow(unsigned AtLeast) { |
| 1095 | if (AtLeast > InlineBuckets) |
| 1096 | AtLeast = std::max<unsigned>(a: 64, b: NextPowerOf2(A: AtLeast - 1)); |
| 1097 | |
| 1098 | if (Small) { |
| 1099 | // First move the inline buckets into a temporary storage. |
| 1100 | AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage; |
| 1101 | BucketT *TmpBegin = reinterpret_cast<BucketT *>(&TmpStorage); |
| 1102 | BucketT *TmpEnd = TmpBegin; |
| 1103 | |
| 1104 | // Loop over the buckets, moving non-empty, non-tombstones into the |
| 1105 | // temporary storage. Have the loop move the TmpEnd forward as it goes. |
| 1106 | const KeyT EmptyKey = this->getEmptyKey(); |
| 1107 | const KeyT TombstoneKey = this->getTombstoneKey(); |
| 1108 | for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) { |
| 1109 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && |
| 1110 | !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { |
| 1111 | assert(size_t(TmpEnd - TmpBegin) < InlineBuckets && |
| 1112 | "Too many inline buckets!" ); |
| 1113 | ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst())); |
| 1114 | ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond())); |
| 1115 | ++TmpEnd; |
| 1116 | P->getSecond().~ValueT(); |
| 1117 | } |
| 1118 | P->getFirst().~KeyT(); |
| 1119 | } |
| 1120 | |
| 1121 | // AtLeast == InlineBuckets can happen if there are many tombstones, |
| 1122 | // and grow() is used to remove them. Usually we always switch to the |
| 1123 | // large rep here. |
| 1124 | if (AtLeast > InlineBuckets) { |
| 1125 | Small = false; |
| 1126 | new (getLargeRep()) LargeRep(allocateBuckets(Num: AtLeast)); |
| 1127 | } |
| 1128 | this->moveFromOldBuckets(TmpBegin, TmpEnd); |
| 1129 | return; |
| 1130 | } |
| 1131 | |
| 1132 | LargeRep OldRep = std::move(*getLargeRep()); |
| 1133 | getLargeRep()->~LargeRep(); |
| 1134 | if (AtLeast <= InlineBuckets) { |
| 1135 | Small = true; |
| 1136 | } else { |
| 1137 | new (getLargeRep()) LargeRep(allocateBuckets(Num: AtLeast)); |
| 1138 | } |
| 1139 | |
| 1140 | this->moveFromOldBuckets(OldRep.Buckets, |
| 1141 | OldRep.Buckets + OldRep.NumBuckets); |
| 1142 | |
| 1143 | // Free the old table. |
| 1144 | deallocate_buffer(OldRep.Buckets, sizeof(BucketT) * OldRep.NumBuckets, |
| 1145 | alignof(BucketT)); |
| 1146 | } |
| 1147 | |
| 1148 | void shrink_and_clear() { |
| 1149 | unsigned OldSize = this->size(); |
| 1150 | this->destroyAll(); |
| 1151 | |
| 1152 | // Reduce the number of buckets. |
| 1153 | unsigned NewNumBuckets = 0; |
| 1154 | if (OldSize) { |
| 1155 | NewNumBuckets = 1 << (Log2_32_Ceil(Value: OldSize) + 1); |
| 1156 | if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u) |
| 1157 | NewNumBuckets = 64; |
| 1158 | } |
| 1159 | if ((Small && NewNumBuckets <= InlineBuckets) || |
| 1160 | (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) { |
| 1161 | this->BaseT::initEmpty(); |
| 1162 | return; |
| 1163 | } |
| 1164 | |
| 1165 | deallocateBuckets(); |
| 1166 | init(InitBuckets: NewNumBuckets); |
| 1167 | } |
| 1168 | |
| 1169 | private: |
| 1170 | unsigned getNumEntries() const { return NumEntries; } |
| 1171 | |
| 1172 | void setNumEntries(unsigned Num) { |
| 1173 | // NumEntries is hardcoded to be 31 bits wide. |
| 1174 | assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries" ); |
| 1175 | NumEntries = Num; |
| 1176 | } |
| 1177 | |
| 1178 | unsigned getNumTombstones() const { return NumTombstones; } |
| 1179 | |
| 1180 | void setNumTombstones(unsigned Num) { NumTombstones = Num; } |
| 1181 | |
| 1182 | const BucketT *getInlineBuckets() const { |
| 1183 | assert(Small); |
| 1184 | // Note that this cast does not violate aliasing rules as we assert that |
| 1185 | // the memory's dynamic type is the small, inline bucket buffer, and the |
| 1186 | // 'storage' is a POD containing a char buffer. |
| 1187 | return reinterpret_cast<const BucketT *>(&storage); |
| 1188 | } |
| 1189 | |
| 1190 | BucketT *getInlineBuckets() { |
| 1191 | return const_cast<BucketT *>( |
| 1192 | const_cast<const SmallDenseMap *>(this)->getInlineBuckets()); |
| 1193 | } |
| 1194 | |
| 1195 | const LargeRep *getLargeRep() const { |
| 1196 | assert(!Small); |
| 1197 | // Note, same rule about aliasing as with getInlineBuckets. |
| 1198 | return reinterpret_cast<const LargeRep *>(&storage); |
| 1199 | } |
| 1200 | |
| 1201 | LargeRep *getLargeRep() { |
| 1202 | return const_cast<LargeRep *>( |
| 1203 | const_cast<const SmallDenseMap *>(this)->getLargeRep()); |
| 1204 | } |
| 1205 | |
| 1206 | const BucketT *getBuckets() const { |
| 1207 | return Small ? getInlineBuckets() : getLargeRep()->Buckets; |
| 1208 | } |
| 1209 | |
| 1210 | BucketT *getBuckets() { |
| 1211 | return const_cast<BucketT *>( |
| 1212 | const_cast<const SmallDenseMap *>(this)->getBuckets()); |
| 1213 | } |
| 1214 | |
| 1215 | unsigned getNumBuckets() const { |
| 1216 | return Small ? InlineBuckets : getLargeRep()->NumBuckets; |
| 1217 | } |
| 1218 | |
| 1219 | void deallocateBuckets() { |
| 1220 | if (Small) |
| 1221 | return; |
| 1222 | |
| 1223 | deallocate_buffer(getLargeRep()->Buckets, |
| 1224 | sizeof(BucketT) * getLargeRep()->NumBuckets, |
| 1225 | alignof(BucketT)); |
| 1226 | getLargeRep()->~LargeRep(); |
| 1227 | } |
| 1228 | |
| 1229 | LargeRep allocateBuckets(unsigned Num) { |
| 1230 | assert(Num > InlineBuckets && "Must allocate more buckets than are inline" ); |
| 1231 | LargeRep Rep = {static_cast<BucketT *>(allocate_buffer( |
| 1232 | Size: sizeof(BucketT) * Num, Alignment: alignof(BucketT))), |
| 1233 | Num}; |
| 1234 | return Rep; |
| 1235 | } |
| 1236 | }; |
| 1237 | |
| 1238 | template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket, |
| 1239 | bool IsConst> |
| 1240 | class DenseMapIterator : DebugEpochBase::HandleBase { |
| 1241 | friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>; |
| 1242 | friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>; |
| 1243 | |
| 1244 | public: |
| 1245 | using difference_type = ptrdiff_t; |
| 1246 | using value_type = std::conditional_t<IsConst, const Bucket, Bucket>; |
| 1247 | using pointer = value_type *; |
| 1248 | using reference = value_type &; |
| 1249 | using iterator_category = std::forward_iterator_tag; |
| 1250 | |
| 1251 | private: |
| 1252 | pointer Ptr = nullptr; |
| 1253 | pointer End = nullptr; |
| 1254 | |
| 1255 | public: |
| 1256 | DenseMapIterator() = default; |
| 1257 | |
| 1258 | DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch, |
| 1259 | bool NoAdvance = false) |
| 1260 | : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) { |
| 1261 | assert(isHandleInSync() && "invalid construction!" ); |
| 1262 | |
| 1263 | if (NoAdvance) |
| 1264 | return; |
| 1265 | if (shouldReverseIterate<KeyT>()) { |
| 1266 | RetreatPastEmptyBuckets(); |
| 1267 | return; |
| 1268 | } |
| 1269 | AdvancePastEmptyBuckets(); |
| 1270 | } |
| 1271 | |
| 1272 | // Converting ctor from non-const iterators to const iterators. SFINAE'd out |
| 1273 | // for const iterator destinations so it doesn't end up as a user defined copy |
| 1274 | // constructor. |
| 1275 | template <bool IsConstSrc, |
| 1276 | typename = std::enable_if_t<!IsConstSrc && IsConst>> |
| 1277 | DenseMapIterator( |
| 1278 | const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I) |
| 1279 | : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {} |
| 1280 | |
| 1281 | reference operator*() const { |
| 1282 | assert(isHandleInSync() && "invalid iterator access!" ); |
| 1283 | assert(Ptr != End && "dereferencing end() iterator" ); |
| 1284 | if (shouldReverseIterate<KeyT>()) |
| 1285 | return Ptr[-1]; |
| 1286 | return *Ptr; |
| 1287 | } |
| 1288 | pointer operator->() const { |
| 1289 | assert(isHandleInSync() && "invalid iterator access!" ); |
| 1290 | assert(Ptr != End && "dereferencing end() iterator" ); |
| 1291 | if (shouldReverseIterate<KeyT>()) |
| 1292 | return &(Ptr[-1]); |
| 1293 | return Ptr; |
| 1294 | } |
| 1295 | |
| 1296 | friend bool operator==(const DenseMapIterator &LHS, |
| 1297 | const DenseMapIterator &RHS) { |
| 1298 | assert((!LHS.Ptr || LHS.isHandleInSync()) && "handle not in sync!" ); |
| 1299 | assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!" ); |
| 1300 | assert(LHS.getEpochAddress() == RHS.getEpochAddress() && |
| 1301 | "comparing incomparable iterators!" ); |
| 1302 | return LHS.Ptr == RHS.Ptr; |
| 1303 | } |
| 1304 | |
| 1305 | friend bool operator!=(const DenseMapIterator &LHS, |
| 1306 | const DenseMapIterator &RHS) { |
| 1307 | return !(LHS == RHS); |
| 1308 | } |
| 1309 | |
| 1310 | inline DenseMapIterator &operator++() { // Preincrement |
| 1311 | assert(isHandleInSync() && "invalid iterator access!" ); |
| 1312 | assert(Ptr != End && "incrementing end() iterator" ); |
| 1313 | if (shouldReverseIterate<KeyT>()) { |
| 1314 | --Ptr; |
| 1315 | RetreatPastEmptyBuckets(); |
| 1316 | return *this; |
| 1317 | } |
| 1318 | ++Ptr; |
| 1319 | AdvancePastEmptyBuckets(); |
| 1320 | return *this; |
| 1321 | } |
| 1322 | DenseMapIterator operator++(int) { // Postincrement |
| 1323 | assert(isHandleInSync() && "invalid iterator access!" ); |
| 1324 | DenseMapIterator tmp = *this; |
| 1325 | ++*this; |
| 1326 | return tmp; |
| 1327 | } |
| 1328 | |
| 1329 | private: |
| 1330 | void AdvancePastEmptyBuckets() { |
| 1331 | assert(Ptr <= End); |
| 1332 | const KeyT Empty = KeyInfoT::getEmptyKey(); |
| 1333 | const KeyT Tombstone = KeyInfoT::getTombstoneKey(); |
| 1334 | |
| 1335 | while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) || |
| 1336 | KeyInfoT::isEqual(Ptr->getFirst(), Tombstone))) |
| 1337 | ++Ptr; |
| 1338 | } |
| 1339 | |
| 1340 | void RetreatPastEmptyBuckets() { |
| 1341 | assert(Ptr >= End); |
| 1342 | const KeyT Empty = KeyInfoT::getEmptyKey(); |
| 1343 | const KeyT Tombstone = KeyInfoT::getTombstoneKey(); |
| 1344 | |
| 1345 | while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) || |
| 1346 | KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone))) |
| 1347 | --Ptr; |
| 1348 | } |
| 1349 | }; |
| 1350 | |
| 1351 | template <typename KeyT, typename ValueT, typename KeyInfoT> |
| 1352 | inline size_t capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) { |
| 1353 | return X.getMemorySize(); |
| 1354 | } |
| 1355 | |
| 1356 | } // end namespace llvm |
| 1357 | |
| 1358 | #endif // LLVM_ADT_DENSEMAP_H |
| 1359 | |