1 | //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// This file defines the SmallVector class. |
11 | /// |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_ADT_SMALLVECTOR_H |
15 | #define LLVM_ADT_SMALLVECTOR_H |
16 | |
17 | #include "llvm/ADT/DenseMapInfo.h" |
18 | #include "llvm/Support/Compiler.h" |
19 | #include <algorithm> |
20 | #include <cassert> |
21 | #include <cstddef> |
22 | #include <cstdint> |
23 | #include <cstdlib> |
24 | #include <cstring> |
25 | #include <functional> |
26 | #include <initializer_list> |
27 | #include <iterator> |
28 | #include <limits> |
29 | #include <memory> |
30 | #include <new> |
31 | #include <type_traits> |
32 | #include <utility> |
33 | |
34 | namespace llvm { |
35 | |
36 | template <typename T> class ArrayRef; |
37 | |
38 | template <typename IteratorT> class iterator_range; |
39 | |
40 | template <class Iterator> |
41 | using EnableIfConvertibleToInputIterator = std::enable_if_t<std::is_convertible< |
42 | typename std::iterator_traits<Iterator>::iterator_category, |
43 | std::input_iterator_tag>::value>; |
44 | |
45 | /// This is all the stuff common to all SmallVectors. |
46 | /// |
47 | /// The template parameter specifies the type which should be used to hold the |
48 | /// Size and Capacity of the SmallVector, so it can be adjusted. |
49 | /// Using 32 bit size is desirable to shrink the size of the SmallVector. |
50 | /// Using 64 bit size is desirable for cases like SmallVector<char>, where a |
51 | /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for |
52 | /// buffering bitcode output - which can exceed 4GB. |
53 | template <class Size_T> class SmallVectorBase { |
54 | protected: |
55 | void *BeginX; |
56 | Size_T Size = 0, Capacity; |
57 | |
58 | /// The maximum value of the Size_T used. |
59 | static constexpr size_t SizeTypeMax() { |
60 | return std::numeric_limits<Size_T>::max(); |
61 | } |
62 | |
63 | SmallVectorBase() = delete; |
64 | SmallVectorBase(void *FirstEl, size_t TotalCapacity) |
65 | : BeginX(FirstEl), Capacity(static_cast<Size_T>(TotalCapacity)) {} |
66 | |
67 | /// This is a helper for \a grow() that's out of line to reduce code |
68 | /// duplication. This function will report a fatal error if it can't grow at |
69 | /// least to \p MinSize. |
70 | LLVM_ABI void *mallocForGrow(void *FirstEl, size_t MinSize, size_t TSize, |
71 | size_t &NewCapacity); |
72 | |
73 | /// This is an implementation of the grow() method which only works |
74 | /// on POD-like data types and is out of line to reduce code duplication. |
75 | /// This function will report a fatal error if it cannot increase capacity. |
76 | LLVM_ABI void grow_pod(void *FirstEl, size_t MinSize, size_t TSize); |
77 | |
78 | public: |
79 | size_t size() const { return Size; } |
80 | size_t capacity() const { return Capacity; } |
81 | |
82 | [[nodiscard]] bool empty() const { return !Size; } |
83 | |
84 | protected: |
85 | /// Set the array size to \p N, which the current array must have enough |
86 | /// capacity for. |
87 | /// |
88 | /// This does not construct or destroy any elements in the vector. |
89 | void set_size(size_t N) { |
90 | assert(N <= capacity()); // implies no overflow in assignment |
91 | Size = static_cast<Size_T>(N); |
92 | } |
93 | |
94 | /// Set the array data pointer to \p Begin and capacity to \p N. |
95 | /// |
96 | /// This does not construct or destroy any elements in the vector. |
97 | // This does not clean up any existing allocation. |
98 | void set_allocation_range(void *Begin, size_t N) { |
99 | assert(N <= SizeTypeMax()); |
100 | BeginX = Begin; |
101 | Capacity = static_cast<Size_T>(N); |
102 | } |
103 | }; |
104 | |
105 | template <class T> |
106 | using SmallVectorSizeType = |
107 | std::conditional_t<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t, |
108 | uint32_t>; |
109 | |
110 | /// Figure out the offset of the first element. |
111 | template <class T, typename = void> struct SmallVectorAlignmentAndSize { |
112 | alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof( |
113 | SmallVectorBase<SmallVectorSizeType<T>>)]; |
114 | alignas(T) char FirstEl[sizeof(T)]; |
115 | }; |
116 | |
117 | /// This is the part of SmallVectorTemplateBase which does not depend on whether |
118 | /// the type T is a POD. The extra dummy template argument is used by ArrayRef |
119 | /// to avoid unnecessarily requiring T to be complete. |
120 | template <typename T, typename = void> |
121 | class SmallVectorTemplateCommon |
122 | : public SmallVectorBase<SmallVectorSizeType<T>> { |
123 | using Base = SmallVectorBase<SmallVectorSizeType<T>>; |
124 | |
125 | protected: |
126 | /// Find the address of the first element. For this pointer math to be valid |
127 | /// with small-size of 0 for T with lots of alignment, it's important that |
128 | /// SmallVectorStorage is properly-aligned even for small-size of 0. |
129 | void *getFirstEl() const { |
130 | return const_cast<void *>(reinterpret_cast<const void *>( |
131 | reinterpret_cast<const char *>(this) + |
132 | offsetof(SmallVectorAlignmentAndSize<T>, FirstEl))); |
133 | } |
134 | // Space after 'FirstEl' is clobbered, do not add any instance vars after it. |
135 | |
136 | SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {} |
137 | |
138 | void grow_pod(size_t MinSize, size_t TSize) { |
139 | Base::grow_pod(getFirstEl(), MinSize, TSize); |
140 | } |
141 | |
142 | /// Return true if this is a smallvector which has not had dynamic |
143 | /// memory allocated for it. |
144 | bool isSmall() const { return this->BeginX == getFirstEl(); } |
145 | |
146 | /// Put this vector in a state of being small. |
147 | void resetToSmall() { |
148 | this->BeginX = getFirstEl(); |
149 | this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. |
150 | } |
151 | |
152 | /// Return true if V is an internal reference to the given range. |
153 | bool isReferenceToRange(const void *V, const void *First, const void *Last) const { |
154 | // Use std::less to avoid UB. |
155 | std::less<> LessThan; |
156 | return !LessThan(V, First) && LessThan(V, Last); |
157 | } |
158 | |
159 | /// Return true if V is an internal reference to this vector. |
160 | bool isReferenceToStorage(const void *V) const { |
161 | return isReferenceToRange(V, First: this->begin(), Last: this->end()); |
162 | } |
163 | |
164 | /// Return true if First and Last form a valid (possibly empty) range in this |
165 | /// vector's storage. |
166 | bool isRangeInStorage(const void *First, const void *Last) const { |
167 | // Use std::less to avoid UB. |
168 | std::less<> LessThan; |
169 | return !LessThan(First, this->begin()) && !LessThan(Last, First) && |
170 | !LessThan(this->end(), Last); |
171 | } |
172 | |
173 | /// Return true unless Elt will be invalidated by resizing the vector to |
174 | /// NewSize. |
175 | bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
176 | // Past the end. |
177 | if (LLVM_LIKELY(!isReferenceToStorage(Elt))) |
178 | return true; |
179 | |
180 | // Return false if Elt will be destroyed by shrinking. |
181 | if (NewSize <= this->size()) |
182 | return Elt < this->begin() + NewSize; |
183 | |
184 | // Return false if we need to grow. |
185 | return NewSize <= this->capacity(); |
186 | } |
187 | |
188 | /// Check whether Elt will be invalidated by resizing the vector to NewSize. |
189 | void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
190 | assert(isSafeToReferenceAfterResize(Elt, NewSize) && |
191 | "Attempting to reference an element of the vector in an operation " |
192 | "that invalidates it" ); |
193 | } |
194 | |
195 | /// Check whether Elt will be invalidated by increasing the size of the |
196 | /// vector by N. |
197 | void assertSafeToAdd(const void *Elt, size_t N = 1) { |
198 | this->assertSafeToReferenceAfterResize(Elt, this->size() + N); |
199 | } |
200 | |
201 | /// Check whether any part of the range will be invalidated by clearing. |
202 | void assertSafeToReferenceAfterClear(const T *From, const T *To) { |
203 | if (From == To) |
204 | return; |
205 | this->assertSafeToReferenceAfterResize(From, 0); |
206 | this->assertSafeToReferenceAfterResize(To - 1, 0); |
207 | } |
208 | template < |
209 | class ItTy, |
210 | std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
211 | bool> = false> |
212 | void assertSafeToReferenceAfterClear(ItTy, ItTy) {} |
213 | |
214 | /// Check whether any part of the range will be invalidated by growing. |
215 | void assertSafeToAddRange(const T *From, const T *To) { |
216 | if (From == To) |
217 | return; |
218 | this->assertSafeToAdd(From, To - From); |
219 | this->assertSafeToAdd(To - 1, To - From); |
220 | } |
221 | template < |
222 | class ItTy, |
223 | std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
224 | bool> = false> |
225 | void assertSafeToAddRange(ItTy, ItTy) {} |
226 | |
227 | /// Reserve enough space to add one element, and return the updated element |
228 | /// pointer in case it was a reference to the storage. |
229 | template <class U> |
230 | static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt, |
231 | size_t N) { |
232 | size_t NewSize = This->size() + N; |
233 | if (LLVM_LIKELY(NewSize <= This->capacity())) |
234 | return &Elt; |
235 | |
236 | bool ReferencesStorage = false; |
237 | int64_t Index = -1; |
238 | if (!U::TakesParamByValue) { |
239 | if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) { |
240 | ReferencesStorage = true; |
241 | Index = &Elt - This->begin(); |
242 | } |
243 | } |
244 | This->grow(NewSize); |
245 | return ReferencesStorage ? This->begin() + Index : &Elt; |
246 | } |
247 | |
248 | public: |
249 | using size_type = size_t; |
250 | using difference_type = ptrdiff_t; |
251 | using value_type = T; |
252 | using iterator = T *; |
253 | using const_iterator = const T *; |
254 | |
255 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
256 | using reverse_iterator = std::reverse_iterator<iterator>; |
257 | |
258 | using reference = T &; |
259 | using const_reference = const T &; |
260 | using pointer = T *; |
261 | using const_pointer = const T *; |
262 | |
263 | using Base::capacity; |
264 | using Base::empty; |
265 | using Base::size; |
266 | |
267 | // forward iterator creation methods. |
268 | iterator begin() { return (iterator)this->BeginX; } |
269 | const_iterator begin() const { return (const_iterator)this->BeginX; } |
270 | iterator end() { return begin() + size(); } |
271 | const_iterator end() const { return begin() + size(); } |
272 | |
273 | // reverse iterator creation methods. |
274 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
275 | const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } |
276 | reverse_iterator rend() { return reverse_iterator(begin()); } |
277 | const_reverse_iterator rend() const { return const_reverse_iterator(begin());} |
278 | |
279 | size_type size_in_bytes() const { return size() * sizeof(T); } |
280 | size_type max_size() const { |
281 | return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T)); |
282 | } |
283 | |
284 | size_t capacity_in_bytes() const { return capacity() * sizeof(T); } |
285 | |
286 | /// Return a pointer to the vector's buffer, even if empty(). |
287 | pointer data() { return pointer(begin()); } |
288 | /// Return a pointer to the vector's buffer, even if empty(). |
289 | const_pointer data() const { return const_pointer(begin()); } |
290 | |
291 | reference operator[](size_type idx) { |
292 | assert(idx < size()); |
293 | return begin()[idx]; |
294 | } |
295 | const_reference operator[](size_type idx) const { |
296 | assert(idx < size()); |
297 | return begin()[idx]; |
298 | } |
299 | |
300 | reference front() { |
301 | assert(!empty()); |
302 | return begin()[0]; |
303 | } |
304 | const_reference front() const { |
305 | assert(!empty()); |
306 | return begin()[0]; |
307 | } |
308 | |
309 | reference back() { |
310 | assert(!empty()); |
311 | return end()[-1]; |
312 | } |
313 | const_reference back() const { |
314 | assert(!empty()); |
315 | return end()[-1]; |
316 | } |
317 | }; |
318 | |
319 | /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put |
320 | /// method implementations that are designed to work with non-trivial T's. |
321 | /// |
322 | /// We approximate is_trivially_copyable with trivial move/copy construction and |
323 | /// trivial destruction. While the standard doesn't specify that you're allowed |
324 | /// copy these types with memcpy, there is no way for the type to observe this. |
325 | /// This catches the important case of std::pair<POD, POD>, which is not |
326 | /// trivially assignable. |
327 | template <typename T, bool = (std::is_trivially_copy_constructible<T>::value) && |
328 | (std::is_trivially_move_constructible<T>::value) && |
329 | std::is_trivially_destructible<T>::value> |
330 | class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { |
331 | friend class SmallVectorTemplateCommon<T>; |
332 | |
333 | protected: |
334 | static constexpr bool TakesParamByValue = false; |
335 | using ValueParamT = const T &; |
336 | |
337 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
338 | |
339 | static void destroy_range(T *S, T *E) { |
340 | while (S != E) { |
341 | --E; |
342 | E->~T(); |
343 | } |
344 | } |
345 | |
346 | /// Move the range [I, E) into the uninitialized memory starting with "Dest", |
347 | /// constructing elements as needed. |
348 | template<typename It1, typename It2> |
349 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
350 | std::uninitialized_move(I, E, Dest); |
351 | } |
352 | |
353 | /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", |
354 | /// constructing elements as needed. |
355 | template<typename It1, typename It2> |
356 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
357 | std::uninitialized_copy(I, E, Dest); |
358 | } |
359 | |
360 | /// Grow the allocated memory (without initializing new elements), doubling |
361 | /// the size of the allocated memory. Guarantees space for at least one more |
362 | /// element, or MinSize more elements if specified. |
363 | void grow(size_t MinSize = 0); |
364 | |
365 | /// Create a new allocation big enough for \p MinSize and pass back its size |
366 | /// in \p NewCapacity. This is the first section of \a grow(). |
367 | T *mallocForGrow(size_t MinSize, size_t &NewCapacity); |
368 | |
369 | /// Move existing elements over to the new allocation \p NewElts, the middle |
370 | /// section of \a grow(). |
371 | void moveElementsForGrow(T *NewElts); |
372 | |
373 | /// Transfer ownership of the allocation, finishing up \a grow(). |
374 | void takeAllocationForGrow(T *NewElts, size_t NewCapacity); |
375 | |
376 | /// Reserve enough space to add one element, and return the updated element |
377 | /// pointer in case it was a reference to the storage. |
378 | const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
379 | return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
380 | } |
381 | |
382 | /// Reserve enough space to add one element, and return the updated element |
383 | /// pointer in case it was a reference to the storage. |
384 | T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
385 | return const_cast<T *>( |
386 | this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
387 | } |
388 | |
389 | static T &&forward_value_param(T &&V) { return std::move(V); } |
390 | static const T &forward_value_param(const T &V) { return V; } |
391 | |
392 | void growAndAssign(size_t NumElts, const T &Elt) { |
393 | // Grow manually in case Elt is an internal reference. |
394 | size_t NewCapacity; |
395 | T *NewElts = mallocForGrow(MinSize: NumElts, NewCapacity); |
396 | std::uninitialized_fill_n(NewElts, NumElts, Elt); |
397 | this->destroy_range(this->begin(), this->end()); |
398 | takeAllocationForGrow(NewElts, NewCapacity); |
399 | this->set_size(NumElts); |
400 | } |
401 | |
402 | template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
403 | // Grow manually in case one of Args is an internal reference. |
404 | size_t NewCapacity; |
405 | T *NewElts = mallocForGrow(MinSize: 0, NewCapacity); |
406 | ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...); |
407 | moveElementsForGrow(NewElts); |
408 | takeAllocationForGrow(NewElts, NewCapacity); |
409 | this->set_size(this->size() + 1); |
410 | return this->back(); |
411 | } |
412 | |
413 | public: |
414 | void push_back(const T &Elt) { |
415 | const T *EltPtr = reserveForParamAndGetAddress(Elt); |
416 | ::new ((void *)this->end()) T(*EltPtr); |
417 | this->set_size(this->size() + 1); |
418 | } |
419 | |
420 | void push_back(T &&Elt) { |
421 | T *EltPtr = reserveForParamAndGetAddress(Elt); |
422 | ::new ((void *)this->end()) T(::std::move(*EltPtr)); |
423 | this->set_size(this->size() + 1); |
424 | } |
425 | |
426 | void pop_back() { |
427 | this->set_size(this->size() - 1); |
428 | this->end()->~T(); |
429 | } |
430 | }; |
431 | |
432 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
433 | template <typename T, bool TriviallyCopyable> |
434 | void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) { |
435 | size_t NewCapacity; |
436 | T *NewElts = mallocForGrow(MinSize, NewCapacity); |
437 | moveElementsForGrow(NewElts); |
438 | takeAllocationForGrow(NewElts, NewCapacity); |
439 | } |
440 | |
441 | template <typename T, bool TriviallyCopyable> |
442 | T *SmallVectorTemplateBase<T, TriviallyCopyable>::mallocForGrow( |
443 | size_t MinSize, size_t &NewCapacity) { |
444 | return static_cast<T *>( |
445 | SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow( |
446 | this->getFirstEl(), MinSize, sizeof(T), NewCapacity)); |
447 | } |
448 | |
449 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
450 | template <typename T, bool TriviallyCopyable> |
451 | void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow( |
452 | T *NewElts) { |
453 | // Move the elements over. |
454 | this->uninitialized_move(this->begin(), this->end(), NewElts); |
455 | |
456 | // Destroy the original elements. |
457 | destroy_range(S: this->begin(), E: this->end()); |
458 | } |
459 | |
460 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
461 | template <typename T, bool TriviallyCopyable> |
462 | void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow( |
463 | T *NewElts, size_t NewCapacity) { |
464 | // If this wasn't grown from the inline copy, deallocate the old space. |
465 | if (!this->isSmall()) |
466 | free(this->begin()); |
467 | |
468 | this->set_allocation_range(NewElts, NewCapacity); |
469 | } |
470 | |
471 | /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put |
472 | /// method implementations that are designed to work with trivially copyable |
473 | /// T's. This allows using memcpy in place of copy/move construction and |
474 | /// skipping destruction. |
475 | template <typename T> |
476 | class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { |
477 | friend class SmallVectorTemplateCommon<T>; |
478 | |
479 | protected: |
480 | /// True if it's cheap enough to take parameters by value. Doing so avoids |
481 | /// overhead related to mitigations for reference invalidation. |
482 | static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *); |
483 | |
484 | /// Either const T& or T, depending on whether it's cheap enough to take |
485 | /// parameters by value. |
486 | using ValueParamT = std::conditional_t<TakesParamByValue, T, const T &>; |
487 | |
488 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
489 | |
490 | // No need to do a destroy loop for POD's. |
491 | static void destroy_range(T *, T *) {} |
492 | |
493 | /// Move the range [I, E) onto the uninitialized memory |
494 | /// starting with "Dest", constructing elements into it as needed. |
495 | template<typename It1, typename It2> |
496 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
497 | // Just do a copy. |
498 | uninitialized_copy(I, E, Dest); |
499 | } |
500 | |
501 | /// Copy the range [I, E) onto the uninitialized memory |
502 | /// starting with "Dest", constructing elements into it as needed. |
503 | template<typename It1, typename It2> |
504 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
505 | // Arbitrary iterator types; just use the basic implementation. |
506 | std::uninitialized_copy(I, E, Dest); |
507 | } |
508 | |
509 | /// Copy the range [I, E) onto the uninitialized memory |
510 | /// starting with "Dest", constructing elements into it as needed. |
511 | template <typename T1, typename T2> |
512 | static void uninitialized_copy( |
513 | T1 *I, T1 *E, T2 *Dest, |
514 | std::enable_if_t<std::is_same<std::remove_const_t<T1>, T2>::value> * = |
515 | nullptr) { |
516 | // Use memcpy for PODs iterated by pointers (which includes SmallVector |
517 | // iterators): std::uninitialized_copy optimizes to memmove, but we can |
518 | // use memcpy here. Note that I and E are iterators and thus might be |
519 | // invalid for memcpy if they are equal. |
520 | if (I != E) |
521 | memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T)); |
522 | } |
523 | |
524 | /// Double the size of the allocated memory, guaranteeing space for at |
525 | /// least one more element or MinSize if specified. |
526 | void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } |
527 | |
528 | /// Reserve enough space to add one element, and return the updated element |
529 | /// pointer in case it was a reference to the storage. |
530 | const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
531 | return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
532 | } |
533 | |
534 | /// Reserve enough space to add one element, and return the updated element |
535 | /// pointer in case it was a reference to the storage. |
536 | T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
537 | return const_cast<T *>( |
538 | this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
539 | } |
540 | |
541 | /// Copy \p V or return a reference, depending on \a ValueParamT. |
542 | static ValueParamT forward_value_param(ValueParamT V) { return V; } |
543 | |
544 | void growAndAssign(size_t NumElts, T Elt) { |
545 | // Elt has been copied in case it's an internal reference, side-stepping |
546 | // reference invalidation problems without losing the realloc optimization. |
547 | this->set_size(0); |
548 | this->grow(NumElts); |
549 | std::uninitialized_fill_n(this->begin(), NumElts, Elt); |
550 | this->set_size(NumElts); |
551 | } |
552 | |
553 | template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
554 | // Use push_back with a copy in case Args has an internal reference, |
555 | // side-stepping reference invalidation problems without losing the realloc |
556 | // optimization. |
557 | push_back(Elt: T(std::forward<ArgTypes>(Args)...)); |
558 | return this->back(); |
559 | } |
560 | |
561 | public: |
562 | void push_back(ValueParamT Elt) { |
563 | const T *EltPtr = reserveForParamAndGetAddress(Elt); |
564 | memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T)); |
565 | this->set_size(this->size() + 1); |
566 | } |
567 | |
568 | void pop_back() { this->set_size(this->size() - 1); } |
569 | }; |
570 | |
571 | /// This class consists of common code factored out of the SmallVector class to |
572 | /// reduce code duplication based on the SmallVector 'N' template parameter. |
573 | template <typename T> |
574 | class SmallVectorImpl : public SmallVectorTemplateBase<T> { |
575 | using SuperClass = SmallVectorTemplateBase<T>; |
576 | |
577 | public: |
578 | using iterator = typename SuperClass::iterator; |
579 | using const_iterator = typename SuperClass::const_iterator; |
580 | using reference = typename SuperClass::reference; |
581 | using size_type = typename SuperClass::size_type; |
582 | |
583 | protected: |
584 | using SmallVectorTemplateBase<T>::TakesParamByValue; |
585 | using ValueParamT = typename SuperClass::ValueParamT; |
586 | |
587 | // Default ctor - Initialize to empty. |
588 | explicit SmallVectorImpl(unsigned N) |
589 | : SmallVectorTemplateBase<T>(N) {} |
590 | |
591 | void assignRemote(SmallVectorImpl &&RHS) { |
592 | this->destroy_range(this->begin(), this->end()); |
593 | if (!this->isSmall()) |
594 | free(this->begin()); |
595 | this->BeginX = RHS.BeginX; |
596 | this->Size = RHS.Size; |
597 | this->Capacity = RHS.Capacity; |
598 | RHS.resetToSmall(); |
599 | } |
600 | |
601 | ~SmallVectorImpl() { |
602 | // Subclass has already destructed this vector's elements. |
603 | // If this wasn't grown from the inline copy, deallocate the old space. |
604 | if (!this->isSmall()) |
605 | free(this->begin()); |
606 | } |
607 | |
608 | public: |
609 | SmallVectorImpl(const SmallVectorImpl &) = delete; |
610 | |
611 | void clear() { |
612 | this->destroy_range(this->begin(), this->end()); |
613 | this->Size = 0; |
614 | } |
615 | |
616 | private: |
617 | // Make set_size() private to avoid misuse in subclasses. |
618 | using SuperClass::set_size; |
619 | |
620 | template <bool ForOverwrite> void resizeImpl(size_type N) { |
621 | if (N == this->size()) |
622 | return; |
623 | |
624 | if (N < this->size()) { |
625 | this->truncate(N); |
626 | return; |
627 | } |
628 | |
629 | this->reserve(N); |
630 | for (auto I = this->end(), E = this->begin() + N; I != E; ++I) |
631 | if (ForOverwrite) |
632 | new (&*I) T; |
633 | else |
634 | new (&*I) T(); |
635 | this->set_size(N); |
636 | } |
637 | |
638 | public: |
639 | void resize(size_type N) { resizeImpl<false>(N); } |
640 | |
641 | /// Like resize, but \ref T is POD, the new values won't be initialized. |
642 | void resize_for_overwrite(size_type N) { resizeImpl<true>(N); } |
643 | |
644 | /// Like resize, but requires that \p N is less than \a size(). |
645 | void truncate(size_type N) { |
646 | assert(this->size() >= N && "Cannot increase size with truncate" ); |
647 | this->destroy_range(this->begin() + N, this->end()); |
648 | this->set_size(N); |
649 | } |
650 | |
651 | void resize(size_type N, ValueParamT NV) { |
652 | if (N == this->size()) |
653 | return; |
654 | |
655 | if (N < this->size()) { |
656 | this->truncate(N); |
657 | return; |
658 | } |
659 | |
660 | // N > this->size(). Defer to append. |
661 | this->append(N - this->size(), NV); |
662 | } |
663 | |
664 | void reserve(size_type N) { |
665 | if (this->capacity() < N) |
666 | this->grow(N); |
667 | } |
668 | |
669 | void pop_back_n(size_type NumItems) { |
670 | assert(this->size() >= NumItems); |
671 | truncate(N: this->size() - NumItems); |
672 | } |
673 | |
674 | [[nodiscard]] T pop_back_val() { |
675 | T Result = ::std::move(this->back()); |
676 | this->pop_back(); |
677 | return Result; |
678 | } |
679 | |
680 | void swap(SmallVectorImpl &RHS); |
681 | |
682 | /// Add the specified range to the end of the SmallVector. |
683 | template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> |
684 | void append(ItTy in_start, ItTy in_end) { |
685 | this->assertSafeToAddRange(in_start, in_end); |
686 | size_type NumInputs = std::distance(in_start, in_end); |
687 | this->reserve(this->size() + NumInputs); |
688 | this->uninitialized_copy(in_start, in_end, this->end()); |
689 | this->set_size(this->size() + NumInputs); |
690 | } |
691 | |
692 | /// Append \p NumInputs copies of \p Elt to the end. |
693 | void append(size_type NumInputs, ValueParamT Elt) { |
694 | const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs); |
695 | std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr); |
696 | this->set_size(this->size() + NumInputs); |
697 | } |
698 | |
699 | void append(std::initializer_list<T> IL) { |
700 | append(IL.begin(), IL.end()); |
701 | } |
702 | |
703 | void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); } |
704 | |
705 | void assign(size_type NumElts, ValueParamT Elt) { |
706 | // Note that Elt could be an internal reference. |
707 | if (NumElts > this->capacity()) { |
708 | this->growAndAssign(NumElts, Elt); |
709 | return; |
710 | } |
711 | |
712 | // Assign over existing elements. |
713 | std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); |
714 | if (NumElts > this->size()) |
715 | std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt); |
716 | else if (NumElts < this->size()) |
717 | this->destroy_range(this->begin() + NumElts, this->end()); |
718 | this->set_size(NumElts); |
719 | } |
720 | |
721 | // FIXME: Consider assigning over existing elements, rather than clearing & |
722 | // re-initializing them - for all assign(...) variants. |
723 | |
724 | template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> |
725 | void assign(ItTy in_start, ItTy in_end) { |
726 | this->assertSafeToReferenceAfterClear(in_start, in_end); |
727 | clear(); |
728 | append(in_start, in_end); |
729 | } |
730 | |
731 | void assign(std::initializer_list<T> IL) { |
732 | clear(); |
733 | append(IL); |
734 | } |
735 | |
736 | void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); } |
737 | |
738 | iterator erase(const_iterator CI) { |
739 | // Just cast away constness because this is a non-const member function. |
740 | iterator I = const_cast<iterator>(CI); |
741 | |
742 | assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds." ); |
743 | |
744 | iterator N = I; |
745 | // Shift all elts down one. |
746 | std::move(I+1, this->end(), I); |
747 | // Drop the last elt. |
748 | this->pop_back(); |
749 | return(N); |
750 | } |
751 | |
752 | iterator erase(const_iterator CS, const_iterator CE) { |
753 | // Just cast away constness because this is a non-const member function. |
754 | iterator S = const_cast<iterator>(CS); |
755 | iterator E = const_cast<iterator>(CE); |
756 | |
757 | assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds." ); |
758 | |
759 | iterator N = S; |
760 | // Shift all elts down. |
761 | iterator I = std::move(E, this->end(), S); |
762 | // Drop the last elts. |
763 | this->destroy_range(I, this->end()); |
764 | this->set_size(I - this->begin()); |
765 | return(N); |
766 | } |
767 | |
768 | private: |
769 | template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) { |
770 | // Callers ensure that ArgType is derived from T. |
771 | static_assert( |
772 | std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>, |
773 | T>::value, |
774 | "ArgType must be derived from T!" ); |
775 | |
776 | if (I == this->end()) { // Important special case for empty vector. |
777 | this->push_back(::std::forward<ArgType>(Elt)); |
778 | return this->end()-1; |
779 | } |
780 | |
781 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds." ); |
782 | |
783 | // Grow if necessary. |
784 | size_t Index = I - this->begin(); |
785 | std::remove_reference_t<ArgType> *EltPtr = |
786 | this->reserveForParamAndGetAddress(Elt); |
787 | I = this->begin() + Index; |
788 | |
789 | ::new ((void*) this->end()) T(::std::move(this->back())); |
790 | // Push everything else over. |
791 | std::move_backward(I, this->end()-1, this->end()); |
792 | this->set_size(this->size() + 1); |
793 | |
794 | // If we just moved the element we're inserting, be sure to update |
795 | // the reference (never happens if TakesParamByValue). |
796 | static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value, |
797 | "ArgType must be 'T' when taking by value!" ); |
798 | if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end())) |
799 | ++EltPtr; |
800 | |
801 | *I = ::std::forward<ArgType>(*EltPtr); |
802 | return I; |
803 | } |
804 | |
805 | public: |
806 | iterator insert(iterator I, T &&Elt) { |
807 | return insert_one_impl(I, this->forward_value_param(std::move(Elt))); |
808 | } |
809 | |
810 | iterator insert(iterator I, const T &Elt) { |
811 | return insert_one_impl(I, this->forward_value_param(Elt)); |
812 | } |
813 | |
814 | iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) { |
815 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
816 | size_t InsertElt = I - this->begin(); |
817 | |
818 | if (I == this->end()) { // Important special case for empty vector. |
819 | append(NumToInsert, Elt); |
820 | return this->begin()+InsertElt; |
821 | } |
822 | |
823 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds." ); |
824 | |
825 | // Ensure there is enough space, and get the (maybe updated) address of |
826 | // Elt. |
827 | const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert); |
828 | |
829 | // Uninvalidate the iterator. |
830 | I = this->begin()+InsertElt; |
831 | |
832 | // If there are more elements between the insertion point and the end of the |
833 | // range than there are being inserted, we can use a simple approach to |
834 | // insertion. Since we already reserved space, we know that this won't |
835 | // reallocate the vector. |
836 | if (size_t(this->end()-I) >= NumToInsert) { |
837 | T *OldEnd = this->end(); |
838 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
839 | std::move_iterator<iterator>(this->end())); |
840 | |
841 | // Copy the existing elements that get replaced. |
842 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
843 | |
844 | // If we just moved the element we're inserting, be sure to update |
845 | // the reference (never happens if TakesParamByValue). |
846 | if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
847 | EltPtr += NumToInsert; |
848 | |
849 | std::fill_n(I, NumToInsert, *EltPtr); |
850 | return I; |
851 | } |
852 | |
853 | // Otherwise, we're inserting more elements than exist already, and we're |
854 | // not inserting at the end. |
855 | |
856 | // Move over the elements that we're about to overwrite. |
857 | T *OldEnd = this->end(); |
858 | this->set_size(this->size() + NumToInsert); |
859 | size_t NumOverwritten = OldEnd-I; |
860 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
861 | |
862 | // If we just moved the element we're inserting, be sure to update |
863 | // the reference (never happens if TakesParamByValue). |
864 | if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
865 | EltPtr += NumToInsert; |
866 | |
867 | // Replace the overwritten part. |
868 | std::fill_n(I, NumOverwritten, *EltPtr); |
869 | |
870 | // Insert the non-overwritten middle part. |
871 | std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr); |
872 | return I; |
873 | } |
874 | |
875 | template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> |
876 | iterator insert(iterator I, ItTy From, ItTy To) { |
877 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
878 | size_t InsertElt = I - this->begin(); |
879 | |
880 | if (I == this->end()) { // Important special case for empty vector. |
881 | append(From, To); |
882 | return this->begin()+InsertElt; |
883 | } |
884 | |
885 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds." ); |
886 | |
887 | // Check that the reserve that follows doesn't invalidate the iterators. |
888 | this->assertSafeToAddRange(From, To); |
889 | |
890 | size_t NumToInsert = std::distance(From, To); |
891 | |
892 | // Ensure there is enough space. |
893 | reserve(N: this->size() + NumToInsert); |
894 | |
895 | // Uninvalidate the iterator. |
896 | I = this->begin()+InsertElt; |
897 | |
898 | // If there are more elements between the insertion point and the end of the |
899 | // range than there are being inserted, we can use a simple approach to |
900 | // insertion. Since we already reserved space, we know that this won't |
901 | // reallocate the vector. |
902 | if (size_t(this->end()-I) >= NumToInsert) { |
903 | T *OldEnd = this->end(); |
904 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
905 | std::move_iterator<iterator>(this->end())); |
906 | |
907 | // Copy the existing elements that get replaced. |
908 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
909 | |
910 | std::copy(From, To, I); |
911 | return I; |
912 | } |
913 | |
914 | // Otherwise, we're inserting more elements than exist already, and we're |
915 | // not inserting at the end. |
916 | |
917 | // Move over the elements that we're about to overwrite. |
918 | T *OldEnd = this->end(); |
919 | this->set_size(this->size() + NumToInsert); |
920 | size_t NumOverwritten = OldEnd-I; |
921 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
922 | |
923 | // Replace the overwritten part. |
924 | for (T *J = I; NumOverwritten > 0; --NumOverwritten) { |
925 | *J = *From; |
926 | ++J; ++From; |
927 | } |
928 | |
929 | // Insert the non-overwritten middle part. |
930 | this->uninitialized_copy(From, To, OldEnd); |
931 | return I; |
932 | } |
933 | |
934 | void insert(iterator I, std::initializer_list<T> IL) { |
935 | insert(I, IL.begin(), IL.end()); |
936 | } |
937 | |
938 | template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) { |
939 | if (LLVM_UNLIKELY(this->size() >= this->capacity())) |
940 | return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...); |
941 | |
942 | ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...); |
943 | this->set_size(this->size() + 1); |
944 | return this->back(); |
945 | } |
946 | |
947 | SmallVectorImpl &operator=(const SmallVectorImpl &RHS); |
948 | |
949 | SmallVectorImpl &operator=(SmallVectorImpl &&RHS); |
950 | |
951 | bool operator==(const SmallVectorImpl &RHS) const { |
952 | if (this->size() != RHS.size()) return false; |
953 | return std::equal(this->begin(), this->end(), RHS.begin()); |
954 | } |
955 | bool operator!=(const SmallVectorImpl &RHS) const { |
956 | return !(*this == RHS); |
957 | } |
958 | |
959 | bool operator<(const SmallVectorImpl &RHS) const { |
960 | return std::lexicographical_compare(this->begin(), this->end(), |
961 | RHS.begin(), RHS.end()); |
962 | } |
963 | bool operator>(const SmallVectorImpl &RHS) const { return RHS < *this; } |
964 | bool operator<=(const SmallVectorImpl &RHS) const { return !(*this > RHS); } |
965 | bool operator>=(const SmallVectorImpl &RHS) const { return !(*this < RHS); } |
966 | }; |
967 | |
968 | template <typename T> |
969 | void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { |
970 | if (this == &RHS) return; |
971 | |
972 | // We can only avoid copying elements if neither vector is small. |
973 | if (!this->isSmall() && !RHS.isSmall()) { |
974 | std::swap(this->BeginX, RHS.BeginX); |
975 | std::swap(this->Size, RHS.Size); |
976 | std::swap(this->Capacity, RHS.Capacity); |
977 | return; |
978 | } |
979 | this->reserve(RHS.size()); |
980 | RHS.reserve(this->size()); |
981 | |
982 | // Swap the shared elements. |
983 | size_t NumShared = this->size(); |
984 | if (NumShared > RHS.size()) NumShared = RHS.size(); |
985 | for (size_type i = 0; i != NumShared; ++i) |
986 | std::swap((*this)[i], RHS[i]); |
987 | |
988 | // Copy over the extra elts. |
989 | if (this->size() > RHS.size()) { |
990 | size_t EltDiff = this->size() - RHS.size(); |
991 | this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); |
992 | RHS.set_size(RHS.size() + EltDiff); |
993 | this->destroy_range(this->begin()+NumShared, this->end()); |
994 | this->set_size(NumShared); |
995 | } else if (RHS.size() > this->size()) { |
996 | size_t EltDiff = RHS.size() - this->size(); |
997 | this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); |
998 | this->set_size(this->size() + EltDiff); |
999 | this->destroy_range(RHS.begin()+NumShared, RHS.end()); |
1000 | RHS.set_size(NumShared); |
1001 | } |
1002 | } |
1003 | |
1004 | template <typename T> |
1005 | SmallVectorImpl<T> &SmallVectorImpl<T>:: |
1006 | operator=(const SmallVectorImpl<T> &RHS) { |
1007 | // Avoid self-assignment. |
1008 | if (this == &RHS) return *this; |
1009 | |
1010 | // If we already have sufficient space, assign the common elements, then |
1011 | // destroy any excess. |
1012 | size_t RHSSize = RHS.size(); |
1013 | size_t CurSize = this->size(); |
1014 | if (CurSize >= RHSSize) { |
1015 | // Assign common elements. |
1016 | iterator NewEnd; |
1017 | if (RHSSize) |
1018 | NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); |
1019 | else |
1020 | NewEnd = this->begin(); |
1021 | |
1022 | // Destroy excess elements. |
1023 | this->destroy_range(NewEnd, this->end()); |
1024 | |
1025 | // Trim. |
1026 | this->set_size(RHSSize); |
1027 | return *this; |
1028 | } |
1029 | |
1030 | // If we have to grow to have enough elements, destroy the current elements. |
1031 | // This allows us to avoid copying them during the grow. |
1032 | // FIXME: don't do this if they're efficiently moveable. |
1033 | if (this->capacity() < RHSSize) { |
1034 | // Destroy current elements. |
1035 | this->clear(); |
1036 | CurSize = 0; |
1037 | this->grow(RHSSize); |
1038 | } else if (CurSize) { |
1039 | // Otherwise, use assignment for the already-constructed elements. |
1040 | std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
1041 | } |
1042 | |
1043 | // Copy construct the new elements in place. |
1044 | this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), |
1045 | this->begin()+CurSize); |
1046 | |
1047 | // Set end. |
1048 | this->set_size(RHSSize); |
1049 | return *this; |
1050 | } |
1051 | |
1052 | template <typename T> |
1053 | SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) { |
1054 | // Avoid self-assignment. |
1055 | if (this == &RHS) return *this; |
1056 | |
1057 | // If the RHS isn't small, clear this vector and then steal its buffer. |
1058 | if (!RHS.isSmall()) { |
1059 | this->assignRemote(std::move(RHS)); |
1060 | return *this; |
1061 | } |
1062 | |
1063 | // If we already have sufficient space, assign the common elements, then |
1064 | // destroy any excess. |
1065 | size_t RHSSize = RHS.size(); |
1066 | size_t CurSize = this->size(); |
1067 | if (CurSize >= RHSSize) { |
1068 | // Assign common elements. |
1069 | iterator NewEnd = this->begin(); |
1070 | if (RHSSize) |
1071 | NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); |
1072 | |
1073 | // Destroy excess elements and trim the bounds. |
1074 | this->destroy_range(NewEnd, this->end()); |
1075 | this->set_size(RHSSize); |
1076 | |
1077 | // Clear the RHS. |
1078 | RHS.clear(); |
1079 | |
1080 | return *this; |
1081 | } |
1082 | |
1083 | // If we have to grow to have enough elements, destroy the current elements. |
1084 | // This allows us to avoid copying them during the grow. |
1085 | // FIXME: this may not actually make any sense if we can efficiently move |
1086 | // elements. |
1087 | if (this->capacity() < RHSSize) { |
1088 | // Destroy current elements. |
1089 | this->clear(); |
1090 | CurSize = 0; |
1091 | this->grow(RHSSize); |
1092 | } else if (CurSize) { |
1093 | // Otherwise, use assignment for the already-constructed elements. |
1094 | std::move(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
1095 | } |
1096 | |
1097 | // Move-construct the new elements in place. |
1098 | this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), |
1099 | this->begin()+CurSize); |
1100 | |
1101 | // Set end. |
1102 | this->set_size(RHSSize); |
1103 | |
1104 | RHS.clear(); |
1105 | return *this; |
1106 | } |
1107 | |
1108 | /// Storage for the SmallVector elements. This is specialized for the N=0 case |
1109 | /// to avoid allocating unnecessary storage. |
1110 | template <typename T, unsigned N> |
1111 | struct SmallVectorStorage { |
1112 | alignas(T) char InlineElts[N * sizeof(T)]; |
1113 | }; |
1114 | |
1115 | /// We need the storage to be properly aligned even for small-size of 0 so that |
1116 | /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is |
1117 | /// well-defined. |
1118 | template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {}; |
1119 | |
1120 | /// Forward declaration of SmallVector so that |
1121 | /// calculateSmallVectorDefaultInlinedElements can reference |
1122 | /// `sizeof(SmallVector<T, 0>)`. |
1123 | template <typename T, unsigned N> class LLVM_GSL_OWNER SmallVector; |
1124 | |
1125 | /// Helper class for calculating the default number of inline elements for |
1126 | /// `SmallVector<T>`. |
1127 | /// |
1128 | /// This should be migrated to a constexpr function when our minimum |
1129 | /// compiler support is enough for multi-statement constexpr functions. |
1130 | template <typename T> struct CalculateSmallVectorDefaultInlinedElements { |
1131 | // Parameter controlling the default number of inlined elements |
1132 | // for `SmallVector<T>`. |
1133 | // |
1134 | // The default number of inlined elements ensures that |
1135 | // 1. There is at least one inlined element. |
1136 | // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless |
1137 | // it contradicts 1. |
1138 | static constexpr size_t kPreferredSmallVectorSizeof = 64; |
1139 | |
1140 | // static_assert that sizeof(T) is not "too big". |
1141 | // |
1142 | // Because our policy guarantees at least one inlined element, it is possible |
1143 | // for an arbitrarily large inlined element to allocate an arbitrarily large |
1144 | // amount of inline storage. We generally consider it an antipattern for a |
1145 | // SmallVector to allocate an excessive amount of inline storage, so we want |
1146 | // to call attention to these cases and make sure that users are making an |
1147 | // intentional decision if they request a lot of inline storage. |
1148 | // |
1149 | // We want this assertion to trigger in pathological cases, but otherwise |
1150 | // not be too easy to hit. To accomplish that, the cutoff is actually somewhat |
1151 | // larger than kPreferredSmallVectorSizeof (otherwise, |
1152 | // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that |
1153 | // pattern seems useful in practice). |
1154 | // |
1155 | // One wrinkle is that this assertion is in theory non-portable, since |
1156 | // sizeof(T) is in general platform-dependent. However, we don't expect this |
1157 | // to be much of an issue, because most LLVM development happens on 64-bit |
1158 | // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for |
1159 | // 32-bit hosts, dodging the issue. The reverse situation, where development |
1160 | // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a |
1161 | // 64-bit host, is expected to be very rare. |
1162 | static_assert( |
1163 | sizeof(T) <= 256, |
1164 | "You are trying to use a default number of inlined elements for " |
1165 | "`SmallVector<T>` but `sizeof(T)` is really big! Please use an " |
1166 | "explicit number of inlined elements with `SmallVector<T, N>` to make " |
1167 | "sure you really want that much inline storage." ); |
1168 | |
1169 | // Discount the size of the header itself when calculating the maximum inline |
1170 | // bytes. |
1171 | static constexpr size_t PreferredInlineBytes = |
1172 | kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>); |
1173 | static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T); |
1174 | static constexpr size_t value = |
1175 | NumElementsThatFit == 0 ? 1 : NumElementsThatFit; |
1176 | }; |
1177 | |
1178 | /// This is a 'vector' (really, a variable-sized array), optimized |
1179 | /// for the case when the array is small. It contains some number of elements |
1180 | /// in-place, which allows it to avoid heap allocation when the actual number of |
1181 | /// elements is below that threshold. This allows normal "small" cases to be |
1182 | /// fast without losing generality for large inputs. |
1183 | /// |
1184 | /// \note |
1185 | /// In the absence of a well-motivated choice for the number of inlined |
1186 | /// elements \p N, it is recommended to use \c SmallVector<T> (that is, |
1187 | /// omitting the \p N). This will choose a default number of inlined elements |
1188 | /// reasonable for allocation on the stack (for example, trying to keep \c |
1189 | /// sizeof(SmallVector<T>) around 64 bytes). |
1190 | /// |
1191 | /// \warning This does not attempt to be exception safe. |
1192 | /// |
1193 | /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h |
1194 | template <typename T, |
1195 | unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value> |
1196 | class LLVM_GSL_OWNER SmallVector : public SmallVectorImpl<T>, |
1197 | SmallVectorStorage<T, N> { |
1198 | public: |
1199 | SmallVector() : SmallVectorImpl<T>(N) {} |
1200 | |
1201 | ~SmallVector() { |
1202 | // Destroy the constructed elements in the vector. |
1203 | this->destroy_range(this->begin(), this->end()); |
1204 | } |
1205 | |
1206 | explicit SmallVector(size_t Size) |
1207 | : SmallVectorImpl<T>(N) { |
1208 | this->resize(Size); |
1209 | } |
1210 | |
1211 | SmallVector(size_t Size, const T &Value) |
1212 | : SmallVectorImpl<T>(N) { |
1213 | this->assign(Size, Value); |
1214 | } |
1215 | |
1216 | template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> |
1217 | SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) { |
1218 | this->append(S, E); |
1219 | } |
1220 | |
1221 | template <typename RangeTy> |
1222 | explicit SmallVector(const iterator_range<RangeTy> &R) |
1223 | : SmallVectorImpl<T>(N) { |
1224 | this->append(R.begin(), R.end()); |
1225 | } |
1226 | |
1227 | SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) { |
1228 | this->append(IL); |
1229 | } |
1230 | |
1231 | template <typename U, |
1232 | typename = std::enable_if_t<std::is_convertible<U, T>::value>> |
1233 | explicit SmallVector(ArrayRef<U> A) : SmallVectorImpl<T>(N) { |
1234 | this->append(A.begin(), A.end()); |
1235 | } |
1236 | |
1237 | SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) { |
1238 | if (!RHS.empty()) |
1239 | SmallVectorImpl<T>::operator=(RHS); |
1240 | } |
1241 | |
1242 | SmallVector &operator=(const SmallVector &RHS) { |
1243 | SmallVectorImpl<T>::operator=(RHS); |
1244 | return *this; |
1245 | } |
1246 | |
1247 | SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) { |
1248 | if (!RHS.empty()) |
1249 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
1250 | } |
1251 | |
1252 | SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) { |
1253 | if (!RHS.empty()) |
1254 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
1255 | } |
1256 | |
1257 | SmallVector &operator=(SmallVector &&RHS) { |
1258 | if (N) { |
1259 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
1260 | return *this; |
1261 | } |
1262 | // SmallVectorImpl<T>::operator= does not leverage N==0. Optimize the |
1263 | // case. |
1264 | if (this == &RHS) |
1265 | return *this; |
1266 | if (RHS.empty()) { |
1267 | this->destroy_range(this->begin(), this->end()); |
1268 | this->Size = 0; |
1269 | } else { |
1270 | this->assignRemote(std::move(RHS)); |
1271 | } |
1272 | return *this; |
1273 | } |
1274 | |
1275 | SmallVector &operator=(SmallVectorImpl<T> &&RHS) { |
1276 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
1277 | return *this; |
1278 | } |
1279 | |
1280 | SmallVector &operator=(std::initializer_list<T> IL) { |
1281 | this->assign(IL); |
1282 | return *this; |
1283 | } |
1284 | }; |
1285 | |
1286 | template <typename T, unsigned N> |
1287 | inline size_t capacity_in_bytes(const SmallVector<T, N> &X) { |
1288 | return X.capacity_in_bytes(); |
1289 | } |
1290 | |
1291 | template <typename RangeType> |
1292 | using ValueTypeFromRangeType = |
1293 | std::remove_const_t<std::remove_reference_t<decltype(*std::begin( |
1294 | std::declval<RangeType &>()))>>; |
1295 | |
1296 | /// Given a range of type R, iterate the entire range and return a |
1297 | /// SmallVector with elements of the vector. This is useful, for example, |
1298 | /// when you want to iterate a range and then sort the results. |
1299 | template <unsigned Size, typename R> |
1300 | SmallVector<ValueTypeFromRangeType<R>, Size> to_vector(R &&Range) { |
1301 | return {std::begin(Range), std::end(Range)}; |
1302 | } |
1303 | template <typename R> |
1304 | SmallVector<ValueTypeFromRangeType<R>> to_vector(R &&Range) { |
1305 | return {std::begin(Range), std::end(Range)}; |
1306 | } |
1307 | |
1308 | template <typename Out, unsigned Size, typename R> |
1309 | SmallVector<Out, Size> to_vector_of(R &&Range) { |
1310 | return {std::begin(Range), std::end(Range)}; |
1311 | } |
1312 | |
1313 | template <typename Out, typename R> SmallVector<Out> to_vector_of(R &&Range) { |
1314 | return {std::begin(Range), std::end(Range)}; |
1315 | } |
1316 | |
1317 | // Explicit instantiations |
1318 | extern template class llvm::SmallVectorBase<uint32_t>; |
1319 | #if SIZE_MAX > UINT32_MAX |
1320 | extern template class llvm::SmallVectorBase<uint64_t>; |
1321 | #endif |
1322 | |
1323 | // Provide DenseMapInfo for SmallVector of a type which has info. |
1324 | template <typename T, unsigned N> struct DenseMapInfo<llvm::SmallVector<T, N>> { |
1325 | static SmallVector<T, N> getEmptyKey() { |
1326 | return {DenseMapInfo<T>::getEmptyKey()}; |
1327 | } |
1328 | |
1329 | static SmallVector<T, N> getTombstoneKey() { |
1330 | return {DenseMapInfo<T>::getTombstoneKey()}; |
1331 | } |
1332 | |
1333 | static unsigned getHashValue(const SmallVector<T, N> &V) { |
1334 | return static_cast<unsigned>(hash_combine_range(V)); |
1335 | } |
1336 | |
1337 | static bool isEqual(const SmallVector<T, N> &LHS, |
1338 | const SmallVector<T, N> &RHS) { |
1339 | return LHS == RHS; |
1340 | } |
1341 | }; |
1342 | |
1343 | } // end namespace llvm |
1344 | |
1345 | namespace std { |
1346 | |
1347 | /// Implement std::swap in terms of SmallVector swap. |
1348 | template<typename T> |
1349 | inline void |
1350 | swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) { |
1351 | LHS.swap(RHS); |
1352 | } |
1353 | |
1354 | /// Implement std::swap in terms of SmallVector swap. |
1355 | template<typename T, unsigned N> |
1356 | inline void |
1357 | swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) { |
1358 | LHS.swap(RHS); |
1359 | } |
1360 | |
1361 | } // end namespace std |
1362 | |
1363 | #endif // LLVM_ADT_SMALLVECTOR_H |
1364 | |