1 | //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the generic AliasAnalysis interface which is used as the |
10 | // common interface used by all clients and implementations of alias analysis. |
11 | // |
12 | // This file also implements the default version of the AliasAnalysis interface |
13 | // that is to be used when no other implementation is specified. This does some |
14 | // simple tests that detect obvious cases: two different global pointers cannot |
15 | // alias, a global cannot alias a malloc, two different mallocs cannot alias, |
16 | // etc. |
17 | // |
18 | // This alias analysis implementation really isn't very good for anything, but |
19 | // it is very fast, and makes a nice clean default implementation. Because it |
20 | // handles lots of little corner cases, other, more complex, alias analysis |
21 | // implementations may choose to rely on this pass to resolve these simple and |
22 | // easy cases. |
23 | // |
24 | //===----------------------------------------------------------------------===// |
25 | |
26 | #include "llvm/Analysis/AliasAnalysis.h" |
27 | #include "llvm/ADT/Statistic.h" |
28 | #include "llvm/Analysis/BasicAliasAnalysis.h" |
29 | #include "llvm/Analysis/CaptureTracking.h" |
30 | #include "llvm/Analysis/GlobalsModRef.h" |
31 | #include "llvm/Analysis/MemoryLocation.h" |
32 | #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" |
33 | #include "llvm/Analysis/ScopedNoAliasAA.h" |
34 | #include "llvm/Analysis/TargetLibraryInfo.h" |
35 | #include "llvm/Analysis/TypeBasedAliasAnalysis.h" |
36 | #include "llvm/Analysis/ValueTracking.h" |
37 | #include "llvm/IR/Argument.h" |
38 | #include "llvm/IR/Attributes.h" |
39 | #include "llvm/IR/BasicBlock.h" |
40 | #include "llvm/IR/Instruction.h" |
41 | #include "llvm/IR/Instructions.h" |
42 | #include "llvm/IR/Type.h" |
43 | #include "llvm/IR/Value.h" |
44 | #include "llvm/InitializePasses.h" |
45 | #include "llvm/Pass.h" |
46 | #include "llvm/Support/AtomicOrdering.h" |
47 | #include "llvm/Support/Casting.h" |
48 | #include "llvm/Support/CommandLine.h" |
49 | #include <cassert> |
50 | #include <functional> |
51 | #include <iterator> |
52 | |
53 | #define DEBUG_TYPE "aa" |
54 | |
55 | using namespace llvm; |
56 | |
57 | STATISTIC(NumNoAlias, "Number of NoAlias results" ); |
58 | STATISTIC(NumMayAlias, "Number of MayAlias results" ); |
59 | STATISTIC(NumMustAlias, "Number of MustAlias results" ); |
60 | |
61 | /// Allow disabling BasicAA from the AA results. This is particularly useful |
62 | /// when testing to isolate a single AA implementation. |
63 | static cl::opt<bool> DisableBasicAA("disable-basic-aa" , cl::Hidden, |
64 | cl::init(Val: false)); |
65 | |
66 | #ifndef NDEBUG |
67 | /// Print a trace of alias analysis queries and their results. |
68 | static cl::opt<bool> EnableAATrace("aa-trace" , cl::Hidden, cl::init(false)); |
69 | #else |
70 | static const bool EnableAATrace = false; |
71 | #endif |
72 | |
73 | AAResults::AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {} |
74 | |
75 | AAResults::AAResults(AAResults &&Arg) |
76 | : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {} |
77 | |
78 | AAResults::~AAResults() {} |
79 | |
80 | bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA, |
81 | FunctionAnalysisManager::Invalidator &Inv) { |
82 | // AAResults preserves the AAManager by default, due to the stateless nature |
83 | // of AliasAnalysis. There is no need to check whether it has been preserved |
84 | // explicitly. Check if any module dependency was invalidated and caused the |
85 | // AAManager to be invalidated. Invalidate ourselves in that case. |
86 | auto PAC = PA.getChecker<AAManager>(); |
87 | if (!PAC.preservedWhenStateless()) |
88 | return true; |
89 | |
90 | // Check if any of the function dependencies were invalidated, and invalidate |
91 | // ourselves in that case. |
92 | for (AnalysisKey *ID : AADeps) |
93 | if (Inv.invalidate(ID, IR&: F, PA)) |
94 | return true; |
95 | |
96 | // Everything we depend on is still fine, so are we. Nothing to invalidate. |
97 | return false; |
98 | } |
99 | |
100 | //===----------------------------------------------------------------------===// |
101 | // Default chaining methods |
102 | //===----------------------------------------------------------------------===// |
103 | |
104 | AliasResult AAResults::alias(const MemoryLocation &LocA, |
105 | const MemoryLocation &LocB) { |
106 | SimpleAAQueryInfo AAQIP(*this); |
107 | return alias(LocA, LocB, AAQI&: AAQIP, CtxI: nullptr); |
108 | } |
109 | |
110 | AliasResult AAResults::alias(const MemoryLocation &LocA, |
111 | const MemoryLocation &LocB, AAQueryInfo &AAQI, |
112 | const Instruction *CtxI) { |
113 | assert(LocA.Ptr->getType()->isPointerTy() && |
114 | LocB.Ptr->getType()->isPointerTy() && |
115 | "Can only call alias() on pointers" ); |
116 | AliasResult Result = AliasResult::MayAlias; |
117 | |
118 | if (EnableAATrace) { |
119 | for (unsigned I = 0; I < AAQI.Depth; ++I) |
120 | dbgs() << " " ; |
121 | dbgs() << "Start " << *LocA.Ptr << " @ " << LocA.Size << ", " |
122 | << *LocB.Ptr << " @ " << LocB.Size << "\n" ; |
123 | } |
124 | |
125 | AAQI.Depth++; |
126 | for (const auto &AA : AAs) { |
127 | Result = AA->alias(LocA, LocB, AAQI, CtxI); |
128 | if (Result != AliasResult::MayAlias) |
129 | break; |
130 | } |
131 | AAQI.Depth--; |
132 | |
133 | if (EnableAATrace) { |
134 | for (unsigned I = 0; I < AAQI.Depth; ++I) |
135 | dbgs() << " " ; |
136 | dbgs() << "End " << *LocA.Ptr << " @ " << LocA.Size << ", " |
137 | << *LocB.Ptr << " @ " << LocB.Size << " = " << Result << "\n" ; |
138 | } |
139 | |
140 | if (AAQI.Depth == 0) { |
141 | if (Result == AliasResult::NoAlias) |
142 | ++NumNoAlias; |
143 | else if (Result == AliasResult::MustAlias) |
144 | ++NumMustAlias; |
145 | else |
146 | ++NumMayAlias; |
147 | } |
148 | return Result; |
149 | } |
150 | |
151 | ModRefInfo AAResults::getModRefInfoMask(const MemoryLocation &Loc, |
152 | bool IgnoreLocals) { |
153 | SimpleAAQueryInfo AAQIP(*this); |
154 | return getModRefInfoMask(Loc, AAQI&: AAQIP, IgnoreLocals); |
155 | } |
156 | |
157 | ModRefInfo AAResults::getModRefInfoMask(const MemoryLocation &Loc, |
158 | AAQueryInfo &AAQI, bool IgnoreLocals) { |
159 | ModRefInfo Result = ModRefInfo::ModRef; |
160 | |
161 | for (const auto &AA : AAs) { |
162 | Result &= AA->getModRefInfoMask(Loc, AAQI, IgnoreLocals); |
163 | |
164 | // Early-exit the moment we reach the bottom of the lattice. |
165 | if (isNoModRef(MRI: Result)) |
166 | return ModRefInfo::NoModRef; |
167 | } |
168 | |
169 | return Result; |
170 | } |
171 | |
172 | ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) { |
173 | ModRefInfo Result = ModRefInfo::ModRef; |
174 | |
175 | for (const auto &AA : AAs) { |
176 | Result &= AA->getArgModRefInfo(Call, ArgIdx); |
177 | |
178 | // Early-exit the moment we reach the bottom of the lattice. |
179 | if (isNoModRef(MRI: Result)) |
180 | return ModRefInfo::NoModRef; |
181 | } |
182 | |
183 | return Result; |
184 | } |
185 | |
186 | ModRefInfo AAResults::getModRefInfo(const Instruction *I, |
187 | const CallBase *Call2) { |
188 | SimpleAAQueryInfo AAQIP(*this); |
189 | return getModRefInfo(I, Call2, AAQIP); |
190 | } |
191 | |
192 | ModRefInfo AAResults::getModRefInfo(const Instruction *I, const CallBase *Call2, |
193 | AAQueryInfo &AAQI) { |
194 | // We may have two calls. |
195 | if (const auto *Call1 = dyn_cast<CallBase>(Val: I)) { |
196 | // Check if the two calls modify the same memory. |
197 | return getModRefInfo(Call1, Call2, AAQI); |
198 | } |
199 | // If this is a fence, just return ModRef. |
200 | if (I->isFenceLike()) |
201 | return ModRefInfo::ModRef; |
202 | // Otherwise, check if the call modifies or references the |
203 | // location this memory access defines. The best we can say |
204 | // is that if the call references what this instruction |
205 | // defines, it must be clobbered by this location. |
206 | const MemoryLocation DefLoc = MemoryLocation::get(Inst: I); |
207 | ModRefInfo MR = getModRefInfo(Call: Call2, Loc: DefLoc, AAQI); |
208 | if (isModOrRefSet(MRI: MR)) |
209 | return ModRefInfo::ModRef; |
210 | return ModRefInfo::NoModRef; |
211 | } |
212 | |
213 | ModRefInfo AAResults::getModRefInfo(const CallBase *Call, |
214 | const MemoryLocation &Loc, |
215 | AAQueryInfo &AAQI) { |
216 | ModRefInfo Result = ModRefInfo::ModRef; |
217 | |
218 | for (const auto &AA : AAs) { |
219 | Result &= AA->getModRefInfo(Call, Loc, AAQI); |
220 | |
221 | // Early-exit the moment we reach the bottom of the lattice. |
222 | if (isNoModRef(MRI: Result)) |
223 | return ModRefInfo::NoModRef; |
224 | } |
225 | |
226 | // Apply the ModRef mask. This ensures that if Loc is a constant memory |
227 | // location, we take into account the fact that the call definitely could not |
228 | // modify the memory location. |
229 | if (!isNoModRef(MRI: Result)) |
230 | Result &= getModRefInfoMask(Loc); |
231 | |
232 | return Result; |
233 | } |
234 | |
235 | ModRefInfo AAResults::getModRefInfo(const CallBase *Call1, |
236 | const CallBase *Call2, AAQueryInfo &AAQI) { |
237 | ModRefInfo Result = ModRefInfo::ModRef; |
238 | |
239 | for (const auto &AA : AAs) { |
240 | Result &= AA->getModRefInfo(Call1, Call2, AAQI); |
241 | |
242 | // Early-exit the moment we reach the bottom of the lattice. |
243 | if (isNoModRef(MRI: Result)) |
244 | return ModRefInfo::NoModRef; |
245 | } |
246 | |
247 | // Try to refine the mod-ref info further using other API entry points to the |
248 | // aggregate set of AA results. |
249 | |
250 | // If Call1 or Call2 are readnone, they don't interact. |
251 | auto Call1B = getMemoryEffects(Call: Call1, AAQI); |
252 | if (Call1B.doesNotAccessMemory()) |
253 | return ModRefInfo::NoModRef; |
254 | |
255 | auto Call2B = getMemoryEffects(Call: Call2, AAQI); |
256 | if (Call2B.doesNotAccessMemory()) |
257 | return ModRefInfo::NoModRef; |
258 | |
259 | // If they both only read from memory, there is no dependence. |
260 | if (Call1B.onlyReadsMemory() && Call2B.onlyReadsMemory()) |
261 | return ModRefInfo::NoModRef; |
262 | |
263 | // If Call1 only reads memory, the only dependence on Call2 can be |
264 | // from Call1 reading memory written by Call2. |
265 | if (Call1B.onlyReadsMemory()) |
266 | Result &= ModRefInfo::Ref; |
267 | else if (Call1B.onlyWritesMemory()) |
268 | Result &= ModRefInfo::Mod; |
269 | |
270 | // If Call2 only access memory through arguments, accumulate the mod/ref |
271 | // information from Call1's references to the memory referenced by |
272 | // Call2's arguments. |
273 | if (Call2B.onlyAccessesArgPointees()) { |
274 | if (!Call2B.doesAccessArgPointees()) |
275 | return ModRefInfo::NoModRef; |
276 | ModRefInfo R = ModRefInfo::NoModRef; |
277 | for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) { |
278 | const Value *Arg = *I; |
279 | if (!Arg->getType()->isPointerTy()) |
280 | continue; |
281 | unsigned Call2ArgIdx = std::distance(first: Call2->arg_begin(), last: I); |
282 | auto Call2ArgLoc = |
283 | MemoryLocation::getForArgument(Call: Call2, ArgIdx: Call2ArgIdx, TLI); |
284 | |
285 | // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the |
286 | // dependence of Call1 on that location is the inverse: |
287 | // - If Call2 modifies location, dependence exists if Call1 reads or |
288 | // writes. |
289 | // - If Call2 only reads location, dependence exists if Call1 writes. |
290 | ModRefInfo ArgModRefC2 = getArgModRefInfo(Call: Call2, ArgIdx: Call2ArgIdx); |
291 | ModRefInfo ArgMask = ModRefInfo::NoModRef; |
292 | if (isModSet(MRI: ArgModRefC2)) |
293 | ArgMask = ModRefInfo::ModRef; |
294 | else if (isRefSet(MRI: ArgModRefC2)) |
295 | ArgMask = ModRefInfo::Mod; |
296 | |
297 | // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use |
298 | // above ArgMask to update dependence info. |
299 | ArgMask &= getModRefInfo(Call: Call1, Loc: Call2ArgLoc, AAQI); |
300 | |
301 | R = (R | ArgMask) & Result; |
302 | if (R == Result) |
303 | break; |
304 | } |
305 | |
306 | return R; |
307 | } |
308 | |
309 | // If Call1 only accesses memory through arguments, check if Call2 references |
310 | // any of the memory referenced by Call1's arguments. If not, return NoModRef. |
311 | if (Call1B.onlyAccessesArgPointees()) { |
312 | if (!Call1B.doesAccessArgPointees()) |
313 | return ModRefInfo::NoModRef; |
314 | ModRefInfo R = ModRefInfo::NoModRef; |
315 | for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) { |
316 | const Value *Arg = *I; |
317 | if (!Arg->getType()->isPointerTy()) |
318 | continue; |
319 | unsigned Call1ArgIdx = std::distance(first: Call1->arg_begin(), last: I); |
320 | auto Call1ArgLoc = |
321 | MemoryLocation::getForArgument(Call: Call1, ArgIdx: Call1ArgIdx, TLI); |
322 | |
323 | // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1 |
324 | // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by |
325 | // Call2. If Call1 might Ref, then we care only about a Mod by Call2. |
326 | ModRefInfo ArgModRefC1 = getArgModRefInfo(Call: Call1, ArgIdx: Call1ArgIdx); |
327 | ModRefInfo ModRefC2 = getModRefInfo(Call: Call2, Loc: Call1ArgLoc, AAQI); |
328 | if ((isModSet(MRI: ArgModRefC1) && isModOrRefSet(MRI: ModRefC2)) || |
329 | (isRefSet(MRI: ArgModRefC1) && isModSet(MRI: ModRefC2))) |
330 | R = (R | ArgModRefC1) & Result; |
331 | |
332 | if (R == Result) |
333 | break; |
334 | } |
335 | |
336 | return R; |
337 | } |
338 | |
339 | return Result; |
340 | } |
341 | |
342 | ModRefInfo AAResults::getModRefInfo(const Instruction *I1, |
343 | const Instruction *I2) { |
344 | SimpleAAQueryInfo AAQIP(*this); |
345 | return getModRefInfo(I1, I2, AAQI&: AAQIP); |
346 | } |
347 | |
348 | ModRefInfo AAResults::getModRefInfo(const Instruction *I1, |
349 | const Instruction *I2, AAQueryInfo &AAQI) { |
350 | // Early-exit if either instruction does not read or write memory. |
351 | if (!I1->mayReadOrWriteMemory() || !I2->mayReadOrWriteMemory()) |
352 | return ModRefInfo::NoModRef; |
353 | |
354 | if (const auto *Call2 = dyn_cast<CallBase>(Val: I2)) |
355 | return getModRefInfo(I: I1, Call2, AAQI); |
356 | |
357 | // FIXME: We can have a more precise result. |
358 | ModRefInfo MR = getModRefInfo(I: I1, OptLoc: MemoryLocation::getOrNone(Inst: I2), AAQIP&: AAQI); |
359 | return isModOrRefSet(MRI: MR) ? ModRefInfo::ModRef : ModRefInfo::NoModRef; |
360 | } |
361 | |
362 | MemoryEffects AAResults::getMemoryEffects(const CallBase *Call, |
363 | AAQueryInfo &AAQI) { |
364 | MemoryEffects Result = MemoryEffects::unknown(); |
365 | |
366 | for (const auto &AA : AAs) { |
367 | Result &= AA->getMemoryEffects(Call, AAQI); |
368 | |
369 | // Early-exit the moment we reach the bottom of the lattice. |
370 | if (Result.doesNotAccessMemory()) |
371 | return Result; |
372 | } |
373 | |
374 | return Result; |
375 | } |
376 | |
377 | MemoryEffects AAResults::getMemoryEffects(const CallBase *Call) { |
378 | SimpleAAQueryInfo AAQI(*this); |
379 | return getMemoryEffects(Call, AAQI); |
380 | } |
381 | |
382 | MemoryEffects AAResults::getMemoryEffects(const Function *F) { |
383 | MemoryEffects Result = MemoryEffects::unknown(); |
384 | |
385 | for (const auto &AA : AAs) { |
386 | Result &= AA->getMemoryEffects(F); |
387 | |
388 | // Early-exit the moment we reach the bottom of the lattice. |
389 | if (Result.doesNotAccessMemory()) |
390 | return Result; |
391 | } |
392 | |
393 | return Result; |
394 | } |
395 | |
396 | raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) { |
397 | switch (AR) { |
398 | case AliasResult::NoAlias: |
399 | OS << "NoAlias" ; |
400 | break; |
401 | case AliasResult::MustAlias: |
402 | OS << "MustAlias" ; |
403 | break; |
404 | case AliasResult::MayAlias: |
405 | OS << "MayAlias" ; |
406 | break; |
407 | case AliasResult::PartialAlias: |
408 | OS << "PartialAlias" ; |
409 | if (AR.hasOffset()) |
410 | OS << " (off " << AR.getOffset() << ")" ; |
411 | break; |
412 | } |
413 | return OS; |
414 | } |
415 | |
416 | //===----------------------------------------------------------------------===// |
417 | // Helper method implementation |
418 | //===----------------------------------------------------------------------===// |
419 | |
420 | ModRefInfo AAResults::getModRefInfo(const LoadInst *L, |
421 | const MemoryLocation &Loc, |
422 | AAQueryInfo &AAQI) { |
423 | // Be conservative in the face of atomic. |
424 | if (isStrongerThan(AO: L->getOrdering(), Other: AtomicOrdering::Unordered)) |
425 | return ModRefInfo::ModRef; |
426 | |
427 | // If the load address doesn't alias the given address, it doesn't read |
428 | // or write the specified memory. |
429 | if (Loc.Ptr) { |
430 | AliasResult AR = alias(LocA: MemoryLocation::get(LI: L), LocB: Loc, AAQI, CtxI: L); |
431 | if (AR == AliasResult::NoAlias) |
432 | return ModRefInfo::NoModRef; |
433 | } |
434 | // Otherwise, a load just reads. |
435 | return ModRefInfo::Ref; |
436 | } |
437 | |
438 | ModRefInfo AAResults::getModRefInfo(const StoreInst *S, |
439 | const MemoryLocation &Loc, |
440 | AAQueryInfo &AAQI) { |
441 | // Be conservative in the face of atomic. |
442 | if (isStrongerThan(AO: S->getOrdering(), Other: AtomicOrdering::Unordered)) |
443 | return ModRefInfo::ModRef; |
444 | |
445 | if (Loc.Ptr) { |
446 | AliasResult AR = alias(LocA: MemoryLocation::get(SI: S), LocB: Loc, AAQI, CtxI: S); |
447 | // If the store address cannot alias the pointer in question, then the |
448 | // specified memory cannot be modified by the store. |
449 | if (AR == AliasResult::NoAlias) |
450 | return ModRefInfo::NoModRef; |
451 | |
452 | // Examine the ModRef mask. If Mod isn't present, then return NoModRef. |
453 | // This ensures that if Loc is a constant memory location, we take into |
454 | // account the fact that the store definitely could not modify the memory |
455 | // location. |
456 | if (!isModSet(MRI: getModRefInfoMask(Loc))) |
457 | return ModRefInfo::NoModRef; |
458 | } |
459 | |
460 | // Otherwise, a store just writes. |
461 | return ModRefInfo::Mod; |
462 | } |
463 | |
464 | ModRefInfo AAResults::getModRefInfo(const FenceInst *S, |
465 | const MemoryLocation &Loc, |
466 | AAQueryInfo &AAQI) { |
467 | // All we know about a fence instruction is what we get from the ModRef |
468 | // mask: if Loc is a constant memory location, the fence definitely could |
469 | // not modify it. |
470 | if (Loc.Ptr) |
471 | return getModRefInfoMask(Loc); |
472 | return ModRefInfo::ModRef; |
473 | } |
474 | |
475 | ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, |
476 | const MemoryLocation &Loc, |
477 | AAQueryInfo &AAQI) { |
478 | if (Loc.Ptr) { |
479 | AliasResult AR = alias(LocA: MemoryLocation::get(VI: V), LocB: Loc, AAQI, CtxI: V); |
480 | // If the va_arg address cannot alias the pointer in question, then the |
481 | // specified memory cannot be accessed by the va_arg. |
482 | if (AR == AliasResult::NoAlias) |
483 | return ModRefInfo::NoModRef; |
484 | |
485 | // If the pointer is a pointer to invariant memory, then it could not have |
486 | // been modified by this va_arg. |
487 | return getModRefInfoMask(Loc, AAQI); |
488 | } |
489 | |
490 | // Otherwise, a va_arg reads and writes. |
491 | return ModRefInfo::ModRef; |
492 | } |
493 | |
494 | ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, |
495 | const MemoryLocation &Loc, |
496 | AAQueryInfo &AAQI) { |
497 | if (Loc.Ptr) { |
498 | // If the pointer is a pointer to invariant memory, |
499 | // then it could not have been modified by this catchpad. |
500 | return getModRefInfoMask(Loc, AAQI); |
501 | } |
502 | |
503 | // Otherwise, a catchpad reads and writes. |
504 | return ModRefInfo::ModRef; |
505 | } |
506 | |
507 | ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, |
508 | const MemoryLocation &Loc, |
509 | AAQueryInfo &AAQI) { |
510 | if (Loc.Ptr) { |
511 | // If the pointer is a pointer to invariant memory, |
512 | // then it could not have been modified by this catchpad. |
513 | return getModRefInfoMask(Loc, AAQI); |
514 | } |
515 | |
516 | // Otherwise, a catchret reads and writes. |
517 | return ModRefInfo::ModRef; |
518 | } |
519 | |
520 | ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, |
521 | const MemoryLocation &Loc, |
522 | AAQueryInfo &AAQI) { |
523 | // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. |
524 | if (isStrongerThanMonotonic(AO: CX->getSuccessOrdering())) |
525 | return ModRefInfo::ModRef; |
526 | |
527 | if (Loc.Ptr) { |
528 | AliasResult AR = alias(LocA: MemoryLocation::get(CXI: CX), LocB: Loc, AAQI, CtxI: CX); |
529 | // If the cmpxchg address does not alias the location, it does not access |
530 | // it. |
531 | if (AR == AliasResult::NoAlias) |
532 | return ModRefInfo::NoModRef; |
533 | } |
534 | |
535 | return ModRefInfo::ModRef; |
536 | } |
537 | |
538 | ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, |
539 | const MemoryLocation &Loc, |
540 | AAQueryInfo &AAQI) { |
541 | // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. |
542 | if (isStrongerThanMonotonic(AO: RMW->getOrdering())) |
543 | return ModRefInfo::ModRef; |
544 | |
545 | if (Loc.Ptr) { |
546 | AliasResult AR = alias(LocA: MemoryLocation::get(RMWI: RMW), LocB: Loc, AAQI, CtxI: RMW); |
547 | // If the atomicrmw address does not alias the location, it does not access |
548 | // it. |
549 | if (AR == AliasResult::NoAlias) |
550 | return ModRefInfo::NoModRef; |
551 | } |
552 | |
553 | return ModRefInfo::ModRef; |
554 | } |
555 | |
556 | ModRefInfo AAResults::getModRefInfo(const Instruction *I, |
557 | const std::optional<MemoryLocation> &OptLoc, |
558 | AAQueryInfo &AAQIP) { |
559 | if (OptLoc == std::nullopt) { |
560 | if (const auto *Call = dyn_cast<CallBase>(Val: I)) |
561 | return getMemoryEffects(Call, AAQI&: AAQIP).getModRef(); |
562 | } |
563 | |
564 | const MemoryLocation &Loc = OptLoc.value_or(u: MemoryLocation()); |
565 | |
566 | switch (I->getOpcode()) { |
567 | case Instruction::VAArg: |
568 | return getModRefInfo(V: (const VAArgInst *)I, Loc, AAQI&: AAQIP); |
569 | case Instruction::Load: |
570 | return getModRefInfo(L: (const LoadInst *)I, Loc, AAQI&: AAQIP); |
571 | case Instruction::Store: |
572 | return getModRefInfo(S: (const StoreInst *)I, Loc, AAQI&: AAQIP); |
573 | case Instruction::Fence: |
574 | return getModRefInfo(S: (const FenceInst *)I, Loc, AAQI&: AAQIP); |
575 | case Instruction::AtomicCmpXchg: |
576 | return getModRefInfo(CX: (const AtomicCmpXchgInst *)I, Loc, AAQI&: AAQIP); |
577 | case Instruction::AtomicRMW: |
578 | return getModRefInfo(RMW: (const AtomicRMWInst *)I, Loc, AAQI&: AAQIP); |
579 | case Instruction::Call: |
580 | case Instruction::CallBr: |
581 | case Instruction::Invoke: |
582 | return getModRefInfo(Call: (const CallBase *)I, Loc, AAQI&: AAQIP); |
583 | case Instruction::CatchPad: |
584 | return getModRefInfo(CatchPad: (const CatchPadInst *)I, Loc, AAQI&: AAQIP); |
585 | case Instruction::CatchRet: |
586 | return getModRefInfo(CatchRet: (const CatchReturnInst *)I, Loc, AAQI&: AAQIP); |
587 | default: |
588 | assert(!I->mayReadOrWriteMemory() && |
589 | "Unhandled memory access instruction!" ); |
590 | return ModRefInfo::NoModRef; |
591 | } |
592 | } |
593 | |
594 | /// Return information about whether a particular call site modifies |
595 | /// or reads the specified memory location \p MemLoc before instruction \p I |
596 | /// in a BasicBlock. |
597 | /// FIXME: this is really just shoring-up a deficiency in alias analysis. |
598 | /// BasicAA isn't willing to spend linear time determining whether an alloca |
599 | /// was captured before or after this particular call, while we are. However, |
600 | /// with a smarter AA in place, this test is just wasting compile time. |
601 | ModRefInfo AAResults::callCapturesBefore(const Instruction *I, |
602 | const MemoryLocation &MemLoc, |
603 | DominatorTree *DT, |
604 | AAQueryInfo &AAQI) { |
605 | if (!DT) |
606 | return ModRefInfo::ModRef; |
607 | |
608 | const Value *Object = getUnderlyingObject(V: MemLoc.Ptr); |
609 | if (!isIdentifiedFunctionLocal(V: Object)) |
610 | return ModRefInfo::ModRef; |
611 | |
612 | const auto *Call = dyn_cast<CallBase>(Val: I); |
613 | if (!Call || Call == Object) |
614 | return ModRefInfo::ModRef; |
615 | |
616 | if (capturesAnything(CC: PointerMayBeCapturedBefore( |
617 | V: Object, /* ReturnCaptures */ true, I, DT, |
618 | /* include Object */ IncludeI: true, Mask: CaptureComponents::Provenance))) |
619 | return ModRefInfo::ModRef; |
620 | |
621 | unsigned ArgNo = 0; |
622 | ModRefInfo R = ModRefInfo::NoModRef; |
623 | // Set flag only if no May found and all operands processed. |
624 | for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); |
625 | CI != CE; ++CI, ++ArgNo) { |
626 | // Only look at the no-capture or byval pointer arguments. If this |
627 | // pointer were passed to arguments that were neither of these, then it |
628 | // couldn't be no-capture. |
629 | if (!(*CI)->getType()->isPointerTy()) |
630 | continue; |
631 | |
632 | // Make sure we still check captures(ret: address, provenance) and |
633 | // captures(address) arguments, as these wouldn't be treated as a capture |
634 | // at the call-site. |
635 | CaptureInfo Captures = Call->getCaptureInfo(OpNo: ArgNo); |
636 | if (capturesAnyProvenance(CC: Captures.getOtherComponents())) |
637 | continue; |
638 | |
639 | AliasResult AR = |
640 | alias(LocA: MemoryLocation::getBeforeOrAfter(Ptr: *CI), |
641 | LocB: MemoryLocation::getBeforeOrAfter(Ptr: Object), AAQI, CtxI: Call); |
642 | // If this is a no-capture pointer argument, see if we can tell that it |
643 | // is impossible to alias the pointer we're checking. If not, we have to |
644 | // assume that the call could touch the pointer, even though it doesn't |
645 | // escape. |
646 | if (AR == AliasResult::NoAlias) |
647 | continue; |
648 | if (Call->doesNotAccessMemory(OpNo: ArgNo)) |
649 | continue; |
650 | if (Call->onlyReadsMemory(OpNo: ArgNo)) { |
651 | R = ModRefInfo::Ref; |
652 | continue; |
653 | } |
654 | return ModRefInfo::ModRef; |
655 | } |
656 | return R; |
657 | } |
658 | |
659 | /// canBasicBlockModify - Return true if it is possible for execution of the |
660 | /// specified basic block to modify the location Loc. |
661 | /// |
662 | bool AAResults::canBasicBlockModify(const BasicBlock &BB, |
663 | const MemoryLocation &Loc) { |
664 | return canInstructionRangeModRef(I1: BB.front(), I2: BB.back(), Loc, Mode: ModRefInfo::Mod); |
665 | } |
666 | |
667 | /// canInstructionRangeModRef - Return true if it is possible for the |
668 | /// execution of the specified instructions to mod\ref (according to the |
669 | /// mode) the location Loc. The instructions to consider are all |
670 | /// of the instructions in the range of [I1,I2] INCLUSIVE. |
671 | /// I1 and I2 must be in the same basic block. |
672 | bool AAResults::canInstructionRangeModRef(const Instruction &I1, |
673 | const Instruction &I2, |
674 | const MemoryLocation &Loc, |
675 | const ModRefInfo Mode) { |
676 | assert(I1.getParent() == I2.getParent() && |
677 | "Instructions not in same basic block!" ); |
678 | BasicBlock::const_iterator I = I1.getIterator(); |
679 | BasicBlock::const_iterator E = I2.getIterator(); |
680 | ++E; // Convert from inclusive to exclusive range. |
681 | |
682 | for (; I != E; ++I) // Check every instruction in range |
683 | if (isModOrRefSet(MRI: getModRefInfo(I: &*I, OptLoc: Loc) & Mode)) |
684 | return true; |
685 | return false; |
686 | } |
687 | |
688 | // Provide a definition for the root virtual destructor. |
689 | AAResults::Concept::~Concept() = default; |
690 | |
691 | // Provide a definition for the static object used to identify passes. |
692 | AnalysisKey AAManager::Key; |
693 | |
694 | ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) {} |
695 | |
696 | ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB, bool RunEarly) |
697 | : ImmutablePass(ID), CB(std::move(CB)), RunEarly(RunEarly) {} |
698 | |
699 | char ExternalAAWrapperPass::ID = 0; |
700 | |
701 | INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa" , "External Alias Analysis" , |
702 | false, true) |
703 | |
704 | ImmutablePass * |
705 | llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) { |
706 | return new ExternalAAWrapperPass(std::move(Callback)); |
707 | } |
708 | |
709 | AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {} |
710 | |
711 | char AAResultsWrapperPass::ID = 0; |
712 | |
713 | INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa" , |
714 | "Function Alias Analysis Results" , false, true) |
715 | INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) |
716 | INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass) |
717 | INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) |
718 | INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) |
719 | INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) |
720 | INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) |
721 | INITIALIZE_PASS_END(AAResultsWrapperPass, "aa" , |
722 | "Function Alias Analysis Results" , false, true) |
723 | |
724 | /// Run the wrapper pass to rebuild an aggregation over known AA passes. |
725 | /// |
726 | /// This is the legacy pass manager's interface to the new-style AA results |
727 | /// aggregation object. Because this is somewhat shoe-horned into the legacy |
728 | /// pass manager, we hard code all the specific alias analyses available into |
729 | /// it. While the particular set enabled is configured via commandline flags, |
730 | /// adding a new alias analysis to LLVM will require adding support for it to |
731 | /// this list. |
732 | bool AAResultsWrapperPass::runOnFunction(Function &F) { |
733 | // NB! This *must* be reset before adding new AA results to the new |
734 | // AAResults object because in the legacy pass manager, each instance |
735 | // of these will refer to the *same* immutable analyses, registering and |
736 | // unregistering themselves with them. We need to carefully tear down the |
737 | // previous object first, in this case replacing it with an empty one, before |
738 | // registering new results. |
739 | AAR.reset( |
740 | p: new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F))); |
741 | |
742 | // Add any target-specific alias analyses that should be run early. |
743 | auto *ExtWrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>(); |
744 | if (ExtWrapperPass && ExtWrapperPass->RunEarly && ExtWrapperPass->CB) { |
745 | LLVM_DEBUG(dbgs() << "AAResults register Early ExternalAA: " |
746 | << ExtWrapperPass->getPassName() << "\n" ); |
747 | ExtWrapperPass->CB(*this, F, *AAR); |
748 | } |
749 | |
750 | // BasicAA is always available for function analyses. Also, we add it first |
751 | // so that it can trump TBAA results when it proves MustAlias. |
752 | // FIXME: TBAA should have an explicit mode to support this and then we |
753 | // should reconsider the ordering here. |
754 | if (!DisableBasicAA) { |
755 | LLVM_DEBUG(dbgs() << "AAResults register BasicAA\n" ); |
756 | AAR->addAAResult(AAResult&: getAnalysis<BasicAAWrapperPass>().getResult()); |
757 | } |
758 | |
759 | // Populate the results with the currently available AAs. |
760 | if (auto *WrapperPass = |
761 | getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) { |
762 | LLVM_DEBUG(dbgs() << "AAResults register ScopedNoAliasAA\n" ); |
763 | AAR->addAAResult(AAResult&: WrapperPass->getResult()); |
764 | } |
765 | if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) { |
766 | LLVM_DEBUG(dbgs() << "AAResults register TypeBasedAA\n" ); |
767 | AAR->addAAResult(AAResult&: WrapperPass->getResult()); |
768 | } |
769 | if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) { |
770 | LLVM_DEBUG(dbgs() << "AAResults register GlobalsAA\n" ); |
771 | AAR->addAAResult(AAResult&: WrapperPass->getResult()); |
772 | } |
773 | if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) { |
774 | LLVM_DEBUG(dbgs() << "AAResults register SCEVAA\n" ); |
775 | AAR->addAAResult(AAResult&: WrapperPass->getResult()); |
776 | } |
777 | |
778 | // If available, run an external AA providing callback over the results as |
779 | // well. |
780 | if (ExtWrapperPass && !ExtWrapperPass->RunEarly && ExtWrapperPass->CB) { |
781 | LLVM_DEBUG(dbgs() << "AAResults register Late ExternalAA: " |
782 | << ExtWrapperPass->getPassName() << "\n" ); |
783 | ExtWrapperPass->CB(*this, F, *AAR); |
784 | } |
785 | |
786 | // Analyses don't mutate the IR, so return false. |
787 | return false; |
788 | } |
789 | |
790 | void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
791 | AU.setPreservesAll(); |
792 | AU.addRequiredTransitive<BasicAAWrapperPass>(); |
793 | AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); |
794 | |
795 | // We also need to mark all the alias analysis passes we will potentially |
796 | // probe in runOnFunction as used here to ensure the legacy pass manager |
797 | // preserves them. This hard coding of lists of alias analyses is specific to |
798 | // the legacy pass manager. |
799 | AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); |
800 | AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); |
801 | AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); |
802 | AU.addUsedIfAvailable<SCEVAAWrapperPass>(); |
803 | AU.addUsedIfAvailable<ExternalAAWrapperPass>(); |
804 | } |
805 | |
806 | AAManager::Result AAManager::run(Function &F, FunctionAnalysisManager &AM) { |
807 | Result R(AM.getResult<TargetLibraryAnalysis>(IR&: F)); |
808 | for (auto &Getter : ResultGetters) |
809 | (*Getter)(F, AM, R); |
810 | return R; |
811 | } |
812 | |
813 | bool llvm::isNoAliasCall(const Value *V) { |
814 | if (const auto *Call = dyn_cast<CallBase>(Val: V)) |
815 | return Call->hasRetAttr(Kind: Attribute::NoAlias); |
816 | return false; |
817 | } |
818 | |
819 | static bool isNoAliasOrByValArgument(const Value *V) { |
820 | if (const Argument *A = dyn_cast<Argument>(Val: V)) |
821 | return A->hasNoAliasAttr() || A->hasByValAttr(); |
822 | return false; |
823 | } |
824 | |
825 | bool llvm::isIdentifiedObject(const Value *V) { |
826 | if (isa<AllocaInst>(Val: V)) |
827 | return true; |
828 | if (isa<GlobalValue>(Val: V) && !isa<GlobalAlias>(Val: V)) |
829 | return true; |
830 | if (isNoAliasCall(V)) |
831 | return true; |
832 | if (isNoAliasOrByValArgument(V)) |
833 | return true; |
834 | return false; |
835 | } |
836 | |
837 | bool llvm::isIdentifiedFunctionLocal(const Value *V) { |
838 | return isa<AllocaInst>(Val: V) || isNoAliasCall(V) || isNoAliasOrByValArgument(V); |
839 | } |
840 | |
841 | bool llvm::isBaseOfObject(const Value *V) { |
842 | // TODO: We can handle other cases here |
843 | // 1) For GC languages, arguments to functions are often required to be |
844 | // base pointers. |
845 | // 2) Result of allocation routines are often base pointers. Leverage TLI. |
846 | return (isa<AllocaInst>(Val: V) || isa<GlobalVariable>(Val: V)); |
847 | } |
848 | |
849 | bool llvm::isEscapeSource(const Value *V) { |
850 | if (auto *CB = dyn_cast<CallBase>(Val: V)) { |
851 | if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call: CB, MustPreserveNullness: true)) |
852 | return false; |
853 | |
854 | // The return value of a function with a captures(ret: address, provenance) |
855 | // attribute is not necessarily an escape source. The return value may |
856 | // alias with a non-escaping object. |
857 | return !CB->hasArgumentWithAdditionalReturnCaptureComponents(); |
858 | } |
859 | |
860 | // The load case works because isNotCapturedBefore considers all |
861 | // stores to be escapes (it passes true for the StoreCaptures argument |
862 | // to PointerMayBeCaptured). |
863 | if (isa<LoadInst>(Val: V)) |
864 | return true; |
865 | |
866 | // The inttoptr case works because isNotCapturedBefore considers all |
867 | // means of converting or equating a pointer to an int (ptrtoint, ptr store |
868 | // which could be followed by an integer load, ptr<->int compare) as |
869 | // escaping, and objects located at well-known addresses via platform-specific |
870 | // means cannot be considered non-escaping local objects. |
871 | if (isa<IntToPtrInst>(Val: V)) |
872 | return true; |
873 | |
874 | // Capture tracking considers insertions into aggregates and vectors as |
875 | // captures. As such, extractions from aggregates and vectors are escape |
876 | // sources. |
877 | if (isa<ExtractValueInst, ExtractElementInst>(Val: V)) |
878 | return true; |
879 | |
880 | // Same for inttoptr constant expressions. |
881 | if (auto *CE = dyn_cast<ConstantExpr>(Val: V)) |
882 | if (CE->getOpcode() == Instruction::IntToPtr) |
883 | return true; |
884 | |
885 | return false; |
886 | } |
887 | |
888 | bool llvm::isNotVisibleOnUnwind(const Value *Object, |
889 | bool &RequiresNoCaptureBeforeUnwind) { |
890 | RequiresNoCaptureBeforeUnwind = false; |
891 | |
892 | // Alloca goes out of scope on unwind. |
893 | if (isa<AllocaInst>(Val: Object)) |
894 | return true; |
895 | |
896 | // Byval goes out of scope on unwind. |
897 | if (auto *A = dyn_cast<Argument>(Val: Object)) |
898 | return A->hasByValAttr() || A->hasAttribute(Kind: Attribute::DeadOnUnwind); |
899 | |
900 | // A noalias return is not accessible from any other code. If the pointer |
901 | // does not escape prior to the unwind, then the caller cannot access the |
902 | // memory either. |
903 | if (isNoAliasCall(V: Object)) { |
904 | RequiresNoCaptureBeforeUnwind = true; |
905 | return true; |
906 | } |
907 | |
908 | return false; |
909 | } |
910 | |
911 | // We don't consider globals as writable: While the physical memory is writable, |
912 | // we may not have provenance to perform the write. |
913 | bool llvm::isWritableObject(const Value *Object, |
914 | bool &ExplicitlyDereferenceableOnly) { |
915 | ExplicitlyDereferenceableOnly = false; |
916 | |
917 | // TODO: Alloca might not be writable after its lifetime ends. |
918 | // See https://github.com/llvm/llvm-project/issues/51838. |
919 | if (isa<AllocaInst>(Val: Object)) |
920 | return true; |
921 | |
922 | if (auto *A = dyn_cast<Argument>(Val: Object)) { |
923 | // Also require noalias, otherwise writability at function entry cannot be |
924 | // generalized to writability at other program points, even if the pointer |
925 | // does not escape. |
926 | if (A->hasAttribute(Kind: Attribute::Writable) && A->hasNoAliasAttr()) { |
927 | ExplicitlyDereferenceableOnly = true; |
928 | return true; |
929 | } |
930 | |
931 | return A->hasByValAttr(); |
932 | } |
933 | |
934 | // TODO: Noalias shouldn't imply writability, this should check for an |
935 | // allocator function instead. |
936 | return isNoAliasCall(V: Object); |
937 | } |
938 | |