| 1 | //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements bookkeeping for "interesting" users of expressions |
| 10 | // computed from induction variables. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Analysis/IVUsers.h" |
| 15 | #include "llvm/Analysis/AssumptionCache.h" |
| 16 | #include "llvm/Analysis/CodeMetrics.h" |
| 17 | #include "llvm/Analysis/LoopAnalysisManager.h" |
| 18 | #include "llvm/Analysis/LoopInfo.h" |
| 19 | #include "llvm/Analysis/LoopPass.h" |
| 20 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 21 | #include "llvm/Analysis/ValueTracking.h" |
| 22 | #include "llvm/Config/llvm-config.h" |
| 23 | #include "llvm/IR/DataLayout.h" |
| 24 | #include "llvm/IR/Dominators.h" |
| 25 | #include "llvm/IR/Instructions.h" |
| 26 | #include "llvm/IR/Module.h" |
| 27 | #include "llvm/InitializePasses.h" |
| 28 | #include "llvm/Support/Debug.h" |
| 29 | #include "llvm/Support/raw_ostream.h" |
| 30 | using namespace llvm; |
| 31 | |
| 32 | #define DEBUG_TYPE "iv-users" |
| 33 | |
| 34 | AnalysisKey IVUsersAnalysis::Key; |
| 35 | |
| 36 | IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM, |
| 37 | LoopStandardAnalysisResults &AR) { |
| 38 | return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE); |
| 39 | } |
| 40 | |
| 41 | char IVUsersWrapperPass::ID = 0; |
| 42 | INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users" , |
| 43 | "Induction Variable Users" , false, true) |
| 44 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| 45 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| 46 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 47 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
| 48 | INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users" , "Induction Variable Users" , |
| 49 | false, true) |
| 50 | |
| 51 | Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); } |
| 52 | |
| 53 | /// isInteresting - Test whether the given expression is "interesting" when |
| 54 | /// used by the given expression, within the context of analyzing the |
| 55 | /// given loop. |
| 56 | static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L, |
| 57 | ScalarEvolution *SE, LoopInfo *LI) { |
| 58 | // An addrec is interesting if it's affine or if it has an interesting start. |
| 59 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: S)) { |
| 60 | // Keep things simple. Don't touch loop-variant strides unless they're |
| 61 | // only used outside the loop and we can simplify them. |
| 62 | if (AR->getLoop() == L) |
| 63 | return AR->isAffine() || |
| 64 | (!L->contains(Inst: I) && |
| 65 | SE->getSCEVAtScope(S: AR, L: LI->getLoopFor(BB: I->getParent())) != AR); |
| 66 | // Otherwise recurse to see if the start value is interesting, and that |
| 67 | // the step value is not interesting, since we don't yet know how to |
| 68 | // do effective SCEV expansions for addrecs with interesting steps. |
| 69 | return isInteresting(S: AR->getStart(), I, L, SE, LI) && |
| 70 | !isInteresting(S: AR->getStepRecurrence(SE&: *SE), I, L, SE, LI); |
| 71 | } |
| 72 | |
| 73 | // An add is interesting if exactly one of its operands is interesting. |
| 74 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: S)) { |
| 75 | bool AnyInterestingYet = false; |
| 76 | for (const SCEV *Op : Add->operands()) |
| 77 | if (isInteresting(S: Op, I, L, SE, LI)) { |
| 78 | if (AnyInterestingYet) |
| 79 | return false; |
| 80 | AnyInterestingYet = true; |
| 81 | } |
| 82 | return AnyInterestingYet; |
| 83 | } |
| 84 | |
| 85 | // Nothing else is interesting here. |
| 86 | return false; |
| 87 | } |
| 88 | |
| 89 | /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression |
| 90 | /// and now we need to decide whether the user should use the preinc or post-inc |
| 91 | /// value. If this user should use the post-inc version of the IV, return true. |
| 92 | /// |
| 93 | /// Choosing wrong here can break dominance properties (if we choose to use the |
| 94 | /// post-inc value when we cannot) or it can end up adding extra live-ranges to |
| 95 | /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we |
| 96 | /// should use the post-inc value). |
| 97 | static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand, |
| 98 | const Loop *L, DominatorTree *DT) { |
| 99 | // If the user is in the loop, use the preinc value. |
| 100 | if (L->contains(Inst: User)) |
| 101 | return false; |
| 102 | |
| 103 | BasicBlock *LatchBlock = L->getLoopLatch(); |
| 104 | if (!LatchBlock) |
| 105 | return false; |
| 106 | |
| 107 | // Ok, the user is outside of the loop. If it is dominated by the latch |
| 108 | // block, use the post-inc value. |
| 109 | if (DT->dominates(A: LatchBlock, B: User->getParent())) |
| 110 | return true; |
| 111 | |
| 112 | // There is one case we have to be careful of: PHI nodes. These little guys |
| 113 | // can live in blocks that are not dominated by the latch block, but (since |
| 114 | // their uses occur in the predecessor block, not the block the PHI lives in) |
| 115 | // should still use the post-inc value. Check for this case now. |
| 116 | PHINode *PN = dyn_cast<PHINode>(Val: User); |
| 117 | if (!PN || !Operand) |
| 118 | return false; // not a phi, not dominated by latch block. |
| 119 | |
| 120 | // Look at all of the uses of Operand by the PHI node. If any use corresponds |
| 121 | // to a block that is not dominated by the latch block, give up and use the |
| 122 | // preincremented value. |
| 123 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| 124 | if (PN->getIncomingValue(i) == Operand && |
| 125 | !DT->dominates(A: LatchBlock, B: PN->getIncomingBlock(i))) |
| 126 | return false; |
| 127 | |
| 128 | // Okay, all uses of Operand by PN are in predecessor blocks that really are |
| 129 | // dominated by the latch block. Use the post-incremented value. |
| 130 | return true; |
| 131 | } |
| 132 | |
| 133 | /// Inspect the specified instruction. If it is a reducible SCEV, recursively |
| 134 | /// add its users to the IVUsesByStride set and return true. Otherwise, return |
| 135 | /// false. |
| 136 | bool IVUsers::AddUsersIfInteresting(Instruction *I) { |
| 137 | const DataLayout &DL = I->getDataLayout(); |
| 138 | |
| 139 | // Add this IV user to the Processed set before returning false to ensure that |
| 140 | // all IV users are members of the set. See IVUsers::isIVUserOrOperand. |
| 141 | if (!Processed.insert(Ptr: I).second) |
| 142 | return true; // Instruction already handled. |
| 143 | |
| 144 | if (!SE->isSCEVable(Ty: I->getType())) |
| 145 | return false; // Void and FP expressions cannot be reduced. |
| 146 | |
| 147 | // IVUsers is used by LSR which assumes that all SCEV expressions are safe to |
| 148 | // pass to SCEVExpander. Expressions are not safe to expand if they represent |
| 149 | // operations that are not safe to speculate, namely integer division. |
| 150 | if (!isa<PHINode>(Val: I) && !isSafeToSpeculativelyExecute(I)) |
| 151 | return false; |
| 152 | |
| 153 | // LSR is not APInt clean, do not touch integers bigger than 64-bits. |
| 154 | // Also avoid creating IVs of non-native types. For example, we don't want a |
| 155 | // 64-bit IV in 32-bit code just because the loop has one 64-bit cast. |
| 156 | uint64_t Width = SE->getTypeSizeInBits(Ty: I->getType()); |
| 157 | if (Width > 64 || !DL.isLegalInteger(Width)) |
| 158 | return false; |
| 159 | |
| 160 | // Don't attempt to promote ephemeral values to indvars. They will be removed |
| 161 | // later anyway. |
| 162 | if (EphValues.count(Ptr: I)) |
| 163 | return false; |
| 164 | |
| 165 | // Get the symbolic expression for this instruction. |
| 166 | const SCEV *ISE = SE->getSCEV(V: I); |
| 167 | |
| 168 | // If we've come to an uninteresting expression, stop the traversal and |
| 169 | // call this a user. |
| 170 | if (!isInteresting(S: ISE, I, L, SE, LI)) |
| 171 | return false; |
| 172 | |
| 173 | SmallPtrSet<Instruction *, 4> UniqueUsers; |
| 174 | for (Use &U : I->uses()) { |
| 175 | Instruction *User = cast<Instruction>(Val: U.getUser()); |
| 176 | if (!UniqueUsers.insert(Ptr: User).second) |
| 177 | continue; |
| 178 | |
| 179 | // Do not infinitely recurse on PHI nodes. |
| 180 | if (isa<PHINode>(Val: User) && Processed.count(Ptr: User)) |
| 181 | continue; |
| 182 | |
| 183 | // Descend recursively, but not into PHI nodes outside the current loop. |
| 184 | // It's important to see the entire expression outside the loop to get |
| 185 | // choices that depend on addressing mode use right, although we won't |
| 186 | // consider references outside the loop in all cases. |
| 187 | // If User is already in Processed, we don't want to recurse into it again, |
| 188 | // but do want to record a second reference in the same instruction. |
| 189 | bool AddUserToIVUsers = false; |
| 190 | if (LI->getLoopFor(BB: User->getParent()) != L) { |
| 191 | if (isa<PHINode>(Val: User) || Processed.count(Ptr: User) || |
| 192 | !AddUsersIfInteresting(I: User)) { |
| 193 | LLVM_DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n' |
| 194 | << " OF SCEV: " << *ISE << '\n'); |
| 195 | AddUserToIVUsers = true; |
| 196 | } |
| 197 | } else if (Processed.count(Ptr: User) || !AddUsersIfInteresting(I: User)) { |
| 198 | LLVM_DEBUG(dbgs() << "FOUND USER: " << *User << '\n' |
| 199 | << " OF SCEV: " << *ISE << '\n'); |
| 200 | AddUserToIVUsers = true; |
| 201 | } |
| 202 | |
| 203 | if (AddUserToIVUsers) { |
| 204 | // Okay, we found a user that we cannot reduce. |
| 205 | IVStrideUse &NewUse = AddUser(User, Operand: I); |
| 206 | // Autodetect the post-inc loop set, populating NewUse.PostIncLoops. |
| 207 | // The regular return value here is discarded; instead of recording |
| 208 | // it, we just recompute it when we need it. |
| 209 | const SCEV *OriginalISE = ISE; |
| 210 | |
| 211 | auto NormalizePred = [&](const SCEVAddRecExpr *AR) { |
| 212 | auto *L = AR->getLoop(); |
| 213 | bool Result = IVUseShouldUsePostIncValue(User, Operand: I, L, DT); |
| 214 | if (Result) |
| 215 | NewUse.PostIncLoops.insert(Ptr: L); |
| 216 | return Result; |
| 217 | }; |
| 218 | |
| 219 | ISE = normalizeForPostIncUseIf(S: ISE, Pred: NormalizePred, SE&: *SE); |
| 220 | |
| 221 | // PostIncNormalization effectively simplifies the expression under |
| 222 | // pre-increment assumptions. Those assumptions (no wrapping) might not |
| 223 | // hold for the post-inc value. Catch such cases by making sure the |
| 224 | // transformation is invertible. |
| 225 | if (OriginalISE != ISE) { |
| 226 | const SCEV *DenormalizedISE = |
| 227 | denormalizeForPostIncUse(S: ISE, Loops: NewUse.PostIncLoops, SE&: *SE); |
| 228 | |
| 229 | // If we normalized the expression, but denormalization doesn't give the |
| 230 | // original one, discard this user. |
| 231 | if (OriginalISE != DenormalizedISE) { |
| 232 | LLVM_DEBUG(dbgs() |
| 233 | << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): " |
| 234 | << *ISE << '\n'); |
| 235 | IVUses.pop_back(); |
| 236 | return false; |
| 237 | } |
| 238 | } |
| 239 | LLVM_DEBUG(if (SE->getSCEV(I) != ISE) dbgs() |
| 240 | << " NORMALIZED TO: " << *ISE << '\n'); |
| 241 | } |
| 242 | } |
| 243 | return true; |
| 244 | } |
| 245 | |
| 246 | IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) { |
| 247 | IVUses.push_back(val: new IVStrideUse(this, User, Operand)); |
| 248 | return IVUses.back(); |
| 249 | } |
| 250 | |
| 251 | IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT, |
| 252 | ScalarEvolution *SE) |
| 253 | : L(L), AC(AC), LI(LI), DT(DT), SE(SE) { |
| 254 | // Collect ephemeral values so that AddUsersIfInteresting skips them. |
| 255 | EphValues.clear(); |
| 256 | CodeMetrics::collectEphemeralValues(L, AC, EphValues); |
| 257 | |
| 258 | // Find all uses of induction variables in this loop, and categorize |
| 259 | // them by stride. Start by finding all of the PHI nodes in the header for |
| 260 | // this loop. If they are induction variables, inspect their uses. |
| 261 | for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(Val: I); ++I) |
| 262 | (void)AddUsersIfInteresting(I: &*I); |
| 263 | } |
| 264 | |
| 265 | void IVUsers::print(raw_ostream &OS, const Module *M) const { |
| 266 | OS << "IV Users for loop " ; |
| 267 | L->getHeader()->printAsOperand(O&: OS, PrintType: false); |
| 268 | if (SE->hasLoopInvariantBackedgeTakenCount(L)) { |
| 269 | OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L); |
| 270 | } |
| 271 | OS << ":\n" ; |
| 272 | |
| 273 | for (const IVStrideUse &IVUse : IVUses) { |
| 274 | OS << " " ; |
| 275 | IVUse.getOperandValToReplace()->printAsOperand(O&: OS, PrintType: false); |
| 276 | OS << " = " << *getReplacementExpr(IU: IVUse); |
| 277 | for (const auto *PostIncLoop : IVUse.PostIncLoops) { |
| 278 | OS << " (post-inc with loop " ; |
| 279 | PostIncLoop->getHeader()->printAsOperand(O&: OS, PrintType: false); |
| 280 | OS << ")" ; |
| 281 | } |
| 282 | OS << " in " ; |
| 283 | if (IVUse.getUser()) |
| 284 | IVUse.getUser()->print(O&: OS); |
| 285 | else |
| 286 | OS << "Printing <null> User" ; |
| 287 | OS << '\n'; |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 292 | LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); } |
| 293 | #endif |
| 294 | |
| 295 | void IVUsers::releaseMemory() { |
| 296 | Processed.clear(); |
| 297 | IVUses.clear(); |
| 298 | } |
| 299 | |
| 300 | IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) {} |
| 301 | |
| 302 | void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| 303 | AU.addRequired<AssumptionCacheTracker>(); |
| 304 | AU.addRequired<LoopInfoWrapperPass>(); |
| 305 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 306 | AU.addRequired<ScalarEvolutionWrapperPass>(); |
| 307 | AU.setPreservesAll(); |
| 308 | } |
| 309 | |
| 310 | bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) { |
| 311 | auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( |
| 312 | F&: *L->getHeader()->getParent()); |
| 313 | auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| 314 | auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 315 | auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| 316 | |
| 317 | IU.reset(p: new IVUsers(L, AC, LI, DT, SE)); |
| 318 | return false; |
| 319 | } |
| 320 | |
| 321 | void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const { |
| 322 | IU->print(OS, M); |
| 323 | } |
| 324 | |
| 325 | void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); } |
| 326 | |
| 327 | /// getReplacementExpr - Return a SCEV expression which computes the |
| 328 | /// value of the OperandValToReplace. |
| 329 | const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const { |
| 330 | return SE->getSCEV(V: IU.getOperandValToReplace()); |
| 331 | } |
| 332 | |
| 333 | /// getExpr - Return the expression for the use. |
| 334 | const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const { |
| 335 | const SCEV *Replacement = getReplacementExpr(IU); |
| 336 | return normalizeForPostIncUse(S: Replacement, Loops: IU.getPostIncLoops(), SE&: *SE); |
| 337 | } |
| 338 | |
| 339 | static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) { |
| 340 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: S)) { |
| 341 | if (AR->getLoop() == L) |
| 342 | return AR; |
| 343 | return findAddRecForLoop(S: AR->getStart(), L); |
| 344 | } |
| 345 | |
| 346 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: S)) { |
| 347 | for (const SCEV *Op : Add->operands()) |
| 348 | if (const SCEVAddRecExpr *AR = findAddRecForLoop(S: Op, L)) |
| 349 | return AR; |
| 350 | return nullptr; |
| 351 | } |
| 352 | |
| 353 | return nullptr; |
| 354 | } |
| 355 | |
| 356 | const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const { |
| 357 | const SCEV *Expr = getExpr(IU); |
| 358 | if (!Expr) |
| 359 | return nullptr; |
| 360 | if (const SCEVAddRecExpr *AR = findAddRecForLoop(S: Expr, L)) |
| 361 | return AR->getStepRecurrence(SE&: *SE); |
| 362 | return nullptr; |
| 363 | } |
| 364 | |
| 365 | void IVStrideUse::transformToPostInc(const Loop *L) { |
| 366 | PostIncLoops.insert(Ptr: L); |
| 367 | } |
| 368 | |
| 369 | void IVStrideUse::deleted() { |
| 370 | // Remove this user from the list. |
| 371 | Parent->Processed.erase(Ptr: this->getUser()); |
| 372 | Parent->IVUses.erase(IT: this); |
| 373 | // this now dangles! |
| 374 | } |
| 375 | |