| 1 | //===- ModelUnderTrainingRunner.cpp - 'development' mode runner -----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Implementation of a MLModelRunner for 'development' mode, i.e. evaluation |
| 10 | // happens off a model that's provided from the command line and is interpreted. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/ADT/STLExtras.h" |
| 15 | #include "llvm/Config/config.h" |
| 16 | #if defined(LLVM_HAVE_TFLITE) |
| 17 | #include "llvm/Analysis/ModelUnderTrainingRunner.h" |
| 18 | #include "llvm/Support/MemoryBuffer.h" |
| 19 | #include "llvm/Support/Path.h" |
| 20 | #include <optional> |
| 21 | |
| 22 | using namespace llvm; |
| 23 | namespace { |
| 24 | struct LoggedFeatureSpec { |
| 25 | TensorSpec Spec; |
| 26 | std::optional<std::string> LoggingName; |
| 27 | }; |
| 28 | |
| 29 | std::optional<std::vector<LoggedFeatureSpec>> |
| 30 | loadOutputSpecs(LLVMContext &Ctx, StringRef ExpectedDecisionName, |
| 31 | StringRef ModelPath, StringRef SpecFileOverride) { |
| 32 | SmallVector<char, 128> OutputSpecsPath; |
| 33 | StringRef FileName = SpecFileOverride; |
| 34 | if (FileName.empty()) { |
| 35 | llvm::sys::path::append(OutputSpecsPath, ModelPath, "output_spec.json" ); |
| 36 | FileName = {OutputSpecsPath.data(), OutputSpecsPath.size()}; |
| 37 | } |
| 38 | |
| 39 | auto BufferOrError = MemoryBuffer::getFileOrSTDIN(FileName); |
| 40 | if (!BufferOrError) { |
| 41 | Ctx.emitError("Error opening output specs file: " + FileName + " : " + |
| 42 | BufferOrError.getError().message()); |
| 43 | return std::nullopt; |
| 44 | } |
| 45 | auto ParsedJSONValues = json::parse(BufferOrError.get()->getBuffer()); |
| 46 | if (!ParsedJSONValues) { |
| 47 | Ctx.emitError("Could not parse specs file: " + FileName); |
| 48 | return std::nullopt; |
| 49 | } |
| 50 | auto ValuesArray = ParsedJSONValues->getAsArray(); |
| 51 | if (!ValuesArray) { |
| 52 | Ctx.emitError("Expected an array of {tensor_spec:<TensorSpec>, " |
| 53 | "logging_name:<name>} dictionaries" ); |
| 54 | return std::nullopt; |
| 55 | } |
| 56 | std::vector<LoggedFeatureSpec> Ret; |
| 57 | for (const auto &Value : *ValuesArray) |
| 58 | if (const auto *Obj = Value.getAsObject()) |
| 59 | if (const auto *SpecPart = Obj->get("tensor_spec" )) |
| 60 | if (auto TensorSpec = getTensorSpecFromJSON(Ctx, *SpecPart)) |
| 61 | if (auto LoggingName = Obj->getString("logging_name" )) { |
| 62 | if (!TensorSpec->isElementType<int64_t>() && |
| 63 | !TensorSpec->isElementType<int32_t>() && |
| 64 | !TensorSpec->isElementType<float>()) { |
| 65 | Ctx.emitError( |
| 66 | "Only int64, int32, and float tensors are supported. " |
| 67 | "Found unsupported type for tensor named " + |
| 68 | TensorSpec->name()); |
| 69 | return std::nullopt; |
| 70 | } |
| 71 | Ret.push_back({*TensorSpec, LoggingName->str()}); |
| 72 | } |
| 73 | |
| 74 | if (ValuesArray->size() != Ret.size()) { |
| 75 | Ctx.emitError( |
| 76 | "Unable to parse output spec. It should be a json file containing an " |
| 77 | "array of dictionaries. Each dictionary must have a 'tensor_spec' key, " |
| 78 | "with a json object describing a TensorSpec; and a 'logging_name' key, " |
| 79 | "which is a string to use as name when logging this tensor in the " |
| 80 | "training log." ); |
| 81 | return std::nullopt; |
| 82 | } |
| 83 | if (Ret.empty() || *Ret[0].LoggingName != ExpectedDecisionName) { |
| 84 | Ctx.emitError("The first output spec must describe the decision tensor, " |
| 85 | "and must have the logging_name " + |
| 86 | StringRef(ExpectedDecisionName)); |
| 87 | return std::nullopt; |
| 88 | } |
| 89 | return Ret; |
| 90 | } |
| 91 | } // namespace |
| 92 | |
| 93 | ModelUnderTrainingRunner::ModelUnderTrainingRunner( |
| 94 | LLVMContext &Ctx, const std::string &ModelPath, |
| 95 | const std::vector<TensorSpec> &InputSpecs, |
| 96 | const std::vector<TensorSpec> &OutputSpecs, |
| 97 | const std::vector<TensorSpec> &ExtraOutputsForLogging) |
| 98 | : MLModelRunner(Ctx, MLModelRunner::Kind::Development, InputSpecs.size()), |
| 99 | OutputSpecs(OutputSpecs), ExtraOutputsForLogging(ExtraOutputsForLogging) { |
| 100 | Evaluator = |
| 101 | std::make_unique<TFModelEvaluator>(ModelPath, InputSpecs, OutputSpecs); |
| 102 | if (!Evaluator || !Evaluator->isValid()) { |
| 103 | Ctx.emitError("Failed to create saved model evaluator" ); |
| 104 | Evaluator.reset(); |
| 105 | return; |
| 106 | } |
| 107 | |
| 108 | for (size_t I = 0, E = InputSpecs.size(); I < E; ++I) { |
| 109 | setUpBufferForTensor(I, InputSpecs[I], Evaluator->getUntypedInput(I)); |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | void *ModelUnderTrainingRunner::evaluateUntyped() { |
| 114 | LastEvaluationResult = Evaluator->evaluate(); |
| 115 | if (!LastEvaluationResult.has_value()) { |
| 116 | Ctx.emitError("Error evaluating model." ); |
| 117 | return nullptr; |
| 118 | } |
| 119 | return LastEvaluationResult->getUntypedTensorValue(0); |
| 120 | } |
| 121 | |
| 122 | std::unique_ptr<ModelUnderTrainingRunner> |
| 123 | ModelUnderTrainingRunner::createAndEnsureValid( |
| 124 | LLVMContext &Ctx, const std::string &ModelPath, StringRef DecisionName, |
| 125 | const std::vector<TensorSpec> &InputSpecs, |
| 126 | StringRef OutputSpecsPathOverride) { |
| 127 | if (auto MaybeOutputSpecs = loadOutputSpecs(Ctx, DecisionName, ModelPath, |
| 128 | OutputSpecsPathOverride)) { |
| 129 | std::unique_ptr<ModelUnderTrainingRunner> MUTR; |
| 130 | std::vector<TensorSpec> OutputSpecs; |
| 131 | std::vector<TensorSpec> ExtraOutputsForLogging; |
| 132 | append_range(OutputSpecs, |
| 133 | map_range(*MaybeOutputSpecs, [](const LoggedFeatureSpec &LFS) { |
| 134 | return LFS.Spec; |
| 135 | })); |
| 136 | append_range(ExtraOutputsForLogging, |
| 137 | map_range(drop_begin(*MaybeOutputSpecs), |
| 138 | [](const LoggedFeatureSpec &LFS) { |
| 139 | return TensorSpec(LFS.LoggingName |
| 140 | ? *LFS.LoggingName |
| 141 | : LFS.Spec.name(), |
| 142 | LFS.Spec); |
| 143 | })); |
| 144 | |
| 145 | MUTR.reset(new ModelUnderTrainingRunner( |
| 146 | Ctx, ModelPath, InputSpecs, OutputSpecs, ExtraOutputsForLogging)); |
| 147 | if (MUTR && MUTR->isValid()) |
| 148 | return MUTR; |
| 149 | |
| 150 | Ctx.emitError("Could not load or create model evaluator." ); |
| 151 | return nullptr; |
| 152 | } |
| 153 | Ctx.emitError("Could not load the policy model from the provided path" ); |
| 154 | return nullptr; |
| 155 | } |
| 156 | |
| 157 | #endif // defined(LLVM_HAVE_TFLITE) |
| 158 | |