| 1 | //===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the LatencyPriorityQueue class, which is a |
| 10 | // SchedulingPriorityQueue that schedules using latency information to |
| 11 | // reduce the length of the critical path through the basic block. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/CodeGen/LatencyPriorityQueue.h" |
| 16 | #include "llvm/Config/llvm-config.h" |
| 17 | #include "llvm/Support/Debug.h" |
| 18 | #include "llvm/Support/raw_ostream.h" |
| 19 | using namespace llvm; |
| 20 | |
| 21 | #define DEBUG_TYPE "scheduler" |
| 22 | |
| 23 | bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const { |
| 24 | // The isScheduleHigh flag allows nodes with wraparound dependencies that |
| 25 | // cannot easily be modeled as edges with latencies to be scheduled as |
| 26 | // soon as possible in a top-down schedule. |
| 27 | if (LHS->isScheduleHigh && !RHS->isScheduleHigh) |
| 28 | return false; |
| 29 | if (!LHS->isScheduleHigh && RHS->isScheduleHigh) |
| 30 | return true; |
| 31 | |
| 32 | unsigned LHSNum = LHS->NodeNum; |
| 33 | unsigned RHSNum = RHS->NodeNum; |
| 34 | |
| 35 | // The most important heuristic is scheduling the critical path. |
| 36 | unsigned LHSLatency = PQ->getLatency(NodeNum: LHSNum); |
| 37 | unsigned RHSLatency = PQ->getLatency(NodeNum: RHSNum); |
| 38 | if (LHSLatency < RHSLatency) return true; |
| 39 | if (LHSLatency > RHSLatency) return false; |
| 40 | |
| 41 | // After that, if two nodes have identical latencies, look to see if one will |
| 42 | // unblock more other nodes than the other. |
| 43 | unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(NodeNum: LHSNum); |
| 44 | unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(NodeNum: RHSNum); |
| 45 | if (LHSBlocked < RHSBlocked) return true; |
| 46 | if (LHSBlocked > RHSBlocked) return false; |
| 47 | |
| 48 | // Finally, just to provide a stable ordering, use the node number as a |
| 49 | // deciding factor. |
| 50 | return RHSNum < LHSNum; |
| 51 | } |
| 52 | |
| 53 | |
| 54 | /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor |
| 55 | /// of SU, return it, otherwise return null. |
| 56 | SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) { |
| 57 | SUnit *OnlyAvailablePred = nullptr; |
| 58 | for (const SDep &P : SU->Preds) { |
| 59 | SUnit &Pred = *P.getSUnit(); |
| 60 | if (!Pred.isScheduled) { |
| 61 | // We found an available, but not scheduled, predecessor. If it's the |
| 62 | // only one we have found, keep track of it... otherwise give up. |
| 63 | if (OnlyAvailablePred && OnlyAvailablePred != &Pred) |
| 64 | return nullptr; |
| 65 | OnlyAvailablePred = &Pred; |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | return OnlyAvailablePred; |
| 70 | } |
| 71 | |
| 72 | void LatencyPriorityQueue::push(SUnit *SU) { |
| 73 | // Look at all of the successors of this node. Count the number of nodes that |
| 74 | // this node is the sole unscheduled node for. |
| 75 | unsigned NumNodesBlocking = 0; |
| 76 | for (const SDep &Succ : SU->Succs) |
| 77 | if (getSingleUnscheduledPred(SU: Succ.getSUnit()) == SU) |
| 78 | ++NumNodesBlocking; |
| 79 | NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking; |
| 80 | |
| 81 | Queue.push_back(x: SU); |
| 82 | } |
| 83 | |
| 84 | |
| 85 | // scheduledNode - As nodes are scheduled, we look to see if there are any |
| 86 | // successor nodes that have a single unscheduled predecessor. If so, that |
| 87 | // single predecessor has a higher priority, since scheduling it will make |
| 88 | // the node available. |
| 89 | void LatencyPriorityQueue::scheduledNode(SUnit *SU) { |
| 90 | for (const SDep &Succ : SU->Succs) |
| 91 | AdjustPriorityOfUnscheduledPreds(SU: Succ.getSUnit()); |
| 92 | } |
| 93 | |
| 94 | /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just |
| 95 | /// scheduled. If SU is not itself available, then there is at least one |
| 96 | /// predecessor node that has not been scheduled yet. If SU has exactly ONE |
| 97 | /// unscheduled predecessor, we want to increase its priority: it getting |
| 98 | /// scheduled will make this node available, so it is better than some other |
| 99 | /// node of the same priority that will not make a node available. |
| 100 | void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) { |
| 101 | if (SU->isAvailable) return; // All preds scheduled. |
| 102 | |
| 103 | SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU); |
| 104 | if (!OnlyAvailablePred || !OnlyAvailablePred->isAvailable) return; |
| 105 | |
| 106 | // Okay, we found a single predecessor that is available, but not scheduled. |
| 107 | // Since it is available, it must be in the priority queue. First remove it. |
| 108 | remove(SU: OnlyAvailablePred); |
| 109 | |
| 110 | // Reinsert the node into the priority queue, which recomputes its |
| 111 | // NumNodesSolelyBlocking value. |
| 112 | push(SU: OnlyAvailablePred); |
| 113 | } |
| 114 | |
| 115 | SUnit *LatencyPriorityQueue::pop() { |
| 116 | if (empty()) return nullptr; |
| 117 | std::vector<SUnit *>::iterator Best = Queue.begin(); |
| 118 | for (std::vector<SUnit *>::iterator I = std::next(x: Queue.begin()), |
| 119 | E = Queue.end(); I != E; ++I) |
| 120 | if (Picker(*Best, *I)) |
| 121 | Best = I; |
| 122 | SUnit *V = *Best; |
| 123 | if (Best != std::prev(x: Queue.end())) |
| 124 | std::swap(a&: *Best, b&: Queue.back()); |
| 125 | Queue.pop_back(); |
| 126 | return V; |
| 127 | } |
| 128 | |
| 129 | void LatencyPriorityQueue::remove(SUnit *SU) { |
| 130 | assert(!Queue.empty() && "Queue is empty!" ); |
| 131 | std::vector<SUnit *>::iterator I = find(Range&: Queue, Val: SU); |
| 132 | assert(I != Queue.end() && "Queue doesn't contain the SU being removed!" ); |
| 133 | if (I != std::prev(x: Queue.end())) |
| 134 | std::swap(a&: *I, b&: Queue.back()); |
| 135 | Queue.pop_back(); |
| 136 | } |
| 137 | |
| 138 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 139 | LLVM_DUMP_METHOD void LatencyPriorityQueue::dump(ScheduleDAG *DAG) const { |
| 140 | dbgs() << "Latency Priority Queue\n" ; |
| 141 | dbgs() << " Number of Queue Entries: " << Queue.size() << "\n" ; |
| 142 | for (const SUnit *SU : Queue) { |
| 143 | dbgs() << " " ; |
| 144 | DAG->dumpNode(*SU); |
| 145 | } |
| 146 | } |
| 147 | #endif |
| 148 | |