| 1 | //====- SHA256.cpp - SHA256 implementation ---*- C++ -* ======// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /* |
| 9 | * The SHA-256 Secure Hash Standard was published by NIST in 2002. |
| 10 | * |
| 11 | * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf |
| 12 | * |
| 13 | * The implementation is based on nacl's sha256 implementation [0] and LLVM's |
| 14 | * pre-exsiting SHA1 code [1]. |
| 15 | * |
| 16 | * [0] https://hyperelliptic.org/nacl/nacl-20110221.tar.bz2 (public domain |
| 17 | * code) |
| 18 | * [1] llvm/lib/Support/SHA1.{h,cpp} |
| 19 | */ |
| 20 | //===----------------------------------------------------------------------===// |
| 21 | |
| 22 | #include "llvm/Support/SHA256.h" |
| 23 | #include "llvm/ADT/ArrayRef.h" |
| 24 | #include "llvm/ADT/StringRef.h" |
| 25 | #include "llvm/Support/Endian.h" |
| 26 | #include "llvm/Support/SwapByteOrder.h" |
| 27 | #include <string.h> |
| 28 | |
| 29 | namespace llvm { |
| 30 | |
| 31 | #define SHR(x, c) ((x) >> (c)) |
| 32 | #define ROTR(x, n) (((x) >> n) | ((x) << (32 - (n)))) |
| 33 | |
| 34 | #define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z))) |
| 35 | #define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
| 36 | |
| 37 | #define SIGMA_0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) |
| 38 | #define SIGMA_1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) |
| 39 | |
| 40 | #define SIGMA_2(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) |
| 41 | #define SIGMA_3(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) |
| 42 | |
| 43 | #define F_EXPAND(A, B, C, D, E, F, G, H, M1, M2, M3, M4, k) \ |
| 44 | do { \ |
| 45 | H += SIGMA_1(E) + CH(E, F, G) + M1 + k; \ |
| 46 | D += H; \ |
| 47 | H += SIGMA_0(A) + MAJ(A, B, C); \ |
| 48 | M1 += SIGMA_2(M2) + M3 + SIGMA_3(M4); \ |
| 49 | } while (0); |
| 50 | |
| 51 | void SHA256::init() { |
| 52 | InternalState.State[0] = 0x6A09E667; |
| 53 | InternalState.State[1] = 0xBB67AE85; |
| 54 | InternalState.State[2] = 0x3C6EF372; |
| 55 | InternalState.State[3] = 0xA54FF53A; |
| 56 | InternalState.State[4] = 0x510E527F; |
| 57 | InternalState.State[5] = 0x9B05688C; |
| 58 | InternalState.State[6] = 0x1F83D9AB; |
| 59 | InternalState.State[7] = 0x5BE0CD19; |
| 60 | InternalState.ByteCount = 0; |
| 61 | InternalState.BufferOffset = 0; |
| 62 | } |
| 63 | |
| 64 | void SHA256::hashBlock() { |
| 65 | uint32_t A = InternalState.State[0]; |
| 66 | uint32_t B = InternalState.State[1]; |
| 67 | uint32_t C = InternalState.State[2]; |
| 68 | uint32_t D = InternalState.State[3]; |
| 69 | uint32_t E = InternalState.State[4]; |
| 70 | uint32_t F = InternalState.State[5]; |
| 71 | uint32_t G = InternalState.State[6]; |
| 72 | uint32_t H = InternalState.State[7]; |
| 73 | |
| 74 | uint32_t W00 = InternalState.Buffer.L[0]; |
| 75 | uint32_t W01 = InternalState.Buffer.L[1]; |
| 76 | uint32_t W02 = InternalState.Buffer.L[2]; |
| 77 | uint32_t W03 = InternalState.Buffer.L[3]; |
| 78 | uint32_t W04 = InternalState.Buffer.L[4]; |
| 79 | uint32_t W05 = InternalState.Buffer.L[5]; |
| 80 | uint32_t W06 = InternalState.Buffer.L[6]; |
| 81 | uint32_t W07 = InternalState.Buffer.L[7]; |
| 82 | uint32_t W08 = InternalState.Buffer.L[8]; |
| 83 | uint32_t W09 = InternalState.Buffer.L[9]; |
| 84 | uint32_t W10 = InternalState.Buffer.L[10]; |
| 85 | uint32_t W11 = InternalState.Buffer.L[11]; |
| 86 | uint32_t W12 = InternalState.Buffer.L[12]; |
| 87 | uint32_t W13 = InternalState.Buffer.L[13]; |
| 88 | uint32_t W14 = InternalState.Buffer.L[14]; |
| 89 | uint32_t W15 = InternalState.Buffer.L[15]; |
| 90 | |
| 91 | F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x428A2F98); |
| 92 | F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x71374491); |
| 93 | F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0xB5C0FBCF); |
| 94 | F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0xE9B5DBA5); |
| 95 | F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x3956C25B); |
| 96 | F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x59F111F1); |
| 97 | F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x923F82A4); |
| 98 | F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0xAB1C5ED5); |
| 99 | F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0xD807AA98); |
| 100 | F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0x12835B01); |
| 101 | F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0x243185BE); |
| 102 | F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0x550C7DC3); |
| 103 | F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0x72BE5D74); |
| 104 | F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0x80DEB1FE); |
| 105 | F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0x9BDC06A7); |
| 106 | F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0xC19BF174); |
| 107 | |
| 108 | F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0xE49B69C1); |
| 109 | F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0xEFBE4786); |
| 110 | F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x0FC19DC6); |
| 111 | F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x240CA1CC); |
| 112 | F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x2DE92C6F); |
| 113 | F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x4A7484AA); |
| 114 | F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x5CB0A9DC); |
| 115 | F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x76F988DA); |
| 116 | F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0x983E5152); |
| 117 | F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0xA831C66D); |
| 118 | F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0xB00327C8); |
| 119 | F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0xBF597FC7); |
| 120 | F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0xC6E00BF3); |
| 121 | F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xD5A79147); |
| 122 | F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0x06CA6351); |
| 123 | F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0x14292967); |
| 124 | |
| 125 | F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x27B70A85); |
| 126 | F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x2E1B2138); |
| 127 | F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x4D2C6DFC); |
| 128 | F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x53380D13); |
| 129 | F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x650A7354); |
| 130 | F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x766A0ABB); |
| 131 | F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x81C2C92E); |
| 132 | F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x92722C85); |
| 133 | F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0xA2BFE8A1); |
| 134 | F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0xA81A664B); |
| 135 | F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0xC24B8B70); |
| 136 | F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0xC76C51A3); |
| 137 | F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0xD192E819); |
| 138 | F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xD6990624); |
| 139 | F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0xF40E3585); |
| 140 | F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0x106AA070); |
| 141 | |
| 142 | F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x19A4C116); |
| 143 | F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x1E376C08); |
| 144 | F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x2748774C); |
| 145 | F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x34B0BCB5); |
| 146 | F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x391C0CB3); |
| 147 | F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x4ED8AA4A); |
| 148 | F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x5B9CCA4F); |
| 149 | F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x682E6FF3); |
| 150 | F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0x748F82EE); |
| 151 | F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0x78A5636F); |
| 152 | F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0x84C87814); |
| 153 | F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0x8CC70208); |
| 154 | F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0x90BEFFFA); |
| 155 | F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xA4506CEB); |
| 156 | F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0xBEF9A3F7); |
| 157 | F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0xC67178F2); |
| 158 | |
| 159 | InternalState.State[0] += A; |
| 160 | InternalState.State[1] += B; |
| 161 | InternalState.State[2] += C; |
| 162 | InternalState.State[3] += D; |
| 163 | InternalState.State[4] += E; |
| 164 | InternalState.State[5] += F; |
| 165 | InternalState.State[6] += G; |
| 166 | InternalState.State[7] += H; |
| 167 | } |
| 168 | |
| 169 | void SHA256::addUncounted(uint8_t Data) { |
| 170 | if constexpr (sys::IsBigEndianHost) |
| 171 | InternalState.Buffer.C[InternalState.BufferOffset] = Data; |
| 172 | else |
| 173 | InternalState.Buffer.C[InternalState.BufferOffset ^ 3] = Data; |
| 174 | |
| 175 | InternalState.BufferOffset++; |
| 176 | if (InternalState.BufferOffset == BLOCK_LENGTH) { |
| 177 | hashBlock(); |
| 178 | InternalState.BufferOffset = 0; |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | void SHA256::writebyte(uint8_t Data) { |
| 183 | ++InternalState.ByteCount; |
| 184 | addUncounted(Data); |
| 185 | } |
| 186 | |
| 187 | void SHA256::update(ArrayRef<uint8_t> Data) { |
| 188 | InternalState.ByteCount += Data.size(); |
| 189 | |
| 190 | // Finish the current block. |
| 191 | if (InternalState.BufferOffset > 0) { |
| 192 | const size_t Remainder = std::min<size_t>( |
| 193 | a: Data.size(), b: BLOCK_LENGTH - InternalState.BufferOffset); |
| 194 | for (size_t I = 0; I < Remainder; ++I) |
| 195 | addUncounted(Data: Data[I]); |
| 196 | Data = Data.drop_front(N: Remainder); |
| 197 | } |
| 198 | |
| 199 | // Fast buffer filling for large inputs. |
| 200 | while (Data.size() >= BLOCK_LENGTH) { |
| 201 | assert(InternalState.BufferOffset == 0); |
| 202 | static_assert(BLOCK_LENGTH % 4 == 0); |
| 203 | constexpr size_t BLOCK_LENGTH_32 = BLOCK_LENGTH / 4; |
| 204 | for (size_t I = 0; I < BLOCK_LENGTH_32; ++I) |
| 205 | InternalState.Buffer.L[I] = support::endian::read32be(P: &Data[I * 4]); |
| 206 | hashBlock(); |
| 207 | Data = Data.drop_front(N: BLOCK_LENGTH); |
| 208 | } |
| 209 | |
| 210 | // Finish the remainder. |
| 211 | for (uint8_t C : Data) |
| 212 | addUncounted(Data: C); |
| 213 | } |
| 214 | |
| 215 | void SHA256::update(StringRef Str) { |
| 216 | update( |
| 217 | Data: ArrayRef<uint8_t>((uint8_t *)const_cast<char *>(Str.data()), Str.size())); |
| 218 | } |
| 219 | |
| 220 | void SHA256::pad() { |
| 221 | // Implement SHA-2 padding (fips180-2 5.1.1) |
| 222 | |
| 223 | // Pad with 0x80 followed by 0x00 until the end of the block |
| 224 | addUncounted(Data: 0x80); |
| 225 | while (InternalState.BufferOffset != 56) |
| 226 | addUncounted(Data: 0x00); |
| 227 | |
| 228 | uint64_t len = InternalState.ByteCount << 3; // bit size |
| 229 | |
| 230 | // Append length in the last 8 bytes big edian encoded |
| 231 | addUncounted(Data: len >> 56); |
| 232 | addUncounted(Data: len >> 48); |
| 233 | addUncounted(Data: len >> 40); |
| 234 | addUncounted(Data: len >> 32); |
| 235 | addUncounted(Data: len >> 24); |
| 236 | addUncounted(Data: len >> 16); |
| 237 | addUncounted(Data: len >> 8); |
| 238 | addUncounted(Data: len); |
| 239 | } |
| 240 | |
| 241 | void SHA256::final(std::array<uint32_t, HASH_LENGTH / 4> &HashResult) { |
| 242 | // Pad to complete the last block |
| 243 | pad(); |
| 244 | |
| 245 | if constexpr (sys::IsBigEndianHost) { |
| 246 | // Just copy the current state |
| 247 | for (int i = 0; i < 8; i++) { |
| 248 | HashResult[i] = InternalState.State[i]; |
| 249 | } |
| 250 | } else { |
| 251 | // Swap byte order back |
| 252 | for (int i = 0; i < 8; i++) { |
| 253 | HashResult[i] = llvm::byteswap(V: InternalState.State[i]); |
| 254 | } |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | std::array<uint8_t, 32> SHA256::final() { |
| 259 | union { |
| 260 | std::array<uint32_t, HASH_LENGTH / 4> HashResult; |
| 261 | std::array<uint8_t, HASH_LENGTH> ReturnResult; |
| 262 | }; |
| 263 | static_assert(sizeof(HashResult) == sizeof(ReturnResult)); |
| 264 | final(HashResult&: HashResult); |
| 265 | return ReturnResult; |
| 266 | } |
| 267 | |
| 268 | std::array<uint8_t, 32> SHA256::result() { |
| 269 | auto StateToRestore = InternalState; |
| 270 | |
| 271 | auto Hash = final(); |
| 272 | |
| 273 | // Restore the state |
| 274 | InternalState = StateToRestore; |
| 275 | |
| 276 | // Return pointer to hash (32 characters) |
| 277 | return Hash; |
| 278 | } |
| 279 | |
| 280 | std::array<uint8_t, 32> SHA256::hash(ArrayRef<uint8_t> Data) { |
| 281 | SHA256 Hash; |
| 282 | Hash.update(Data); |
| 283 | return Hash.final(); |
| 284 | } |
| 285 | |
| 286 | } // namespace llvm |
| 287 | |