| 1 | //===--- StringMap.cpp - String Hash table map implementation -------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the StringMap class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/ADT/StringMap.h" |
| 14 | #include "llvm/Support/MathExtras.h" |
| 15 | #include "llvm/Support/ReverseIteration.h" |
| 16 | #include "llvm/Support/xxhash.h" |
| 17 | |
| 18 | using namespace llvm; |
| 19 | |
| 20 | /// Returns the number of buckets to allocate to ensure that the DenseMap can |
| 21 | /// accommodate \p NumEntries without need to grow(). |
| 22 | static inline unsigned getMinBucketToReserveForEntries(unsigned NumEntries) { |
| 23 | // Ensure that "NumEntries * 4 < NumBuckets * 3" |
| 24 | if (NumEntries == 0) |
| 25 | return 0; |
| 26 | // +1 is required because of the strict equality. |
| 27 | // For example if NumEntries is 48, we need to return 401. |
| 28 | return NextPowerOf2(A: NumEntries * 4 / 3 + 1); |
| 29 | } |
| 30 | |
| 31 | static inline StringMapEntryBase **createTable(unsigned NewNumBuckets) { |
| 32 | auto **Table = static_cast<StringMapEntryBase **>(safe_calloc( |
| 33 | Count: NewNumBuckets + 1, Sz: sizeof(StringMapEntryBase **) + sizeof(unsigned))); |
| 34 | |
| 35 | // Allocate one extra bucket, set it to look filled so the iterators stop at |
| 36 | // end. |
| 37 | Table[NewNumBuckets] = (StringMapEntryBase *)2; |
| 38 | return Table; |
| 39 | } |
| 40 | |
| 41 | static inline unsigned *getHashTable(StringMapEntryBase **TheTable, |
| 42 | unsigned NumBuckets) { |
| 43 | return reinterpret_cast<unsigned *>(TheTable + NumBuckets + 1); |
| 44 | } |
| 45 | |
| 46 | uint32_t StringMapImpl::hash(StringRef Key) { return xxh3_64bits(data: Key); } |
| 47 | |
| 48 | StringMapImpl::StringMapImpl(unsigned InitSize, unsigned itemSize) { |
| 49 | ItemSize = itemSize; |
| 50 | |
| 51 | // If a size is specified, initialize the table with that many buckets. |
| 52 | if (InitSize) { |
| 53 | // The table will grow when the number of entries reach 3/4 of the number of |
| 54 | // buckets. To guarantee that "InitSize" number of entries can be inserted |
| 55 | // in the table without growing, we allocate just what is needed here. |
| 56 | init(Size: getMinBucketToReserveForEntries(NumEntries: InitSize)); |
| 57 | return; |
| 58 | } |
| 59 | |
| 60 | // Otherwise, initialize it with zero buckets to avoid the allocation. |
| 61 | TheTable = nullptr; |
| 62 | NumBuckets = 0; |
| 63 | NumItems = 0; |
| 64 | NumTombstones = 0; |
| 65 | } |
| 66 | |
| 67 | void StringMapImpl::init(unsigned InitSize) { |
| 68 | assert((InitSize & (InitSize - 1)) == 0 && |
| 69 | "Init Size must be a power of 2 or zero!" ); |
| 70 | |
| 71 | unsigned NewNumBuckets = InitSize ? InitSize : 16; |
| 72 | NumItems = 0; |
| 73 | NumTombstones = 0; |
| 74 | |
| 75 | TheTable = createTable(NewNumBuckets); |
| 76 | |
| 77 | // Set the member only if TheTable was successfully allocated |
| 78 | NumBuckets = NewNumBuckets; |
| 79 | } |
| 80 | |
| 81 | /// LookupBucketFor - Look up the bucket that the specified string should end |
| 82 | /// up in. If it already exists as a key in the map, the Item pointer for the |
| 83 | /// specified bucket will be non-null. Otherwise, it will be null. In either |
| 84 | /// case, the FullHashValue field of the bucket will be set to the hash value |
| 85 | /// of the string. |
| 86 | unsigned StringMapImpl::LookupBucketFor(StringRef Name, |
| 87 | uint32_t FullHashValue) { |
| 88 | #ifdef EXPENSIVE_CHECKS |
| 89 | assert(FullHashValue == hash(Name)); |
| 90 | #endif |
| 91 | // Hash table unallocated so far? |
| 92 | if (NumBuckets == 0) |
| 93 | init(InitSize: 16); |
| 94 | if (shouldReverseIterate()) |
| 95 | FullHashValue = ~FullHashValue; |
| 96 | unsigned BucketNo = FullHashValue & (NumBuckets - 1); |
| 97 | unsigned *HashTable = getHashTable(TheTable, NumBuckets); |
| 98 | |
| 99 | unsigned ProbeAmt = 1; |
| 100 | int FirstTombstone = -1; |
| 101 | while (true) { |
| 102 | StringMapEntryBase *BucketItem = TheTable[BucketNo]; |
| 103 | // If we found an empty bucket, this key isn't in the table yet, return it. |
| 104 | if (LLVM_LIKELY(!BucketItem)) { |
| 105 | // If we found a tombstone, we want to reuse the tombstone instead of an |
| 106 | // empty bucket. This reduces probing. |
| 107 | if (FirstTombstone != -1) { |
| 108 | HashTable[FirstTombstone] = FullHashValue; |
| 109 | return FirstTombstone; |
| 110 | } |
| 111 | |
| 112 | HashTable[BucketNo] = FullHashValue; |
| 113 | return BucketNo; |
| 114 | } |
| 115 | |
| 116 | if (BucketItem == getTombstoneVal()) { |
| 117 | // Skip over tombstones. However, remember the first one we see. |
| 118 | if (FirstTombstone == -1) |
| 119 | FirstTombstone = BucketNo; |
| 120 | } else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) { |
| 121 | // If the full hash value matches, check deeply for a match. The common |
| 122 | // case here is that we are only looking at the buckets (for item info |
| 123 | // being non-null and for the full hash value) not at the items. This |
| 124 | // is important for cache locality. |
| 125 | |
| 126 | // Do the comparison like this because Name isn't necessarily |
| 127 | // null-terminated! |
| 128 | char *ItemStr = (char *)BucketItem + ItemSize; |
| 129 | if (Name == StringRef(ItemStr, BucketItem->getKeyLength())) { |
| 130 | // We found a match! |
| 131 | return BucketNo; |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | // Okay, we didn't find the item. Probe to the next bucket. |
| 136 | BucketNo = (BucketNo + ProbeAmt) & (NumBuckets - 1); |
| 137 | |
| 138 | // Use quadratic probing, it has fewer clumping artifacts than linear |
| 139 | // probing and has good cache behavior in the common case. |
| 140 | ++ProbeAmt; |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | /// FindKey - Look up the bucket that contains the specified key. If it exists |
| 145 | /// in the map, return the bucket number of the key. Otherwise return -1. |
| 146 | /// This does not modify the map. |
| 147 | int StringMapImpl::FindKey(StringRef Key, uint32_t FullHashValue) const { |
| 148 | if (NumBuckets == 0) |
| 149 | return -1; // Really empty table? |
| 150 | #ifdef EXPENSIVE_CHECKS |
| 151 | assert(FullHashValue == hash(Key)); |
| 152 | #endif |
| 153 | if (shouldReverseIterate()) |
| 154 | FullHashValue = ~FullHashValue; |
| 155 | unsigned BucketNo = FullHashValue & (NumBuckets - 1); |
| 156 | unsigned *HashTable = getHashTable(TheTable, NumBuckets); |
| 157 | |
| 158 | unsigned ProbeAmt = 1; |
| 159 | while (true) { |
| 160 | StringMapEntryBase *BucketItem = TheTable[BucketNo]; |
| 161 | // If we found an empty bucket, this key isn't in the table yet, return. |
| 162 | if (LLVM_LIKELY(!BucketItem)) |
| 163 | return -1; |
| 164 | |
| 165 | if (BucketItem == getTombstoneVal()) { |
| 166 | // Ignore tombstones. |
| 167 | } else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) { |
| 168 | // If the full hash value matches, check deeply for a match. The common |
| 169 | // case here is that we are only looking at the buckets (for item info |
| 170 | // being non-null and for the full hash value) not at the items. This |
| 171 | // is important for cache locality. |
| 172 | |
| 173 | // Do the comparison like this because NameStart isn't necessarily |
| 174 | // null-terminated! |
| 175 | char *ItemStr = (char *)BucketItem + ItemSize; |
| 176 | if (Key == StringRef(ItemStr, BucketItem->getKeyLength())) { |
| 177 | // We found a match! |
| 178 | return BucketNo; |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | // Okay, we didn't find the item. Probe to the next bucket. |
| 183 | BucketNo = (BucketNo + ProbeAmt) & (NumBuckets - 1); |
| 184 | |
| 185 | // Use quadratic probing, it has fewer clumping artifacts than linear |
| 186 | // probing and has good cache behavior in the common case. |
| 187 | ++ProbeAmt; |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | /// RemoveKey - Remove the specified StringMapEntry from the table, but do not |
| 192 | /// delete it. This aborts if the value isn't in the table. |
| 193 | void StringMapImpl::RemoveKey(StringMapEntryBase *V) { |
| 194 | const char *VStr = (char *)V + ItemSize; |
| 195 | StringMapEntryBase *V2 = RemoveKey(Key: StringRef(VStr, V->getKeyLength())); |
| 196 | (void)V2; |
| 197 | assert(V == V2 && "Didn't find key?" ); |
| 198 | } |
| 199 | |
| 200 | /// RemoveKey - Remove the StringMapEntry for the specified key from the |
| 201 | /// table, returning it. If the key is not in the table, this returns null. |
| 202 | StringMapEntryBase *StringMapImpl::RemoveKey(StringRef Key) { |
| 203 | int Bucket = FindKey(Key); |
| 204 | if (Bucket == -1) |
| 205 | return nullptr; |
| 206 | |
| 207 | StringMapEntryBase *Result = TheTable[Bucket]; |
| 208 | TheTable[Bucket] = getTombstoneVal(); |
| 209 | --NumItems; |
| 210 | ++NumTombstones; |
| 211 | assert(NumItems + NumTombstones <= NumBuckets); |
| 212 | |
| 213 | return Result; |
| 214 | } |
| 215 | |
| 216 | /// RehashTable - Grow the table, redistributing values into the buckets with |
| 217 | /// the appropriate mod-of-hashtable-size. |
| 218 | unsigned StringMapImpl::RehashTable(unsigned BucketNo) { |
| 219 | unsigned NewSize; |
| 220 | // If the hash table is now more than 3/4 full, or if fewer than 1/8 of |
| 221 | // the buckets are empty (meaning that many are filled with tombstones), |
| 222 | // grow/rehash the table. |
| 223 | if (LLVM_UNLIKELY(NumItems * 4 > NumBuckets * 3)) { |
| 224 | NewSize = NumBuckets * 2; |
| 225 | } else if (LLVM_UNLIKELY(NumBuckets - (NumItems + NumTombstones) <= |
| 226 | NumBuckets / 8)) { |
| 227 | NewSize = NumBuckets; |
| 228 | } else { |
| 229 | return BucketNo; |
| 230 | } |
| 231 | |
| 232 | unsigned NewBucketNo = BucketNo; |
| 233 | auto **NewTableArray = createTable(NewNumBuckets: NewSize); |
| 234 | unsigned *NewHashArray = getHashTable(TheTable: NewTableArray, NumBuckets: NewSize); |
| 235 | unsigned *HashTable = getHashTable(TheTable, NumBuckets); |
| 236 | |
| 237 | // Rehash all the items into their new buckets. Luckily :) we already have |
| 238 | // the hash values available, so we don't have to rehash any strings. |
| 239 | for (unsigned I = 0, E = NumBuckets; I != E; ++I) { |
| 240 | StringMapEntryBase *Bucket = TheTable[I]; |
| 241 | if (Bucket && Bucket != getTombstoneVal()) { |
| 242 | // If the bucket is not available, probe for a spot. |
| 243 | unsigned FullHash = HashTable[I]; |
| 244 | unsigned NewBucket = FullHash & (NewSize - 1); |
| 245 | if (NewTableArray[NewBucket]) { |
| 246 | unsigned ProbeSize = 1; |
| 247 | do { |
| 248 | NewBucket = (NewBucket + ProbeSize++) & (NewSize - 1); |
| 249 | } while (NewTableArray[NewBucket]); |
| 250 | } |
| 251 | |
| 252 | // Finally found a slot. Fill it in. |
| 253 | NewTableArray[NewBucket] = Bucket; |
| 254 | NewHashArray[NewBucket] = FullHash; |
| 255 | if (I == BucketNo) |
| 256 | NewBucketNo = NewBucket; |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | free(ptr: TheTable); |
| 261 | |
| 262 | TheTable = NewTableArray; |
| 263 | NumBuckets = NewSize; |
| 264 | NumTombstones = 0; |
| 265 | return NewBucketNo; |
| 266 | } |
| 267 | |