1 | //===-- RISCVInsertWriteVXRM.cpp - Insert Write of RISC-V VXRM CSR --------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass inserts writes to the VXRM CSR as needed by vector instructions. |
10 | // Each instruction that uses VXRM carries an operand that contains its required |
11 | // VXRM value. This pass tries to optimize placement to avoid redundant writes |
12 | // to VXRM. |
13 | // |
14 | // This is done using 2 dataflow algorithms. The first is a forward data flow |
15 | // to calculate where a VXRM value is available. The second is a backwards |
16 | // dataflow to determine where a VXRM value is anticipated. |
17 | // |
18 | // Finally, we use the results of these two dataflows to insert VXRM writes |
19 | // where a value is anticipated, but not available. |
20 | // |
21 | // FIXME: This pass does not split critical edges, so there can still be some |
22 | // redundancy. |
23 | // |
24 | // FIXME: If we are willing to have writes that aren't always needed, we could |
25 | // reduce the number of VXRM writes in some cases. |
26 | //===----------------------------------------------------------------------===// |
27 | |
28 | #include "MCTargetDesc/RISCVBaseInfo.h" |
29 | #include "RISCV.h" |
30 | #include "RISCVSubtarget.h" |
31 | #include "llvm/CodeGen/MachineFunctionPass.h" |
32 | #include <queue> |
33 | |
34 | using namespace llvm; |
35 | |
36 | #define DEBUG_TYPE "riscv-insert-write-vxrm" |
37 | #define RISCV_INSERT_WRITE_VXRM_NAME "RISC-V Insert Write VXRM Pass" |
38 | |
39 | namespace { |
40 | |
41 | class VXRMInfo { |
42 | uint8_t VXRMImm = 0; |
43 | |
44 | enum : uint8_t { |
45 | Uninitialized, |
46 | Static, |
47 | Unknown, |
48 | } State = Uninitialized; |
49 | |
50 | public: |
51 | VXRMInfo() {} |
52 | |
53 | static VXRMInfo getUnknown() { |
54 | VXRMInfo Info; |
55 | Info.setUnknown(); |
56 | return Info; |
57 | } |
58 | |
59 | bool isValid() const { return State != Uninitialized; } |
60 | void setUnknown() { State = Unknown; } |
61 | bool isUnknown() const { return State == Unknown; } |
62 | |
63 | bool isStatic() const { return State == Static; } |
64 | |
65 | void setVXRMImm(unsigned Imm) { |
66 | assert(Imm <= 3 && "Unexpected VXRM value" ); |
67 | VXRMImm = Imm; |
68 | State = Static; |
69 | } |
70 | unsigned getVXRMImm() const { |
71 | assert(isStatic() && VXRMImm <= 3 && "Unexpected state" ); |
72 | return VXRMImm; |
73 | } |
74 | |
75 | bool operator==(const VXRMInfo &Other) const { |
76 | // Uninitialized is only equal to another Uninitialized. |
77 | if (State != Other.State) |
78 | return false; |
79 | |
80 | if (isStatic()) |
81 | return VXRMImm == Other.VXRMImm; |
82 | |
83 | assert((isValid() || isUnknown()) && "Unexpected state" ); |
84 | return true; |
85 | } |
86 | |
87 | bool operator!=(const VXRMInfo &Other) const { return !(*this == Other); } |
88 | |
89 | // Calculate the VXRMInfo visible to a block assuming this and Other are |
90 | // both predecessors. |
91 | VXRMInfo intersect(const VXRMInfo &Other) const { |
92 | // If the new value isn't valid, ignore it. |
93 | if (!Other.isValid()) |
94 | return *this; |
95 | |
96 | // If this value isn't valid, this must be the first predecessor, use it. |
97 | if (!isValid()) |
98 | return Other; |
99 | |
100 | // If either is unknown, the result is unknown. |
101 | if (isUnknown() || Other.isUnknown()) |
102 | return VXRMInfo::getUnknown(); |
103 | |
104 | // If we have an exact match, return this. |
105 | if (*this == Other) |
106 | return *this; |
107 | |
108 | // Otherwise the result is unknown. |
109 | return VXRMInfo::getUnknown(); |
110 | } |
111 | |
112 | // Calculate the VXRMInfo visible to a block assuming this and Other |
113 | // are both predecessors. To allow speculatively running WriteVXRM |
114 | // we will ignore Unknowns if one of this and Other have valid |
115 | // WriteVXRM. Rationale: WriteVXRM causes a pipeline flush in some |
116 | // uarchs and moving it outside loops is very important for some |
117 | // workloads. |
118 | VXRMInfo intersectAnticipated(const VXRMInfo &Other) const { |
119 | // If the new value isn't valid, ignore it. |
120 | if (!Other.isValid()) |
121 | return *this; |
122 | |
123 | // If this value isn't valid, this must be the first predecessor, use it. |
124 | if (!isValid()) |
125 | return Other; |
126 | |
127 | // If either is unknown, the result is the other one. |
128 | if (isUnknown()) |
129 | return Other; |
130 | if (Other.isUnknown()) |
131 | return *this; |
132 | |
133 | // If we have an exact match, return this. |
134 | if (*this == Other) |
135 | return *this; |
136 | |
137 | // Otherwise the result is unknown. |
138 | return VXRMInfo::getUnknown(); |
139 | } |
140 | |
141 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
142 | /// Support for debugging, callable in GDB: V->dump() |
143 | LLVM_DUMP_METHOD void dump() const { |
144 | print(dbgs()); |
145 | dbgs() << "\n" ; |
146 | } |
147 | |
148 | void print(raw_ostream &OS) const { |
149 | OS << '{'; |
150 | if (!isValid()) |
151 | OS << "Uninitialized" ; |
152 | else if (isUnknown()) |
153 | OS << "Unknown" ; |
154 | else |
155 | OS << getVXRMImm(); |
156 | OS << '}'; |
157 | } |
158 | #endif |
159 | }; |
160 | |
161 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
162 | LLVM_ATTRIBUTE_USED |
163 | inline raw_ostream &operator<<(raw_ostream &OS, const VXRMInfo &V) { |
164 | V.print(OS); |
165 | return OS; |
166 | } |
167 | #endif |
168 | |
169 | struct BlockData { |
170 | // Indicates if the block uses VXRM. Uninitialized means no use. |
171 | VXRMInfo VXRMUse; |
172 | |
173 | // Indicates the VXRM output from the block. Uninitialized means transparent. |
174 | VXRMInfo VXRMOut; |
175 | |
176 | // Keeps track of the available VXRM value at the start of the basic block. |
177 | VXRMInfo AvailableIn; |
178 | |
179 | // Keeps track of the available VXRM value at the end of the basic block. |
180 | VXRMInfo AvailableOut; |
181 | |
182 | // Keeps track of what VXRM is anticipated at the start of the basic block. |
183 | VXRMInfo AnticipatedIn; |
184 | |
185 | // Keeps track of what VXRM is anticipated at the end of the basic block. |
186 | VXRMInfo AnticipatedOut; |
187 | |
188 | // Keeps track of whether the block is already in the queue. |
189 | bool InQueue; |
190 | |
191 | BlockData() = default; |
192 | }; |
193 | |
194 | class RISCVInsertWriteVXRM : public MachineFunctionPass { |
195 | const TargetInstrInfo *TII; |
196 | |
197 | std::vector<BlockData> BlockInfo; |
198 | std::queue<const MachineBasicBlock *> WorkList; |
199 | |
200 | public: |
201 | static char ID; |
202 | |
203 | RISCVInsertWriteVXRM() : MachineFunctionPass(ID) {} |
204 | |
205 | bool runOnMachineFunction(MachineFunction &MF) override; |
206 | |
207 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
208 | AU.setPreservesCFG(); |
209 | MachineFunctionPass::getAnalysisUsage(AU); |
210 | } |
211 | |
212 | StringRef getPassName() const override { |
213 | return RISCV_INSERT_WRITE_VXRM_NAME; |
214 | } |
215 | |
216 | private: |
217 | bool computeVXRMChanges(const MachineBasicBlock &MBB); |
218 | void computeAvailable(const MachineBasicBlock &MBB); |
219 | void computeAnticipated(const MachineFunction &MF, const MachineBasicBlock &MBB); |
220 | void emitWriteVXRM(MachineBasicBlock &MBB); |
221 | }; |
222 | |
223 | } // end anonymous namespace |
224 | |
225 | char RISCVInsertWriteVXRM::ID = 0; |
226 | |
227 | INITIALIZE_PASS(RISCVInsertWriteVXRM, DEBUG_TYPE, RISCV_INSERT_WRITE_VXRM_NAME, |
228 | false, false) |
229 | |
230 | bool RISCVInsertWriteVXRM::computeVXRMChanges(const MachineBasicBlock &MBB) { |
231 | BlockData &BBInfo = BlockInfo[MBB.getNumber()]; |
232 | |
233 | bool NeedVXRMWrite = false; |
234 | for (const MachineInstr &MI : MBB) { |
235 | int VXRMIdx = RISCVII::getVXRMOpNum(Desc: MI.getDesc()); |
236 | if (VXRMIdx >= 0 && !RISCVInstrInfo::ignoresVXRM(MI)) { |
237 | unsigned NewVXRMImm = MI.getOperand(i: VXRMIdx).getImm(); |
238 | |
239 | if (!BBInfo.VXRMUse.isValid()) |
240 | BBInfo.VXRMUse.setVXRMImm(NewVXRMImm); |
241 | |
242 | BBInfo.VXRMOut.setVXRMImm(NewVXRMImm); |
243 | NeedVXRMWrite = true; |
244 | continue; |
245 | } |
246 | |
247 | if (MI.isCall() || MI.isInlineAsm() || |
248 | MI.modifiesRegister(Reg: RISCV::VXRM, /*TRI=*/nullptr)) { |
249 | if (!BBInfo.VXRMUse.isValid()) |
250 | BBInfo.VXRMUse.setUnknown(); |
251 | |
252 | BBInfo.VXRMOut.setUnknown(); |
253 | } |
254 | } |
255 | |
256 | return NeedVXRMWrite; |
257 | } |
258 | |
259 | void RISCVInsertWriteVXRM::computeAvailable(const MachineBasicBlock &MBB) { |
260 | BlockData &BBInfo = BlockInfo[MBB.getNumber()]; |
261 | |
262 | BBInfo.InQueue = false; |
263 | |
264 | VXRMInfo Available; |
265 | if (MBB.pred_empty()) { |
266 | Available.setUnknown(); |
267 | } else { |
268 | for (const MachineBasicBlock *P : MBB.predecessors()) |
269 | Available = Available.intersect(Other: BlockInfo[P->getNumber()].AvailableOut); |
270 | } |
271 | |
272 | // If we don't have any valid available info, wait until we do. |
273 | if (!Available.isValid()) |
274 | return; |
275 | |
276 | if (Available != BBInfo.AvailableIn) { |
277 | BBInfo.AvailableIn = Available; |
278 | LLVM_DEBUG(dbgs() << "AvailableIn state of " << printMBBReference(MBB) |
279 | << " changed to " << BBInfo.AvailableIn << "\n" ); |
280 | } |
281 | |
282 | if (BBInfo.VXRMOut.isValid()) |
283 | Available = BBInfo.VXRMOut; |
284 | |
285 | if (Available == BBInfo.AvailableOut) |
286 | return; |
287 | |
288 | BBInfo.AvailableOut = Available; |
289 | LLVM_DEBUG(dbgs() << "AvailableOut state of " << printMBBReference(MBB) |
290 | << " changed to " << BBInfo.AvailableOut << "\n" ); |
291 | |
292 | // Add the successors to the work list so that we can propagate. |
293 | for (MachineBasicBlock *S : MBB.successors()) { |
294 | if (!BlockInfo[S->getNumber()].InQueue) { |
295 | BlockInfo[S->getNumber()].InQueue = true; |
296 | WorkList.push(x: S); |
297 | } |
298 | } |
299 | } |
300 | |
301 | void RISCVInsertWriteVXRM::computeAnticipated(const MachineFunction &MF, const MachineBasicBlock &MBB) { |
302 | BlockData &BBInfo = BlockInfo[MBB.getNumber()]; |
303 | const RISCVSubtarget &ST = MF.getSubtarget<RISCVSubtarget>(); |
304 | |
305 | BBInfo.InQueue = false; |
306 | |
307 | VXRMInfo Anticipated; |
308 | if (MBB.succ_empty()) { |
309 | Anticipated.setUnknown(); |
310 | } else { |
311 | for (const MachineBasicBlock *S : MBB.successors()) |
312 | if (ST.hasVXRMPipelineFlush()) |
313 | Anticipated = |
314 | Anticipated.intersectAnticipated(Other: BlockInfo[S->getNumber()].AnticipatedIn); |
315 | else |
316 | Anticipated = |
317 | Anticipated.intersect(Other: BlockInfo[S->getNumber()].AnticipatedIn); |
318 | } |
319 | |
320 | // If we don't have any valid anticipated info, wait until we do. |
321 | if (!Anticipated.isValid()) |
322 | return; |
323 | |
324 | if (Anticipated != BBInfo.AnticipatedOut) { |
325 | BBInfo.AnticipatedOut = Anticipated; |
326 | LLVM_DEBUG(dbgs() << "AnticipatedOut state of " << printMBBReference(MBB) |
327 | << " changed to " << BBInfo.AnticipatedOut << "\n" ); |
328 | } |
329 | |
330 | // If this block reads VXRM, copy it. |
331 | if (BBInfo.VXRMUse.isValid()) |
332 | Anticipated = BBInfo.VXRMUse; |
333 | |
334 | if (Anticipated == BBInfo.AnticipatedIn) |
335 | return; |
336 | |
337 | BBInfo.AnticipatedIn = Anticipated; |
338 | LLVM_DEBUG(dbgs() << "AnticipatedIn state of " << printMBBReference(MBB) |
339 | << " changed to " << BBInfo.AnticipatedIn << "\n" ); |
340 | |
341 | // Add the predecessors to the work list so that we can propagate. |
342 | for (MachineBasicBlock *P : MBB.predecessors()) { |
343 | if (!BlockInfo[P->getNumber()].InQueue) { |
344 | BlockInfo[P->getNumber()].InQueue = true; |
345 | WorkList.push(x: P); |
346 | } |
347 | } |
348 | } |
349 | |
350 | void RISCVInsertWriteVXRM::emitWriteVXRM(MachineBasicBlock &MBB) { |
351 | const BlockData &BBInfo = BlockInfo[MBB.getNumber()]; |
352 | |
353 | VXRMInfo Info = BBInfo.AvailableIn; |
354 | |
355 | // Flag to indicates we need to insert a VXRM write. We want to delay it as |
356 | // late as possible in this block. |
357 | bool PendingInsert = false; |
358 | |
359 | // Insert VXRM write if anticipated and not available. |
360 | if (BBInfo.AnticipatedIn.isStatic()) { |
361 | // If this is the entry block and the value is anticipated, insert. |
362 | if (MBB.isEntryBlock()) { |
363 | PendingInsert = true; |
364 | } else { |
365 | // Search for any predecessors that wouldn't satisfy our requirement and |
366 | // insert a write VXRM if needed. |
367 | // NOTE: If one predecessor is able to provide the requirement, but |
368 | // another isn't, it means we have a critical edge. The better placement |
369 | // would be to split the critical edge. |
370 | for (MachineBasicBlock *P : MBB.predecessors()) { |
371 | const BlockData &PInfo = BlockInfo[P->getNumber()]; |
372 | // If it's available out of the predecessor, then we're ok. |
373 | if (PInfo.AvailableOut.isStatic() && |
374 | PInfo.AvailableOut.getVXRMImm() == |
375 | BBInfo.AnticipatedIn.getVXRMImm()) |
376 | continue; |
377 | // If the predecessor anticipates this value for all its successors, |
378 | // then a write to VXRM would have already occurred before this block is |
379 | // executed. |
380 | if (PInfo.AnticipatedOut.isStatic() && |
381 | PInfo.AnticipatedOut.getVXRMImm() == |
382 | BBInfo.AnticipatedIn.getVXRMImm()) |
383 | continue; |
384 | PendingInsert = true; |
385 | break; |
386 | } |
387 | } |
388 | |
389 | Info = BBInfo.AnticipatedIn; |
390 | } |
391 | |
392 | for (MachineInstr &MI : MBB) { |
393 | int VXRMIdx = RISCVII::getVXRMOpNum(Desc: MI.getDesc()); |
394 | if (VXRMIdx >= 0 && !RISCVInstrInfo::ignoresVXRM(MI)) { |
395 | unsigned NewVXRMImm = MI.getOperand(i: VXRMIdx).getImm(); |
396 | |
397 | if (PendingInsert || !Info.isStatic() || |
398 | Info.getVXRMImm() != NewVXRMImm) { |
399 | assert((!PendingInsert || |
400 | (Info.isStatic() && Info.getVXRMImm() == NewVXRMImm)) && |
401 | "Pending VXRM insertion mismatch" ); |
402 | LLVM_DEBUG(dbgs() << "Inserting before " ; MI.print(dbgs())); |
403 | BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: RISCV::WriteVXRMImm)) |
404 | .addImm(Val: NewVXRMImm); |
405 | PendingInsert = false; |
406 | } |
407 | |
408 | MI.addOperand(Op: MachineOperand::CreateReg(Reg: RISCV::VXRM, /*IsDef*/ isDef: false, |
409 | /*IsImp*/ isImp: true)); |
410 | Info.setVXRMImm(NewVXRMImm); |
411 | continue; |
412 | } |
413 | |
414 | if (MI.isCall() || MI.isInlineAsm() || |
415 | MI.modifiesRegister(Reg: RISCV::VXRM, /*TRI=*/nullptr)) |
416 | Info.setUnknown(); |
417 | } |
418 | |
419 | // If all our successors anticipate a value, do the insert. |
420 | // NOTE: It's possible that not all predecessors of our successor provide the |
421 | // correct value. This can occur on critical edges. If we don't split the |
422 | // critical edge we'll also have a write vxrm in the successor that is |
423 | // redundant with this one. |
424 | if (PendingInsert || |
425 | (BBInfo.AnticipatedOut.isStatic() && |
426 | (!Info.isStatic() || |
427 | Info.getVXRMImm() != BBInfo.AnticipatedOut.getVXRMImm()))) { |
428 | assert((!PendingInsert || |
429 | (Info.isStatic() && BBInfo.AnticipatedOut.isStatic() && |
430 | Info.getVXRMImm() == BBInfo.AnticipatedOut.getVXRMImm())) && |
431 | "Pending VXRM insertion mismatch" ); |
432 | LLVM_DEBUG(dbgs() << "Inserting at end of " << printMBBReference(MBB) |
433 | << " changing to " << BBInfo.AnticipatedOut << "\n" ); |
434 | BuildMI(BB&: MBB, I: MBB.getFirstTerminator(), MIMD: DebugLoc(), |
435 | MCID: TII->get(Opcode: RISCV::WriteVXRMImm)) |
436 | .addImm(Val: BBInfo.AnticipatedOut.getVXRMImm()); |
437 | } |
438 | } |
439 | |
440 | bool RISCVInsertWriteVXRM::runOnMachineFunction(MachineFunction &MF) { |
441 | // Skip if the vector extension is not enabled. |
442 | const RISCVSubtarget &ST = MF.getSubtarget<RISCVSubtarget>(); |
443 | if (!ST.hasVInstructions()) |
444 | return false; |
445 | |
446 | TII = ST.getInstrInfo(); |
447 | |
448 | assert(BlockInfo.empty() && "Expect empty block infos" ); |
449 | BlockInfo.resize(new_size: MF.getNumBlockIDs()); |
450 | |
451 | // Phase 1 - collect block information. |
452 | bool NeedVXRMChange = false; |
453 | for (const MachineBasicBlock &MBB : MF) |
454 | NeedVXRMChange |= computeVXRMChanges(MBB); |
455 | |
456 | if (!NeedVXRMChange) { |
457 | BlockInfo.clear(); |
458 | return false; |
459 | } |
460 | |
461 | // Phase 2 - Compute available VXRM using a forward walk. |
462 | for (const MachineBasicBlock &MBB : MF) { |
463 | WorkList.push(x: &MBB); |
464 | BlockInfo[MBB.getNumber()].InQueue = true; |
465 | } |
466 | while (!WorkList.empty()) { |
467 | const MachineBasicBlock &MBB = *WorkList.front(); |
468 | WorkList.pop(); |
469 | computeAvailable(MBB); |
470 | } |
471 | |
472 | // Phase 3 - Compute anticipated VXRM using a backwards walk. |
473 | for (const MachineBasicBlock &MBB : llvm::reverse(C&: MF)) { |
474 | WorkList.push(x: &MBB); |
475 | BlockInfo[MBB.getNumber()].InQueue = true; |
476 | } |
477 | while (!WorkList.empty()) { |
478 | const MachineBasicBlock &MBB = *WorkList.front(); |
479 | WorkList.pop(); |
480 | computeAnticipated(MF, MBB); |
481 | } |
482 | |
483 | // Phase 4 - Emit VXRM writes at the earliest place possible. |
484 | for (MachineBasicBlock &MBB : MF) |
485 | emitWriteVXRM(MBB); |
486 | |
487 | BlockInfo.clear(); |
488 | |
489 | return true; |
490 | } |
491 | |
492 | FunctionPass *llvm::createRISCVInsertWriteVXRMPass() { |
493 | return new RISCVInsertWriteVXRM(); |
494 | } |
495 | |