| 1 | //===-- RISCVInsertWriteVXRM.cpp - Insert Write of RISC-V VXRM CSR --------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass inserts writes to the VXRM CSR as needed by vector instructions. |
| 10 | // Each instruction that uses VXRM carries an operand that contains its required |
| 11 | // VXRM value. This pass tries to optimize placement to avoid redundant writes |
| 12 | // to VXRM. |
| 13 | // |
| 14 | // This is done using 2 dataflow algorithms. The first is a forward data flow |
| 15 | // to calculate where a VXRM value is available. The second is a backwards |
| 16 | // dataflow to determine where a VXRM value is anticipated. |
| 17 | // |
| 18 | // Finally, we use the results of these two dataflows to insert VXRM writes |
| 19 | // where a value is anticipated, but not available. |
| 20 | // |
| 21 | // FIXME: This pass does not split critical edges, so there can still be some |
| 22 | // redundancy. |
| 23 | // |
| 24 | // FIXME: If we are willing to have writes that aren't always needed, we could |
| 25 | // reduce the number of VXRM writes in some cases. |
| 26 | //===----------------------------------------------------------------------===// |
| 27 | |
| 28 | #include "MCTargetDesc/RISCVBaseInfo.h" |
| 29 | #include "RISCV.h" |
| 30 | #include "RISCVSubtarget.h" |
| 31 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 32 | #include <queue> |
| 33 | |
| 34 | using namespace llvm; |
| 35 | |
| 36 | #define DEBUG_TYPE "riscv-insert-write-vxrm" |
| 37 | #define RISCV_INSERT_WRITE_VXRM_NAME "RISC-V Insert Write VXRM Pass" |
| 38 | |
| 39 | namespace { |
| 40 | |
| 41 | class VXRMInfo { |
| 42 | uint8_t VXRMImm = 0; |
| 43 | |
| 44 | enum : uint8_t { |
| 45 | Uninitialized, |
| 46 | Static, |
| 47 | Unknown, |
| 48 | } State = Uninitialized; |
| 49 | |
| 50 | public: |
| 51 | VXRMInfo() {} |
| 52 | |
| 53 | static VXRMInfo getUnknown() { |
| 54 | VXRMInfo Info; |
| 55 | Info.setUnknown(); |
| 56 | return Info; |
| 57 | } |
| 58 | |
| 59 | bool isValid() const { return State != Uninitialized; } |
| 60 | void setUnknown() { State = Unknown; } |
| 61 | bool isUnknown() const { return State == Unknown; } |
| 62 | |
| 63 | bool isStatic() const { return State == Static; } |
| 64 | |
| 65 | void setVXRMImm(unsigned Imm) { |
| 66 | assert(Imm <= 3 && "Unexpected VXRM value" ); |
| 67 | VXRMImm = Imm; |
| 68 | State = Static; |
| 69 | } |
| 70 | unsigned getVXRMImm() const { |
| 71 | assert(isStatic() && VXRMImm <= 3 && "Unexpected state" ); |
| 72 | return VXRMImm; |
| 73 | } |
| 74 | |
| 75 | bool operator==(const VXRMInfo &Other) const { |
| 76 | // Uninitialized is only equal to another Uninitialized. |
| 77 | if (State != Other.State) |
| 78 | return false; |
| 79 | |
| 80 | if (isStatic()) |
| 81 | return VXRMImm == Other.VXRMImm; |
| 82 | |
| 83 | assert((isValid() || isUnknown()) && "Unexpected state" ); |
| 84 | return true; |
| 85 | } |
| 86 | |
| 87 | bool operator!=(const VXRMInfo &Other) const { return !(*this == Other); } |
| 88 | |
| 89 | // Calculate the VXRMInfo visible to a block assuming this and Other are |
| 90 | // both predecessors. |
| 91 | VXRMInfo intersect(const VXRMInfo &Other) const { |
| 92 | // If the new value isn't valid, ignore it. |
| 93 | if (!Other.isValid()) |
| 94 | return *this; |
| 95 | |
| 96 | // If this value isn't valid, this must be the first predecessor, use it. |
| 97 | if (!isValid()) |
| 98 | return Other; |
| 99 | |
| 100 | // If either is unknown, the result is unknown. |
| 101 | if (isUnknown() || Other.isUnknown()) |
| 102 | return VXRMInfo::getUnknown(); |
| 103 | |
| 104 | // If we have an exact match, return this. |
| 105 | if (*this == Other) |
| 106 | return *this; |
| 107 | |
| 108 | // Otherwise the result is unknown. |
| 109 | return VXRMInfo::getUnknown(); |
| 110 | } |
| 111 | |
| 112 | // Calculate the VXRMInfo visible to a block assuming this and Other |
| 113 | // are both predecessors. To allow speculatively running WriteVXRM |
| 114 | // we will ignore Unknowns if one of this and Other have valid |
| 115 | // WriteVXRM. Rationale: WriteVXRM causes a pipeline flush in some |
| 116 | // uarchs and moving it outside loops is very important for some |
| 117 | // workloads. |
| 118 | VXRMInfo intersectAnticipated(const VXRMInfo &Other) const { |
| 119 | // If the new value isn't valid, ignore it. |
| 120 | if (!Other.isValid()) |
| 121 | return *this; |
| 122 | |
| 123 | // If this value isn't valid, this must be the first predecessor, use it. |
| 124 | if (!isValid()) |
| 125 | return Other; |
| 126 | |
| 127 | // If either is unknown, the result is the other one. |
| 128 | if (isUnknown()) |
| 129 | return Other; |
| 130 | if (Other.isUnknown()) |
| 131 | return *this; |
| 132 | |
| 133 | // If we have an exact match, return this. |
| 134 | if (*this == Other) |
| 135 | return *this; |
| 136 | |
| 137 | // Otherwise the result is unknown. |
| 138 | return VXRMInfo::getUnknown(); |
| 139 | } |
| 140 | |
| 141 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 142 | /// Support for debugging, callable in GDB: V->dump() |
| 143 | LLVM_DUMP_METHOD void dump() const { |
| 144 | print(dbgs()); |
| 145 | dbgs() << "\n" ; |
| 146 | } |
| 147 | |
| 148 | void print(raw_ostream &OS) const { |
| 149 | OS << '{'; |
| 150 | if (!isValid()) |
| 151 | OS << "Uninitialized" ; |
| 152 | else if (isUnknown()) |
| 153 | OS << "Unknown" ; |
| 154 | else |
| 155 | OS << getVXRMImm(); |
| 156 | OS << '}'; |
| 157 | } |
| 158 | #endif |
| 159 | }; |
| 160 | |
| 161 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 162 | LLVM_ATTRIBUTE_USED |
| 163 | inline raw_ostream &operator<<(raw_ostream &OS, const VXRMInfo &V) { |
| 164 | V.print(OS); |
| 165 | return OS; |
| 166 | } |
| 167 | #endif |
| 168 | |
| 169 | struct BlockData { |
| 170 | // Indicates if the block uses VXRM. Uninitialized means no use. |
| 171 | VXRMInfo VXRMUse; |
| 172 | |
| 173 | // Indicates the VXRM output from the block. Uninitialized means transparent. |
| 174 | VXRMInfo VXRMOut; |
| 175 | |
| 176 | // Keeps track of the available VXRM value at the start of the basic block. |
| 177 | VXRMInfo AvailableIn; |
| 178 | |
| 179 | // Keeps track of the available VXRM value at the end of the basic block. |
| 180 | VXRMInfo AvailableOut; |
| 181 | |
| 182 | // Keeps track of what VXRM is anticipated at the start of the basic block. |
| 183 | VXRMInfo AnticipatedIn; |
| 184 | |
| 185 | // Keeps track of what VXRM is anticipated at the end of the basic block. |
| 186 | VXRMInfo AnticipatedOut; |
| 187 | |
| 188 | // Keeps track of whether the block is already in the queue. |
| 189 | bool InQueue; |
| 190 | |
| 191 | BlockData() = default; |
| 192 | }; |
| 193 | |
| 194 | class RISCVInsertWriteVXRM : public MachineFunctionPass { |
| 195 | const TargetInstrInfo *TII; |
| 196 | |
| 197 | std::vector<BlockData> BlockInfo; |
| 198 | std::queue<const MachineBasicBlock *> WorkList; |
| 199 | |
| 200 | public: |
| 201 | static char ID; |
| 202 | |
| 203 | RISCVInsertWriteVXRM() : MachineFunctionPass(ID) {} |
| 204 | |
| 205 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 206 | |
| 207 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 208 | AU.setPreservesCFG(); |
| 209 | MachineFunctionPass::getAnalysisUsage(AU); |
| 210 | } |
| 211 | |
| 212 | StringRef getPassName() const override { |
| 213 | return RISCV_INSERT_WRITE_VXRM_NAME; |
| 214 | } |
| 215 | |
| 216 | private: |
| 217 | bool computeVXRMChanges(const MachineBasicBlock &MBB); |
| 218 | void computeAvailable(const MachineBasicBlock &MBB); |
| 219 | void computeAnticipated(const MachineFunction &MF, const MachineBasicBlock &MBB); |
| 220 | void emitWriteVXRM(MachineBasicBlock &MBB); |
| 221 | }; |
| 222 | |
| 223 | } // end anonymous namespace |
| 224 | |
| 225 | char RISCVInsertWriteVXRM::ID = 0; |
| 226 | |
| 227 | INITIALIZE_PASS(RISCVInsertWriteVXRM, DEBUG_TYPE, RISCV_INSERT_WRITE_VXRM_NAME, |
| 228 | false, false) |
| 229 | |
| 230 | bool RISCVInsertWriteVXRM::computeVXRMChanges(const MachineBasicBlock &MBB) { |
| 231 | BlockData &BBInfo = BlockInfo[MBB.getNumber()]; |
| 232 | |
| 233 | bool NeedVXRMWrite = false; |
| 234 | for (const MachineInstr &MI : MBB) { |
| 235 | int VXRMIdx = RISCVII::getVXRMOpNum(Desc: MI.getDesc()); |
| 236 | if (VXRMIdx >= 0 && !RISCVInstrInfo::ignoresVXRM(MI)) { |
| 237 | unsigned NewVXRMImm = MI.getOperand(i: VXRMIdx).getImm(); |
| 238 | |
| 239 | if (!BBInfo.VXRMUse.isValid()) |
| 240 | BBInfo.VXRMUse.setVXRMImm(NewVXRMImm); |
| 241 | |
| 242 | BBInfo.VXRMOut.setVXRMImm(NewVXRMImm); |
| 243 | NeedVXRMWrite = true; |
| 244 | continue; |
| 245 | } |
| 246 | |
| 247 | if (MI.isCall() || MI.isInlineAsm() || |
| 248 | MI.modifiesRegister(Reg: RISCV::VXRM, /*TRI=*/nullptr)) { |
| 249 | if (!BBInfo.VXRMUse.isValid()) |
| 250 | BBInfo.VXRMUse.setUnknown(); |
| 251 | |
| 252 | BBInfo.VXRMOut.setUnknown(); |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | return NeedVXRMWrite; |
| 257 | } |
| 258 | |
| 259 | void RISCVInsertWriteVXRM::computeAvailable(const MachineBasicBlock &MBB) { |
| 260 | BlockData &BBInfo = BlockInfo[MBB.getNumber()]; |
| 261 | |
| 262 | BBInfo.InQueue = false; |
| 263 | |
| 264 | VXRMInfo Available; |
| 265 | if (MBB.pred_empty()) { |
| 266 | Available.setUnknown(); |
| 267 | } else { |
| 268 | for (const MachineBasicBlock *P : MBB.predecessors()) |
| 269 | Available = Available.intersect(Other: BlockInfo[P->getNumber()].AvailableOut); |
| 270 | } |
| 271 | |
| 272 | // If we don't have any valid available info, wait until we do. |
| 273 | if (!Available.isValid()) |
| 274 | return; |
| 275 | |
| 276 | if (Available != BBInfo.AvailableIn) { |
| 277 | BBInfo.AvailableIn = Available; |
| 278 | LLVM_DEBUG(dbgs() << "AvailableIn state of " << printMBBReference(MBB) |
| 279 | << " changed to " << BBInfo.AvailableIn << "\n" ); |
| 280 | } |
| 281 | |
| 282 | if (BBInfo.VXRMOut.isValid()) |
| 283 | Available = BBInfo.VXRMOut; |
| 284 | |
| 285 | if (Available == BBInfo.AvailableOut) |
| 286 | return; |
| 287 | |
| 288 | BBInfo.AvailableOut = Available; |
| 289 | LLVM_DEBUG(dbgs() << "AvailableOut state of " << printMBBReference(MBB) |
| 290 | << " changed to " << BBInfo.AvailableOut << "\n" ); |
| 291 | |
| 292 | // Add the successors to the work list so that we can propagate. |
| 293 | for (MachineBasicBlock *S : MBB.successors()) { |
| 294 | if (!BlockInfo[S->getNumber()].InQueue) { |
| 295 | BlockInfo[S->getNumber()].InQueue = true; |
| 296 | WorkList.push(x: S); |
| 297 | } |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | void RISCVInsertWriteVXRM::computeAnticipated(const MachineFunction &MF, const MachineBasicBlock &MBB) { |
| 302 | BlockData &BBInfo = BlockInfo[MBB.getNumber()]; |
| 303 | const RISCVSubtarget &ST = MF.getSubtarget<RISCVSubtarget>(); |
| 304 | |
| 305 | BBInfo.InQueue = false; |
| 306 | |
| 307 | VXRMInfo Anticipated; |
| 308 | if (MBB.succ_empty()) { |
| 309 | Anticipated.setUnknown(); |
| 310 | } else { |
| 311 | for (const MachineBasicBlock *S : MBB.successors()) |
| 312 | if (ST.hasVXRMPipelineFlush()) |
| 313 | Anticipated = |
| 314 | Anticipated.intersectAnticipated(Other: BlockInfo[S->getNumber()].AnticipatedIn); |
| 315 | else |
| 316 | Anticipated = |
| 317 | Anticipated.intersect(Other: BlockInfo[S->getNumber()].AnticipatedIn); |
| 318 | } |
| 319 | |
| 320 | // If we don't have any valid anticipated info, wait until we do. |
| 321 | if (!Anticipated.isValid()) |
| 322 | return; |
| 323 | |
| 324 | if (Anticipated != BBInfo.AnticipatedOut) { |
| 325 | BBInfo.AnticipatedOut = Anticipated; |
| 326 | LLVM_DEBUG(dbgs() << "AnticipatedOut state of " << printMBBReference(MBB) |
| 327 | << " changed to " << BBInfo.AnticipatedOut << "\n" ); |
| 328 | } |
| 329 | |
| 330 | // If this block reads VXRM, copy it. |
| 331 | if (BBInfo.VXRMUse.isValid()) |
| 332 | Anticipated = BBInfo.VXRMUse; |
| 333 | |
| 334 | if (Anticipated == BBInfo.AnticipatedIn) |
| 335 | return; |
| 336 | |
| 337 | BBInfo.AnticipatedIn = Anticipated; |
| 338 | LLVM_DEBUG(dbgs() << "AnticipatedIn state of " << printMBBReference(MBB) |
| 339 | << " changed to " << BBInfo.AnticipatedIn << "\n" ); |
| 340 | |
| 341 | // Add the predecessors to the work list so that we can propagate. |
| 342 | for (MachineBasicBlock *P : MBB.predecessors()) { |
| 343 | if (!BlockInfo[P->getNumber()].InQueue) { |
| 344 | BlockInfo[P->getNumber()].InQueue = true; |
| 345 | WorkList.push(x: P); |
| 346 | } |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | void RISCVInsertWriteVXRM::emitWriteVXRM(MachineBasicBlock &MBB) { |
| 351 | const BlockData &BBInfo = BlockInfo[MBB.getNumber()]; |
| 352 | |
| 353 | VXRMInfo Info = BBInfo.AvailableIn; |
| 354 | |
| 355 | // Flag to indicates we need to insert a VXRM write. We want to delay it as |
| 356 | // late as possible in this block. |
| 357 | bool PendingInsert = false; |
| 358 | |
| 359 | // Insert VXRM write if anticipated and not available. |
| 360 | if (BBInfo.AnticipatedIn.isStatic()) { |
| 361 | // If this is the entry block and the value is anticipated, insert. |
| 362 | if (MBB.isEntryBlock()) { |
| 363 | PendingInsert = true; |
| 364 | } else { |
| 365 | // Search for any predecessors that wouldn't satisfy our requirement and |
| 366 | // insert a write VXRM if needed. |
| 367 | // NOTE: If one predecessor is able to provide the requirement, but |
| 368 | // another isn't, it means we have a critical edge. The better placement |
| 369 | // would be to split the critical edge. |
| 370 | for (MachineBasicBlock *P : MBB.predecessors()) { |
| 371 | const BlockData &PInfo = BlockInfo[P->getNumber()]; |
| 372 | // If it's available out of the predecessor, then we're ok. |
| 373 | if (PInfo.AvailableOut.isStatic() && |
| 374 | PInfo.AvailableOut.getVXRMImm() == |
| 375 | BBInfo.AnticipatedIn.getVXRMImm()) |
| 376 | continue; |
| 377 | // If the predecessor anticipates this value for all its successors, |
| 378 | // then a write to VXRM would have already occurred before this block is |
| 379 | // executed. |
| 380 | if (PInfo.AnticipatedOut.isStatic() && |
| 381 | PInfo.AnticipatedOut.getVXRMImm() == |
| 382 | BBInfo.AnticipatedIn.getVXRMImm()) |
| 383 | continue; |
| 384 | PendingInsert = true; |
| 385 | break; |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | Info = BBInfo.AnticipatedIn; |
| 390 | } |
| 391 | |
| 392 | for (MachineInstr &MI : MBB) { |
| 393 | int VXRMIdx = RISCVII::getVXRMOpNum(Desc: MI.getDesc()); |
| 394 | if (VXRMIdx >= 0 && !RISCVInstrInfo::ignoresVXRM(MI)) { |
| 395 | unsigned NewVXRMImm = MI.getOperand(i: VXRMIdx).getImm(); |
| 396 | |
| 397 | if (PendingInsert || !Info.isStatic() || |
| 398 | Info.getVXRMImm() != NewVXRMImm) { |
| 399 | assert((!PendingInsert || |
| 400 | (Info.isStatic() && Info.getVXRMImm() == NewVXRMImm)) && |
| 401 | "Pending VXRM insertion mismatch" ); |
| 402 | LLVM_DEBUG(dbgs() << "Inserting before " ; MI.print(dbgs())); |
| 403 | BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: RISCV::WriteVXRMImm)) |
| 404 | .addImm(Val: NewVXRMImm); |
| 405 | PendingInsert = false; |
| 406 | } |
| 407 | |
| 408 | MI.addOperand(Op: MachineOperand::CreateReg(Reg: RISCV::VXRM, /*IsDef*/ isDef: false, |
| 409 | /*IsImp*/ isImp: true)); |
| 410 | Info.setVXRMImm(NewVXRMImm); |
| 411 | continue; |
| 412 | } |
| 413 | |
| 414 | if (MI.isCall() || MI.isInlineAsm() || |
| 415 | MI.modifiesRegister(Reg: RISCV::VXRM, /*TRI=*/nullptr)) |
| 416 | Info.setUnknown(); |
| 417 | } |
| 418 | |
| 419 | // If all our successors anticipate a value, do the insert. |
| 420 | // NOTE: It's possible that not all predecessors of our successor provide the |
| 421 | // correct value. This can occur on critical edges. If we don't split the |
| 422 | // critical edge we'll also have a write vxrm in the successor that is |
| 423 | // redundant with this one. |
| 424 | if (PendingInsert || |
| 425 | (BBInfo.AnticipatedOut.isStatic() && |
| 426 | (!Info.isStatic() || |
| 427 | Info.getVXRMImm() != BBInfo.AnticipatedOut.getVXRMImm()))) { |
| 428 | assert((!PendingInsert || |
| 429 | (Info.isStatic() && BBInfo.AnticipatedOut.isStatic() && |
| 430 | Info.getVXRMImm() == BBInfo.AnticipatedOut.getVXRMImm())) && |
| 431 | "Pending VXRM insertion mismatch" ); |
| 432 | LLVM_DEBUG(dbgs() << "Inserting at end of " << printMBBReference(MBB) |
| 433 | << " changing to " << BBInfo.AnticipatedOut << "\n" ); |
| 434 | BuildMI(BB&: MBB, I: MBB.getFirstTerminator(), MIMD: DebugLoc(), |
| 435 | MCID: TII->get(Opcode: RISCV::WriteVXRMImm)) |
| 436 | .addImm(Val: BBInfo.AnticipatedOut.getVXRMImm()); |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | bool RISCVInsertWriteVXRM::runOnMachineFunction(MachineFunction &MF) { |
| 441 | // Skip if the vector extension is not enabled. |
| 442 | const RISCVSubtarget &ST = MF.getSubtarget<RISCVSubtarget>(); |
| 443 | if (!ST.hasVInstructions()) |
| 444 | return false; |
| 445 | |
| 446 | TII = ST.getInstrInfo(); |
| 447 | |
| 448 | assert(BlockInfo.empty() && "Expect empty block infos" ); |
| 449 | BlockInfo.resize(new_size: MF.getNumBlockIDs()); |
| 450 | |
| 451 | // Phase 1 - collect block information. |
| 452 | bool NeedVXRMChange = false; |
| 453 | for (const MachineBasicBlock &MBB : MF) |
| 454 | NeedVXRMChange |= computeVXRMChanges(MBB); |
| 455 | |
| 456 | if (!NeedVXRMChange) { |
| 457 | BlockInfo.clear(); |
| 458 | return false; |
| 459 | } |
| 460 | |
| 461 | // Phase 2 - Compute available VXRM using a forward walk. |
| 462 | for (const MachineBasicBlock &MBB : MF) { |
| 463 | WorkList.push(x: &MBB); |
| 464 | BlockInfo[MBB.getNumber()].InQueue = true; |
| 465 | } |
| 466 | while (!WorkList.empty()) { |
| 467 | const MachineBasicBlock &MBB = *WorkList.front(); |
| 468 | WorkList.pop(); |
| 469 | computeAvailable(MBB); |
| 470 | } |
| 471 | |
| 472 | // Phase 3 - Compute anticipated VXRM using a backwards walk. |
| 473 | for (const MachineBasicBlock &MBB : llvm::reverse(C&: MF)) { |
| 474 | WorkList.push(x: &MBB); |
| 475 | BlockInfo[MBB.getNumber()].InQueue = true; |
| 476 | } |
| 477 | while (!WorkList.empty()) { |
| 478 | const MachineBasicBlock &MBB = *WorkList.front(); |
| 479 | WorkList.pop(); |
| 480 | computeAnticipated(MF, MBB); |
| 481 | } |
| 482 | |
| 483 | // Phase 4 - Emit VXRM writes at the earliest place possible. |
| 484 | for (MachineBasicBlock &MBB : MF) |
| 485 | emitWriteVXRM(MBB); |
| 486 | |
| 487 | BlockInfo.clear(); |
| 488 | |
| 489 | return true; |
| 490 | } |
| 491 | |
| 492 | FunctionPass *llvm::createRISCVInsertWriteVXRMPass() { |
| 493 | return new RISCVInsertWriteVXRM(); |
| 494 | } |
| 495 | |