1 | //===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the SampleProfileProber transformation. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/Transforms/IPO/SampleProfileProbe.h" |
14 | #include "llvm/ADT/Statistic.h" |
15 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
16 | #include "llvm/Analysis/EHUtils.h" |
17 | #include "llvm/Analysis/LoopInfo.h" |
18 | #include "llvm/IR/BasicBlock.h" |
19 | #include "llvm/IR/DebugInfoMetadata.h" |
20 | #include "llvm/IR/DiagnosticInfo.h" |
21 | #include "llvm/IR/IRBuilder.h" |
22 | #include "llvm/IR/Instruction.h" |
23 | #include "llvm/IR/IntrinsicInst.h" |
24 | #include "llvm/IR/MDBuilder.h" |
25 | #include "llvm/IR/Module.h" |
26 | #include "llvm/IR/PseudoProbe.h" |
27 | #include "llvm/ProfileData/SampleProf.h" |
28 | #include "llvm/Support/CRC.h" |
29 | #include "llvm/Support/CommandLine.h" |
30 | #include "llvm/Target/TargetMachine.h" |
31 | #include "llvm/Transforms/Utils/Instrumentation.h" |
32 | #include "llvm/Transforms/Utils/ModuleUtils.h" |
33 | #include <unordered_set> |
34 | #include <vector> |
35 | |
36 | using namespace llvm; |
37 | #define DEBUG_TYPE "pseudo-probe" |
38 | |
39 | STATISTIC(ArtificialDbgLine, |
40 | "Number of probes that have an artificial debug line" ); |
41 | |
42 | static cl::opt<bool> |
43 | VerifyPseudoProbe("verify-pseudo-probe" , cl::init(Val: false), cl::Hidden, |
44 | cl::desc("Do pseudo probe verification" )); |
45 | |
46 | static cl::list<std::string> VerifyPseudoProbeFuncList( |
47 | "verify-pseudo-probe-funcs" , cl::Hidden, |
48 | cl::desc("The option to specify the name of the functions to verify." )); |
49 | |
50 | static cl::opt<bool> |
51 | UpdatePseudoProbe("update-pseudo-probe" , cl::init(Val: true), cl::Hidden, |
52 | cl::desc("Update pseudo probe distribution factor" )); |
53 | |
54 | static uint64_t getCallStackHash(const DILocation *DIL) { |
55 | uint64_t Hash = 0; |
56 | const DILocation *InlinedAt = DIL ? DIL->getInlinedAt() : nullptr; |
57 | while (InlinedAt) { |
58 | Hash ^= MD5Hash(Str: std::to_string(val: InlinedAt->getLine())); |
59 | Hash ^= MD5Hash(Str: std::to_string(val: InlinedAt->getColumn())); |
60 | auto Name = InlinedAt->getSubprogramLinkageName(); |
61 | Hash ^= MD5Hash(Str: Name); |
62 | InlinedAt = InlinedAt->getInlinedAt(); |
63 | } |
64 | return Hash; |
65 | } |
66 | |
67 | static uint64_t computeCallStackHash(const Instruction &Inst) { |
68 | return getCallStackHash(DIL: Inst.getDebugLoc()); |
69 | } |
70 | |
71 | bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) { |
72 | // Skip function declaration. |
73 | if (F->isDeclaration()) |
74 | return false; |
75 | // Skip function that will not be emitted into object file. The prevailing |
76 | // defintion will be verified instead. |
77 | if (F->hasAvailableExternallyLinkage()) |
78 | return false; |
79 | // Do a name matching. |
80 | static std::unordered_set<std::string> VerifyFuncNames( |
81 | VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end()); |
82 | return VerifyFuncNames.empty() || VerifyFuncNames.count(x: F->getName().str()); |
83 | } |
84 | |
85 | void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) { |
86 | if (VerifyPseudoProbe) { |
87 | PIC.registerAfterPassCallback( |
88 | C: [this](StringRef P, Any IR, const PreservedAnalyses &) { |
89 | this->runAfterPass(PassID: P, IR); |
90 | }); |
91 | } |
92 | } |
93 | |
94 | // Callback to run after each transformation for the new pass manager. |
95 | void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) { |
96 | std::string Banner = |
97 | "\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n" ; |
98 | dbgs() << Banner; |
99 | if (const auto **M = llvm::any_cast<const Module *>(Value: &IR)) |
100 | runAfterPass(M: *M); |
101 | else if (const auto **F = llvm::any_cast<const Function *>(Value: &IR)) |
102 | runAfterPass(F: *F); |
103 | else if (const auto **C = llvm::any_cast<const LazyCallGraph::SCC *>(Value: &IR)) |
104 | runAfterPass(C: *C); |
105 | else if (const auto **L = llvm::any_cast<const Loop *>(Value: &IR)) |
106 | runAfterPass(L: *L); |
107 | else |
108 | llvm_unreachable("Unknown IR unit" ); |
109 | } |
110 | |
111 | void PseudoProbeVerifier::runAfterPass(const Module *M) { |
112 | for (const Function &F : *M) |
113 | runAfterPass(F: &F); |
114 | } |
115 | |
116 | void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) { |
117 | for (const LazyCallGraph::Node &N : *C) |
118 | runAfterPass(F: &N.getFunction()); |
119 | } |
120 | |
121 | void PseudoProbeVerifier::runAfterPass(const Function *F) { |
122 | if (!shouldVerifyFunction(F)) |
123 | return; |
124 | ProbeFactorMap ProbeFactors; |
125 | for (const auto &BB : *F) |
126 | collectProbeFactors(BB: &BB, ProbeFactors); |
127 | verifyProbeFactors(F, ProbeFactors); |
128 | } |
129 | |
130 | void PseudoProbeVerifier::runAfterPass(const Loop *L) { |
131 | const Function *F = L->getHeader()->getParent(); |
132 | runAfterPass(F); |
133 | } |
134 | |
135 | void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block, |
136 | ProbeFactorMap &ProbeFactors) { |
137 | for (const auto &I : *Block) { |
138 | if (std::optional<PseudoProbe> Probe = extractProbe(Inst: I)) { |
139 | uint64_t Hash = computeCallStackHash(Inst: I); |
140 | ProbeFactors[{Probe->Id, Hash}] += Probe->Factor; |
141 | } |
142 | } |
143 | } |
144 | |
145 | void PseudoProbeVerifier::verifyProbeFactors( |
146 | const Function *F, const ProbeFactorMap &ProbeFactors) { |
147 | bool BannerPrinted = false; |
148 | auto &PrevProbeFactors = FunctionProbeFactors[F->getName()]; |
149 | for (const auto &I : ProbeFactors) { |
150 | float CurProbeFactor = I.second; |
151 | auto [It, Inserted] = PrevProbeFactors.try_emplace(k: I.first); |
152 | if (!Inserted) { |
153 | float PrevProbeFactor = It->second; |
154 | if (std::abs(x: CurProbeFactor - PrevProbeFactor) > |
155 | DistributionFactorVariance) { |
156 | if (!BannerPrinted) { |
157 | dbgs() << "Function " << F->getName() << ":\n" ; |
158 | BannerPrinted = true; |
159 | } |
160 | dbgs() << "Probe " << I.first.first << "\tprevious factor " |
161 | << format(Fmt: "%0.2f" , Vals: PrevProbeFactor) << "\tcurrent factor " |
162 | << format(Fmt: "%0.2f" , Vals: CurProbeFactor) << "\n" ; |
163 | } |
164 | } |
165 | |
166 | // Update |
167 | It->second = I.second; |
168 | } |
169 | } |
170 | |
171 | SampleProfileProber::SampleProfileProber(Function &Func) : F(&Func) { |
172 | BlockProbeIds.clear(); |
173 | CallProbeIds.clear(); |
174 | LastProbeId = (uint32_t)PseudoProbeReservedId::Last; |
175 | |
176 | DenseSet<BasicBlock *> BlocksToIgnore; |
177 | DenseSet<BasicBlock *> BlocksAndCallsToIgnore; |
178 | computeBlocksToIgnore(BlocksToIgnore, BlocksAndCallsToIgnore); |
179 | |
180 | computeProbeId(BlocksToIgnore, BlocksAndCallsToIgnore); |
181 | computeCFGHash(BlocksToIgnore); |
182 | } |
183 | |
184 | // Two purposes to compute the blocks to ignore: |
185 | // 1. Reduce the IR size. |
186 | // 2. Make the instrumentation(checksum) stable. e.g. the frondend may |
187 | // generate unstable IR while optimizing nounwind attribute, some versions are |
188 | // optimized with the call-to-invoke conversion, while other versions do not. |
189 | // This discrepancy in probe ID could cause profile mismatching issues. |
190 | // Note that those ignored blocks are either cold blocks or new split blocks |
191 | // whose original blocks are instrumented, so it shouldn't degrade the profile |
192 | // quality. |
193 | void SampleProfileProber::computeBlocksToIgnore( |
194 | DenseSet<BasicBlock *> &BlocksToIgnore, |
195 | DenseSet<BasicBlock *> &BlocksAndCallsToIgnore) { |
196 | // Ignore the cold EH and unreachable blocks and calls. |
197 | computeEHOnlyBlocks(F&: *F, EHBlocks&: BlocksAndCallsToIgnore); |
198 | findUnreachableBlocks(BlocksToIgnore&: BlocksAndCallsToIgnore); |
199 | |
200 | BlocksToIgnore.insert_range(R&: BlocksAndCallsToIgnore); |
201 | |
202 | // Handle the call-to-invoke conversion case: make sure that the probe id and |
203 | // callsite id are consistent before and after the block split. For block |
204 | // probe, we only keep the head block probe id and ignore the block ids of the |
205 | // normal dests. For callsite probe, it's different to block probe, there is |
206 | // no additional callsite in the normal dests, so we don't ignore the |
207 | // callsites. |
208 | findInvokeNormalDests(InvokeNormalDests&: BlocksToIgnore); |
209 | } |
210 | |
211 | // Unreachable blocks and calls are always cold, ignore them. |
212 | void SampleProfileProber::findUnreachableBlocks( |
213 | DenseSet<BasicBlock *> &BlocksToIgnore) { |
214 | for (auto &BB : *F) { |
215 | if (&BB != &F->getEntryBlock() && pred_size(BB: &BB) == 0) |
216 | BlocksToIgnore.insert(V: &BB); |
217 | } |
218 | } |
219 | |
220 | // In call-to-invoke conversion, basic block can be split into multiple blocks, |
221 | // only instrument probe in the head block, ignore the normal dests. |
222 | void SampleProfileProber::findInvokeNormalDests( |
223 | DenseSet<BasicBlock *> &InvokeNormalDests) { |
224 | for (auto &BB : *F) { |
225 | auto *TI = BB.getTerminator(); |
226 | if (auto *II = dyn_cast<InvokeInst>(Val: TI)) { |
227 | auto *ND = II->getNormalDest(); |
228 | InvokeNormalDests.insert(V: ND); |
229 | |
230 | // The normal dest and the try/catch block are connected by an |
231 | // unconditional branch. |
232 | while (pred_size(BB: ND) == 1) { |
233 | auto *Pred = *pred_begin(BB: ND); |
234 | if (succ_size(BB: Pred) == 1) { |
235 | InvokeNormalDests.insert(V: Pred); |
236 | ND = Pred; |
237 | } else |
238 | break; |
239 | } |
240 | } |
241 | } |
242 | } |
243 | |
244 | // The call-to-invoke conversion splits the original block into a list of block, |
245 | // we need to compute the hash using the original block's successors to keep the |
246 | // CFG Hash consistent. For a given head block, we keep searching the |
247 | // succesor(normal dest or unconditional branch dest) to find the tail block, |
248 | // the tail block's successors are the original block's successors. |
249 | const Instruction *SampleProfileProber::getOriginalTerminator( |
250 | const BasicBlock *Head, const DenseSet<BasicBlock *> &BlocksToIgnore) { |
251 | auto *TI = Head->getTerminator(); |
252 | if (auto *II = dyn_cast<InvokeInst>(Val: TI)) { |
253 | return getOriginalTerminator(Head: II->getNormalDest(), BlocksToIgnore); |
254 | } else if (succ_size(BB: Head) == 1 && |
255 | BlocksToIgnore.contains(V: *succ_begin(BB: Head))) { |
256 | // Go to the unconditional branch dest. |
257 | return getOriginalTerminator(Head: *succ_begin(BB: Head), BlocksToIgnore); |
258 | } |
259 | return TI; |
260 | } |
261 | |
262 | // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index |
263 | // value of each BB in the CFG. The higher 32 bits record the number of edges |
264 | // preceded by the number of indirect calls. |
265 | // This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash(). |
266 | void SampleProfileProber::computeCFGHash( |
267 | const DenseSet<BasicBlock *> &BlocksToIgnore) { |
268 | std::vector<uint8_t> Indexes; |
269 | JamCRC JC; |
270 | for (auto &BB : *F) { |
271 | if (BlocksToIgnore.contains(V: &BB)) |
272 | continue; |
273 | |
274 | auto *TI = getOriginalTerminator(Head: &BB, BlocksToIgnore); |
275 | for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { |
276 | auto *Succ = TI->getSuccessor(Idx: I); |
277 | auto Index = getBlockId(BB: Succ); |
278 | // Ingore ignored-block(zero ID) to avoid unstable checksum. |
279 | if (Index == 0) |
280 | continue; |
281 | for (int J = 0; J < 4; J++) |
282 | Indexes.push_back(x: (uint8_t)(Index >> (J * 8))); |
283 | } |
284 | } |
285 | |
286 | JC.update(Data: Indexes); |
287 | |
288 | FunctionHash = (uint64_t)CallProbeIds.size() << 48 | |
289 | (uint64_t)Indexes.size() << 32 | JC.getCRC(); |
290 | // Reserve bit 60-63 for other information purpose. |
291 | FunctionHash &= 0x0FFFFFFFFFFFFFFF; |
292 | assert(FunctionHash && "Function checksum should not be zero" ); |
293 | LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName() |
294 | << ":\n" |
295 | << " CRC = " << JC.getCRC() << ", Edges = " |
296 | << Indexes.size() << ", ICSites = " << CallProbeIds.size() |
297 | << ", Hash = " << FunctionHash << "\n" ); |
298 | } |
299 | |
300 | void SampleProfileProber::computeProbeId( |
301 | const DenseSet<BasicBlock *> &BlocksToIgnore, |
302 | const DenseSet<BasicBlock *> &BlocksAndCallsToIgnore) { |
303 | LLVMContext &Ctx = F->getContext(); |
304 | Module *M = F->getParent(); |
305 | |
306 | for (auto &BB : *F) { |
307 | if (!BlocksToIgnore.contains(V: &BB)) |
308 | BlockProbeIds[&BB] = ++LastProbeId; |
309 | |
310 | if (BlocksAndCallsToIgnore.contains(V: &BB)) |
311 | continue; |
312 | for (auto &I : BB) { |
313 | if (!isa<CallBase>(Val: I) || isa<IntrinsicInst>(Val: &I)) |
314 | continue; |
315 | |
316 | // The current implementation uses the lower 16 bits of the discriminator |
317 | // so anything larger than 0xFFFF will be ignored. |
318 | if (LastProbeId >= 0xFFFF) { |
319 | std::string Msg = "Pseudo instrumentation incomplete for " + |
320 | std::string(F->getName()) + " because it's too large" ; |
321 | Ctx.diagnose( |
322 | DI: DiagnosticInfoSampleProfile(M->getName().data(), Msg, DS_Warning)); |
323 | return; |
324 | } |
325 | |
326 | CallProbeIds[&I] = ++LastProbeId; |
327 | } |
328 | } |
329 | } |
330 | |
331 | uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const { |
332 | auto I = BlockProbeIds.find(x: const_cast<BasicBlock *>(BB)); |
333 | return I == BlockProbeIds.end() ? 0 : I->second; |
334 | } |
335 | |
336 | uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const { |
337 | auto Iter = CallProbeIds.find(x: const_cast<Instruction *>(Call)); |
338 | return Iter == CallProbeIds.end() ? 0 : Iter->second; |
339 | } |
340 | |
341 | void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) { |
342 | Module *M = F.getParent(); |
343 | MDBuilder MDB(F.getContext()); |
344 | // Since the GUID from probe desc and inline stack are computed separately, we |
345 | // need to make sure their names are consistent, so here also use the name |
346 | // from debug info. |
347 | StringRef FName = F.getName(); |
348 | if (auto *SP = F.getSubprogram()) { |
349 | FName = SP->getLinkageName(); |
350 | if (FName.empty()) |
351 | FName = SP->getName(); |
352 | } |
353 | uint64_t Guid = Function::getGUIDAssumingExternalLinkage(GlobalName: FName); |
354 | |
355 | // Assign an artificial debug line to a probe that doesn't come with a real |
356 | // line. A probe not having a debug line will get an incomplete inline |
357 | // context. This will cause samples collected on the probe to be counted |
358 | // into the base profile instead of a context profile. The line number |
359 | // itself is not important though. |
360 | auto AssignDebugLoc = [&](Instruction *I) { |
361 | assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) && |
362 | "Expecting pseudo probe or call instructions" ); |
363 | if (!I->getDebugLoc()) { |
364 | if (auto *SP = F.getSubprogram()) { |
365 | auto DIL = DILocation::get(Context&: SP->getContext(), Line: 0, Column: 0, Scope: SP); |
366 | I->setDebugLoc(DIL); |
367 | ArtificialDbgLine++; |
368 | LLVM_DEBUG({ |
369 | dbgs() << "\nIn Function " << F.getName() |
370 | << " Probe gets an artificial debug line\n" ; |
371 | I->dump(); |
372 | }); |
373 | } |
374 | } |
375 | }; |
376 | |
377 | // Probe basic blocks. |
378 | for (auto &I : BlockProbeIds) { |
379 | BasicBlock *BB = I.first; |
380 | uint32_t Index = I.second; |
381 | // Insert a probe before an instruction with a valid debug line number which |
382 | // will be assigned to the probe. The line number will be used later to |
383 | // model the inline context when the probe is inlined into other functions. |
384 | // Debug instructions, phi nodes and lifetime markers do not have an valid |
385 | // line number. Real instructions generated by optimizations may not come |
386 | // with a line number either. |
387 | auto HasValidDbgLine = [](Instruction *J) { |
388 | return !isa<PHINode>(Val: J) && !J->isLifetimeStartOrEnd() && J->getDebugLoc(); |
389 | }; |
390 | |
391 | Instruction *J = &*BB->getFirstInsertionPt(); |
392 | while (J != BB->getTerminator() && !HasValidDbgLine(J)) { |
393 | J = J->getNextNode(); |
394 | } |
395 | |
396 | IRBuilder<> Builder(J); |
397 | assert(Builder.GetInsertPoint() != BB->end() && |
398 | "Cannot get the probing point" ); |
399 | Function *ProbeFn = |
400 | llvm::Intrinsic::getOrInsertDeclaration(M, id: Intrinsic::pseudoprobe); |
401 | Value *Args[] = {Builder.getInt64(C: Guid), Builder.getInt64(C: Index), |
402 | Builder.getInt32(C: 0), |
403 | Builder.getInt64(C: PseudoProbeFullDistributionFactor)}; |
404 | auto *Probe = Builder.CreateCall(Callee: ProbeFn, Args); |
405 | AssignDebugLoc(Probe); |
406 | // Reset the dwarf discriminator if the debug location comes with any. The |
407 | // discriminator field may be used by FS-AFDO later in the pipeline. |
408 | if (auto DIL = Probe->getDebugLoc()) { |
409 | if (DIL->getDiscriminator()) { |
410 | DIL = DIL->cloneWithDiscriminator(Discriminator: 0); |
411 | Probe->setDebugLoc(DIL); |
412 | } |
413 | } |
414 | } |
415 | |
416 | // Probe both direct calls and indirect calls. Direct calls are probed so that |
417 | // their probe ID can be used as an call site identifier to represent a |
418 | // calling context. |
419 | for (auto &I : CallProbeIds) { |
420 | auto *Call = I.first; |
421 | uint32_t Index = I.second; |
422 | uint32_t Type = cast<CallBase>(Val: Call)->getCalledFunction() |
423 | ? (uint32_t)PseudoProbeType::DirectCall |
424 | : (uint32_t)PseudoProbeType::IndirectCall; |
425 | AssignDebugLoc(Call); |
426 | if (auto DIL = Call->getDebugLoc()) { |
427 | // Levarge the 32-bit discriminator field of debug data to store the ID |
428 | // and type of a callsite probe. This gets rid of the dependency on |
429 | // plumbing a customized metadata through the codegen pipeline. |
430 | uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData( |
431 | Index, Type, Flags: 0, Factor: PseudoProbeDwarfDiscriminator::FullDistributionFactor, |
432 | DwarfBaseDiscriminator: DIL->getBaseDiscriminator()); |
433 | DIL = DIL->cloneWithDiscriminator(Discriminator: V); |
434 | Call->setDebugLoc(DIL); |
435 | } |
436 | } |
437 | |
438 | // Create module-level metadata that contains function info necessary to |
439 | // synthesize probe-based sample counts, which are |
440 | // - FunctionGUID |
441 | // - FunctionHash. |
442 | // - FunctionName |
443 | auto Hash = getFunctionHash(); |
444 | auto *MD = MDB.createPseudoProbeDesc(GUID: Guid, Hash, FName); |
445 | auto *NMD = M->getNamedMetadata(Name: PseudoProbeDescMetadataName); |
446 | assert(NMD && "llvm.pseudo_probe_desc should be pre-created" ); |
447 | NMD->addOperand(M: MD); |
448 | } |
449 | |
450 | PreservedAnalyses SampleProfileProbePass::run(Module &M, |
451 | ModuleAnalysisManager &AM) { |
452 | // Create the pseudo probe desc metadata beforehand. |
453 | // Note that modules with only data but no functions will require this to |
454 | // be set up so that they will be known as probed later. |
455 | M.getOrInsertNamedMetadata(Name: PseudoProbeDescMetadataName); |
456 | |
457 | for (auto &F : M) { |
458 | if (F.isDeclaration()) |
459 | continue; |
460 | SampleProfileProber ProbeManager(F); |
461 | ProbeManager.instrumentOneFunc(F, TM); |
462 | } |
463 | |
464 | return PreservedAnalyses::none(); |
465 | } |
466 | |
467 | void PseudoProbeUpdatePass::runOnFunction(Function &F, |
468 | FunctionAnalysisManager &FAM) { |
469 | BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(IR&: F); |
470 | auto BBProfileCount = [&BFI](BasicBlock *BB) { |
471 | return BFI.getBlockProfileCount(BB).value_or(u: 0); |
472 | }; |
473 | |
474 | // Collect the sum of execution weight for each probe. |
475 | ProbeFactorMap ProbeFactors; |
476 | for (auto &Block : F) { |
477 | for (auto &I : Block) { |
478 | if (std::optional<PseudoProbe> Probe = extractProbe(Inst: I)) { |
479 | uint64_t Hash = computeCallStackHash(Inst: I); |
480 | ProbeFactors[{Probe->Id, Hash}] += BBProfileCount(&Block); |
481 | } |
482 | } |
483 | } |
484 | |
485 | // Fix up over-counted probes. |
486 | for (auto &Block : F) { |
487 | for (auto &I : Block) { |
488 | if (std::optional<PseudoProbe> Probe = extractProbe(Inst: I)) { |
489 | uint64_t Hash = computeCallStackHash(Inst: I); |
490 | float Sum = ProbeFactors[{Probe->Id, Hash}]; |
491 | if (Sum != 0) |
492 | setProbeDistributionFactor(Inst&: I, Factor: BBProfileCount(&Block) / Sum); |
493 | } |
494 | } |
495 | } |
496 | } |
497 | |
498 | PreservedAnalyses PseudoProbeUpdatePass::run(Module &M, |
499 | ModuleAnalysisManager &AM) { |
500 | if (UpdatePseudoProbe) { |
501 | for (auto &F : M) { |
502 | if (F.isDeclaration()) |
503 | continue; |
504 | FunctionAnalysisManager &FAM = |
505 | AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
506 | runOnFunction(F, FAM); |
507 | } |
508 | } |
509 | return PreservedAnalyses::none(); |
510 | } |
511 | |