1 | //===- Reg2Mem.cpp - Convert registers to allocas -------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file demotes all registers to memory references. It is intended to be |
10 | // the inverse of PromoteMemoryToRegister. By converting to loads, the only |
11 | // values live across basic blocks are allocas and loads before phi nodes. |
12 | // It is intended that this should make CFG hacking much easier. |
13 | // To make later hacking easier, the entry block is split into two, such that |
14 | // all introduced allocas and nothing else are in the entry block. |
15 | // |
16 | //===----------------------------------------------------------------------===// |
17 | |
18 | #include "llvm/Transforms/Scalar/Reg2Mem.h" |
19 | #include "llvm/ADT/Statistic.h" |
20 | #include "llvm/Analysis/LoopInfo.h" |
21 | #include "llvm/IR/BasicBlock.h" |
22 | #include "llvm/IR/CFG.h" |
23 | #include "llvm/IR/Dominators.h" |
24 | #include "llvm/IR/Function.h" |
25 | #include "llvm/IR/InstIterator.h" |
26 | #include "llvm/IR/Instructions.h" |
27 | #include "llvm/IR/PassManager.h" |
28 | #include "llvm/InitializePasses.h" |
29 | #include "llvm/Transforms/Scalar.h" |
30 | #include "llvm/Transforms/Utils.h" |
31 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
32 | #include "llvm/Transforms/Utils/Local.h" |
33 | #include <list> |
34 | using namespace llvm; |
35 | |
36 | #define DEBUG_TYPE "reg2mem" |
37 | |
38 | STATISTIC(NumRegsDemoted, "Number of registers demoted" ); |
39 | STATISTIC(NumPhisDemoted, "Number of phi-nodes demoted" ); |
40 | |
41 | static bool valueEscapes(const Instruction &Inst) { |
42 | if (!Inst.getType()->isSized()) |
43 | return false; |
44 | |
45 | const BasicBlock *BB = Inst.getParent(); |
46 | for (const User *U : Inst.users()) { |
47 | const Instruction *UI = cast<Instruction>(Val: U); |
48 | if (UI->getParent() != BB || isa<PHINode>(Val: UI)) |
49 | return true; |
50 | } |
51 | return false; |
52 | } |
53 | |
54 | static bool runPass(Function &F) { |
55 | // Insert all new allocas into entry block. |
56 | BasicBlock *BBEntry = &F.getEntryBlock(); |
57 | assert(pred_empty(BBEntry) && |
58 | "Entry block to function must not have predecessors!" ); |
59 | |
60 | // Find first non-alloca instruction and create insertion point. This is |
61 | // safe if block is well-formed: it always have terminator, otherwise |
62 | // we'll get and assertion. |
63 | BasicBlock::iterator I = BBEntry->begin(); |
64 | while (isa<AllocaInst>(Val: I)) ++I; |
65 | |
66 | CastInst *AllocaInsertionPoint = new BitCastInst( |
67 | Constant::getNullValue(Ty: Type::getInt32Ty(C&: F.getContext())), |
68 | Type::getInt32Ty(C&: F.getContext()), "reg2mem alloca point" , I); |
69 | |
70 | // Find the escaped instructions. But don't create stack slots for |
71 | // allocas in entry block. |
72 | std::list<Instruction*> WorkList; |
73 | for (Instruction &I : instructions(F)) |
74 | if (!(isa<AllocaInst>(Val: I) && I.getParent() == BBEntry) && valueEscapes(Inst: I)) |
75 | WorkList.push_front(x: &I); |
76 | |
77 | // Demote escaped instructions |
78 | NumRegsDemoted += WorkList.size(); |
79 | for (Instruction *I : WorkList) |
80 | DemoteRegToStack(X&: *I, VolatileLoads: false, AllocaPoint: AllocaInsertionPoint->getIterator()); |
81 | |
82 | WorkList.clear(); |
83 | |
84 | // Find all phi's |
85 | for (BasicBlock &BB : F) |
86 | for (auto &Phi : BB.phis()) |
87 | WorkList.push_front(x: &Phi); |
88 | |
89 | // Demote phi nodes |
90 | NumPhisDemoted += WorkList.size(); |
91 | for (Instruction *I : WorkList) |
92 | DemotePHIToStack(P: cast<PHINode>(Val: I), AllocaPoint: AllocaInsertionPoint->getIterator()); |
93 | |
94 | return true; |
95 | } |
96 | |
97 | PreservedAnalyses RegToMemPass::run(Function &F, FunctionAnalysisManager &AM) { |
98 | auto *DT = &AM.getResult<DominatorTreeAnalysis>(IR&: F); |
99 | auto *LI = &AM.getResult<LoopAnalysis>(IR&: F); |
100 | unsigned N = SplitAllCriticalEdges(F, Options: CriticalEdgeSplittingOptions(DT, LI)); |
101 | bool Changed = runPass(F); |
102 | if (N == 0 && !Changed) |
103 | return PreservedAnalyses::all(); |
104 | PreservedAnalyses PA; |
105 | PA.preserve<DominatorTreeAnalysis>(); |
106 | PA.preserve<LoopAnalysis>(); |
107 | return PA; |
108 | } |
109 | |
110 | namespace llvm { |
111 | |
112 | void initializeRegToMemWrapperPassPass(PassRegistry &); |
113 | |
114 | class RegToMemWrapperPass : public FunctionPass { |
115 | public: |
116 | static char ID; |
117 | |
118 | RegToMemWrapperPass() : FunctionPass(ID) {} |
119 | |
120 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
121 | AU.setPreservesAll(); |
122 | |
123 | AU.addPreserved<DominatorTreeWrapperPass>(); |
124 | AU.addRequired<DominatorTreeWrapperPass>(); |
125 | |
126 | AU.addPreserved<LoopInfoWrapperPass>(); |
127 | AU.addRequired<LoopInfoWrapperPass>(); |
128 | } |
129 | |
130 | bool runOnFunction(Function &F) override { |
131 | DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
132 | LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
133 | |
134 | unsigned N = SplitAllCriticalEdges(F, Options: CriticalEdgeSplittingOptions(DT, LI)); |
135 | bool Changed = runPass(F); |
136 | return N != 0 || Changed; |
137 | } |
138 | }; |
139 | } // namespace llvm |
140 | |
141 | INITIALIZE_PASS_BEGIN(RegToMemWrapperPass, "reg2mem" , "" , true, true) |
142 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); |
143 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); |
144 | INITIALIZE_PASS_END(RegToMemWrapperPass, "reg2mem" , "" , true, true) |
145 | |
146 | char RegToMemWrapperPass::ID = 0; |
147 | |
148 | FunctionPass *llvm::createRegToMemWrapperPass() { |
149 | return new RegToMemWrapperPass(); |
150 | } |
151 | |