| 1 | //===-- Sink.cpp - Code Sinking -------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass moves instructions into successor blocks, when possible, so that |
| 10 | // they aren't executed on paths where their results aren't needed. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Transforms/Scalar/Sink.h" |
| 15 | #include "llvm/ADT/Statistic.h" |
| 16 | #include "llvm/Analysis/AliasAnalysis.h" |
| 17 | #include "llvm/Analysis/LoopInfo.h" |
| 18 | #include "llvm/IR/Dominators.h" |
| 19 | #include "llvm/InitializePasses.h" |
| 20 | #include "llvm/Support/Debug.h" |
| 21 | #include "llvm/Support/raw_ostream.h" |
| 22 | #include "llvm/Transforms/Scalar.h" |
| 23 | using namespace llvm; |
| 24 | |
| 25 | #define DEBUG_TYPE "sink" |
| 26 | |
| 27 | STATISTIC(NumSunk, "Number of instructions sunk" ); |
| 28 | STATISTIC(NumSinkIter, "Number of sinking iterations" ); |
| 29 | |
| 30 | static bool isSafeToMove(Instruction *Inst, AliasAnalysis &AA, |
| 31 | SmallPtrSetImpl<Instruction *> &Stores) { |
| 32 | |
| 33 | if (Inst->mayWriteToMemory()) { |
| 34 | Stores.insert(Ptr: Inst); |
| 35 | return false; |
| 36 | } |
| 37 | |
| 38 | // Don't sink static alloca instructions. CodeGen assumes allocas outside the |
| 39 | // entry block are dynamically sized stack objects. |
| 40 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val: Inst)) |
| 41 | if (AI->isStaticAlloca()) |
| 42 | return false; |
| 43 | |
| 44 | if (LoadInst *L = dyn_cast<LoadInst>(Val: Inst)) { |
| 45 | MemoryLocation Loc = MemoryLocation::get(LI: L); |
| 46 | for (Instruction *S : Stores) |
| 47 | if (isModSet(MRI: AA.getModRefInfo(I: S, OptLoc: Loc))) |
| 48 | return false; |
| 49 | } |
| 50 | |
| 51 | if (Inst->isTerminator() || isa<PHINode>(Val: Inst) || Inst->isEHPad() || |
| 52 | Inst->mayThrow() || !Inst->willReturn()) |
| 53 | return false; |
| 54 | |
| 55 | if (auto *Call = dyn_cast<CallBase>(Val: Inst)) { |
| 56 | // Convergent operations cannot be made control-dependent on additional |
| 57 | // values. |
| 58 | if (Call->isConvergent()) |
| 59 | return false; |
| 60 | |
| 61 | for (Instruction *S : Stores) |
| 62 | if (isModSet(MRI: AA.getModRefInfo(I: S, Call))) |
| 63 | return false; |
| 64 | } |
| 65 | |
| 66 | return true; |
| 67 | } |
| 68 | |
| 69 | /// IsAcceptableTarget - Return true if it is possible to sink the instruction |
| 70 | /// in the specified basic block. |
| 71 | static bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo, |
| 72 | DominatorTree &DT, LoopInfo &LI) { |
| 73 | assert(Inst && "Instruction to be sunk is null" ); |
| 74 | assert(SuccToSinkTo && "Candidate sink target is null" ); |
| 75 | |
| 76 | // It's never legal to sink an instruction into an EH-pad block. |
| 77 | if (SuccToSinkTo->isEHPad()) |
| 78 | return false; |
| 79 | |
| 80 | // If the block has multiple predecessors, this would introduce computation |
| 81 | // on different code paths. We could split the critical edge, but for now we |
| 82 | // just punt. |
| 83 | // FIXME: Split critical edges if not backedges. |
| 84 | if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) { |
| 85 | // We cannot sink a load across a critical edge - there may be stores in |
| 86 | // other code paths. |
| 87 | if (Inst->mayReadFromMemory() && |
| 88 | !Inst->hasMetadata(KindID: LLVMContext::MD_invariant_load)) |
| 89 | return false; |
| 90 | |
| 91 | // Don't sink instructions into a loop. |
| 92 | Loop *succ = LI.getLoopFor(BB: SuccToSinkTo); |
| 93 | Loop *cur = LI.getLoopFor(BB: Inst->getParent()); |
| 94 | if (succ != nullptr && succ != cur) |
| 95 | return false; |
| 96 | } |
| 97 | |
| 98 | return true; |
| 99 | } |
| 100 | |
| 101 | /// SinkInstruction - Determine whether it is safe to sink the specified machine |
| 102 | /// instruction out of its current block into a successor. |
| 103 | static bool SinkInstruction(Instruction *Inst, |
| 104 | SmallPtrSetImpl<Instruction *> &Stores, |
| 105 | DominatorTree &DT, LoopInfo &LI, AAResults &AA) { |
| 106 | |
| 107 | // Check if it's safe to move the instruction. |
| 108 | if (!isSafeToMove(Inst, AA, Stores)) |
| 109 | return false; |
| 110 | |
| 111 | // FIXME: This should include support for sinking instructions within the |
| 112 | // block they are currently in to shorten the live ranges. We often get |
| 113 | // instructions sunk into the top of a large block, but it would be better to |
| 114 | // also sink them down before their first use in the block. This xform has to |
| 115 | // be careful not to *increase* register pressure though, e.g. sinking |
| 116 | // "x = y + z" down if it kills y and z would increase the live ranges of y |
| 117 | // and z and only shrink the live range of x. |
| 118 | |
| 119 | // SuccToSinkTo - This is the successor to sink this instruction to, once we |
| 120 | // decide. |
| 121 | BasicBlock *SuccToSinkTo = nullptr; |
| 122 | |
| 123 | // Find the nearest common dominator of all users as the candidate. |
| 124 | BasicBlock *BB = Inst->getParent(); |
| 125 | for (Use &U : Inst->uses()) { |
| 126 | Instruction *UseInst = cast<Instruction>(Val: U.getUser()); |
| 127 | BasicBlock *UseBlock = UseInst->getParent(); |
| 128 | if (PHINode *PN = dyn_cast<PHINode>(Val: UseInst)) { |
| 129 | // PHI nodes use the operand in the predecessor block, not the block with |
| 130 | // the PHI. |
| 131 | unsigned Num = PHINode::getIncomingValueNumForOperand(i: U.getOperandNo()); |
| 132 | UseBlock = PN->getIncomingBlock(i: Num); |
| 133 | } |
| 134 | // Don't worry about dead users. |
| 135 | if (!DT.isReachableFromEntry(A: UseBlock)) |
| 136 | continue; |
| 137 | |
| 138 | if (SuccToSinkTo) |
| 139 | SuccToSinkTo = DT.findNearestCommonDominator(A: SuccToSinkTo, B: UseBlock); |
| 140 | else |
| 141 | SuccToSinkTo = UseBlock; |
| 142 | } |
| 143 | |
| 144 | if (SuccToSinkTo) { |
| 145 | // The nearest common dominator may be in a parent loop of BB, which may not |
| 146 | // be beneficial. Find an ancestor. |
| 147 | while (SuccToSinkTo != BB && |
| 148 | !IsAcceptableTarget(Inst, SuccToSinkTo, DT, LI)) |
| 149 | SuccToSinkTo = DT.getNode(BB: SuccToSinkTo)->getIDom()->getBlock(); |
| 150 | if (SuccToSinkTo == BB) |
| 151 | SuccToSinkTo = nullptr; |
| 152 | } |
| 153 | |
| 154 | // If we couldn't find a block to sink to, ignore this instruction. |
| 155 | if (!SuccToSinkTo) |
| 156 | return false; |
| 157 | |
| 158 | LLVM_DEBUG(dbgs() << "Sink" << *Inst << " (" ; |
| 159 | Inst->getParent()->printAsOperand(dbgs(), false); dbgs() << " -> " ; |
| 160 | SuccToSinkTo->printAsOperand(dbgs(), false); dbgs() << ")\n" ); |
| 161 | |
| 162 | // The current location of Inst dominates all uses, thus it must dominate |
| 163 | // SuccToSinkTo, which is on the IDom chain between the nearest common |
| 164 | // dominator to all uses and the current location. |
| 165 | assert(DT.dominates(BB, SuccToSinkTo) && |
| 166 | "SuccToSinkTo must be dominated by current Inst location!" ); |
| 167 | |
| 168 | // Move the instruction. |
| 169 | Inst->moveBefore(InsertPos: SuccToSinkTo->getFirstInsertionPt()); |
| 170 | return true; |
| 171 | } |
| 172 | |
| 173 | static bool ProcessBlock(BasicBlock &BB, DominatorTree &DT, LoopInfo &LI, |
| 174 | AAResults &AA) { |
| 175 | // Don't bother sinking code out of unreachable blocks. In addition to being |
| 176 | // unprofitable, it can also lead to infinite looping, because in an |
| 177 | // unreachable loop there may be nowhere to stop. |
| 178 | if (!DT.isReachableFromEntry(A: &BB)) return false; |
| 179 | |
| 180 | bool MadeChange = false; |
| 181 | |
| 182 | // Walk the basic block bottom-up. Remember if we saw a store. |
| 183 | BasicBlock::iterator I = BB.end(); |
| 184 | --I; |
| 185 | bool ProcessedBegin = false; |
| 186 | SmallPtrSet<Instruction *, 8> Stores; |
| 187 | do { |
| 188 | Instruction *Inst = &*I; // The instruction to sink. |
| 189 | |
| 190 | // Predecrement I (if it's not begin) so that it isn't invalidated by |
| 191 | // sinking. |
| 192 | ProcessedBegin = I == BB.begin(); |
| 193 | if (!ProcessedBegin) |
| 194 | --I; |
| 195 | |
| 196 | if (Inst->isDebugOrPseudoInst()) |
| 197 | continue; |
| 198 | |
| 199 | if (SinkInstruction(Inst, Stores, DT, LI, AA)) { |
| 200 | ++NumSunk; |
| 201 | MadeChange = true; |
| 202 | } |
| 203 | |
| 204 | // If we just processed the first instruction in the block, we're done. |
| 205 | } while (!ProcessedBegin); |
| 206 | |
| 207 | return MadeChange; |
| 208 | } |
| 209 | |
| 210 | static bool iterativelySinkInstructions(Function &F, DominatorTree &DT, |
| 211 | LoopInfo &LI, AAResults &AA) { |
| 212 | bool MadeChange, EverMadeChange = false; |
| 213 | |
| 214 | do { |
| 215 | MadeChange = false; |
| 216 | LLVM_DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n" ); |
| 217 | // Process all basic blocks. |
| 218 | for (BasicBlock &I : F) |
| 219 | MadeChange |= ProcessBlock(BB&: I, DT, LI, AA); |
| 220 | EverMadeChange |= MadeChange; |
| 221 | NumSinkIter++; |
| 222 | } while (MadeChange); |
| 223 | |
| 224 | return EverMadeChange; |
| 225 | } |
| 226 | |
| 227 | PreservedAnalyses SinkingPass::run(Function &F, FunctionAnalysisManager &AM) { |
| 228 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 229 | auto &LI = AM.getResult<LoopAnalysis>(IR&: F); |
| 230 | auto &AA = AM.getResult<AAManager>(IR&: F); |
| 231 | |
| 232 | if (!iterativelySinkInstructions(F, DT, LI, AA)) |
| 233 | return PreservedAnalyses::all(); |
| 234 | |
| 235 | PreservedAnalyses PA; |
| 236 | PA.preserveSet<CFGAnalyses>(); |
| 237 | return PA; |
| 238 | } |
| 239 | |
| 240 | namespace { |
| 241 | class SinkingLegacyPass : public FunctionPass { |
| 242 | public: |
| 243 | static char ID; // Pass identification |
| 244 | SinkingLegacyPass() : FunctionPass(ID) { |
| 245 | initializeSinkingLegacyPassPass(*PassRegistry::getPassRegistry()); |
| 246 | } |
| 247 | |
| 248 | bool runOnFunction(Function &F) override { |
| 249 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 250 | auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| 251 | auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| 252 | |
| 253 | return iterativelySinkInstructions(F, DT, LI, AA); |
| 254 | } |
| 255 | |
| 256 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 257 | AU.setPreservesCFG(); |
| 258 | FunctionPass::getAnalysisUsage(AU); |
| 259 | AU.addRequired<AAResultsWrapperPass>(); |
| 260 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 261 | AU.addRequired<LoopInfoWrapperPass>(); |
| 262 | AU.addPreserved<DominatorTreeWrapperPass>(); |
| 263 | AU.addPreserved<LoopInfoWrapperPass>(); |
| 264 | } |
| 265 | }; |
| 266 | } // end anonymous namespace |
| 267 | |
| 268 | char SinkingLegacyPass::ID = 0; |
| 269 | INITIALIZE_PASS_BEGIN(SinkingLegacyPass, "sink" , "Code sinking" , false, false) |
| 270 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| 271 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 272 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| 273 | INITIALIZE_PASS_END(SinkingLegacyPass, "sink" , "Code sinking" , false, false) |
| 274 | |
| 275 | FunctionPass *llvm::createSinkingPass() { return new SinkingLegacyPass(); } |
| 276 | |