1 | //===-- SnippetGenerator.cpp ------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include <string> |
10 | |
11 | #include "Assembler.h" |
12 | #include "Error.h" |
13 | #include "MCInstrDescView.h" |
14 | #include "SnippetGenerator.h" |
15 | #include "Target.h" |
16 | #include "llvm/ADT/StringExtras.h" |
17 | #include "llvm/ADT/StringRef.h" |
18 | #include "llvm/ADT/Twine.h" |
19 | #include "llvm/Support/Error.h" |
20 | #include "llvm/Support/FileSystem.h" |
21 | #include "llvm/Support/FormatVariadic.h" |
22 | #include "llvm/Support/Program.h" |
23 | |
24 | namespace llvm { |
25 | namespace exegesis { |
26 | |
27 | std::vector<CodeTemplate> getSingleton(CodeTemplate &&CT) { |
28 | std::vector<CodeTemplate> Result; |
29 | Result.push_back(x: std::move(CT)); |
30 | return Result; |
31 | } |
32 | |
33 | SnippetGeneratorFailure::SnippetGeneratorFailure(const Twine &S) |
34 | : StringError(S, inconvertibleErrorCode()) {} |
35 | |
36 | SnippetGenerator::SnippetGenerator(const LLVMState &State, const Options &Opts) |
37 | : State(State), Opts(Opts) {} |
38 | |
39 | SnippetGenerator::~SnippetGenerator() = default; |
40 | |
41 | Error SnippetGenerator::generateConfigurations( |
42 | const InstructionTemplate &Variant, std::vector<BenchmarkCode> &Benchmarks, |
43 | const BitVector &) const { |
44 | BitVector ForbiddenRegs = State.getRATC().reservedRegisters(); |
45 | ForbiddenRegs |= ExtraForbiddenRegs; |
46 | // If the instruction has memory registers, prevent the generator from |
47 | // using the scratch register and its aliasing registers. |
48 | if (Variant.getInstr().hasMemoryOperands()) { |
49 | const auto &ET = State.getExegesisTarget(); |
50 | MCRegister ScratchSpacePointerInReg = |
51 | ET.getScratchMemoryRegister(State.getTargetMachine().getTargetTriple()); |
52 | if (!ScratchSpacePointerInReg.isValid()) |
53 | return make_error<Failure>( |
54 | Args: "Infeasible : target does not support memory instructions" ); |
55 | const auto &ScratchRegAliases = |
56 | State.getRATC().getRegister(Reg: ScratchSpacePointerInReg).aliasedBits(); |
57 | // If the instruction implicitly writes to ScratchSpacePointerInReg , abort. |
58 | // FIXME: We could make a copy of the scratch register. |
59 | for (const auto &Op : Variant.getInstr().Operands) { |
60 | if (Op.isDef() && Op.isImplicitReg() && |
61 | ScratchRegAliases.test(Idx: Op.getImplicitReg().id())) |
62 | return make_error<Failure>( |
63 | Args: "Infeasible : memory instruction uses scratch memory register" ); |
64 | } |
65 | ForbiddenRegs |= ScratchRegAliases; |
66 | } |
67 | |
68 | if (auto E = generateCodeTemplates(Variant, ForbiddenRegisters: ForbiddenRegs)) { |
69 | MutableArrayRef<CodeTemplate> Templates = E.get(); |
70 | |
71 | // Avoid reallocations in the loop. |
72 | Benchmarks.reserve(n: Benchmarks.size() + Templates.size()); |
73 | for (CodeTemplate &CT : Templates) { |
74 | // TODO: Generate as many BenchmarkCode as needed. |
75 | { |
76 | CT.ScratchSpacePointerInReg = |
77 | State.getExegesisTarget().getScratchMemoryRegister( |
78 | State.getTargetMachine().getTargetTriple()); |
79 | BenchmarkCode BC; |
80 | BC.Info = CT.Info; |
81 | BC.Key.Instructions.reserve(n: CT.Instructions.size()); |
82 | for (InstructionTemplate &IT : CT.Instructions) { |
83 | if (auto Error = randomizeUnsetVariables(State, ForbiddenRegs, IT)) |
84 | return Error; |
85 | MCInst Inst = IT.build(); |
86 | if (auto Error = validateGeneratedInstruction(State, Inst)) |
87 | return Error; |
88 | BC.Key.Instructions.push_back(x: Inst); |
89 | } |
90 | if (CT.ScratchSpacePointerInReg) |
91 | BC.LiveIns.push_back(x: CT.ScratchSpacePointerInReg); |
92 | BC.Key.RegisterInitialValues = |
93 | computeRegisterInitialValues(Snippet: CT.Instructions); |
94 | BC.Key.Config = CT.Config; |
95 | Benchmarks.emplace_back(args: std::move(BC)); |
96 | if (Benchmarks.size() >= Opts.MaxConfigsPerOpcode) { |
97 | // We reached the number of allowed configs and return early. |
98 | return Error::success(); |
99 | } |
100 | } |
101 | } |
102 | return Error::success(); |
103 | } else |
104 | return E.takeError(); |
105 | } |
106 | |
107 | std::vector<RegisterValue> SnippetGenerator::computeRegisterInitialValues( |
108 | const std::vector<InstructionTemplate> &Instructions) const { |
109 | // Collect all register uses and create an assignment for each of them. |
110 | // Ignore memory operands which are handled separately. |
111 | // Loop invariant: DefinedRegs[i] is true iif it has been set at least once |
112 | // before the current instruction. |
113 | BitVector DefinedRegs = State.getRATC().emptyRegisters(); |
114 | // If target always expects a scratch memory register as live input, |
115 | // mark it as defined. |
116 | const ExegesisTarget &Target = State.getExegesisTarget(); |
117 | MCRegister ScratchMemoryReg = Target.getScratchMemoryRegister( |
118 | State.getTargetMachine().getTargetTriple()); |
119 | DefinedRegs.set(ScratchMemoryReg.id()); |
120 | std::vector<RegisterValue> RIV; |
121 | for (const InstructionTemplate &IT : Instructions) { |
122 | // Returns the register that this Operand sets or uses, or 0 if this is not |
123 | // a register. |
124 | const auto GetOpReg = [&IT](const Operand &Op) -> MCRegister { |
125 | if (Op.isMemory()) |
126 | return MCRegister(); |
127 | if (Op.isImplicitReg()) |
128 | return Op.getImplicitReg(); |
129 | if (Op.isExplicit() && IT.getValueFor(Op).isReg()) |
130 | return IT.getValueFor(Op).getReg(); |
131 | return MCRegister(); |
132 | }; |
133 | // Collect used registers that have never been def'ed. |
134 | for (const Operand &Op : IT.getInstr().Operands) { |
135 | if (Op.isUse()) { |
136 | const MCRegister Reg = GetOpReg(Op); |
137 | if (Reg && !DefinedRegs.test(Idx: Reg.id())) { |
138 | RIV.push_back(x: RegisterValue::zero(Reg)); |
139 | DefinedRegs.set(Reg.id()); |
140 | } |
141 | } |
142 | } |
143 | // Mark defs as having been def'ed. |
144 | for (const Operand &Op : IT.getInstr().Operands) { |
145 | if (Op.isDef()) { |
146 | const MCRegister Reg = GetOpReg(Op); |
147 | if (Reg) |
148 | DefinedRegs.set(Reg.id()); |
149 | } |
150 | } |
151 | } |
152 | return RIV; |
153 | } |
154 | |
155 | Expected<std::vector<CodeTemplate>> |
156 | generateSelfAliasingCodeTemplates(InstructionTemplate Variant, |
157 | const BitVector &ForbiddenRegisters) { |
158 | const AliasingConfigurations SelfAliasing( |
159 | Variant.getInstr(), Variant.getInstr(), ForbiddenRegisters); |
160 | if (SelfAliasing.empty()) |
161 | return make_error<SnippetGeneratorFailure>(Args: "empty self aliasing" ); |
162 | std::vector<CodeTemplate> Result; |
163 | Result.emplace_back(); |
164 | CodeTemplate &CT = Result.back(); |
165 | if (SelfAliasing.hasImplicitAliasing()) { |
166 | CT.Info = "implicit Self cycles, picking random values." ; |
167 | } else { |
168 | CT.Info = "explicit self cycles, selecting one aliasing Conf." ; |
169 | // This is a self aliasing instruction so defs and uses are from the same |
170 | // instance, hence twice Variant in the following call. |
171 | setRandomAliasing(AliasingConfigurations: SelfAliasing, DefIB&: Variant, UseIB&: Variant); |
172 | } |
173 | CT.Instructions.push_back(x: std::move(Variant)); |
174 | return std::move(Result); |
175 | } |
176 | |
177 | Expected<std::vector<CodeTemplate>> |
178 | generateUnconstrainedCodeTemplates(const InstructionTemplate &Variant, |
179 | StringRef Msg) { |
180 | std::vector<CodeTemplate> Result; |
181 | Result.emplace_back(); |
182 | CodeTemplate &CT = Result.back(); |
183 | CT.Info = |
184 | std::string(formatv(Fmt: "{0}, repeating an unconstrained assignment" , Vals&: Msg)); |
185 | CT.Instructions.push_back(x: std::move(Variant)); |
186 | return std::move(Result); |
187 | } |
188 | |
189 | std::mt19937 &randomGenerator() { |
190 | static std::random_device RandomDevice; |
191 | static std::mt19937 RandomGenerator(RandomDevice()); |
192 | return RandomGenerator; |
193 | } |
194 | |
195 | size_t randomIndex(size_t Max) { |
196 | std::uniform_int_distribution<> Distribution(0, Max); |
197 | return Distribution(randomGenerator()); |
198 | } |
199 | |
200 | template <typename C> static decltype(auto) randomElement(const C &Container) { |
201 | assert(!Container.empty() && |
202 | "Can't pick a random element from an empty container)" ); |
203 | return Container[randomIndex(Container.size() - 1)]; |
204 | } |
205 | |
206 | static void setRegisterOperandValue(const RegisterOperandAssignment &ROV, |
207 | InstructionTemplate &IB) { |
208 | assert(ROV.Op); |
209 | if (ROV.Op->isExplicit()) { |
210 | auto &AssignedValue = IB.getValueFor(Op: *ROV.Op); |
211 | if (AssignedValue.isValid()) { |
212 | // TODO don't re-assign register operands which are already "locked" |
213 | // by Target in corresponding InstructionTemplate |
214 | return; |
215 | } |
216 | AssignedValue = MCOperand::createReg(Reg: ROV.Reg); |
217 | } else { |
218 | assert(ROV.Op->isImplicitReg()); |
219 | assert(ROV.Reg == ROV.Op->getImplicitReg()); |
220 | } |
221 | } |
222 | |
223 | size_t randomBit(const BitVector &Vector) { |
224 | assert(Vector.any()); |
225 | auto Itr = Vector.set_bits_begin(); |
226 | for (size_t I = randomIndex(Max: Vector.count() - 1); I != 0; --I) |
227 | ++Itr; |
228 | return *Itr; |
229 | } |
230 | |
231 | std::optional<int> getFirstCommonBit(const BitVector &A, const BitVector &B) { |
232 | BitVector Intersect = A; |
233 | Intersect &= B; |
234 | int idx = Intersect.find_first(); |
235 | if (idx != -1) |
236 | return idx; |
237 | return {}; |
238 | } |
239 | |
240 | void setRandomAliasing(const AliasingConfigurations &AliasingConfigurations, |
241 | InstructionTemplate &DefIB, InstructionTemplate &UseIB) { |
242 | assert(!AliasingConfigurations.empty()); |
243 | assert(!AliasingConfigurations.hasImplicitAliasing()); |
244 | const auto &RandomConf = randomElement(Container: AliasingConfigurations.Configurations); |
245 | setRegisterOperandValue(ROV: randomElement(Container: RandomConf.Defs), IB&: DefIB); |
246 | setRegisterOperandValue(ROV: randomElement(Container: RandomConf.Uses), IB&: UseIB); |
247 | } |
248 | |
249 | static Error randomizeMCOperand(const LLVMState &State, |
250 | const Instruction &Instr, const Variable &Var, |
251 | MCOperand &AssignedValue, |
252 | const BitVector &ForbiddenRegs) { |
253 | const Operand &Op = Instr.getPrimaryOperand(Var); |
254 | if (Op.getExplicitOperandInfo().OperandType >= |
255 | MCOI::OperandType::OPERAND_FIRST_TARGET) |
256 | return State.getExegesisTarget().randomizeTargetMCOperand( |
257 | Instr, Var, AssignedValue, ForbiddenRegs); |
258 | switch (Op.getExplicitOperandInfo().OperandType) { |
259 | case MCOI::OperandType::OPERAND_IMMEDIATE: |
260 | // FIXME: explore immediate values too. |
261 | AssignedValue = MCOperand::createImm(Val: 1); |
262 | break; |
263 | case MCOI::OperandType::OPERAND_REGISTER: { |
264 | assert(Op.isReg()); |
265 | auto AllowedRegs = Op.getRegisterAliasing().sourceBits(); |
266 | assert(AllowedRegs.size() == ForbiddenRegs.size()); |
267 | for (auto I : ForbiddenRegs.set_bits()) |
268 | AllowedRegs.reset(Idx: I); |
269 | if (!AllowedRegs.any()) |
270 | return make_error<Failure>( |
271 | Args: Twine("no available registers:\ncandidates:\n" ) |
272 | .concat(Suffix: debugString(RegInfo: State.getRegInfo(), |
273 | Regs: Op.getRegisterAliasing().sourceBits())) |
274 | .concat(Suffix: "\nforbidden:\n" ) |
275 | .concat(Suffix: debugString(RegInfo: State.getRegInfo(), Regs: ForbiddenRegs))); |
276 | AssignedValue = MCOperand::createReg(Reg: randomBit(Vector: AllowedRegs)); |
277 | break; |
278 | } |
279 | default: |
280 | break; |
281 | } |
282 | return Error::success(); |
283 | } |
284 | |
285 | Error randomizeUnsetVariables(const LLVMState &State, |
286 | const BitVector &ForbiddenRegs, |
287 | InstructionTemplate &IT) { |
288 | for (const Variable &Var : IT.getInstr().Variables) { |
289 | MCOperand &AssignedValue = IT.getValueFor(Var); |
290 | if (!AssignedValue.isValid()) |
291 | if (auto Err = randomizeMCOperand(State, Instr: IT.getInstr(), Var, |
292 | AssignedValue, ForbiddenRegs)) |
293 | return Err; |
294 | } |
295 | return Error::success(); |
296 | } |
297 | |
298 | Error validateGeneratedInstruction(const LLVMState &State, const MCInst &Inst) { |
299 | for (const auto &Operand : Inst) { |
300 | if (!Operand.isValid()) { |
301 | // Mention the particular opcode - it is not necessarily the "main" |
302 | // opcode being benchmarked by this snippet. For example, serial snippet |
303 | // generator uses one more opcode when in SERIAL_VIA_NON_MEMORY_INSTR |
304 | // execution mode. |
305 | const auto OpcodeName = State.getInstrInfo().getName(Opcode: Inst.getOpcode()); |
306 | return make_error<Failure>(Args: "Not all operands were initialized by the " |
307 | "snippet generator for " + |
308 | OpcodeName + " opcode." ); |
309 | } |
310 | } |
311 | return Error::success(); |
312 | } |
313 | |
314 | } // namespace exegesis |
315 | } // namespace llvm |
316 | |