| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Try to reduce a function by inserting new return instructions. Try to insert |
| 10 | // an early return for each instruction value at that point. This requires |
| 11 | // mutating the return type, or finding instructions with a compatible type. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #define DEBUG_TYPE "llvm-reduce" |
| 16 | |
| 17 | #include "ReduceValuesToReturn.h" |
| 18 | |
| 19 | #include "Delta.h" |
| 20 | #include "Utils.h" |
| 21 | #include "llvm/IR/AttributeMask.h" |
| 22 | #include "llvm/IR/Attributes.h" |
| 23 | #include "llvm/IR/CFG.h" |
| 24 | #include "llvm/IR/Instructions.h" |
| 25 | #include "llvm/Support/Debug.h" |
| 26 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 27 | |
| 28 | using namespace llvm; |
| 29 | |
| 30 | /// Return true if it is legal to emit a copy of the function with a non-void |
| 31 | /// return type. |
| 32 | static bool canUseNonVoidReturnType(const Function &F) { |
| 33 | // Functions with sret arguments must return void. |
| 34 | return !F.hasStructRetAttr() && |
| 35 | CallingConv::supportsNonVoidReturnType(CC: F.getCallingConv()); |
| 36 | } |
| 37 | |
| 38 | /// Return true if it's legal to replace a function return type to use \p Ty. |
| 39 | static bool isReallyValidReturnType(Type *Ty) { |
| 40 | return FunctionType::isValidReturnType(RetTy: Ty) && !Ty->isTokenTy() && |
| 41 | Ty->isFirstClassType(); |
| 42 | } |
| 43 | |
| 44 | /// Insert a ret inst after \p NewRetValue, which returns the value it produces. |
| 45 | static void rewriteFuncWithReturnType(Function &OldF, Value *NewRetValue) { |
| 46 | Type *NewRetTy = NewRetValue->getType(); |
| 47 | FunctionType *OldFuncTy = OldF.getFunctionType(); |
| 48 | |
| 49 | FunctionType *NewFuncTy = |
| 50 | FunctionType::get(Result: NewRetTy, Params: OldFuncTy->params(), isVarArg: OldFuncTy->isVarArg()); |
| 51 | |
| 52 | LLVMContext &Ctx = OldF.getContext(); |
| 53 | BasicBlock &EntryBB = OldF.getEntryBlock(); |
| 54 | Instruction *NewRetI = dyn_cast<Instruction>(Val: NewRetValue); |
| 55 | BasicBlock *NewRetBlock = NewRetI ? NewRetI->getParent() : &EntryBB; |
| 56 | |
| 57 | BasicBlock::iterator NewValIt = |
| 58 | NewRetI ? std::next(x: NewRetI->getIterator()) : EntryBB.begin(); |
| 59 | |
| 60 | Type *OldRetTy = OldFuncTy->getReturnType(); |
| 61 | |
| 62 | // Hack up any return values in other blocks, we can't leave them as returning OldRetTy. |
| 63 | if (OldRetTy != NewRetTy) { |
| 64 | for (BasicBlock &OtherRetBB : OldF) { |
| 65 | if (&OtherRetBB != NewRetBlock) { |
| 66 | auto *OrigRI = dyn_cast<ReturnInst>(Val: OtherRetBB.getTerminator()); |
| 67 | if (!OrigRI) |
| 68 | continue; |
| 69 | |
| 70 | OrigRI->eraseFromParent(); |
| 71 | ReturnInst::Create(C&: Ctx, retVal: getDefaultValue(T: NewRetTy), InsertBefore: &OtherRetBB); |
| 72 | } |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | // If we're returning an instruction, split the basic block so we can let |
| 77 | // simpleSimplifyCFG cleanup the successors. |
| 78 | BasicBlock *TailBB = NewRetBlock->splitBasicBlock(I: NewValIt); |
| 79 | |
| 80 | // Replace the unconditional branch splitBasicBlock created |
| 81 | NewRetBlock->getTerminator()->eraseFromParent(); |
| 82 | ReturnInst::Create(C&: Ctx, retVal: NewRetValue, InsertBefore: NewRetBlock); |
| 83 | |
| 84 | // Now prune any CFG edges we have to deal with. |
| 85 | simpleSimplifyCFG(F&: OldF, BBs: {TailBB}, /*FoldBlockIntoPredecessor=*/false); |
| 86 | |
| 87 | // Drop the incompatible attributes before we copy over to the new function. |
| 88 | if (OldRetTy != NewRetTy) { |
| 89 | AttributeList AL = OldF.getAttributes(); |
| 90 | AttributeMask IncompatibleAttrs = |
| 91 | AttributeFuncs::typeIncompatible(Ty: NewRetTy, AS: AL.getRetAttrs()); |
| 92 | OldF.removeRetAttrs(Attrs: IncompatibleAttrs); |
| 93 | } |
| 94 | |
| 95 | // Now we need to remove any returned attributes from parameters. |
| 96 | for (Argument &A : OldF.args()) |
| 97 | OldF.removeParamAttr(ArgNo: A.getArgNo(), Kind: Attribute::Returned); |
| 98 | |
| 99 | Function *NewF = |
| 100 | Function::Create(Ty: NewFuncTy, Linkage: OldF.getLinkage(), AddrSpace: OldF.getAddressSpace(), N: "" , |
| 101 | M: OldF.getParent()); |
| 102 | |
| 103 | NewF->removeFromParent(); |
| 104 | OldF.getParent()->getFunctionList().insertAfter(where: OldF.getIterator(), New: NewF); |
| 105 | NewF->takeName(V: &OldF); |
| 106 | NewF->copyAttributesFrom(Src: &OldF); |
| 107 | |
| 108 | // Adjust the callsite uses to the new return type. We pre-filtered cases |
| 109 | // where the original call type was incorrectly non-void. |
| 110 | for (User *U : make_early_inc_range(Range: OldF.users())) { |
| 111 | if (auto *CB = dyn_cast<CallBase>(Val: U); |
| 112 | CB && CB->getCalledOperand() == &OldF) { |
| 113 | if (CB->getType()->isVoidTy()) { |
| 114 | FunctionType *CallType = CB->getFunctionType(); |
| 115 | |
| 116 | // The callsite may not match the new function type, in an undefined |
| 117 | // behavior way. Only mutate the local return type. |
| 118 | FunctionType *NewCallType = FunctionType::get( |
| 119 | Result: NewRetTy, Params: CallType->params(), isVarArg: CallType->isVarArg()); |
| 120 | |
| 121 | CB->mutateType(Ty: NewRetTy); |
| 122 | CB->setCalledFunction(FTy: NewCallType, Fn: NewF); |
| 123 | } else { |
| 124 | assert(CB->getType() == NewRetTy && |
| 125 | "only handle exact return type match with non-void returns" ); |
| 126 | } |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | NewF->splice(ToIt: NewF->begin(), FromF: &OldF); |
| 131 | OldF.replaceAllUsesWith(V: NewF); |
| 132 | |
| 133 | // Preserve the parameters of OldF. |
| 134 | for (auto Z : zip_first(t: OldF.args(), u: NewF->args())) { |
| 135 | Argument &OldArg = std::get<0>(t&: Z); |
| 136 | Argument &NewArg = std::get<1>(t&: Z); |
| 137 | |
| 138 | OldArg.replaceAllUsesWith(V: &NewArg); |
| 139 | NewArg.takeName(V: &OldArg); |
| 140 | } |
| 141 | |
| 142 | OldF.eraseFromParent(); |
| 143 | } |
| 144 | |
| 145 | // Check if all the callsites of the void function are void, or happen to |
| 146 | // incorrectly use the new return type. |
| 147 | // |
| 148 | // TODO: We could make better effort to handle call type mismatches. |
| 149 | static bool canReplaceFuncUsers(const Function &F, Type *NewRetTy) { |
| 150 | for (const Use &U : F.uses()) { |
| 151 | const CallBase *CB = dyn_cast<CallBase>(Val: U.getUser()); |
| 152 | if (!CB) |
| 153 | continue; |
| 154 | |
| 155 | // Normal pointer uses are trivially replacable. |
| 156 | if (!CB->isCallee(U: &U)) |
| 157 | continue; |
| 158 | |
| 159 | // We can trivially replace the correct void call sites. |
| 160 | if (CB->getType()->isVoidTy()) |
| 161 | continue; |
| 162 | |
| 163 | // We can trivially replace the call if the return type happened to match |
| 164 | // the new return type. |
| 165 | if (CB->getType() == NewRetTy) |
| 166 | continue; |
| 167 | |
| 168 | // TODO: If all callsites have no uses, we could mutate the type of all the |
| 169 | // callsites. This will complicate the visit and rewrite ordering though. |
| 170 | LLVM_DEBUG(dbgs() << "Cannot replace used callsite with wrong type: " << *CB |
| 171 | << '\n'); |
| 172 | return false; |
| 173 | } |
| 174 | |
| 175 | return true; |
| 176 | } |
| 177 | |
| 178 | /// Return true if it's worthwhile replacing the non-void return value of \p BB |
| 179 | /// with \p Replacement |
| 180 | static bool shouldReplaceNonVoidReturnValue(const BasicBlock &BB, |
| 181 | const Value *Replacement) { |
| 182 | if (const auto *RI = dyn_cast<ReturnInst>(Val: BB.getTerminator())) |
| 183 | return RI->getReturnValue() != Replacement; |
| 184 | return true; |
| 185 | } |
| 186 | |
| 187 | static bool shouldForwardValueToReturn(const BasicBlock &BB, const Value *V, |
| 188 | Type *RetTy) { |
| 189 | if (!isReallyValidReturnType(Ty: V->getType())) |
| 190 | return false; |
| 191 | |
| 192 | return (RetTy->isVoidTy() || shouldReplaceNonVoidReturnValue(BB, Replacement: V)) && |
| 193 | canReplaceFuncUsers(F: *BB.getParent(), NewRetTy: V->getType()); |
| 194 | } |
| 195 | |
| 196 | static bool tryForwardingInstructionsToReturn( |
| 197 | Function &F, Oracle &O, |
| 198 | std::vector<std::pair<Function *, Value *>> &FuncsToReplace) { |
| 199 | |
| 200 | // TODO: Should we try to expand returns to aggregate for function that |
| 201 | // already have a return value? |
| 202 | Type *RetTy = F.getReturnType(); |
| 203 | |
| 204 | for (BasicBlock &BB : F) { |
| 205 | // Skip the terminator, we can't insert a second terminator to return its |
| 206 | // value. |
| 207 | for (Instruction &I : make_range(x: BB.begin(), y: std::prev(x: BB.end()))) { |
| 208 | if (shouldForwardValueToReturn(BB, V: &I, RetTy) && !O.shouldKeep()) { |
| 209 | FuncsToReplace.emplace_back(args: &F, args: &I); |
| 210 | return true; |
| 211 | } |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | return false; |
| 216 | } |
| 217 | |
| 218 | static bool tryForwardingArgumentsToReturn( |
| 219 | Function &F, Oracle &O, |
| 220 | std::vector<std::pair<Function *, Value *>> &FuncsToReplace) { |
| 221 | |
| 222 | Type *RetTy = F.getReturnType(); |
| 223 | BasicBlock &EntryBB = F.getEntryBlock(); |
| 224 | |
| 225 | for (Argument &A : F.args()) { |
| 226 | if (shouldForwardValueToReturn(BB: EntryBB, V: &A, RetTy) && !O.shouldKeep()) { |
| 227 | FuncsToReplace.emplace_back(args: &F, args: &A); |
| 228 | return true; |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | return false; |
| 233 | } |
| 234 | |
| 235 | void llvm::reduceArgumentsToReturnDeltaPass(Oracle &O, |
| 236 | ReducerWorkItem &WorkItem) { |
| 237 | Module &Program = WorkItem.getModule(); |
| 238 | |
| 239 | // We're going to chaotically hack on the other users of the function in other |
| 240 | // functions, so we need to collect a worklist of returns to replace. |
| 241 | std::vector<std::pair<Function *, Value *>> FuncsToReplace; |
| 242 | |
| 243 | for (Function &F : Program.functions()) { |
| 244 | if (!F.isDeclaration() && canUseNonVoidReturnType(F)) |
| 245 | tryForwardingArgumentsToReturn(F, O, FuncsToReplace); |
| 246 | } |
| 247 | |
| 248 | for (auto [F, NewRetVal] : FuncsToReplace) |
| 249 | rewriteFuncWithReturnType(OldF&: *F, NewRetValue: NewRetVal); |
| 250 | } |
| 251 | |
| 252 | void llvm::reduceInstructionsToReturnDeltaPass(Oracle &O, |
| 253 | ReducerWorkItem &WorkItem) { |
| 254 | Module &Program = WorkItem.getModule(); |
| 255 | |
| 256 | // We're going to chaotically hack on the other users of the function in other |
| 257 | // functions, so we need to collect a worklist of returns to replace. |
| 258 | std::vector<std::pair<Function *, Value *>> FuncsToReplace; |
| 259 | |
| 260 | for (Function &F : Program.functions()) { |
| 261 | if (!F.isDeclaration() && canUseNonVoidReturnType(F)) |
| 262 | tryForwardingInstructionsToReturn(F, O, FuncsToReplace); |
| 263 | } |
| 264 | |
| 265 | for (auto [F, NewRetVal] : FuncsToReplace) |
| 266 | rewriteFuncWithReturnType(OldF&: *F, NewRetValue: NewRetVal); |
| 267 | } |
| 268 | |