| 1 | //===- VTEmitter.cpp - Generate properties from ValueTypes.td -------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "llvm/ADT/StringRef.h" |
| 10 | #include "llvm/Support/raw_ostream.h" |
| 11 | #include "llvm/TableGen/Record.h" |
| 12 | #include "llvm/TableGen/TableGenBackend.h" |
| 13 | #include <cassert> |
| 14 | #include <map> |
| 15 | using namespace llvm; |
| 16 | |
| 17 | namespace { |
| 18 | |
| 19 | class VTEmitter { |
| 20 | private: |
| 21 | const RecordKeeper &Records; |
| 22 | |
| 23 | public: |
| 24 | VTEmitter(const RecordKeeper &R) : Records(R) {} |
| 25 | |
| 26 | void run(raw_ostream &OS); |
| 27 | }; |
| 28 | |
| 29 | } // End anonymous namespace. |
| 30 | |
| 31 | static void vTtoGetLlvmTyString(raw_ostream &OS, const Record *VT) { |
| 32 | bool IsVector = VT->getValueAsBit(FieldName: "isVector" ); |
| 33 | bool IsRISCVVecTuple = VT->getValueAsBit(FieldName: "isRISCVVecTuple" ); |
| 34 | |
| 35 | if (IsRISCVVecTuple) { |
| 36 | unsigned NElem = VT->getValueAsInt(FieldName: "nElem" ); |
| 37 | unsigned Sz = VT->getValueAsInt(FieldName: "Size" ); |
| 38 | OS << "TargetExtType::get(Context, \"riscv.vector.tuple\", " |
| 39 | "ScalableVectorType::get(Type::getInt8Ty(Context), " |
| 40 | << (Sz / (NElem * 8)) << "), " << NElem << ")" ; |
| 41 | return; |
| 42 | } |
| 43 | |
| 44 | if (IsVector) |
| 45 | OS << (VT->getValueAsBit(FieldName: "isScalable" ) ? "Scalable" : "Fixed" ) |
| 46 | << "VectorType::get(" ; |
| 47 | |
| 48 | auto OutputVT = IsVector ? VT->getValueAsDef(FieldName: "ElementType" ) : VT; |
| 49 | int64_t OutputVTSize = OutputVT->getValueAsInt(FieldName: "Size" ); |
| 50 | |
| 51 | if (OutputVT->getValueAsBit(FieldName: "isFP" )) { |
| 52 | StringRef FloatTy; |
| 53 | auto OutputVTName = OutputVT->getValueAsString(FieldName: "LLVMName" ); |
| 54 | switch (OutputVTSize) { |
| 55 | default: |
| 56 | llvm_unreachable("Unhandled case" ); |
| 57 | case 16: |
| 58 | FloatTy = (OutputVTName == "bf16" ) ? "BFloatTy" : "HalfTy" ; |
| 59 | break; |
| 60 | case 32: |
| 61 | FloatTy = "FloatTy" ; |
| 62 | break; |
| 63 | case 64: |
| 64 | FloatTy = "DoubleTy" ; |
| 65 | break; |
| 66 | case 80: |
| 67 | FloatTy = "X86_FP80Ty" ; |
| 68 | break; |
| 69 | case 128: |
| 70 | FloatTy = (OutputVTName == "ppcf128" ) ? "PPC_FP128Ty" : "FP128Ty" ; |
| 71 | break; |
| 72 | } |
| 73 | OS << "Type::get" << FloatTy << "(Context)" ; |
| 74 | } else if (OutputVT->getValueAsBit(FieldName: "isInteger" )) { |
| 75 | // We only have Type::getInt1Ty, Int8, Int16, Int32, Int64, and Int128 |
| 76 | if ((isPowerOf2_64(Value: OutputVTSize) && OutputVTSize >= 8 && |
| 77 | OutputVTSize <= 128) || |
| 78 | OutputVTSize == 1) |
| 79 | OS << "Type::getInt" << OutputVTSize << "Ty(Context)" ; |
| 80 | else |
| 81 | OS << "Type::getIntNTy(Context, " << OutputVTSize << ")" ; |
| 82 | } else { |
| 83 | llvm_unreachable("Unhandled case" ); |
| 84 | } |
| 85 | |
| 86 | if (IsVector) |
| 87 | OS << ", " << VT->getValueAsInt(FieldName: "nElem" ) << ")" ; |
| 88 | } |
| 89 | |
| 90 | void VTEmitter::run(raw_ostream &OS) { |
| 91 | emitSourceFileHeader(Desc: "ValueTypes Source Fragment" , OS, Record: Records); |
| 92 | |
| 93 | std::vector<const Record *> VTsByNumber{512}; |
| 94 | for (auto *VT : Records.getAllDerivedDefinitions(ClassName: "ValueType" )) { |
| 95 | auto Number = VT->getValueAsInt(FieldName: "Value" ); |
| 96 | assert(0 <= Number && Number < (int)VTsByNumber.size() && |
| 97 | "ValueType should be uint16_t" ); |
| 98 | assert(!VTsByNumber[Number] && "Duplicate ValueType" ); |
| 99 | VTsByNumber[Number] = VT; |
| 100 | } |
| 101 | |
| 102 | struct VTRange { |
| 103 | StringRef First; |
| 104 | StringRef Last; |
| 105 | bool Closed; |
| 106 | }; |
| 107 | |
| 108 | std::map<StringRef, VTRange> VTRanges; |
| 109 | |
| 110 | auto UpdateVTRange = [&VTRanges](const char *Key, StringRef Name, |
| 111 | bool Valid) { |
| 112 | if (Valid) { |
| 113 | auto [It, Inserted] = VTRanges.try_emplace(k: Key); |
| 114 | if (Inserted) |
| 115 | It->second.First = Name; |
| 116 | assert(!It->second.Closed && "Gap detected!" ); |
| 117 | It->second.Last = Name; |
| 118 | } else if (auto It = VTRanges.find(x: Key); It != VTRanges.end()) { |
| 119 | It->second.Closed = true; |
| 120 | } |
| 121 | }; |
| 122 | |
| 123 | OS << "#ifdef GET_VT_ATTR // (Ty, n, sz, Any, Int, FP, Vec, Sc, Tup, NF, " |
| 124 | "NElem, EltTy)\n" ; |
| 125 | for (const auto *VT : VTsByNumber) { |
| 126 | if (!VT) |
| 127 | continue; |
| 128 | auto Name = VT->getValueAsString(FieldName: "LLVMName" ); |
| 129 | auto Value = VT->getValueAsInt(FieldName: "Value" ); |
| 130 | bool IsInteger = VT->getValueAsBit(FieldName: "isInteger" ); |
| 131 | bool IsFP = VT->getValueAsBit(FieldName: "isFP" ); |
| 132 | bool IsVector = VT->getValueAsBit(FieldName: "isVector" ); |
| 133 | bool IsScalable = VT->getValueAsBit(FieldName: "isScalable" ); |
| 134 | bool IsRISCVVecTuple = VT->getValueAsBit(FieldName: "isRISCVVecTuple" ); |
| 135 | int64_t NF = VT->getValueAsInt(FieldName: "NF" ); |
| 136 | bool IsNormalValueType = VT->getValueAsBit(FieldName: "isNormalValueType" ); |
| 137 | int64_t NElem = IsVector ? VT->getValueAsInt(FieldName: "nElem" ) : 0; |
| 138 | StringRef EltName = IsVector ? VT->getValueAsDef(FieldName: "ElementType" )->getName() |
| 139 | : "INVALID_SIMPLE_VALUE_TYPE" ; |
| 140 | |
| 141 | UpdateVTRange("INTEGER_FIXEDLEN_VECTOR_VALUETYPE" , Name, |
| 142 | IsInteger && IsVector && !IsScalable); |
| 143 | UpdateVTRange("INTEGER_SCALABLE_VECTOR_VALUETYPE" , Name, |
| 144 | IsInteger && IsScalable); |
| 145 | UpdateVTRange("FP_FIXEDLEN_VECTOR_VALUETYPE" , Name, |
| 146 | IsFP && IsVector && !IsScalable); |
| 147 | UpdateVTRange("FP_SCALABLE_VECTOR_VALUETYPE" , Name, IsFP && IsScalable); |
| 148 | UpdateVTRange("FIXEDLEN_VECTOR_VALUETYPE" , Name, IsVector && !IsScalable); |
| 149 | UpdateVTRange("SCALABLE_VECTOR_VALUETYPE" , Name, IsScalable); |
| 150 | UpdateVTRange("RISCV_VECTOR_TUPLE_VALUETYPE" , Name, IsRISCVVecTuple); |
| 151 | UpdateVTRange("VECTOR_VALUETYPE" , Name, IsVector); |
| 152 | UpdateVTRange("INTEGER_VALUETYPE" , Name, IsInteger && !IsVector); |
| 153 | UpdateVTRange("FP_VALUETYPE" , Name, IsFP && !IsVector); |
| 154 | UpdateVTRange("VALUETYPE" , Name, IsNormalValueType); |
| 155 | |
| 156 | // clang-format off |
| 157 | OS << " GET_VT_ATTR(" |
| 158 | << Name << ", " |
| 159 | << Value << ", " |
| 160 | << VT->getValueAsInt(FieldName: "Size" ) << ", " |
| 161 | << VT->getValueAsBit(FieldName: "isOverloaded" ) << ", " |
| 162 | << (IsInteger ? Name[0] == 'i' ? 3 : 1 : 0) << ", " |
| 163 | << (IsFP ? Name[0] == 'f' ? 3 : 1 : 0) << ", " |
| 164 | << IsVector << ", " |
| 165 | << IsScalable << ", " |
| 166 | << IsRISCVVecTuple << ", " |
| 167 | << NF << ", " |
| 168 | << NElem << ", " |
| 169 | << EltName << ")\n" ; |
| 170 | // clang-format on |
| 171 | } |
| 172 | OS << "#endif\n\n" ; |
| 173 | |
| 174 | OS << "#ifdef GET_VT_RANGES\n" ; |
| 175 | for (const auto &KV : VTRanges) { |
| 176 | assert(KV.second.Closed); |
| 177 | OS << " FIRST_" << KV.first << " = " << KV.second.First << ",\n" |
| 178 | << " LAST_" << KV.first << " = " << KV.second.Last << ",\n" ; |
| 179 | } |
| 180 | OS << "#endif\n\n" ; |
| 181 | |
| 182 | OS << "#ifdef GET_VT_VECATTR // (Ty, Sc, Tup, nElem, ElTy)\n" ; |
| 183 | for (const auto *VT : VTsByNumber) { |
| 184 | if (!VT || !VT->getValueAsBit(FieldName: "isVector" )) |
| 185 | continue; |
| 186 | const auto *ElTy = VT->getValueAsDef(FieldName: "ElementType" ); |
| 187 | assert(ElTy); |
| 188 | // clang-format off |
| 189 | OS << " GET_VT_VECATTR(" |
| 190 | << VT->getValueAsString(FieldName: "LLVMName" ) << ", " |
| 191 | << VT->getValueAsBit(FieldName: "isScalable" ) << ", " |
| 192 | << VT->getValueAsBit(FieldName: "isRISCVVecTuple" ) << ", " |
| 193 | << VT->getValueAsInt(FieldName: "nElem" ) << ", " |
| 194 | << ElTy->getName() << ")\n" ; |
| 195 | // clang-format on |
| 196 | } |
| 197 | OS << "#endif\n\n" ; |
| 198 | |
| 199 | OS << "#ifdef GET_VT_EVT\n" ; |
| 200 | for (const auto *VT : VTsByNumber) { |
| 201 | if (!VT) |
| 202 | continue; |
| 203 | bool IsInteger = VT->getValueAsBit(FieldName: "isInteger" ); |
| 204 | bool IsVector = VT->getValueAsBit(FieldName: "isVector" ); |
| 205 | bool IsFP = VT->getValueAsBit(FieldName: "isFP" ); |
| 206 | bool IsRISCVVecTuple = VT->getValueAsBit(FieldName: "isRISCVVecTuple" ); |
| 207 | |
| 208 | if (!IsInteger && !IsVector && !IsFP && !IsRISCVVecTuple) |
| 209 | continue; |
| 210 | |
| 211 | OS << " GET_VT_EVT(" << VT->getValueAsString(FieldName: "LLVMName" ) << ", " ; |
| 212 | vTtoGetLlvmTyString(OS, VT); |
| 213 | OS << ")\n" ; |
| 214 | } |
| 215 | OS << "#endif\n\n" ; |
| 216 | } |
| 217 | |
| 218 | static TableGen::Emitter::OptClass<VTEmitter> X("gen-vt" , "Generate ValueType" ); |
| 219 | |