| 1 | // -*- C++ -*- |
| 2 | //===----------------------------------------------------------------------===// |
| 3 | // |
| 4 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 5 | // See https://llvm.org/LICENSE.txt for license information. |
| 6 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #ifndef _LIBCPP___CHRONO_UTC_CLOCK_H |
| 11 | #define _LIBCPP___CHRONO_UTC_CLOCK_H |
| 12 | |
| 13 | #include <version> |
| 14 | // Enable the contents of the header only when libc++ was built with experimental features enabled. |
| 15 | #if _LIBCPP_HAS_EXPERIMENTAL_TZDB |
| 16 | |
| 17 | # include <__chrono/duration.h> |
| 18 | # include <__chrono/leap_second.h> |
| 19 | # include <__chrono/system_clock.h> |
| 20 | # include <__chrono/time_point.h> |
| 21 | # include <__chrono/tzdb.h> |
| 22 | # include <__chrono/tzdb_list.h> |
| 23 | # include <__config> |
| 24 | # include <__type_traits/common_type.h> |
| 25 | |
| 26 | # if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) |
| 27 | # pragma GCC system_header |
| 28 | # endif |
| 29 | |
| 30 | _LIBCPP_BEGIN_NAMESPACE_STD |
| 31 | |
| 32 | # if _LIBCPP_STD_VER >= 20 && _LIBCPP_HAS_TIME_ZONE_DATABASE && _LIBCPP_HAS_FILESYSTEM && _LIBCPP_HAS_LOCALIZATION |
| 33 | |
| 34 | namespace chrono { |
| 35 | |
| 36 | class utc_clock; |
| 37 | |
| 38 | template <class _Duration> |
| 39 | using utc_time = time_point<utc_clock, _Duration>; |
| 40 | using utc_seconds = utc_time<seconds>; |
| 41 | |
| 42 | class utc_clock { |
| 43 | public: |
| 44 | using rep = system_clock::rep; |
| 45 | using period = system_clock::period; |
| 46 | using duration = chrono::duration<rep, period>; |
| 47 | using time_point = chrono::time_point<utc_clock>; |
| 48 | static constexpr bool is_steady = false; // The system_clock is not steady. |
| 49 | |
| 50 | [[nodiscard]] _LIBCPP_HIDE_FROM_ABI static time_point now() { return from_sys(time: system_clock::now()); } |
| 51 | |
| 52 | template <class _Duration> |
| 53 | [[nodiscard]] _LIBCPP_HIDE_FROM_ABI static sys_time<common_type_t<_Duration, seconds>> |
| 54 | to_sys(const utc_time<_Duration>& __time); |
| 55 | |
| 56 | template <class _Duration> |
| 57 | [[nodiscard]] _LIBCPP_HIDE_FROM_ABI static utc_time<common_type_t<_Duration, seconds>> |
| 58 | from_sys(const sys_time<_Duration>& __time) { |
| 59 | using _Rp = utc_time<common_type_t<_Duration, seconds>>; |
| 60 | // TODO TZDB investigate optimizations. |
| 61 | // |
| 62 | // The leap second database stores all transitions, this mean to calculate |
| 63 | // the current number of leap seconds the code needs to iterate over all |
| 64 | // leap seconds to accumulate the sum. Then the sum can be used to determine |
| 65 | // the sys_time. Accessing the database involves acquiring a mutex. |
| 66 | // |
| 67 | // The historic entries in the database are immutable. Hard-coding these |
| 68 | // values in a table would allow: |
| 69 | // - To store the sum, allowing a binary search on the data. |
| 70 | // - Avoid acquiring a mutex. |
| 71 | // The disadvantage are: |
| 72 | // - A slightly larger code size. |
| 73 | // |
| 74 | // There are two optimization directions |
| 75 | // - hard-code the database and do a linear search for future entries. This |
| 76 | // search can start at the back, and should probably contain very few |
| 77 | // entries. (Adding leap seconds is quite rare and new release of libc++ |
| 78 | // can add the new entries; they are announced half a year before they are |
| 79 | // added.) |
| 80 | // - During parsing the leap seconds store an additional database in the |
| 81 | // dylib with the list of the sum of the leap seconds. In that case there |
| 82 | // can be a private function __get_utc_to_sys_table that returns the |
| 83 | // table. |
| 84 | // |
| 85 | // Note for to_sys there are no optimizations to be done; it uses |
| 86 | // get_leap_second_info. The function get_leap_second_info could benefit |
| 87 | // from optimizations as described above; again both options apply. |
| 88 | |
| 89 | // Both UTC and the system clock use the same epoch. The Standard |
| 90 | // specifies from 1970-01-01 even when UTC starts at |
| 91 | // 1972-01-01 00:00:10 TAI. So when the sys_time is before epoch we can be |
| 92 | // sure there both clocks return the same value. |
| 93 | |
| 94 | const tzdb& __tzdb = chrono::get_tzdb(); |
| 95 | _Rp __result{__time.time_since_epoch()}; |
| 96 | for (const auto& __leap_second : __tzdb.leap_seconds) { |
| 97 | if (__leap_second > __time) |
| 98 | return __result; |
| 99 | |
| 100 | __result += __leap_second.value(); |
| 101 | } |
| 102 | return __result; |
| 103 | } |
| 104 | }; |
| 105 | |
| 106 | struct leap_second_info { |
| 107 | bool is_leap_second; |
| 108 | seconds elapsed; |
| 109 | }; |
| 110 | |
| 111 | template <class _Duration> |
| 112 | [[nodiscard]] _LIBCPP_HIDE_FROM_ABI leap_second_info get_leap_second_info(const utc_time<_Duration>& __time) { |
| 113 | const tzdb& __tzdb = chrono::get_tzdb(); |
| 114 | if (__tzdb.leap_seconds.empty()) [[unlikely]] |
| 115 | return {.is_leap_second: false, .elapsed: chrono::seconds{0}}; |
| 116 | |
| 117 | sys_seconds __sys{chrono::floor<seconds>(__time).time_since_epoch()}; |
| 118 | seconds __elapsed{0}; |
| 119 | for (const auto& __leap_second : __tzdb.leap_seconds) { |
| 120 | if (__sys == __leap_second.date() + __elapsed) |
| 121 | // A time point may only be a leap second during a positive leap second |
| 122 | // insertion, since time points that occur during a (theoretical) |
| 123 | // negative leap second don't exist. |
| 124 | return {.is_leap_second: __leap_second.value() > 0s, .elapsed: __elapsed + __leap_second.value()}; |
| 125 | |
| 126 | if (__sys < __leap_second.date() + __elapsed) |
| 127 | return {.is_leap_second: false, .elapsed: __elapsed}; |
| 128 | |
| 129 | __elapsed += __leap_second.value(); |
| 130 | } |
| 131 | |
| 132 | return {.is_leap_second: false, .elapsed: __elapsed}; |
| 133 | } |
| 134 | |
| 135 | template <class _Duration> |
| 136 | [[nodiscard]] _LIBCPP_HIDE_FROM_ABI sys_time<common_type_t<_Duration, seconds>> |
| 137 | utc_clock::to_sys(const utc_time<_Duration>& __time) { |
| 138 | using _Dp = common_type_t<_Duration, seconds>; |
| 139 | leap_second_info __info = chrono::get_leap_second_info(__time); |
| 140 | |
| 141 | // [time.clock.utc.members]/2 |
| 142 | // Returns: A sys_time t, such that from_sys(t) == u if such a mapping |
| 143 | // exists. Otherwise u represents a time_point during a positive leap |
| 144 | // second insertion, the conversion counts that leap second as not |
| 145 | // inserted, and the last representable value of sys_time prior to the |
| 146 | // insertion of the leap second is returned. |
| 147 | sys_time<common_type_t<_Duration, seconds>> __result{__time.time_since_epoch() - __info.elapsed}; |
| 148 | if (__info.is_leap_second) |
| 149 | return chrono::floor<seconds>(__result) + chrono::seconds{1} - _Dp{1}; |
| 150 | |
| 151 | return __result; |
| 152 | } |
| 153 | |
| 154 | } // namespace chrono |
| 155 | |
| 156 | # endif // _LIBCPP_STD_VER >= 20 && _LIBCPP_HAS_TIME_ZONE_DATABASE && _LIBCPP_HAS_FILESYSTEM && |
| 157 | // _LIBCPP_HAS_LOCALIZATION |
| 158 | |
| 159 | _LIBCPP_END_NAMESPACE_STD |
| 160 | |
| 161 | #endif // _LIBCPP_HAS_EXPERIMENTAL_TZDB |
| 162 | |
| 163 | #endif // _LIBCPP___CHRONO_UTC_CLOCK_H |
| 164 | |