| 1 | //===- FuzzerMutate.cpp - Mutate a test input -----------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // Mutate a test input. |
| 9 | //===----------------------------------------------------------------------===// |
| 10 | |
| 11 | #include "FuzzerDefs.h" |
| 12 | #include "FuzzerExtFunctions.h" |
| 13 | #include "FuzzerIO.h" |
| 14 | #include "FuzzerMutate.h" |
| 15 | #include "FuzzerOptions.h" |
| 16 | #include "FuzzerTracePC.h" |
| 17 | |
| 18 | namespace fuzzer { |
| 19 | |
| 20 | const size_t Dictionary::kMaxDictSize; |
| 21 | static const size_t kMaxMutationsToPrint = 10; |
| 22 | |
| 23 | static void PrintASCII(const Word &W, const char *PrintAfter) { |
| 24 | PrintASCII(Data: W.data(), Size: W.size(), PrintAfter); |
| 25 | } |
| 26 | |
| 27 | MutationDispatcher::MutationDispatcher(Random &Rand, |
| 28 | const FuzzingOptions &Options) |
| 29 | : Rand(Rand), Options(Options) { |
| 30 | DefaultMutators.insert( |
| 31 | position: DefaultMutators.begin(), |
| 32 | il: { |
| 33 | {.Fn: &MutationDispatcher::Mutate_EraseBytes, .Name: "EraseBytes" }, |
| 34 | {.Fn: &MutationDispatcher::Mutate_InsertByte, .Name: "InsertByte" }, |
| 35 | {.Fn: &MutationDispatcher::Mutate_InsertRepeatedBytes, |
| 36 | .Name: "InsertRepeatedBytes" }, |
| 37 | {.Fn: &MutationDispatcher::Mutate_ChangeByte, .Name: "ChangeByte" }, |
| 38 | {.Fn: &MutationDispatcher::Mutate_ChangeBit, .Name: "ChangeBit" }, |
| 39 | {.Fn: &MutationDispatcher::Mutate_ShuffleBytes, .Name: "ShuffleBytes" }, |
| 40 | {.Fn: &MutationDispatcher::Mutate_ChangeASCIIInteger, .Name: "ChangeASCIIInt" }, |
| 41 | {.Fn: &MutationDispatcher::Mutate_ChangeBinaryInteger, .Name: "ChangeBinInt" }, |
| 42 | {.Fn: &MutationDispatcher::Mutate_CopyPart, .Name: "CopyPart" }, |
| 43 | {.Fn: &MutationDispatcher::Mutate_CrossOver, .Name: "CrossOver" }, |
| 44 | {.Fn: &MutationDispatcher::Mutate_AddWordFromManualDictionary, |
| 45 | .Name: "ManualDict" }, |
| 46 | {.Fn: &MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary, |
| 47 | .Name: "PersAutoDict" }, |
| 48 | }); |
| 49 | if(Options.UseCmp) |
| 50 | DefaultMutators.push_back( |
| 51 | x: {.Fn: &MutationDispatcher::Mutate_AddWordFromTORC, .Name: "CMP" }); |
| 52 | |
| 53 | if (EF->LLVMFuzzerCustomMutator) |
| 54 | Mutators.push_back(x: {.Fn: &MutationDispatcher::Mutate_Custom, .Name: "Custom" }); |
| 55 | else |
| 56 | Mutators = DefaultMutators; |
| 57 | |
| 58 | if (EF->LLVMFuzzerCustomCrossOver) |
| 59 | Mutators.push_back( |
| 60 | x: {.Fn: &MutationDispatcher::Mutate_CustomCrossOver, .Name: "CustomCrossOver" }); |
| 61 | } |
| 62 | |
| 63 | static char RandCh(Random &Rand) { |
| 64 | if (Rand.RandBool()) |
| 65 | return static_cast<char>(Rand(256)); |
| 66 | const char Special[] = "!*'();:@&=+$,/?%#[]012Az-`~.\xff\x00" ; |
| 67 | return Special[Rand(sizeof(Special) - 1)]; |
| 68 | } |
| 69 | |
| 70 | size_t MutationDispatcher::Mutate_Custom(uint8_t *Data, size_t Size, |
| 71 | size_t MaxSize) { |
| 72 | if (EF->__msan_unpoison) |
| 73 | EF->__msan_unpoison(Data, Size); |
| 74 | if (EF->__msan_unpoison_param) |
| 75 | EF->__msan_unpoison_param(4); |
| 76 | return EF->LLVMFuzzerCustomMutator(Data, Size, MaxSize, |
| 77 | Rand.Rand<unsigned int>()); |
| 78 | } |
| 79 | |
| 80 | size_t MutationDispatcher::Mutate_CustomCrossOver(uint8_t *Data, size_t Size, |
| 81 | size_t MaxSize) { |
| 82 | if (Size == 0) |
| 83 | return 0; |
| 84 | if (!CrossOverWith) return 0; |
| 85 | const Unit &Other = *CrossOverWith; |
| 86 | if (Other.empty()) |
| 87 | return 0; |
| 88 | CustomCrossOverInPlaceHere.resize(sz: MaxSize); |
| 89 | auto &U = CustomCrossOverInPlaceHere; |
| 90 | |
| 91 | if (EF->__msan_unpoison) { |
| 92 | EF->__msan_unpoison(Data, Size); |
| 93 | EF->__msan_unpoison(Other.data(), Other.size()); |
| 94 | EF->__msan_unpoison(U.data(), U.size()); |
| 95 | } |
| 96 | if (EF->__msan_unpoison_param) |
| 97 | EF->__msan_unpoison_param(7); |
| 98 | size_t NewSize = EF->LLVMFuzzerCustomCrossOver( |
| 99 | Data, Size, Other.data(), Other.size(), U.data(), U.size(), |
| 100 | Rand.Rand<unsigned int>()); |
| 101 | |
| 102 | if (!NewSize) |
| 103 | return 0; |
| 104 | assert(NewSize <= MaxSize && "CustomCrossOver returned overisized unit" ); |
| 105 | memcpy(dest: Data, src: U.data(), n: NewSize); |
| 106 | return NewSize; |
| 107 | } |
| 108 | |
| 109 | size_t MutationDispatcher::Mutate_ShuffleBytes(uint8_t *Data, size_t Size, |
| 110 | size_t MaxSize) { |
| 111 | if (Size > MaxSize || Size == 0) return 0; |
| 112 | size_t ShuffleAmount = |
| 113 | Rand(std::min(a: Size, b: (size_t)8)) + 1; // [1,8] and <= Size. |
| 114 | size_t ShuffleStart = Rand(Size - ShuffleAmount); |
| 115 | assert(ShuffleStart + ShuffleAmount <= Size); |
| 116 | std::shuffle(first: Data + ShuffleStart, last: Data + ShuffleStart + ShuffleAmount, g&: Rand); |
| 117 | return Size; |
| 118 | } |
| 119 | |
| 120 | size_t MutationDispatcher::Mutate_EraseBytes(uint8_t *Data, size_t Size, |
| 121 | size_t MaxSize) { |
| 122 | if (Size <= 1) return 0; |
| 123 | size_t N = Rand(Size / 2) + 1; |
| 124 | assert(N < Size); |
| 125 | size_t Idx = Rand(Size - N + 1); |
| 126 | // Erase Data[Idx:Idx+N]. |
| 127 | memmove(dest: Data + Idx, src: Data + Idx + N, n: Size - Idx - N); |
| 128 | // Printf("Erase: %zd %zd => %zd; Idx %zd\n", N, Size, Size - N, Idx); |
| 129 | return Size - N; |
| 130 | } |
| 131 | |
| 132 | size_t MutationDispatcher::Mutate_InsertByte(uint8_t *Data, size_t Size, |
| 133 | size_t MaxSize) { |
| 134 | if (Size >= MaxSize) return 0; |
| 135 | size_t Idx = Rand(Size + 1); |
| 136 | // Insert new value at Data[Idx]. |
| 137 | memmove(dest: Data + Idx + 1, src: Data + Idx, n: Size - Idx); |
| 138 | Data[Idx] = RandCh(Rand); |
| 139 | return Size + 1; |
| 140 | } |
| 141 | |
| 142 | size_t MutationDispatcher::Mutate_InsertRepeatedBytes(uint8_t *Data, |
| 143 | size_t Size, |
| 144 | size_t MaxSize) { |
| 145 | const size_t kMinBytesToInsert = 3; |
| 146 | if (Size + kMinBytesToInsert >= MaxSize) return 0; |
| 147 | size_t MaxBytesToInsert = std::min(a: MaxSize - Size, b: (size_t)128); |
| 148 | size_t N = Rand(MaxBytesToInsert - kMinBytesToInsert + 1) + kMinBytesToInsert; |
| 149 | assert(Size + N <= MaxSize && N); |
| 150 | size_t Idx = Rand(Size + 1); |
| 151 | // Insert new values at Data[Idx]. |
| 152 | memmove(dest: Data + Idx + N, src: Data + Idx, n: Size - Idx); |
| 153 | // Give preference to 0x00 and 0xff. |
| 154 | uint8_t Byte = static_cast<uint8_t>( |
| 155 | Rand.RandBool() ? Rand(256) : (Rand.RandBool() ? 0 : 255)); |
| 156 | for (size_t i = 0; i < N; i++) |
| 157 | Data[Idx + i] = Byte; |
| 158 | return Size + N; |
| 159 | } |
| 160 | |
| 161 | size_t MutationDispatcher::Mutate_ChangeByte(uint8_t *Data, size_t Size, |
| 162 | size_t MaxSize) { |
| 163 | if (Size > MaxSize) return 0; |
| 164 | size_t Idx = Rand(Size); |
| 165 | Data[Idx] = RandCh(Rand); |
| 166 | return Size; |
| 167 | } |
| 168 | |
| 169 | size_t MutationDispatcher::Mutate_ChangeBit(uint8_t *Data, size_t Size, |
| 170 | size_t MaxSize) { |
| 171 | if (Size > MaxSize) return 0; |
| 172 | size_t Idx = Rand(Size); |
| 173 | Data[Idx] ^= 1 << Rand(8); |
| 174 | return Size; |
| 175 | } |
| 176 | |
| 177 | size_t MutationDispatcher::Mutate_AddWordFromManualDictionary(uint8_t *Data, |
| 178 | size_t Size, |
| 179 | size_t MaxSize) { |
| 180 | return AddWordFromDictionary(D&: ManualDictionary, Data, Size, MaxSize); |
| 181 | } |
| 182 | |
| 183 | size_t MutationDispatcher::ApplyDictionaryEntry(uint8_t *Data, size_t Size, |
| 184 | size_t MaxSize, |
| 185 | DictionaryEntry &DE) { |
| 186 | const Word &W = DE.GetW(); |
| 187 | bool UsePositionHint = DE.HasPositionHint() && |
| 188 | DE.GetPositionHint() + W.size() < Size && |
| 189 | Rand.RandBool(); |
| 190 | if (Rand.RandBool()) { // Insert W. |
| 191 | if (Size + W.size() > MaxSize) return 0; |
| 192 | size_t Idx = UsePositionHint ? DE.GetPositionHint() : Rand(Size + 1); |
| 193 | memmove(dest: Data + Idx + W.size(), src: Data + Idx, n: Size - Idx); |
| 194 | memcpy(dest: Data + Idx, src: W.data(), n: W.size()); |
| 195 | Size += W.size(); |
| 196 | } else { // Overwrite some bytes with W. |
| 197 | if (W.size() > Size) return 0; |
| 198 | size_t Idx = |
| 199 | UsePositionHint ? DE.GetPositionHint() : Rand(Size + 1 - W.size()); |
| 200 | memcpy(dest: Data + Idx, src: W.data(), n: W.size()); |
| 201 | } |
| 202 | return Size; |
| 203 | } |
| 204 | |
| 205 | // Somewhere in the past we have observed a comparison instructions |
| 206 | // with arguments Arg1 Arg2. This function tries to guess a dictionary |
| 207 | // entry that will satisfy that comparison. |
| 208 | // It first tries to find one of the arguments (possibly swapped) in the |
| 209 | // input and if it succeeds it creates a DE with a position hint. |
| 210 | // Otherwise it creates a DE with one of the arguments w/o a position hint. |
| 211 | DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP( |
| 212 | const void *Arg1, const void *Arg2, |
| 213 | const void *Arg1Mutation, const void *Arg2Mutation, |
| 214 | size_t ArgSize, const uint8_t *Data, |
| 215 | size_t Size) { |
| 216 | bool HandleFirst = Rand.RandBool(); |
| 217 | const void *ExistingBytes, *DesiredBytes; |
| 218 | Word W; |
| 219 | const uint8_t *End = Data + Size; |
| 220 | for (int Arg = 0; Arg < 2; Arg++) { |
| 221 | ExistingBytes = HandleFirst ? Arg1 : Arg2; |
| 222 | DesiredBytes = HandleFirst ? Arg2Mutation : Arg1Mutation; |
| 223 | HandleFirst = !HandleFirst; |
| 224 | W.Set(B: reinterpret_cast<const uint8_t*>(DesiredBytes), S: ArgSize); |
| 225 | const size_t kMaxNumPositions = 8; |
| 226 | size_t Positions[kMaxNumPositions]; |
| 227 | size_t NumPositions = 0; |
| 228 | for (const uint8_t *Cur = Data; |
| 229 | Cur < End && NumPositions < kMaxNumPositions; Cur++) { |
| 230 | Cur = |
| 231 | (const uint8_t *)SearchMemory(haystack: Cur, haystacklen: End - Cur, needle: ExistingBytes, needlelen: ArgSize); |
| 232 | if (!Cur) break; |
| 233 | Positions[NumPositions++] = Cur - Data; |
| 234 | } |
| 235 | if (!NumPositions) continue; |
| 236 | return DictionaryEntry(W, Positions[Rand(NumPositions)]); |
| 237 | } |
| 238 | DictionaryEntry DE(W); |
| 239 | return DE; |
| 240 | } |
| 241 | |
| 242 | |
| 243 | template <class T> |
| 244 | DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP( |
| 245 | T Arg1, T Arg2, const uint8_t *Data, size_t Size) { |
| 246 | if (Rand.RandBool()) Arg1 = Bswap(Arg1); |
| 247 | if (Rand.RandBool()) Arg2 = Bswap(Arg2); |
| 248 | T Arg1Mutation = static_cast<T>(Arg1 + Rand(-1, 1)); |
| 249 | T Arg2Mutation = static_cast<T>(Arg2 + Rand(-1, 1)); |
| 250 | return MakeDictionaryEntryFromCMP(&Arg1, &Arg2, &Arg1Mutation, &Arg2Mutation, |
| 251 | sizeof(Arg1), Data, Size); |
| 252 | } |
| 253 | |
| 254 | DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP( |
| 255 | const Word &Arg1, const Word &Arg2, const uint8_t *Data, size_t Size) { |
| 256 | return MakeDictionaryEntryFromCMP(Arg1: Arg1.data(), Arg2: Arg2.data(), Arg1Mutation: Arg1.data(), |
| 257 | Arg2Mutation: Arg2.data(), ArgSize: Arg1.size(), Data, Size); |
| 258 | } |
| 259 | |
| 260 | size_t MutationDispatcher::Mutate_AddWordFromTORC( |
| 261 | uint8_t *Data, size_t Size, size_t MaxSize) { |
| 262 | Word W; |
| 263 | DictionaryEntry DE; |
| 264 | switch (Rand(4)) { |
| 265 | case 0: { |
| 266 | auto X = TPC.TORC8.Get(I: Rand.Rand<size_t>()); |
| 267 | DE = MakeDictionaryEntryFromCMP(Arg1: X.A, Arg2: X.B, Data, Size); |
| 268 | } break; |
| 269 | case 1: { |
| 270 | auto X = TPC.TORC4.Get(I: Rand.Rand<size_t>()); |
| 271 | if ((X.A >> 16) == 0 && (X.B >> 16) == 0 && Rand.RandBool()) |
| 272 | DE = MakeDictionaryEntryFromCMP(Arg1: (uint16_t)X.A, Arg2: (uint16_t)X.B, Data, Size); |
| 273 | else |
| 274 | DE = MakeDictionaryEntryFromCMP(Arg1: X.A, Arg2: X.B, Data, Size); |
| 275 | } break; |
| 276 | case 2: { |
| 277 | auto X = TPC.TORCW.Get(I: Rand.Rand<size_t>()); |
| 278 | DE = MakeDictionaryEntryFromCMP(Arg1: X.A, Arg2: X.B, Data, Size); |
| 279 | } break; |
| 280 | case 3: if (Options.UseMemmem) { |
| 281 | auto X = TPC.MMT.Get(Idx: Rand.Rand<size_t>()); |
| 282 | DE = DictionaryEntry(X); |
| 283 | } break; |
| 284 | default: |
| 285 | assert(0); |
| 286 | } |
| 287 | if (!DE.GetW().size()) return 0; |
| 288 | Size = ApplyDictionaryEntry(Data, Size, MaxSize, DE); |
| 289 | if (!Size) return 0; |
| 290 | DictionaryEntry &DERef = |
| 291 | CmpDictionaryEntriesDeque[CmpDictionaryEntriesDequeIdx++ % |
| 292 | kCmpDictionaryEntriesDequeSize]; |
| 293 | DERef = DE; |
| 294 | CurrentDictionaryEntrySequence.push_back(x: &DERef); |
| 295 | return Size; |
| 296 | } |
| 297 | |
| 298 | size_t MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary( |
| 299 | uint8_t *Data, size_t Size, size_t MaxSize) { |
| 300 | return AddWordFromDictionary(D&: PersistentAutoDictionary, Data, Size, MaxSize); |
| 301 | } |
| 302 | |
| 303 | size_t MutationDispatcher::AddWordFromDictionary(Dictionary &D, uint8_t *Data, |
| 304 | size_t Size, size_t MaxSize) { |
| 305 | if (Size > MaxSize) return 0; |
| 306 | if (D.empty()) return 0; |
| 307 | DictionaryEntry &DE = D[Rand(D.size())]; |
| 308 | Size = ApplyDictionaryEntry(Data, Size, MaxSize, DE); |
| 309 | if (!Size) return 0; |
| 310 | DE.IncUseCount(); |
| 311 | CurrentDictionaryEntrySequence.push_back(x: &DE); |
| 312 | return Size; |
| 313 | } |
| 314 | |
| 315 | // Overwrites part of To[0,ToSize) with a part of From[0,FromSize). |
| 316 | // Returns ToSize. |
| 317 | size_t MutationDispatcher::CopyPartOf(const uint8_t *From, size_t FromSize, |
| 318 | uint8_t *To, size_t ToSize) { |
| 319 | // Copy From[FromBeg, FromBeg + CopySize) into To[ToBeg, ToBeg + CopySize). |
| 320 | size_t ToBeg = Rand(ToSize); |
| 321 | size_t CopySize = Rand(ToSize - ToBeg) + 1; |
| 322 | assert(ToBeg + CopySize <= ToSize); |
| 323 | CopySize = std::min(a: CopySize, b: FromSize); |
| 324 | size_t FromBeg = Rand(FromSize - CopySize + 1); |
| 325 | assert(FromBeg + CopySize <= FromSize); |
| 326 | memmove(dest: To + ToBeg, src: From + FromBeg, n: CopySize); |
| 327 | return ToSize; |
| 328 | } |
| 329 | |
| 330 | // Inserts part of From[0,ToSize) into To. |
| 331 | // Returns new size of To on success or 0 on failure. |
| 332 | size_t MutationDispatcher::InsertPartOf(const uint8_t *From, size_t FromSize, |
| 333 | uint8_t *To, size_t ToSize, |
| 334 | size_t MaxToSize) { |
| 335 | if (ToSize >= MaxToSize) return 0; |
| 336 | size_t AvailableSpace = MaxToSize - ToSize; |
| 337 | size_t MaxCopySize = std::min(a: AvailableSpace, b: FromSize); |
| 338 | size_t CopySize = Rand(MaxCopySize) + 1; |
| 339 | size_t FromBeg = Rand(FromSize - CopySize + 1); |
| 340 | assert(FromBeg + CopySize <= FromSize); |
| 341 | size_t ToInsertPos = Rand(ToSize + 1); |
| 342 | assert(ToInsertPos + CopySize <= MaxToSize); |
| 343 | size_t TailSize = ToSize - ToInsertPos; |
| 344 | if (To == From) { |
| 345 | MutateInPlaceHere.resize(sz: MaxToSize); |
| 346 | memcpy(dest: MutateInPlaceHere.data(), src: From + FromBeg, n: CopySize); |
| 347 | memmove(dest: To + ToInsertPos + CopySize, src: To + ToInsertPos, n: TailSize); |
| 348 | memmove(dest: To + ToInsertPos, src: MutateInPlaceHere.data(), n: CopySize); |
| 349 | } else { |
| 350 | memmove(dest: To + ToInsertPos + CopySize, src: To + ToInsertPos, n: TailSize); |
| 351 | memmove(dest: To + ToInsertPos, src: From + FromBeg, n: CopySize); |
| 352 | } |
| 353 | return ToSize + CopySize; |
| 354 | } |
| 355 | |
| 356 | size_t MutationDispatcher::Mutate_CopyPart(uint8_t *Data, size_t Size, |
| 357 | size_t MaxSize) { |
| 358 | if (Size > MaxSize || Size == 0) return 0; |
| 359 | // If Size == MaxSize, `InsertPartOf(...)` will |
| 360 | // fail so there's no point using it in this case. |
| 361 | if (Size == MaxSize || Rand.RandBool()) |
| 362 | return CopyPartOf(From: Data, FromSize: Size, To: Data, ToSize: Size); |
| 363 | else |
| 364 | return InsertPartOf(From: Data, FromSize: Size, To: Data, ToSize: Size, MaxToSize: MaxSize); |
| 365 | } |
| 366 | |
| 367 | size_t MutationDispatcher::Mutate_ChangeASCIIInteger(uint8_t *Data, size_t Size, |
| 368 | size_t MaxSize) { |
| 369 | if (Size > MaxSize) return 0; |
| 370 | size_t B = Rand(Size); |
| 371 | while (B < Size && !isdigit(c: Data[B])) B++; |
| 372 | if (B == Size) return 0; |
| 373 | size_t E = B; |
| 374 | while (E < Size && isdigit(c: Data[E])) E++; |
| 375 | assert(B < E); |
| 376 | // now we have digits in [B, E). |
| 377 | // strtol and friends don't accept non-zero-teminated data, parse it manually. |
| 378 | uint64_t Val = Data[B] - '0'; |
| 379 | for (size_t i = B + 1; i < E; i++) |
| 380 | Val = Val * 10 + Data[i] - '0'; |
| 381 | |
| 382 | // Mutate the integer value. |
| 383 | switch(Rand(5)) { |
| 384 | case 0: Val++; break; |
| 385 | case 1: Val--; break; |
| 386 | case 2: Val /= 2; break; |
| 387 | case 3: Val *= 2; break; |
| 388 | case 4: Val = Rand(Val * Val); break; |
| 389 | default: assert(0); |
| 390 | } |
| 391 | // Just replace the bytes with the new ones, don't bother moving bytes. |
| 392 | for (size_t i = B; i < E; i++) { |
| 393 | size_t Idx = E + B - i - 1; |
| 394 | assert(Idx >= B && Idx < E); |
| 395 | Data[Idx] = (Val % 10) + '0'; |
| 396 | Val /= 10; |
| 397 | } |
| 398 | return Size; |
| 399 | } |
| 400 | |
| 401 | template<class T> |
| 402 | size_t ChangeBinaryInteger(uint8_t *Data, size_t Size, Random &Rand) { |
| 403 | if (Size < sizeof(T)) return 0; |
| 404 | size_t Off = Rand(Size - sizeof(T) + 1); |
| 405 | assert(Off + sizeof(T) <= Size); |
| 406 | T Val; |
| 407 | if (Off < 64 && !Rand(4)) { |
| 408 | Val = static_cast<T>(Size); |
| 409 | if (Rand.RandBool()) |
| 410 | Val = Bswap(Val); |
| 411 | } else { |
| 412 | memcpy(&Val, Data + Off, sizeof(Val)); |
| 413 | T Add = static_cast<T>(Rand(21)); |
| 414 | Add -= 10; |
| 415 | if (Rand.RandBool()) |
| 416 | Val = Bswap(T(Bswap(Val) + Add)); // Add assuming different endiannes. |
| 417 | else |
| 418 | Val = Val + Add; // Add assuming current endiannes. |
| 419 | if (Add == 0 || Rand.RandBool()) // Maybe negate. |
| 420 | Val = -Val; |
| 421 | } |
| 422 | memcpy(Data + Off, &Val, sizeof(Val)); |
| 423 | return Size; |
| 424 | } |
| 425 | |
| 426 | size_t MutationDispatcher::Mutate_ChangeBinaryInteger(uint8_t *Data, |
| 427 | size_t Size, |
| 428 | size_t MaxSize) { |
| 429 | if (Size > MaxSize) return 0; |
| 430 | switch (Rand(4)) { |
| 431 | case 3: return ChangeBinaryInteger<uint64_t>(Data, Size, Rand); |
| 432 | case 2: return ChangeBinaryInteger<uint32_t>(Data, Size, Rand); |
| 433 | case 1: return ChangeBinaryInteger<uint16_t>(Data, Size, Rand); |
| 434 | case 0: return ChangeBinaryInteger<uint8_t>(Data, Size, Rand); |
| 435 | default: assert(0); |
| 436 | } |
| 437 | return 0; |
| 438 | } |
| 439 | |
| 440 | size_t MutationDispatcher::Mutate_CrossOver(uint8_t *Data, size_t Size, |
| 441 | size_t MaxSize) { |
| 442 | if (Size > MaxSize) return 0; |
| 443 | if (Size == 0) return 0; |
| 444 | if (!CrossOverWith) return 0; |
| 445 | const Unit &O = *CrossOverWith; |
| 446 | if (O.empty()) return 0; |
| 447 | size_t NewSize = 0; |
| 448 | switch(Rand(3)) { |
| 449 | case 0: |
| 450 | MutateInPlaceHere.resize(sz: MaxSize); |
| 451 | NewSize = CrossOver(Data1: Data, Size1: Size, Data2: O.data(), Size2: O.size(), |
| 452 | Out: MutateInPlaceHere.data(), MaxOutSize: MaxSize); |
| 453 | memcpy(dest: Data, src: MutateInPlaceHere.data(), n: NewSize); |
| 454 | break; |
| 455 | case 1: |
| 456 | NewSize = InsertPartOf(From: O.data(), FromSize: O.size(), To: Data, ToSize: Size, MaxToSize: MaxSize); |
| 457 | if (!NewSize) |
| 458 | NewSize = CopyPartOf(From: O.data(), FromSize: O.size(), To: Data, ToSize: Size); |
| 459 | break; |
| 460 | case 2: |
| 461 | NewSize = CopyPartOf(From: O.data(), FromSize: O.size(), To: Data, ToSize: Size); |
| 462 | break; |
| 463 | default: assert(0); |
| 464 | } |
| 465 | assert(NewSize > 0 && "CrossOver returned empty unit" ); |
| 466 | assert(NewSize <= MaxSize && "CrossOver returned overisized unit" ); |
| 467 | return NewSize; |
| 468 | } |
| 469 | |
| 470 | void MutationDispatcher::StartMutationSequence() { |
| 471 | CurrentMutatorSequence.clear(); |
| 472 | CurrentDictionaryEntrySequence.clear(); |
| 473 | } |
| 474 | |
| 475 | // Copy successful dictionary entries to PersistentAutoDictionary. |
| 476 | void MutationDispatcher::RecordSuccessfulMutationSequence() { |
| 477 | for (auto DE : CurrentDictionaryEntrySequence) { |
| 478 | // PersistentAutoDictionary.AddWithSuccessCountOne(DE); |
| 479 | DE->IncSuccessCount(); |
| 480 | assert(DE->GetW().size()); |
| 481 | // Linear search is fine here as this happens seldom. |
| 482 | if (!PersistentAutoDictionary.ContainsWord(W: DE->GetW())) |
| 483 | PersistentAutoDictionary.push_back(DE: *DE); |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | void MutationDispatcher::PrintRecommendedDictionary() { |
| 488 | std::vector<DictionaryEntry> V; |
| 489 | for (auto &DE : PersistentAutoDictionary) |
| 490 | if (!ManualDictionary.ContainsWord(W: DE.GetW())) |
| 491 | V.push_back(x: DE); |
| 492 | if (V.empty()) return; |
| 493 | Printf(Fmt: "###### Recommended dictionary. ######\n" ); |
| 494 | for (auto &DE: V) { |
| 495 | assert(DE.GetW().size()); |
| 496 | Printf(Fmt: "\"" ); |
| 497 | PrintASCII(W: DE.GetW(), PrintAfter: "\"" ); |
| 498 | Printf(Fmt: " # Uses: %zd\n" , DE.GetUseCount()); |
| 499 | } |
| 500 | Printf(Fmt: "###### End of recommended dictionary. ######\n" ); |
| 501 | } |
| 502 | |
| 503 | void MutationDispatcher::PrintMutationSequence(bool Verbose) { |
| 504 | Printf(Fmt: "MS: %zd " , CurrentMutatorSequence.size()); |
| 505 | size_t EntriesToPrint = |
| 506 | Verbose ? CurrentMutatorSequence.size() |
| 507 | : std::min(a: kMaxMutationsToPrint, b: CurrentMutatorSequence.size()); |
| 508 | for (size_t i = 0; i < EntriesToPrint; i++) |
| 509 | Printf(Fmt: "%s-" , CurrentMutatorSequence[i].Name); |
| 510 | if (!CurrentDictionaryEntrySequence.empty()) { |
| 511 | Printf(Fmt: " DE: " ); |
| 512 | EntriesToPrint = Verbose ? CurrentDictionaryEntrySequence.size() |
| 513 | : std::min(a: kMaxMutationsToPrint, |
| 514 | b: CurrentDictionaryEntrySequence.size()); |
| 515 | for (size_t i = 0; i < EntriesToPrint; i++) { |
| 516 | Printf(Fmt: "\"" ); |
| 517 | PrintASCII(W: CurrentDictionaryEntrySequence[i]->GetW(), PrintAfter: "\"-" ); |
| 518 | } |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | std::string MutationDispatcher::MutationSequence() { |
| 523 | std::string MS; |
| 524 | for (const auto &M : CurrentMutatorSequence) { |
| 525 | MS += M.Name; |
| 526 | MS += "-" ; |
| 527 | } |
| 528 | return MS; |
| 529 | } |
| 530 | |
| 531 | size_t MutationDispatcher::Mutate(uint8_t *Data, size_t Size, size_t MaxSize) { |
| 532 | return MutateImpl(Data, Size, MaxSize, Mutators); |
| 533 | } |
| 534 | |
| 535 | size_t MutationDispatcher::DefaultMutate(uint8_t *Data, size_t Size, |
| 536 | size_t MaxSize) { |
| 537 | return MutateImpl(Data, Size, MaxSize, Mutators&: DefaultMutators); |
| 538 | } |
| 539 | |
| 540 | // Mutates Data in place, returns new size. |
| 541 | size_t MutationDispatcher::MutateImpl(uint8_t *Data, size_t Size, |
| 542 | size_t MaxSize, |
| 543 | std::vector<Mutator> &Mutators) { |
| 544 | assert(MaxSize > 0); |
| 545 | // Some mutations may fail (e.g. can't insert more bytes if Size == MaxSize), |
| 546 | // in which case they will return 0. |
| 547 | // Try several times before returning un-mutated data. |
| 548 | for (int Iter = 0; Iter < 100; Iter++) { |
| 549 | auto M = Mutators[Rand(Mutators.size())]; |
| 550 | size_t NewSize = (this->*(M.Fn))(Data, Size, MaxSize); |
| 551 | if (NewSize && NewSize <= MaxSize) { |
| 552 | if (Options.OnlyASCII) |
| 553 | ToASCII(Data, Size: NewSize); |
| 554 | CurrentMutatorSequence.push_back(x: M); |
| 555 | return NewSize; |
| 556 | } |
| 557 | } |
| 558 | *Data = ' '; |
| 559 | return 1; // Fallback, should not happen frequently. |
| 560 | } |
| 561 | |
| 562 | // Mask represents the set of Data bytes that are worth mutating. |
| 563 | size_t MutationDispatcher::MutateWithMask(uint8_t *Data, size_t Size, |
| 564 | size_t MaxSize, |
| 565 | const std::vector<uint8_t> &Mask) { |
| 566 | size_t MaskedSize = std::min(a: Size, b: Mask.size()); |
| 567 | // * Copy the worthy bytes into a temporary array T |
| 568 | // * Mutate T |
| 569 | // * Copy T back. |
| 570 | // This is totally unoptimized. |
| 571 | auto &T = MutateWithMaskTemp; |
| 572 | if (T.size() < Size) |
| 573 | T.resize(sz: Size); |
| 574 | size_t OneBits = 0; |
| 575 | for (size_t I = 0; I < MaskedSize; I++) |
| 576 | if (Mask[I]) |
| 577 | T[OneBits++] = Data[I]; |
| 578 | |
| 579 | if (!OneBits) return 0; |
| 580 | assert(!T.empty()); |
| 581 | size_t NewSize = Mutate(Data: T.data(), Size: OneBits, MaxSize: OneBits); |
| 582 | assert(NewSize <= OneBits); |
| 583 | (void)NewSize; |
| 584 | // Even if NewSize < OneBits we still use all OneBits bytes. |
| 585 | for (size_t I = 0, J = 0; I < MaskedSize; I++) |
| 586 | if (Mask[I]) |
| 587 | Data[I] = T[J++]; |
| 588 | return Size; |
| 589 | } |
| 590 | |
| 591 | void MutationDispatcher::AddWordToManualDictionary(const Word &W) { |
| 592 | ManualDictionary.push_back( |
| 593 | DE: {W, std::numeric_limits<size_t>::max()}); |
| 594 | } |
| 595 | |
| 596 | } // namespace fuzzer |
| 597 | |