| 1 | //===-- sanitizer_allocator_combined.h --------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Part of the Sanitizer Allocator. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | #ifndef SANITIZER_ALLOCATOR_H |
| 13 | #error This file must be included inside sanitizer_allocator.h |
| 14 | #endif |
| 15 | |
| 16 | // This class implements a complete memory allocator by using two |
| 17 | // internal allocators: |
| 18 | // PrimaryAllocator is efficient, but may not allocate some sizes (alignments). |
| 19 | // When allocating 2^x bytes it should return 2^x aligned chunk. |
| 20 | // PrimaryAllocator is used via a local AllocatorCache. |
| 21 | // SecondaryAllocator can allocate anything, but is not efficient. |
| 22 | template <class PrimaryAllocator, |
| 23 | class LargeMmapAllocatorPtrArray = DefaultLargeMmapAllocatorPtrArray> |
| 24 | class CombinedAllocator { |
| 25 | public: |
| 26 | using AllocatorCache = typename PrimaryAllocator::AllocatorCache; |
| 27 | using SecondaryAllocator = |
| 28 | LargeMmapAllocator<typename PrimaryAllocator::MapUnmapCallback, |
| 29 | LargeMmapAllocatorPtrArray, |
| 30 | typename PrimaryAllocator::AddressSpaceView>; |
| 31 | |
| 32 | void InitLinkerInitialized(s32 release_to_os_interval_ms, |
| 33 | uptr heap_start = 0) { |
| 34 | primary_.Init(release_to_os_interval_ms, heap_start); |
| 35 | secondary_.InitLinkerInitialized(); |
| 36 | } |
| 37 | |
| 38 | void Init(s32 release_to_os_interval_ms, uptr heap_start = 0) { |
| 39 | stats_.Init(); |
| 40 | primary_.Init(release_to_os_interval_ms, heap_start); |
| 41 | secondary_.Init(); |
| 42 | } |
| 43 | |
| 44 | void *Allocate(AllocatorCache *cache, uptr size, uptr alignment) { |
| 45 | // Returning 0 on malloc(0) may break a lot of code. |
| 46 | if (size == 0) |
| 47 | size = 1; |
| 48 | if (size + alignment < size) { |
| 49 | Report(format: "WARNING: %s: CombinedAllocator allocation overflow: " |
| 50 | "0x%zx bytes with 0x%zx alignment requested\n" , |
| 51 | SanitizerToolName, size, alignment); |
| 52 | return nullptr; |
| 53 | } |
| 54 | uptr original_size = size; |
| 55 | // If alignment requirements are to be fulfilled by the frontend allocator |
| 56 | // rather than by the primary or secondary, passing an alignment lower than |
| 57 | // or equal to 8 will prevent any further rounding up, as well as the later |
| 58 | // alignment check. |
| 59 | if (alignment > 8) |
| 60 | size = RoundUpTo(size, boundary: alignment); |
| 61 | // The primary allocator should return a 2^x aligned allocation when |
| 62 | // requested 2^x bytes, hence using the rounded up 'size' when being |
| 63 | // serviced by the primary (this is no longer true when the primary is |
| 64 | // using a non-fixed base address). The secondary takes care of the |
| 65 | // alignment without such requirement, and allocating 'size' would use |
| 66 | // extraneous memory, so we employ 'original_size'. |
| 67 | void *res; |
| 68 | if (primary_.CanAllocate(size, alignment)) |
| 69 | res = cache->Allocate(&primary_, primary_.ClassID(size)); |
| 70 | else |
| 71 | res = secondary_.Allocate(&stats_, original_size, alignment); |
| 72 | if (alignment > 8) |
| 73 | CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0); |
| 74 | return res; |
| 75 | } |
| 76 | |
| 77 | s32 ReleaseToOSIntervalMs() const { |
| 78 | return primary_.ReleaseToOSIntervalMs(); |
| 79 | } |
| 80 | |
| 81 | void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) { |
| 82 | primary_.SetReleaseToOSIntervalMs(release_to_os_interval_ms); |
| 83 | } |
| 84 | |
| 85 | void ForceReleaseToOS() { |
| 86 | primary_.ForceReleaseToOS(); |
| 87 | } |
| 88 | |
| 89 | void Deallocate(AllocatorCache *cache, void *p) { |
| 90 | if (!p) return; |
| 91 | if (primary_.PointerIsMine(p)) |
| 92 | cache->Deallocate(&primary_, primary_.GetSizeClass(p), p); |
| 93 | else |
| 94 | secondary_.Deallocate(&stats_, p); |
| 95 | } |
| 96 | |
| 97 | void *Reallocate(AllocatorCache *cache, void *p, uptr new_size, |
| 98 | uptr alignment) { |
| 99 | if (!p) |
| 100 | return Allocate(cache, size: new_size, alignment); |
| 101 | if (!new_size) { |
| 102 | Deallocate(cache, p); |
| 103 | return nullptr; |
| 104 | } |
| 105 | CHECK(PointerIsMine(p)); |
| 106 | uptr old_size = GetActuallyAllocatedSize(p); |
| 107 | uptr memcpy_size = Min(a: new_size, b: old_size); |
| 108 | void *new_p = Allocate(cache, size: new_size, alignment); |
| 109 | if (new_p) |
| 110 | internal_memcpy(dest: new_p, src: p, n: memcpy_size); |
| 111 | Deallocate(cache, p); |
| 112 | return new_p; |
| 113 | } |
| 114 | |
| 115 | bool PointerIsMine(const void *p) const { |
| 116 | if (primary_.PointerIsMine(p)) |
| 117 | return true; |
| 118 | return secondary_.PointerIsMine(p); |
| 119 | } |
| 120 | |
| 121 | bool FromPrimary(const void *p) const { return primary_.PointerIsMine(p); } |
| 122 | |
| 123 | void *GetMetaData(const void *p) { |
| 124 | if (primary_.PointerIsMine(p)) |
| 125 | return primary_.GetMetaData(p); |
| 126 | return secondary_.GetMetaData(p); |
| 127 | } |
| 128 | |
| 129 | void *GetBlockBegin(const void *p) { |
| 130 | if (primary_.PointerIsMine(p)) |
| 131 | return primary_.GetBlockBegin(p); |
| 132 | return secondary_.GetBlockBegin(p); |
| 133 | } |
| 134 | |
| 135 | // This function does the same as GetBlockBegin, but is much faster. |
| 136 | // Must be called with the allocator locked. |
| 137 | void *GetBlockBeginFastLocked(const void *p) { |
| 138 | if (primary_.PointerIsMine(p)) |
| 139 | return primary_.GetBlockBegin(p); |
| 140 | return secondary_.GetBlockBeginFastLocked(p); |
| 141 | } |
| 142 | |
| 143 | uptr GetActuallyAllocatedSize(void *p) { |
| 144 | if (primary_.PointerIsMine(p)) |
| 145 | return primary_.GetActuallyAllocatedSize(p); |
| 146 | return secondary_.GetActuallyAllocatedSize(p); |
| 147 | } |
| 148 | |
| 149 | uptr TotalMemoryUsed() { |
| 150 | return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed(); |
| 151 | } |
| 152 | |
| 153 | void TestOnlyUnmap() { primary_.TestOnlyUnmap(); } |
| 154 | |
| 155 | void InitCache(AllocatorCache *cache) { |
| 156 | cache->Init(&stats_); |
| 157 | } |
| 158 | |
| 159 | void DestroyCache(AllocatorCache *cache) { |
| 160 | cache->Destroy(&primary_, &stats_); |
| 161 | } |
| 162 | |
| 163 | void SwallowCache(AllocatorCache *cache) { |
| 164 | cache->Drain(&primary_); |
| 165 | } |
| 166 | |
| 167 | void GetStats(AllocatorStatCounters s) const { |
| 168 | stats_.Get(s); |
| 169 | } |
| 170 | |
| 171 | void PrintStats() { |
| 172 | primary_.PrintStats(); |
| 173 | secondary_.PrintStats(); |
| 174 | } |
| 175 | |
| 176 | // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone |
| 177 | // introspection API. |
| 178 | void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { |
| 179 | primary_.ForceLock(); |
| 180 | secondary_.ForceLock(); |
| 181 | } |
| 182 | |
| 183 | void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { |
| 184 | secondary_.ForceUnlock(); |
| 185 | primary_.ForceUnlock(); |
| 186 | } |
| 187 | |
| 188 | // Iterate over all existing chunks. |
| 189 | // The allocator must be locked when calling this function. |
| 190 | void ForEachChunk(ForEachChunkCallback callback, void *arg) { |
| 191 | primary_.ForEachChunk(callback, arg); |
| 192 | secondary_.ForEachChunk(callback, arg); |
| 193 | } |
| 194 | |
| 195 | private: |
| 196 | PrimaryAllocator primary_; |
| 197 | SecondaryAllocator secondary_; |
| 198 | AllocatorGlobalStats stats_; |
| 199 | }; |
| 200 | |