| 1 | //===-- size_class_allocator.h ----------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef SCUDO_SIZE_CLASS_ALLOCATOR_H_ |
| 10 | #define SCUDO_SIZE_CLASS_ALLOCATOR_H_ |
| 11 | |
| 12 | #include "internal_defs.h" |
| 13 | #include "list.h" |
| 14 | #include "platform.h" |
| 15 | #include "report.h" |
| 16 | #include "stats.h" |
| 17 | #include "string_utils.h" |
| 18 | |
| 19 | namespace scudo { |
| 20 | |
| 21 | template <class SizeClassAllocator> struct SizeClassAllocatorLocalCache { |
| 22 | typedef typename SizeClassAllocator::SizeClassMap SizeClassMap; |
| 23 | typedef typename SizeClassAllocator::CompactPtrT CompactPtrT; |
| 24 | |
| 25 | void init(GlobalStats *S, SizeClassAllocator *A) { |
| 26 | DCHECK(isEmpty()); |
| 27 | Stats.init(); |
| 28 | if (LIKELY(S)) |
| 29 | S->link(S: &Stats); |
| 30 | Allocator = A; |
| 31 | initAllocator(); |
| 32 | } |
| 33 | |
| 34 | void destroy(GlobalStats *S) { |
| 35 | drain(); |
| 36 | if (LIKELY(S)) |
| 37 | S->unlink(S: &Stats); |
| 38 | } |
| 39 | |
| 40 | void *allocate(uptr ClassId) { |
| 41 | DCHECK_LT(ClassId, NumClasses); |
| 42 | PerClass *C = &PerClassArray[ClassId]; |
| 43 | if (C->Count == 0) { |
| 44 | // Refill half of the number of max cached. |
| 45 | DCHECK_GT(C->MaxCount / 2, 0U); |
| 46 | if (UNLIKELY(!refill(C, ClassId, C->MaxCount / 2))) |
| 47 | return nullptr; |
| 48 | DCHECK_GT(C->Count, 0); |
| 49 | } |
| 50 | // We read ClassSize first before accessing Chunks because it's adjacent to |
| 51 | // Count, while Chunks might be further off (depending on Count). That keeps |
| 52 | // the memory accesses in close quarters. |
| 53 | const uptr ClassSize = C->ClassSize; |
| 54 | CompactPtrT CompactP = C->Chunks[--C->Count]; |
| 55 | Stats.add(I: StatAllocated, V: ClassSize); |
| 56 | Stats.sub(I: StatFree, V: ClassSize); |
| 57 | return Allocator->decompactPtr(ClassId, CompactP); |
| 58 | } |
| 59 | |
| 60 | bool deallocate(uptr ClassId, void *P) { |
| 61 | CHECK_LT(ClassId, NumClasses); |
| 62 | PerClass *C = &PerClassArray[ClassId]; |
| 63 | |
| 64 | // If the cache is full, drain half of blocks back to the main allocator. |
| 65 | const bool NeedToDrainCache = C->Count == C->MaxCount; |
| 66 | if (NeedToDrainCache) |
| 67 | drain(C, ClassId); |
| 68 | // See comment in allocate() about memory accesses. |
| 69 | const uptr ClassSize = C->ClassSize; |
| 70 | C->Chunks[C->Count++] = |
| 71 | Allocator->compactPtr(ClassId, reinterpret_cast<uptr>(P)); |
| 72 | Stats.sub(I: StatAllocated, V: ClassSize); |
| 73 | Stats.add(I: StatFree, V: ClassSize); |
| 74 | |
| 75 | return NeedToDrainCache; |
| 76 | } |
| 77 | |
| 78 | bool isEmpty() const { |
| 79 | for (uptr I = 0; I < NumClasses; ++I) |
| 80 | if (PerClassArray[I].Count) |
| 81 | return false; |
| 82 | return true; |
| 83 | } |
| 84 | |
| 85 | void drain() { |
| 86 | // Drain BatchClassId last as it may be needed while draining normal blocks. |
| 87 | for (uptr I = 0; I < NumClasses; ++I) { |
| 88 | if (I == BatchClassId) |
| 89 | continue; |
| 90 | while (PerClassArray[I].Count > 0) |
| 91 | drain(&PerClassArray[I], I); |
| 92 | } |
| 93 | while (PerClassArray[BatchClassId].Count > 0) |
| 94 | drain(&PerClassArray[BatchClassId], BatchClassId); |
| 95 | DCHECK(isEmpty()); |
| 96 | } |
| 97 | |
| 98 | void *getBatchClassBlock() { |
| 99 | void *B = allocate(ClassId: BatchClassId); |
| 100 | if (UNLIKELY(!B)) |
| 101 | reportOutOfMemory(SizeClassAllocator::getSizeByClassId(BatchClassId)); |
| 102 | return B; |
| 103 | } |
| 104 | |
| 105 | LocalStats &getStats() { return Stats; } |
| 106 | |
| 107 | void getStats(ScopedString *Str) { |
| 108 | bool EmptyCache = true; |
| 109 | for (uptr I = 0; I < NumClasses; ++I) { |
| 110 | if (PerClassArray[I].Count == 0) |
| 111 | continue; |
| 112 | |
| 113 | EmptyCache = false; |
| 114 | // The size of BatchClass is set to 0 intentionally. See the comment in |
| 115 | // initAllocator() for more details. |
| 116 | const uptr ClassSize = I == BatchClassId |
| 117 | ? SizeClassAllocator::getSizeByClassId(I) |
| 118 | : PerClassArray[I].ClassSize; |
| 119 | // Note that the string utils don't support printing u16 thus we cast it |
| 120 | // to a common use type uptr. |
| 121 | Str->append(Format: " %02zu (%6zu): cached: %4zu max: %4zu\n" , I, ClassSize, |
| 122 | static_cast<uptr>(PerClassArray[I].Count), |
| 123 | static_cast<uptr>(PerClassArray[I].MaxCount)); |
| 124 | } |
| 125 | |
| 126 | if (EmptyCache) |
| 127 | Str->append(Format: " No block is cached.\n" ); |
| 128 | } |
| 129 | |
| 130 | static u16 getMaxCached(uptr Size) { |
| 131 | return Min(SizeClassMap::MaxNumCachedHint, |
| 132 | SizeClassMap::getMaxCachedHint(Size)); |
| 133 | } |
| 134 | |
| 135 | private: |
| 136 | static const uptr NumClasses = SizeClassMap::NumClasses; |
| 137 | static const uptr BatchClassId = SizeClassMap::BatchClassId; |
| 138 | struct alignas(SCUDO_CACHE_LINE_SIZE) PerClass { |
| 139 | u16 Count; |
| 140 | u16 MaxCount; |
| 141 | // Note: ClassSize is zero for the transfer batch. |
| 142 | uptr ClassSize; |
| 143 | CompactPtrT Chunks[2 * SizeClassMap::MaxNumCachedHint]; |
| 144 | }; |
| 145 | PerClass PerClassArray[NumClasses] = {}; |
| 146 | LocalStats Stats; |
| 147 | SizeClassAllocator *Allocator = nullptr; |
| 148 | |
| 149 | NOINLINE void initAllocator() { |
| 150 | for (uptr I = 0; I < NumClasses; I++) { |
| 151 | PerClass *P = &PerClassArray[I]; |
| 152 | const uptr Size = SizeClassAllocator::getSizeByClassId(I); |
| 153 | P->MaxCount = static_cast<u16>(2 * getMaxCached(Size)); |
| 154 | if (I != BatchClassId) { |
| 155 | P->ClassSize = Size; |
| 156 | } else { |
| 157 | // ClassSize in this struct is only used for malloc/free stats, which |
| 158 | // should only track user allocations, not internal movements. |
| 159 | P->ClassSize = 0; |
| 160 | } |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | NOINLINE bool refill(PerClass *C, uptr ClassId, u16 MaxRefill) { |
| 165 | const u16 NumBlocksRefilled = |
| 166 | Allocator->popBlocks(this, ClassId, C->Chunks, MaxRefill); |
| 167 | DCHECK_LE(NumBlocksRefilled, MaxRefill); |
| 168 | C->Count = static_cast<u16>(C->Count + NumBlocksRefilled); |
| 169 | return NumBlocksRefilled != 0; |
| 170 | } |
| 171 | |
| 172 | NOINLINE void drain(PerClass *C, uptr ClassId) { |
| 173 | const u16 Count = Min(static_cast<u16>(C->MaxCount / 2), C->Count); |
| 174 | Allocator->pushBlocks(this, ClassId, &C->Chunks[0], Count); |
| 175 | // u16 will be promoted to int by arithmetic type conversion. |
| 176 | C->Count = static_cast<u16>(C->Count - Count); |
| 177 | for (u16 I = 0; I < C->Count; I++) |
| 178 | C->Chunks[I] = C->Chunks[I + Count]; |
| 179 | } |
| 180 | }; |
| 181 | |
| 182 | template <class SizeClassAllocator> struct SizeClassAllocatorNoCache { |
| 183 | typedef typename SizeClassAllocator::SizeClassMap SizeClassMap; |
| 184 | typedef typename SizeClassAllocator::CompactPtrT CompactPtrT; |
| 185 | |
| 186 | void init(GlobalStats *S, SizeClassAllocator *A) { |
| 187 | Stats.init(); |
| 188 | if (LIKELY(S)) |
| 189 | S->link(S: &Stats); |
| 190 | Allocator = A; |
| 191 | initAllocator(); |
| 192 | } |
| 193 | |
| 194 | void destroy(GlobalStats *S) { |
| 195 | if (LIKELY(S)) |
| 196 | S->unlink(S: &Stats); |
| 197 | } |
| 198 | |
| 199 | void *allocate(uptr ClassId) { |
| 200 | CompactPtrT CompactPtr; |
| 201 | uptr NumBlocksPopped = Allocator->popBlocks(this, ClassId, &CompactPtr, 1U); |
| 202 | if (NumBlocksPopped == 0) |
| 203 | return nullptr; |
| 204 | DCHECK_EQ(NumBlocksPopped, 1U); |
| 205 | const PerClass *C = &PerClassArray[ClassId]; |
| 206 | Stats.add(I: StatAllocated, V: C->ClassSize); |
| 207 | Stats.sub(I: StatFree, V: C->ClassSize); |
| 208 | return Allocator->decompactPtr(ClassId, CompactPtr); |
| 209 | } |
| 210 | |
| 211 | bool deallocate(uptr ClassId, void *P) { |
| 212 | CHECK_LT(ClassId, NumClasses); |
| 213 | |
| 214 | if (ClassId == BatchClassId) |
| 215 | return deallocateBatchClassBlock(P); |
| 216 | |
| 217 | CompactPtrT CompactPtr = |
| 218 | Allocator->compactPtr(ClassId, reinterpret_cast<uptr>(P)); |
| 219 | Allocator->pushBlocks(this, ClassId, &CompactPtr, 1U); |
| 220 | PerClass *C = &PerClassArray[ClassId]; |
| 221 | Stats.sub(I: StatAllocated, V: C->ClassSize); |
| 222 | Stats.add(I: StatFree, V: C->ClassSize); |
| 223 | |
| 224 | // The following adopts the same strategy of allocator draining as used |
| 225 | // in SizeClassAllocatorLocalCache so that use the same hint when doing |
| 226 | // a page release. |
| 227 | ++C->Count; |
| 228 | const bool SuggestDraining = C->Count >= C->MaxCount; |
| 229 | if (SuggestDraining) |
| 230 | C->Count = 0; |
| 231 | return SuggestDraining; |
| 232 | } |
| 233 | |
| 234 | void *getBatchClassBlock() { |
| 235 | PerClass *C = &PerClassArray[BatchClassId]; |
| 236 | if (C->Count == 0) { |
| 237 | const u16 NumBlocksRefilled = Allocator->popBlocks( |
| 238 | this, BatchClassId, BatchClassStorage, C->MaxCount); |
| 239 | if (NumBlocksRefilled == 0) |
| 240 | reportOutOfMemory(SizeClassAllocator::getSizeByClassId(BatchClassId)); |
| 241 | DCHECK_LE(NumBlocksRefilled, SizeClassMap::MaxNumCachedHint); |
| 242 | C->Count = NumBlocksRefilled; |
| 243 | } |
| 244 | |
| 245 | const uptr ClassSize = C->ClassSize; |
| 246 | CompactPtrT CompactP = BatchClassStorage[--C->Count]; |
| 247 | Stats.add(I: StatAllocated, V: ClassSize); |
| 248 | Stats.sub(I: StatFree, V: ClassSize); |
| 249 | |
| 250 | return Allocator->decompactPtr(BatchClassId, CompactP); |
| 251 | } |
| 252 | |
| 253 | LocalStats &getStats() { return Stats; } |
| 254 | |
| 255 | void getStats(ScopedString *Str) { Str->append(Format: " No block is cached.\n" ); } |
| 256 | |
| 257 | bool isEmpty() const { |
| 258 | const PerClass *C = &PerClassArray[BatchClassId]; |
| 259 | return C->Count == 0; |
| 260 | } |
| 261 | void drain() { |
| 262 | PerClass *C = &PerClassArray[BatchClassId]; |
| 263 | if (C->Count > 0) { |
| 264 | Allocator->pushBlocks(this, BatchClassId, BatchClassStorage, C->Count); |
| 265 | C->Count = 0; |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | static u16 getMaxCached(uptr Size) { |
| 270 | return Min(SizeClassMap::MaxNumCachedHint, |
| 271 | SizeClassMap::getMaxCachedHint(Size)); |
| 272 | } |
| 273 | |
| 274 | private: |
| 275 | static const uptr NumClasses = SizeClassMap::NumClasses; |
| 276 | static const uptr BatchClassId = SizeClassMap::BatchClassId; |
| 277 | struct alignas(SCUDO_CACHE_LINE_SIZE) PerClass { |
| 278 | u16 Count = 0; |
| 279 | u16 MaxCount; |
| 280 | // Note: ClassSize is zero for the transfer batch. |
| 281 | uptr ClassSize; |
| 282 | }; |
| 283 | PerClass PerClassArray[NumClasses] = {}; |
| 284 | // Popping BatchClass blocks requires taking a certain amount of blocks at |
| 285 | // once. This restriction comes from how we manage the storing of BatchClass |
| 286 | // in the primary allocator. See more details in `popBlocksImpl` in the |
| 287 | // primary allocator. |
| 288 | CompactPtrT BatchClassStorage[SizeClassMap::MaxNumCachedHint] = {}; |
| 289 | LocalStats Stats; |
| 290 | SizeClassAllocator *Allocator = nullptr; |
| 291 | |
| 292 | bool deallocateBatchClassBlock(void *P) { |
| 293 | PerClass *C = &PerClassArray[BatchClassId]; |
| 294 | // Drain all the blocks. |
| 295 | if (C->Count >= C->MaxCount) { |
| 296 | Allocator->pushBlocks(this, BatchClassId, BatchClassStorage, C->Count); |
| 297 | C->Count = 0; |
| 298 | } |
| 299 | BatchClassStorage[C->Count++] = |
| 300 | Allocator->compactPtr(BatchClassId, reinterpret_cast<uptr>(P)); |
| 301 | |
| 302 | // Currently, BatchClass doesn't support page releasing, so we always return |
| 303 | // false. |
| 304 | return false; |
| 305 | } |
| 306 | |
| 307 | NOINLINE void initAllocator() { |
| 308 | for (uptr I = 0; I < NumClasses; I++) { |
| 309 | PerClass *P = &PerClassArray[I]; |
| 310 | const uptr Size = SizeClassAllocator::getSizeByClassId(I); |
| 311 | if (I != BatchClassId) { |
| 312 | P->ClassSize = Size; |
| 313 | P->MaxCount = static_cast<u16>(2 * getMaxCached(Size)); |
| 314 | } else { |
| 315 | // ClassSize in this struct is only used for malloc/free stats, which |
| 316 | // should only track user allocations, not internal movements. |
| 317 | P->ClassSize = 0; |
| 318 | P->MaxCount = SizeClassMap::MaxNumCachedHint; |
| 319 | } |
| 320 | } |
| 321 | } |
| 322 | }; |
| 323 | |
| 324 | } // namespace scudo |
| 325 | |
| 326 | #endif // SCUDO_SIZE_CLASS_ALLOCATOR_H_ |
| 327 | |