| 1 | //===-- tsan_fd.cpp -------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file is a part of ThreadSanitizer (TSan), a race detector. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "tsan_fd.h" |
| 14 | |
| 15 | #include <sanitizer_common/sanitizer_atomic.h> |
| 16 | |
| 17 | #include "tsan_interceptors.h" |
| 18 | #include "tsan_rtl.h" |
| 19 | |
| 20 | namespace __tsan { |
| 21 | |
| 22 | const int kTableSizeL1 = 1024; |
| 23 | const int kTableSizeL2 = 1024; |
| 24 | const int kTableSize = kTableSizeL1 * kTableSizeL2; |
| 25 | |
| 26 | struct FdSync { |
| 27 | atomic_uint64_t rc; |
| 28 | }; |
| 29 | |
| 30 | struct FdDesc { |
| 31 | FdSync *sync; |
| 32 | // This is used to establish write -> epoll_wait synchronization |
| 33 | // where epoll_wait receives notification about the write. |
| 34 | atomic_uintptr_t aux_sync; // FdSync* |
| 35 | Tid creation_tid; |
| 36 | StackID creation_stack; |
| 37 | bool closed; |
| 38 | }; |
| 39 | |
| 40 | struct FdContext { |
| 41 | atomic_uintptr_t tab[kTableSizeL1]; |
| 42 | // Addresses used for synchronization. |
| 43 | FdSync globsync; |
| 44 | FdSync filesync; |
| 45 | FdSync socksync; |
| 46 | u64 connectsync; |
| 47 | }; |
| 48 | |
| 49 | static FdContext fdctx; |
| 50 | |
| 51 | static bool bogusfd(int fd) { |
| 52 | // Apparently a bogus fd value. |
| 53 | return fd < 0 || fd >= kTableSize; |
| 54 | } |
| 55 | |
| 56 | static FdSync *allocsync(ThreadState *thr, uptr pc) { |
| 57 | FdSync *s = (FdSync*)user_alloc_internal(thr, pc, sz: sizeof(FdSync), |
| 58 | align: kDefaultAlignment, signal: false); |
| 59 | atomic_store(a: &s->rc, v: 1, mo: memory_order_relaxed); |
| 60 | return s; |
| 61 | } |
| 62 | |
| 63 | static FdSync *ref(FdSync *s) { |
| 64 | if (s && atomic_load(a: &s->rc, mo: memory_order_relaxed) != (u64)-1) |
| 65 | atomic_fetch_add(a: &s->rc, v: 1, mo: memory_order_relaxed); |
| 66 | return s; |
| 67 | } |
| 68 | |
| 69 | static void unref(ThreadState *thr, uptr pc, FdSync *s) { |
| 70 | if (s && atomic_load(a: &s->rc, mo: memory_order_relaxed) != (u64)-1) { |
| 71 | if (atomic_fetch_sub(a: &s->rc, v: 1, mo: memory_order_acq_rel) == 1) { |
| 72 | CHECK_NE(s, &fdctx.globsync); |
| 73 | CHECK_NE(s, &fdctx.filesync); |
| 74 | CHECK_NE(s, &fdctx.socksync); |
| 75 | user_free(thr, pc, p: s, signal: false); |
| 76 | } |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) { |
| 81 | CHECK_GE(fd, 0); |
| 82 | CHECK_LT(fd, kTableSize); |
| 83 | atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2]; |
| 84 | uptr l1 = atomic_load(a: pl1, mo: memory_order_consume); |
| 85 | if (l1 == 0) { |
| 86 | uptr size = kTableSizeL2 * sizeof(FdDesc); |
| 87 | // We need this to reside in user memory to properly catch races on it. |
| 88 | void *p = user_alloc_internal(thr, pc, sz: size, align: kDefaultAlignment, signal: false); |
| 89 | internal_memset(s: p, c: 0, n: size); |
| 90 | MemoryResetRange(thr, pc: (uptr)&fddesc, addr: (uptr)p, size); |
| 91 | if (atomic_compare_exchange_strong(a: pl1, cmp: &l1, xchg: (uptr)p, mo: memory_order_acq_rel)) |
| 92 | l1 = (uptr)p; |
| 93 | else |
| 94 | user_free(thr, pc, p, signal: false); |
| 95 | } |
| 96 | FdDesc *fds = reinterpret_cast<FdDesc *>(l1); |
| 97 | return &fds[fd % kTableSizeL2]; |
| 98 | } |
| 99 | |
| 100 | // pd must be already ref'ed. |
| 101 | static void init(ThreadState *thr, uptr pc, int fd, FdSync *s, |
| 102 | bool write = true) { |
| 103 | FdDesc *d = fddesc(thr, pc, fd); |
| 104 | // As a matter of fact, we don't intercept all close calls. |
| 105 | // See e.g. libc __res_iclose(). |
| 106 | if (d->sync) { |
| 107 | unref(thr, pc, s: d->sync); |
| 108 | d->sync = 0; |
| 109 | } |
| 110 | unref(thr, pc, |
| 111 | s: reinterpret_cast<FdSync *>( |
| 112 | atomic_load(a: &d->aux_sync, mo: memory_order_relaxed))); |
| 113 | atomic_store(a: &d->aux_sync, v: 0, mo: memory_order_relaxed); |
| 114 | if (flags()->io_sync == 0) { |
| 115 | unref(thr, pc, s); |
| 116 | } else if (flags()->io_sync == 1) { |
| 117 | d->sync = s; |
| 118 | } else if (flags()->io_sync == 2) { |
| 119 | unref(thr, pc, s); |
| 120 | d->sync = &fdctx.globsync; |
| 121 | } |
| 122 | d->creation_tid = thr->tid; |
| 123 | d->creation_stack = CurrentStackId(thr, pc); |
| 124 | d->closed = false; |
| 125 | // This prevents false positives on fd_close_norace3.cpp test. |
| 126 | // The mechanics of the false positive are not completely clear, |
| 127 | // but it happens only if global reset is enabled (flush_memory_ms=1) |
| 128 | // and may be related to lost writes during asynchronous MADV_DONTNEED. |
| 129 | SlotLocker locker(thr); |
| 130 | if (write) { |
| 131 | // To catch races between fd usage and open. |
| 132 | MemoryRangeImitateWrite(thr, pc, addr: (uptr)d, size: 8); |
| 133 | } else { |
| 134 | // See the dup-related comment in FdClose. |
| 135 | MemoryAccess(thr, pc, addr: (uptr)d, size: 8, typ: kAccessRead | kAccessSlotLocked); |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | void FdInit() { |
| 140 | atomic_store(a: &fdctx.globsync.rc, v: (u64)-1, mo: memory_order_relaxed); |
| 141 | atomic_store(a: &fdctx.filesync.rc, v: (u64)-1, mo: memory_order_relaxed); |
| 142 | atomic_store(a: &fdctx.socksync.rc, v: (u64)-1, mo: memory_order_relaxed); |
| 143 | } |
| 144 | |
| 145 | void FdOnFork(ThreadState *thr, uptr pc) { |
| 146 | // On fork() we need to reset all fd's, because the child is going |
| 147 | // close all them, and that will cause races between previous read/write |
| 148 | // and the close. |
| 149 | for (int l1 = 0; l1 < kTableSizeL1; l1++) { |
| 150 | FdDesc *tab = (FdDesc*)atomic_load(a: &fdctx.tab[l1], mo: memory_order_relaxed); |
| 151 | if (tab == 0) |
| 152 | break; |
| 153 | for (int l2 = 0; l2 < kTableSizeL2; l2++) { |
| 154 | FdDesc *d = &tab[l2]; |
| 155 | MemoryResetRange(thr, pc, addr: (uptr)d, size: 8); |
| 156 | } |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | bool FdLocation(uptr addr, int *fd, Tid *tid, StackID *stack, bool *closed) { |
| 161 | for (int l1 = 0; l1 < kTableSizeL1; l1++) { |
| 162 | FdDesc *tab = (FdDesc*)atomic_load(a: &fdctx.tab[l1], mo: memory_order_relaxed); |
| 163 | if (tab == 0) |
| 164 | break; |
| 165 | if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) { |
| 166 | int l2 = (addr - (uptr)tab) / sizeof(FdDesc); |
| 167 | FdDesc *d = &tab[l2]; |
| 168 | *fd = l1 * kTableSizeL1 + l2; |
| 169 | *tid = d->creation_tid; |
| 170 | *stack = d->creation_stack; |
| 171 | *closed = d->closed; |
| 172 | return true; |
| 173 | } |
| 174 | } |
| 175 | return false; |
| 176 | } |
| 177 | |
| 178 | void FdAcquire(ThreadState *thr, uptr pc, int fd) { |
| 179 | if (bogusfd(fd)) |
| 180 | return; |
| 181 | FdDesc *d = fddesc(thr, pc, fd); |
| 182 | FdSync *s = d->sync; |
| 183 | DPrintf("#%d: FdAcquire(%d) -> %p\n" , thr->tid, fd, s); |
| 184 | MemoryAccess(thr, pc, addr: (uptr)d, size: 8, typ: kAccessRead); |
| 185 | if (s) |
| 186 | Acquire(thr, pc, addr: (uptr)s); |
| 187 | } |
| 188 | |
| 189 | void FdRelease(ThreadState *thr, uptr pc, int fd) { |
| 190 | if (bogusfd(fd)) |
| 191 | return; |
| 192 | FdDesc *d = fddesc(thr, pc, fd); |
| 193 | FdSync *s = d->sync; |
| 194 | DPrintf("#%d: FdRelease(%d) -> %p\n" , thr->tid, fd, s); |
| 195 | MemoryAccess(thr, pc, addr: (uptr)d, size: 8, typ: kAccessRead); |
| 196 | if (s) |
| 197 | Release(thr, pc, addr: (uptr)s); |
| 198 | if (uptr aux_sync = atomic_load(a: &d->aux_sync, mo: memory_order_acquire)) |
| 199 | Release(thr, pc, addr: aux_sync); |
| 200 | } |
| 201 | |
| 202 | void FdAccess(ThreadState *thr, uptr pc, int fd) { |
| 203 | DPrintf("#%d: FdAccess(%d)\n" , thr->tid, fd); |
| 204 | if (bogusfd(fd)) |
| 205 | return; |
| 206 | FdDesc *d = fddesc(thr, pc, fd); |
| 207 | MemoryAccess(thr, pc, addr: (uptr)d, size: 8, typ: kAccessRead); |
| 208 | } |
| 209 | |
| 210 | void FdClose(ThreadState *thr, uptr pc, int fd, bool write) { |
| 211 | DPrintf("#%d: FdClose(%d)\n" , thr->tid, fd); |
| 212 | if (bogusfd(fd)) |
| 213 | return; |
| 214 | FdDesc *d = fddesc(thr, pc, fd); |
| 215 | { |
| 216 | // Need to lock the slot to make MemoryAccess and MemoryResetRange atomic |
| 217 | // with respect to global reset. See the comment in MemoryRangeFreed. |
| 218 | SlotLocker locker(thr); |
| 219 | if (!MustIgnoreInterceptor(thr)) { |
| 220 | if (write) { |
| 221 | // To catch races between fd usage and close. |
| 222 | MemoryAccess(thr, pc, addr: (uptr)d, size: 8, |
| 223 | typ: kAccessWrite | kAccessCheckOnly | kAccessSlotLocked); |
| 224 | } else { |
| 225 | // This path is used only by dup2/dup3 calls. |
| 226 | // We do read instead of write because there is a number of legitimate |
| 227 | // cases where write would lead to false positives: |
| 228 | // 1. Some software dups a closed pipe in place of a socket before |
| 229 | // closing |
| 230 | // the socket (to prevent races actually). |
| 231 | // 2. Some daemons dup /dev/null in place of stdin/stdout. |
| 232 | // On the other hand we have not seen cases when write here catches real |
| 233 | // bugs. |
| 234 | MemoryAccess(thr, pc, addr: (uptr)d, size: 8, |
| 235 | typ: kAccessRead | kAccessCheckOnly | kAccessSlotLocked); |
| 236 | } |
| 237 | } |
| 238 | // We need to clear it, because if we do not intercept any call out there |
| 239 | // that creates fd, we will hit false postives. |
| 240 | MemoryResetRange(thr, pc, addr: (uptr)d, size: 8); |
| 241 | } |
| 242 | unref(thr, pc, s: d->sync); |
| 243 | d->sync = 0; |
| 244 | unref(thr, pc, |
| 245 | s: reinterpret_cast<FdSync *>( |
| 246 | atomic_load(a: &d->aux_sync, mo: memory_order_relaxed))); |
| 247 | atomic_store(a: &d->aux_sync, v: 0, mo: memory_order_relaxed); |
| 248 | d->closed = true; |
| 249 | d->creation_tid = thr->tid; |
| 250 | d->creation_stack = CurrentStackId(thr, pc); |
| 251 | } |
| 252 | |
| 253 | void FdFileCreate(ThreadState *thr, uptr pc, int fd) { |
| 254 | DPrintf("#%d: FdFileCreate(%d)\n" , thr->tid, fd); |
| 255 | if (bogusfd(fd)) |
| 256 | return; |
| 257 | init(thr, pc, fd, s: &fdctx.filesync); |
| 258 | } |
| 259 | |
| 260 | void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd, bool write) { |
| 261 | DPrintf("#%d: FdDup(%d, %d)\n" , thr->tid, oldfd, newfd); |
| 262 | if (bogusfd(fd: oldfd) || bogusfd(fd: newfd)) |
| 263 | return; |
| 264 | // Ignore the case when user dups not yet connected socket. |
| 265 | FdDesc *od = fddesc(thr, pc, fd: oldfd); |
| 266 | MemoryAccess(thr, pc, addr: (uptr)od, size: 8, typ: kAccessRead); |
| 267 | FdClose(thr, pc, fd: newfd, write); |
| 268 | init(thr, pc, fd: newfd, s: ref(s: od->sync), write); |
| 269 | } |
| 270 | |
| 271 | void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) { |
| 272 | DPrintf("#%d: FdCreatePipe(%d, %d)\n" , thr->tid, rfd, wfd); |
| 273 | FdSync *s = allocsync(thr, pc); |
| 274 | init(thr, pc, fd: rfd, s: ref(s)); |
| 275 | init(thr, pc, fd: wfd, s: ref(s)); |
| 276 | unref(thr, pc, s); |
| 277 | } |
| 278 | |
| 279 | void FdEventCreate(ThreadState *thr, uptr pc, int fd) { |
| 280 | DPrintf("#%d: FdEventCreate(%d)\n" , thr->tid, fd); |
| 281 | if (bogusfd(fd)) |
| 282 | return; |
| 283 | init(thr, pc, fd, s: allocsync(thr, pc)); |
| 284 | } |
| 285 | |
| 286 | void FdSignalCreate(ThreadState *thr, uptr pc, int fd) { |
| 287 | DPrintf("#%d: FdSignalCreate(%d)\n" , thr->tid, fd); |
| 288 | if (bogusfd(fd)) |
| 289 | return; |
| 290 | init(thr, pc, fd, s: 0); |
| 291 | } |
| 292 | |
| 293 | void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) { |
| 294 | DPrintf("#%d: FdInotifyCreate(%d)\n" , thr->tid, fd); |
| 295 | if (bogusfd(fd)) |
| 296 | return; |
| 297 | init(thr, pc, fd, s: 0); |
| 298 | } |
| 299 | |
| 300 | void FdPollCreate(ThreadState *thr, uptr pc, int fd) { |
| 301 | DPrintf("#%d: FdPollCreate(%d)\n" , thr->tid, fd); |
| 302 | if (bogusfd(fd)) |
| 303 | return; |
| 304 | init(thr, pc, fd, s: allocsync(thr, pc)); |
| 305 | } |
| 306 | |
| 307 | void FdPollAdd(ThreadState *thr, uptr pc, int epfd, int fd) { |
| 308 | DPrintf("#%d: FdPollAdd(%d, %d)\n" , thr->tid, epfd, fd); |
| 309 | if (bogusfd(fd: epfd) || bogusfd(fd)) |
| 310 | return; |
| 311 | FdDesc *d = fddesc(thr, pc, fd); |
| 312 | // Associate fd with epoll fd only once. |
| 313 | // While an fd can be associated with multiple epolls at the same time, |
| 314 | // or with different epolls during different phases of lifetime, |
| 315 | // synchronization semantics (and examples) of this are unclear. |
| 316 | // So we don't support this for now. |
| 317 | // If we change the association, it will also create lifetime management |
| 318 | // problem for FdRelease which accesses the aux_sync. |
| 319 | if (atomic_load(a: &d->aux_sync, mo: memory_order_relaxed)) |
| 320 | return; |
| 321 | FdDesc *epd = fddesc(thr, pc, fd: epfd); |
| 322 | FdSync *s = epd->sync; |
| 323 | if (!s) |
| 324 | return; |
| 325 | uptr cmp = 0; |
| 326 | if (atomic_compare_exchange_strong( |
| 327 | a: &d->aux_sync, cmp: &cmp, xchg: reinterpret_cast<uptr>(s), mo: memory_order_release)) |
| 328 | ref(s); |
| 329 | } |
| 330 | |
| 331 | void FdSocketCreate(ThreadState *thr, uptr pc, int fd) { |
| 332 | DPrintf("#%d: FdSocketCreate(%d)\n" , thr->tid, fd); |
| 333 | if (bogusfd(fd)) |
| 334 | return; |
| 335 | // It can be a UDP socket. |
| 336 | init(thr, pc, fd, s: &fdctx.socksync); |
| 337 | } |
| 338 | |
| 339 | void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) { |
| 340 | DPrintf("#%d: FdSocketAccept(%d, %d)\n" , thr->tid, fd, newfd); |
| 341 | if (bogusfd(fd)) |
| 342 | return; |
| 343 | // Synchronize connect->accept. |
| 344 | Acquire(thr, pc, addr: (uptr)&fdctx.connectsync); |
| 345 | init(thr, pc, fd: newfd, s: &fdctx.socksync); |
| 346 | } |
| 347 | |
| 348 | void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) { |
| 349 | DPrintf("#%d: FdSocketConnecting(%d)\n" , thr->tid, fd); |
| 350 | if (bogusfd(fd)) |
| 351 | return; |
| 352 | // Synchronize connect->accept. |
| 353 | Release(thr, pc, addr: (uptr)&fdctx.connectsync); |
| 354 | } |
| 355 | |
| 356 | void FdSocketConnect(ThreadState *thr, uptr pc, int fd) { |
| 357 | DPrintf("#%d: FdSocketConnect(%d)\n" , thr->tid, fd); |
| 358 | if (bogusfd(fd)) |
| 359 | return; |
| 360 | init(thr, pc, fd, s: &fdctx.socksync); |
| 361 | } |
| 362 | |
| 363 | uptr File2addr(const char *path) { |
| 364 | (void)path; |
| 365 | static u64 addr; |
| 366 | return (uptr)&addr; |
| 367 | } |
| 368 | |
| 369 | uptr Dir2addr(const char *path) { |
| 370 | (void)path; |
| 371 | static u64 addr; |
| 372 | return (uptr)&addr; |
| 373 | } |
| 374 | |
| 375 | } // namespace __tsan |
| 376 | |