1 | //===-- Abstract class for bit manipulation of float numbers. ---*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // ----------------------------------------------------------------------------- |
10 | // **** WARNING **** |
11 | // This file is shared with libc++. You should also be careful when adding |
12 | // dependencies to this file, since it needs to build for all libc++ targets. |
13 | // ----------------------------------------------------------------------------- |
14 | |
15 | #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_FPBITS_H |
16 | #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_FPBITS_H |
17 | |
18 | #include "src/__support/CPP/bit.h" |
19 | #include "src/__support/CPP/type_traits.h" |
20 | #include "src/__support/common.h" |
21 | #include "src/__support/libc_assert.h" // LIBC_ASSERT |
22 | #include "src/__support/macros/attributes.h" // LIBC_INLINE, LIBC_INLINE_VAR |
23 | #include "src/__support/macros/config.h" |
24 | #include "src/__support/macros/properties/types.h" // LIBC_TYPES_HAS_FLOAT128 |
25 | #include "src/__support/math_extras.h" // mask_trailing_ones |
26 | #include "src/__support/sign.h" // Sign |
27 | #include "src/__support/uint128.h" |
28 | |
29 | #include <stdint.h> |
30 | |
31 | namespace LIBC_NAMESPACE_DECL { |
32 | namespace fputil { |
33 | |
34 | // The supported floating point types. |
35 | enum class FPType { |
36 | IEEE754_Binary16, |
37 | IEEE754_Binary32, |
38 | IEEE754_Binary64, |
39 | IEEE754_Binary128, |
40 | X86_Binary80, |
41 | }; |
42 | |
43 | // The classes hierarchy is as follows: |
44 | // |
45 | // ┌───────────────────┐ |
46 | // │ FPLayout<FPType> │ |
47 | // └─────────▲─────────┘ |
48 | // │ |
49 | // ┌─────────┴─────────┐ |
50 | // │ FPStorage<FPType> │ |
51 | // └─────────▲─────────┘ |
52 | // │ |
53 | // ┌────────────┴─────────────┐ |
54 | // │ │ |
55 | // ┌────────┴─────────┐ ┌──────────────┴──────────────────┐ |
56 | // │ FPRepSem<FPType> │ │ FPRepSem<FPType::X86_Binary80 │ |
57 | // └────────▲─────────┘ └──────────────▲──────────────────┘ |
58 | // │ │ |
59 | // └────────────┬─────────────┘ |
60 | // │ |
61 | // ┌───────┴───────┐ |
62 | // │ FPRepImpl<T> │ |
63 | // └───────▲───────┘ |
64 | // │ |
65 | // ┌────────┴────────┐ |
66 | // ┌─────┴─────┐ ┌─────┴─────┐ |
67 | // │ FPRep<T> │ │ FPBits<T> │ |
68 | // └───────────┘ └───────────┘ |
69 | // |
70 | // - 'FPLayout' defines only a few constants, namely the 'StorageType' and |
71 | // length of the sign, the exponent, fraction and significand parts. |
72 | // - 'FPStorage' builds more constants on top of those from 'FPLayout' like |
73 | // exponent bias and masks. It also holds the bit representation of the |
74 | // floating point as a 'StorageType' type and defines tools to assemble or |
75 | // test these parts. |
76 | // - 'FPRepSem' defines functions to interact semantically with the floating |
77 | // point representation. The default implementation is the one for 'IEEE754', |
78 | // a specialization is provided for X86 Extended Precision. |
79 | // - 'FPRepImpl' derives from 'FPRepSem' and adds functions that are common to |
80 | // all implementations or build on the ones in 'FPRepSem'. |
81 | // - 'FPRep' exposes all functions from 'FPRepImpl' and returns 'FPRep' |
82 | // instances when using Builders (static functions to create values). |
83 | // - 'FPBits' exposes all the functions from 'FPRepImpl' but operates on the |
84 | // native C++ floating point type instead of 'FPType'. An additional 'get_val' |
85 | // function allows getting the C++ floating point type value back. Builders |
86 | // called from 'FPBits' return 'FPBits' instances. |
87 | |
88 | namespace internal { |
89 | |
90 | // Defines the layout (sign, exponent, significand) of a floating point type in |
91 | // memory. It also defines its associated StorageType, i.e., the unsigned |
92 | // integer type used to manipulate its representation. |
93 | // Additionally we provide the fractional part length, i.e., the number of bits |
94 | // after the decimal dot when the number is in normal form. |
95 | template <FPType> struct FPLayout {}; |
96 | |
97 | template <> struct FPLayout<FPType::IEEE754_Binary16> { |
98 | using StorageType = uint16_t; |
99 | LIBC_INLINE_VAR static constexpr int SIGN_LEN = 1; |
100 | LIBC_INLINE_VAR static constexpr int EXP_LEN = 5; |
101 | LIBC_INLINE_VAR static constexpr int SIG_LEN = 10; |
102 | LIBC_INLINE_VAR static constexpr int FRACTION_LEN = SIG_LEN; |
103 | }; |
104 | |
105 | template <> struct FPLayout<FPType::IEEE754_Binary32> { |
106 | using StorageType = uint32_t; |
107 | LIBC_INLINE_VAR static constexpr int SIGN_LEN = 1; |
108 | LIBC_INLINE_VAR static constexpr int EXP_LEN = 8; |
109 | LIBC_INLINE_VAR static constexpr int SIG_LEN = 23; |
110 | LIBC_INLINE_VAR static constexpr int FRACTION_LEN = SIG_LEN; |
111 | }; |
112 | |
113 | template <> struct FPLayout<FPType::IEEE754_Binary64> { |
114 | using StorageType = uint64_t; |
115 | LIBC_INLINE_VAR static constexpr int SIGN_LEN = 1; |
116 | LIBC_INLINE_VAR static constexpr int EXP_LEN = 11; |
117 | LIBC_INLINE_VAR static constexpr int SIG_LEN = 52; |
118 | LIBC_INLINE_VAR static constexpr int FRACTION_LEN = SIG_LEN; |
119 | }; |
120 | |
121 | template <> struct FPLayout<FPType::IEEE754_Binary128> { |
122 | using StorageType = UInt128; |
123 | LIBC_INLINE_VAR static constexpr int SIGN_LEN = 1; |
124 | LIBC_INLINE_VAR static constexpr int EXP_LEN = 15; |
125 | LIBC_INLINE_VAR static constexpr int SIG_LEN = 112; |
126 | LIBC_INLINE_VAR static constexpr int FRACTION_LEN = SIG_LEN; |
127 | }; |
128 | |
129 | template <> struct FPLayout<FPType::X86_Binary80> { |
130 | #if __SIZEOF_LONG_DOUBLE__ == 12 |
131 | using StorageType = UInt<__SIZEOF_LONG_DOUBLE__ * CHAR_BIT>; |
132 | #else |
133 | using StorageType = UInt128; |
134 | #endif |
135 | LIBC_INLINE_VAR static constexpr int SIGN_LEN = 1; |
136 | LIBC_INLINE_VAR static constexpr int EXP_LEN = 15; |
137 | LIBC_INLINE_VAR static constexpr int SIG_LEN = 64; |
138 | LIBC_INLINE_VAR static constexpr int FRACTION_LEN = SIG_LEN - 1; |
139 | }; |
140 | |
141 | // FPStorage derives useful constants from the FPLayout above. |
142 | template <FPType fp_type> struct FPStorage : public FPLayout<fp_type> { |
143 | using UP = FPLayout<fp_type>; |
144 | |
145 | using UP::EXP_LEN; // The number of bits for the *exponent* part |
146 | using UP::SIG_LEN; // The number of bits for the *significand* part |
147 | using UP::SIGN_LEN; // The number of bits for the *sign* part |
148 | // For convenience, the sum of `SIG_LEN`, `EXP_LEN`, and `SIGN_LEN`. |
149 | LIBC_INLINE_VAR static constexpr int TOTAL_LEN = SIGN_LEN + EXP_LEN + SIG_LEN; |
150 | |
151 | // The number of bits after the decimal dot when the number is in normal form. |
152 | using UP::FRACTION_LEN; |
153 | |
154 | // An unsigned integer that is wide enough to contain all of the floating |
155 | // point bits. |
156 | using StorageType = typename UP::StorageType; |
157 | |
158 | // The number of bits in StorageType. |
159 | LIBC_INLINE_VAR static constexpr int STORAGE_LEN = |
160 | sizeof(StorageType) * CHAR_BIT; |
161 | static_assert(STORAGE_LEN >= TOTAL_LEN); |
162 | |
163 | // The exponent bias. Always positive. |
164 | LIBC_INLINE_VAR static constexpr int32_t EXP_BIAS = |
165 | (1U << (EXP_LEN - 1U)) - 1U; |
166 | static_assert(EXP_BIAS > 0); |
167 | |
168 | // The bit pattern that keeps only the *significand* part. |
169 | LIBC_INLINE_VAR static constexpr StorageType SIG_MASK = |
170 | mask_trailing_ones<StorageType, SIG_LEN>(); |
171 | // The bit pattern that keeps only the *exponent* part. |
172 | LIBC_INLINE_VAR static constexpr StorageType EXP_MASK = |
173 | mask_trailing_ones<StorageType, EXP_LEN>() << SIG_LEN; |
174 | // The bit pattern that keeps only the *sign* part. |
175 | LIBC_INLINE_VAR static constexpr StorageType SIGN_MASK = |
176 | mask_trailing_ones<StorageType, SIGN_LEN>() << (EXP_LEN + SIG_LEN); |
177 | // The bit pattern that keeps only the *exponent + significand* part. |
178 | LIBC_INLINE_VAR static constexpr StorageType EXP_SIG_MASK = |
179 | mask_trailing_ones<StorageType, EXP_LEN + SIG_LEN>(); |
180 | // The bit pattern that keeps only the *sign + exponent + significand* part. |
181 | LIBC_INLINE_VAR static constexpr StorageType FP_MASK = |
182 | mask_trailing_ones<StorageType, TOTAL_LEN>(); |
183 | // The bit pattern that keeps only the *fraction* part. |
184 | // i.e., the *significand* without the leading one. |
185 | LIBC_INLINE_VAR static constexpr StorageType FRACTION_MASK = |
186 | mask_trailing_ones<StorageType, FRACTION_LEN>(); |
187 | |
188 | static_assert((SIG_MASK & EXP_MASK & SIGN_MASK) == 0, "masks disjoint" ); |
189 | static_assert((SIG_MASK | EXP_MASK | SIGN_MASK) == FP_MASK, "masks cover" ); |
190 | |
191 | protected: |
192 | // Merge bits from 'a' and 'b' values according to 'mask'. |
193 | // Use 'a' bits when corresponding 'mask' bits are zeroes and 'b' bits when |
194 | // corresponding bits are ones. |
195 | LIBC_INLINE static constexpr StorageType merge(StorageType a, StorageType b, |
196 | StorageType mask) { |
197 | // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge |
198 | return a ^ ((a ^ b) & mask); |
199 | } |
200 | |
201 | // A stongly typed integer that prevents mixing and matching integers with |
202 | // different semantics. |
203 | template <typename T> struct TypedInt { |
204 | using value_type = T; |
205 | LIBC_INLINE constexpr explicit TypedInt(T value) : value(value) {} |
206 | LIBC_INLINE constexpr TypedInt(const TypedInt &value) = default; |
207 | LIBC_INLINE constexpr TypedInt &operator=(const TypedInt &value) = default; |
208 | |
209 | LIBC_INLINE constexpr explicit operator T() const { return value; } |
210 | |
211 | LIBC_INLINE constexpr StorageType to_storage_type() const { |
212 | return StorageType(value); |
213 | } |
214 | |
215 | LIBC_INLINE friend constexpr bool operator==(TypedInt a, TypedInt b) { |
216 | return a.value == b.value; |
217 | } |
218 | LIBC_INLINE friend constexpr bool operator!=(TypedInt a, TypedInt b) { |
219 | return a.value != b.value; |
220 | } |
221 | |
222 | protected: |
223 | T value; |
224 | }; |
225 | |
226 | // An opaque type to store a floating point exponent. |
227 | // We define special values but it is valid to create arbitrary values as long |
228 | // as they are in the range [min, max]. |
229 | struct Exponent : public TypedInt<int32_t> { |
230 | using UP = TypedInt<int32_t>; |
231 | using UP::UP; |
232 | LIBC_INLINE static constexpr auto subnormal() { |
233 | return Exponent(-EXP_BIAS); |
234 | } |
235 | LIBC_INLINE static constexpr auto min() { return Exponent(1 - EXP_BIAS); } |
236 | LIBC_INLINE static constexpr auto zero() { return Exponent(0); } |
237 | LIBC_INLINE static constexpr auto max() { return Exponent(EXP_BIAS); } |
238 | LIBC_INLINE static constexpr auto inf() { return Exponent(EXP_BIAS + 1); } |
239 | }; |
240 | |
241 | // An opaque type to store a floating point biased exponent. |
242 | // We define special values but it is valid to create arbitrary values as long |
243 | // as they are in the range [zero, bits_all_ones]. |
244 | // Values greater than bits_all_ones are truncated. |
245 | struct BiasedExponent : public TypedInt<uint32_t> { |
246 | using UP = TypedInt<uint32_t>; |
247 | using UP::UP; |
248 | |
249 | LIBC_INLINE constexpr BiasedExponent(Exponent exp) |
250 | : UP(static_cast<uint32_t>(static_cast<int32_t>(exp) + EXP_BIAS)) {} |
251 | |
252 | // Cast operator to get convert from BiasedExponent to Exponent. |
253 | LIBC_INLINE constexpr operator Exponent() const { |
254 | return Exponent(static_cast<int32_t>(UP::value - EXP_BIAS)); |
255 | } |
256 | |
257 | LIBC_INLINE constexpr BiasedExponent &operator++() { |
258 | LIBC_ASSERT(*this != BiasedExponent(Exponent::inf())); |
259 | ++UP::value; |
260 | return *this; |
261 | } |
262 | |
263 | LIBC_INLINE constexpr BiasedExponent &operator--() { |
264 | LIBC_ASSERT(*this != BiasedExponent(Exponent::subnormal())); |
265 | --UP::value; |
266 | return *this; |
267 | } |
268 | }; |
269 | |
270 | // An opaque type to store a floating point significand. |
271 | // We define special values but it is valid to create arbitrary values as long |
272 | // as they are in the range [zero, bits_all_ones]. |
273 | // Note that the semantics of the Significand are implementation dependent. |
274 | // Values greater than bits_all_ones are truncated. |
275 | struct Significand : public TypedInt<StorageType> { |
276 | using UP = TypedInt<StorageType>; |
277 | using UP::UP; |
278 | |
279 | LIBC_INLINE friend constexpr Significand operator|(const Significand a, |
280 | const Significand b) { |
281 | return Significand( |
282 | StorageType(a.to_storage_type() | b.to_storage_type())); |
283 | } |
284 | LIBC_INLINE friend constexpr Significand operator^(const Significand a, |
285 | const Significand b) { |
286 | return Significand( |
287 | StorageType(a.to_storage_type() ^ b.to_storage_type())); |
288 | } |
289 | LIBC_INLINE friend constexpr Significand operator>>(const Significand a, |
290 | int shift) { |
291 | return Significand(StorageType(a.to_storage_type() >> shift)); |
292 | } |
293 | |
294 | LIBC_INLINE static constexpr auto zero() { |
295 | return Significand(StorageType(0)); |
296 | } |
297 | LIBC_INLINE static constexpr auto lsb() { |
298 | return Significand(StorageType(1)); |
299 | } |
300 | LIBC_INLINE static constexpr auto msb() { |
301 | return Significand(StorageType(1) << (SIG_LEN - 1)); |
302 | } |
303 | LIBC_INLINE static constexpr auto bits_all_ones() { |
304 | return Significand(SIG_MASK); |
305 | } |
306 | }; |
307 | |
308 | LIBC_INLINE static constexpr StorageType encode(BiasedExponent exp) { |
309 | return (exp.to_storage_type() << SIG_LEN) & EXP_MASK; |
310 | } |
311 | |
312 | LIBC_INLINE static constexpr StorageType encode(Significand value) { |
313 | return value.to_storage_type() & SIG_MASK; |
314 | } |
315 | |
316 | LIBC_INLINE static constexpr StorageType encode(BiasedExponent exp, |
317 | Significand sig) { |
318 | return encode(exp) | encode(sig); |
319 | } |
320 | |
321 | LIBC_INLINE static constexpr StorageType encode(Sign sign, BiasedExponent exp, |
322 | Significand sig) { |
323 | if (sign.is_neg()) |
324 | return SIGN_MASK | encode(exp, sig); |
325 | return encode(exp, sig); |
326 | } |
327 | |
328 | // The floating point number representation as an unsigned integer. |
329 | StorageType bits{}; |
330 | |
331 | LIBC_INLINE constexpr FPStorage() : bits(0) {} |
332 | LIBC_INLINE constexpr FPStorage(StorageType value) : bits(value) {} |
333 | |
334 | // Observers |
335 | LIBC_INLINE constexpr StorageType exp_bits() const { return bits & EXP_MASK; } |
336 | LIBC_INLINE constexpr StorageType sig_bits() const { return bits & SIG_MASK; } |
337 | LIBC_INLINE constexpr StorageType exp_sig_bits() const { |
338 | return bits & EXP_SIG_MASK; |
339 | } |
340 | |
341 | // Parts |
342 | LIBC_INLINE constexpr BiasedExponent biased_exponent() const { |
343 | return BiasedExponent(static_cast<uint32_t>(exp_bits() >> SIG_LEN)); |
344 | } |
345 | LIBC_INLINE constexpr void set_biased_exponent(BiasedExponent biased) { |
346 | bits = merge(a: bits, b: encode(biased), mask: EXP_MASK); |
347 | } |
348 | |
349 | public: |
350 | LIBC_INLINE constexpr Sign sign() const { |
351 | return (bits & SIGN_MASK) ? Sign::NEG : Sign::POS; |
352 | } |
353 | LIBC_INLINE constexpr void set_sign(Sign signVal) { |
354 | if (sign() != signVal) |
355 | bits ^= SIGN_MASK; |
356 | } |
357 | }; |
358 | |
359 | // This layer defines all functions that are specific to how the the floating |
360 | // point type is encoded. It enables constructions, modification and observation |
361 | // of values manipulated as 'StorageType'. |
362 | template <FPType fp_type, typename RetT> |
363 | struct FPRepSem : public FPStorage<fp_type> { |
364 | using UP = FPStorage<fp_type>; |
365 | using typename UP::StorageType; |
366 | using UP::FRACTION_LEN; |
367 | using UP::FRACTION_MASK; |
368 | |
369 | protected: |
370 | using typename UP::Exponent; |
371 | using typename UP::Significand; |
372 | using UP::bits; |
373 | using UP::encode; |
374 | using UP::exp_bits; |
375 | using UP::exp_sig_bits; |
376 | using UP::sig_bits; |
377 | using UP::UP; |
378 | |
379 | public: |
380 | // Builders |
381 | LIBC_INLINE static constexpr RetT zero(Sign sign = Sign::POS) { |
382 | return RetT(encode(sign, Exponent::subnormal(), Significand::zero())); |
383 | } |
384 | LIBC_INLINE static constexpr RetT one(Sign sign = Sign::POS) { |
385 | return RetT(encode(sign, Exponent::zero(), Significand::zero())); |
386 | } |
387 | LIBC_INLINE static constexpr RetT min_subnormal(Sign sign = Sign::POS) { |
388 | return RetT(encode(sign, Exponent::subnormal(), Significand::lsb())); |
389 | } |
390 | LIBC_INLINE static constexpr RetT max_subnormal(Sign sign = Sign::POS) { |
391 | return RetT( |
392 | encode(sign, Exponent::subnormal(), Significand::bits_all_ones())); |
393 | } |
394 | LIBC_INLINE static constexpr RetT min_normal(Sign sign = Sign::POS) { |
395 | return RetT(encode(sign, Exponent::min(), Significand::zero())); |
396 | } |
397 | LIBC_INLINE static constexpr RetT max_normal(Sign sign = Sign::POS) { |
398 | return RetT(encode(sign, Exponent::max(), Significand::bits_all_ones())); |
399 | } |
400 | LIBC_INLINE static constexpr RetT inf(Sign sign = Sign::POS) { |
401 | return RetT(encode(sign, Exponent::inf(), Significand::zero())); |
402 | } |
403 | LIBC_INLINE static constexpr RetT signaling_nan(Sign sign = Sign::POS, |
404 | StorageType v = 0) { |
405 | return RetT(encode(sign, Exponent::inf(), |
406 | (v ? Significand(v) : (Significand::msb() >> 1)))); |
407 | } |
408 | LIBC_INLINE static constexpr RetT quiet_nan(Sign sign = Sign::POS, |
409 | StorageType v = 0) { |
410 | return RetT( |
411 | encode(sign, Exponent::inf(), Significand::msb() | Significand(v))); |
412 | } |
413 | |
414 | // Observers |
415 | LIBC_INLINE constexpr bool is_zero() const { return exp_sig_bits() == 0; } |
416 | LIBC_INLINE constexpr bool is_nan() const { |
417 | return exp_sig_bits() > encode(Exponent::inf(), Significand::zero()); |
418 | } |
419 | LIBC_INLINE constexpr bool is_quiet_nan() const { |
420 | return exp_sig_bits() >= encode(Exponent::inf(), Significand::msb()); |
421 | } |
422 | LIBC_INLINE constexpr bool is_signaling_nan() const { |
423 | return is_nan() && !is_quiet_nan(); |
424 | } |
425 | LIBC_INLINE constexpr bool is_inf() const { |
426 | return exp_sig_bits() == encode(Exponent::inf(), Significand::zero()); |
427 | } |
428 | LIBC_INLINE constexpr bool is_finite() const { |
429 | return exp_bits() != encode(Exponent::inf()); |
430 | } |
431 | LIBC_INLINE |
432 | constexpr bool is_subnormal() const { |
433 | return exp_bits() == encode(Exponent::subnormal()); |
434 | } |
435 | LIBC_INLINE constexpr bool is_normal() const { |
436 | return is_finite() && !is_subnormal(); |
437 | } |
438 | LIBC_INLINE constexpr RetT next_toward_inf() const { |
439 | if (is_finite()) |
440 | return RetT(bits + StorageType(1)); |
441 | return RetT(bits); |
442 | } |
443 | |
444 | // Returns the mantissa with the implicit bit set iff the current |
445 | // value is a valid normal number. |
446 | LIBC_INLINE constexpr StorageType get_explicit_mantissa() const { |
447 | if (is_subnormal()) |
448 | return sig_bits(); |
449 | return (StorageType(1) << UP::SIG_LEN) | sig_bits(); |
450 | } |
451 | }; |
452 | |
453 | // Specialization for the X86 Extended Precision type. |
454 | template <typename RetT> |
455 | struct FPRepSem<FPType::X86_Binary80, RetT> |
456 | : public FPStorage<FPType::X86_Binary80> { |
457 | using UP = FPStorage<FPType::X86_Binary80>; |
458 | using typename UP::StorageType; |
459 | using UP::FRACTION_LEN; |
460 | using UP::FRACTION_MASK; |
461 | |
462 | // The x86 80 bit float represents the leading digit of the mantissa |
463 | // explicitly. This is the mask for that bit. |
464 | static constexpr StorageType EXPLICIT_BIT_MASK = StorageType(1) |
465 | << FRACTION_LEN; |
466 | // The X80 significand is made of an explicit bit and the fractional part. |
467 | static_assert((EXPLICIT_BIT_MASK & FRACTION_MASK) == 0, |
468 | "the explicit bit and the fractional part should not overlap" ); |
469 | static_assert((EXPLICIT_BIT_MASK | FRACTION_MASK) == SIG_MASK, |
470 | "the explicit bit and the fractional part should cover the " |
471 | "whole significand" ); |
472 | |
473 | protected: |
474 | using typename UP::Exponent; |
475 | using typename UP::Significand; |
476 | using UP::encode; |
477 | using UP::UP; |
478 | |
479 | public: |
480 | // Builders |
481 | LIBC_INLINE static constexpr RetT zero(Sign sign = Sign::POS) { |
482 | return RetT(encode(sign, Exponent::subnormal(), Significand::zero())); |
483 | } |
484 | LIBC_INLINE static constexpr RetT one(Sign sign = Sign::POS) { |
485 | return RetT(encode(sign, Exponent::zero(), Significand::msb())); |
486 | } |
487 | LIBC_INLINE static constexpr RetT min_subnormal(Sign sign = Sign::POS) { |
488 | return RetT(encode(sign, Exponent::subnormal(), Significand::lsb())); |
489 | } |
490 | LIBC_INLINE static constexpr RetT max_subnormal(Sign sign = Sign::POS) { |
491 | return RetT(encode(sign, Exponent::subnormal(), |
492 | Significand::bits_all_ones() ^ Significand::msb())); |
493 | } |
494 | LIBC_INLINE static constexpr RetT min_normal(Sign sign = Sign::POS) { |
495 | return RetT(encode(sign, Exponent::min(), Significand::msb())); |
496 | } |
497 | LIBC_INLINE static constexpr RetT max_normal(Sign sign = Sign::POS) { |
498 | return RetT(encode(sign, Exponent::max(), Significand::bits_all_ones())); |
499 | } |
500 | LIBC_INLINE static constexpr RetT inf(Sign sign = Sign::POS) { |
501 | return RetT(encode(sign, Exponent::inf(), Significand::msb())); |
502 | } |
503 | LIBC_INLINE static constexpr RetT signaling_nan(Sign sign = Sign::POS, |
504 | StorageType v = 0) { |
505 | return RetT(encode(sign, Exponent::inf(), |
506 | Significand::msb() | |
507 | (v ? Significand(v) : (Significand::msb() >> 2)))); |
508 | } |
509 | LIBC_INLINE static constexpr RetT quiet_nan(Sign sign = Sign::POS, |
510 | StorageType v = 0) { |
511 | return RetT(encode(sign, Exponent::inf(), |
512 | Significand::msb() | (Significand::msb() >> 1) | |
513 | Significand(v))); |
514 | } |
515 | |
516 | // Observers |
517 | LIBC_INLINE constexpr bool is_zero() const { return exp_sig_bits() == 0; } |
518 | LIBC_INLINE constexpr bool is_nan() const { |
519 | // Most encoding forms from the table found in |
520 | // https://en.wikipedia.org/wiki/Extended_precision#x86_extended_precision_format |
521 | // are interpreted as NaN. |
522 | // More precisely : |
523 | // - Pseudo-Infinity |
524 | // - Pseudo Not a Number |
525 | // - Signalling Not a Number |
526 | // - Floating-point Indefinite |
527 | // - Quiet Not a Number |
528 | // - Unnormal |
529 | // This can be reduced to the following logic: |
530 | if (exp_bits() == encode(Exponent::inf())) |
531 | return !is_inf(); |
532 | if (exp_bits() != encode(Exponent::subnormal())) |
533 | return (sig_bits() & encode(Significand::msb())) == 0; |
534 | return false; |
535 | } |
536 | LIBC_INLINE constexpr bool is_quiet_nan() const { |
537 | return exp_sig_bits() >= |
538 | encode(Exponent::inf(), |
539 | Significand::msb() | (Significand::msb() >> 1)); |
540 | } |
541 | LIBC_INLINE constexpr bool is_signaling_nan() const { |
542 | return is_nan() && !is_quiet_nan(); |
543 | } |
544 | LIBC_INLINE constexpr bool is_inf() const { |
545 | return exp_sig_bits() == encode(Exponent::inf(), Significand::msb()); |
546 | } |
547 | LIBC_INLINE constexpr bool is_finite() const { |
548 | return !is_inf() && !is_nan(); |
549 | } |
550 | LIBC_INLINE |
551 | constexpr bool is_subnormal() const { |
552 | return exp_bits() == encode(Exponent::subnormal()); |
553 | } |
554 | LIBC_INLINE constexpr bool is_normal() const { |
555 | const auto exp = exp_bits(); |
556 | if (exp == encode(Exponent::subnormal()) || exp == encode(Exponent::inf())) |
557 | return false; |
558 | return get_implicit_bit(); |
559 | } |
560 | LIBC_INLINE constexpr RetT next_toward_inf() const { |
561 | if (is_finite()) { |
562 | if (exp_sig_bits() == max_normal().uintval()) { |
563 | return inf(sign: sign()); |
564 | } else if (exp_sig_bits() == max_subnormal().uintval()) { |
565 | return min_normal(sign: sign()); |
566 | } else if (sig_bits() == SIG_MASK) { |
567 | return RetT(encode(sign(), ++biased_exponent(), Significand::zero())); |
568 | } else { |
569 | return RetT(bits + StorageType(1)); |
570 | } |
571 | } |
572 | return RetT(bits); |
573 | } |
574 | |
575 | LIBC_INLINE constexpr StorageType get_explicit_mantissa() const { |
576 | return sig_bits(); |
577 | } |
578 | |
579 | // This functions is specific to FPRepSem<FPType::X86_Binary80>. |
580 | // TODO: Remove if possible. |
581 | LIBC_INLINE constexpr bool get_implicit_bit() const { |
582 | return static_cast<bool>(bits & EXPLICIT_BIT_MASK); |
583 | } |
584 | |
585 | // This functions is specific to FPRepSem<FPType::X86_Binary80>. |
586 | // TODO: Remove if possible. |
587 | LIBC_INLINE constexpr void set_implicit_bit(bool implicitVal) { |
588 | if (get_implicit_bit() != implicitVal) |
589 | bits ^= EXPLICIT_BIT_MASK; |
590 | } |
591 | }; |
592 | |
593 | // 'FPRepImpl' is the bottom of the class hierarchy that only deals with |
594 | // 'FPType'. The operations dealing with specific float semantics are |
595 | // implemented by 'FPRepSem' above and specialized when needed. |
596 | // |
597 | // The 'RetT' type is being propagated up to 'FPRepSem' so that the functions |
598 | // creating new values (Builders) can return the appropriate type. That is, when |
599 | // creating a value through 'FPBits' below the builder will return an 'FPBits' |
600 | // value. |
601 | // FPBits<float>::zero(); // returns an FPBits<> |
602 | // |
603 | // When we don't care about specific C++ floating point type we can use |
604 | // 'FPRep' and specify the 'FPType' directly. |
605 | // FPRep<FPType::IEEE754_Binary32:>::zero() // returns an FPRep<> |
606 | template <FPType fp_type, typename RetT> |
607 | struct FPRepImpl : public FPRepSem<fp_type, RetT> { |
608 | using UP = FPRepSem<fp_type, RetT>; |
609 | using StorageType = typename UP::StorageType; |
610 | |
611 | protected: |
612 | using UP::bits; |
613 | using UP::encode; |
614 | using UP::exp_bits; |
615 | using UP::exp_sig_bits; |
616 | |
617 | using typename UP::BiasedExponent; |
618 | using typename UP::Exponent; |
619 | using typename UP::Significand; |
620 | |
621 | using UP::FP_MASK; |
622 | |
623 | public: |
624 | // Constants. |
625 | using UP::EXP_BIAS; |
626 | using UP::EXP_MASK; |
627 | using UP::FRACTION_MASK; |
628 | using UP::SIG_LEN; |
629 | using UP::SIG_MASK; |
630 | using UP::SIGN_MASK; |
631 | LIBC_INLINE_VAR static constexpr int MAX_BIASED_EXPONENT = |
632 | (1 << UP::EXP_LEN) - 1; |
633 | |
634 | // CTors |
635 | LIBC_INLINE constexpr FPRepImpl() = default; |
636 | LIBC_INLINE constexpr explicit FPRepImpl(StorageType x) : UP(x) {} |
637 | |
638 | // Comparison |
639 | LIBC_INLINE constexpr friend bool operator==(FPRepImpl a, FPRepImpl b) { |
640 | return a.uintval() == b.uintval(); |
641 | } |
642 | LIBC_INLINE constexpr friend bool operator!=(FPRepImpl a, FPRepImpl b) { |
643 | return a.uintval() != b.uintval(); |
644 | } |
645 | |
646 | // Representation |
647 | LIBC_INLINE constexpr StorageType uintval() const { return bits & FP_MASK; } |
648 | LIBC_INLINE constexpr void set_uintval(StorageType value) { |
649 | bits = (value & FP_MASK); |
650 | } |
651 | |
652 | // Builders |
653 | using UP::inf; |
654 | using UP::max_normal; |
655 | using UP::max_subnormal; |
656 | using UP::min_normal; |
657 | using UP::min_subnormal; |
658 | using UP::one; |
659 | using UP::quiet_nan; |
660 | using UP::signaling_nan; |
661 | using UP::zero; |
662 | |
663 | // Modifiers |
664 | LIBC_INLINE constexpr RetT abs() const { |
665 | return RetT(static_cast<StorageType>(bits & UP::EXP_SIG_MASK)); |
666 | } |
667 | |
668 | // Observers |
669 | using UP::get_explicit_mantissa; |
670 | using UP::is_finite; |
671 | using UP::is_inf; |
672 | using UP::is_nan; |
673 | using UP::is_normal; |
674 | using UP::is_quiet_nan; |
675 | using UP::is_signaling_nan; |
676 | using UP::is_subnormal; |
677 | using UP::is_zero; |
678 | using UP::next_toward_inf; |
679 | using UP::sign; |
680 | LIBC_INLINE constexpr bool is_inf_or_nan() const { return !is_finite(); } |
681 | LIBC_INLINE constexpr bool is_neg() const { return sign().is_neg(); } |
682 | LIBC_INLINE constexpr bool is_pos() const { return sign().is_pos(); } |
683 | |
684 | LIBC_INLINE constexpr uint16_t get_biased_exponent() const { |
685 | return static_cast<uint16_t>(static_cast<uint32_t>(UP::biased_exponent())); |
686 | } |
687 | |
688 | LIBC_INLINE constexpr void set_biased_exponent(StorageType biased) { |
689 | UP::set_biased_exponent(BiasedExponent(static_cast<uint32_t>(biased))); |
690 | } |
691 | |
692 | LIBC_INLINE constexpr int get_exponent() const { |
693 | return static_cast<int32_t>(Exponent(UP::biased_exponent())); |
694 | } |
695 | |
696 | // If the number is subnormal, the exponent is treated as if it were the |
697 | // minimum exponent for a normal number. This is to keep continuity between |
698 | // the normal and subnormal ranges, but it causes problems for functions where |
699 | // values are calculated from the exponent, since just subtracting the bias |
700 | // will give a slightly incorrect result. Additionally, zero has an exponent |
701 | // of zero, and that should actually be treated as zero. |
702 | LIBC_INLINE constexpr int get_explicit_exponent() const { |
703 | Exponent exponent(UP::biased_exponent()); |
704 | if (is_zero()) |
705 | exponent = Exponent::zero(); |
706 | if (exponent == Exponent::subnormal()) |
707 | exponent = Exponent::min(); |
708 | return static_cast<int32_t>(exponent); |
709 | } |
710 | |
711 | LIBC_INLINE constexpr StorageType get_mantissa() const { |
712 | return bits & FRACTION_MASK; |
713 | } |
714 | |
715 | LIBC_INLINE constexpr void set_mantissa(StorageType mantVal) { |
716 | bits = UP::merge(bits, mantVal, FRACTION_MASK); |
717 | } |
718 | |
719 | LIBC_INLINE constexpr void set_significand(StorageType sigVal) { |
720 | bits = UP::merge(bits, sigVal, SIG_MASK); |
721 | } |
722 | // Unsafe function to create a floating point representation. |
723 | // It simply packs the sign, biased exponent and mantissa values without |
724 | // checking bound nor normalization. |
725 | // |
726 | // WARNING: For X86 Extended Precision, implicit bit needs to be set correctly |
727 | // in the 'mantissa' by the caller. This function will not check for its |
728 | // validity. |
729 | // |
730 | // FIXME: Use an uint32_t for 'biased_exp'. |
731 | LIBC_INLINE static constexpr RetT |
732 | create_value(Sign sign, StorageType biased_exp, StorageType mantissa) { |
733 | return RetT(encode(sign, BiasedExponent(static_cast<uint32_t>(biased_exp)), |
734 | Significand(mantissa))); |
735 | } |
736 | |
737 | // The function converts integer number and unbiased exponent to proper |
738 | // float T type: |
739 | // Result = number * 2^(ep+1 - exponent_bias) |
740 | // Be careful! |
741 | // 1) "ep" is the raw exponent value. |
742 | // 2) The function adds +1 to ep for seamless normalized to denormalized |
743 | // transition. |
744 | // 3) The function does not check exponent high limit. |
745 | // 4) "number" zero value is not processed correctly. |
746 | // 5) Number is unsigned, so the result can be only positive. |
747 | LIBC_INLINE static constexpr RetT make_value(StorageType number, int ep) { |
748 | FPRepImpl result(0); |
749 | int lz = |
750 | UP::FRACTION_LEN + 1 - (UP::STORAGE_LEN - cpp::countl_zero(number)); |
751 | |
752 | number <<= lz; |
753 | ep -= lz; |
754 | |
755 | if (LIBC_LIKELY(ep >= 0)) { |
756 | // Implicit number bit will be removed by mask |
757 | result.set_significand(number); |
758 | result.set_biased_exponent(static_cast<StorageType>(ep + 1)); |
759 | } else { |
760 | result.set_significand(number >> static_cast<unsigned>(-ep)); |
761 | } |
762 | return RetT(result.uintval()); |
763 | } |
764 | }; |
765 | |
766 | // A generic class to manipulate floating point formats. |
767 | // It derives its functionality to FPRepImpl above. |
768 | template <FPType fp_type> |
769 | struct FPRep : public FPRepImpl<fp_type, FPRep<fp_type>> { |
770 | using UP = FPRepImpl<fp_type, FPRep<fp_type>>; |
771 | using StorageType = typename UP::StorageType; |
772 | using UP::UP; |
773 | |
774 | LIBC_INLINE constexpr explicit operator StorageType() const { |
775 | return UP::uintval(); |
776 | } |
777 | }; |
778 | |
779 | } // namespace internal |
780 | |
781 | // Returns the FPType corresponding to C++ type T on the host. |
782 | template <typename T> LIBC_INLINE static constexpr FPType get_fp_type() { |
783 | using UnqualT = cpp::remove_cv_t<T>; |
784 | if constexpr (cpp::is_same_v<UnqualT, float> && __FLT_MANT_DIG__ == 24) |
785 | return FPType::IEEE754_Binary32; |
786 | else if constexpr (cpp::is_same_v<UnqualT, double> && __DBL_MANT_DIG__ == 53) |
787 | return FPType::IEEE754_Binary64; |
788 | else if constexpr (cpp::is_same_v<UnqualT, long double>) { |
789 | if constexpr (__LDBL_MANT_DIG__ == 53) |
790 | return FPType::IEEE754_Binary64; |
791 | else if constexpr (__LDBL_MANT_DIG__ == 64) |
792 | return FPType::X86_Binary80; |
793 | else if constexpr (__LDBL_MANT_DIG__ == 113) |
794 | return FPType::IEEE754_Binary128; |
795 | } |
796 | #if defined(LIBC_TYPES_HAS_FLOAT16) |
797 | else if constexpr (cpp::is_same_v<UnqualT, float16>) |
798 | return FPType::IEEE754_Binary16; |
799 | #endif |
800 | #if defined(LIBC_TYPES_HAS_FLOAT128) |
801 | else if constexpr (cpp::is_same_v<UnqualT, float128>) |
802 | return FPType::IEEE754_Binary128; |
803 | #endif |
804 | else |
805 | static_assert(cpp::always_false<UnqualT>, "Unsupported type" ); |
806 | } |
807 | |
808 | // ----------------------------------------------------------------------------- |
809 | // **** WARNING **** |
810 | // This interface is shared with libc++, if you change this interface you need |
811 | // to update it in both libc and libc++. You should also be careful when adding |
812 | // dependencies to this file, since it needs to build for all libc++ targets. |
813 | // ----------------------------------------------------------------------------- |
814 | // A generic class to manipulate C++ floating point formats. |
815 | // It derives its functionality to FPRepImpl above. |
816 | template <typename T> |
817 | struct FPBits final : public internal::FPRepImpl<get_fp_type<T>(), FPBits<T>> { |
818 | static_assert(cpp::is_floating_point_v<T>, |
819 | "FPBits instantiated with invalid type." ); |
820 | using UP = internal::FPRepImpl<get_fp_type<T>(), FPBits<T>>; |
821 | using StorageType = typename UP::StorageType; |
822 | |
823 | // Constructors. |
824 | LIBC_INLINE constexpr FPBits() = default; |
825 | |
826 | template <typename XType> LIBC_INLINE constexpr explicit FPBits(XType x) { |
827 | using Unqual = typename cpp::remove_cv_t<XType>; |
828 | if constexpr (cpp::is_same_v<Unqual, T>) { |
829 | UP::bits = cpp::bit_cast<StorageType>(x); |
830 | } else if constexpr (cpp::is_same_v<Unqual, StorageType>) { |
831 | UP::bits = x; |
832 | } else { |
833 | // We don't want accidental type promotions/conversions, so we require |
834 | // exact type match. |
835 | static_assert(cpp::always_false<XType>); |
836 | } |
837 | } |
838 | |
839 | // Floating-point conversions. |
840 | LIBC_INLINE constexpr T get_val() const { return cpp::bit_cast<T>(UP::bits); } |
841 | }; |
842 | |
843 | } // namespace fputil |
844 | } // namespace LIBC_NAMESPACE_DECL |
845 | |
846 | #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_FPBITS_H |
847 | |