1 | //===----------------------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // For information see https://libcxx.llvm.org/DesignDocs/TimeZone.html |
10 | |
11 | // TODO TZDB look at optimizations |
12 | // |
13 | // The current algorithm is correct but not efficient. For example, in a named |
14 | // rule based continuation finding the next rule does quite a bit of work, |
15 | // returns the next rule and "forgets" its state. This could be better. |
16 | // |
17 | // It would be possible to cache lookups. If a time for a zone is calculated its |
18 | // sys_info could be kept and the next lookup could test whether the time is in |
19 | // a "known" sys_info. The wording in the Standard hints at this slowness by |
20 | // "suggesting" this could be implemented on the user's side. |
21 | |
22 | // TODO TZDB look at removing quirks |
23 | // |
24 | // The code has some special rules to adjust the timing at the continuation |
25 | // switches. This works correctly, but some of the places feel odd. It would be |
26 | // good to investigate this further and see whether all quirks are needed or |
27 | // that there are better fixes. |
28 | // |
29 | // These quirks often use a 12h interval; this is the scan interval of zdump, |
30 | // which implies there are no sys_info objects with a duration of less than 12h. |
31 | |
32 | // Work around https://gcc.gnu.org/bugzilla/show_bug.cgi?id=120502 |
33 | |
34 | #include <__config> |
35 | |
36 | // TODO(LLVM 23): When upgrading to GCC 16 this can be removed |
37 | #ifdef _LIBCPP_COMPILER_GCC |
38 | # pragma GCC optimize("-O0") |
39 | #endif |
40 | |
41 | #include <algorithm> |
42 | #include <cctype> |
43 | #include <chrono> |
44 | #include <expected> |
45 | #include <map> |
46 | #include <numeric> |
47 | #include <ranges> |
48 | |
49 | #include "include/tzdb/time_zone_private.h" |
50 | #include "include/tzdb/tzdb_list_private.h" |
51 | |
52 | // TODO TZDB remove debug printing |
53 | #ifdef PRINT |
54 | # include <print> |
55 | #endif |
56 | |
57 | _LIBCPP_BEGIN_NAMESPACE_STD |
58 | |
59 | #ifdef PRINT |
60 | template <> |
61 | struct formatter<chrono::sys_info, char> { |
62 | template <class ParseContext> |
63 | constexpr typename ParseContext::iterator parse(ParseContext& ctx) { |
64 | return ctx.begin(); |
65 | } |
66 | |
67 | template <class FormatContext> |
68 | typename FormatContext::iterator format(const chrono::sys_info& info, FormatContext& ctx) const { |
69 | return std::format_to( |
70 | ctx.out(), "[{}, {}) {:%Q%q} {:%Q%q} {}" , info.begin, info.end, info.offset, info.save, info.abbrev); |
71 | } |
72 | }; |
73 | #endif |
74 | |
75 | namespace chrono { |
76 | |
77 | //===----------------------------------------------------------------------===// |
78 | // Details |
79 | //===----------------------------------------------------------------------===// |
80 | |
81 | struct __sys_info { |
82 | sys_info __info; |
83 | bool __can_merge; // Can the returned sys_info object be merged with |
84 | }; |
85 | |
86 | // Return type for helper function to get a sys_info. |
87 | // - The expected result returns the "best" sys_info object. This object can be |
88 | // before the requested time. Sometimes sys_info objects from different |
89 | // continuations share their offset, save, and abbrev and these objects are |
90 | // merged to one sys_info object. The __can_merge flag determines whether the |
91 | // current result can be merged with the next result. |
92 | // - The unexpected result means no sys_info object was found and the time is |
93 | // the time to be used for the next search iteration. |
94 | using __sys_info_result = expected<__sys_info, sys_seconds>; |
95 | |
96 | template <ranges::forward_range _Range, |
97 | class _Type, |
98 | class _Proj = identity, |
99 | indirect_strict_weak_order<const _Type*, projected<ranges::iterator_t<_Range>, _Proj>> _Comp = ranges::less> |
100 | [[nodiscard]] static ranges::borrowed_iterator_t<_Range> |
101 | __binary_find(_Range&& __r, const _Type& __value, _Comp __comp = {}, _Proj __proj = {}) { |
102 | auto __end = ranges::end(__r); |
103 | auto __ret = ranges::lower_bound(ranges::begin(__r), __end, __value, __comp, __proj); |
104 | if (__ret == __end) |
105 | return __end; |
106 | |
107 | // When the value does not match the predicate it's equal and a valid result |
108 | // was found. |
109 | return !std::invoke(__comp, __value, std::invoke(__proj, *__ret)) ? __ret : __end; |
110 | } |
111 | |
112 | // Format based on https://data.iana.org/time-zones/tz-how-to.html |
113 | // |
114 | // 1 a time zone abbreviation that is a string of three or more characters that |
115 | // are either ASCII alphanumerics, "+", or "-" |
116 | // 2 the string "%z", in which case the "%z" will be replaced by a numeric time |
117 | // zone abbreviation |
118 | // 3 a pair of time zone abbreviations separated by a slash ('/'), in which |
119 | // case the first string is the abbreviation for the standard time name and |
120 | // the second string is the abbreviation for the daylight saving time name |
121 | // 4 a string containing "%s", in which case the "%s" will be replaced by the |
122 | // text in the appropriate Rule's LETTER column, and the resulting string |
123 | // should be a time zone abbreviation |
124 | // |
125 | // Rule 1 is not strictly validated since America/Barbados uses a two letter |
126 | // abbreviation AT. |
127 | [[nodiscard]] static string |
128 | __format(const __tz::__continuation& __continuation, const string& __letters, seconds __save) { |
129 | bool __shift = false; |
130 | string __result; |
131 | for (char __c : __continuation.__format) { |
132 | if (__shift) { |
133 | switch (__c) { |
134 | case 's': |
135 | std::ranges::copy(__letters, std::back_inserter(x&: __result)); |
136 | break; |
137 | |
138 | case 'z': { |
139 | if (__continuation.__format.size() != 2) |
140 | std::__throw_runtime_error( |
141 | std::format(fmt: "corrupt tzdb FORMAT field: %z should be the entire contents, instead contains '{}'" , |
142 | args: __continuation.__format) |
143 | .c_str()); |
144 | chrono::hh_mm_ss __offset{__continuation.__stdoff + __save}; |
145 | if (__offset.is_negative()) { |
146 | __result += '-'; |
147 | __offset = chrono::hh_mm_ss{-(__continuation.__stdoff + __save)}; |
148 | } else |
149 | __result += '+'; |
150 | |
151 | if (__offset.minutes() != 0min) |
152 | std::format_to(out_it: std::back_inserter(x&: __result), fmt: "{:%H%M}" , args&: __offset); |
153 | else |
154 | std::format_to(out_it: std::back_inserter(x&: __result), fmt: "{:%H}" , args&: __offset); |
155 | } break; |
156 | |
157 | default: |
158 | std::__throw_runtime_error( |
159 | std::format(fmt: "corrupt tzdb FORMAT field: invalid sequence '%{}' found, expected %s or %z" , args&: __c).c_str()); |
160 | } |
161 | __shift = false; |
162 | |
163 | } else if (__c == '/') { |
164 | if (__save != 0s) |
165 | __result.clear(); |
166 | else |
167 | break; |
168 | |
169 | } else if (__c == '%') { |
170 | __shift = true; |
171 | } else if (__c == '+' || __c == '-' || std::isalnum(__c)) { |
172 | __result.push_back(__c); |
173 | } else { |
174 | std::__throw_runtime_error( |
175 | std::format( |
176 | fmt: "corrupt tzdb FORMAT field: invalid character '{}' found, expected +, -, or an alphanumeric value" , args&: __c) |
177 | .c_str()); |
178 | } |
179 | } |
180 | |
181 | if (__shift) |
182 | std::__throw_runtime_error("corrupt tzdb FORMAT field: input ended with the start of the escape sequence '%'" ); |
183 | |
184 | if (__result.empty()) |
185 | std::__throw_runtime_error("corrupt tzdb FORMAT field: result is empty" ); |
186 | |
187 | return __result; |
188 | } |
189 | |
190 | [[nodiscard]] static sys_seconds __to_sys_seconds(year_month_day __ymd, seconds __seconds) { |
191 | seconds __result = static_cast<sys_days>(__ymd).time_since_epoch() + __seconds; |
192 | return sys_seconds{__result}; |
193 | } |
194 | |
195 | [[nodiscard]] static seconds __at_to_sys_seconds(const __tz::__continuation& __continuation) { |
196 | switch (__continuation.__at.__clock) { |
197 | case __tz::__clock::__local: |
198 | return __continuation.__at.__time - __continuation.__stdoff - |
199 | std::visit( |
200 | visitor: [](const auto& __value) { |
201 | using _Tp = decay_t<decltype(__value)>; |
202 | if constexpr (same_as<_Tp, monostate>) |
203 | return chrono::seconds{0}; |
204 | else if constexpr (same_as<_Tp, __tz::__save>) |
205 | return chrono::duration_cast<seconds>(__value.__time); |
206 | else if constexpr (same_as<_Tp, std::string>) |
207 | // For a named rule based continuation the SAVE depends on the RULE |
208 | // active at the end. This should be determined separately. |
209 | return chrono::seconds{0}; |
210 | else |
211 | static_assert(false); |
212 | |
213 | std::__libcpp_unreachable(); |
214 | }, |
215 | vs: __continuation.__rules); |
216 | |
217 | case __tz::__clock::__universal: |
218 | return __continuation.__at.__time; |
219 | |
220 | case __tz::__clock::__standard: |
221 | return __continuation.__at.__time - __continuation.__stdoff; |
222 | } |
223 | std::__libcpp_unreachable(); |
224 | } |
225 | |
226 | [[nodiscard]] static year_month_day __to_year_month_day(year __year, month __month, __tz::__on __on) { |
227 | return std::visit( |
228 | visitor: [&](const auto& __value) { |
229 | using _Tp = decay_t<decltype(__value)>; |
230 | if constexpr (same_as<_Tp, chrono::day>) |
231 | return year_month_day{__year, __month, __value}; |
232 | else if constexpr (same_as<_Tp, weekday_last>) |
233 | return year_month_day{static_cast<sys_days>(year_month_weekday_last{__year, __month, __value})}; |
234 | else if constexpr (same_as<_Tp, __tz::__constrained_weekday>) |
235 | return __value(__year, __month); |
236 | else |
237 | static_assert(false); |
238 | |
239 | std::__libcpp_unreachable(); |
240 | }, |
241 | vs&: __on); |
242 | } |
243 | |
244 | [[nodiscard]] static sys_seconds __until_to_sys_seconds(const __tz::__continuation& __continuation) { |
245 | // Does UNTIL contain the magic value for the last continuation? |
246 | if (__continuation.__year == chrono::year::min()) |
247 | return sys_seconds::max(); |
248 | |
249 | year_month_day __ymd = chrono::__to_year_month_day(year: __continuation.__year, month: __continuation.__in, on: __continuation.__on); |
250 | return chrono::__to_sys_seconds(__ymd, seconds: chrono::__at_to_sys_seconds(__continuation)); |
251 | } |
252 | |
253 | // Holds the UNTIL time for a continuation with a named rule. |
254 | // |
255 | // Unlike continuations with an fixed SAVE named rules have a variable SAVE. |
256 | // This means when the UNTIL uses the local wall time the actual UNTIL value can |
257 | // only be determined when the SAVE is known. This class holds that abstraction. |
258 | class __named_rule_until { |
259 | public: |
260 | explicit __named_rule_until(const __tz::__continuation& __continuation) |
261 | : __until_{chrono::__until_to_sys_seconds(__continuation)}, |
262 | __needs_adjustment_{ |
263 | // The last continuation of a ZONE has no UNTIL which basically is |
264 | // until the end of _local_ time. This value is expressed by |
265 | // sys_seconds::max(). Subtracting the SAVE leaves large value. |
266 | // However SAVE can be negative, which would add a value to maximum |
267 | // leading to undefined behaviour. In practice this often results in |
268 | // an overflow to a very small value. |
269 | __until_ != sys_seconds::max() && __continuation.__at.__clock == __tz::__clock::__local} {} |
270 | |
271 | // Gives the unadjusted until value, this is useful when the SAVE is not known |
272 | // at all. |
273 | sys_seconds __until() const noexcept { return __until_; } |
274 | |
275 | bool __needs_adjustment() const noexcept { return __needs_adjustment_; } |
276 | |
277 | // Returns the UNTIL adjusted for SAVE. |
278 | sys_seconds operator()(seconds __save) const noexcept { return __until_ - __needs_adjustment_ * __save; } |
279 | |
280 | private: |
281 | sys_seconds __until_; |
282 | bool __needs_adjustment_; |
283 | }; |
284 | |
285 | [[nodiscard]] static seconds __at_to_seconds(seconds __stdoff, const __tz::__rule& __rule) { |
286 | switch (__rule.__at.__clock) { |
287 | case __tz::__clock::__local: |
288 | // Local time and standard time behave the same. This is not |
289 | // correct. Local time needs to adjust for the current saved time. |
290 | // To know the saved time the rules need to be known and sorted. |
291 | // This needs a time so to avoid the chicken and egg adjust the |
292 | // saving of the local time later. |
293 | return __rule.__at.__time - __stdoff; |
294 | |
295 | case __tz::__clock::__universal: |
296 | return __rule.__at.__time; |
297 | |
298 | case __tz::__clock::__standard: |
299 | return __rule.__at.__time - __stdoff; |
300 | } |
301 | std::__libcpp_unreachable(); |
302 | } |
303 | |
304 | [[nodiscard]] static sys_seconds __from_to_sys_seconds(seconds __stdoff, const __tz::__rule& __rule, year __year) { |
305 | year_month_day __ymd = chrono::__to_year_month_day(__year, month: __rule.__in, on: __rule.__on); |
306 | |
307 | seconds __at = chrono::__at_to_seconds(__stdoff, __rule); |
308 | return chrono::__to_sys_seconds(__ymd, seconds: __at); |
309 | } |
310 | |
311 | [[nodiscard]] static sys_seconds __from_to_sys_seconds(seconds __stdoff, const __tz::__rule& __rule) { |
312 | return chrono::__from_to_sys_seconds(__stdoff, __rule, year: __rule.__from); |
313 | } |
314 | |
315 | [[nodiscard]] static const vector<__tz::__rule>& |
316 | __get_rules(const __tz::__rules_storage_type& __rules_db, const string& __rule_name) { |
317 | auto __result = chrono::__binary_find(r: __rules_db, value: __rule_name, comp: {}, proj: [](const auto& __p) { return __p.first; }); |
318 | if (__result == std::end(c: __rules_db)) |
319 | std::__throw_runtime_error(("corrupt tzdb: rule '" + __rule_name + " 'does not exist" ).c_str()); |
320 | |
321 | return __result->second; |
322 | } |
323 | |
324 | // Returns the letters field for a time before the first rule. |
325 | // |
326 | // Per https://data.iana.org/time-zones/tz-how-to.html |
327 | // One wrinkle, not fully explained in zic.8.txt, is what happens when switching |
328 | // to a named rule. To what values should the SAVE and LETTER data be |
329 | // initialized? |
330 | // |
331 | // 1 If at least one transition has happened, use the SAVE and LETTER data from |
332 | // the most recent. |
333 | // 2 If switching to a named rule before any transition has happened, assume |
334 | // standard time (SAVE zero), and use the LETTER data from the earliest |
335 | // transition with a SAVE of zero. |
336 | // |
337 | // This function implements case 2. |
338 | [[nodiscard]] static string __letters_before_first_rule(const vector<__tz::__rule>& __rules) { |
339 | auto __letters = |
340 | __rules // |
341 | | views::filter([](const __tz::__rule& __rule) { return __rule.__save.__time == 0s; }) // |
342 | | views::transform([](const __tz::__rule& __rule) { return __rule.__letters; }) // |
343 | | views::take(1); |
344 | |
345 | if (__letters.empty()) |
346 | std::__throw_runtime_error("corrupt tzdb: rule has zero entries" ); |
347 | |
348 | return __letters.front(); |
349 | } |
350 | |
351 | // Determines the information based on the continuation and the rules. |
352 | // |
353 | // There are several special cases to take into account |
354 | // |
355 | // === Entries before the first rule becomes active === |
356 | // Asia/Hong_Kong |
357 | // 9 - JST 1945 N 18 2 // (1) |
358 | // 8 HK HK%sT // (2) |
359 | // R HK 1946 o - Ap 21 0 1 S // (3) |
360 | // There (1) is active until Novemer 18th 1945 at 02:00, after this time |
361 | // (2) becomes active. The first rule entry for HK (3) becomes active |
362 | // from April 21st 1945 at 01:00. In the period between (2) is active. |
363 | // This entry has an offset. |
364 | // This entry has no save, letters, or dst flag. So in the period |
365 | // after (1) and until (3) no rule entry is associated with the time. |
366 | |
367 | [[nodiscard]] static sys_info __get_sys_info_before_first_rule( |
368 | sys_seconds __begin, |
369 | sys_seconds __end, |
370 | const __tz::__continuation& __continuation, |
371 | const vector<__tz::__rule>& __rules) { |
372 | return sys_info{ |
373 | .begin: __begin, |
374 | .end: __end, |
375 | .offset: __continuation.__stdoff, |
376 | .save: chrono::minutes(0), |
377 | .abbrev: chrono::__format(__continuation, letters: __letters_before_first_rule(__rules), save: 0s)}; |
378 | } |
379 | |
380 | // Returns the sys_info object for a time before the first rule. |
381 | // When this first rule has a SAVE of 0s the sys_info for the time before the |
382 | // first rule and for the first rule are identical and will be merged. |
383 | [[nodiscard]] static sys_info __get_sys_info_before_first_rule( |
384 | sys_seconds __begin, |
385 | sys_seconds __rule_end, // The end used when SAVE != 0s |
386 | sys_seconds __next_end, // The end used when SAVE == 0s the times are merged |
387 | const __tz::__continuation& __continuation, |
388 | const vector<__tz::__rule>& __rules, |
389 | vector<__tz::__rule>::const_iterator __rule) { |
390 | if (__rule->__save.__time != 0s) |
391 | return __get_sys_info_before_first_rule(__begin, end: __rule_end, __continuation, __rules); |
392 | |
393 | return sys_info{ |
394 | .begin: __begin, .end: __next_end, .offset: __continuation.__stdoff, .save: 0min, .abbrev: chrono::__format(__continuation, letters: __rule->__letters, save: 0s)}; |
395 | } |
396 | |
397 | [[nodiscard]] static seconds __at_to_seconds(seconds __stdoff, seconds __save, const __tz::__rule& __rule) { |
398 | switch (__rule.__at.__clock) { |
399 | case __tz::__clock::__local: |
400 | return __rule.__at.__time - __stdoff - __save; |
401 | |
402 | case __tz::__clock::__universal: |
403 | return __rule.__at.__time; |
404 | |
405 | case __tz::__clock::__standard: |
406 | return __rule.__at.__time - __stdoff; |
407 | } |
408 | std::__libcpp_unreachable(); |
409 | } |
410 | |
411 | [[nodiscard]] static sys_seconds |
412 | __rule_to_sys_seconds(seconds __stdoff, seconds __save, const __tz::__rule& __rule, year __year) { |
413 | year_month_day __ymd = chrono::__to_year_month_day(__year, month: __rule.__in, on: __rule.__on); |
414 | |
415 | seconds __at = chrono::__at_to_seconds(__stdoff, __save, __rule); |
416 | return chrono::__to_sys_seconds(__ymd, seconds: __at); |
417 | } |
418 | |
419 | // Returns the first rule after __time. |
420 | // Note that a rule can be "active" in multiple years, this may result in an |
421 | // infinite loop where the same rule is returned every time, use __current to |
422 | // guard against that. |
423 | // |
424 | // When no next rule exists the returned time will be sys_seconds::max(). This |
425 | // can happen in practice. For example, |
426 | // |
427 | // R So 1945 o - May 24 2 2 M |
428 | // R So 1945 o - S 24 3 1 S |
429 | // R So 1945 o - N 18 2s 0 - |
430 | // |
431 | // Has 3 rules that are all only active in 1945. |
432 | [[nodiscard]] static pair<sys_seconds, vector<__tz::__rule>::const_iterator> |
433 | __next_rule(sys_seconds __time, |
434 | seconds __stdoff, |
435 | seconds __save, |
436 | const vector<__tz::__rule>& __rules, |
437 | vector<__tz::__rule>::const_iterator __current) { |
438 | year __year = year_month_day{chrono::floor<days>(t: __time)}.year(); |
439 | |
440 | // Note it would probably be better to store the pairs in a vector and then |
441 | // use min() to get the smallest element |
442 | map<sys_seconds, vector<__tz::__rule>::const_iterator> __candidates; |
443 | // Note this evaluates all rules which is a waste of effort; when the entries |
444 | // are beyond the current year's "next year" (where "next year" is not always |
445 | // year + 1) the algorithm should end. |
446 | for (auto __it = __rules.begin(); __it != __rules.end(); ++__it) { |
447 | for (year __y = __it->__from; __y <= __it->__to; ++__y) { |
448 | // Adding the current entry for the current year may lead to infinite |
449 | // loops due to the SAVE adjustment. Skip these entries. |
450 | if (__y == __year && __it == __current) |
451 | continue; |
452 | |
453 | sys_seconds __t = chrono::__rule_to_sys_seconds(__stdoff, __save, rule: *__it, year: __y); |
454 | if (__t <= __time) |
455 | continue; |
456 | |
457 | _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(!__candidates.contains(__t), "duplicated rule" ); |
458 | __candidates[__t] = __it; |
459 | break; |
460 | } |
461 | } |
462 | |
463 | if (!__candidates.empty()) [[likely]] { |
464 | auto __it = __candidates.begin(); |
465 | |
466 | // When no rule is selected the time before the first rule and the first rule |
467 | // should not be merged. |
468 | if (__time == sys_seconds::min()) |
469 | return *__it; |
470 | |
471 | // There can be two constitutive rules that are the same. For example, |
472 | // Hong Kong |
473 | // |
474 | // R HK 1973 o - D 30 3:30 1 S (R1) |
475 | // R HK 1965 1976 - Ap Su>=16 3:30 1 S (R2) |
476 | // |
477 | // 1973-12-29 19:30:00 R1 becomes active. |
478 | // 1974-04-20 18:30:00 R2 becomes active. |
479 | // Both rules have a SAVE of 1 hour and LETTERS are S for both of them. |
480 | while (__it != __candidates.end()) { |
481 | if (__current->__save.__time != __it->second->__save.__time || __current->__letters != __it->second->__letters) |
482 | return *__it; |
483 | |
484 | ++__it; |
485 | } |
486 | } |
487 | |
488 | return {sys_seconds::max(), __rules.end()}; |
489 | } |
490 | |
491 | // Returns the first rule of a set of rules. |
492 | // This is not always the first of the listed rules. For example |
493 | // R Sa 2008 2009 - Mar Su>=8 0 0 - |
494 | // R Sa 2007 2008 - O Su>=8 0 1 - |
495 | // The transition in October 2007 happens before the transition in March 2008. |
496 | [[nodiscard]] static vector<__tz::__rule>::const_iterator |
497 | __first_rule(seconds __stdoff, const vector<__tz::__rule>& __rules) { |
498 | return chrono::__next_rule(time: sys_seconds::min(), __stdoff, save: 0s, __rules, current: __rules.end()).second; |
499 | } |
500 | |
501 | [[nodiscard]] static __sys_info_result __get_sys_info_rule( |
502 | sys_seconds __time, |
503 | sys_seconds __continuation_begin, |
504 | const __tz::__continuation& __continuation, |
505 | const vector<__tz::__rule>& __rules) { |
506 | auto __rule = chrono::__first_rule(stdoff: __continuation.__stdoff, __rules); |
507 | _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(__rule != __rules.end(), "the set of rules has no first rule" ); |
508 | |
509 | // Avoid selecting a time before the start of the continuation |
510 | __time = std::max(a: __time, b: __continuation_begin); |
511 | |
512 | sys_seconds __rule_begin = chrono::__from_to_sys_seconds(stdoff: __continuation.__stdoff, rule: *__rule); |
513 | |
514 | // The time sought is very likely inside the current rule. |
515 | // When the continuation's UNTIL uses the local clock there are edge cases |
516 | // where this is not true. |
517 | // |
518 | // Start to walk the rules to find the proper one. |
519 | // |
520 | // For now we just walk all the rules TODO TZDB investigate whether a smarter |
521 | // algorithm would work. |
522 | auto __next = chrono::__next_rule(time: __rule_begin, stdoff: __continuation.__stdoff, save: __rule->__save.__time, __rules, current: __rule); |
523 | |
524 | // Ignore small steps, this happens with America/Punta_Arenas for the |
525 | // transition |
526 | // -4:42:46 - SMT 1927 S |
527 | // -5 x -05/-04 1932 S |
528 | // ... |
529 | // |
530 | // R x 1927 1931 - S 1 0 1 - |
531 | // R x 1928 1932 - Ap 1 0 0 - |
532 | // |
533 | // America/Punta_Arenas Thu Sep 1 04:42:45 1927 UT = Thu Sep 1 00:42:45 1927 -04 isdst=1 gmtoff=-14400 |
534 | // America/Punta_Arenas Sun Apr 1 03:59:59 1928 UT = Sat Mar 31 23:59:59 1928 -04 isdst=1 gmtoff=-14400 |
535 | // America/Punta_Arenas Sun Apr 1 04:00:00 1928 UT = Sat Mar 31 23:00:00 1928 -05 isdst=0 gmtoff=-18000 |
536 | // |
537 | // Without this there will be a transition |
538 | // [1927-09-01 04:42:45, 1927-09-01 05:00:00) -05:00:00 0min -05 |
539 | |
540 | if (sys_seconds __begin = __rule->__save.__time != 0s ? __rule_begin : __next.first; __time < __begin) { |
541 | if (__continuation_begin == sys_seconds::min() || __begin - __continuation_begin > 12h) |
542 | return __sys_info{__get_sys_info_before_first_rule( |
543 | begin: __continuation_begin, rule_end: __rule_begin, next_end: __next.first, __continuation, __rules, __rule), |
544 | false}; |
545 | |
546 | // Europe/Berlin |
547 | // 1 c CE%sT 1945 May 24 2 (C1) |
548 | // 1 So CE%sT 1946 (C2) |
549 | // |
550 | // R c 1944 1945 - Ap M>=1 2s 1 S (R1) |
551 | // |
552 | // R So 1945 o - May 24 2 2 M (R2) |
553 | // |
554 | // When C2 becomes active the time would be before the first rule R2, |
555 | // giving a 1 hour sys_info. |
556 | seconds __save = __rule->__save.__time; |
557 | __named_rule_until __continuation_end{__continuation}; |
558 | sys_seconds __sys_info_end = std::min(a: __continuation_end(__save), b: __next.first); |
559 | |
560 | return __sys_info{ |
561 | sys_info{.begin: __continuation_begin, |
562 | .end: __sys_info_end, |
563 | .offset: __continuation.__stdoff + __save, |
564 | .save: chrono::duration_cast<minutes>(fd: __save), |
565 | .abbrev: chrono::__format(__continuation, letters: __rule->__letters, __save)}, |
566 | __sys_info_end == __continuation_end(__save)}; |
567 | } |
568 | |
569 | // See above for America/Asuncion |
570 | if (__rule->__save.__time == 0s && __time < __next.first) { |
571 | return __sys_info{ |
572 | sys_info{.begin: __continuation_begin, |
573 | .end: __next.first, |
574 | .offset: __continuation.__stdoff, |
575 | .save: 0min, |
576 | .abbrev: chrono::__format(__continuation, letters: __rule->__letters, save: 0s)}, |
577 | false}; |
578 | } |
579 | |
580 | if (__rule->__save.__time != 0s) { |
581 | // another fix for America/Punta_Arenas when not at the start of the |
582 | // sys_info object. |
583 | seconds __save = __rule->__save.__time; |
584 | if (__continuation_begin >= __rule_begin - __save && __time < __next.first) { |
585 | return __sys_info{ |
586 | sys_info{.begin: __continuation_begin, |
587 | .end: __next.first, |
588 | .offset: __continuation.__stdoff + __save, |
589 | .save: chrono::duration_cast<minutes>(fd: __save), |
590 | .abbrev: chrono::__format(__continuation, letters: __rule->__letters, __save)}, |
591 | false}; |
592 | } |
593 | } |
594 | |
595 | __named_rule_until __continuation_end{__continuation}; |
596 | while (__next.second != __rules.end()) { |
597 | #ifdef PRINT |
598 | std::print( |
599 | stderr, |
600 | "Rule for {}: [{}, {}) off={} save={} duration={}\n" , |
601 | __time, |
602 | __rule_begin, |
603 | __next.first, |
604 | __continuation.__stdoff, |
605 | __rule->__save.__time, |
606 | __next.first - __rule_begin); |
607 | #endif |
608 | |
609 | sys_seconds __end = __continuation_end(__rule->__save.__time); |
610 | |
611 | sys_seconds __sys_info_begin = std::max(a: __continuation_begin, b: __rule_begin); |
612 | sys_seconds __sys_info_end = std::min(a: __end, b: __next.first); |
613 | seconds __diff = chrono::abs(d: __sys_info_end - __sys_info_begin); |
614 | |
615 | if (__diff < 12h) { |
616 | // Z America/Argentina/Buenos_Aires -3:53:48 - LMT 1894 O 31 |
617 | // -4:16:48 - CMT 1920 May |
618 | // -4 - -04 1930 D |
619 | // -4 A -04/-03 1969 O 5 |
620 | // -3 A -03/-02 1999 O 3 |
621 | // -4 A -04/-03 2000 Mar 3 |
622 | // ... |
623 | // |
624 | // ... |
625 | // R A 1989 1992 - O Su>=15 0 1 - |
626 | // R A 1999 o - O Su>=1 0 1 - |
627 | // R A 2000 o - Mar 3 0 0 - |
628 | // R A 2007 o - D 30 0 1 - |
629 | // ... |
630 | |
631 | // The 1999 switch uses the same rule, but with a different stdoff. |
632 | // R A 1999 o - O Su>=1 0 1 - |
633 | // stdoff -3 -> 1999-10-03 03:00:00 |
634 | // stdoff -4 -> 1999-10-03 04:00:00 |
635 | // This generates an invalid entry and this is evaluated as a transition. |
636 | // Looking at the zdump like output in libc++ this generates jumps in |
637 | // the UTC time. |
638 | |
639 | __rule = __next.second; |
640 | __next = __next_rule(time: __next.first, stdoff: __continuation.__stdoff, save: __rule->__save.__time, __rules, current: __rule); |
641 | __end = __continuation_end(__rule->__save.__time); |
642 | __sys_info_end = std::min(a: __end, b: __next.first); |
643 | } |
644 | |
645 | if ((__time >= __rule_begin && __time < __next.first) || __next.first >= __end) { |
646 | __sys_info_begin = std::max(a: __continuation_begin, b: __rule_begin); |
647 | __sys_info_end = std::min(a: __end, b: __next.first); |
648 | |
649 | return __sys_info{ |
650 | sys_info{.begin: __sys_info_begin, |
651 | .end: __sys_info_end, |
652 | .offset: __continuation.__stdoff + __rule->__save.__time, |
653 | .save: chrono::duration_cast<minutes>(fd: __rule->__save.__time), |
654 | .abbrev: chrono::__format(__continuation, letters: __rule->__letters, save: __rule->__save.__time)}, |
655 | __sys_info_end == __end}; |
656 | } |
657 | |
658 | __rule_begin = __next.first; |
659 | __rule = __next.second; |
660 | __next = __next_rule(time: __rule_begin, stdoff: __continuation.__stdoff, save: __rule->__save.__time, __rules, current: __rule); |
661 | } |
662 | |
663 | return __sys_info{ |
664 | sys_info{.begin: std::max(a: __continuation_begin, b: __rule_begin), |
665 | .end: __continuation_end(__rule->__save.__time), |
666 | .offset: __continuation.__stdoff + __rule->__save.__time, |
667 | .save: chrono::duration_cast<minutes>(fd: __rule->__save.__time), |
668 | .abbrev: chrono::__format(__continuation, letters: __rule->__letters, save: __rule->__save.__time)}, |
669 | true}; |
670 | } |
671 | |
672 | [[nodiscard]] static __sys_info_result __get_sys_info_basic( |
673 | sys_seconds __time, sys_seconds __continuation_begin, const __tz::__continuation& __continuation, seconds __save) { |
674 | sys_seconds __continuation_end = chrono::__until_to_sys_seconds(__continuation); |
675 | return __sys_info{ |
676 | sys_info{.begin: __continuation_begin, |
677 | .end: __continuation_end, |
678 | .offset: __continuation.__stdoff + __save, |
679 | .save: chrono::duration_cast<minutes>(fd: __save), |
680 | .abbrev: chrono::__format(__continuation, letters: __continuation.__format, __save)}, |
681 | true}; |
682 | } |
683 | |
684 | [[nodiscard]] static __sys_info_result |
685 | __get_sys_info(sys_seconds __time, |
686 | sys_seconds __continuation_begin, |
687 | const __tz::__continuation& __continuation, |
688 | const __tz::__rules_storage_type& __rules_db) { |
689 | return std::visit( |
690 | visitor: [&](const auto& __value) { |
691 | using _Tp = decay_t<decltype(__value)>; |
692 | if constexpr (same_as<_Tp, std::string>) |
693 | return chrono::__get_sys_info_rule( |
694 | __time, __continuation_begin, __continuation, rules: __get_rules(__rules_db, __value)); |
695 | else if constexpr (same_as<_Tp, monostate>) |
696 | return chrono::__get_sys_info_basic(__time, __continuation_begin, __continuation, save: chrono::seconds(0)); |
697 | else if constexpr (same_as<_Tp, __tz::__save>) |
698 | return chrono::__get_sys_info_basic(__time, __continuation_begin, __continuation, save: __value.__time); |
699 | else |
700 | static_assert(false); |
701 | |
702 | std::__libcpp_unreachable(); |
703 | }, |
704 | vs: __continuation.__rules); |
705 | } |
706 | |
707 | // The transition from one continuation to the next continuation may result in |
708 | // two constitutive continuations with the same "offset" information. |
709 | // [time.zone.info.sys]/3 |
710 | // The begin and end data members indicate that, for the associated time_zone |
711 | // and time_point, the offset and abbrev are in effect in the range |
712 | // [begin, end). This information can be used to efficiently iterate the |
713 | // transitions of a time_zone. |
714 | // |
715 | // Note that this does considers a change in the SAVE field not to be a |
716 | // different sys_info, zdump does consider this different. |
717 | // LWG XXXX The sys_info range should be affected by save |
718 | // matches the behaviour of the Standard and zdump. |
719 | // |
720 | // Iff the "offsets" are the same '__current.__end' is replaced with |
721 | // '__next.__end', which effectively merges the two objects in one object. The |
722 | // function returns true if a merge occurred. |
723 | [[nodiscard]] bool __merge_continuation(sys_info& __current, const sys_info& __next) { |
724 | if (__current.end != __next.begin) |
725 | return false; |
726 | |
727 | if (__current.offset != __next.offset || __current.abbrev != __next.abbrev || __current.save != __next.save) |
728 | return false; |
729 | |
730 | __current.end = __next.end; |
731 | return true; |
732 | } |
733 | |
734 | //===----------------------------------------------------------------------===// |
735 | // Public API |
736 | //===----------------------------------------------------------------------===// |
737 | |
738 | [[nodiscard]] _LIBCPP_EXPORTED_FROM_ABI time_zone time_zone::__create(unique_ptr<time_zone::__impl>&& __p) { |
739 | _LIBCPP_ASSERT_NON_NULL(__p != nullptr, "initialized time_zone without a valid pimpl object" ); |
740 | time_zone result; |
741 | result.__impl_ = std::move(__p); |
742 | return result; |
743 | } |
744 | |
745 | _LIBCPP_EXPORTED_FROM_ABI time_zone::~time_zone() = default; |
746 | |
747 | [[nodiscard]] _LIBCPP_EXPORTED_FROM_ABI string_view time_zone::__name() const noexcept { return __impl_->__name(); } |
748 | |
749 | [[nodiscard]] _LIBCPP_AVAILABILITY_TZDB _LIBCPP_EXPORTED_FROM_ABI sys_info |
750 | time_zone::__get_info(sys_seconds __time) const { |
751 | optional<sys_info> __result; |
752 | bool __valid_result = false; // true iff __result.has_value() is true and |
753 | // __result.begin <= __time < __result.end is true. |
754 | bool __can_merge = false; |
755 | sys_seconds __continuation_begin = sys_seconds::min(); |
756 | // Iterates over the Zone entry and its continuations. Internally the Zone |
757 | // entry is split in a Zone information and the first continuation. The last |
758 | // continuation has no UNTIL field. This means the loop should always find a |
759 | // continuation. |
760 | // |
761 | // For more information on background of zone information please consult the |
762 | // following information |
763 | // [zic manual](https://www.man7.org/linux/man-pages/man8/zic.8.html) |
764 | // [tz source info](https://data.iana.org/time-zones/tz-how-to.html) |
765 | // On POSIX systems the zdump tool can be useful: |
766 | // zdump -v Asia/Hong_Kong |
767 | // Gives all transitions in the Hong Kong time zone. |
768 | // |
769 | // During iteration the result for the current continuation is returned. If |
770 | // no continuation is applicable it will return the end time as "error". When |
771 | // two continuations are contiguous and contain the "same" information these |
772 | // ranges are merged as one range. |
773 | // The merging requires keeping any result that occurs before __time, |
774 | // likewise when a valid result is found the algorithm needs to test the next |
775 | // continuation to see whether it can be merged. For example, Africa/Ceuta |
776 | // Continuations |
777 | // 0 s WE%sT 1929 (C1) |
778 | // 0 - WET 1967 (C2) |
779 | // 0 Sp WE%sT 1984 Mar 16 (C3) |
780 | // |
781 | // Rules |
782 | // R s 1926 1929 - O Sa>=1 24s 0 - (R1) |
783 | // |
784 | // R Sp 1967 o - Jun 3 12 1 S (R2) |
785 | // |
786 | // The rule R1 is the last rule used in C1. The rule R2 is the first rule in |
787 | // C3. Since R2 is the first rule this means when a continuation uses this |
788 | // rule its value prior to R2 will be SAVE 0 LETTERS of the first entry with a |
789 | // SAVE of 0, in this case WET. |
790 | // This gives the following changes in the information. |
791 | // 1928-10-07 00:00:00 C1 R1 becomes active: offset 0 save 0 abbrev WET |
792 | // 1929-01-01 00:00:00 C2 becomes active: offset 0 save 0 abbrev WET |
793 | // 1967-01-01 00:00:00 C3 becomes active: offset 0 save 0 abbrev WET |
794 | // 1967-06-03 12:00:00 C3 R2 becomes active: offset 0 save 1 abbrev WEST |
795 | // |
796 | // The first 3 entries are contiguous and contain the same information, this |
797 | // means the period [1928-10-07 00:00:00, 1967-06-03 12:00:00) should be |
798 | // returned in one sys_info object. |
799 | |
800 | const auto& __continuations = __impl_->__continuations(); |
801 | const __tz::__rules_storage_type& __rules_db = __impl_->__rules_db(); |
802 | for (auto __it = __continuations.begin(); __it != __continuations.end(); ++__it) { |
803 | const auto& __continuation = *__it; |
804 | __sys_info_result __sys_info = chrono::__get_sys_info(__time, __continuation_begin, __continuation, __rules_db); |
805 | |
806 | if (__sys_info) { |
807 | _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN( |
808 | __sys_info->__info.begin < __sys_info->__info.end, "invalid sys_info range" ); |
809 | |
810 | // Filters out dummy entries |
811 | // Z America/Argentina/Buenos_Aires -3:53:48 - LMT 1894 O 31 |
812 | // ... |
813 | // -4 A -04/-03 2000 Mar 3 (C1) |
814 | // -3 A -03/-02 (C2) |
815 | // |
816 | // ... |
817 | // R A 2000 o - Mar 3 0 0 - |
818 | // R A 2007 o - D 30 0 1 - |
819 | // ... |
820 | // |
821 | // This results in an entry |
822 | // [2000-03-03 03:00:00, 2000-03-03 04:00:00) -10800s 60min -03 |
823 | // for [C1 & R1, C1, R2) which due to the end of the continuation is an |
824 | // one hour "sys_info". Instead the entry should be ignored and replaced |
825 | // by [C2 & R1, C2 & R2) which is the proper range |
826 | // "[2000-03-03 03:00:00, 2007-12-30 03:00:00) -02:00:00 60min -02 |
827 | |
828 | if (std::holds_alternative<string>(v: __continuation.__rules) && __sys_info->__can_merge && |
829 | __sys_info->__info.begin + 12h > __sys_info->__info.end) { |
830 | __continuation_begin = __sys_info->__info.begin; |
831 | continue; |
832 | } |
833 | |
834 | if (!__result) { |
835 | // First entry found, always keep it. |
836 | __result = __sys_info->__info; |
837 | |
838 | __valid_result = __time >= __result->begin && __time < __result->end; |
839 | __can_merge = __sys_info->__can_merge; |
840 | } else if (__can_merge && chrono::__merge_continuation(current&: *__result, next: __sys_info->__info)) { |
841 | // The results are merged, update the result state. This may |
842 | // "overwrite" a valid sys_info object with another valid sys_info |
843 | // object. |
844 | __valid_result = __time >= __result->begin && __time < __result->end; |
845 | __can_merge = __sys_info->__can_merge; |
846 | } else { |
847 | // Here things get interesting: |
848 | // For example, America/Argentina/San_Luis |
849 | // |
850 | // -3 A -03/-02 2008 Ja 21 (C1) |
851 | // -4 Sa -04/-03 2009 O 11 (C2) |
852 | // |
853 | // R A 2007 o - D 30 0 1 - (R1) |
854 | // |
855 | // R Sa 2007 2008 - O Su>=8 0 1 - (R2) |
856 | // |
857 | // Based on C1 & R1 the end time of C1 is 2008-01-21 03:00:00 |
858 | // Based on C2 & R2 the end time of C1 is 2008-01-21 02:00:00 |
859 | // In this case the earlier time is the real time of the transition. |
860 | // However the algorithm used gives 2008-01-21 03:00:00. |
861 | // |
862 | // So we need to calculate the previous UNTIL in the current context and |
863 | // see whether it's earlier. |
864 | |
865 | // The results could not be merged. |
866 | // - When we have a valid result that result is the final result. |
867 | // - Otherwise the result we had is before __time and the result we got |
868 | // is at a later time (possibly valid). This result is always better |
869 | // than the previous result. |
870 | if (__valid_result) { |
871 | return *__result; |
872 | } else { |
873 | _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN( |
874 | __it != __continuations.begin(), "the first rule should always seed the result" ); |
875 | const auto& __last = *(__it - 1); |
876 | if (std::holds_alternative<string>(v: __last.__rules)) { |
877 | // Europe/Berlin |
878 | // 1 c CE%sT 1945 May 24 2 (C1) |
879 | // 1 So CE%sT 1946 (C2) |
880 | // |
881 | // R c 1944 1945 - Ap M>=1 2s 1 S (R1) |
882 | // |
883 | // R So 1945 o - May 24 2 2 M (R2) |
884 | // |
885 | // When C2 becomes active the time would be before the first rule R2, |
886 | // giving a 1 hour sys_info. This is not valid and the results need |
887 | // merging. |
888 | |
889 | if (__result->end != __sys_info->__info.begin) { |
890 | // When the UTC gap between the rules is due to the change of |
891 | // offsets adjust the new time to remove the gap. |
892 | sys_seconds __end = __result->end - __result->offset; |
893 | sys_seconds __begin = __sys_info->__info.begin - __sys_info->__info.offset; |
894 | if (__end == __begin) { |
895 | __sys_info->__info.begin = __result->end; |
896 | } |
897 | } |
898 | } |
899 | |
900 | __result = __sys_info->__info; |
901 | __valid_result = __time >= __result->begin && __time < __result->end; |
902 | __can_merge = __sys_info->__can_merge; |
903 | } |
904 | } |
905 | __continuation_begin = __result->end; |
906 | } else { |
907 | __continuation_begin = __sys_info.error(); |
908 | } |
909 | } |
910 | if (__valid_result) |
911 | return *__result; |
912 | |
913 | std::__throw_runtime_error("tzdb: corrupt db" ); |
914 | } |
915 | |
916 | // Is the "__local_time" present in "__first" and "__second". If so the |
917 | // local_info has an ambiguous result. |
918 | [[nodiscard]] static bool |
919 | __is_ambiguous(local_seconds __local_time, const sys_info& __first, const sys_info& __second) { |
920 | std::chrono::local_seconds __end_first{__first.end.time_since_epoch() + __first.offset}; |
921 | std::chrono::local_seconds __begin_second{__second.begin.time_since_epoch() + __second.offset}; |
922 | |
923 | return __local_time < __end_first && __local_time >= __begin_second; |
924 | } |
925 | |
926 | // Determines the result of the "__local_time". This expects the object |
927 | // "__first" to be earlier in time than "__second". |
928 | [[nodiscard]] static local_info |
929 | __get_info(local_seconds __local_time, const sys_info& __first, const sys_info& __second) { |
930 | std::chrono::local_seconds __end_first{__first.end.time_since_epoch() + __first.offset}; |
931 | std::chrono::local_seconds __begin_second{__second.begin.time_since_epoch() + __second.offset}; |
932 | |
933 | if (__local_time < __end_first) { |
934 | if (__local_time >= __begin_second) |
935 | // |--------| |
936 | // |------| |
937 | // ^ |
938 | return {.result: local_info::ambiguous, .first: __first, .second: __second}; |
939 | |
940 | // |--------| |
941 | // |------| |
942 | // ^ |
943 | return {.result: local_info::unique, .first: __first, .second: sys_info{}}; |
944 | } |
945 | |
946 | if (__local_time < __begin_second) |
947 | // |--------| |
948 | // |------| |
949 | // ^ |
950 | return {.result: local_info::nonexistent, .first: __first, .second: __second}; |
951 | |
952 | // |--------| |
953 | // |------| |
954 | // ^ |
955 | return {.result: local_info::unique, .first: __second, .second: sys_info{}}; |
956 | } |
957 | |
958 | [[nodiscard]] _LIBCPP_AVAILABILITY_TZDB _LIBCPP_EXPORTED_FROM_ABI local_info |
959 | time_zone::__get_info(local_seconds __local_time) const { |
960 | seconds __local_seconds = __local_time.time_since_epoch(); |
961 | |
962 | /* An example of a typical year with a DST switch displayed in local time. |
963 | * |
964 | * At the first of April the time goes forward one hour. This means the |
965 | * time marked with ~~ is not a valid local time. This is represented by the |
966 | * nonexistent value in local_info.result. |
967 | * |
968 | * At the first of November the time goes backward one hour. This means the |
969 | * time marked with ^^ happens twice. This is represented by the ambiguous |
970 | * value in local_info.result. |
971 | * |
972 | * 2020.11.01 2021.04.01 2021.11.01 |
973 | * offset +05 offset +05 offset +05 |
974 | * save 0s save 1h save 0s |
975 | * |------------//----------| |
976 | * |---------//--------------| |
977 | * |------------- |
978 | * ~~ ^^ |
979 | * |
980 | * These shifts can happen due to changes in the current time zone for a |
981 | * location. For example, Indian/Kerguelen switched only once. In 1950 from an |
982 | * offset of 0 hours to an offset of +05 hours. |
983 | * |
984 | * During all these shifts the UTC time will not have gaps. |
985 | */ |
986 | |
987 | // The code needs to determine the system time for the local time. There is no |
988 | // information available. Assume the offset between system time and local time |
989 | // is 0s. This gives an initial estimate. |
990 | sys_seconds __guess{__local_seconds}; |
991 | sys_info __info = __get_info(time: __guess); |
992 | |
993 | // At this point the offset can be used to determine an estimate for the local |
994 | // time. Before doing that, determine the offset and validate whether the |
995 | // local time is the range [chrono::local_seconds::min(), |
996 | // chrono::local_seconds::max()). |
997 | if (__local_seconds < 0s && __info.offset > 0s) |
998 | if (__local_seconds - chrono::local_seconds::min().time_since_epoch() < __info.offset) |
999 | return {.result: -1, .first: __info, .second: {}}; |
1000 | |
1001 | if (__local_seconds > 0s && __info.offset < 0s) |
1002 | if (chrono::local_seconds::max().time_since_epoch() - __local_seconds < -__info.offset) |
1003 | return {.result: -2, .first: __info, .second: {}}; |
1004 | |
1005 | // Based on the information found in the sys_info, the local time can be |
1006 | // converted to a system time. This resulting time can be in the following |
1007 | // locations of the sys_info: |
1008 | // |
1009 | // |---------//--------------| |
1010 | // 1 2.1 2.2 2.3 3 |
1011 | // |
1012 | // 1. The estimate is before the returned sys_info object. |
1013 | // The result is either non-existent or unique in the previous sys_info. |
1014 | // 2. The estimate is in the sys_info object |
1015 | // - If the sys_info begin is not sys_seconds::min(), then it might be at |
1016 | // 2.1 and could be ambiguous with the previous or unique. |
1017 | // - If sys_info end is not sys_seconds::max(), then it might be at 2.3 |
1018 | // and could be ambiguous with the next or unique. |
1019 | // - Else it is at 2.2 and always unique. This case happens when a |
1020 | // time zone has no transitions. For example, UTC or GMT+1. |
1021 | // 3. The estimate is after the returned sys_info object. |
1022 | // The result is either non-existent or unique in the next sys_info. |
1023 | // |
1024 | // There is no specification where the "middle" starts. Similar issues can |
1025 | // happen when sys_info objects are "short", then "unique in the next" could |
1026 | // become "ambiguous in the next and the one following". Theoretically there |
1027 | // is the option of the following time-line |
1028 | // |
1029 | // |------------| |
1030 | // |----| |
1031 | // |-----------------| |
1032 | // |
1033 | // However the local_info object only has 2 sys_info objects, so this option |
1034 | // is not tested. |
1035 | |
1036 | sys_seconds __sys_time{__local_seconds - __info.offset}; |
1037 | if (__sys_time < __info.begin) |
1038 | // Case 1 before __info |
1039 | return chrono::__get_info(__local_time, first: __get_info(time: __info.begin - 1s), second: __info); |
1040 | |
1041 | if (__sys_time >= __info.end) |
1042 | // Case 3 after __info |
1043 | return chrono::__get_info(__local_time, first: __info, second: __get_info(time: __info.end)); |
1044 | |
1045 | // Case 2 in __info |
1046 | if (__info.begin != sys_seconds::min()) { |
1047 | // Case 2.1 Not at the beginning, when not ambiguous the result should test |
1048 | // case 2.3. |
1049 | sys_info __prev = __get_info(time: __info.begin - 1s); |
1050 | if (__is_ambiguous(__local_time, first: __prev, second: __info)) |
1051 | return {.result: local_info::ambiguous, .first: __prev, .second: __info}; |
1052 | } |
1053 | |
1054 | if (__info.end == sys_seconds::max()) |
1055 | // At the end so it's case 2.2 |
1056 | return {.result: local_info::unique, .first: __info, .second: sys_info{}}; |
1057 | |
1058 | // This tests case 2.2 or case 2.3. |
1059 | return chrono::__get_info(__local_time, first: __info, second: __get_info(time: __info.end)); |
1060 | } |
1061 | |
1062 | } // namespace chrono |
1063 | |
1064 | _LIBCPP_END_NAMESPACE_STD |
1065 | |