1 | // Internal policy header for unordered_set and unordered_map -*- C++ -*- |
2 | |
3 | // Copyright (C) 2010-2022 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** @file bits/hashtable_policy.h |
26 | * This is an internal header file, included by other library headers. |
27 | * Do not attempt to use it directly. |
28 | * @headername{unordered_map,unordered_set} |
29 | */ |
30 | |
31 | #ifndef _HASHTABLE_POLICY_H |
32 | #define _HASHTABLE_POLICY_H 1 |
33 | |
34 | #include <tuple> // for std::tuple, std::forward_as_tuple |
35 | #include <bits/stl_algobase.h> // for std::min, std::is_permutation. |
36 | #include <ext/aligned_buffer.h> // for __gnu_cxx::__aligned_buffer |
37 | #include <ext/alloc_traits.h> // for std::__alloc_rebind |
38 | #include <ext/numeric_traits.h> // for __gnu_cxx::__int_traits |
39 | |
40 | namespace std _GLIBCXX_VISIBILITY(default) |
41 | { |
42 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
43 | /// @cond undocumented |
44 | |
45 | template<typename _Key, typename _Value, typename _Alloc, |
46 | typename _ExtractKey, typename _Equal, |
47 | typename _Hash, typename _RangeHash, typename _Unused, |
48 | typename _RehashPolicy, typename _Traits> |
49 | class _Hashtable; |
50 | |
51 | namespace __detail |
52 | { |
53 | /** |
54 | * @defgroup hashtable-detail Base and Implementation Classes |
55 | * @ingroup unordered_associative_containers |
56 | * @{ |
57 | */ |
58 | template<typename _Key, typename _Value, typename _ExtractKey, |
59 | typename _Equal, typename _Hash, typename _RangeHash, |
60 | typename _Unused, typename _Traits> |
61 | struct _Hashtable_base; |
62 | |
63 | // Helper function: return distance(first, last) for forward |
64 | // iterators, or 0/1 for input iterators. |
65 | template<typename _Iterator> |
66 | inline typename std::iterator_traits<_Iterator>::difference_type |
67 | __distance_fw(_Iterator __first, _Iterator __last, |
68 | std::input_iterator_tag) |
69 | { return __first != __last ? 1 : 0; } |
70 | |
71 | template<typename _Iterator> |
72 | inline typename std::iterator_traits<_Iterator>::difference_type |
73 | __distance_fw(_Iterator __first, _Iterator __last, |
74 | std::forward_iterator_tag) |
75 | { return std::distance(__first, __last); } |
76 | |
77 | template<typename _Iterator> |
78 | inline typename std::iterator_traits<_Iterator>::difference_type |
79 | __distance_fw(_Iterator __first, _Iterator __last) |
80 | { return __distance_fw(__first, __last, |
81 | std::__iterator_category(__first)); } |
82 | |
83 | struct _Identity |
84 | { |
85 | template<typename _Tp> |
86 | _Tp&& |
87 | operator()(_Tp&& __x) const noexcept |
88 | { return std::forward<_Tp>(__x); } |
89 | }; |
90 | |
91 | struct _Select1st |
92 | { |
93 | template<typename _Pair> |
94 | struct __1st_type; |
95 | |
96 | template<typename _Tp, typename _Up> |
97 | struct __1st_type<pair<_Tp, _Up>> |
98 | { using type = _Tp; }; |
99 | |
100 | template<typename _Tp, typename _Up> |
101 | struct __1st_type<const pair<_Tp, _Up>> |
102 | { using type = const _Tp; }; |
103 | |
104 | template<typename _Pair> |
105 | struct __1st_type<_Pair&> |
106 | { using type = typename __1st_type<_Pair>::type&; }; |
107 | |
108 | template<typename _Tp> |
109 | typename __1st_type<_Tp>::type&& |
110 | operator()(_Tp&& __x) const noexcept |
111 | { return std::forward<_Tp>(__x).first; } |
112 | }; |
113 | |
114 | template<typename _ExKey> |
115 | struct _NodeBuilder; |
116 | |
117 | template<> |
118 | struct _NodeBuilder<_Select1st> |
119 | { |
120 | template<typename _Kt, typename _Arg, typename _NodeGenerator> |
121 | static auto |
122 | _S_build(_Kt&& __k, _Arg&& __arg, const _NodeGenerator& __node_gen) |
123 | -> typename _NodeGenerator::__node_type* |
124 | { |
125 | return __node_gen(std::forward<_Kt>(__k), |
126 | std::forward<_Arg>(__arg).second); |
127 | } |
128 | }; |
129 | |
130 | template<> |
131 | struct _NodeBuilder<_Identity> |
132 | { |
133 | template<typename _Kt, typename _Arg, typename _NodeGenerator> |
134 | static auto |
135 | _S_build(_Kt&& __k, _Arg&&, const _NodeGenerator& __node_gen) |
136 | -> typename _NodeGenerator::__node_type* |
137 | { return __node_gen(std::forward<_Kt>(__k)); } |
138 | }; |
139 | |
140 | template<typename _NodeAlloc> |
141 | struct _Hashtable_alloc; |
142 | |
143 | // Functor recycling a pool of nodes and using allocation once the pool is |
144 | // empty. |
145 | template<typename _NodeAlloc> |
146 | struct _ReuseOrAllocNode |
147 | { |
148 | private: |
149 | using __node_alloc_type = _NodeAlloc; |
150 | using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>; |
151 | using __node_alloc_traits = |
152 | typename __hashtable_alloc::__node_alloc_traits; |
153 | |
154 | public: |
155 | using __node_type = typename __hashtable_alloc::__node_type; |
156 | |
157 | _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h) |
158 | : _M_nodes(__nodes), _M_h(__h) { } |
159 | _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete; |
160 | |
161 | ~_ReuseOrAllocNode() |
162 | { _M_h._M_deallocate_nodes(_M_nodes); } |
163 | |
164 | template<typename... _Args> |
165 | __node_type* |
166 | operator()(_Args&&... __args) const |
167 | { |
168 | if (_M_nodes) |
169 | { |
170 | __node_type* __node = _M_nodes; |
171 | _M_nodes = _M_nodes->_M_next(); |
172 | __node->_M_nxt = nullptr; |
173 | auto& __a = _M_h._M_node_allocator(); |
174 | __node_alloc_traits::destroy(__a, __node->_M_valptr()); |
175 | __try |
176 | { |
177 | __node_alloc_traits::construct(__a, __node->_M_valptr(), |
178 | std::forward<_Args>(__args)...); |
179 | } |
180 | __catch(...) |
181 | { |
182 | _M_h._M_deallocate_node_ptr(__node); |
183 | __throw_exception_again; |
184 | } |
185 | return __node; |
186 | } |
187 | return _M_h._M_allocate_node(std::forward<_Args>(__args)...); |
188 | } |
189 | |
190 | private: |
191 | mutable __node_type* _M_nodes; |
192 | __hashtable_alloc& _M_h; |
193 | }; |
194 | |
195 | // Functor similar to the previous one but without any pool of nodes to |
196 | // recycle. |
197 | template<typename _NodeAlloc> |
198 | struct _AllocNode |
199 | { |
200 | private: |
201 | using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>; |
202 | |
203 | public: |
204 | using __node_type = typename __hashtable_alloc::__node_type; |
205 | |
206 | _AllocNode(__hashtable_alloc& __h) |
207 | : _M_h(__h) { } |
208 | |
209 | template<typename... _Args> |
210 | __node_type* |
211 | operator()(_Args&&... __args) const |
212 | { return _M_h._M_allocate_node(std::forward<_Args>(__args)...); } |
213 | |
214 | private: |
215 | __hashtable_alloc& _M_h; |
216 | }; |
217 | |
218 | // Auxiliary types used for all instantiations of _Hashtable nodes |
219 | // and iterators. |
220 | |
221 | /** |
222 | * struct _Hashtable_traits |
223 | * |
224 | * Important traits for hash tables. |
225 | * |
226 | * @tparam _Cache_hash_code Boolean value. True if the value of |
227 | * the hash function is stored along with the value. This is a |
228 | * time-space tradeoff. Storing it may improve lookup speed by |
229 | * reducing the number of times we need to call the _Hash or _Equal |
230 | * functors. |
231 | * |
232 | * @tparam _Constant_iterators Boolean value. True if iterator and |
233 | * const_iterator are both constant iterator types. This is true |
234 | * for unordered_set and unordered_multiset, false for |
235 | * unordered_map and unordered_multimap. |
236 | * |
237 | * @tparam _Unique_keys Boolean value. True if the return value |
238 | * of _Hashtable::count(k) is always at most one, false if it may |
239 | * be an arbitrary number. This is true for unordered_set and |
240 | * unordered_map, false for unordered_multiset and |
241 | * unordered_multimap. |
242 | */ |
243 | template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys> |
244 | struct _Hashtable_traits |
245 | { |
246 | using __hash_cached = __bool_constant<_Cache_hash_code>; |
247 | using __constant_iterators = __bool_constant<_Constant_iterators>; |
248 | using __unique_keys = __bool_constant<_Unique_keys>; |
249 | }; |
250 | |
251 | /** |
252 | * struct _Hashtable_hash_traits |
253 | * |
254 | * Important traits for hash tables depending on associated hasher. |
255 | * |
256 | */ |
257 | template<typename _Hash> |
258 | struct _Hashtable_hash_traits |
259 | { |
260 | static constexpr std::size_t |
261 | __small_size_threshold() noexcept |
262 | { return std::__is_fast_hash<_Hash>::value ? 0 : 20; } |
263 | }; |
264 | |
265 | /** |
266 | * struct _Hash_node_base |
267 | * |
268 | * Nodes, used to wrap elements stored in the hash table. A policy |
269 | * template parameter of class template _Hashtable controls whether |
270 | * nodes also store a hash code. In some cases (e.g. strings) this |
271 | * may be a performance win. |
272 | */ |
273 | struct _Hash_node_base |
274 | { |
275 | _Hash_node_base* _M_nxt; |
276 | |
277 | _Hash_node_base() noexcept : _M_nxt() { } |
278 | |
279 | _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { } |
280 | }; |
281 | |
282 | /** |
283 | * struct _Hash_node_value_base |
284 | * |
285 | * Node type with the value to store. |
286 | */ |
287 | template<typename _Value> |
288 | struct _Hash_node_value_base |
289 | { |
290 | typedef _Value value_type; |
291 | |
292 | __gnu_cxx::__aligned_buffer<_Value> _M_storage; |
293 | |
294 | _Value* |
295 | _M_valptr() noexcept |
296 | { return _M_storage._M_ptr(); } |
297 | |
298 | const _Value* |
299 | _M_valptr() const noexcept |
300 | { return _M_storage._M_ptr(); } |
301 | |
302 | _Value& |
303 | _M_v() noexcept |
304 | { return *_M_valptr(); } |
305 | |
306 | const _Value& |
307 | _M_v() const noexcept |
308 | { return *_M_valptr(); } |
309 | }; |
310 | |
311 | /** |
312 | * Primary template struct _Hash_node_code_cache. |
313 | */ |
314 | template<bool _Cache_hash_code> |
315 | struct _Hash_node_code_cache |
316 | { }; |
317 | |
318 | /** |
319 | * Specialization for node with cache, struct _Hash_node_code_cache. |
320 | */ |
321 | template<> |
322 | struct _Hash_node_code_cache<true> |
323 | { std::size_t _M_hash_code; }; |
324 | |
325 | template<typename _Value, bool _Cache_hash_code> |
326 | struct _Hash_node_value |
327 | : _Hash_node_value_base<_Value> |
328 | , _Hash_node_code_cache<_Cache_hash_code> |
329 | { }; |
330 | |
331 | /** |
332 | * Primary template struct _Hash_node. |
333 | */ |
334 | template<typename _Value, bool _Cache_hash_code> |
335 | struct _Hash_node |
336 | : _Hash_node_base |
337 | , _Hash_node_value<_Value, _Cache_hash_code> |
338 | { |
339 | _Hash_node* |
340 | _M_next() const noexcept |
341 | { return static_cast<_Hash_node*>(this->_M_nxt); } |
342 | }; |
343 | |
344 | /// Base class for node iterators. |
345 | template<typename _Value, bool _Cache_hash_code> |
346 | struct _Node_iterator_base |
347 | { |
348 | using __node_type = _Hash_node<_Value, _Cache_hash_code>; |
349 | |
350 | __node_type* _M_cur; |
351 | |
352 | _Node_iterator_base() : _M_cur(nullptr) { } |
353 | _Node_iterator_base(__node_type* __p) noexcept |
354 | : _M_cur(__p) { } |
355 | |
356 | void |
357 | _M_incr() noexcept |
358 | { _M_cur = _M_cur->_M_next(); } |
359 | |
360 | friend bool |
361 | operator==(const _Node_iterator_base& __x, const _Node_iterator_base& __y) |
362 | noexcept |
363 | { return __x._M_cur == __y._M_cur; } |
364 | |
365 | #if __cpp_impl_three_way_comparison < 201907L |
366 | friend bool |
367 | operator!=(const _Node_iterator_base& __x, const _Node_iterator_base& __y) |
368 | noexcept |
369 | { return __x._M_cur != __y._M_cur; } |
370 | #endif |
371 | }; |
372 | |
373 | /// Node iterators, used to iterate through all the hashtable. |
374 | template<typename _Value, bool __constant_iterators, bool __cache> |
375 | struct _Node_iterator |
376 | : public _Node_iterator_base<_Value, __cache> |
377 | { |
378 | private: |
379 | using __base_type = _Node_iterator_base<_Value, __cache>; |
380 | using __node_type = typename __base_type::__node_type; |
381 | |
382 | public: |
383 | using value_type = _Value; |
384 | using difference_type = std::ptrdiff_t; |
385 | using iterator_category = std::forward_iterator_tag; |
386 | |
387 | using pointer = __conditional_t<__constant_iterators, |
388 | const value_type*, value_type*>; |
389 | |
390 | using reference = __conditional_t<__constant_iterators, |
391 | const value_type&, value_type&>; |
392 | |
393 | _Node_iterator() = default; |
394 | |
395 | explicit |
396 | _Node_iterator(__node_type* __p) noexcept |
397 | : __base_type(__p) { } |
398 | |
399 | reference |
400 | operator*() const noexcept |
401 | { return this->_M_cur->_M_v(); } |
402 | |
403 | pointer |
404 | operator->() const noexcept |
405 | { return this->_M_cur->_M_valptr(); } |
406 | |
407 | _Node_iterator& |
408 | operator++() noexcept |
409 | { |
410 | this->_M_incr(); |
411 | return *this; |
412 | } |
413 | |
414 | _Node_iterator |
415 | operator++(int) noexcept |
416 | { |
417 | _Node_iterator __tmp(*this); |
418 | this->_M_incr(); |
419 | return __tmp; |
420 | } |
421 | }; |
422 | |
423 | /// Node const_iterators, used to iterate through all the hashtable. |
424 | template<typename _Value, bool __constant_iterators, bool __cache> |
425 | struct _Node_const_iterator |
426 | : public _Node_iterator_base<_Value, __cache> |
427 | { |
428 | private: |
429 | using __base_type = _Node_iterator_base<_Value, __cache>; |
430 | using __node_type = typename __base_type::__node_type; |
431 | |
432 | public: |
433 | typedef _Value value_type; |
434 | typedef std::ptrdiff_t difference_type; |
435 | typedef std::forward_iterator_tag iterator_category; |
436 | |
437 | typedef const value_type* pointer; |
438 | typedef const value_type& reference; |
439 | |
440 | _Node_const_iterator() = default; |
441 | |
442 | explicit |
443 | _Node_const_iterator(__node_type* __p) noexcept |
444 | : __base_type(__p) { } |
445 | |
446 | _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators, |
447 | __cache>& __x) noexcept |
448 | : __base_type(__x._M_cur) { } |
449 | |
450 | reference |
451 | operator*() const noexcept |
452 | { return this->_M_cur->_M_v(); } |
453 | |
454 | pointer |
455 | operator->() const noexcept |
456 | { return this->_M_cur->_M_valptr(); } |
457 | |
458 | _Node_const_iterator& |
459 | operator++() noexcept |
460 | { |
461 | this->_M_incr(); |
462 | return *this; |
463 | } |
464 | |
465 | _Node_const_iterator |
466 | operator++(int) noexcept |
467 | { |
468 | _Node_const_iterator __tmp(*this); |
469 | this->_M_incr(); |
470 | return __tmp; |
471 | } |
472 | }; |
473 | |
474 | // Many of class template _Hashtable's template parameters are policy |
475 | // classes. These are defaults for the policies. |
476 | |
477 | /// Default range hashing function: use division to fold a large number |
478 | /// into the range [0, N). |
479 | struct _Mod_range_hashing |
480 | { |
481 | typedef std::size_t first_argument_type; |
482 | typedef std::size_t second_argument_type; |
483 | typedef std::size_t result_type; |
484 | |
485 | result_type |
486 | operator()(first_argument_type __num, |
487 | second_argument_type __den) const noexcept |
488 | { return __num % __den; } |
489 | }; |
490 | |
491 | /// Default ranged hash function H. In principle it should be a |
492 | /// function object composed from objects of type H1 and H2 such that |
493 | /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of |
494 | /// h1 and h2. So instead we'll just use a tag to tell class template |
495 | /// hashtable to do that composition. |
496 | struct _Default_ranged_hash { }; |
497 | |
498 | /// Default value for rehash policy. Bucket size is (usually) the |
499 | /// smallest prime that keeps the load factor small enough. |
500 | struct _Prime_rehash_policy |
501 | { |
502 | using __has_load_factor = true_type; |
503 | |
504 | _Prime_rehash_policy(float __z = 1.0) noexcept |
505 | : _M_max_load_factor(__z), _M_next_resize(0) { } |
506 | |
507 | float |
508 | max_load_factor() const noexcept |
509 | { return _M_max_load_factor; } |
510 | |
511 | // Return a bucket size no smaller than n. |
512 | std::size_t |
513 | _M_next_bkt(std::size_t __n) const; |
514 | |
515 | // Return a bucket count appropriate for n elements |
516 | std::size_t |
517 | _M_bkt_for_elements(std::size_t __n) const |
518 | { return __builtin_ceil(__n / (double)_M_max_load_factor); } |
519 | |
520 | // __n_bkt is current bucket count, __n_elt is current element count, |
521 | // and __n_ins is number of elements to be inserted. Do we need to |
522 | // increase bucket count? If so, return make_pair(true, n), where n |
523 | // is the new bucket count. If not, return make_pair(false, 0). |
524 | std::pair<bool, std::size_t> |
525 | _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, |
526 | std::size_t __n_ins) const; |
527 | |
528 | typedef std::size_t _State; |
529 | |
530 | _State |
531 | _M_state() const |
532 | { return _M_next_resize; } |
533 | |
534 | void |
535 | _M_reset() noexcept |
536 | { _M_next_resize = 0; } |
537 | |
538 | void |
539 | _M_reset(_State __state) |
540 | { _M_next_resize = __state; } |
541 | |
542 | static const std::size_t _S_growth_factor = 2; |
543 | |
544 | float _M_max_load_factor; |
545 | mutable std::size_t _M_next_resize; |
546 | }; |
547 | |
548 | /// Range hashing function assuming that second arg is a power of 2. |
549 | struct _Mask_range_hashing |
550 | { |
551 | typedef std::size_t first_argument_type; |
552 | typedef std::size_t second_argument_type; |
553 | typedef std::size_t result_type; |
554 | |
555 | result_type |
556 | operator()(first_argument_type __num, |
557 | second_argument_type __den) const noexcept |
558 | { return __num & (__den - 1); } |
559 | }; |
560 | |
561 | /// Compute closest power of 2 not less than __n |
562 | inline std::size_t |
563 | __clp2(std::size_t __n) noexcept |
564 | { |
565 | using __gnu_cxx::__int_traits; |
566 | // Equivalent to return __n ? std::bit_ceil(__n) : 0; |
567 | if (__n < 2) |
568 | return __n; |
569 | const unsigned __lz = sizeof(size_t) > sizeof(long) |
570 | ? __builtin_clzll(__n - 1ull) |
571 | : __builtin_clzl(__n - 1ul); |
572 | // Doing two shifts avoids undefined behaviour when __lz == 0. |
573 | return (size_t(1) << (__int_traits<size_t>::__digits - __lz - 1)) << 1; |
574 | } |
575 | |
576 | /// Rehash policy providing power of 2 bucket numbers. Avoids modulo |
577 | /// operations. |
578 | struct _Power2_rehash_policy |
579 | { |
580 | using __has_load_factor = true_type; |
581 | |
582 | _Power2_rehash_policy(float __z = 1.0) noexcept |
583 | : _M_max_load_factor(__z), _M_next_resize(0) { } |
584 | |
585 | float |
586 | max_load_factor() const noexcept |
587 | { return _M_max_load_factor; } |
588 | |
589 | // Return a bucket size no smaller than n (as long as n is not above the |
590 | // highest power of 2). |
591 | std::size_t |
592 | _M_next_bkt(std::size_t __n) noexcept |
593 | { |
594 | if (__n == 0) |
595 | // Special case on container 1st initialization with 0 bucket count |
596 | // hint. We keep _M_next_resize to 0 to make sure that next time we |
597 | // want to add an element allocation will take place. |
598 | return 1; |
599 | |
600 | const auto __max_width = std::min<size_t>(a: sizeof(size_t), b: 8); |
601 | const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1); |
602 | std::size_t __res = __clp2(__n); |
603 | |
604 | if (__res == 0) |
605 | __res = __max_bkt; |
606 | else if (__res == 1) |
607 | // If __res is 1 we force it to 2 to make sure there will be an |
608 | // allocation so that nothing need to be stored in the initial |
609 | // single bucket |
610 | __res = 2; |
611 | |
612 | if (__res == __max_bkt) |
613 | // Set next resize to the max value so that we never try to rehash again |
614 | // as we already reach the biggest possible bucket number. |
615 | // Note that it might result in max_load_factor not being respected. |
616 | _M_next_resize = size_t(-1); |
617 | else |
618 | _M_next_resize |
619 | = __builtin_floor(__res * (double)_M_max_load_factor); |
620 | |
621 | return __res; |
622 | } |
623 | |
624 | // Return a bucket count appropriate for n elements |
625 | std::size_t |
626 | _M_bkt_for_elements(std::size_t __n) const noexcept |
627 | { return __builtin_ceil(__n / (double)_M_max_load_factor); } |
628 | |
629 | // __n_bkt is current bucket count, __n_elt is current element count, |
630 | // and __n_ins is number of elements to be inserted. Do we need to |
631 | // increase bucket count? If so, return make_pair(true, n), where n |
632 | // is the new bucket count. If not, return make_pair(false, 0). |
633 | std::pair<bool, std::size_t> |
634 | _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, |
635 | std::size_t __n_ins) noexcept |
636 | { |
637 | if (__n_elt + __n_ins > _M_next_resize) |
638 | { |
639 | // If _M_next_resize is 0 it means that we have nothing allocated so |
640 | // far and that we start inserting elements. In this case we start |
641 | // with an initial bucket size of 11. |
642 | double __min_bkts |
643 | = std::max<std::size_t>(a: __n_elt + __n_ins, b: _M_next_resize ? 0 : 11) |
644 | / (double)_M_max_load_factor; |
645 | if (__min_bkts >= __n_bkt) |
646 | return { true, |
647 | _M_next_bkt(n: std::max<std::size_t>(a: __builtin_floor(__min_bkts) + 1, |
648 | b: __n_bkt * _S_growth_factor)) }; |
649 | |
650 | _M_next_resize |
651 | = __builtin_floor(__n_bkt * (double)_M_max_load_factor); |
652 | return { false, 0 }; |
653 | } |
654 | else |
655 | return { false, 0 }; |
656 | } |
657 | |
658 | typedef std::size_t _State; |
659 | |
660 | _State |
661 | _M_state() const noexcept |
662 | { return _M_next_resize; } |
663 | |
664 | void |
665 | _M_reset() noexcept |
666 | { _M_next_resize = 0; } |
667 | |
668 | void |
669 | _M_reset(_State __state) noexcept |
670 | { _M_next_resize = __state; } |
671 | |
672 | static const std::size_t _S_growth_factor = 2; |
673 | |
674 | float _M_max_load_factor; |
675 | std::size_t _M_next_resize; |
676 | }; |
677 | |
678 | // Base classes for std::_Hashtable. We define these base classes |
679 | // because in some cases we want to do different things depending on |
680 | // the value of a policy class. In some cases the policy class |
681 | // affects which member functions and nested typedefs are defined; |
682 | // we handle that by specializing base class templates. Several of |
683 | // the base class templates need to access other members of class |
684 | // template _Hashtable, so we use a variant of the "Curiously |
685 | // Recurring Template Pattern" (CRTP) technique. |
686 | |
687 | /** |
688 | * Primary class template _Map_base. |
689 | * |
690 | * If the hashtable has a value type of the form pair<const T1, T2> and |
691 | * a key extraction policy (_ExtractKey) that returns the first part |
692 | * of the pair, the hashtable gets a mapped_type typedef. If it |
693 | * satisfies those criteria and also has unique keys, then it also |
694 | * gets an operator[]. |
695 | */ |
696 | template<typename _Key, typename _Value, typename _Alloc, |
697 | typename _ExtractKey, typename _Equal, |
698 | typename _Hash, typename _RangeHash, typename _Unused, |
699 | typename _RehashPolicy, typename _Traits, |
700 | bool _Unique_keys = _Traits::__unique_keys::value> |
701 | struct _Map_base { }; |
702 | |
703 | /// Partial specialization, __unique_keys set to false, std::pair value type. |
704 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
705 | typename _Hash, typename _RangeHash, typename _Unused, |
706 | typename _RehashPolicy, typename _Traits> |
707 | struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
708 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
709 | { |
710 | using mapped_type = _Val; |
711 | }; |
712 | |
713 | /// Partial specialization, __unique_keys set to true. |
714 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
715 | typename _Hash, typename _RangeHash, typename _Unused, |
716 | typename _RehashPolicy, typename _Traits> |
717 | struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
718 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true> |
719 | { |
720 | private: |
721 | using __hashtable_base = _Hashtable_base<_Key, pair<const _Key, _Val>, |
722 | _Select1st, _Equal, _Hash, |
723 | _RangeHash, _Unused, |
724 | _Traits>; |
725 | |
726 | using __hashtable = _Hashtable<_Key, pair<const _Key, _Val>, _Alloc, |
727 | _Select1st, _Equal, _Hash, _RangeHash, |
728 | _Unused, _RehashPolicy, _Traits>; |
729 | |
730 | using __hash_code = typename __hashtable_base::__hash_code; |
731 | |
732 | public: |
733 | using key_type = typename __hashtable_base::key_type; |
734 | using mapped_type = _Val; |
735 | |
736 | mapped_type& |
737 | operator[](const key_type& __k); |
738 | |
739 | mapped_type& |
740 | operator[](key_type&& __k); |
741 | |
742 | // _GLIBCXX_RESOLVE_LIB_DEFECTS |
743 | // DR 761. unordered_map needs an at() member function. |
744 | mapped_type& |
745 | at(const key_type& __k) |
746 | { |
747 | auto __ite = static_cast<__hashtable*>(this)->find(__k); |
748 | if (!__ite._M_cur) |
749 | __throw_out_of_range(__N("unordered_map::at" )); |
750 | return __ite->second; |
751 | } |
752 | |
753 | const mapped_type& |
754 | at(const key_type& __k) const |
755 | { |
756 | auto __ite = static_cast<const __hashtable*>(this)->find(__k); |
757 | if (!__ite._M_cur) |
758 | __throw_out_of_range(__N("unordered_map::at" )); |
759 | return __ite->second; |
760 | } |
761 | }; |
762 | |
763 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
764 | typename _Hash, typename _RangeHash, typename _Unused, |
765 | typename _RehashPolicy, typename _Traits> |
766 | auto |
767 | _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
768 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
769 | operator[](const key_type& __k) |
770 | -> mapped_type& |
771 | { |
772 | __hashtable* __h = static_cast<__hashtable*>(this); |
773 | __hash_code __code = __h->_M_hash_code(__k); |
774 | std::size_t __bkt = __h->_M_bucket_index(__code); |
775 | if (auto __node = __h->_M_find_node(__bkt, __k, __code)) |
776 | return __node->_M_v().second; |
777 | |
778 | typename __hashtable::_Scoped_node __node { |
779 | __h, |
780 | std::piecewise_construct, |
781 | std::tuple<const key_type&>(__k), |
782 | std::tuple<>() |
783 | }; |
784 | auto __pos |
785 | = __h->_M_insert_unique_node(__bkt, __code, __node._M_node); |
786 | __node._M_node = nullptr; |
787 | return __pos->second; |
788 | } |
789 | |
790 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
791 | typename _Hash, typename _RangeHash, typename _Unused, |
792 | typename _RehashPolicy, typename _Traits> |
793 | auto |
794 | _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
795 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
796 | operator[](key_type&& __k) |
797 | -> mapped_type& |
798 | { |
799 | __hashtable* __h = static_cast<__hashtable*>(this); |
800 | __hash_code __code = __h->_M_hash_code(__k); |
801 | std::size_t __bkt = __h->_M_bucket_index(__code); |
802 | if (auto __node = __h->_M_find_node(__bkt, __k, __code)) |
803 | return __node->_M_v().second; |
804 | |
805 | typename __hashtable::_Scoped_node __node { |
806 | __h, |
807 | std::piecewise_construct, |
808 | std::forward_as_tuple(std::move(__k)), |
809 | std::tuple<>() |
810 | }; |
811 | auto __pos |
812 | = __h->_M_insert_unique_node(__bkt, __code, __node._M_node); |
813 | __node._M_node = nullptr; |
814 | return __pos->second; |
815 | } |
816 | |
817 | // Partial specialization for unordered_map<const T, U>, see PR 104174. |
818 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
819 | typename _Hash, typename _RangeHash, typename _Unused, |
820 | typename _RehashPolicy, typename _Traits, bool __uniq> |
821 | struct _Map_base<const _Key, pair<const _Key, _Val>, |
822 | _Alloc, _Select1st, _Equal, _Hash, |
823 | _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq> |
824 | : _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, _Hash, |
825 | _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq> |
826 | { }; |
827 | |
828 | /** |
829 | * Primary class template _Insert_base. |
830 | * |
831 | * Defines @c insert member functions appropriate to all _Hashtables. |
832 | */ |
833 | template<typename _Key, typename _Value, typename _Alloc, |
834 | typename _ExtractKey, typename _Equal, |
835 | typename _Hash, typename _RangeHash, typename _Unused, |
836 | typename _RehashPolicy, typename _Traits> |
837 | struct _Insert_base |
838 | { |
839 | protected: |
840 | using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey, |
841 | _Equal, _Hash, _RangeHash, |
842 | _Unused, _Traits>; |
843 | |
844 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
845 | _Hash, _RangeHash, |
846 | _Unused, _RehashPolicy, _Traits>; |
847 | |
848 | using __hash_cached = typename _Traits::__hash_cached; |
849 | using __constant_iterators = typename _Traits::__constant_iterators; |
850 | |
851 | using __hashtable_alloc = _Hashtable_alloc< |
852 | __alloc_rebind<_Alloc, _Hash_node<_Value, |
853 | __hash_cached::value>>>; |
854 | |
855 | using value_type = typename __hashtable_base::value_type; |
856 | using size_type = typename __hashtable_base::size_type; |
857 | |
858 | using __unique_keys = typename _Traits::__unique_keys; |
859 | using __node_alloc_type = typename __hashtable_alloc::__node_alloc_type; |
860 | using __node_gen_type = _AllocNode<__node_alloc_type>; |
861 | |
862 | __hashtable& |
863 | _M_conjure_hashtable() |
864 | { return *(static_cast<__hashtable*>(this)); } |
865 | |
866 | template<typename _InputIterator, typename _NodeGetter> |
867 | void |
868 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
869 | const _NodeGetter&, true_type __uks); |
870 | |
871 | template<typename _InputIterator, typename _NodeGetter> |
872 | void |
873 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
874 | const _NodeGetter&, false_type __uks); |
875 | |
876 | public: |
877 | using iterator = _Node_iterator<_Value, __constant_iterators::value, |
878 | __hash_cached::value>; |
879 | |
880 | using const_iterator = _Node_const_iterator<_Value, |
881 | __constant_iterators::value, |
882 | __hash_cached::value>; |
883 | |
884 | using __ireturn_type = __conditional_t<__unique_keys::value, |
885 | std::pair<iterator, bool>, |
886 | iterator>; |
887 | |
888 | __ireturn_type |
889 | insert(const value_type& __v) |
890 | { |
891 | __hashtable& __h = _M_conjure_hashtable(); |
892 | __node_gen_type __node_gen(__h); |
893 | return __h._M_insert(__v, __node_gen, __unique_keys{}); |
894 | } |
895 | |
896 | iterator |
897 | insert(const_iterator __hint, const value_type& __v) |
898 | { |
899 | __hashtable& __h = _M_conjure_hashtable(); |
900 | __node_gen_type __node_gen(__h); |
901 | return __h._M_insert(__hint, __v, __node_gen, __unique_keys{}); |
902 | } |
903 | |
904 | template<typename _KType, typename... _Args> |
905 | std::pair<iterator, bool> |
906 | try_emplace(const_iterator, _KType&& __k, _Args&&... __args) |
907 | { |
908 | __hashtable& __h = _M_conjure_hashtable(); |
909 | auto __code = __h._M_hash_code(__k); |
910 | std::size_t __bkt = __h._M_bucket_index(__code); |
911 | if (auto __node = __h._M_find_node(__bkt, __k, __code)) |
912 | return { iterator(__node), false }; |
913 | |
914 | typename __hashtable::_Scoped_node __node { |
915 | &__h, |
916 | std::piecewise_construct, |
917 | std::forward_as_tuple(std::forward<_KType>(__k)), |
918 | std::forward_as_tuple(std::forward<_Args>(__args)...) |
919 | }; |
920 | auto __it |
921 | = __h._M_insert_unique_node(__bkt, __code, __node._M_node); |
922 | __node._M_node = nullptr; |
923 | return { __it, true }; |
924 | } |
925 | |
926 | void |
927 | insert(initializer_list<value_type> __l) |
928 | { this->insert(__l.begin(), __l.end()); } |
929 | |
930 | template<typename _InputIterator> |
931 | void |
932 | insert(_InputIterator __first, _InputIterator __last) |
933 | { |
934 | __hashtable& __h = _M_conjure_hashtable(); |
935 | __node_gen_type __node_gen(__h); |
936 | return _M_insert_range(__first, __last, __node_gen, __unique_keys{}); |
937 | } |
938 | }; |
939 | |
940 | template<typename _Key, typename _Value, typename _Alloc, |
941 | typename _ExtractKey, typename _Equal, |
942 | typename _Hash, typename _RangeHash, typename _Unused, |
943 | typename _RehashPolicy, typename _Traits> |
944 | template<typename _InputIterator, typename _NodeGetter> |
945 | void |
946 | _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
947 | _Hash, _RangeHash, _Unused, |
948 | _RehashPolicy, _Traits>:: |
949 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
950 | const _NodeGetter& __node_gen, true_type __uks) |
951 | { |
952 | __hashtable& __h = _M_conjure_hashtable(); |
953 | for (; __first != __last; ++__first) |
954 | __h._M_insert(*__first, __node_gen, __uks); |
955 | } |
956 | |
957 | template<typename _Key, typename _Value, typename _Alloc, |
958 | typename _ExtractKey, typename _Equal, |
959 | typename _Hash, typename _RangeHash, typename _Unused, |
960 | typename _RehashPolicy, typename _Traits> |
961 | template<typename _InputIterator, typename _NodeGetter> |
962 | void |
963 | _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
964 | _Hash, _RangeHash, _Unused, |
965 | _RehashPolicy, _Traits>:: |
966 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
967 | const _NodeGetter& __node_gen, false_type __uks) |
968 | { |
969 | using __rehash_type = typename __hashtable::__rehash_type; |
970 | using __rehash_state = typename __hashtable::__rehash_state; |
971 | using pair_type = std::pair<bool, std::size_t>; |
972 | |
973 | size_type __n_elt = __detail::__distance_fw(__first, __last); |
974 | if (__n_elt == 0) |
975 | return; |
976 | |
977 | __hashtable& __h = _M_conjure_hashtable(); |
978 | __rehash_type& __rehash = __h._M_rehash_policy; |
979 | const __rehash_state& __saved_state = __rehash._M_state(); |
980 | pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count, |
981 | __h._M_element_count, |
982 | __n_elt); |
983 | |
984 | if (__do_rehash.first) |
985 | __h._M_rehash(__do_rehash.second, __saved_state); |
986 | |
987 | for (; __first != __last; ++__first) |
988 | __h._M_insert(*__first, __node_gen, __uks); |
989 | } |
990 | |
991 | /** |
992 | * Primary class template _Insert. |
993 | * |
994 | * Defines @c insert member functions that depend on _Hashtable policies, |
995 | * via partial specializations. |
996 | */ |
997 | template<typename _Key, typename _Value, typename _Alloc, |
998 | typename _ExtractKey, typename _Equal, |
999 | typename _Hash, typename _RangeHash, typename _Unused, |
1000 | typename _RehashPolicy, typename _Traits, |
1001 | bool _Constant_iterators = _Traits::__constant_iterators::value> |
1002 | struct _Insert; |
1003 | |
1004 | /// Specialization. |
1005 | template<typename _Key, typename _Value, typename _Alloc, |
1006 | typename _ExtractKey, typename _Equal, |
1007 | typename _Hash, typename _RangeHash, typename _Unused, |
1008 | typename _RehashPolicy, typename _Traits> |
1009 | struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1010 | _Hash, _RangeHash, _Unused, |
1011 | _RehashPolicy, _Traits, true> |
1012 | : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1013 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits> |
1014 | { |
1015 | using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, |
1016 | _Equal, _Hash, _RangeHash, _Unused, |
1017 | _RehashPolicy, _Traits>; |
1018 | |
1019 | using value_type = typename __base_type::value_type; |
1020 | using iterator = typename __base_type::iterator; |
1021 | using const_iterator = typename __base_type::const_iterator; |
1022 | using __ireturn_type = typename __base_type::__ireturn_type; |
1023 | |
1024 | using __unique_keys = typename __base_type::__unique_keys; |
1025 | using __hashtable = typename __base_type::__hashtable; |
1026 | using __node_gen_type = typename __base_type::__node_gen_type; |
1027 | |
1028 | using __base_type::insert; |
1029 | |
1030 | __ireturn_type |
1031 | insert(value_type&& __v) |
1032 | { |
1033 | __hashtable& __h = this->_M_conjure_hashtable(); |
1034 | __node_gen_type __node_gen(__h); |
1035 | return __h._M_insert(std::move(__v), __node_gen, __unique_keys{}); |
1036 | } |
1037 | |
1038 | iterator |
1039 | insert(const_iterator __hint, value_type&& __v) |
1040 | { |
1041 | __hashtable& __h = this->_M_conjure_hashtable(); |
1042 | __node_gen_type __node_gen(__h); |
1043 | return __h._M_insert(__hint, std::move(__v), __node_gen, |
1044 | __unique_keys{}); |
1045 | } |
1046 | }; |
1047 | |
1048 | /// Specialization. |
1049 | template<typename _Key, typename _Value, typename _Alloc, |
1050 | typename _ExtractKey, typename _Equal, |
1051 | typename _Hash, typename _RangeHash, typename _Unused, |
1052 | typename _RehashPolicy, typename _Traits> |
1053 | struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1054 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
1055 | : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1056 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits> |
1057 | { |
1058 | using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, |
1059 | _Equal, _Hash, _RangeHash, _Unused, |
1060 | _RehashPolicy, _Traits>; |
1061 | using value_type = typename __base_type::value_type; |
1062 | using iterator = typename __base_type::iterator; |
1063 | using const_iterator = typename __base_type::const_iterator; |
1064 | |
1065 | using __unique_keys = typename __base_type::__unique_keys; |
1066 | using __hashtable = typename __base_type::__hashtable; |
1067 | using __ireturn_type = typename __base_type::__ireturn_type; |
1068 | |
1069 | using __base_type::insert; |
1070 | |
1071 | template<typename _Pair> |
1072 | using __is_cons = std::is_constructible<value_type, _Pair&&>; |
1073 | |
1074 | template<typename _Pair> |
1075 | using _IFcons = std::enable_if<__is_cons<_Pair>::value>; |
1076 | |
1077 | template<typename _Pair> |
1078 | using _IFconsp = typename _IFcons<_Pair>::type; |
1079 | |
1080 | template<typename _Pair, typename = _IFconsp<_Pair>> |
1081 | __ireturn_type |
1082 | insert(_Pair&& __v) |
1083 | { |
1084 | __hashtable& __h = this->_M_conjure_hashtable(); |
1085 | return __h._M_emplace(__unique_keys{}, std::forward<_Pair>(__v)); |
1086 | } |
1087 | |
1088 | template<typename _Pair, typename = _IFconsp<_Pair>> |
1089 | iterator |
1090 | insert(const_iterator __hint, _Pair&& __v) |
1091 | { |
1092 | __hashtable& __h = this->_M_conjure_hashtable(); |
1093 | return __h._M_emplace(__hint, __unique_keys{}, |
1094 | std::forward<_Pair>(__v)); |
1095 | } |
1096 | }; |
1097 | |
1098 | template<typename _Policy> |
1099 | using __has_load_factor = typename _Policy::__has_load_factor; |
1100 | |
1101 | /** |
1102 | * Primary class template _Rehash_base. |
1103 | * |
1104 | * Give hashtable the max_load_factor functions and reserve iff the |
1105 | * rehash policy supports it. |
1106 | */ |
1107 | template<typename _Key, typename _Value, typename _Alloc, |
1108 | typename _ExtractKey, typename _Equal, |
1109 | typename _Hash, typename _RangeHash, typename _Unused, |
1110 | typename _RehashPolicy, typename _Traits, |
1111 | typename = |
1112 | __detected_or_t<false_type, __has_load_factor, _RehashPolicy>> |
1113 | struct _Rehash_base; |
1114 | |
1115 | /// Specialization when rehash policy doesn't provide load factor management. |
1116 | template<typename _Key, typename _Value, typename _Alloc, |
1117 | typename _ExtractKey, typename _Equal, |
1118 | typename _Hash, typename _RangeHash, typename _Unused, |
1119 | typename _RehashPolicy, typename _Traits> |
1120 | struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1121 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, |
1122 | false_type /* Has load factor */> |
1123 | { |
1124 | }; |
1125 | |
1126 | /// Specialization when rehash policy provide load factor management. |
1127 | template<typename _Key, typename _Value, typename _Alloc, |
1128 | typename _ExtractKey, typename _Equal, |
1129 | typename _Hash, typename _RangeHash, typename _Unused, |
1130 | typename _RehashPolicy, typename _Traits> |
1131 | struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1132 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, |
1133 | true_type /* Has load factor */> |
1134 | { |
1135 | private: |
1136 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, |
1137 | _Equal, _Hash, _RangeHash, _Unused, |
1138 | _RehashPolicy, _Traits>; |
1139 | |
1140 | public: |
1141 | float |
1142 | max_load_factor() const noexcept |
1143 | { |
1144 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1145 | return __this->__rehash_policy().max_load_factor(); |
1146 | } |
1147 | |
1148 | void |
1149 | max_load_factor(float __z) |
1150 | { |
1151 | __hashtable* __this = static_cast<__hashtable*>(this); |
1152 | __this->__rehash_policy(_RehashPolicy(__z)); |
1153 | } |
1154 | |
1155 | void |
1156 | reserve(std::size_t __n) |
1157 | { |
1158 | __hashtable* __this = static_cast<__hashtable*>(this); |
1159 | __this->rehash(__this->__rehash_policy()._M_bkt_for_elements(__n)); |
1160 | } |
1161 | }; |
1162 | |
1163 | /** |
1164 | * Primary class template _Hashtable_ebo_helper. |
1165 | * |
1166 | * Helper class using EBO when it is not forbidden (the type is not |
1167 | * final) and when it is worth it (the type is empty.) |
1168 | */ |
1169 | template<int _Nm, typename _Tp, |
1170 | bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)> |
1171 | struct _Hashtable_ebo_helper; |
1172 | |
1173 | /// Specialization using EBO. |
1174 | template<int _Nm, typename _Tp> |
1175 | struct _Hashtable_ebo_helper<_Nm, _Tp, true> |
1176 | : private _Tp |
1177 | { |
1178 | _Hashtable_ebo_helper() noexcept(noexcept(_Tp())) : _Tp() { } |
1179 | |
1180 | template<typename _OtherTp> |
1181 | _Hashtable_ebo_helper(_OtherTp&& __tp) |
1182 | : _Tp(std::forward<_OtherTp>(__tp)) |
1183 | { } |
1184 | |
1185 | const _Tp& _M_cget() const { return static_cast<const _Tp&>(*this); } |
1186 | _Tp& _M_get() { return static_cast<_Tp&>(*this); } |
1187 | }; |
1188 | |
1189 | /// Specialization not using EBO. |
1190 | template<int _Nm, typename _Tp> |
1191 | struct _Hashtable_ebo_helper<_Nm, _Tp, false> |
1192 | { |
1193 | _Hashtable_ebo_helper() = default; |
1194 | |
1195 | template<typename _OtherTp> |
1196 | _Hashtable_ebo_helper(_OtherTp&& __tp) |
1197 | : _M_tp(std::forward<_OtherTp>(__tp)) |
1198 | { } |
1199 | |
1200 | const _Tp& _M_cget() const { return _M_tp; } |
1201 | _Tp& _M_get() { return _M_tp; } |
1202 | |
1203 | private: |
1204 | _Tp _M_tp{}; |
1205 | }; |
1206 | |
1207 | /** |
1208 | * Primary class template _Local_iterator_base. |
1209 | * |
1210 | * Base class for local iterators, used to iterate within a bucket |
1211 | * but not between buckets. |
1212 | */ |
1213 | template<typename _Key, typename _Value, typename _ExtractKey, |
1214 | typename _Hash, typename _RangeHash, typename _Unused, |
1215 | bool __cache_hash_code> |
1216 | struct _Local_iterator_base; |
1217 | |
1218 | /** |
1219 | * Primary class template _Hash_code_base. |
1220 | * |
1221 | * Encapsulates two policy issues that aren't quite orthogonal. |
1222 | * (1) the difference between using a ranged hash function and using |
1223 | * the combination of a hash function and a range-hashing function. |
1224 | * In the former case we don't have such things as hash codes, so |
1225 | * we have a dummy type as placeholder. |
1226 | * (2) Whether or not we cache hash codes. Caching hash codes is |
1227 | * meaningless if we have a ranged hash function. |
1228 | * |
1229 | * We also put the key extraction objects here, for convenience. |
1230 | * Each specialization derives from one or more of the template |
1231 | * parameters to benefit from Ebo. This is important as this type |
1232 | * is inherited in some cases by the _Local_iterator_base type used |
1233 | * to implement local_iterator and const_local_iterator. As with |
1234 | * any iterator type we prefer to make it as small as possible. |
1235 | */ |
1236 | template<typename _Key, typename _Value, typename _ExtractKey, |
1237 | typename _Hash, typename _RangeHash, typename _Unused, |
1238 | bool __cache_hash_code> |
1239 | struct _Hash_code_base |
1240 | : private _Hashtable_ebo_helper<1, _Hash> |
1241 | { |
1242 | private: |
1243 | using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>; |
1244 | |
1245 | // Gives the local iterator implementation access to _M_bucket_index(). |
1246 | friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
1247 | _Hash, _RangeHash, _Unused, false>; |
1248 | |
1249 | public: |
1250 | typedef _Hash hasher; |
1251 | |
1252 | hasher |
1253 | hash_function() const |
1254 | { return _M_hash(); } |
1255 | |
1256 | protected: |
1257 | typedef std::size_t __hash_code; |
1258 | |
1259 | // We need the default constructor for the local iterators and _Hashtable |
1260 | // default constructor. |
1261 | _Hash_code_base() = default; |
1262 | |
1263 | _Hash_code_base(const _Hash& __hash) : __ebo_hash(__hash) { } |
1264 | |
1265 | __hash_code |
1266 | _M_hash_code(const _Key& __k) const |
1267 | { |
1268 | static_assert(__is_invocable<const _Hash&, const _Key&>{}, |
1269 | "hash function must be invocable with an argument of key type" ); |
1270 | return _M_hash()(__k); |
1271 | } |
1272 | |
1273 | template<typename _Kt> |
1274 | __hash_code |
1275 | _M_hash_code_tr(const _Kt& __k) const |
1276 | { |
1277 | static_assert(__is_invocable<const _Hash&, const _Kt&>{}, |
1278 | "hash function must be invocable with an argument of key type" ); |
1279 | return _M_hash()(__k); |
1280 | } |
1281 | |
1282 | __hash_code |
1283 | _M_hash_code(const _Hash&, |
1284 | const _Hash_node_value<_Value, true>& __n) const |
1285 | { return __n._M_hash_code; } |
1286 | |
1287 | // Compute hash code using _Hash as __n _M_hash_code, if present, was |
1288 | // computed using _H2. |
1289 | template<typename _H2> |
1290 | __hash_code |
1291 | _M_hash_code(const _H2&, |
1292 | const _Hash_node_value<_Value, __cache_hash_code>& __n) const |
1293 | { return _M_hash_code(_ExtractKey{}(__n._M_v())); } |
1294 | |
1295 | __hash_code |
1296 | _M_hash_code(const _Hash_node_value<_Value, false>& __n) const |
1297 | { return _M_hash_code(_ExtractKey{}(__n._M_v())); } |
1298 | |
1299 | __hash_code |
1300 | _M_hash_code(const _Hash_node_value<_Value, true>& __n) const |
1301 | { return __n._M_hash_code; } |
1302 | |
1303 | std::size_t |
1304 | _M_bucket_index(__hash_code __c, std::size_t __bkt_count) const |
1305 | { return _RangeHash{}(__c, __bkt_count); } |
1306 | |
1307 | std::size_t |
1308 | _M_bucket_index(const _Hash_node_value<_Value, false>& __n, |
1309 | std::size_t __bkt_count) const |
1310 | noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>())) |
1311 | && noexcept(declval<const _RangeHash&>()((__hash_code)0, |
1312 | (std::size_t)0)) ) |
1313 | { |
1314 | return _RangeHash{}(_M_hash_code(_ExtractKey{}(__n._M_v())), |
1315 | __bkt_count); |
1316 | } |
1317 | |
1318 | std::size_t |
1319 | _M_bucket_index(const _Hash_node_value<_Value, true>& __n, |
1320 | std::size_t __bkt_count) const |
1321 | noexcept( noexcept(declval<const _RangeHash&>()((__hash_code)0, |
1322 | (std::size_t)0)) ) |
1323 | { return _RangeHash{}(__n._M_hash_code, __bkt_count); } |
1324 | |
1325 | void |
1326 | _M_store_code(_Hash_node_code_cache<false>&, __hash_code) const |
1327 | { } |
1328 | |
1329 | void |
1330 | _M_copy_code(_Hash_node_code_cache<false>&, |
1331 | const _Hash_node_code_cache<false>&) const |
1332 | { } |
1333 | |
1334 | void |
1335 | _M_store_code(_Hash_node_code_cache<true>& __n, __hash_code __c) const |
1336 | { __n._M_hash_code = __c; } |
1337 | |
1338 | void |
1339 | _M_copy_code(_Hash_node_code_cache<true>& __to, |
1340 | const _Hash_node_code_cache<true>& __from) const |
1341 | { __to._M_hash_code = __from._M_hash_code; } |
1342 | |
1343 | void |
1344 | _M_swap(_Hash_code_base& __x) |
1345 | { std::swap(__ebo_hash::_M_get(), __x.__ebo_hash::_M_get()); } |
1346 | |
1347 | const _Hash& |
1348 | _M_hash() const { return __ebo_hash::_M_cget(); } |
1349 | }; |
1350 | |
1351 | /// Partial specialization used when nodes contain a cached hash code. |
1352 | template<typename _Key, typename _Value, typename _ExtractKey, |
1353 | typename _Hash, typename _RangeHash, typename _Unused> |
1354 | struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
1355 | _Hash, _RangeHash, _Unused, true> |
1356 | : public _Node_iterator_base<_Value, true> |
1357 | { |
1358 | protected: |
1359 | using __base_node_iter = _Node_iterator_base<_Value, true>; |
1360 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1361 | _Hash, _RangeHash, _Unused, true>; |
1362 | |
1363 | _Local_iterator_base() = default; |
1364 | _Local_iterator_base(const __hash_code_base&, |
1365 | _Hash_node<_Value, true>* __p, |
1366 | std::size_t __bkt, std::size_t __bkt_count) |
1367 | : __base_node_iter(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) |
1368 | { } |
1369 | |
1370 | void |
1371 | _M_incr() |
1372 | { |
1373 | __base_node_iter::_M_incr(); |
1374 | if (this->_M_cur) |
1375 | { |
1376 | std::size_t __bkt |
1377 | = _RangeHash{}(this->_M_cur->_M_hash_code, _M_bucket_count); |
1378 | if (__bkt != _M_bucket) |
1379 | this->_M_cur = nullptr; |
1380 | } |
1381 | } |
1382 | |
1383 | std::size_t _M_bucket; |
1384 | std::size_t _M_bucket_count; |
1385 | |
1386 | public: |
1387 | std::size_t |
1388 | _M_get_bucket() const { return _M_bucket; } // for debug mode |
1389 | }; |
1390 | |
1391 | // Uninitialized storage for a _Hash_code_base. |
1392 | // This type is DefaultConstructible and Assignable even if the |
1393 | // _Hash_code_base type isn't, so that _Local_iterator_base<..., false> |
1394 | // can be DefaultConstructible and Assignable. |
1395 | template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value> |
1396 | struct _Hash_code_storage |
1397 | { |
1398 | __gnu_cxx::__aligned_buffer<_Tp> _M_storage; |
1399 | |
1400 | _Tp* |
1401 | _M_h() { return _M_storage._M_ptr(); } |
1402 | |
1403 | const _Tp* |
1404 | _M_h() const { return _M_storage._M_ptr(); } |
1405 | }; |
1406 | |
1407 | // Empty partial specialization for empty _Hash_code_base types. |
1408 | template<typename _Tp> |
1409 | struct _Hash_code_storage<_Tp, true> |
1410 | { |
1411 | static_assert( std::is_empty<_Tp>::value, "Type must be empty" ); |
1412 | |
1413 | // As _Tp is an empty type there will be no bytes written/read through |
1414 | // the cast pointer, so no strict-aliasing violation. |
1415 | _Tp* |
1416 | _M_h() { return reinterpret_cast<_Tp*>(this); } |
1417 | |
1418 | const _Tp* |
1419 | _M_h() const { return reinterpret_cast<const _Tp*>(this); } |
1420 | }; |
1421 | |
1422 | template<typename _Key, typename _Value, typename _ExtractKey, |
1423 | typename _Hash, typename _RangeHash, typename _Unused> |
1424 | using __hash_code_for_local_iter |
1425 | = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey, |
1426 | _Hash, _RangeHash, _Unused, false>>; |
1427 | |
1428 | // Partial specialization used when hash codes are not cached |
1429 | template<typename _Key, typename _Value, typename _ExtractKey, |
1430 | typename _Hash, typename _RangeHash, typename _Unused> |
1431 | struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
1432 | _Hash, _RangeHash, _Unused, false> |
1433 | : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _Hash, _RangeHash, |
1434 | _Unused> |
1435 | , _Node_iterator_base<_Value, false> |
1436 | { |
1437 | protected: |
1438 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1439 | _Hash, _RangeHash, _Unused, false>; |
1440 | using __node_iter_base = _Node_iterator_base<_Value, false>; |
1441 | |
1442 | _Local_iterator_base() : _M_bucket_count(-1) { } |
1443 | |
1444 | _Local_iterator_base(const __hash_code_base& __base, |
1445 | _Hash_node<_Value, false>* __p, |
1446 | std::size_t __bkt, std::size_t __bkt_count) |
1447 | : __node_iter_base(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) |
1448 | { _M_init(__base); } |
1449 | |
1450 | ~_Local_iterator_base() |
1451 | { |
1452 | if (_M_bucket_count != size_t(-1)) |
1453 | _M_destroy(); |
1454 | } |
1455 | |
1456 | _Local_iterator_base(const _Local_iterator_base& __iter) |
1457 | : __node_iter_base(__iter._M_cur), _M_bucket(__iter._M_bucket) |
1458 | , _M_bucket_count(__iter._M_bucket_count) |
1459 | { |
1460 | if (_M_bucket_count != size_t(-1)) |
1461 | _M_init(base: *__iter._M_h()); |
1462 | } |
1463 | |
1464 | _Local_iterator_base& |
1465 | operator=(const _Local_iterator_base& __iter) |
1466 | { |
1467 | if (_M_bucket_count != -1) |
1468 | _M_destroy(); |
1469 | this->_M_cur = __iter._M_cur; |
1470 | _M_bucket = __iter._M_bucket; |
1471 | _M_bucket_count = __iter._M_bucket_count; |
1472 | if (_M_bucket_count != -1) |
1473 | _M_init(base: *__iter._M_h()); |
1474 | return *this; |
1475 | } |
1476 | |
1477 | void |
1478 | _M_incr() |
1479 | { |
1480 | __node_iter_base::_M_incr(); |
1481 | if (this->_M_cur) |
1482 | { |
1483 | std::size_t __bkt = this->_M_h()->_M_bucket_index(*this->_M_cur, |
1484 | _M_bucket_count); |
1485 | if (__bkt != _M_bucket) |
1486 | this->_M_cur = nullptr; |
1487 | } |
1488 | } |
1489 | |
1490 | std::size_t _M_bucket; |
1491 | std::size_t _M_bucket_count; |
1492 | |
1493 | void |
1494 | _M_init(const __hash_code_base& __base) |
1495 | { ::new(this->_M_h()) __hash_code_base(__base); } |
1496 | |
1497 | void |
1498 | _M_destroy() { this->_M_h()->~__hash_code_base(); } |
1499 | |
1500 | public: |
1501 | std::size_t |
1502 | _M_get_bucket() const { return _M_bucket; } // for debug mode |
1503 | }; |
1504 | |
1505 | /// local iterators |
1506 | template<typename _Key, typename _Value, typename _ExtractKey, |
1507 | typename _Hash, typename _RangeHash, typename _Unused, |
1508 | bool __constant_iterators, bool __cache> |
1509 | struct _Local_iterator |
1510 | : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
1511 | _Hash, _RangeHash, _Unused, __cache> |
1512 | { |
1513 | private: |
1514 | using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
1515 | _Hash, _RangeHash, _Unused, __cache>; |
1516 | using __hash_code_base = typename __base_type::__hash_code_base; |
1517 | |
1518 | public: |
1519 | using value_type = _Value; |
1520 | using pointer = __conditional_t<__constant_iterators, |
1521 | const value_type*, value_type*>; |
1522 | using reference = __conditional_t<__constant_iterators, |
1523 | const value_type&, value_type&>; |
1524 | using difference_type = ptrdiff_t; |
1525 | using iterator_category = forward_iterator_tag; |
1526 | |
1527 | _Local_iterator() = default; |
1528 | |
1529 | _Local_iterator(const __hash_code_base& __base, |
1530 | _Hash_node<_Value, __cache>* __n, |
1531 | std::size_t __bkt, std::size_t __bkt_count) |
1532 | : __base_type(__base, __n, __bkt, __bkt_count) |
1533 | { } |
1534 | |
1535 | reference |
1536 | operator*() const |
1537 | { return this->_M_cur->_M_v(); } |
1538 | |
1539 | pointer |
1540 | operator->() const |
1541 | { return this->_M_cur->_M_valptr(); } |
1542 | |
1543 | _Local_iterator& |
1544 | operator++() |
1545 | { |
1546 | this->_M_incr(); |
1547 | return *this; |
1548 | } |
1549 | |
1550 | _Local_iterator |
1551 | operator++(int) |
1552 | { |
1553 | _Local_iterator __tmp(*this); |
1554 | this->_M_incr(); |
1555 | return __tmp; |
1556 | } |
1557 | }; |
1558 | |
1559 | /// local const_iterators |
1560 | template<typename _Key, typename _Value, typename _ExtractKey, |
1561 | typename _Hash, typename _RangeHash, typename _Unused, |
1562 | bool __constant_iterators, bool __cache> |
1563 | struct _Local_const_iterator |
1564 | : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
1565 | _Hash, _RangeHash, _Unused, __cache> |
1566 | { |
1567 | private: |
1568 | using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
1569 | _Hash, _RangeHash, _Unused, __cache>; |
1570 | using __hash_code_base = typename __base_type::__hash_code_base; |
1571 | |
1572 | public: |
1573 | typedef _Value value_type; |
1574 | typedef const value_type* pointer; |
1575 | typedef const value_type& reference; |
1576 | typedef std::ptrdiff_t difference_type; |
1577 | typedef std::forward_iterator_tag iterator_category; |
1578 | |
1579 | _Local_const_iterator() = default; |
1580 | |
1581 | _Local_const_iterator(const __hash_code_base& __base, |
1582 | _Hash_node<_Value, __cache>* __n, |
1583 | std::size_t __bkt, std::size_t __bkt_count) |
1584 | : __base_type(__base, __n, __bkt, __bkt_count) |
1585 | { } |
1586 | |
1587 | _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey, |
1588 | _Hash, _RangeHash, _Unused, |
1589 | __constant_iterators, |
1590 | __cache>& __x) |
1591 | : __base_type(__x) |
1592 | { } |
1593 | |
1594 | reference |
1595 | operator*() const |
1596 | { return this->_M_cur->_M_v(); } |
1597 | |
1598 | pointer |
1599 | operator->() const |
1600 | { return this->_M_cur->_M_valptr(); } |
1601 | |
1602 | _Local_const_iterator& |
1603 | operator++() |
1604 | { |
1605 | this->_M_incr(); |
1606 | return *this; |
1607 | } |
1608 | |
1609 | _Local_const_iterator |
1610 | operator++(int) |
1611 | { |
1612 | _Local_const_iterator __tmp(*this); |
1613 | this->_M_incr(); |
1614 | return __tmp; |
1615 | } |
1616 | }; |
1617 | |
1618 | /** |
1619 | * Primary class template _Hashtable_base. |
1620 | * |
1621 | * Helper class adding management of _Equal functor to |
1622 | * _Hash_code_base type. |
1623 | * |
1624 | * Base class templates are: |
1625 | * - __detail::_Hash_code_base |
1626 | * - __detail::_Hashtable_ebo_helper |
1627 | */ |
1628 | template<typename _Key, typename _Value, typename _ExtractKey, |
1629 | typename _Equal, typename _Hash, typename _RangeHash, |
1630 | typename _Unused, typename _Traits> |
1631 | struct _Hashtable_base |
1632 | : public _Hash_code_base<_Key, _Value, _ExtractKey, _Hash, _RangeHash, |
1633 | _Unused, _Traits::__hash_cached::value>, |
1634 | private _Hashtable_ebo_helper<0, _Equal> |
1635 | { |
1636 | public: |
1637 | typedef _Key key_type; |
1638 | typedef _Value value_type; |
1639 | typedef _Equal key_equal; |
1640 | typedef std::size_t size_type; |
1641 | typedef std::ptrdiff_t difference_type; |
1642 | |
1643 | using __traits_type = _Traits; |
1644 | using __hash_cached = typename __traits_type::__hash_cached; |
1645 | |
1646 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1647 | _Hash, _RangeHash, _Unused, |
1648 | __hash_cached::value>; |
1649 | |
1650 | using __hash_code = typename __hash_code_base::__hash_code; |
1651 | |
1652 | private: |
1653 | using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>; |
1654 | |
1655 | static bool |
1656 | _S_equals(__hash_code, const _Hash_node_code_cache<false>&) |
1657 | { return true; } |
1658 | |
1659 | static bool |
1660 | _S_node_equals(const _Hash_node_code_cache<false>&, |
1661 | const _Hash_node_code_cache<false>&) |
1662 | { return true; } |
1663 | |
1664 | static bool |
1665 | _S_equals(__hash_code __c, const _Hash_node_code_cache<true>& __n) |
1666 | { return __c == __n._M_hash_code; } |
1667 | |
1668 | static bool |
1669 | _S_node_equals(const _Hash_node_code_cache<true>& __lhn, |
1670 | const _Hash_node_code_cache<true>& __rhn) |
1671 | { return __lhn._M_hash_code == __rhn._M_hash_code; } |
1672 | |
1673 | protected: |
1674 | _Hashtable_base() = default; |
1675 | |
1676 | _Hashtable_base(const _Hash& __hash, const _Equal& __eq) |
1677 | : __hash_code_base(__hash), _EqualEBO(__eq) |
1678 | { } |
1679 | |
1680 | bool |
1681 | _M_key_equals(const _Key& __k, |
1682 | const _Hash_node_value<_Value, |
1683 | __hash_cached::value>& __n) const |
1684 | { |
1685 | static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{}, |
1686 | "key equality predicate must be invocable with two arguments of " |
1687 | "key type" ); |
1688 | return _M_eq()(__k, _ExtractKey{}(__n._M_v())); |
1689 | } |
1690 | |
1691 | template<typename _Kt> |
1692 | bool |
1693 | _M_key_equals_tr(const _Kt& __k, |
1694 | const _Hash_node_value<_Value, |
1695 | __hash_cached::value>& __n) const |
1696 | { |
1697 | static_assert( |
1698 | __is_invocable<const _Equal&, const _Kt&, const _Key&>{}, |
1699 | "key equality predicate must be invocable with two arguments of " |
1700 | "key type" ); |
1701 | return _M_eq()(__k, _ExtractKey{}(__n._M_v())); |
1702 | } |
1703 | |
1704 | bool |
1705 | _M_equals(const _Key& __k, __hash_code __c, |
1706 | const _Hash_node_value<_Value, __hash_cached::value>& __n) const |
1707 | { return _S_equals(__c, __n) && _M_key_equals(__k, __n); } |
1708 | |
1709 | template<typename _Kt> |
1710 | bool |
1711 | _M_equals_tr(const _Kt& __k, __hash_code __c, |
1712 | const _Hash_node_value<_Value, |
1713 | __hash_cached::value>& __n) const |
1714 | { return _S_equals(__c, __n) && _M_key_equals_tr(__k, __n); } |
1715 | |
1716 | bool |
1717 | _M_node_equals( |
1718 | const _Hash_node_value<_Value, __hash_cached::value>& __lhn, |
1719 | const _Hash_node_value<_Value, __hash_cached::value>& __rhn) const |
1720 | { |
1721 | return _S_node_equals(__lhn, __rhn) |
1722 | && _M_key_equals(k: _ExtractKey{}(__lhn._M_v()), n: __rhn); |
1723 | } |
1724 | |
1725 | void |
1726 | _M_swap(_Hashtable_base& __x) |
1727 | { |
1728 | __hash_code_base::_M_swap(__x); |
1729 | std::swap(_EqualEBO::_M_get(), __x._EqualEBO::_M_get()); |
1730 | } |
1731 | |
1732 | const _Equal& |
1733 | _M_eq() const { return _EqualEBO::_M_cget(); } |
1734 | }; |
1735 | |
1736 | /** |
1737 | * Primary class template _Equality. |
1738 | * |
1739 | * This is for implementing equality comparison for unordered |
1740 | * containers, per N3068, by John Lakos and Pablo Halpern. |
1741 | * Algorithmically, we follow closely the reference implementations |
1742 | * therein. |
1743 | */ |
1744 | template<typename _Key, typename _Value, typename _Alloc, |
1745 | typename _ExtractKey, typename _Equal, |
1746 | typename _Hash, typename _RangeHash, typename _Unused, |
1747 | typename _RehashPolicy, typename _Traits, |
1748 | bool _Unique_keys = _Traits::__unique_keys::value> |
1749 | struct _Equality; |
1750 | |
1751 | /// unordered_map and unordered_set specializations. |
1752 | template<typename _Key, typename _Value, typename _Alloc, |
1753 | typename _ExtractKey, typename _Equal, |
1754 | typename _Hash, typename _RangeHash, typename _Unused, |
1755 | typename _RehashPolicy, typename _Traits> |
1756 | struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1757 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true> |
1758 | { |
1759 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1760 | _Hash, _RangeHash, _Unused, |
1761 | _RehashPolicy, _Traits>; |
1762 | |
1763 | bool |
1764 | _M_equal(const __hashtable&) const; |
1765 | }; |
1766 | |
1767 | template<typename _Key, typename _Value, typename _Alloc, |
1768 | typename _ExtractKey, typename _Equal, |
1769 | typename _Hash, typename _RangeHash, typename _Unused, |
1770 | typename _RehashPolicy, typename _Traits> |
1771 | bool |
1772 | _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1773 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
1774 | _M_equal(const __hashtable& __other) const |
1775 | { |
1776 | using __node_type = typename __hashtable::__node_type; |
1777 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1778 | if (__this->size() != __other.size()) |
1779 | return false; |
1780 | |
1781 | for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx) |
1782 | { |
1783 | std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur); |
1784 | auto __prev_n = __other._M_buckets[__ybkt]; |
1785 | if (!__prev_n) |
1786 | return false; |
1787 | |
1788 | for (__node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);; |
1789 | __n = __n->_M_next()) |
1790 | { |
1791 | if (__n->_M_v() == *__itx) |
1792 | break; |
1793 | |
1794 | if (!__n->_M_nxt |
1795 | || __other._M_bucket_index(*__n->_M_next()) != __ybkt) |
1796 | return false; |
1797 | } |
1798 | } |
1799 | |
1800 | return true; |
1801 | } |
1802 | |
1803 | /// unordered_multiset and unordered_multimap specializations. |
1804 | template<typename _Key, typename _Value, typename _Alloc, |
1805 | typename _ExtractKey, typename _Equal, |
1806 | typename _Hash, typename _RangeHash, typename _Unused, |
1807 | typename _RehashPolicy, typename _Traits> |
1808 | struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1809 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
1810 | { |
1811 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1812 | _Hash, _RangeHash, _Unused, |
1813 | _RehashPolicy, _Traits>; |
1814 | |
1815 | bool |
1816 | _M_equal(const __hashtable&) const; |
1817 | }; |
1818 | |
1819 | template<typename _Key, typename _Value, typename _Alloc, |
1820 | typename _ExtractKey, typename _Equal, |
1821 | typename _Hash, typename _RangeHash, typename _Unused, |
1822 | typename _RehashPolicy, typename _Traits> |
1823 | bool |
1824 | _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1825 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>:: |
1826 | _M_equal(const __hashtable& __other) const |
1827 | { |
1828 | using __node_type = typename __hashtable::__node_type; |
1829 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1830 | if (__this->size() != __other.size()) |
1831 | return false; |
1832 | |
1833 | for (auto __itx = __this->begin(); __itx != __this->end();) |
1834 | { |
1835 | std::size_t __x_count = 1; |
1836 | auto __itx_end = __itx; |
1837 | for (++__itx_end; __itx_end != __this->end() |
1838 | && __this->key_eq()(_ExtractKey{}(*__itx), |
1839 | _ExtractKey{}(*__itx_end)); |
1840 | ++__itx_end) |
1841 | ++__x_count; |
1842 | |
1843 | std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur); |
1844 | auto __y_prev_n = __other._M_buckets[__ybkt]; |
1845 | if (!__y_prev_n) |
1846 | return false; |
1847 | |
1848 | __node_type* __y_n = static_cast<__node_type*>(__y_prev_n->_M_nxt); |
1849 | for (;;) |
1850 | { |
1851 | if (__this->key_eq()(_ExtractKey{}(__y_n->_M_v()), |
1852 | _ExtractKey{}(*__itx))) |
1853 | break; |
1854 | |
1855 | auto __y_ref_n = __y_n; |
1856 | for (__y_n = __y_n->_M_next(); __y_n; __y_n = __y_n->_M_next()) |
1857 | if (!__other._M_node_equals(*__y_ref_n, *__y_n)) |
1858 | break; |
1859 | |
1860 | if (!__y_n || __other._M_bucket_index(*__y_n) != __ybkt) |
1861 | return false; |
1862 | } |
1863 | |
1864 | typename __hashtable::const_iterator __ity(__y_n); |
1865 | for (auto __ity_end = __ity; __ity_end != __other.end(); ++__ity_end) |
1866 | if (--__x_count == 0) |
1867 | break; |
1868 | |
1869 | if (__x_count != 0) |
1870 | return false; |
1871 | |
1872 | if (!std::is_permutation(__itx, __itx_end, __ity)) |
1873 | return false; |
1874 | |
1875 | __itx = __itx_end; |
1876 | } |
1877 | return true; |
1878 | } |
1879 | |
1880 | /** |
1881 | * This type deals with all allocation and keeps an allocator instance |
1882 | * through inheritance to benefit from EBO when possible. |
1883 | */ |
1884 | template<typename _NodeAlloc> |
1885 | struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc> |
1886 | { |
1887 | private: |
1888 | using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>; |
1889 | |
1890 | template<typename> |
1891 | struct __get_value_type; |
1892 | template<typename _Val, bool _Cache_hash_code> |
1893 | struct __get_value_type<_Hash_node<_Val, _Cache_hash_code>> |
1894 | { using type = _Val; }; |
1895 | |
1896 | public: |
1897 | using __node_type = typename _NodeAlloc::value_type; |
1898 | using __node_alloc_type = _NodeAlloc; |
1899 | // Use __gnu_cxx to benefit from _S_always_equal and al. |
1900 | using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>; |
1901 | |
1902 | using __value_alloc_traits = typename __node_alloc_traits::template |
1903 | rebind_traits<typename __get_value_type<__node_type>::type>; |
1904 | |
1905 | using __node_ptr = __node_type*; |
1906 | using __node_base = _Hash_node_base; |
1907 | using __node_base_ptr = __node_base*; |
1908 | using __buckets_alloc_type = |
1909 | __alloc_rebind<__node_alloc_type, __node_base_ptr>; |
1910 | using __buckets_alloc_traits = std::allocator_traits<__buckets_alloc_type>; |
1911 | using __buckets_ptr = __node_base_ptr*; |
1912 | |
1913 | _Hashtable_alloc() = default; |
1914 | _Hashtable_alloc(const _Hashtable_alloc&) = default; |
1915 | _Hashtable_alloc(_Hashtable_alloc&&) = default; |
1916 | |
1917 | template<typename _Alloc> |
1918 | _Hashtable_alloc(_Alloc&& __a) |
1919 | : __ebo_node_alloc(std::forward<_Alloc>(__a)) |
1920 | { } |
1921 | |
1922 | __node_alloc_type& |
1923 | _M_node_allocator() |
1924 | { return __ebo_node_alloc::_M_get(); } |
1925 | |
1926 | const __node_alloc_type& |
1927 | _M_node_allocator() const |
1928 | { return __ebo_node_alloc::_M_cget(); } |
1929 | |
1930 | // Allocate a node and construct an element within it. |
1931 | template<typename... _Args> |
1932 | __node_ptr |
1933 | _M_allocate_node(_Args&&... __args); |
1934 | |
1935 | // Destroy the element within a node and deallocate the node. |
1936 | void |
1937 | _M_deallocate_node(__node_ptr __n); |
1938 | |
1939 | // Deallocate a node. |
1940 | void |
1941 | _M_deallocate_node_ptr(__node_ptr __n); |
1942 | |
1943 | // Deallocate the linked list of nodes pointed to by __n. |
1944 | // The elements within the nodes are destroyed. |
1945 | void |
1946 | _M_deallocate_nodes(__node_ptr __n); |
1947 | |
1948 | __buckets_ptr |
1949 | _M_allocate_buckets(std::size_t __bkt_count); |
1950 | |
1951 | void |
1952 | _M_deallocate_buckets(__buckets_ptr, std::size_t __bkt_count); |
1953 | }; |
1954 | |
1955 | // Definitions of class template _Hashtable_alloc's out-of-line member |
1956 | // functions. |
1957 | template<typename _NodeAlloc> |
1958 | template<typename... _Args> |
1959 | auto |
1960 | _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args) |
1961 | -> __node_ptr |
1962 | { |
1963 | auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1); |
1964 | __node_ptr __n = std::__to_address(__nptr); |
1965 | __try |
1966 | { |
1967 | ::new ((void*)__n) __node_type; |
1968 | __node_alloc_traits::construct(_M_node_allocator(), |
1969 | __n->_M_valptr(), |
1970 | std::forward<_Args>(__args)...); |
1971 | return __n; |
1972 | } |
1973 | __catch(...) |
1974 | { |
1975 | __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1); |
1976 | __throw_exception_again; |
1977 | } |
1978 | } |
1979 | |
1980 | template<typename _NodeAlloc> |
1981 | void |
1982 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_ptr __n) |
1983 | { |
1984 | __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr()); |
1985 | _M_deallocate_node_ptr(__n); |
1986 | } |
1987 | |
1988 | template<typename _NodeAlloc> |
1989 | void |
1990 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_ptr __n) |
1991 | { |
1992 | typedef typename __node_alloc_traits::pointer _Ptr; |
1993 | auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n); |
1994 | __n->~__node_type(); |
1995 | __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1); |
1996 | } |
1997 | |
1998 | template<typename _NodeAlloc> |
1999 | void |
2000 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_ptr __n) |
2001 | { |
2002 | while (__n) |
2003 | { |
2004 | __node_ptr __tmp = __n; |
2005 | __n = __n->_M_next(); |
2006 | _M_deallocate_node(n: __tmp); |
2007 | } |
2008 | } |
2009 | |
2010 | template<typename _NodeAlloc> |
2011 | auto |
2012 | _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __bkt_count) |
2013 | -> __buckets_ptr |
2014 | { |
2015 | __buckets_alloc_type __alloc(_M_node_allocator()); |
2016 | |
2017 | auto __ptr = __buckets_alloc_traits::allocate(__alloc, __bkt_count); |
2018 | __buckets_ptr __p = std::__to_address(__ptr); |
2019 | __builtin_memset(__p, 0, __bkt_count * sizeof(__node_base_ptr)); |
2020 | return __p; |
2021 | } |
2022 | |
2023 | template<typename _NodeAlloc> |
2024 | void |
2025 | _Hashtable_alloc<_NodeAlloc>:: |
2026 | _M_deallocate_buckets(__buckets_ptr __bkts, |
2027 | std::size_t __bkt_count) |
2028 | { |
2029 | typedef typename __buckets_alloc_traits::pointer _Ptr; |
2030 | auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts); |
2031 | __buckets_alloc_type __alloc(_M_node_allocator()); |
2032 | __buckets_alloc_traits::deallocate(__alloc, __ptr, __bkt_count); |
2033 | } |
2034 | |
2035 | ///@} hashtable-detail |
2036 | } // namespace __detail |
2037 | /// @endcond |
2038 | _GLIBCXX_END_NAMESPACE_VERSION |
2039 | } // namespace std |
2040 | |
2041 | #endif // _HASHTABLE_POLICY_H |
2042 | |