1 | // random number generation -*- C++ -*- |
2 | |
3 | // Copyright (C) 2009-2022 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** |
26 | * @file bits/random.h |
27 | * This is an internal header file, included by other library headers. |
28 | * Do not attempt to use it directly. @headername{random} |
29 | */ |
30 | |
31 | #ifndef _RANDOM_H |
32 | #define _RANDOM_H 1 |
33 | |
34 | #include <vector> |
35 | #include <bits/uniform_int_dist.h> |
36 | |
37 | namespace std _GLIBCXX_VISIBILITY(default) |
38 | { |
39 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
40 | |
41 | // [26.4] Random number generation |
42 | |
43 | /** |
44 | * @defgroup random Random Number Generation |
45 | * @ingroup numerics |
46 | * |
47 | * A facility for generating random numbers on selected distributions. |
48 | * @{ |
49 | */ |
50 | |
51 | // std::uniform_random_bit_generator is defined in <bits/uniform_int_dist.h> |
52 | |
53 | /** |
54 | * @brief A function template for converting the output of a (integral) |
55 | * uniform random number generator to a floatng point result in the range |
56 | * [0-1). |
57 | */ |
58 | template<typename _RealType, size_t __bits, |
59 | typename _UniformRandomNumberGenerator> |
60 | _RealType |
61 | generate_canonical(_UniformRandomNumberGenerator& __g); |
62 | |
63 | /// @cond undocumented |
64 | // Implementation-space details. |
65 | namespace __detail |
66 | { |
67 | template<typename _UIntType, size_t __w, |
68 | bool = __w < static_cast<size_t> |
69 | (std::numeric_limits<_UIntType>::digits)> |
70 | struct _Shift |
71 | { static constexpr _UIntType __value = 0; }; |
72 | |
73 | template<typename _UIntType, size_t __w> |
74 | struct _Shift<_UIntType, __w, true> |
75 | { static constexpr _UIntType __value = _UIntType(1) << __w; }; |
76 | |
77 | template<int __s, |
78 | int __which = ((__s <= __CHAR_BIT__ * sizeof (int)) |
79 | + (__s <= __CHAR_BIT__ * sizeof (long)) |
80 | + (__s <= __CHAR_BIT__ * sizeof (long long)) |
81 | /* assume long long no bigger than __int128 */ |
82 | + (__s <= 128))> |
83 | struct _Select_uint_least_t |
84 | { |
85 | static_assert(__which < 0, /* needs to be dependent */ |
86 | "sorry, would be too much trouble for a slow result" ); |
87 | }; |
88 | |
89 | template<int __s> |
90 | struct _Select_uint_least_t<__s, 4> |
91 | { using type = unsigned int; }; |
92 | |
93 | template<int __s> |
94 | struct _Select_uint_least_t<__s, 3> |
95 | { using type = unsigned long; }; |
96 | |
97 | template<int __s> |
98 | struct _Select_uint_least_t<__s, 2> |
99 | { using type = unsigned long long; }; |
100 | |
101 | #if __SIZEOF_INT128__ > __SIZEOF_LONG_LONG__ |
102 | template<int __s> |
103 | struct _Select_uint_least_t<__s, 1> |
104 | { __extension__ using type = unsigned __int128; }; |
105 | #endif |
106 | |
107 | // Assume a != 0, a < m, c < m, x < m. |
108 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c, |
109 | bool __big_enough = (!(__m & (__m - 1)) |
110 | || (_Tp(-1) - __c) / __a >= __m - 1), |
111 | bool __schrage_ok = __m % __a < __m / __a> |
112 | struct _Mod |
113 | { |
114 | static _Tp |
115 | __calc(_Tp __x) |
116 | { |
117 | using _Tp2 |
118 | = typename _Select_uint_least_t<std::__lg(__a) |
119 | + std::__lg(__m) + 2>::type; |
120 | return static_cast<_Tp>((_Tp2(__a) * __x + __c) % __m); |
121 | } |
122 | }; |
123 | |
124 | // Schrage. |
125 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c> |
126 | struct _Mod<_Tp, __m, __a, __c, false, true> |
127 | { |
128 | static _Tp |
129 | __calc(_Tp __x); |
130 | }; |
131 | |
132 | // Special cases: |
133 | // - for m == 2^n or m == 0, unsigned integer overflow is safe. |
134 | // - a * (m - 1) + c fits in _Tp, there is no overflow. |
135 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c, bool __s> |
136 | struct _Mod<_Tp, __m, __a, __c, true, __s> |
137 | { |
138 | static _Tp |
139 | __calc(_Tp __x) |
140 | { |
141 | _Tp __res = __a * __x + __c; |
142 | if (__m) |
143 | __res %= __m; |
144 | return __res; |
145 | } |
146 | }; |
147 | |
148 | template<typename _Tp, _Tp __m, _Tp __a = 1, _Tp __c = 0> |
149 | inline _Tp |
150 | __mod(_Tp __x) |
151 | { |
152 | if _GLIBCXX17_CONSTEXPR (__a == 0) |
153 | return __c; |
154 | else |
155 | { |
156 | // _Mod must not be instantiated with a == 0 |
157 | constexpr _Tp __a1 = __a ? __a : 1; |
158 | return _Mod<_Tp, __m, __a1, __c>::__calc(__x); |
159 | } |
160 | } |
161 | |
162 | /* |
163 | * An adaptor class for converting the output of any Generator into |
164 | * the input for a specific Distribution. |
165 | */ |
166 | template<typename _Engine, typename _DInputType> |
167 | struct _Adaptor |
168 | { |
169 | static_assert(std::is_floating_point<_DInputType>::value, |
170 | "template argument must be a floating point type" ); |
171 | |
172 | public: |
173 | _Adaptor(_Engine& __g) |
174 | : _M_g(__g) { } |
175 | |
176 | _DInputType |
177 | min() const |
178 | { return _DInputType(0); } |
179 | |
180 | _DInputType |
181 | max() const |
182 | { return _DInputType(1); } |
183 | |
184 | /* |
185 | * Converts a value generated by the adapted random number generator |
186 | * into a value in the input domain for the dependent random number |
187 | * distribution. |
188 | */ |
189 | _DInputType |
190 | operator()() |
191 | { |
192 | return std::generate_canonical<_DInputType, |
193 | std::numeric_limits<_DInputType>::digits, |
194 | _Engine>(_M_g); |
195 | } |
196 | |
197 | private: |
198 | _Engine& _M_g; |
199 | }; |
200 | |
201 | template<typename _Sseq> |
202 | using __seed_seq_generate_t = decltype( |
203 | std::declval<_Sseq&>().generate(std::declval<uint_least32_t*>(), |
204 | std::declval<uint_least32_t*>())); |
205 | |
206 | // Detect whether _Sseq is a valid seed sequence for |
207 | // a random number engine _Engine with result type _Res. |
208 | template<typename _Sseq, typename _Engine, typename _Res, |
209 | typename _GenerateCheck = __seed_seq_generate_t<_Sseq>> |
210 | using __is_seed_seq = __and_< |
211 | __not_<is_same<__remove_cvref_t<_Sseq>, _Engine>>, |
212 | is_unsigned<typename _Sseq::result_type>, |
213 | __not_<is_convertible<_Sseq, _Res>> |
214 | >; |
215 | |
216 | } // namespace __detail |
217 | /// @endcond |
218 | |
219 | /** |
220 | * @addtogroup random_generators Random Number Generators |
221 | * @ingroup random |
222 | * |
223 | * These classes define objects which provide random or pseudorandom |
224 | * numbers, either from a discrete or a continuous interval. The |
225 | * random number generator supplied as a part of this library are |
226 | * all uniform random number generators which provide a sequence of |
227 | * random number uniformly distributed over their range. |
228 | * |
229 | * A number generator is a function object with an operator() that |
230 | * takes zero arguments and returns a number. |
231 | * |
232 | * A compliant random number generator must satisfy the following |
233 | * requirements. <table border=1 cellpadding=10 cellspacing=0> |
234 | * <caption align=top>Random Number Generator Requirements</caption> |
235 | * <tr><td>To be documented.</td></tr> </table> |
236 | * |
237 | * @{ |
238 | */ |
239 | |
240 | /** |
241 | * @brief A model of a linear congruential random number generator. |
242 | * |
243 | * A random number generator that produces pseudorandom numbers via |
244 | * linear function: |
245 | * @f[ |
246 | * x_{i+1}\leftarrow(ax_{i} + c) \bmod m |
247 | * @f] |
248 | * |
249 | * The template parameter @p _UIntType must be an unsigned integral type |
250 | * large enough to store values up to (__m-1). If the template parameter |
251 | * @p __m is 0, the modulus @p __m used is |
252 | * std::numeric_limits<_UIntType>::max() plus 1. Otherwise, the template |
253 | * parameters @p __a and @p __c must be less than @p __m. |
254 | * |
255 | * The size of the state is @f$1@f$. |
256 | */ |
257 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
258 | class linear_congruential_engine |
259 | { |
260 | static_assert(std::is_unsigned<_UIntType>::value, |
261 | "result_type must be an unsigned integral type" ); |
262 | static_assert(__m == 0u || (__a < __m && __c < __m), |
263 | "template argument substituting __m out of bounds" ); |
264 | |
265 | template<typename _Sseq> |
266 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
267 | _Sseq, linear_congruential_engine, _UIntType>::value>::type; |
268 | |
269 | public: |
270 | /** The type of the generated random value. */ |
271 | typedef _UIntType result_type; |
272 | |
273 | /** The multiplier. */ |
274 | static constexpr result_type multiplier = __a; |
275 | /** An increment. */ |
276 | static constexpr result_type increment = __c; |
277 | /** The modulus. */ |
278 | static constexpr result_type modulus = __m; |
279 | static constexpr result_type default_seed = 1u; |
280 | |
281 | /** |
282 | * @brief Constructs a %linear_congruential_engine random number |
283 | * generator engine with seed 1. |
284 | */ |
285 | linear_congruential_engine() : linear_congruential_engine(default_seed) |
286 | { } |
287 | |
288 | /** |
289 | * @brief Constructs a %linear_congruential_engine random number |
290 | * generator engine with seed @p __s. The default seed value |
291 | * is 1. |
292 | * |
293 | * @param __s The initial seed value. |
294 | */ |
295 | explicit |
296 | linear_congruential_engine(result_type __s) |
297 | { seed(__s); } |
298 | |
299 | /** |
300 | * @brief Constructs a %linear_congruential_engine random number |
301 | * generator engine seeded from the seed sequence @p __q. |
302 | * |
303 | * @param __q the seed sequence. |
304 | */ |
305 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
306 | explicit |
307 | linear_congruential_engine(_Sseq& __q) |
308 | { seed(__q); } |
309 | |
310 | /** |
311 | * @brief Reseeds the %linear_congruential_engine random number generator |
312 | * engine sequence to the seed @p __s. |
313 | * |
314 | * @param __s The new seed. |
315 | */ |
316 | void |
317 | seed(result_type __s = default_seed); |
318 | |
319 | /** |
320 | * @brief Reseeds the %linear_congruential_engine random number generator |
321 | * engine |
322 | * sequence using values from the seed sequence @p __q. |
323 | * |
324 | * @param __q the seed sequence. |
325 | */ |
326 | template<typename _Sseq> |
327 | _If_seed_seq<_Sseq> |
328 | seed(_Sseq& __q); |
329 | |
330 | /** |
331 | * @brief Gets the smallest possible value in the output range. |
332 | * |
333 | * The minimum depends on the @p __c parameter: if it is zero, the |
334 | * minimum generated must be > 0, otherwise 0 is allowed. |
335 | */ |
336 | static constexpr result_type |
337 | min() |
338 | { return __c == 0u ? 1u : 0u; } |
339 | |
340 | /** |
341 | * @brief Gets the largest possible value in the output range. |
342 | */ |
343 | static constexpr result_type |
344 | max() |
345 | { return __m - 1u; } |
346 | |
347 | /** |
348 | * @brief Discard a sequence of random numbers. |
349 | */ |
350 | void |
351 | discard(unsigned long long __z) |
352 | { |
353 | for (; __z != 0ULL; --__z) |
354 | (*this)(); |
355 | } |
356 | |
357 | /** |
358 | * @brief Gets the next random number in the sequence. |
359 | */ |
360 | result_type |
361 | operator()() |
362 | { |
363 | _M_x = __detail::__mod<_UIntType, __m, __a, __c>(_M_x); |
364 | return _M_x; |
365 | } |
366 | |
367 | /** |
368 | * @brief Compares two linear congruential random number generator |
369 | * objects of the same type for equality. |
370 | * |
371 | * @param __lhs A linear congruential random number generator object. |
372 | * @param __rhs Another linear congruential random number generator |
373 | * object. |
374 | * |
375 | * @returns true if the infinite sequences of generated values |
376 | * would be equal, false otherwise. |
377 | */ |
378 | friend bool |
379 | operator==(const linear_congruential_engine& __lhs, |
380 | const linear_congruential_engine& __rhs) |
381 | { return __lhs._M_x == __rhs._M_x; } |
382 | |
383 | /** |
384 | * @brief Writes the textual representation of the state x(i) of x to |
385 | * @p __os. |
386 | * |
387 | * @param __os The output stream. |
388 | * @param __lcr A % linear_congruential_engine random number generator. |
389 | * @returns __os. |
390 | */ |
391 | template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1, |
392 | _UIntType1 __m1, typename _CharT, typename _Traits> |
393 | friend std::basic_ostream<_CharT, _Traits>& |
394 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
395 | const std::linear_congruential_engine<_UIntType1, |
396 | __a1, __c1, __m1>& __lcr); |
397 | |
398 | /** |
399 | * @brief Sets the state of the engine by reading its textual |
400 | * representation from @p __is. |
401 | * |
402 | * The textual representation must have been previously written using |
403 | * an output stream whose imbued locale and whose type's template |
404 | * specialization arguments _CharT and _Traits were the same as those |
405 | * of @p __is. |
406 | * |
407 | * @param __is The input stream. |
408 | * @param __lcr A % linear_congruential_engine random number generator. |
409 | * @returns __is. |
410 | */ |
411 | template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1, |
412 | _UIntType1 __m1, typename _CharT, typename _Traits> |
413 | friend std::basic_istream<_CharT, _Traits>& |
414 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
415 | std::linear_congruential_engine<_UIntType1, __a1, |
416 | __c1, __m1>& __lcr); |
417 | |
418 | private: |
419 | _UIntType _M_x; |
420 | }; |
421 | |
422 | /** |
423 | * @brief Compares two linear congruential random number generator |
424 | * objects of the same type for inequality. |
425 | * |
426 | * @param __lhs A linear congruential random number generator object. |
427 | * @param __rhs Another linear congruential random number generator |
428 | * object. |
429 | * |
430 | * @returns true if the infinite sequences of generated values |
431 | * would be different, false otherwise. |
432 | */ |
433 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
434 | inline bool |
435 | operator!=(const std::linear_congruential_engine<_UIntType, __a, |
436 | __c, __m>& __lhs, |
437 | const std::linear_congruential_engine<_UIntType, __a, |
438 | __c, __m>& __rhs) |
439 | { return !(__lhs == __rhs); } |
440 | |
441 | |
442 | /** |
443 | * A generalized feedback shift register discrete random number generator. |
444 | * |
445 | * This algorithm avoids multiplication and division and is designed to be |
446 | * friendly to a pipelined architecture. If the parameters are chosen |
447 | * correctly, this generator will produce numbers with a very long period and |
448 | * fairly good apparent entropy, although still not cryptographically strong. |
449 | * |
450 | * The best way to use this generator is with the predefined mt19937 class. |
451 | * |
452 | * This algorithm was originally invented by Makoto Matsumoto and |
453 | * Takuji Nishimura. |
454 | * |
455 | * @tparam __w Word size, the number of bits in each element of |
456 | * the state vector. |
457 | * @tparam __n The degree of recursion. |
458 | * @tparam __m The period parameter. |
459 | * @tparam __r The separation point bit index. |
460 | * @tparam __a The last row of the twist matrix. |
461 | * @tparam __u The first right-shift tempering matrix parameter. |
462 | * @tparam __d The first right-shift tempering matrix mask. |
463 | * @tparam __s The first left-shift tempering matrix parameter. |
464 | * @tparam __b The first left-shift tempering matrix mask. |
465 | * @tparam __t The second left-shift tempering matrix parameter. |
466 | * @tparam __c The second left-shift tempering matrix mask. |
467 | * @tparam __l The second right-shift tempering matrix parameter. |
468 | * @tparam __f Initialization multiplier. |
469 | */ |
470 | template<typename _UIntType, size_t __w, |
471 | size_t __n, size_t __m, size_t __r, |
472 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
473 | _UIntType __b, size_t __t, |
474 | _UIntType __c, size_t __l, _UIntType __f> |
475 | class mersenne_twister_engine |
476 | { |
477 | static_assert(std::is_unsigned<_UIntType>::value, |
478 | "result_type must be an unsigned integral type" ); |
479 | static_assert(1u <= __m && __m <= __n, |
480 | "template argument substituting __m out of bounds" ); |
481 | static_assert(__r <= __w, "template argument substituting " |
482 | "__r out of bound" ); |
483 | static_assert(__u <= __w, "template argument substituting " |
484 | "__u out of bound" ); |
485 | static_assert(__s <= __w, "template argument substituting " |
486 | "__s out of bound" ); |
487 | static_assert(__t <= __w, "template argument substituting " |
488 | "__t out of bound" ); |
489 | static_assert(__l <= __w, "template argument substituting " |
490 | "__l out of bound" ); |
491 | static_assert(__w <= std::numeric_limits<_UIntType>::digits, |
492 | "template argument substituting __w out of bound" ); |
493 | static_assert(__a <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
494 | "template argument substituting __a out of bound" ); |
495 | static_assert(__b <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
496 | "template argument substituting __b out of bound" ); |
497 | static_assert(__c <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
498 | "template argument substituting __c out of bound" ); |
499 | static_assert(__d <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
500 | "template argument substituting __d out of bound" ); |
501 | static_assert(__f <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
502 | "template argument substituting __f out of bound" ); |
503 | |
504 | template<typename _Sseq> |
505 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
506 | _Sseq, mersenne_twister_engine, _UIntType>::value>::type; |
507 | |
508 | public: |
509 | /** The type of the generated random value. */ |
510 | typedef _UIntType result_type; |
511 | |
512 | // parameter values |
513 | static constexpr size_t word_size = __w; |
514 | static constexpr size_t state_size = __n; |
515 | static constexpr size_t shift_size = __m; |
516 | static constexpr size_t mask_bits = __r; |
517 | static constexpr result_type xor_mask = __a; |
518 | static constexpr size_t tempering_u = __u; |
519 | static constexpr result_type tempering_d = __d; |
520 | static constexpr size_t tempering_s = __s; |
521 | static constexpr result_type tempering_b = __b; |
522 | static constexpr size_t tempering_t = __t; |
523 | static constexpr result_type tempering_c = __c; |
524 | static constexpr size_t tempering_l = __l; |
525 | static constexpr result_type initialization_multiplier = __f; |
526 | static constexpr result_type default_seed = 5489u; |
527 | |
528 | // constructors and member functions |
529 | |
530 | mersenne_twister_engine() : mersenne_twister_engine(default_seed) { } |
531 | |
532 | explicit |
533 | mersenne_twister_engine(result_type __sd) |
534 | { seed(__sd); } |
535 | |
536 | /** |
537 | * @brief Constructs a %mersenne_twister_engine random number generator |
538 | * engine seeded from the seed sequence @p __q. |
539 | * |
540 | * @param __q the seed sequence. |
541 | */ |
542 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
543 | explicit |
544 | mersenne_twister_engine(_Sseq& __q) |
545 | { seed(__q); } |
546 | |
547 | void |
548 | seed(result_type __sd = default_seed); |
549 | |
550 | template<typename _Sseq> |
551 | _If_seed_seq<_Sseq> |
552 | seed(_Sseq& __q); |
553 | |
554 | /** |
555 | * @brief Gets the smallest possible value in the output range. |
556 | */ |
557 | static constexpr result_type |
558 | min() |
559 | { return 0; } |
560 | |
561 | /** |
562 | * @brief Gets the largest possible value in the output range. |
563 | */ |
564 | static constexpr result_type |
565 | max() |
566 | { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
567 | |
568 | /** |
569 | * @brief Discard a sequence of random numbers. |
570 | */ |
571 | void |
572 | discard(unsigned long long __z); |
573 | |
574 | result_type |
575 | operator()(); |
576 | |
577 | /** |
578 | * @brief Compares two % mersenne_twister_engine random number generator |
579 | * objects of the same type for equality. |
580 | * |
581 | * @param __lhs A % mersenne_twister_engine random number generator |
582 | * object. |
583 | * @param __rhs Another % mersenne_twister_engine random number |
584 | * generator object. |
585 | * |
586 | * @returns true if the infinite sequences of generated values |
587 | * would be equal, false otherwise. |
588 | */ |
589 | friend bool |
590 | operator==(const mersenne_twister_engine& __lhs, |
591 | const mersenne_twister_engine& __rhs) |
592 | { return (std::equal(__lhs._M_x, __lhs._M_x + state_size, __rhs._M_x) |
593 | && __lhs._M_p == __rhs._M_p); } |
594 | |
595 | /** |
596 | * @brief Inserts the current state of a % mersenne_twister_engine |
597 | * random number generator engine @p __x into the output stream |
598 | * @p __os. |
599 | * |
600 | * @param __os An output stream. |
601 | * @param __x A % mersenne_twister_engine random number generator |
602 | * engine. |
603 | * |
604 | * @returns The output stream with the state of @p __x inserted or in |
605 | * an error state. |
606 | */ |
607 | template<typename _UIntType1, |
608 | size_t __w1, size_t __n1, |
609 | size_t __m1, size_t __r1, |
610 | _UIntType1 __a1, size_t __u1, |
611 | _UIntType1 __d1, size_t __s1, |
612 | _UIntType1 __b1, size_t __t1, |
613 | _UIntType1 __c1, size_t __l1, _UIntType1 __f1, |
614 | typename _CharT, typename _Traits> |
615 | friend std::basic_ostream<_CharT, _Traits>& |
616 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
617 | const std::mersenne_twister_engine<_UIntType1, __w1, __n1, |
618 | __m1, __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1, |
619 | __l1, __f1>& __x); |
620 | |
621 | /** |
622 | * @brief Extracts the current state of a % mersenne_twister_engine |
623 | * random number generator engine @p __x from the input stream |
624 | * @p __is. |
625 | * |
626 | * @param __is An input stream. |
627 | * @param __x A % mersenne_twister_engine random number generator |
628 | * engine. |
629 | * |
630 | * @returns The input stream with the state of @p __x extracted or in |
631 | * an error state. |
632 | */ |
633 | template<typename _UIntType1, |
634 | size_t __w1, size_t __n1, |
635 | size_t __m1, size_t __r1, |
636 | _UIntType1 __a1, size_t __u1, |
637 | _UIntType1 __d1, size_t __s1, |
638 | _UIntType1 __b1, size_t __t1, |
639 | _UIntType1 __c1, size_t __l1, _UIntType1 __f1, |
640 | typename _CharT, typename _Traits> |
641 | friend std::basic_istream<_CharT, _Traits>& |
642 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
643 | std::mersenne_twister_engine<_UIntType1, __w1, __n1, __m1, |
644 | __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1, |
645 | __l1, __f1>& __x); |
646 | |
647 | private: |
648 | void _M_gen_rand(); |
649 | |
650 | _UIntType _M_x[state_size]; |
651 | size_t _M_p; |
652 | }; |
653 | |
654 | /** |
655 | * @brief Compares two % mersenne_twister_engine random number generator |
656 | * objects of the same type for inequality. |
657 | * |
658 | * @param __lhs A % mersenne_twister_engine random number generator |
659 | * object. |
660 | * @param __rhs Another % mersenne_twister_engine random number |
661 | * generator object. |
662 | * |
663 | * @returns true if the infinite sequences of generated values |
664 | * would be different, false otherwise. |
665 | */ |
666 | template<typename _UIntType, size_t __w, |
667 | size_t __n, size_t __m, size_t __r, |
668 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
669 | _UIntType __b, size_t __t, |
670 | _UIntType __c, size_t __l, _UIntType __f> |
671 | inline bool |
672 | operator!=(const std::mersenne_twister_engine<_UIntType, __w, __n, __m, |
673 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __lhs, |
674 | const std::mersenne_twister_engine<_UIntType, __w, __n, __m, |
675 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __rhs) |
676 | { return !(__lhs == __rhs); } |
677 | |
678 | |
679 | /** |
680 | * @brief The Marsaglia-Zaman generator. |
681 | * |
682 | * This is a model of a Generalized Fibonacci discrete random number |
683 | * generator, sometimes referred to as the SWC generator. |
684 | * |
685 | * A discrete random number generator that produces pseudorandom |
686 | * numbers using: |
687 | * @f[ |
688 | * x_{i}\leftarrow(x_{i - s} - x_{i - r} - carry_{i-1}) \bmod m |
689 | * @f] |
690 | * |
691 | * The size of the state is @f$r@f$ |
692 | * and the maximum period of the generator is @f$(m^r - m^s - 1)@f$. |
693 | */ |
694 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
695 | class subtract_with_carry_engine |
696 | { |
697 | static_assert(std::is_unsigned<_UIntType>::value, |
698 | "result_type must be an unsigned integral type" ); |
699 | static_assert(0u < __s && __s < __r, |
700 | "0 < s < r" ); |
701 | static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits, |
702 | "template argument substituting __w out of bounds" ); |
703 | |
704 | template<typename _Sseq> |
705 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
706 | _Sseq, subtract_with_carry_engine, _UIntType>::value>::type; |
707 | |
708 | public: |
709 | /** The type of the generated random value. */ |
710 | typedef _UIntType result_type; |
711 | |
712 | // parameter values |
713 | static constexpr size_t word_size = __w; |
714 | static constexpr size_t short_lag = __s; |
715 | static constexpr size_t long_lag = __r; |
716 | static constexpr uint_least32_t default_seed = 19780503u; |
717 | |
718 | subtract_with_carry_engine() : subtract_with_carry_engine(0u) |
719 | { } |
720 | |
721 | /** |
722 | * @brief Constructs an explicitly seeded %subtract_with_carry_engine |
723 | * random number generator. |
724 | */ |
725 | explicit |
726 | subtract_with_carry_engine(result_type __sd) |
727 | { seed(__sd); } |
728 | |
729 | /** |
730 | * @brief Constructs a %subtract_with_carry_engine random number engine |
731 | * seeded from the seed sequence @p __q. |
732 | * |
733 | * @param __q the seed sequence. |
734 | */ |
735 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
736 | explicit |
737 | subtract_with_carry_engine(_Sseq& __q) |
738 | { seed(__q); } |
739 | |
740 | /** |
741 | * @brief Seeds the initial state @f$x_0@f$ of the random number |
742 | * generator. |
743 | * |
744 | * N1688[4.19] modifies this as follows. If @p __value == 0, |
745 | * sets value to 19780503. In any case, with a linear |
746 | * congruential generator lcg(i) having parameters @f$ m_{lcg} = |
747 | * 2147483563, a_{lcg} = 40014, c_{lcg} = 0, and lcg(0) = value |
748 | * @f$, sets @f$ x_{-r} \dots x_{-1} @f$ to @f$ lcg(1) \bmod m |
749 | * \dots lcg(r) \bmod m @f$ respectively. If @f$ x_{-1} = 0 @f$ |
750 | * set carry to 1, otherwise sets carry to 0. |
751 | */ |
752 | void |
753 | seed(result_type __sd = 0u); |
754 | |
755 | /** |
756 | * @brief Seeds the initial state @f$x_0@f$ of the |
757 | * % subtract_with_carry_engine random number generator. |
758 | */ |
759 | template<typename _Sseq> |
760 | _If_seed_seq<_Sseq> |
761 | seed(_Sseq& __q); |
762 | |
763 | /** |
764 | * @brief Gets the inclusive minimum value of the range of random |
765 | * integers returned by this generator. |
766 | */ |
767 | static constexpr result_type |
768 | min() |
769 | { return 0; } |
770 | |
771 | /** |
772 | * @brief Gets the inclusive maximum value of the range of random |
773 | * integers returned by this generator. |
774 | */ |
775 | static constexpr result_type |
776 | max() |
777 | { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
778 | |
779 | /** |
780 | * @brief Discard a sequence of random numbers. |
781 | */ |
782 | void |
783 | discard(unsigned long long __z) |
784 | { |
785 | for (; __z != 0ULL; --__z) |
786 | (*this)(); |
787 | } |
788 | |
789 | /** |
790 | * @brief Gets the next random number in the sequence. |
791 | */ |
792 | result_type |
793 | operator()(); |
794 | |
795 | /** |
796 | * @brief Compares two % subtract_with_carry_engine random number |
797 | * generator objects of the same type for equality. |
798 | * |
799 | * @param __lhs A % subtract_with_carry_engine random number generator |
800 | * object. |
801 | * @param __rhs Another % subtract_with_carry_engine random number |
802 | * generator object. |
803 | * |
804 | * @returns true if the infinite sequences of generated values |
805 | * would be equal, false otherwise. |
806 | */ |
807 | friend bool |
808 | operator==(const subtract_with_carry_engine& __lhs, |
809 | const subtract_with_carry_engine& __rhs) |
810 | { return (std::equal(__lhs._M_x, __lhs._M_x + long_lag, __rhs._M_x) |
811 | && __lhs._M_carry == __rhs._M_carry |
812 | && __lhs._M_p == __rhs._M_p); } |
813 | |
814 | /** |
815 | * @brief Inserts the current state of a % subtract_with_carry_engine |
816 | * random number generator engine @p __x into the output stream |
817 | * @p __os. |
818 | * |
819 | * @param __os An output stream. |
820 | * @param __x A % subtract_with_carry_engine random number generator |
821 | * engine. |
822 | * |
823 | * @returns The output stream with the state of @p __x inserted or in |
824 | * an error state. |
825 | */ |
826 | template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1, |
827 | typename _CharT, typename _Traits> |
828 | friend std::basic_ostream<_CharT, _Traits>& |
829 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
830 | const std::subtract_with_carry_engine<_UIntType1, __w1, |
831 | __s1, __r1>& __x); |
832 | |
833 | /** |
834 | * @brief Extracts the current state of a % subtract_with_carry_engine |
835 | * random number generator engine @p __x from the input stream |
836 | * @p __is. |
837 | * |
838 | * @param __is An input stream. |
839 | * @param __x A % subtract_with_carry_engine random number generator |
840 | * engine. |
841 | * |
842 | * @returns The input stream with the state of @p __x extracted or in |
843 | * an error state. |
844 | */ |
845 | template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1, |
846 | typename _CharT, typename _Traits> |
847 | friend std::basic_istream<_CharT, _Traits>& |
848 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
849 | std::subtract_with_carry_engine<_UIntType1, __w1, |
850 | __s1, __r1>& __x); |
851 | |
852 | private: |
853 | /// The state of the generator. This is a ring buffer. |
854 | _UIntType _M_x[long_lag]; |
855 | _UIntType _M_carry; ///< The carry |
856 | size_t _M_p; ///< Current index of x(i - r). |
857 | }; |
858 | |
859 | /** |
860 | * @brief Compares two % subtract_with_carry_engine random number |
861 | * generator objects of the same type for inequality. |
862 | * |
863 | * @param __lhs A % subtract_with_carry_engine random number generator |
864 | * object. |
865 | * @param __rhs Another % subtract_with_carry_engine random number |
866 | * generator object. |
867 | * |
868 | * @returns true if the infinite sequences of generated values |
869 | * would be different, false otherwise. |
870 | */ |
871 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
872 | inline bool |
873 | operator!=(const std::subtract_with_carry_engine<_UIntType, __w, |
874 | __s, __r>& __lhs, |
875 | const std::subtract_with_carry_engine<_UIntType, __w, |
876 | __s, __r>& __rhs) |
877 | { return !(__lhs == __rhs); } |
878 | |
879 | |
880 | /** |
881 | * Produces random numbers from some base engine by discarding blocks of |
882 | * data. |
883 | * |
884 | * 0 <= @p __r <= @p __p |
885 | */ |
886 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
887 | class discard_block_engine |
888 | { |
889 | static_assert(1 <= __r && __r <= __p, |
890 | "template argument substituting __r out of bounds" ); |
891 | |
892 | public: |
893 | /** The type of the generated random value. */ |
894 | typedef typename _RandomNumberEngine::result_type result_type; |
895 | |
896 | template<typename _Sseq> |
897 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
898 | _Sseq, discard_block_engine, result_type>::value>::type; |
899 | |
900 | // parameter values |
901 | static constexpr size_t block_size = __p; |
902 | static constexpr size_t used_block = __r; |
903 | |
904 | /** |
905 | * @brief Constructs a default %discard_block_engine engine. |
906 | * |
907 | * The underlying engine is default constructed as well. |
908 | */ |
909 | discard_block_engine() |
910 | : _M_b(), _M_n(0) { } |
911 | |
912 | /** |
913 | * @brief Copy constructs a %discard_block_engine engine. |
914 | * |
915 | * Copies an existing base class random number generator. |
916 | * @param __rng An existing (base class) engine object. |
917 | */ |
918 | explicit |
919 | discard_block_engine(const _RandomNumberEngine& __rng) |
920 | : _M_b(__rng), _M_n(0) { } |
921 | |
922 | /** |
923 | * @brief Move constructs a %discard_block_engine engine. |
924 | * |
925 | * Copies an existing base class random number generator. |
926 | * @param __rng An existing (base class) engine object. |
927 | */ |
928 | explicit |
929 | discard_block_engine(_RandomNumberEngine&& __rng) |
930 | : _M_b(std::move(__rng)), _M_n(0) { } |
931 | |
932 | /** |
933 | * @brief Seed constructs a %discard_block_engine engine. |
934 | * |
935 | * Constructs the underlying generator engine seeded with @p __s. |
936 | * @param __s A seed value for the base class engine. |
937 | */ |
938 | explicit |
939 | discard_block_engine(result_type __s) |
940 | : _M_b(__s), _M_n(0) { } |
941 | |
942 | /** |
943 | * @brief Generator construct a %discard_block_engine engine. |
944 | * |
945 | * @param __q A seed sequence. |
946 | */ |
947 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
948 | explicit |
949 | discard_block_engine(_Sseq& __q) |
950 | : _M_b(__q), _M_n(0) |
951 | { } |
952 | |
953 | /** |
954 | * @brief Reseeds the %discard_block_engine object with the default |
955 | * seed for the underlying base class generator engine. |
956 | */ |
957 | void |
958 | seed() |
959 | { |
960 | _M_b.seed(); |
961 | _M_n = 0; |
962 | } |
963 | |
964 | /** |
965 | * @brief Reseeds the %discard_block_engine object with the default |
966 | * seed for the underlying base class generator engine. |
967 | */ |
968 | void |
969 | seed(result_type __s) |
970 | { |
971 | _M_b.seed(__s); |
972 | _M_n = 0; |
973 | } |
974 | |
975 | /** |
976 | * @brief Reseeds the %discard_block_engine object with the given seed |
977 | * sequence. |
978 | * @param __q A seed generator function. |
979 | */ |
980 | template<typename _Sseq> |
981 | _If_seed_seq<_Sseq> |
982 | seed(_Sseq& __q) |
983 | { |
984 | _M_b.seed(__q); |
985 | _M_n = 0; |
986 | } |
987 | |
988 | /** |
989 | * @brief Gets a const reference to the underlying generator engine |
990 | * object. |
991 | */ |
992 | const _RandomNumberEngine& |
993 | base() const noexcept |
994 | { return _M_b; } |
995 | |
996 | /** |
997 | * @brief Gets the minimum value in the generated random number range. |
998 | */ |
999 | static constexpr result_type |
1000 | min() |
1001 | { return _RandomNumberEngine::min(); } |
1002 | |
1003 | /** |
1004 | * @brief Gets the maximum value in the generated random number range. |
1005 | */ |
1006 | static constexpr result_type |
1007 | max() |
1008 | { return _RandomNumberEngine::max(); } |
1009 | |
1010 | /** |
1011 | * @brief Discard a sequence of random numbers. |
1012 | */ |
1013 | void |
1014 | discard(unsigned long long __z) |
1015 | { |
1016 | for (; __z != 0ULL; --__z) |
1017 | (*this)(); |
1018 | } |
1019 | |
1020 | /** |
1021 | * @brief Gets the next value in the generated random number sequence. |
1022 | */ |
1023 | result_type |
1024 | operator()(); |
1025 | |
1026 | /** |
1027 | * @brief Compares two %discard_block_engine random number generator |
1028 | * objects of the same type for equality. |
1029 | * |
1030 | * @param __lhs A %discard_block_engine random number generator object. |
1031 | * @param __rhs Another %discard_block_engine random number generator |
1032 | * object. |
1033 | * |
1034 | * @returns true if the infinite sequences of generated values |
1035 | * would be equal, false otherwise. |
1036 | */ |
1037 | friend bool |
1038 | operator==(const discard_block_engine& __lhs, |
1039 | const discard_block_engine& __rhs) |
1040 | { return __lhs._M_b == __rhs._M_b && __lhs._M_n == __rhs._M_n; } |
1041 | |
1042 | /** |
1043 | * @brief Inserts the current state of a %discard_block_engine random |
1044 | * number generator engine @p __x into the output stream |
1045 | * @p __os. |
1046 | * |
1047 | * @param __os An output stream. |
1048 | * @param __x A %discard_block_engine random number generator engine. |
1049 | * |
1050 | * @returns The output stream with the state of @p __x inserted or in |
1051 | * an error state. |
1052 | */ |
1053 | template<typename _RandomNumberEngine1, size_t __p1, size_t __r1, |
1054 | typename _CharT, typename _Traits> |
1055 | friend std::basic_ostream<_CharT, _Traits>& |
1056 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1057 | const std::discard_block_engine<_RandomNumberEngine1, |
1058 | __p1, __r1>& __x); |
1059 | |
1060 | /** |
1061 | * @brief Extracts the current state of a % subtract_with_carry_engine |
1062 | * random number generator engine @p __x from the input stream |
1063 | * @p __is. |
1064 | * |
1065 | * @param __is An input stream. |
1066 | * @param __x A %discard_block_engine random number generator engine. |
1067 | * |
1068 | * @returns The input stream with the state of @p __x extracted or in |
1069 | * an error state. |
1070 | */ |
1071 | template<typename _RandomNumberEngine1, size_t __p1, size_t __r1, |
1072 | typename _CharT, typename _Traits> |
1073 | friend std::basic_istream<_CharT, _Traits>& |
1074 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1075 | std::discard_block_engine<_RandomNumberEngine1, |
1076 | __p1, __r1>& __x); |
1077 | |
1078 | private: |
1079 | _RandomNumberEngine _M_b; |
1080 | size_t _M_n; |
1081 | }; |
1082 | |
1083 | /** |
1084 | * @brief Compares two %discard_block_engine random number generator |
1085 | * objects of the same type for inequality. |
1086 | * |
1087 | * @param __lhs A %discard_block_engine random number generator object. |
1088 | * @param __rhs Another %discard_block_engine random number generator |
1089 | * object. |
1090 | * |
1091 | * @returns true if the infinite sequences of generated values |
1092 | * would be different, false otherwise. |
1093 | */ |
1094 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
1095 | inline bool |
1096 | operator!=(const std::discard_block_engine<_RandomNumberEngine, __p, |
1097 | __r>& __lhs, |
1098 | const std::discard_block_engine<_RandomNumberEngine, __p, |
1099 | __r>& __rhs) |
1100 | { return !(__lhs == __rhs); } |
1101 | |
1102 | |
1103 | /** |
1104 | * Produces random numbers by combining random numbers from some base |
1105 | * engine to produce random numbers with a specified number of bits @p __w. |
1106 | */ |
1107 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
1108 | class independent_bits_engine |
1109 | { |
1110 | static_assert(std::is_unsigned<_UIntType>::value, |
1111 | "result_type must be an unsigned integral type" ); |
1112 | static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits, |
1113 | "template argument substituting __w out of bounds" ); |
1114 | |
1115 | template<typename _Sseq> |
1116 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
1117 | _Sseq, independent_bits_engine, _UIntType>::value>::type; |
1118 | |
1119 | public: |
1120 | /** The type of the generated random value. */ |
1121 | typedef _UIntType result_type; |
1122 | |
1123 | /** |
1124 | * @brief Constructs a default %independent_bits_engine engine. |
1125 | * |
1126 | * The underlying engine is default constructed as well. |
1127 | */ |
1128 | independent_bits_engine() |
1129 | : _M_b() { } |
1130 | |
1131 | /** |
1132 | * @brief Copy constructs a %independent_bits_engine engine. |
1133 | * |
1134 | * Copies an existing base class random number generator. |
1135 | * @param __rng An existing (base class) engine object. |
1136 | */ |
1137 | explicit |
1138 | independent_bits_engine(const _RandomNumberEngine& __rng) |
1139 | : _M_b(__rng) { } |
1140 | |
1141 | /** |
1142 | * @brief Move constructs a %independent_bits_engine engine. |
1143 | * |
1144 | * Copies an existing base class random number generator. |
1145 | * @param __rng An existing (base class) engine object. |
1146 | */ |
1147 | explicit |
1148 | independent_bits_engine(_RandomNumberEngine&& __rng) |
1149 | : _M_b(std::move(__rng)) { } |
1150 | |
1151 | /** |
1152 | * @brief Seed constructs a %independent_bits_engine engine. |
1153 | * |
1154 | * Constructs the underlying generator engine seeded with @p __s. |
1155 | * @param __s A seed value for the base class engine. |
1156 | */ |
1157 | explicit |
1158 | independent_bits_engine(result_type __s) |
1159 | : _M_b(__s) { } |
1160 | |
1161 | /** |
1162 | * @brief Generator construct a %independent_bits_engine engine. |
1163 | * |
1164 | * @param __q A seed sequence. |
1165 | */ |
1166 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
1167 | explicit |
1168 | independent_bits_engine(_Sseq& __q) |
1169 | : _M_b(__q) |
1170 | { } |
1171 | |
1172 | /** |
1173 | * @brief Reseeds the %independent_bits_engine object with the default |
1174 | * seed for the underlying base class generator engine. |
1175 | */ |
1176 | void |
1177 | seed() |
1178 | { _M_b.seed(); } |
1179 | |
1180 | /** |
1181 | * @brief Reseeds the %independent_bits_engine object with the default |
1182 | * seed for the underlying base class generator engine. |
1183 | */ |
1184 | void |
1185 | seed(result_type __s) |
1186 | { _M_b.seed(__s); } |
1187 | |
1188 | /** |
1189 | * @brief Reseeds the %independent_bits_engine object with the given |
1190 | * seed sequence. |
1191 | * @param __q A seed generator function. |
1192 | */ |
1193 | template<typename _Sseq> |
1194 | _If_seed_seq<_Sseq> |
1195 | seed(_Sseq& __q) |
1196 | { _M_b.seed(__q); } |
1197 | |
1198 | /** |
1199 | * @brief Gets a const reference to the underlying generator engine |
1200 | * object. |
1201 | */ |
1202 | const _RandomNumberEngine& |
1203 | base() const noexcept |
1204 | { return _M_b; } |
1205 | |
1206 | /** |
1207 | * @brief Gets the minimum value in the generated random number range. |
1208 | */ |
1209 | static constexpr result_type |
1210 | min() |
1211 | { return 0U; } |
1212 | |
1213 | /** |
1214 | * @brief Gets the maximum value in the generated random number range. |
1215 | */ |
1216 | static constexpr result_type |
1217 | max() |
1218 | { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
1219 | |
1220 | /** |
1221 | * @brief Discard a sequence of random numbers. |
1222 | */ |
1223 | void |
1224 | discard(unsigned long long __z) |
1225 | { |
1226 | for (; __z != 0ULL; --__z) |
1227 | (*this)(); |
1228 | } |
1229 | |
1230 | /** |
1231 | * @brief Gets the next value in the generated random number sequence. |
1232 | */ |
1233 | result_type |
1234 | operator()(); |
1235 | |
1236 | /** |
1237 | * @brief Compares two %independent_bits_engine random number generator |
1238 | * objects of the same type for equality. |
1239 | * |
1240 | * @param __lhs A %independent_bits_engine random number generator |
1241 | * object. |
1242 | * @param __rhs Another %independent_bits_engine random number generator |
1243 | * object. |
1244 | * |
1245 | * @returns true if the infinite sequences of generated values |
1246 | * would be equal, false otherwise. |
1247 | */ |
1248 | friend bool |
1249 | operator==(const independent_bits_engine& __lhs, |
1250 | const independent_bits_engine& __rhs) |
1251 | { return __lhs._M_b == __rhs._M_b; } |
1252 | |
1253 | /** |
1254 | * @brief Extracts the current state of a % subtract_with_carry_engine |
1255 | * random number generator engine @p __x from the input stream |
1256 | * @p __is. |
1257 | * |
1258 | * @param __is An input stream. |
1259 | * @param __x A %independent_bits_engine random number generator |
1260 | * engine. |
1261 | * |
1262 | * @returns The input stream with the state of @p __x extracted or in |
1263 | * an error state. |
1264 | */ |
1265 | template<typename _CharT, typename _Traits> |
1266 | friend std::basic_istream<_CharT, _Traits>& |
1267 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1268 | std::independent_bits_engine<_RandomNumberEngine, |
1269 | __w, _UIntType>& __x) |
1270 | { |
1271 | __is >> __x._M_b; |
1272 | return __is; |
1273 | } |
1274 | |
1275 | private: |
1276 | _RandomNumberEngine _M_b; |
1277 | }; |
1278 | |
1279 | /** |
1280 | * @brief Compares two %independent_bits_engine random number generator |
1281 | * objects of the same type for inequality. |
1282 | * |
1283 | * @param __lhs A %independent_bits_engine random number generator |
1284 | * object. |
1285 | * @param __rhs Another %independent_bits_engine random number generator |
1286 | * object. |
1287 | * |
1288 | * @returns true if the infinite sequences of generated values |
1289 | * would be different, false otherwise. |
1290 | */ |
1291 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
1292 | inline bool |
1293 | operator!=(const std::independent_bits_engine<_RandomNumberEngine, __w, |
1294 | _UIntType>& __lhs, |
1295 | const std::independent_bits_engine<_RandomNumberEngine, __w, |
1296 | _UIntType>& __rhs) |
1297 | { return !(__lhs == __rhs); } |
1298 | |
1299 | /** |
1300 | * @brief Inserts the current state of a %independent_bits_engine random |
1301 | * number generator engine @p __x into the output stream @p __os. |
1302 | * |
1303 | * @param __os An output stream. |
1304 | * @param __x A %independent_bits_engine random number generator engine. |
1305 | * |
1306 | * @returns The output stream with the state of @p __x inserted or in |
1307 | * an error state. |
1308 | */ |
1309 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType, |
1310 | typename _CharT, typename _Traits> |
1311 | std::basic_ostream<_CharT, _Traits>& |
1312 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1313 | const std::independent_bits_engine<_RandomNumberEngine, |
1314 | __w, _UIntType>& __x) |
1315 | { |
1316 | __os << __x.base(); |
1317 | return __os; |
1318 | } |
1319 | |
1320 | |
1321 | /** |
1322 | * @brief Produces random numbers by reordering random numbers from some |
1323 | * base engine. |
1324 | * |
1325 | * The values from the base engine are stored in a sequence of size @p __k |
1326 | * and shuffled by an algorithm that depends on those values. |
1327 | */ |
1328 | template<typename _RandomNumberEngine, size_t __k> |
1329 | class shuffle_order_engine |
1330 | { |
1331 | static_assert(1u <= __k, "template argument substituting " |
1332 | "__k out of bound" ); |
1333 | |
1334 | public: |
1335 | /** The type of the generated random value. */ |
1336 | typedef typename _RandomNumberEngine::result_type result_type; |
1337 | |
1338 | template<typename _Sseq> |
1339 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
1340 | _Sseq, shuffle_order_engine, result_type>::value>::type; |
1341 | |
1342 | static constexpr size_t table_size = __k; |
1343 | |
1344 | /** |
1345 | * @brief Constructs a default %shuffle_order_engine engine. |
1346 | * |
1347 | * The underlying engine is default constructed as well. |
1348 | */ |
1349 | shuffle_order_engine() |
1350 | : _M_b() |
1351 | { _M_initialize(); } |
1352 | |
1353 | /** |
1354 | * @brief Copy constructs a %shuffle_order_engine engine. |
1355 | * |
1356 | * Copies an existing base class random number generator. |
1357 | * @param __rng An existing (base class) engine object. |
1358 | */ |
1359 | explicit |
1360 | shuffle_order_engine(const _RandomNumberEngine& __rng) |
1361 | : _M_b(__rng) |
1362 | { _M_initialize(); } |
1363 | |
1364 | /** |
1365 | * @brief Move constructs a %shuffle_order_engine engine. |
1366 | * |
1367 | * Copies an existing base class random number generator. |
1368 | * @param __rng An existing (base class) engine object. |
1369 | */ |
1370 | explicit |
1371 | shuffle_order_engine(_RandomNumberEngine&& __rng) |
1372 | : _M_b(std::move(__rng)) |
1373 | { _M_initialize(); } |
1374 | |
1375 | /** |
1376 | * @brief Seed constructs a %shuffle_order_engine engine. |
1377 | * |
1378 | * Constructs the underlying generator engine seeded with @p __s. |
1379 | * @param __s A seed value for the base class engine. |
1380 | */ |
1381 | explicit |
1382 | shuffle_order_engine(result_type __s) |
1383 | : _M_b(__s) |
1384 | { _M_initialize(); } |
1385 | |
1386 | /** |
1387 | * @brief Generator construct a %shuffle_order_engine engine. |
1388 | * |
1389 | * @param __q A seed sequence. |
1390 | */ |
1391 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
1392 | explicit |
1393 | shuffle_order_engine(_Sseq& __q) |
1394 | : _M_b(__q) |
1395 | { _M_initialize(); } |
1396 | |
1397 | /** |
1398 | * @brief Reseeds the %shuffle_order_engine object with the default seed |
1399 | for the underlying base class generator engine. |
1400 | */ |
1401 | void |
1402 | seed() |
1403 | { |
1404 | _M_b.seed(); |
1405 | _M_initialize(); |
1406 | } |
1407 | |
1408 | /** |
1409 | * @brief Reseeds the %shuffle_order_engine object with the default seed |
1410 | * for the underlying base class generator engine. |
1411 | */ |
1412 | void |
1413 | seed(result_type __s) |
1414 | { |
1415 | _M_b.seed(__s); |
1416 | _M_initialize(); |
1417 | } |
1418 | |
1419 | /** |
1420 | * @brief Reseeds the %shuffle_order_engine object with the given seed |
1421 | * sequence. |
1422 | * @param __q A seed generator function. |
1423 | */ |
1424 | template<typename _Sseq> |
1425 | _If_seed_seq<_Sseq> |
1426 | seed(_Sseq& __q) |
1427 | { |
1428 | _M_b.seed(__q); |
1429 | _M_initialize(); |
1430 | } |
1431 | |
1432 | /** |
1433 | * Gets a const reference to the underlying generator engine object. |
1434 | */ |
1435 | const _RandomNumberEngine& |
1436 | base() const noexcept |
1437 | { return _M_b; } |
1438 | |
1439 | /** |
1440 | * Gets the minimum value in the generated random number range. |
1441 | */ |
1442 | static constexpr result_type |
1443 | min() |
1444 | { return _RandomNumberEngine::min(); } |
1445 | |
1446 | /** |
1447 | * Gets the maximum value in the generated random number range. |
1448 | */ |
1449 | static constexpr result_type |
1450 | max() |
1451 | { return _RandomNumberEngine::max(); } |
1452 | |
1453 | /** |
1454 | * Discard a sequence of random numbers. |
1455 | */ |
1456 | void |
1457 | discard(unsigned long long __z) |
1458 | { |
1459 | for (; __z != 0ULL; --__z) |
1460 | (*this)(); |
1461 | } |
1462 | |
1463 | /** |
1464 | * Gets the next value in the generated random number sequence. |
1465 | */ |
1466 | result_type |
1467 | operator()(); |
1468 | |
1469 | /** |
1470 | * Compares two %shuffle_order_engine random number generator objects |
1471 | * of the same type for equality. |
1472 | * |
1473 | * @param __lhs A %shuffle_order_engine random number generator object. |
1474 | * @param __rhs Another %shuffle_order_engine random number generator |
1475 | * object. |
1476 | * |
1477 | * @returns true if the infinite sequences of generated values |
1478 | * would be equal, false otherwise. |
1479 | */ |
1480 | friend bool |
1481 | operator==(const shuffle_order_engine& __lhs, |
1482 | const shuffle_order_engine& __rhs) |
1483 | { return (__lhs._M_b == __rhs._M_b |
1484 | && std::equal(__lhs._M_v, __lhs._M_v + __k, __rhs._M_v) |
1485 | && __lhs._M_y == __rhs._M_y); } |
1486 | |
1487 | /** |
1488 | * @brief Inserts the current state of a %shuffle_order_engine random |
1489 | * number generator engine @p __x into the output stream |
1490 | @p __os. |
1491 | * |
1492 | * @param __os An output stream. |
1493 | * @param __x A %shuffle_order_engine random number generator engine. |
1494 | * |
1495 | * @returns The output stream with the state of @p __x inserted or in |
1496 | * an error state. |
1497 | */ |
1498 | template<typename _RandomNumberEngine1, size_t __k1, |
1499 | typename _CharT, typename _Traits> |
1500 | friend std::basic_ostream<_CharT, _Traits>& |
1501 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1502 | const std::shuffle_order_engine<_RandomNumberEngine1, |
1503 | __k1>& __x); |
1504 | |
1505 | /** |
1506 | * @brief Extracts the current state of a % subtract_with_carry_engine |
1507 | * random number generator engine @p __x from the input stream |
1508 | * @p __is. |
1509 | * |
1510 | * @param __is An input stream. |
1511 | * @param __x A %shuffle_order_engine random number generator engine. |
1512 | * |
1513 | * @returns The input stream with the state of @p __x extracted or in |
1514 | * an error state. |
1515 | */ |
1516 | template<typename _RandomNumberEngine1, size_t __k1, |
1517 | typename _CharT, typename _Traits> |
1518 | friend std::basic_istream<_CharT, _Traits>& |
1519 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1520 | std::shuffle_order_engine<_RandomNumberEngine1, __k1>& __x); |
1521 | |
1522 | private: |
1523 | void _M_initialize() |
1524 | { |
1525 | for (size_t __i = 0; __i < __k; ++__i) |
1526 | _M_v[__i] = _M_b(); |
1527 | _M_y = _M_b(); |
1528 | } |
1529 | |
1530 | _RandomNumberEngine _M_b; |
1531 | result_type _M_v[__k]; |
1532 | result_type _M_y; |
1533 | }; |
1534 | |
1535 | /** |
1536 | * Compares two %shuffle_order_engine random number generator objects |
1537 | * of the same type for inequality. |
1538 | * |
1539 | * @param __lhs A %shuffle_order_engine random number generator object. |
1540 | * @param __rhs Another %shuffle_order_engine random number generator |
1541 | * object. |
1542 | * |
1543 | * @returns true if the infinite sequences of generated values |
1544 | * would be different, false otherwise. |
1545 | */ |
1546 | template<typename _RandomNumberEngine, size_t __k> |
1547 | inline bool |
1548 | operator!=(const std::shuffle_order_engine<_RandomNumberEngine, |
1549 | __k>& __lhs, |
1550 | const std::shuffle_order_engine<_RandomNumberEngine, |
1551 | __k>& __rhs) |
1552 | { return !(__lhs == __rhs); } |
1553 | |
1554 | |
1555 | /** |
1556 | * The classic Minimum Standard rand0 of Lewis, Goodman, and Miller. |
1557 | */ |
1558 | typedef linear_congruential_engine<uint_fast32_t, 16807UL, 0UL, 2147483647UL> |
1559 | minstd_rand0; |
1560 | |
1561 | /** |
1562 | * An alternative LCR (Lehmer Generator function). |
1563 | */ |
1564 | typedef linear_congruential_engine<uint_fast32_t, 48271UL, 0UL, 2147483647UL> |
1565 | minstd_rand; |
1566 | |
1567 | /** |
1568 | * The classic Mersenne Twister. |
1569 | * |
1570 | * Reference: |
1571 | * M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-Dimensionally |
1572 | * Equidistributed Uniform Pseudo-Random Number Generator, ACM Transactions |
1573 | * on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30. |
1574 | */ |
1575 | typedef mersenne_twister_engine< |
1576 | uint_fast32_t, |
1577 | 32, 624, 397, 31, |
1578 | 0x9908b0dfUL, 11, |
1579 | 0xffffffffUL, 7, |
1580 | 0x9d2c5680UL, 15, |
1581 | 0xefc60000UL, 18, 1812433253UL> mt19937; |
1582 | |
1583 | /** |
1584 | * An alternative Mersenne Twister. |
1585 | */ |
1586 | typedef mersenne_twister_engine< |
1587 | uint_fast64_t, |
1588 | 64, 312, 156, 31, |
1589 | 0xb5026f5aa96619e9ULL, 29, |
1590 | 0x5555555555555555ULL, 17, |
1591 | 0x71d67fffeda60000ULL, 37, |
1592 | 0xfff7eee000000000ULL, 43, |
1593 | 6364136223846793005ULL> mt19937_64; |
1594 | |
1595 | typedef subtract_with_carry_engine<uint_fast32_t, 24, 10, 24> |
1596 | ranlux24_base; |
1597 | |
1598 | typedef subtract_with_carry_engine<uint_fast64_t, 48, 5, 12> |
1599 | ranlux48_base; |
1600 | |
1601 | typedef discard_block_engine<ranlux24_base, 223, 23> ranlux24; |
1602 | |
1603 | typedef discard_block_engine<ranlux48_base, 389, 11> ranlux48; |
1604 | |
1605 | typedef shuffle_order_engine<minstd_rand0, 256> knuth_b; |
1606 | |
1607 | typedef minstd_rand0 default_random_engine; |
1608 | |
1609 | /** |
1610 | * A standard interface to a platform-specific non-deterministic |
1611 | * random number generator (if any are available). |
1612 | */ |
1613 | class random_device |
1614 | { |
1615 | public: |
1616 | /** The type of the generated random value. */ |
1617 | typedef unsigned int result_type; |
1618 | |
1619 | // constructors, destructors and member functions |
1620 | |
1621 | random_device() { _M_init(token: "default" ); } |
1622 | |
1623 | explicit |
1624 | random_device(const std::string& __token) { _M_init(__token); } |
1625 | |
1626 | #if defined _GLIBCXX_USE_DEV_RANDOM |
1627 | ~random_device() |
1628 | { _M_fini(); } |
1629 | #endif |
1630 | |
1631 | static constexpr result_type |
1632 | min() |
1633 | { return std::numeric_limits<result_type>::min(); } |
1634 | |
1635 | static constexpr result_type |
1636 | max() |
1637 | { return std::numeric_limits<result_type>::max(); } |
1638 | |
1639 | double |
1640 | entropy() const noexcept |
1641 | { |
1642 | #ifdef _GLIBCXX_USE_DEV_RANDOM |
1643 | return this->_M_getentropy(); |
1644 | #else |
1645 | return 0.0; |
1646 | #endif |
1647 | } |
1648 | |
1649 | result_type |
1650 | operator()() |
1651 | { return this->_M_getval(); } |
1652 | |
1653 | // No copy functions. |
1654 | random_device(const random_device&) = delete; |
1655 | void operator=(const random_device&) = delete; |
1656 | |
1657 | private: |
1658 | |
1659 | void _M_init(const std::string& __token); |
1660 | void _M_init_pretr1(const std::string& __token); |
1661 | void _M_fini(); |
1662 | |
1663 | result_type _M_getval(); |
1664 | result_type _M_getval_pretr1(); |
1665 | double _M_getentropy() const noexcept; |
1666 | |
1667 | void _M_init(const char*, size_t); // not exported from the shared library |
1668 | |
1669 | __extension__ union |
1670 | { |
1671 | struct |
1672 | { |
1673 | void* _M_file; |
1674 | result_type (*_M_func)(void*); |
1675 | int _M_fd; |
1676 | }; |
1677 | mt19937 _M_mt; |
1678 | }; |
1679 | }; |
1680 | |
1681 | /// @} group random_generators |
1682 | |
1683 | /** |
1684 | * @addtogroup random_distributions Random Number Distributions |
1685 | * @ingroup random |
1686 | * @{ |
1687 | */ |
1688 | |
1689 | /** |
1690 | * @addtogroup random_distributions_uniform Uniform Distributions |
1691 | * @ingroup random_distributions |
1692 | * @{ |
1693 | */ |
1694 | |
1695 | // std::uniform_int_distribution is defined in <bits/uniform_int_dist.h> |
1696 | |
1697 | /** |
1698 | * @brief Return true if two uniform integer distributions have |
1699 | * different parameters. |
1700 | */ |
1701 | template<typename _IntType> |
1702 | inline bool |
1703 | operator!=(const std::uniform_int_distribution<_IntType>& __d1, |
1704 | const std::uniform_int_distribution<_IntType>& __d2) |
1705 | { return !(__d1 == __d2); } |
1706 | |
1707 | /** |
1708 | * @brief Inserts a %uniform_int_distribution random number |
1709 | * distribution @p __x into the output stream @p os. |
1710 | * |
1711 | * @param __os An output stream. |
1712 | * @param __x A %uniform_int_distribution random number distribution. |
1713 | * |
1714 | * @returns The output stream with the state of @p __x inserted or in |
1715 | * an error state. |
1716 | */ |
1717 | template<typename _IntType, typename _CharT, typename _Traits> |
1718 | std::basic_ostream<_CharT, _Traits>& |
1719 | operator<<(std::basic_ostream<_CharT, _Traits>&, |
1720 | const std::uniform_int_distribution<_IntType>&); |
1721 | |
1722 | /** |
1723 | * @brief Extracts a %uniform_int_distribution random number distribution |
1724 | * @p __x from the input stream @p __is. |
1725 | * |
1726 | * @param __is An input stream. |
1727 | * @param __x A %uniform_int_distribution random number generator engine. |
1728 | * |
1729 | * @returns The input stream with @p __x extracted or in an error state. |
1730 | */ |
1731 | template<typename _IntType, typename _CharT, typename _Traits> |
1732 | std::basic_istream<_CharT, _Traits>& |
1733 | operator>>(std::basic_istream<_CharT, _Traits>&, |
1734 | std::uniform_int_distribution<_IntType>&); |
1735 | |
1736 | |
1737 | /** |
1738 | * @brief Uniform continuous distribution for random numbers. |
1739 | * |
1740 | * A continuous random distribution on the range [min, max) with equal |
1741 | * probability throughout the range. The URNG should be real-valued and |
1742 | * deliver number in the range [0, 1). |
1743 | */ |
1744 | template<typename _RealType = double> |
1745 | class uniform_real_distribution |
1746 | { |
1747 | static_assert(std::is_floating_point<_RealType>::value, |
1748 | "result_type must be a floating point type" ); |
1749 | |
1750 | public: |
1751 | /** The type of the range of the distribution. */ |
1752 | typedef _RealType result_type; |
1753 | |
1754 | /** Parameter type. */ |
1755 | struct param_type |
1756 | { |
1757 | typedef uniform_real_distribution<_RealType> distribution_type; |
1758 | |
1759 | param_type() : param_type(0) { } |
1760 | |
1761 | explicit |
1762 | param_type(_RealType __a, _RealType __b = _RealType(1)) |
1763 | : _M_a(__a), _M_b(__b) |
1764 | { |
1765 | __glibcxx_assert(_M_a <= _M_b); |
1766 | } |
1767 | |
1768 | result_type |
1769 | a() const |
1770 | { return _M_a; } |
1771 | |
1772 | result_type |
1773 | b() const |
1774 | { return _M_b; } |
1775 | |
1776 | friend bool |
1777 | operator==(const param_type& __p1, const param_type& __p2) |
1778 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
1779 | |
1780 | friend bool |
1781 | operator!=(const param_type& __p1, const param_type& __p2) |
1782 | { return !(__p1 == __p2); } |
1783 | |
1784 | private: |
1785 | _RealType _M_a; |
1786 | _RealType _M_b; |
1787 | }; |
1788 | |
1789 | public: |
1790 | /** |
1791 | * @brief Constructs a uniform_real_distribution object. |
1792 | * |
1793 | * The lower bound is set to 0.0 and the upper bound to 1.0 |
1794 | */ |
1795 | uniform_real_distribution() : uniform_real_distribution(0.0) { } |
1796 | |
1797 | /** |
1798 | * @brief Constructs a uniform_real_distribution object. |
1799 | * |
1800 | * @param __a [IN] The lower bound of the distribution. |
1801 | * @param __b [IN] The upper bound of the distribution. |
1802 | */ |
1803 | explicit |
1804 | uniform_real_distribution(_RealType __a, _RealType __b = _RealType(1)) |
1805 | : _M_param(__a, __b) |
1806 | { } |
1807 | |
1808 | explicit |
1809 | uniform_real_distribution(const param_type& __p) |
1810 | : _M_param(__p) |
1811 | { } |
1812 | |
1813 | /** |
1814 | * @brief Resets the distribution state. |
1815 | * |
1816 | * Does nothing for the uniform real distribution. |
1817 | */ |
1818 | void |
1819 | reset() { } |
1820 | |
1821 | result_type |
1822 | a() const |
1823 | { return _M_param.a(); } |
1824 | |
1825 | result_type |
1826 | b() const |
1827 | { return _M_param.b(); } |
1828 | |
1829 | /** |
1830 | * @brief Returns the parameter set of the distribution. |
1831 | */ |
1832 | param_type |
1833 | param() const |
1834 | { return _M_param; } |
1835 | |
1836 | /** |
1837 | * @brief Sets the parameter set of the distribution. |
1838 | * @param __param The new parameter set of the distribution. |
1839 | */ |
1840 | void |
1841 | param(const param_type& __param) |
1842 | { _M_param = __param; } |
1843 | |
1844 | /** |
1845 | * @brief Returns the inclusive lower bound of the distribution range. |
1846 | */ |
1847 | result_type |
1848 | min() const |
1849 | { return this->a(); } |
1850 | |
1851 | /** |
1852 | * @brief Returns the inclusive upper bound of the distribution range. |
1853 | */ |
1854 | result_type |
1855 | max() const |
1856 | { return this->b(); } |
1857 | |
1858 | /** |
1859 | * @brief Generating functions. |
1860 | */ |
1861 | template<typename _UniformRandomNumberGenerator> |
1862 | result_type |
1863 | operator()(_UniformRandomNumberGenerator& __urng) |
1864 | { return this->operator()(__urng, _M_param); } |
1865 | |
1866 | template<typename _UniformRandomNumberGenerator> |
1867 | result_type |
1868 | operator()(_UniformRandomNumberGenerator& __urng, |
1869 | const param_type& __p) |
1870 | { |
1871 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
1872 | __aurng(__urng); |
1873 | return (__aurng() * (__p.b() - __p.a())) + __p.a(); |
1874 | } |
1875 | |
1876 | template<typename _ForwardIterator, |
1877 | typename _UniformRandomNumberGenerator> |
1878 | void |
1879 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
1880 | _UniformRandomNumberGenerator& __urng) |
1881 | { this->__generate(__f, __t, __urng, _M_param); } |
1882 | |
1883 | template<typename _ForwardIterator, |
1884 | typename _UniformRandomNumberGenerator> |
1885 | void |
1886 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
1887 | _UniformRandomNumberGenerator& __urng, |
1888 | const param_type& __p) |
1889 | { this->__generate_impl(__f, __t, __urng, __p); } |
1890 | |
1891 | template<typename _UniformRandomNumberGenerator> |
1892 | void |
1893 | __generate(result_type* __f, result_type* __t, |
1894 | _UniformRandomNumberGenerator& __urng, |
1895 | const param_type& __p) |
1896 | { this->__generate_impl(__f, __t, __urng, __p); } |
1897 | |
1898 | /** |
1899 | * @brief Return true if two uniform real distributions have |
1900 | * the same parameters. |
1901 | */ |
1902 | friend bool |
1903 | operator==(const uniform_real_distribution& __d1, |
1904 | const uniform_real_distribution& __d2) |
1905 | { return __d1._M_param == __d2._M_param; } |
1906 | |
1907 | private: |
1908 | template<typename _ForwardIterator, |
1909 | typename _UniformRandomNumberGenerator> |
1910 | void |
1911 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1912 | _UniformRandomNumberGenerator& __urng, |
1913 | const param_type& __p); |
1914 | |
1915 | param_type _M_param; |
1916 | }; |
1917 | |
1918 | /** |
1919 | * @brief Return true if two uniform real distributions have |
1920 | * different parameters. |
1921 | */ |
1922 | template<typename _IntType> |
1923 | inline bool |
1924 | operator!=(const std::uniform_real_distribution<_IntType>& __d1, |
1925 | const std::uniform_real_distribution<_IntType>& __d2) |
1926 | { return !(__d1 == __d2); } |
1927 | |
1928 | /** |
1929 | * @brief Inserts a %uniform_real_distribution random number |
1930 | * distribution @p __x into the output stream @p __os. |
1931 | * |
1932 | * @param __os An output stream. |
1933 | * @param __x A %uniform_real_distribution random number distribution. |
1934 | * |
1935 | * @returns The output stream with the state of @p __x inserted or in |
1936 | * an error state. |
1937 | */ |
1938 | template<typename _RealType, typename _CharT, typename _Traits> |
1939 | std::basic_ostream<_CharT, _Traits>& |
1940 | operator<<(std::basic_ostream<_CharT, _Traits>&, |
1941 | const std::uniform_real_distribution<_RealType>&); |
1942 | |
1943 | /** |
1944 | * @brief Extracts a %uniform_real_distribution random number distribution |
1945 | * @p __x from the input stream @p __is. |
1946 | * |
1947 | * @param __is An input stream. |
1948 | * @param __x A %uniform_real_distribution random number generator engine. |
1949 | * |
1950 | * @returns The input stream with @p __x extracted or in an error state. |
1951 | */ |
1952 | template<typename _RealType, typename _CharT, typename _Traits> |
1953 | std::basic_istream<_CharT, _Traits>& |
1954 | operator>>(std::basic_istream<_CharT, _Traits>&, |
1955 | std::uniform_real_distribution<_RealType>&); |
1956 | |
1957 | /// @} group random_distributions_uniform |
1958 | |
1959 | /** |
1960 | * @addtogroup random_distributions_normal Normal Distributions |
1961 | * @ingroup random_distributions |
1962 | * @{ |
1963 | */ |
1964 | |
1965 | /** |
1966 | * @brief A normal continuous distribution for random numbers. |
1967 | * |
1968 | * The formula for the normal probability density function is |
1969 | * @f[ |
1970 | * p(x|\mu,\sigma) = \frac{1}{\sigma \sqrt{2 \pi}} |
1971 | * e^{- \frac{{x - \mu}^ {2}}{2 \sigma ^ {2}} } |
1972 | * @f] |
1973 | */ |
1974 | template<typename _RealType = double> |
1975 | class normal_distribution |
1976 | { |
1977 | static_assert(std::is_floating_point<_RealType>::value, |
1978 | "result_type must be a floating point type" ); |
1979 | |
1980 | public: |
1981 | /** The type of the range of the distribution. */ |
1982 | typedef _RealType result_type; |
1983 | |
1984 | /** Parameter type. */ |
1985 | struct param_type |
1986 | { |
1987 | typedef normal_distribution<_RealType> distribution_type; |
1988 | |
1989 | param_type() : param_type(0.0) { } |
1990 | |
1991 | explicit |
1992 | param_type(_RealType __mean, _RealType __stddev = _RealType(1)) |
1993 | : _M_mean(__mean), _M_stddev(__stddev) |
1994 | { |
1995 | __glibcxx_assert(_M_stddev > _RealType(0)); |
1996 | } |
1997 | |
1998 | _RealType |
1999 | mean() const |
2000 | { return _M_mean; } |
2001 | |
2002 | _RealType |
2003 | stddev() const |
2004 | { return _M_stddev; } |
2005 | |
2006 | friend bool |
2007 | operator==(const param_type& __p1, const param_type& __p2) |
2008 | { return (__p1._M_mean == __p2._M_mean |
2009 | && __p1._M_stddev == __p2._M_stddev); } |
2010 | |
2011 | friend bool |
2012 | operator!=(const param_type& __p1, const param_type& __p2) |
2013 | { return !(__p1 == __p2); } |
2014 | |
2015 | private: |
2016 | _RealType _M_mean; |
2017 | _RealType _M_stddev; |
2018 | }; |
2019 | |
2020 | public: |
2021 | normal_distribution() : normal_distribution(0.0) { } |
2022 | |
2023 | /** |
2024 | * Constructs a normal distribution with parameters @f$mean@f$ and |
2025 | * standard deviation. |
2026 | */ |
2027 | explicit |
2028 | normal_distribution(result_type __mean, |
2029 | result_type __stddev = result_type(1)) |
2030 | : _M_param(__mean, __stddev) |
2031 | { } |
2032 | |
2033 | explicit |
2034 | normal_distribution(const param_type& __p) |
2035 | : _M_param(__p) |
2036 | { } |
2037 | |
2038 | /** |
2039 | * @brief Resets the distribution state. |
2040 | */ |
2041 | void |
2042 | reset() |
2043 | { _M_saved_available = false; } |
2044 | |
2045 | /** |
2046 | * @brief Returns the mean of the distribution. |
2047 | */ |
2048 | _RealType |
2049 | mean() const |
2050 | { return _M_param.mean(); } |
2051 | |
2052 | /** |
2053 | * @brief Returns the standard deviation of the distribution. |
2054 | */ |
2055 | _RealType |
2056 | stddev() const |
2057 | { return _M_param.stddev(); } |
2058 | |
2059 | /** |
2060 | * @brief Returns the parameter set of the distribution. |
2061 | */ |
2062 | param_type |
2063 | param() const |
2064 | { return _M_param; } |
2065 | |
2066 | /** |
2067 | * @brief Sets the parameter set of the distribution. |
2068 | * @param __param The new parameter set of the distribution. |
2069 | */ |
2070 | void |
2071 | param(const param_type& __param) |
2072 | { _M_param = __param; } |
2073 | |
2074 | /** |
2075 | * @brief Returns the greatest lower bound value of the distribution. |
2076 | */ |
2077 | result_type |
2078 | min() const |
2079 | { return std::numeric_limits<result_type>::lowest(); } |
2080 | |
2081 | /** |
2082 | * @brief Returns the least upper bound value of the distribution. |
2083 | */ |
2084 | result_type |
2085 | max() const |
2086 | { return std::numeric_limits<result_type>::max(); } |
2087 | |
2088 | /** |
2089 | * @brief Generating functions. |
2090 | */ |
2091 | template<typename _UniformRandomNumberGenerator> |
2092 | result_type |
2093 | operator()(_UniformRandomNumberGenerator& __urng) |
2094 | { return this->operator()(__urng, _M_param); } |
2095 | |
2096 | template<typename _UniformRandomNumberGenerator> |
2097 | result_type |
2098 | operator()(_UniformRandomNumberGenerator& __urng, |
2099 | const param_type& __p); |
2100 | |
2101 | template<typename _ForwardIterator, |
2102 | typename _UniformRandomNumberGenerator> |
2103 | void |
2104 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2105 | _UniformRandomNumberGenerator& __urng) |
2106 | { this->__generate(__f, __t, __urng, _M_param); } |
2107 | |
2108 | template<typename _ForwardIterator, |
2109 | typename _UniformRandomNumberGenerator> |
2110 | void |
2111 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2112 | _UniformRandomNumberGenerator& __urng, |
2113 | const param_type& __p) |
2114 | { this->__generate_impl(__f, __t, __urng, __p); } |
2115 | |
2116 | template<typename _UniformRandomNumberGenerator> |
2117 | void |
2118 | __generate(result_type* __f, result_type* __t, |
2119 | _UniformRandomNumberGenerator& __urng, |
2120 | const param_type& __p) |
2121 | { this->__generate_impl(__f, __t, __urng, __p); } |
2122 | |
2123 | /** |
2124 | * @brief Return true if two normal distributions have |
2125 | * the same parameters and the sequences that would |
2126 | * be generated are equal. |
2127 | */ |
2128 | template<typename _RealType1> |
2129 | friend bool |
2130 | operator==(const std::normal_distribution<_RealType1>& __d1, |
2131 | const std::normal_distribution<_RealType1>& __d2); |
2132 | |
2133 | /** |
2134 | * @brief Inserts a %normal_distribution random number distribution |
2135 | * @p __x into the output stream @p __os. |
2136 | * |
2137 | * @param __os An output stream. |
2138 | * @param __x A %normal_distribution random number distribution. |
2139 | * |
2140 | * @returns The output stream with the state of @p __x inserted or in |
2141 | * an error state. |
2142 | */ |
2143 | template<typename _RealType1, typename _CharT, typename _Traits> |
2144 | friend std::basic_ostream<_CharT, _Traits>& |
2145 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2146 | const std::normal_distribution<_RealType1>& __x); |
2147 | |
2148 | /** |
2149 | * @brief Extracts a %normal_distribution random number distribution |
2150 | * @p __x from the input stream @p __is. |
2151 | * |
2152 | * @param __is An input stream. |
2153 | * @param __x A %normal_distribution random number generator engine. |
2154 | * |
2155 | * @returns The input stream with @p __x extracted or in an error |
2156 | * state. |
2157 | */ |
2158 | template<typename _RealType1, typename _CharT, typename _Traits> |
2159 | friend std::basic_istream<_CharT, _Traits>& |
2160 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2161 | std::normal_distribution<_RealType1>& __x); |
2162 | |
2163 | private: |
2164 | template<typename _ForwardIterator, |
2165 | typename _UniformRandomNumberGenerator> |
2166 | void |
2167 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2168 | _UniformRandomNumberGenerator& __urng, |
2169 | const param_type& __p); |
2170 | |
2171 | param_type _M_param; |
2172 | result_type _M_saved = 0; |
2173 | bool _M_saved_available = false; |
2174 | }; |
2175 | |
2176 | /** |
2177 | * @brief Return true if two normal distributions are different. |
2178 | */ |
2179 | template<typename _RealType> |
2180 | inline bool |
2181 | operator!=(const std::normal_distribution<_RealType>& __d1, |
2182 | const std::normal_distribution<_RealType>& __d2) |
2183 | { return !(__d1 == __d2); } |
2184 | |
2185 | |
2186 | /** |
2187 | * @brief A lognormal_distribution random number distribution. |
2188 | * |
2189 | * The formula for the normal probability mass function is |
2190 | * @f[ |
2191 | * p(x|m,s) = \frac{1}{sx\sqrt{2\pi}} |
2192 | * \exp{-\frac{(\ln{x} - m)^2}{2s^2}} |
2193 | * @f] |
2194 | */ |
2195 | template<typename _RealType = double> |
2196 | class lognormal_distribution |
2197 | { |
2198 | static_assert(std::is_floating_point<_RealType>::value, |
2199 | "result_type must be a floating point type" ); |
2200 | |
2201 | public: |
2202 | /** The type of the range of the distribution. */ |
2203 | typedef _RealType result_type; |
2204 | |
2205 | /** Parameter type. */ |
2206 | struct param_type |
2207 | { |
2208 | typedef lognormal_distribution<_RealType> distribution_type; |
2209 | |
2210 | param_type() : param_type(0.0) { } |
2211 | |
2212 | explicit |
2213 | param_type(_RealType __m, _RealType __s = _RealType(1)) |
2214 | : _M_m(__m), _M_s(__s) |
2215 | { } |
2216 | |
2217 | _RealType |
2218 | m() const |
2219 | { return _M_m; } |
2220 | |
2221 | _RealType |
2222 | s() const |
2223 | { return _M_s; } |
2224 | |
2225 | friend bool |
2226 | operator==(const param_type& __p1, const param_type& __p2) |
2227 | { return __p1._M_m == __p2._M_m && __p1._M_s == __p2._M_s; } |
2228 | |
2229 | friend bool |
2230 | operator!=(const param_type& __p1, const param_type& __p2) |
2231 | { return !(__p1 == __p2); } |
2232 | |
2233 | private: |
2234 | _RealType _M_m; |
2235 | _RealType _M_s; |
2236 | }; |
2237 | |
2238 | lognormal_distribution() : lognormal_distribution(0.0) { } |
2239 | |
2240 | explicit |
2241 | lognormal_distribution(_RealType __m, _RealType __s = _RealType(1)) |
2242 | : _M_param(__m, __s), _M_nd() |
2243 | { } |
2244 | |
2245 | explicit |
2246 | lognormal_distribution(const param_type& __p) |
2247 | : _M_param(__p), _M_nd() |
2248 | { } |
2249 | |
2250 | /** |
2251 | * Resets the distribution state. |
2252 | */ |
2253 | void |
2254 | reset() |
2255 | { _M_nd.reset(); } |
2256 | |
2257 | /** |
2258 | * |
2259 | */ |
2260 | _RealType |
2261 | m() const |
2262 | { return _M_param.m(); } |
2263 | |
2264 | _RealType |
2265 | s() const |
2266 | { return _M_param.s(); } |
2267 | |
2268 | /** |
2269 | * @brief Returns the parameter set of the distribution. |
2270 | */ |
2271 | param_type |
2272 | param() const |
2273 | { return _M_param; } |
2274 | |
2275 | /** |
2276 | * @brief Sets the parameter set of the distribution. |
2277 | * @param __param The new parameter set of the distribution. |
2278 | */ |
2279 | void |
2280 | param(const param_type& __param) |
2281 | { _M_param = __param; } |
2282 | |
2283 | /** |
2284 | * @brief Returns the greatest lower bound value of the distribution. |
2285 | */ |
2286 | result_type |
2287 | min() const |
2288 | { return result_type(0); } |
2289 | |
2290 | /** |
2291 | * @brief Returns the least upper bound value of the distribution. |
2292 | */ |
2293 | result_type |
2294 | max() const |
2295 | { return std::numeric_limits<result_type>::max(); } |
2296 | |
2297 | /** |
2298 | * @brief Generating functions. |
2299 | */ |
2300 | template<typename _UniformRandomNumberGenerator> |
2301 | result_type |
2302 | operator()(_UniformRandomNumberGenerator& __urng) |
2303 | { return this->operator()(__urng, _M_param); } |
2304 | |
2305 | template<typename _UniformRandomNumberGenerator> |
2306 | result_type |
2307 | operator()(_UniformRandomNumberGenerator& __urng, |
2308 | const param_type& __p) |
2309 | { return std::exp(__p.s() * _M_nd(__urng) + __p.m()); } |
2310 | |
2311 | template<typename _ForwardIterator, |
2312 | typename _UniformRandomNumberGenerator> |
2313 | void |
2314 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2315 | _UniformRandomNumberGenerator& __urng) |
2316 | { this->__generate(__f, __t, __urng, _M_param); } |
2317 | |
2318 | template<typename _ForwardIterator, |
2319 | typename _UniformRandomNumberGenerator> |
2320 | void |
2321 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2322 | _UniformRandomNumberGenerator& __urng, |
2323 | const param_type& __p) |
2324 | { this->__generate_impl(__f, __t, __urng, __p); } |
2325 | |
2326 | template<typename _UniformRandomNumberGenerator> |
2327 | void |
2328 | __generate(result_type* __f, result_type* __t, |
2329 | _UniformRandomNumberGenerator& __urng, |
2330 | const param_type& __p) |
2331 | { this->__generate_impl(__f, __t, __urng, __p); } |
2332 | |
2333 | /** |
2334 | * @brief Return true if two lognormal distributions have |
2335 | * the same parameters and the sequences that would |
2336 | * be generated are equal. |
2337 | */ |
2338 | friend bool |
2339 | operator==(const lognormal_distribution& __d1, |
2340 | const lognormal_distribution& __d2) |
2341 | { return (__d1._M_param == __d2._M_param |
2342 | && __d1._M_nd == __d2._M_nd); } |
2343 | |
2344 | /** |
2345 | * @brief Inserts a %lognormal_distribution random number distribution |
2346 | * @p __x into the output stream @p __os. |
2347 | * |
2348 | * @param __os An output stream. |
2349 | * @param __x A %lognormal_distribution random number distribution. |
2350 | * |
2351 | * @returns The output stream with the state of @p __x inserted or in |
2352 | * an error state. |
2353 | */ |
2354 | template<typename _RealType1, typename _CharT, typename _Traits> |
2355 | friend std::basic_ostream<_CharT, _Traits>& |
2356 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2357 | const std::lognormal_distribution<_RealType1>& __x); |
2358 | |
2359 | /** |
2360 | * @brief Extracts a %lognormal_distribution random number distribution |
2361 | * @p __x from the input stream @p __is. |
2362 | * |
2363 | * @param __is An input stream. |
2364 | * @param __x A %lognormal_distribution random number |
2365 | * generator engine. |
2366 | * |
2367 | * @returns The input stream with @p __x extracted or in an error state. |
2368 | */ |
2369 | template<typename _RealType1, typename _CharT, typename _Traits> |
2370 | friend std::basic_istream<_CharT, _Traits>& |
2371 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2372 | std::lognormal_distribution<_RealType1>& __x); |
2373 | |
2374 | private: |
2375 | template<typename _ForwardIterator, |
2376 | typename _UniformRandomNumberGenerator> |
2377 | void |
2378 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2379 | _UniformRandomNumberGenerator& __urng, |
2380 | const param_type& __p); |
2381 | |
2382 | param_type _M_param; |
2383 | |
2384 | std::normal_distribution<result_type> _M_nd; |
2385 | }; |
2386 | |
2387 | /** |
2388 | * @brief Return true if two lognormal distributions are different. |
2389 | */ |
2390 | template<typename _RealType> |
2391 | inline bool |
2392 | operator!=(const std::lognormal_distribution<_RealType>& __d1, |
2393 | const std::lognormal_distribution<_RealType>& __d2) |
2394 | { return !(__d1 == __d2); } |
2395 | |
2396 | |
2397 | /** |
2398 | * @brief A gamma continuous distribution for random numbers. |
2399 | * |
2400 | * The formula for the gamma probability density function is: |
2401 | * @f[ |
2402 | * p(x|\alpha,\beta) = \frac{1}{\beta\Gamma(\alpha)} |
2403 | * (x/\beta)^{\alpha - 1} e^{-x/\beta} |
2404 | * @f] |
2405 | */ |
2406 | template<typename _RealType = double> |
2407 | class gamma_distribution |
2408 | { |
2409 | static_assert(std::is_floating_point<_RealType>::value, |
2410 | "result_type must be a floating point type" ); |
2411 | |
2412 | public: |
2413 | /** The type of the range of the distribution. */ |
2414 | typedef _RealType result_type; |
2415 | |
2416 | /** Parameter type. */ |
2417 | struct param_type |
2418 | { |
2419 | typedef gamma_distribution<_RealType> distribution_type; |
2420 | friend class gamma_distribution<_RealType>; |
2421 | |
2422 | param_type() : param_type(1.0) { } |
2423 | |
2424 | explicit |
2425 | param_type(_RealType __alpha_val, _RealType __beta_val = _RealType(1)) |
2426 | : _M_alpha(__alpha_val), _M_beta(__beta_val) |
2427 | { |
2428 | __glibcxx_assert(_M_alpha > _RealType(0)); |
2429 | _M_initialize(); |
2430 | } |
2431 | |
2432 | _RealType |
2433 | alpha() const |
2434 | { return _M_alpha; } |
2435 | |
2436 | _RealType |
2437 | beta() const |
2438 | { return _M_beta; } |
2439 | |
2440 | friend bool |
2441 | operator==(const param_type& __p1, const param_type& __p2) |
2442 | { return (__p1._M_alpha == __p2._M_alpha |
2443 | && __p1._M_beta == __p2._M_beta); } |
2444 | |
2445 | friend bool |
2446 | operator!=(const param_type& __p1, const param_type& __p2) |
2447 | { return !(__p1 == __p2); } |
2448 | |
2449 | private: |
2450 | void |
2451 | _M_initialize(); |
2452 | |
2453 | _RealType _M_alpha; |
2454 | _RealType _M_beta; |
2455 | |
2456 | _RealType _M_malpha, _M_a2; |
2457 | }; |
2458 | |
2459 | public: |
2460 | /** |
2461 | * @brief Constructs a gamma distribution with parameters 1 and 1. |
2462 | */ |
2463 | gamma_distribution() : gamma_distribution(1.0) { } |
2464 | |
2465 | /** |
2466 | * @brief Constructs a gamma distribution with parameters |
2467 | * @f$\alpha@f$ and @f$\beta@f$. |
2468 | */ |
2469 | explicit |
2470 | gamma_distribution(_RealType __alpha_val, |
2471 | _RealType __beta_val = _RealType(1)) |
2472 | : _M_param(__alpha_val, __beta_val), _M_nd() |
2473 | { } |
2474 | |
2475 | explicit |
2476 | gamma_distribution(const param_type& __p) |
2477 | : _M_param(__p), _M_nd() |
2478 | { } |
2479 | |
2480 | /** |
2481 | * @brief Resets the distribution state. |
2482 | */ |
2483 | void |
2484 | reset() |
2485 | { _M_nd.reset(); } |
2486 | |
2487 | /** |
2488 | * @brief Returns the @f$\alpha@f$ of the distribution. |
2489 | */ |
2490 | _RealType |
2491 | alpha() const |
2492 | { return _M_param.alpha(); } |
2493 | |
2494 | /** |
2495 | * @brief Returns the @f$\beta@f$ of the distribution. |
2496 | */ |
2497 | _RealType |
2498 | beta() const |
2499 | { return _M_param.beta(); } |
2500 | |
2501 | /** |
2502 | * @brief Returns the parameter set of the distribution. |
2503 | */ |
2504 | param_type |
2505 | param() const |
2506 | { return _M_param; } |
2507 | |
2508 | /** |
2509 | * @brief Sets the parameter set of the distribution. |
2510 | * @param __param The new parameter set of the distribution. |
2511 | */ |
2512 | void |
2513 | param(const param_type& __param) |
2514 | { _M_param = __param; } |
2515 | |
2516 | /** |
2517 | * @brief Returns the greatest lower bound value of the distribution. |
2518 | */ |
2519 | result_type |
2520 | min() const |
2521 | { return result_type(0); } |
2522 | |
2523 | /** |
2524 | * @brief Returns the least upper bound value of the distribution. |
2525 | */ |
2526 | result_type |
2527 | max() const |
2528 | { return std::numeric_limits<result_type>::max(); } |
2529 | |
2530 | /** |
2531 | * @brief Generating functions. |
2532 | */ |
2533 | template<typename _UniformRandomNumberGenerator> |
2534 | result_type |
2535 | operator()(_UniformRandomNumberGenerator& __urng) |
2536 | { return this->operator()(__urng, _M_param); } |
2537 | |
2538 | template<typename _UniformRandomNumberGenerator> |
2539 | result_type |
2540 | operator()(_UniformRandomNumberGenerator& __urng, |
2541 | const param_type& __p); |
2542 | |
2543 | template<typename _ForwardIterator, |
2544 | typename _UniformRandomNumberGenerator> |
2545 | void |
2546 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2547 | _UniformRandomNumberGenerator& __urng) |
2548 | { this->__generate(__f, __t, __urng, _M_param); } |
2549 | |
2550 | template<typename _ForwardIterator, |
2551 | typename _UniformRandomNumberGenerator> |
2552 | void |
2553 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2554 | _UniformRandomNumberGenerator& __urng, |
2555 | const param_type& __p) |
2556 | { this->__generate_impl(__f, __t, __urng, __p); } |
2557 | |
2558 | template<typename _UniformRandomNumberGenerator> |
2559 | void |
2560 | __generate(result_type* __f, result_type* __t, |
2561 | _UniformRandomNumberGenerator& __urng, |
2562 | const param_type& __p) |
2563 | { this->__generate_impl(__f, __t, __urng, __p); } |
2564 | |
2565 | /** |
2566 | * @brief Return true if two gamma distributions have the same |
2567 | * parameters and the sequences that would be generated |
2568 | * are equal. |
2569 | */ |
2570 | friend bool |
2571 | operator==(const gamma_distribution& __d1, |
2572 | const gamma_distribution& __d2) |
2573 | { return (__d1._M_param == __d2._M_param |
2574 | && __d1._M_nd == __d2._M_nd); } |
2575 | |
2576 | /** |
2577 | * @brief Inserts a %gamma_distribution random number distribution |
2578 | * @p __x into the output stream @p __os. |
2579 | * |
2580 | * @param __os An output stream. |
2581 | * @param __x A %gamma_distribution random number distribution. |
2582 | * |
2583 | * @returns The output stream with the state of @p __x inserted or in |
2584 | * an error state. |
2585 | */ |
2586 | template<typename _RealType1, typename _CharT, typename _Traits> |
2587 | friend std::basic_ostream<_CharT, _Traits>& |
2588 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2589 | const std::gamma_distribution<_RealType1>& __x); |
2590 | |
2591 | /** |
2592 | * @brief Extracts a %gamma_distribution random number distribution |
2593 | * @p __x from the input stream @p __is. |
2594 | * |
2595 | * @param __is An input stream. |
2596 | * @param __x A %gamma_distribution random number generator engine. |
2597 | * |
2598 | * @returns The input stream with @p __x extracted or in an error state. |
2599 | */ |
2600 | template<typename _RealType1, typename _CharT, typename _Traits> |
2601 | friend std::basic_istream<_CharT, _Traits>& |
2602 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2603 | std::gamma_distribution<_RealType1>& __x); |
2604 | |
2605 | private: |
2606 | template<typename _ForwardIterator, |
2607 | typename _UniformRandomNumberGenerator> |
2608 | void |
2609 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2610 | _UniformRandomNumberGenerator& __urng, |
2611 | const param_type& __p); |
2612 | |
2613 | param_type _M_param; |
2614 | |
2615 | std::normal_distribution<result_type> _M_nd; |
2616 | }; |
2617 | |
2618 | /** |
2619 | * @brief Return true if two gamma distributions are different. |
2620 | */ |
2621 | template<typename _RealType> |
2622 | inline bool |
2623 | operator!=(const std::gamma_distribution<_RealType>& __d1, |
2624 | const std::gamma_distribution<_RealType>& __d2) |
2625 | { return !(__d1 == __d2); } |
2626 | |
2627 | |
2628 | /** |
2629 | * @brief A chi_squared_distribution random number distribution. |
2630 | * |
2631 | * The formula for the normal probability mass function is |
2632 | * @f$p(x|n) = \frac{x^{(n/2) - 1}e^{-x/2}}{\Gamma(n/2) 2^{n/2}}@f$ |
2633 | */ |
2634 | template<typename _RealType = double> |
2635 | class chi_squared_distribution |
2636 | { |
2637 | static_assert(std::is_floating_point<_RealType>::value, |
2638 | "result_type must be a floating point type" ); |
2639 | |
2640 | public: |
2641 | /** The type of the range of the distribution. */ |
2642 | typedef _RealType result_type; |
2643 | |
2644 | /** Parameter type. */ |
2645 | struct param_type |
2646 | { |
2647 | typedef chi_squared_distribution<_RealType> distribution_type; |
2648 | |
2649 | param_type() : param_type(1) { } |
2650 | |
2651 | explicit |
2652 | param_type(_RealType __n) |
2653 | : _M_n(__n) |
2654 | { } |
2655 | |
2656 | _RealType |
2657 | n() const |
2658 | { return _M_n; } |
2659 | |
2660 | friend bool |
2661 | operator==(const param_type& __p1, const param_type& __p2) |
2662 | { return __p1._M_n == __p2._M_n; } |
2663 | |
2664 | friend bool |
2665 | operator!=(const param_type& __p1, const param_type& __p2) |
2666 | { return !(__p1 == __p2); } |
2667 | |
2668 | private: |
2669 | _RealType _M_n; |
2670 | }; |
2671 | |
2672 | chi_squared_distribution() : chi_squared_distribution(1) { } |
2673 | |
2674 | explicit |
2675 | chi_squared_distribution(_RealType __n) |
2676 | : _M_param(__n), _M_gd(__n / 2) |
2677 | { } |
2678 | |
2679 | explicit |
2680 | chi_squared_distribution(const param_type& __p) |
2681 | : _M_param(__p), _M_gd(__p.n() / 2) |
2682 | { } |
2683 | |
2684 | /** |
2685 | * @brief Resets the distribution state. |
2686 | */ |
2687 | void |
2688 | reset() |
2689 | { _M_gd.reset(); } |
2690 | |
2691 | /** |
2692 | * |
2693 | */ |
2694 | _RealType |
2695 | n() const |
2696 | { return _M_param.n(); } |
2697 | |
2698 | /** |
2699 | * @brief Returns the parameter set of the distribution. |
2700 | */ |
2701 | param_type |
2702 | param() const |
2703 | { return _M_param; } |
2704 | |
2705 | /** |
2706 | * @brief Sets the parameter set of the distribution. |
2707 | * @param __param The new parameter set of the distribution. |
2708 | */ |
2709 | void |
2710 | param(const param_type& __param) |
2711 | { |
2712 | _M_param = __param; |
2713 | typedef typename std::gamma_distribution<result_type>::param_type |
2714 | param_type; |
2715 | _M_gd.param(param_type{__param.n() / 2}); |
2716 | } |
2717 | |
2718 | /** |
2719 | * @brief Returns the greatest lower bound value of the distribution. |
2720 | */ |
2721 | result_type |
2722 | min() const |
2723 | { return result_type(0); } |
2724 | |
2725 | /** |
2726 | * @brief Returns the least upper bound value of the distribution. |
2727 | */ |
2728 | result_type |
2729 | max() const |
2730 | { return std::numeric_limits<result_type>::max(); } |
2731 | |
2732 | /** |
2733 | * @brief Generating functions. |
2734 | */ |
2735 | template<typename _UniformRandomNumberGenerator> |
2736 | result_type |
2737 | operator()(_UniformRandomNumberGenerator& __urng) |
2738 | { return 2 * _M_gd(__urng); } |
2739 | |
2740 | template<typename _UniformRandomNumberGenerator> |
2741 | result_type |
2742 | operator()(_UniformRandomNumberGenerator& __urng, |
2743 | const param_type& __p) |
2744 | { |
2745 | typedef typename std::gamma_distribution<result_type>::param_type |
2746 | param_type; |
2747 | return 2 * _M_gd(__urng, param_type(__p.n() / 2)); |
2748 | } |
2749 | |
2750 | template<typename _ForwardIterator, |
2751 | typename _UniformRandomNumberGenerator> |
2752 | void |
2753 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2754 | _UniformRandomNumberGenerator& __urng) |
2755 | { this->__generate_impl(__f, __t, __urng); } |
2756 | |
2757 | template<typename _ForwardIterator, |
2758 | typename _UniformRandomNumberGenerator> |
2759 | void |
2760 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2761 | _UniformRandomNumberGenerator& __urng, |
2762 | const param_type& __p) |
2763 | { typename std::gamma_distribution<result_type>::param_type |
2764 | __p2(__p.n() / 2); |
2765 | this->__generate_impl(__f, __t, __urng, __p2); } |
2766 | |
2767 | template<typename _UniformRandomNumberGenerator> |
2768 | void |
2769 | __generate(result_type* __f, result_type* __t, |
2770 | _UniformRandomNumberGenerator& __urng) |
2771 | { this->__generate_impl(__f, __t, __urng); } |
2772 | |
2773 | template<typename _UniformRandomNumberGenerator> |
2774 | void |
2775 | __generate(result_type* __f, result_type* __t, |
2776 | _UniformRandomNumberGenerator& __urng, |
2777 | const param_type& __p) |
2778 | { typename std::gamma_distribution<result_type>::param_type |
2779 | __p2(__p.n() / 2); |
2780 | this->__generate_impl(__f, __t, __urng, __p2); } |
2781 | |
2782 | /** |
2783 | * @brief Return true if two Chi-squared distributions have |
2784 | * the same parameters and the sequences that would be |
2785 | * generated are equal. |
2786 | */ |
2787 | friend bool |
2788 | operator==(const chi_squared_distribution& __d1, |
2789 | const chi_squared_distribution& __d2) |
2790 | { return __d1._M_param == __d2._M_param && __d1._M_gd == __d2._M_gd; } |
2791 | |
2792 | /** |
2793 | * @brief Inserts a %chi_squared_distribution random number distribution |
2794 | * @p __x into the output stream @p __os. |
2795 | * |
2796 | * @param __os An output stream. |
2797 | * @param __x A %chi_squared_distribution random number distribution. |
2798 | * |
2799 | * @returns The output stream with the state of @p __x inserted or in |
2800 | * an error state. |
2801 | */ |
2802 | template<typename _RealType1, typename _CharT, typename _Traits> |
2803 | friend std::basic_ostream<_CharT, _Traits>& |
2804 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2805 | const std::chi_squared_distribution<_RealType1>& __x); |
2806 | |
2807 | /** |
2808 | * @brief Extracts a %chi_squared_distribution random number distribution |
2809 | * @p __x from the input stream @p __is. |
2810 | * |
2811 | * @param __is An input stream. |
2812 | * @param __x A %chi_squared_distribution random number |
2813 | * generator engine. |
2814 | * |
2815 | * @returns The input stream with @p __x extracted or in an error state. |
2816 | */ |
2817 | template<typename _RealType1, typename _CharT, typename _Traits> |
2818 | friend std::basic_istream<_CharT, _Traits>& |
2819 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2820 | std::chi_squared_distribution<_RealType1>& __x); |
2821 | |
2822 | private: |
2823 | template<typename _ForwardIterator, |
2824 | typename _UniformRandomNumberGenerator> |
2825 | void |
2826 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2827 | _UniformRandomNumberGenerator& __urng); |
2828 | |
2829 | template<typename _ForwardIterator, |
2830 | typename _UniformRandomNumberGenerator> |
2831 | void |
2832 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2833 | _UniformRandomNumberGenerator& __urng, |
2834 | const typename |
2835 | std::gamma_distribution<result_type>::param_type& __p); |
2836 | |
2837 | param_type _M_param; |
2838 | |
2839 | std::gamma_distribution<result_type> _M_gd; |
2840 | }; |
2841 | |
2842 | /** |
2843 | * @brief Return true if two Chi-squared distributions are different. |
2844 | */ |
2845 | template<typename _RealType> |
2846 | inline bool |
2847 | operator!=(const std::chi_squared_distribution<_RealType>& __d1, |
2848 | const std::chi_squared_distribution<_RealType>& __d2) |
2849 | { return !(__d1 == __d2); } |
2850 | |
2851 | |
2852 | /** |
2853 | * @brief A cauchy_distribution random number distribution. |
2854 | * |
2855 | * The formula for the normal probability mass function is |
2856 | * @f$p(x|a,b) = (\pi b (1 + (\frac{x-a}{b})^2))^{-1}@f$ |
2857 | */ |
2858 | template<typename _RealType = double> |
2859 | class cauchy_distribution |
2860 | { |
2861 | static_assert(std::is_floating_point<_RealType>::value, |
2862 | "result_type must be a floating point type" ); |
2863 | |
2864 | public: |
2865 | /** The type of the range of the distribution. */ |
2866 | typedef _RealType result_type; |
2867 | |
2868 | /** Parameter type. */ |
2869 | struct param_type |
2870 | { |
2871 | typedef cauchy_distribution<_RealType> distribution_type; |
2872 | |
2873 | param_type() : param_type(0) { } |
2874 | |
2875 | explicit |
2876 | param_type(_RealType __a, _RealType __b = _RealType(1)) |
2877 | : _M_a(__a), _M_b(__b) |
2878 | { } |
2879 | |
2880 | _RealType |
2881 | a() const |
2882 | { return _M_a; } |
2883 | |
2884 | _RealType |
2885 | b() const |
2886 | { return _M_b; } |
2887 | |
2888 | friend bool |
2889 | operator==(const param_type& __p1, const param_type& __p2) |
2890 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
2891 | |
2892 | friend bool |
2893 | operator!=(const param_type& __p1, const param_type& __p2) |
2894 | { return !(__p1 == __p2); } |
2895 | |
2896 | private: |
2897 | _RealType _M_a; |
2898 | _RealType _M_b; |
2899 | }; |
2900 | |
2901 | cauchy_distribution() : cauchy_distribution(0.0) { } |
2902 | |
2903 | explicit |
2904 | cauchy_distribution(_RealType __a, _RealType __b = 1.0) |
2905 | : _M_param(__a, __b) |
2906 | { } |
2907 | |
2908 | explicit |
2909 | cauchy_distribution(const param_type& __p) |
2910 | : _M_param(__p) |
2911 | { } |
2912 | |
2913 | /** |
2914 | * @brief Resets the distribution state. |
2915 | */ |
2916 | void |
2917 | reset() |
2918 | { } |
2919 | |
2920 | /** |
2921 | * |
2922 | */ |
2923 | _RealType |
2924 | a() const |
2925 | { return _M_param.a(); } |
2926 | |
2927 | _RealType |
2928 | b() const |
2929 | { return _M_param.b(); } |
2930 | |
2931 | /** |
2932 | * @brief Returns the parameter set of the distribution. |
2933 | */ |
2934 | param_type |
2935 | param() const |
2936 | { return _M_param; } |
2937 | |
2938 | /** |
2939 | * @brief Sets the parameter set of the distribution. |
2940 | * @param __param The new parameter set of the distribution. |
2941 | */ |
2942 | void |
2943 | param(const param_type& __param) |
2944 | { _M_param = __param; } |
2945 | |
2946 | /** |
2947 | * @brief Returns the greatest lower bound value of the distribution. |
2948 | */ |
2949 | result_type |
2950 | min() const |
2951 | { return std::numeric_limits<result_type>::lowest(); } |
2952 | |
2953 | /** |
2954 | * @brief Returns the least upper bound value of the distribution. |
2955 | */ |
2956 | result_type |
2957 | max() const |
2958 | { return std::numeric_limits<result_type>::max(); } |
2959 | |
2960 | /** |
2961 | * @brief Generating functions. |
2962 | */ |
2963 | template<typename _UniformRandomNumberGenerator> |
2964 | result_type |
2965 | operator()(_UniformRandomNumberGenerator& __urng) |
2966 | { return this->operator()(__urng, _M_param); } |
2967 | |
2968 | template<typename _UniformRandomNumberGenerator> |
2969 | result_type |
2970 | operator()(_UniformRandomNumberGenerator& __urng, |
2971 | const param_type& __p); |
2972 | |
2973 | template<typename _ForwardIterator, |
2974 | typename _UniformRandomNumberGenerator> |
2975 | void |
2976 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2977 | _UniformRandomNumberGenerator& __urng) |
2978 | { this->__generate(__f, __t, __urng, _M_param); } |
2979 | |
2980 | template<typename _ForwardIterator, |
2981 | typename _UniformRandomNumberGenerator> |
2982 | void |
2983 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2984 | _UniformRandomNumberGenerator& __urng, |
2985 | const param_type& __p) |
2986 | { this->__generate_impl(__f, __t, __urng, __p); } |
2987 | |
2988 | template<typename _UniformRandomNumberGenerator> |
2989 | void |
2990 | __generate(result_type* __f, result_type* __t, |
2991 | _UniformRandomNumberGenerator& __urng, |
2992 | const param_type& __p) |
2993 | { this->__generate_impl(__f, __t, __urng, __p); } |
2994 | |
2995 | /** |
2996 | * @brief Return true if two Cauchy distributions have |
2997 | * the same parameters. |
2998 | */ |
2999 | friend bool |
3000 | operator==(const cauchy_distribution& __d1, |
3001 | const cauchy_distribution& __d2) |
3002 | { return __d1._M_param == __d2._M_param; } |
3003 | |
3004 | private: |
3005 | template<typename _ForwardIterator, |
3006 | typename _UniformRandomNumberGenerator> |
3007 | void |
3008 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3009 | _UniformRandomNumberGenerator& __urng, |
3010 | const param_type& __p); |
3011 | |
3012 | param_type _M_param; |
3013 | }; |
3014 | |
3015 | /** |
3016 | * @brief Return true if two Cauchy distributions have |
3017 | * different parameters. |
3018 | */ |
3019 | template<typename _RealType> |
3020 | inline bool |
3021 | operator!=(const std::cauchy_distribution<_RealType>& __d1, |
3022 | const std::cauchy_distribution<_RealType>& __d2) |
3023 | { return !(__d1 == __d2); } |
3024 | |
3025 | /** |
3026 | * @brief Inserts a %cauchy_distribution random number distribution |
3027 | * @p __x into the output stream @p __os. |
3028 | * |
3029 | * @param __os An output stream. |
3030 | * @param __x A %cauchy_distribution random number distribution. |
3031 | * |
3032 | * @returns The output stream with the state of @p __x inserted or in |
3033 | * an error state. |
3034 | */ |
3035 | template<typename _RealType, typename _CharT, typename _Traits> |
3036 | std::basic_ostream<_CharT, _Traits>& |
3037 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3038 | const std::cauchy_distribution<_RealType>& __x); |
3039 | |
3040 | /** |
3041 | * @brief Extracts a %cauchy_distribution random number distribution |
3042 | * @p __x from the input stream @p __is. |
3043 | * |
3044 | * @param __is An input stream. |
3045 | * @param __x A %cauchy_distribution random number |
3046 | * generator engine. |
3047 | * |
3048 | * @returns The input stream with @p __x extracted or in an error state. |
3049 | */ |
3050 | template<typename _RealType, typename _CharT, typename _Traits> |
3051 | std::basic_istream<_CharT, _Traits>& |
3052 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3053 | std::cauchy_distribution<_RealType>& __x); |
3054 | |
3055 | |
3056 | /** |
3057 | * @brief A fisher_f_distribution random number distribution. |
3058 | * |
3059 | * The formula for the normal probability mass function is |
3060 | * @f[ |
3061 | * p(x|m,n) = \frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)} |
3062 | * (\frac{m}{n})^{m/2} x^{(m/2)-1} |
3063 | * (1 + \frac{mx}{n})^{-(m+n)/2} |
3064 | * @f] |
3065 | */ |
3066 | template<typename _RealType = double> |
3067 | class fisher_f_distribution |
3068 | { |
3069 | static_assert(std::is_floating_point<_RealType>::value, |
3070 | "result_type must be a floating point type" ); |
3071 | |
3072 | public: |
3073 | /** The type of the range of the distribution. */ |
3074 | typedef _RealType result_type; |
3075 | |
3076 | /** Parameter type. */ |
3077 | struct param_type |
3078 | { |
3079 | typedef fisher_f_distribution<_RealType> distribution_type; |
3080 | |
3081 | param_type() : param_type(1) { } |
3082 | |
3083 | explicit |
3084 | param_type(_RealType __m, _RealType __n = _RealType(1)) |
3085 | : _M_m(__m), _M_n(__n) |
3086 | { } |
3087 | |
3088 | _RealType |
3089 | m() const |
3090 | { return _M_m; } |
3091 | |
3092 | _RealType |
3093 | n() const |
3094 | { return _M_n; } |
3095 | |
3096 | friend bool |
3097 | operator==(const param_type& __p1, const param_type& __p2) |
3098 | { return __p1._M_m == __p2._M_m && __p1._M_n == __p2._M_n; } |
3099 | |
3100 | friend bool |
3101 | operator!=(const param_type& __p1, const param_type& __p2) |
3102 | { return !(__p1 == __p2); } |
3103 | |
3104 | private: |
3105 | _RealType _M_m; |
3106 | _RealType _M_n; |
3107 | }; |
3108 | |
3109 | fisher_f_distribution() : fisher_f_distribution(1.0) { } |
3110 | |
3111 | explicit |
3112 | fisher_f_distribution(_RealType __m, |
3113 | _RealType __n = _RealType(1)) |
3114 | : _M_param(__m, __n), _M_gd_x(__m / 2), _M_gd_y(__n / 2) |
3115 | { } |
3116 | |
3117 | explicit |
3118 | fisher_f_distribution(const param_type& __p) |
3119 | : _M_param(__p), _M_gd_x(__p.m() / 2), _M_gd_y(__p.n() / 2) |
3120 | { } |
3121 | |
3122 | /** |
3123 | * @brief Resets the distribution state. |
3124 | */ |
3125 | void |
3126 | reset() |
3127 | { |
3128 | _M_gd_x.reset(); |
3129 | _M_gd_y.reset(); |
3130 | } |
3131 | |
3132 | /** |
3133 | * |
3134 | */ |
3135 | _RealType |
3136 | m() const |
3137 | { return _M_param.m(); } |
3138 | |
3139 | _RealType |
3140 | n() const |
3141 | { return _M_param.n(); } |
3142 | |
3143 | /** |
3144 | * @brief Returns the parameter set of the distribution. |
3145 | */ |
3146 | param_type |
3147 | param() const |
3148 | { return _M_param; } |
3149 | |
3150 | /** |
3151 | * @brief Sets the parameter set of the distribution. |
3152 | * @param __param The new parameter set of the distribution. |
3153 | */ |
3154 | void |
3155 | param(const param_type& __param) |
3156 | { _M_param = __param; } |
3157 | |
3158 | /** |
3159 | * @brief Returns the greatest lower bound value of the distribution. |
3160 | */ |
3161 | result_type |
3162 | min() const |
3163 | { return result_type(0); } |
3164 | |
3165 | /** |
3166 | * @brief Returns the least upper bound value of the distribution. |
3167 | */ |
3168 | result_type |
3169 | max() const |
3170 | { return std::numeric_limits<result_type>::max(); } |
3171 | |
3172 | /** |
3173 | * @brief Generating functions. |
3174 | */ |
3175 | template<typename _UniformRandomNumberGenerator> |
3176 | result_type |
3177 | operator()(_UniformRandomNumberGenerator& __urng) |
3178 | { return (_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m()); } |
3179 | |
3180 | template<typename _UniformRandomNumberGenerator> |
3181 | result_type |
3182 | operator()(_UniformRandomNumberGenerator& __urng, |
3183 | const param_type& __p) |
3184 | { |
3185 | typedef typename std::gamma_distribution<result_type>::param_type |
3186 | param_type; |
3187 | return ((_M_gd_x(__urng, param_type(__p.m() / 2)) * n()) |
3188 | / (_M_gd_y(__urng, param_type(__p.n() / 2)) * m())); |
3189 | } |
3190 | |
3191 | template<typename _ForwardIterator, |
3192 | typename _UniformRandomNumberGenerator> |
3193 | void |
3194 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3195 | _UniformRandomNumberGenerator& __urng) |
3196 | { this->__generate_impl(__f, __t, __urng); } |
3197 | |
3198 | template<typename _ForwardIterator, |
3199 | typename _UniformRandomNumberGenerator> |
3200 | void |
3201 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3202 | _UniformRandomNumberGenerator& __urng, |
3203 | const param_type& __p) |
3204 | { this->__generate_impl(__f, __t, __urng, __p); } |
3205 | |
3206 | template<typename _UniformRandomNumberGenerator> |
3207 | void |
3208 | __generate(result_type* __f, result_type* __t, |
3209 | _UniformRandomNumberGenerator& __urng) |
3210 | { this->__generate_impl(__f, __t, __urng); } |
3211 | |
3212 | template<typename _UniformRandomNumberGenerator> |
3213 | void |
3214 | __generate(result_type* __f, result_type* __t, |
3215 | _UniformRandomNumberGenerator& __urng, |
3216 | const param_type& __p) |
3217 | { this->__generate_impl(__f, __t, __urng, __p); } |
3218 | |
3219 | /** |
3220 | * @brief Return true if two Fisher f distributions have |
3221 | * the same parameters and the sequences that would |
3222 | * be generated are equal. |
3223 | */ |
3224 | friend bool |
3225 | operator==(const fisher_f_distribution& __d1, |
3226 | const fisher_f_distribution& __d2) |
3227 | { return (__d1._M_param == __d2._M_param |
3228 | && __d1._M_gd_x == __d2._M_gd_x |
3229 | && __d1._M_gd_y == __d2._M_gd_y); } |
3230 | |
3231 | /** |
3232 | * @brief Inserts a %fisher_f_distribution random number distribution |
3233 | * @p __x into the output stream @p __os. |
3234 | * |
3235 | * @param __os An output stream. |
3236 | * @param __x A %fisher_f_distribution random number distribution. |
3237 | * |
3238 | * @returns The output stream with the state of @p __x inserted or in |
3239 | * an error state. |
3240 | */ |
3241 | template<typename _RealType1, typename _CharT, typename _Traits> |
3242 | friend std::basic_ostream<_CharT, _Traits>& |
3243 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3244 | const std::fisher_f_distribution<_RealType1>& __x); |
3245 | |
3246 | /** |
3247 | * @brief Extracts a %fisher_f_distribution random number distribution |
3248 | * @p __x from the input stream @p __is. |
3249 | * |
3250 | * @param __is An input stream. |
3251 | * @param __x A %fisher_f_distribution random number |
3252 | * generator engine. |
3253 | * |
3254 | * @returns The input stream with @p __x extracted or in an error state. |
3255 | */ |
3256 | template<typename _RealType1, typename _CharT, typename _Traits> |
3257 | friend std::basic_istream<_CharT, _Traits>& |
3258 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3259 | std::fisher_f_distribution<_RealType1>& __x); |
3260 | |
3261 | private: |
3262 | template<typename _ForwardIterator, |
3263 | typename _UniformRandomNumberGenerator> |
3264 | void |
3265 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3266 | _UniformRandomNumberGenerator& __urng); |
3267 | |
3268 | template<typename _ForwardIterator, |
3269 | typename _UniformRandomNumberGenerator> |
3270 | void |
3271 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3272 | _UniformRandomNumberGenerator& __urng, |
3273 | const param_type& __p); |
3274 | |
3275 | param_type _M_param; |
3276 | |
3277 | std::gamma_distribution<result_type> _M_gd_x, _M_gd_y; |
3278 | }; |
3279 | |
3280 | /** |
3281 | * @brief Return true if two Fisher f distributions are different. |
3282 | */ |
3283 | template<typename _RealType> |
3284 | inline bool |
3285 | operator!=(const std::fisher_f_distribution<_RealType>& __d1, |
3286 | const std::fisher_f_distribution<_RealType>& __d2) |
3287 | { return !(__d1 == __d2); } |
3288 | |
3289 | /** |
3290 | * @brief A student_t_distribution random number distribution. |
3291 | * |
3292 | * The formula for the normal probability mass function is: |
3293 | * @f[ |
3294 | * p(x|n) = \frac{1}{\sqrt(n\pi)} \frac{\Gamma((n+1)/2)}{\Gamma(n/2)} |
3295 | * (1 + \frac{x^2}{n}) ^{-(n+1)/2} |
3296 | * @f] |
3297 | */ |
3298 | template<typename _RealType = double> |
3299 | class student_t_distribution |
3300 | { |
3301 | static_assert(std::is_floating_point<_RealType>::value, |
3302 | "result_type must be a floating point type" ); |
3303 | |
3304 | public: |
3305 | /** The type of the range of the distribution. */ |
3306 | typedef _RealType result_type; |
3307 | |
3308 | /** Parameter type. */ |
3309 | struct param_type |
3310 | { |
3311 | typedef student_t_distribution<_RealType> distribution_type; |
3312 | |
3313 | param_type() : param_type(1) { } |
3314 | |
3315 | explicit |
3316 | param_type(_RealType __n) |
3317 | : _M_n(__n) |
3318 | { } |
3319 | |
3320 | _RealType |
3321 | n() const |
3322 | { return _M_n; } |
3323 | |
3324 | friend bool |
3325 | operator==(const param_type& __p1, const param_type& __p2) |
3326 | { return __p1._M_n == __p2._M_n; } |
3327 | |
3328 | friend bool |
3329 | operator!=(const param_type& __p1, const param_type& __p2) |
3330 | { return !(__p1 == __p2); } |
3331 | |
3332 | private: |
3333 | _RealType _M_n; |
3334 | }; |
3335 | |
3336 | student_t_distribution() : student_t_distribution(1.0) { } |
3337 | |
3338 | explicit |
3339 | student_t_distribution(_RealType __n) |
3340 | : _M_param(__n), _M_nd(), _M_gd(__n / 2, 2) |
3341 | { } |
3342 | |
3343 | explicit |
3344 | student_t_distribution(const param_type& __p) |
3345 | : _M_param(__p), _M_nd(), _M_gd(__p.n() / 2, 2) |
3346 | { } |
3347 | |
3348 | /** |
3349 | * @brief Resets the distribution state. |
3350 | */ |
3351 | void |
3352 | reset() |
3353 | { |
3354 | _M_nd.reset(); |
3355 | _M_gd.reset(); |
3356 | } |
3357 | |
3358 | /** |
3359 | * |
3360 | */ |
3361 | _RealType |
3362 | n() const |
3363 | { return _M_param.n(); } |
3364 | |
3365 | /** |
3366 | * @brief Returns the parameter set of the distribution. |
3367 | */ |
3368 | param_type |
3369 | param() const |
3370 | { return _M_param; } |
3371 | |
3372 | /** |
3373 | * @brief Sets the parameter set of the distribution. |
3374 | * @param __param The new parameter set of the distribution. |
3375 | */ |
3376 | void |
3377 | param(const param_type& __param) |
3378 | { _M_param = __param; } |
3379 | |
3380 | /** |
3381 | * @brief Returns the greatest lower bound value of the distribution. |
3382 | */ |
3383 | result_type |
3384 | min() const |
3385 | { return std::numeric_limits<result_type>::lowest(); } |
3386 | |
3387 | /** |
3388 | * @brief Returns the least upper bound value of the distribution. |
3389 | */ |
3390 | result_type |
3391 | max() const |
3392 | { return std::numeric_limits<result_type>::max(); } |
3393 | |
3394 | /** |
3395 | * @brief Generating functions. |
3396 | */ |
3397 | template<typename _UniformRandomNumberGenerator> |
3398 | result_type |
3399 | operator()(_UniformRandomNumberGenerator& __urng) |
3400 | { return _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); } |
3401 | |
3402 | template<typename _UniformRandomNumberGenerator> |
3403 | result_type |
3404 | operator()(_UniformRandomNumberGenerator& __urng, |
3405 | const param_type& __p) |
3406 | { |
3407 | typedef typename std::gamma_distribution<result_type>::param_type |
3408 | param_type; |
3409 | |
3410 | const result_type __g = _M_gd(__urng, param_type(__p.n() / 2, 2)); |
3411 | return _M_nd(__urng) * std::sqrt(__p.n() / __g); |
3412 | } |
3413 | |
3414 | template<typename _ForwardIterator, |
3415 | typename _UniformRandomNumberGenerator> |
3416 | void |
3417 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3418 | _UniformRandomNumberGenerator& __urng) |
3419 | { this->__generate_impl(__f, __t, __urng); } |
3420 | |
3421 | template<typename _ForwardIterator, |
3422 | typename _UniformRandomNumberGenerator> |
3423 | void |
3424 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3425 | _UniformRandomNumberGenerator& __urng, |
3426 | const param_type& __p) |
3427 | { this->__generate_impl(__f, __t, __urng, __p); } |
3428 | |
3429 | template<typename _UniformRandomNumberGenerator> |
3430 | void |
3431 | __generate(result_type* __f, result_type* __t, |
3432 | _UniformRandomNumberGenerator& __urng) |
3433 | { this->__generate_impl(__f, __t, __urng); } |
3434 | |
3435 | template<typename _UniformRandomNumberGenerator> |
3436 | void |
3437 | __generate(result_type* __f, result_type* __t, |
3438 | _UniformRandomNumberGenerator& __urng, |
3439 | const param_type& __p) |
3440 | { this->__generate_impl(__f, __t, __urng, __p); } |
3441 | |
3442 | /** |
3443 | * @brief Return true if two Student t distributions have |
3444 | * the same parameters and the sequences that would |
3445 | * be generated are equal. |
3446 | */ |
3447 | friend bool |
3448 | operator==(const student_t_distribution& __d1, |
3449 | const student_t_distribution& __d2) |
3450 | { return (__d1._M_param == __d2._M_param |
3451 | && __d1._M_nd == __d2._M_nd && __d1._M_gd == __d2._M_gd); } |
3452 | |
3453 | /** |
3454 | * @brief Inserts a %student_t_distribution random number distribution |
3455 | * @p __x into the output stream @p __os. |
3456 | * |
3457 | * @param __os An output stream. |
3458 | * @param __x A %student_t_distribution random number distribution. |
3459 | * |
3460 | * @returns The output stream with the state of @p __x inserted or in |
3461 | * an error state. |
3462 | */ |
3463 | template<typename _RealType1, typename _CharT, typename _Traits> |
3464 | friend std::basic_ostream<_CharT, _Traits>& |
3465 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3466 | const std::student_t_distribution<_RealType1>& __x); |
3467 | |
3468 | /** |
3469 | * @brief Extracts a %student_t_distribution random number distribution |
3470 | * @p __x from the input stream @p __is. |
3471 | * |
3472 | * @param __is An input stream. |
3473 | * @param __x A %student_t_distribution random number |
3474 | * generator engine. |
3475 | * |
3476 | * @returns The input stream with @p __x extracted or in an error state. |
3477 | */ |
3478 | template<typename _RealType1, typename _CharT, typename _Traits> |
3479 | friend std::basic_istream<_CharT, _Traits>& |
3480 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3481 | std::student_t_distribution<_RealType1>& __x); |
3482 | |
3483 | private: |
3484 | template<typename _ForwardIterator, |
3485 | typename _UniformRandomNumberGenerator> |
3486 | void |
3487 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3488 | _UniformRandomNumberGenerator& __urng); |
3489 | template<typename _ForwardIterator, |
3490 | typename _UniformRandomNumberGenerator> |
3491 | void |
3492 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3493 | _UniformRandomNumberGenerator& __urng, |
3494 | const param_type& __p); |
3495 | |
3496 | param_type _M_param; |
3497 | |
3498 | std::normal_distribution<result_type> _M_nd; |
3499 | std::gamma_distribution<result_type> _M_gd; |
3500 | }; |
3501 | |
3502 | /** |
3503 | * @brief Return true if two Student t distributions are different. |
3504 | */ |
3505 | template<typename _RealType> |
3506 | inline bool |
3507 | operator!=(const std::student_t_distribution<_RealType>& __d1, |
3508 | const std::student_t_distribution<_RealType>& __d2) |
3509 | { return !(__d1 == __d2); } |
3510 | |
3511 | |
3512 | /// @} group random_distributions_normal |
3513 | |
3514 | /** |
3515 | * @addtogroup random_distributions_bernoulli Bernoulli Distributions |
3516 | * @ingroup random_distributions |
3517 | * @{ |
3518 | */ |
3519 | |
3520 | /** |
3521 | * @brief A Bernoulli random number distribution. |
3522 | * |
3523 | * Generates a sequence of true and false values with likelihood @f$p@f$ |
3524 | * that true will come up and @f$(1 - p)@f$ that false will appear. |
3525 | */ |
3526 | class bernoulli_distribution |
3527 | { |
3528 | public: |
3529 | /** The type of the range of the distribution. */ |
3530 | typedef bool result_type; |
3531 | |
3532 | /** Parameter type. */ |
3533 | struct param_type |
3534 | { |
3535 | typedef bernoulli_distribution distribution_type; |
3536 | |
3537 | param_type() : param_type(0.5) { } |
3538 | |
3539 | explicit |
3540 | param_type(double __p) |
3541 | : _M_p(__p) |
3542 | { |
3543 | __glibcxx_assert((_M_p >= 0.0) && (_M_p <= 1.0)); |
3544 | } |
3545 | |
3546 | double |
3547 | p() const |
3548 | { return _M_p; } |
3549 | |
3550 | friend bool |
3551 | operator==(const param_type& __p1, const param_type& __p2) |
3552 | { return __p1._M_p == __p2._M_p; } |
3553 | |
3554 | friend bool |
3555 | operator!=(const param_type& __p1, const param_type& __p2) |
3556 | { return !(__p1 == __p2); } |
3557 | |
3558 | private: |
3559 | double _M_p; |
3560 | }; |
3561 | |
3562 | public: |
3563 | /** |
3564 | * @brief Constructs a Bernoulli distribution with likelihood 0.5. |
3565 | */ |
3566 | bernoulli_distribution() : bernoulli_distribution(0.5) { } |
3567 | |
3568 | /** |
3569 | * @brief Constructs a Bernoulli distribution with likelihood @p p. |
3570 | * |
3571 | * @param __p [IN] The likelihood of a true result being returned. |
3572 | * Must be in the interval @f$[0, 1]@f$. |
3573 | */ |
3574 | explicit |
3575 | bernoulli_distribution(double __p) |
3576 | : _M_param(__p) |
3577 | { } |
3578 | |
3579 | explicit |
3580 | bernoulli_distribution(const param_type& __p) |
3581 | : _M_param(__p) |
3582 | { } |
3583 | |
3584 | /** |
3585 | * @brief Resets the distribution state. |
3586 | * |
3587 | * Does nothing for a Bernoulli distribution. |
3588 | */ |
3589 | void |
3590 | reset() { } |
3591 | |
3592 | /** |
3593 | * @brief Returns the @p p parameter of the distribution. |
3594 | */ |
3595 | double |
3596 | p() const |
3597 | { return _M_param.p(); } |
3598 | |
3599 | /** |
3600 | * @brief Returns the parameter set of the distribution. |
3601 | */ |
3602 | param_type |
3603 | param() const |
3604 | { return _M_param; } |
3605 | |
3606 | /** |
3607 | * @brief Sets the parameter set of the distribution. |
3608 | * @param __param The new parameter set of the distribution. |
3609 | */ |
3610 | void |
3611 | param(const param_type& __param) |
3612 | { _M_param = __param; } |
3613 | |
3614 | /** |
3615 | * @brief Returns the greatest lower bound value of the distribution. |
3616 | */ |
3617 | result_type |
3618 | min() const |
3619 | { return std::numeric_limits<result_type>::min(); } |
3620 | |
3621 | /** |
3622 | * @brief Returns the least upper bound value of the distribution. |
3623 | */ |
3624 | result_type |
3625 | max() const |
3626 | { return std::numeric_limits<result_type>::max(); } |
3627 | |
3628 | /** |
3629 | * @brief Generating functions. |
3630 | */ |
3631 | template<typename _UniformRandomNumberGenerator> |
3632 | result_type |
3633 | operator()(_UniformRandomNumberGenerator& __urng) |
3634 | { return this->operator()(__urng, _M_param); } |
3635 | |
3636 | template<typename _UniformRandomNumberGenerator> |
3637 | result_type |
3638 | operator()(_UniformRandomNumberGenerator& __urng, |
3639 | const param_type& __p) |
3640 | { |
3641 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
3642 | __aurng(__urng); |
3643 | if ((__aurng() - __aurng.min()) |
3644 | < __p.p() * (__aurng.max() - __aurng.min())) |
3645 | return true; |
3646 | return false; |
3647 | } |
3648 | |
3649 | template<typename _ForwardIterator, |
3650 | typename _UniformRandomNumberGenerator> |
3651 | void |
3652 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3653 | _UniformRandomNumberGenerator& __urng) |
3654 | { this->__generate(__f, __t, __urng, _M_param); } |
3655 | |
3656 | template<typename _ForwardIterator, |
3657 | typename _UniformRandomNumberGenerator> |
3658 | void |
3659 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3660 | _UniformRandomNumberGenerator& __urng, const param_type& __p) |
3661 | { this->__generate_impl(__f, __t, __urng, __p); } |
3662 | |
3663 | template<typename _UniformRandomNumberGenerator> |
3664 | void |
3665 | __generate(result_type* __f, result_type* __t, |
3666 | _UniformRandomNumberGenerator& __urng, |
3667 | const param_type& __p) |
3668 | { this->__generate_impl(__f, __t, __urng, __p); } |
3669 | |
3670 | /** |
3671 | * @brief Return true if two Bernoulli distributions have |
3672 | * the same parameters. |
3673 | */ |
3674 | friend bool |
3675 | operator==(const bernoulli_distribution& __d1, |
3676 | const bernoulli_distribution& __d2) |
3677 | { return __d1._M_param == __d2._M_param; } |
3678 | |
3679 | private: |
3680 | template<typename _ForwardIterator, |
3681 | typename _UniformRandomNumberGenerator> |
3682 | void |
3683 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3684 | _UniformRandomNumberGenerator& __urng, |
3685 | const param_type& __p); |
3686 | |
3687 | param_type _M_param; |
3688 | }; |
3689 | |
3690 | /** |
3691 | * @brief Return true if two Bernoulli distributions have |
3692 | * different parameters. |
3693 | */ |
3694 | inline bool |
3695 | operator!=(const std::bernoulli_distribution& __d1, |
3696 | const std::bernoulli_distribution& __d2) |
3697 | { return !(__d1 == __d2); } |
3698 | |
3699 | /** |
3700 | * @brief Inserts a %bernoulli_distribution random number distribution |
3701 | * @p __x into the output stream @p __os. |
3702 | * |
3703 | * @param __os An output stream. |
3704 | * @param __x A %bernoulli_distribution random number distribution. |
3705 | * |
3706 | * @returns The output stream with the state of @p __x inserted or in |
3707 | * an error state. |
3708 | */ |
3709 | template<typename _CharT, typename _Traits> |
3710 | std::basic_ostream<_CharT, _Traits>& |
3711 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3712 | const std::bernoulli_distribution& __x); |
3713 | |
3714 | /** |
3715 | * @brief Extracts a %bernoulli_distribution random number distribution |
3716 | * @p __x from the input stream @p __is. |
3717 | * |
3718 | * @param __is An input stream. |
3719 | * @param __x A %bernoulli_distribution random number generator engine. |
3720 | * |
3721 | * @returns The input stream with @p __x extracted or in an error state. |
3722 | */ |
3723 | template<typename _CharT, typename _Traits> |
3724 | inline std::basic_istream<_CharT, _Traits>& |
3725 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3726 | std::bernoulli_distribution& __x) |
3727 | { |
3728 | double __p; |
3729 | if (__is >> __p) |
3730 | __x.param(param: bernoulli_distribution::param_type(__p)); |
3731 | return __is; |
3732 | } |
3733 | |
3734 | |
3735 | /** |
3736 | * @brief A discrete binomial random number distribution. |
3737 | * |
3738 | * The formula for the binomial probability density function is |
3739 | * @f$p(i|t,p) = \binom{t}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$ |
3740 | * and @f$p@f$ are the parameters of the distribution. |
3741 | */ |
3742 | template<typename _IntType = int> |
3743 | class binomial_distribution |
3744 | { |
3745 | static_assert(std::is_integral<_IntType>::value, |
3746 | "result_type must be an integral type" ); |
3747 | |
3748 | public: |
3749 | /** The type of the range of the distribution. */ |
3750 | typedef _IntType result_type; |
3751 | |
3752 | /** Parameter type. */ |
3753 | struct param_type |
3754 | { |
3755 | typedef binomial_distribution<_IntType> distribution_type; |
3756 | friend class binomial_distribution<_IntType>; |
3757 | |
3758 | param_type() : param_type(1) { } |
3759 | |
3760 | explicit |
3761 | param_type(_IntType __t, double __p = 0.5) |
3762 | : _M_t(__t), _M_p(__p) |
3763 | { |
3764 | __glibcxx_assert((_M_t >= _IntType(0)) |
3765 | && (_M_p >= 0.0) |
3766 | && (_M_p <= 1.0)); |
3767 | _M_initialize(); |
3768 | } |
3769 | |
3770 | _IntType |
3771 | t() const |
3772 | { return _M_t; } |
3773 | |
3774 | double |
3775 | p() const |
3776 | { return _M_p; } |
3777 | |
3778 | friend bool |
3779 | operator==(const param_type& __p1, const param_type& __p2) |
3780 | { return __p1._M_t == __p2._M_t && __p1._M_p == __p2._M_p; } |
3781 | |
3782 | friend bool |
3783 | operator!=(const param_type& __p1, const param_type& __p2) |
3784 | { return !(__p1 == __p2); } |
3785 | |
3786 | private: |
3787 | void |
3788 | _M_initialize(); |
3789 | |
3790 | _IntType _M_t; |
3791 | double _M_p; |
3792 | |
3793 | double _M_q; |
3794 | #if _GLIBCXX_USE_C99_MATH_TR1 |
3795 | double _M_d1, _M_d2, _M_s1, _M_s2, _M_c, |
3796 | _M_a1, _M_a123, _M_s, _M_lf, _M_lp1p; |
3797 | #endif |
3798 | bool _M_easy; |
3799 | }; |
3800 | |
3801 | // constructors and member functions |
3802 | |
3803 | binomial_distribution() : binomial_distribution(1) { } |
3804 | |
3805 | explicit |
3806 | binomial_distribution(_IntType __t, double __p = 0.5) |
3807 | : _M_param(__t, __p), _M_nd() |
3808 | { } |
3809 | |
3810 | explicit |
3811 | binomial_distribution(const param_type& __p) |
3812 | : _M_param(__p), _M_nd() |
3813 | { } |
3814 | |
3815 | /** |
3816 | * @brief Resets the distribution state. |
3817 | */ |
3818 | void |
3819 | reset() |
3820 | { _M_nd.reset(); } |
3821 | |
3822 | /** |
3823 | * @brief Returns the distribution @p t parameter. |
3824 | */ |
3825 | _IntType |
3826 | t() const |
3827 | { return _M_param.t(); } |
3828 | |
3829 | /** |
3830 | * @brief Returns the distribution @p p parameter. |
3831 | */ |
3832 | double |
3833 | p() const |
3834 | { return _M_param.p(); } |
3835 | |
3836 | /** |
3837 | * @brief Returns the parameter set of the distribution. |
3838 | */ |
3839 | param_type |
3840 | param() const |
3841 | { return _M_param; } |
3842 | |
3843 | /** |
3844 | * @brief Sets the parameter set of the distribution. |
3845 | * @param __param The new parameter set of the distribution. |
3846 | */ |
3847 | void |
3848 | param(const param_type& __param) |
3849 | { _M_param = __param; } |
3850 | |
3851 | /** |
3852 | * @brief Returns the greatest lower bound value of the distribution. |
3853 | */ |
3854 | result_type |
3855 | min() const |
3856 | { return 0; } |
3857 | |
3858 | /** |
3859 | * @brief Returns the least upper bound value of the distribution. |
3860 | */ |
3861 | result_type |
3862 | max() const |
3863 | { return _M_param.t(); } |
3864 | |
3865 | /** |
3866 | * @brief Generating functions. |
3867 | */ |
3868 | template<typename _UniformRandomNumberGenerator> |
3869 | result_type |
3870 | operator()(_UniformRandomNumberGenerator& __urng) |
3871 | { return this->operator()(__urng, _M_param); } |
3872 | |
3873 | template<typename _UniformRandomNumberGenerator> |
3874 | result_type |
3875 | operator()(_UniformRandomNumberGenerator& __urng, |
3876 | const param_type& __p); |
3877 | |
3878 | template<typename _ForwardIterator, |
3879 | typename _UniformRandomNumberGenerator> |
3880 | void |
3881 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3882 | _UniformRandomNumberGenerator& __urng) |
3883 | { this->__generate(__f, __t, __urng, _M_param); } |
3884 | |
3885 | template<typename _ForwardIterator, |
3886 | typename _UniformRandomNumberGenerator> |
3887 | void |
3888 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3889 | _UniformRandomNumberGenerator& __urng, |
3890 | const param_type& __p) |
3891 | { this->__generate_impl(__f, __t, __urng, __p); } |
3892 | |
3893 | template<typename _UniformRandomNumberGenerator> |
3894 | void |
3895 | __generate(result_type* __f, result_type* __t, |
3896 | _UniformRandomNumberGenerator& __urng, |
3897 | const param_type& __p) |
3898 | { this->__generate_impl(__f, __t, __urng, __p); } |
3899 | |
3900 | /** |
3901 | * @brief Return true if two binomial distributions have |
3902 | * the same parameters and the sequences that would |
3903 | * be generated are equal. |
3904 | */ |
3905 | friend bool |
3906 | operator==(const binomial_distribution& __d1, |
3907 | const binomial_distribution& __d2) |
3908 | #ifdef _GLIBCXX_USE_C99_MATH_TR1 |
3909 | { return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; } |
3910 | #else |
3911 | { return __d1._M_param == __d2._M_param; } |
3912 | #endif |
3913 | |
3914 | /** |
3915 | * @brief Inserts a %binomial_distribution random number distribution |
3916 | * @p __x into the output stream @p __os. |
3917 | * |
3918 | * @param __os An output stream. |
3919 | * @param __x A %binomial_distribution random number distribution. |
3920 | * |
3921 | * @returns The output stream with the state of @p __x inserted or in |
3922 | * an error state. |
3923 | */ |
3924 | template<typename _IntType1, |
3925 | typename _CharT, typename _Traits> |
3926 | friend std::basic_ostream<_CharT, _Traits>& |
3927 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3928 | const std::binomial_distribution<_IntType1>& __x); |
3929 | |
3930 | /** |
3931 | * @brief Extracts a %binomial_distribution random number distribution |
3932 | * @p __x from the input stream @p __is. |
3933 | * |
3934 | * @param __is An input stream. |
3935 | * @param __x A %binomial_distribution random number generator engine. |
3936 | * |
3937 | * @returns The input stream with @p __x extracted or in an error |
3938 | * state. |
3939 | */ |
3940 | template<typename _IntType1, |
3941 | typename _CharT, typename _Traits> |
3942 | friend std::basic_istream<_CharT, _Traits>& |
3943 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3944 | std::binomial_distribution<_IntType1>& __x); |
3945 | |
3946 | private: |
3947 | template<typename _ForwardIterator, |
3948 | typename _UniformRandomNumberGenerator> |
3949 | void |
3950 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3951 | _UniformRandomNumberGenerator& __urng, |
3952 | const param_type& __p); |
3953 | |
3954 | template<typename _UniformRandomNumberGenerator> |
3955 | result_type |
3956 | _M_waiting(_UniformRandomNumberGenerator& __urng, |
3957 | _IntType __t, double __q); |
3958 | |
3959 | param_type _M_param; |
3960 | |
3961 | // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined. |
3962 | std::normal_distribution<double> _M_nd; |
3963 | }; |
3964 | |
3965 | /** |
3966 | * @brief Return true if two binomial distributions are different. |
3967 | */ |
3968 | template<typename _IntType> |
3969 | inline bool |
3970 | operator!=(const std::binomial_distribution<_IntType>& __d1, |
3971 | const std::binomial_distribution<_IntType>& __d2) |
3972 | { return !(__d1 == __d2); } |
3973 | |
3974 | |
3975 | /** |
3976 | * @brief A discrete geometric random number distribution. |
3977 | * |
3978 | * The formula for the geometric probability density function is |
3979 | * @f$p(i|p) = p(1 - p)^{i}@f$ where @f$p@f$ is the parameter of the |
3980 | * distribution. |
3981 | */ |
3982 | template<typename _IntType = int> |
3983 | class geometric_distribution |
3984 | { |
3985 | static_assert(std::is_integral<_IntType>::value, |
3986 | "result_type must be an integral type" ); |
3987 | |
3988 | public: |
3989 | /** The type of the range of the distribution. */ |
3990 | typedef _IntType result_type; |
3991 | |
3992 | /** Parameter type. */ |
3993 | struct param_type |
3994 | { |
3995 | typedef geometric_distribution<_IntType> distribution_type; |
3996 | friend class geometric_distribution<_IntType>; |
3997 | |
3998 | param_type() : param_type(0.5) { } |
3999 | |
4000 | explicit |
4001 | param_type(double __p) |
4002 | : _M_p(__p) |
4003 | { |
4004 | __glibcxx_assert((_M_p > 0.0) && (_M_p < 1.0)); |
4005 | _M_initialize(); |
4006 | } |
4007 | |
4008 | double |
4009 | p() const |
4010 | { return _M_p; } |
4011 | |
4012 | friend bool |
4013 | operator==(const param_type& __p1, const param_type& __p2) |
4014 | { return __p1._M_p == __p2._M_p; } |
4015 | |
4016 | friend bool |
4017 | operator!=(const param_type& __p1, const param_type& __p2) |
4018 | { return !(__p1 == __p2); } |
4019 | |
4020 | private: |
4021 | void |
4022 | _M_initialize() |
4023 | { _M_log_1_p = std::log(x: 1.0 - _M_p); } |
4024 | |
4025 | double _M_p; |
4026 | |
4027 | double _M_log_1_p; |
4028 | }; |
4029 | |
4030 | // constructors and member functions |
4031 | |
4032 | geometric_distribution() : geometric_distribution(0.5) { } |
4033 | |
4034 | explicit |
4035 | geometric_distribution(double __p) |
4036 | : _M_param(__p) |
4037 | { } |
4038 | |
4039 | explicit |
4040 | geometric_distribution(const param_type& __p) |
4041 | : _M_param(__p) |
4042 | { } |
4043 | |
4044 | /** |
4045 | * @brief Resets the distribution state. |
4046 | * |
4047 | * Does nothing for the geometric distribution. |
4048 | */ |
4049 | void |
4050 | reset() { } |
4051 | |
4052 | /** |
4053 | * @brief Returns the distribution parameter @p p. |
4054 | */ |
4055 | double |
4056 | p() const |
4057 | { return _M_param.p(); } |
4058 | |
4059 | /** |
4060 | * @brief Returns the parameter set of the distribution. |
4061 | */ |
4062 | param_type |
4063 | param() const |
4064 | { return _M_param; } |
4065 | |
4066 | /** |
4067 | * @brief Sets the parameter set of the distribution. |
4068 | * @param __param The new parameter set of the distribution. |
4069 | */ |
4070 | void |
4071 | param(const param_type& __param) |
4072 | { _M_param = __param; } |
4073 | |
4074 | /** |
4075 | * @brief Returns the greatest lower bound value of the distribution. |
4076 | */ |
4077 | result_type |
4078 | min() const |
4079 | { return 0; } |
4080 | |
4081 | /** |
4082 | * @brief Returns the least upper bound value of the distribution. |
4083 | */ |
4084 | result_type |
4085 | max() const |
4086 | { return std::numeric_limits<result_type>::max(); } |
4087 | |
4088 | /** |
4089 | * @brief Generating functions. |
4090 | */ |
4091 | template<typename _UniformRandomNumberGenerator> |
4092 | result_type |
4093 | operator()(_UniformRandomNumberGenerator& __urng) |
4094 | { return this->operator()(__urng, _M_param); } |
4095 | |
4096 | template<typename _UniformRandomNumberGenerator> |
4097 | result_type |
4098 | operator()(_UniformRandomNumberGenerator& __urng, |
4099 | const param_type& __p); |
4100 | |
4101 | template<typename _ForwardIterator, |
4102 | typename _UniformRandomNumberGenerator> |
4103 | void |
4104 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4105 | _UniformRandomNumberGenerator& __urng) |
4106 | { this->__generate(__f, __t, __urng, _M_param); } |
4107 | |
4108 | template<typename _ForwardIterator, |
4109 | typename _UniformRandomNumberGenerator> |
4110 | void |
4111 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4112 | _UniformRandomNumberGenerator& __urng, |
4113 | const param_type& __p) |
4114 | { this->__generate_impl(__f, __t, __urng, __p); } |
4115 | |
4116 | template<typename _UniformRandomNumberGenerator> |
4117 | void |
4118 | __generate(result_type* __f, result_type* __t, |
4119 | _UniformRandomNumberGenerator& __urng, |
4120 | const param_type& __p) |
4121 | { this->__generate_impl(__f, __t, __urng, __p); } |
4122 | |
4123 | /** |
4124 | * @brief Return true if two geometric distributions have |
4125 | * the same parameters. |
4126 | */ |
4127 | friend bool |
4128 | operator==(const geometric_distribution& __d1, |
4129 | const geometric_distribution& __d2) |
4130 | { return __d1._M_param == __d2._M_param; } |
4131 | |
4132 | private: |
4133 | template<typename _ForwardIterator, |
4134 | typename _UniformRandomNumberGenerator> |
4135 | void |
4136 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
4137 | _UniformRandomNumberGenerator& __urng, |
4138 | const param_type& __p); |
4139 | |
4140 | param_type _M_param; |
4141 | }; |
4142 | |
4143 | /** |
4144 | * @brief Return true if two geometric distributions have |
4145 | * different parameters. |
4146 | */ |
4147 | template<typename _IntType> |
4148 | inline bool |
4149 | operator!=(const std::geometric_distribution<_IntType>& __d1, |
4150 | const std::geometric_distribution<_IntType>& __d2) |
4151 | { return !(__d1 == __d2); } |
4152 | |
4153 | /** |
4154 | * @brief Inserts a %geometric_distribution random number distribution |
4155 | * @p __x into the output stream @p __os. |
4156 | * |
4157 | * @param __os An output stream. |
4158 | * @param __x A %geometric_distribution random number distribution. |
4159 | * |
4160 | * @returns The output stream with the state of @p __x inserted or in |
4161 | * an error state. |
4162 | */ |
4163 | template<typename _IntType, |
4164 | typename _CharT, typename _Traits> |
4165 | std::basic_ostream<_CharT, _Traits>& |
4166 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
4167 | const std::geometric_distribution<_IntType>& __x); |
4168 | |
4169 | /** |
4170 | * @brief Extracts a %geometric_distribution random number distribution |
4171 | * @p __x from the input stream @p __is. |
4172 | * |
4173 | * @param __is An input stream. |
4174 | * @param __x A %geometric_distribution random number generator engine. |
4175 | * |
4176 | * @returns The input stream with @p __x extracted or in an error state. |
4177 | */ |
4178 | template<typename _IntType, |
4179 | typename _CharT, typename _Traits> |
4180 | std::basic_istream<_CharT, _Traits>& |
4181 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
4182 | std::geometric_distribution<_IntType>& __x); |
4183 | |
4184 | |
4185 | /** |
4186 | * @brief A negative_binomial_distribution random number distribution. |
4187 | * |
4188 | * The formula for the negative binomial probability mass function is |
4189 | * @f$p(i) = \binom{n}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$ |
4190 | * and @f$p@f$ are the parameters of the distribution. |
4191 | */ |
4192 | template<typename _IntType = int> |
4193 | class negative_binomial_distribution |
4194 | { |
4195 | static_assert(std::is_integral<_IntType>::value, |
4196 | "result_type must be an integral type" ); |
4197 | |
4198 | public: |
4199 | /** The type of the range of the distribution. */ |
4200 | typedef _IntType result_type; |
4201 | |
4202 | /** Parameter type. */ |
4203 | struct param_type |
4204 | { |
4205 | typedef negative_binomial_distribution<_IntType> distribution_type; |
4206 | |
4207 | param_type() : param_type(1) { } |
4208 | |
4209 | explicit |
4210 | param_type(_IntType __k, double __p = 0.5) |
4211 | : _M_k(__k), _M_p(__p) |
4212 | { |
4213 | __glibcxx_assert((_M_k > 0) && (_M_p > 0.0) && (_M_p <= 1.0)); |
4214 | } |
4215 | |
4216 | _IntType |
4217 | k() const |
4218 | { return _M_k; } |
4219 | |
4220 | double |
4221 | p() const |
4222 | { return _M_p; } |
4223 | |
4224 | friend bool |
4225 | operator==(const param_type& __p1, const param_type& __p2) |
4226 | { return __p1._M_k == __p2._M_k && __p1._M_p == __p2._M_p; } |
4227 | |
4228 | friend bool |
4229 | operator!=(const param_type& __p1, const param_type& __p2) |
4230 | { return !(__p1 == __p2); } |
4231 | |
4232 | private: |
4233 | _IntType _M_k; |
4234 | double _M_p; |
4235 | }; |
4236 | |
4237 | negative_binomial_distribution() : negative_binomial_distribution(1) { } |
4238 | |
4239 | explicit |
4240 | negative_binomial_distribution(_IntType __k, double __p = 0.5) |
4241 | : _M_param(__k, __p), _M_gd(__k, (1.0 - __p) / __p) |
4242 | { } |
4243 | |
4244 | explicit |
4245 | negative_binomial_distribution(const param_type& __p) |
4246 | : _M_param(__p), _M_gd(__p.k(), (1.0 - __p.p()) / __p.p()) |
4247 | { } |
4248 | |
4249 | /** |
4250 | * @brief Resets the distribution state. |
4251 | */ |
4252 | void |
4253 | reset() |
4254 | { _M_gd.reset(); } |
4255 | |
4256 | /** |
4257 | * @brief Return the @f$k@f$ parameter of the distribution. |
4258 | */ |
4259 | _IntType |
4260 | k() const |
4261 | { return _M_param.k(); } |
4262 | |
4263 | /** |
4264 | * @brief Return the @f$p@f$ parameter of the distribution. |
4265 | */ |
4266 | double |
4267 | p() const |
4268 | { return _M_param.p(); } |
4269 | |
4270 | /** |
4271 | * @brief Returns the parameter set of the distribution. |
4272 | */ |
4273 | param_type |
4274 | param() const |
4275 | { return _M_param; } |
4276 | |
4277 | /** |
4278 | * @brief Sets the parameter set of the distribution. |
4279 | * @param __param The new parameter set of the distribution. |
4280 | */ |
4281 | void |
4282 | param(const param_type& __param) |
4283 | { _M_param = __param; } |
4284 | |
4285 | /** |
4286 | * @brief Returns the greatest lower bound value of the distribution. |
4287 | */ |
4288 | result_type |
4289 | min() const |
4290 | { return result_type(0); } |
4291 | |
4292 | /** |
4293 | * @brief Returns the least upper bound value of the distribution. |
4294 | */ |
4295 | result_type |
4296 | max() const |
4297 | { return std::numeric_limits<result_type>::max(); } |
4298 | |
4299 | /** |
4300 | * @brief Generating functions. |
4301 | */ |
4302 | template<typename _UniformRandomNumberGenerator> |
4303 | result_type |
4304 | operator()(_UniformRandomNumberGenerator& __urng); |
4305 | |
4306 | template<typename _UniformRandomNumberGenerator> |
4307 | result_type |
4308 | operator()(_UniformRandomNumberGenerator& __urng, |
4309 | const param_type& __p); |
4310 | |
4311 | template<typename _ForwardIterator, |
4312 | typename _UniformRandomNumberGenerator> |
4313 | void |
4314 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4315 | _UniformRandomNumberGenerator& __urng) |
4316 | { this->__generate_impl(__f, __t, __urng); } |
4317 | |
4318 | template<typename _ForwardIterator, |
4319 | typename _UniformRandomNumberGenerator> |
4320 | void |
4321 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4322 | _UniformRandomNumberGenerator& __urng, |
4323 | const param_type& __p) |
4324 | { this->__generate_impl(__f, __t, __urng, __p); } |
4325 | |
4326 | template<typename _UniformRandomNumberGenerator> |
4327 | void |
4328 | __generate(result_type* __f, result_type* __t, |
4329 | _UniformRandomNumberGenerator& __urng) |
4330 | { this->__generate_impl(__f, __t, __urng); } |
4331 | |
4332 | template<typename _UniformRandomNumberGenerator> |
4333 | void |
4334 | __generate(result_type* __f, result_type* __t, |
4335 | _UniformRandomNumberGenerator& __urng, |
4336 | const param_type& __p) |
4337 | { this->__generate_impl(__f, __t, __urng, __p); } |
4338 | |
4339 | /** |
4340 | * @brief Return true if two negative binomial distributions have |
4341 | * the same parameters and the sequences that would be |
4342 | * generated are equal. |
4343 | */ |
4344 | friend bool |
4345 | operator==(const negative_binomial_distribution& __d1, |
4346 | const negative_binomial_distribution& __d2) |
4347 | { return __d1._M_param == __d2._M_param && __d1._M_gd == __d2._M_gd; } |
4348 | |
4349 | /** |
4350 | * @brief Inserts a %negative_binomial_distribution random |
4351 | * number distribution @p __x into the output stream @p __os. |
4352 | * |
4353 | * @param __os An output stream. |
4354 | * @param __x A %negative_binomial_distribution random number |
4355 | * distribution. |
4356 | * |
4357 | * @returns The output stream with the state of @p __x inserted or in |
4358 | * an error state. |
4359 | */ |
4360 | template<typename _IntType1, typename _CharT, typename _Traits> |
4361 | friend std::basic_ostream<_CharT, _Traits>& |
4362 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
4363 | const std::negative_binomial_distribution<_IntType1>& __x); |
4364 | |
4365 | /** |
4366 | * @brief Extracts a %negative_binomial_distribution random number |
4367 | * distribution @p __x from the input stream @p __is. |
4368 | * |
4369 | * @param __is An input stream. |
4370 | * @param __x A %negative_binomial_distribution random number |
4371 | * generator engine. |
4372 | * |
4373 | * @returns The input stream with @p __x extracted or in an error state. |
4374 | */ |
4375 | template<typename _IntType1, typename _CharT, typename _Traits> |
4376 | friend std::basic_istream<_CharT, _Traits>& |
4377 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
4378 | std::negative_binomial_distribution<_IntType1>& __x); |
4379 | |
4380 | private: |
4381 | template<typename _ForwardIterator, |
4382 | typename _UniformRandomNumberGenerator> |
4383 | void |
4384 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
4385 | _UniformRandomNumberGenerator& __urng); |
4386 | template<typename _ForwardIterator, |
4387 | typename _UniformRandomNumberGenerator> |
4388 | void |
4389 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
4390 | _UniformRandomNumberGenerator& __urng, |
4391 | const param_type& __p); |
4392 | |
4393 | param_type _M_param; |
4394 | |
4395 | std::gamma_distribution<double> _M_gd; |
4396 | }; |
4397 | |
4398 | /** |
4399 | * @brief Return true if two negative binomial distributions are different. |
4400 | */ |
4401 | template<typename _IntType> |
4402 | inline bool |
4403 | operator!=(const std::negative_binomial_distribution<_IntType>& __d1, |
4404 | const std::negative_binomial_distribution<_IntType>& __d2) |
4405 | { return !(__d1 == __d2); } |
4406 | |
4407 | |
4408 | /// @} group random_distributions_bernoulli |
4409 | |
4410 | /** |
4411 | * @addtogroup random_distributions_poisson Poisson Distributions |
4412 | * @ingroup random_distributions |
4413 | * @{ |
4414 | */ |
4415 | |
4416 | /** |
4417 | * @brief A discrete Poisson random number distribution. |
4418 | * |
4419 | * The formula for the Poisson probability density function is |
4420 | * @f$p(i|\mu) = \frac{\mu^i}{i!} e^{-\mu}@f$ where @f$\mu@f$ is the |
4421 | * parameter of the distribution. |
4422 | */ |
4423 | template<typename _IntType = int> |
4424 | class poisson_distribution |
4425 | { |
4426 | static_assert(std::is_integral<_IntType>::value, |
4427 | "result_type must be an integral type" ); |
4428 | |
4429 | public: |
4430 | /** The type of the range of the distribution. */ |
4431 | typedef _IntType result_type; |
4432 | |
4433 | /** Parameter type. */ |
4434 | struct param_type |
4435 | { |
4436 | typedef poisson_distribution<_IntType> distribution_type; |
4437 | friend class poisson_distribution<_IntType>; |
4438 | |
4439 | param_type() : param_type(1.0) { } |
4440 | |
4441 | explicit |
4442 | param_type(double __mean) |
4443 | : _M_mean(__mean) |
4444 | { |
4445 | __glibcxx_assert(_M_mean > 0.0); |
4446 | _M_initialize(); |
4447 | } |
4448 | |
4449 | double |
4450 | mean() const |
4451 | { return _M_mean; } |
4452 | |
4453 | friend bool |
4454 | operator==(const param_type& __p1, const param_type& __p2) |
4455 | { return __p1._M_mean == __p2._M_mean; } |
4456 | |
4457 | friend bool |
4458 | operator!=(const param_type& __p1, const param_type& __p2) |
4459 | { return !(__p1 == __p2); } |
4460 | |
4461 | private: |
4462 | // Hosts either log(mean) or the threshold of the simple method. |
4463 | void |
4464 | _M_initialize(); |
4465 | |
4466 | double _M_mean; |
4467 | |
4468 | double _M_lm_thr; |
4469 | #if _GLIBCXX_USE_C99_MATH_TR1 |
4470 | double _M_lfm, _M_sm, _M_d, _M_scx, _M_1cx, _M_c2b, _M_cb; |
4471 | #endif |
4472 | }; |
4473 | |
4474 | // constructors and member functions |
4475 | |
4476 | poisson_distribution() : poisson_distribution(1.0) { } |
4477 | |
4478 | explicit |
4479 | poisson_distribution(double __mean) |
4480 | : _M_param(__mean), _M_nd() |
4481 | { } |
4482 | |
4483 | explicit |
4484 | poisson_distribution(const param_type& __p) |
4485 | : _M_param(__p), _M_nd() |
4486 | { } |
4487 | |
4488 | /** |
4489 | * @brief Resets the distribution state. |
4490 | */ |
4491 | void |
4492 | reset() |
4493 | { _M_nd.reset(); } |
4494 | |
4495 | /** |
4496 | * @brief Returns the distribution parameter @p mean. |
4497 | */ |
4498 | double |
4499 | mean() const |
4500 | { return _M_param.mean(); } |
4501 | |
4502 | /** |
4503 | * @brief Returns the parameter set of the distribution. |
4504 | */ |
4505 | param_type |
4506 | param() const |
4507 | { return _M_param; } |
4508 | |
4509 | /** |
4510 | * @brief Sets the parameter set of the distribution. |
4511 | * @param __param The new parameter set of the distribution. |
4512 | */ |
4513 | void |
4514 | param(const param_type& __param) |
4515 | { _M_param = __param; } |
4516 | |
4517 | /** |
4518 | * @brief Returns the greatest lower bound value of the distribution. |
4519 | */ |
4520 | result_type |
4521 | min() const |
4522 | { return 0; } |
4523 | |
4524 | /** |
4525 | * @brief Returns the least upper bound value of the distribution. |
4526 | */ |
4527 | result_type |
4528 | max() const |
4529 | { return std::numeric_limits<result_type>::max(); } |
4530 | |
4531 | /** |
4532 | * @brief Generating functions. |
4533 | */ |
4534 | template<typename _UniformRandomNumberGenerator> |
4535 | result_type |
4536 | operator()(_UniformRandomNumberGenerator& __urng) |
4537 | { return this->operator()(__urng, _M_param); } |
4538 | |
4539 | template<typename _UniformRandomNumberGenerator> |
4540 | result_type |
4541 | operator()(_UniformRandomNumberGenerator& __urng, |
4542 | const param_type& __p); |
4543 | |
4544 | template<typename _ForwardIterator, |
4545 | typename _UniformRandomNumberGenerator> |
4546 | void |
4547 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4548 | _UniformRandomNumberGenerator& __urng) |
4549 | { this->__generate(__f, __t, __urng, _M_param); } |
4550 | |
4551 | template<typename _ForwardIterator, |
4552 | typename _UniformRandomNumberGenerator> |
4553 | void |
4554 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4555 | _UniformRandomNumberGenerator& __urng, |
4556 | const param_type& __p) |
4557 | { this->__generate_impl(__f, __t, __urng, __p); } |
4558 | |
4559 | template<typename _UniformRandomNumberGenerator> |
4560 | void |
4561 | __generate(result_type* __f, result_type* __t, |
4562 | _UniformRandomNumberGenerator& __urng, |
4563 | const param_type& __p) |
4564 | { this->__generate_impl(__f, __t, __urng, __p); } |
4565 | |
4566 | /** |
4567 | * @brief Return true if two Poisson distributions have the same |
4568 | * parameters and the sequences that would be generated |
4569 | * are equal. |
4570 | */ |
4571 | friend bool |
4572 | operator==(const poisson_distribution& __d1, |
4573 | const poisson_distribution& __d2) |
4574 | #ifdef _GLIBCXX_USE_C99_MATH_TR1 |
4575 | { return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; } |
4576 | #else |
4577 | { return __d1._M_param == __d2._M_param; } |
4578 | #endif |
4579 | |
4580 | /** |
4581 | * @brief Inserts a %poisson_distribution random number distribution |
4582 | * @p __x into the output stream @p __os. |
4583 | * |
4584 | * @param __os An output stream. |
4585 | * @param __x A %poisson_distribution random number distribution. |
4586 | * |
4587 | * @returns The output stream with the state of @p __x inserted or in |
4588 | * an error state. |
4589 | */ |
4590 | template<typename _IntType1, typename _CharT, typename _Traits> |
4591 | friend std::basic_ostream<_CharT, _Traits>& |
4592 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
4593 | const std::poisson_distribution<_IntType1>& __x); |
4594 | |
4595 | /** |
4596 | * @brief Extracts a %poisson_distribution random number distribution |
4597 | * @p __x from the input stream @p __is. |
4598 | * |
4599 | * @param __is An input stream. |
4600 | * @param __x A %poisson_distribution random number generator engine. |
4601 | * |
4602 | * @returns The input stream with @p __x extracted or in an error |
4603 | * state. |
4604 | */ |
4605 | template<typename _IntType1, typename _CharT, typename _Traits> |
4606 | friend std::basic_istream<_CharT, _Traits>& |
4607 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
4608 | std::poisson_distribution<_IntType1>& __x); |
4609 | |
4610 | private: |
4611 | template<typename _ForwardIterator, |
4612 | typename _UniformRandomNumberGenerator> |
4613 | void |
4614 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
4615 | _UniformRandomNumberGenerator& __urng, |
4616 | const param_type& __p); |
4617 | |
4618 | param_type _M_param; |
4619 | |
4620 | // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined. |
4621 | std::normal_distribution<double> _M_nd; |
4622 | }; |
4623 | |
4624 | /** |
4625 | * @brief Return true if two Poisson distributions are different. |
4626 | */ |
4627 | template<typename _IntType> |
4628 | inline bool |
4629 | operator!=(const std::poisson_distribution<_IntType>& __d1, |
4630 | const std::poisson_distribution<_IntType>& __d2) |
4631 | { return !(__d1 == __d2); } |
4632 | |
4633 | |
4634 | /** |
4635 | * @brief An exponential continuous distribution for random numbers. |
4636 | * |
4637 | * The formula for the exponential probability density function is |
4638 | * @f$p(x|\lambda) = \lambda e^{-\lambda x}@f$. |
4639 | * |
4640 | * <table border=1 cellpadding=10 cellspacing=0> |
4641 | * <caption align=top>Distribution Statistics</caption> |
4642 | * <tr><td>Mean</td><td>@f$\frac{1}{\lambda}@f$</td></tr> |
4643 | * <tr><td>Median</td><td>@f$\frac{\ln 2}{\lambda}@f$</td></tr> |
4644 | * <tr><td>Mode</td><td>@f$zero@f$</td></tr> |
4645 | * <tr><td>Range</td><td>@f$[0, \infty]@f$</td></tr> |
4646 | * <tr><td>Standard Deviation</td><td>@f$\frac{1}{\lambda}@f$</td></tr> |
4647 | * </table> |
4648 | */ |
4649 | template<typename _RealType = double> |
4650 | class exponential_distribution |
4651 | { |
4652 | static_assert(std::is_floating_point<_RealType>::value, |
4653 | "result_type must be a floating point type" ); |
4654 | |
4655 | public: |
4656 | /** The type of the range of the distribution. */ |
4657 | typedef _RealType result_type; |
4658 | |
4659 | /** Parameter type. */ |
4660 | struct param_type |
4661 | { |
4662 | typedef exponential_distribution<_RealType> distribution_type; |
4663 | |
4664 | param_type() : param_type(1.0) { } |
4665 | |
4666 | explicit |
4667 | param_type(_RealType __lambda) |
4668 | : _M_lambda(__lambda) |
4669 | { |
4670 | __glibcxx_assert(_M_lambda > _RealType(0)); |
4671 | } |
4672 | |
4673 | _RealType |
4674 | lambda() const |
4675 | { return _M_lambda; } |
4676 | |
4677 | friend bool |
4678 | operator==(const param_type& __p1, const param_type& __p2) |
4679 | { return __p1._M_lambda == __p2._M_lambda; } |
4680 | |
4681 | friend bool |
4682 | operator!=(const param_type& __p1, const param_type& __p2) |
4683 | { return !(__p1 == __p2); } |
4684 | |
4685 | private: |
4686 | _RealType _M_lambda; |
4687 | }; |
4688 | |
4689 | public: |
4690 | /** |
4691 | * @brief Constructs an exponential distribution with inverse scale |
4692 | * parameter 1.0 |
4693 | */ |
4694 | exponential_distribution() : exponential_distribution(1.0) { } |
4695 | |
4696 | /** |
4697 | * @brief Constructs an exponential distribution with inverse scale |
4698 | * parameter @f$\lambda@f$. |
4699 | */ |
4700 | explicit |
4701 | exponential_distribution(_RealType __lambda) |
4702 | : _M_param(__lambda) |
4703 | { } |
4704 | |
4705 | explicit |
4706 | exponential_distribution(const param_type& __p) |
4707 | : _M_param(__p) |
4708 | { } |
4709 | |
4710 | /** |
4711 | * @brief Resets the distribution state. |
4712 | * |
4713 | * Has no effect on exponential distributions. |
4714 | */ |
4715 | void |
4716 | reset() { } |
4717 | |
4718 | /** |
4719 | * @brief Returns the inverse scale parameter of the distribution. |
4720 | */ |
4721 | _RealType |
4722 | lambda() const |
4723 | { return _M_param.lambda(); } |
4724 | |
4725 | /** |
4726 | * @brief Returns the parameter set of the distribution. |
4727 | */ |
4728 | param_type |
4729 | param() const |
4730 | { return _M_param; } |
4731 | |
4732 | /** |
4733 | * @brief Sets the parameter set of the distribution. |
4734 | * @param __param The new parameter set of the distribution. |
4735 | */ |
4736 | void |
4737 | param(const param_type& __param) |
4738 | { _M_param = __param; } |
4739 | |
4740 | /** |
4741 | * @brief Returns the greatest lower bound value of the distribution. |
4742 | */ |
4743 | result_type |
4744 | min() const |
4745 | { return result_type(0); } |
4746 | |
4747 | /** |
4748 | * @brief Returns the least upper bound value of the distribution. |
4749 | */ |
4750 | result_type |
4751 | max() const |
4752 | { return std::numeric_limits<result_type>::max(); } |
4753 | |
4754 | /** |
4755 | * @brief Generating functions. |
4756 | */ |
4757 | template<typename _UniformRandomNumberGenerator> |
4758 | result_type |
4759 | operator()(_UniformRandomNumberGenerator& __urng) |
4760 | { return this->operator()(__urng, _M_param); } |
4761 | |
4762 | template<typename _UniformRandomNumberGenerator> |
4763 | result_type |
4764 | operator()(_UniformRandomNumberGenerator& __urng, |
4765 | const param_type& __p) |
4766 | { |
4767 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
4768 | __aurng(__urng); |
4769 | return -std::log(result_type(1) - __aurng()) / __p.lambda(); |
4770 | } |
4771 | |
4772 | template<typename _ForwardIterator, |
4773 | typename _UniformRandomNumberGenerator> |
4774 | void |
4775 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4776 | _UniformRandomNumberGenerator& __urng) |
4777 | { this->__generate(__f, __t, __urng, _M_param); } |
4778 | |
4779 | template<typename _ForwardIterator, |
4780 | typename _UniformRandomNumberGenerator> |
4781 | void |
4782 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4783 | _UniformRandomNumberGenerator& __urng, |
4784 | const param_type& __p) |
4785 | { this->__generate_impl(__f, __t, __urng, __p); } |
4786 | |
4787 | template<typename _UniformRandomNumberGenerator> |
4788 | void |
4789 | __generate(result_type* __f, result_type* __t, |
4790 | _UniformRandomNumberGenerator& __urng, |
4791 | const param_type& __p) |
4792 | { this->__generate_impl(__f, __t, __urng, __p); } |
4793 | |
4794 | /** |
4795 | * @brief Return true if two exponential distributions have the same |
4796 | * parameters. |
4797 | */ |
4798 | friend bool |
4799 | operator==(const exponential_distribution& __d1, |
4800 | const exponential_distribution& __d2) |
4801 | { return __d1._M_param == __d2._M_param; } |
4802 | |
4803 | private: |
4804 | template<typename _ForwardIterator, |
4805 | typename _UniformRandomNumberGenerator> |
4806 | void |
4807 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
4808 | _UniformRandomNumberGenerator& __urng, |
4809 | const param_type& __p); |
4810 | |
4811 | param_type _M_param; |
4812 | }; |
4813 | |
4814 | /** |
4815 | * @brief Return true if two exponential distributions have different |
4816 | * parameters. |
4817 | */ |
4818 | template<typename _RealType> |
4819 | inline bool |
4820 | operator!=(const std::exponential_distribution<_RealType>& __d1, |
4821 | const std::exponential_distribution<_RealType>& __d2) |
4822 | { return !(__d1 == __d2); } |
4823 | |
4824 | /** |
4825 | * @brief Inserts a %exponential_distribution random number distribution |
4826 | * @p __x into the output stream @p __os. |
4827 | * |
4828 | * @param __os An output stream. |
4829 | * @param __x A %exponential_distribution random number distribution. |
4830 | * |
4831 | * @returns The output stream with the state of @p __x inserted or in |
4832 | * an error state. |
4833 | */ |
4834 | template<typename _RealType, typename _CharT, typename _Traits> |
4835 | std::basic_ostream<_CharT, _Traits>& |
4836 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
4837 | const std::exponential_distribution<_RealType>& __x); |
4838 | |
4839 | /** |
4840 | * @brief Extracts a %exponential_distribution random number distribution |
4841 | * @p __x from the input stream @p __is. |
4842 | * |
4843 | * @param __is An input stream. |
4844 | * @param __x A %exponential_distribution random number |
4845 | * generator engine. |
4846 | * |
4847 | * @returns The input stream with @p __x extracted or in an error state. |
4848 | */ |
4849 | template<typename _RealType, typename _CharT, typename _Traits> |
4850 | std::basic_istream<_CharT, _Traits>& |
4851 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
4852 | std::exponential_distribution<_RealType>& __x); |
4853 | |
4854 | |
4855 | /** |
4856 | * @brief A weibull_distribution random number distribution. |
4857 | * |
4858 | * The formula for the normal probability density function is: |
4859 | * @f[ |
4860 | * p(x|\alpha,\beta) = \frac{\alpha}{\beta} (\frac{x}{\beta})^{\alpha-1} |
4861 | * \exp{(-(\frac{x}{\beta})^\alpha)} |
4862 | * @f] |
4863 | */ |
4864 | template<typename _RealType = double> |
4865 | class weibull_distribution |
4866 | { |
4867 | static_assert(std::is_floating_point<_RealType>::value, |
4868 | "result_type must be a floating point type" ); |
4869 | |
4870 | public: |
4871 | /** The type of the range of the distribution. */ |
4872 | typedef _RealType result_type; |
4873 | |
4874 | /** Parameter type. */ |
4875 | struct param_type |
4876 | { |
4877 | typedef weibull_distribution<_RealType> distribution_type; |
4878 | |
4879 | param_type() : param_type(1.0) { } |
4880 | |
4881 | explicit |
4882 | param_type(_RealType __a, _RealType __b = _RealType(1.0)) |
4883 | : _M_a(__a), _M_b(__b) |
4884 | { } |
4885 | |
4886 | _RealType |
4887 | a() const |
4888 | { return _M_a; } |
4889 | |
4890 | _RealType |
4891 | b() const |
4892 | { return _M_b; } |
4893 | |
4894 | friend bool |
4895 | operator==(const param_type& __p1, const param_type& __p2) |
4896 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
4897 | |
4898 | friend bool |
4899 | operator!=(const param_type& __p1, const param_type& __p2) |
4900 | { return !(__p1 == __p2); } |
4901 | |
4902 | private: |
4903 | _RealType _M_a; |
4904 | _RealType _M_b; |
4905 | }; |
4906 | |
4907 | weibull_distribution() : weibull_distribution(1.0) { } |
4908 | |
4909 | explicit |
4910 | weibull_distribution(_RealType __a, _RealType __b = _RealType(1)) |
4911 | : _M_param(__a, __b) |
4912 | { } |
4913 | |
4914 | explicit |
4915 | weibull_distribution(const param_type& __p) |
4916 | : _M_param(__p) |
4917 | { } |
4918 | |
4919 | /** |
4920 | * @brief Resets the distribution state. |
4921 | */ |
4922 | void |
4923 | reset() |
4924 | { } |
4925 | |
4926 | /** |
4927 | * @brief Return the @f$a@f$ parameter of the distribution. |
4928 | */ |
4929 | _RealType |
4930 | a() const |
4931 | { return _M_param.a(); } |
4932 | |
4933 | /** |
4934 | * @brief Return the @f$b@f$ parameter of the distribution. |
4935 | */ |
4936 | _RealType |
4937 | b() const |
4938 | { return _M_param.b(); } |
4939 | |
4940 | /** |
4941 | * @brief Returns the parameter set of the distribution. |
4942 | */ |
4943 | param_type |
4944 | param() const |
4945 | { return _M_param; } |
4946 | |
4947 | /** |
4948 | * @brief Sets the parameter set of the distribution. |
4949 | * @param __param The new parameter set of the distribution. |
4950 | */ |
4951 | void |
4952 | param(const param_type& __param) |
4953 | { _M_param = __param; } |
4954 | |
4955 | /** |
4956 | * @brief Returns the greatest lower bound value of the distribution. |
4957 | */ |
4958 | result_type |
4959 | min() const |
4960 | { return result_type(0); } |
4961 | |
4962 | /** |
4963 | * @brief Returns the least upper bound value of the distribution. |
4964 | */ |
4965 | result_type |
4966 | max() const |
4967 | { return std::numeric_limits<result_type>::max(); } |
4968 | |
4969 | /** |
4970 | * @brief Generating functions. |
4971 | */ |
4972 | template<typename _UniformRandomNumberGenerator> |
4973 | result_type |
4974 | operator()(_UniformRandomNumberGenerator& __urng) |
4975 | { return this->operator()(__urng, _M_param); } |
4976 | |
4977 | template<typename _UniformRandomNumberGenerator> |
4978 | result_type |
4979 | operator()(_UniformRandomNumberGenerator& __urng, |
4980 | const param_type& __p); |
4981 | |
4982 | template<typename _ForwardIterator, |
4983 | typename _UniformRandomNumberGenerator> |
4984 | void |
4985 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4986 | _UniformRandomNumberGenerator& __urng) |
4987 | { this->__generate(__f, __t, __urng, _M_param); } |
4988 | |
4989 | template<typename _ForwardIterator, |
4990 | typename _UniformRandomNumberGenerator> |
4991 | void |
4992 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4993 | _UniformRandomNumberGenerator& __urng, |
4994 | const param_type& __p) |
4995 | { this->__generate_impl(__f, __t, __urng, __p); } |
4996 | |
4997 | template<typename _UniformRandomNumberGenerator> |
4998 | void |
4999 | __generate(result_type* __f, result_type* __t, |
5000 | _UniformRandomNumberGenerator& __urng, |
5001 | const param_type& __p) |
5002 | { this->__generate_impl(__f, __t, __urng, __p); } |
5003 | |
5004 | /** |
5005 | * @brief Return true if two Weibull distributions have the same |
5006 | * parameters. |
5007 | */ |
5008 | friend bool |
5009 | operator==(const weibull_distribution& __d1, |
5010 | const weibull_distribution& __d2) |
5011 | { return __d1._M_param == __d2._M_param; } |
5012 | |
5013 | private: |
5014 | template<typename _ForwardIterator, |
5015 | typename _UniformRandomNumberGenerator> |
5016 | void |
5017 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
5018 | _UniformRandomNumberGenerator& __urng, |
5019 | const param_type& __p); |
5020 | |
5021 | param_type _M_param; |
5022 | }; |
5023 | |
5024 | /** |
5025 | * @brief Return true if two Weibull distributions have different |
5026 | * parameters. |
5027 | */ |
5028 | template<typename _RealType> |
5029 | inline bool |
5030 | operator!=(const std::weibull_distribution<_RealType>& __d1, |
5031 | const std::weibull_distribution<_RealType>& __d2) |
5032 | { return !(__d1 == __d2); } |
5033 | |
5034 | /** |
5035 | * @brief Inserts a %weibull_distribution random number distribution |
5036 | * @p __x into the output stream @p __os. |
5037 | * |
5038 | * @param __os An output stream. |
5039 | * @param __x A %weibull_distribution random number distribution. |
5040 | * |
5041 | * @returns The output stream with the state of @p __x inserted or in |
5042 | * an error state. |
5043 | */ |
5044 | template<typename _RealType, typename _CharT, typename _Traits> |
5045 | std::basic_ostream<_CharT, _Traits>& |
5046 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
5047 | const std::weibull_distribution<_RealType>& __x); |
5048 | |
5049 | /** |
5050 | * @brief Extracts a %weibull_distribution random number distribution |
5051 | * @p __x from the input stream @p __is. |
5052 | * |
5053 | * @param __is An input stream. |
5054 | * @param __x A %weibull_distribution random number |
5055 | * generator engine. |
5056 | * |
5057 | * @returns The input stream with @p __x extracted or in an error state. |
5058 | */ |
5059 | template<typename _RealType, typename _CharT, typename _Traits> |
5060 | std::basic_istream<_CharT, _Traits>& |
5061 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
5062 | std::weibull_distribution<_RealType>& __x); |
5063 | |
5064 | |
5065 | /** |
5066 | * @brief A extreme_value_distribution random number distribution. |
5067 | * |
5068 | * The formula for the normal probability mass function is |
5069 | * @f[ |
5070 | * p(x|a,b) = \frac{1}{b} |
5071 | * \exp( \frac{a-x}{b} - \exp(\frac{a-x}{b})) |
5072 | * @f] |
5073 | */ |
5074 | template<typename _RealType = double> |
5075 | class extreme_value_distribution |
5076 | { |
5077 | static_assert(std::is_floating_point<_RealType>::value, |
5078 | "result_type must be a floating point type" ); |
5079 | |
5080 | public: |
5081 | /** The type of the range of the distribution. */ |
5082 | typedef _RealType result_type; |
5083 | |
5084 | /** Parameter type. */ |
5085 | struct param_type |
5086 | { |
5087 | typedef extreme_value_distribution<_RealType> distribution_type; |
5088 | |
5089 | param_type() : param_type(0.0) { } |
5090 | |
5091 | explicit |
5092 | param_type(_RealType __a, _RealType __b = _RealType(1.0)) |
5093 | : _M_a(__a), _M_b(__b) |
5094 | { } |
5095 | |
5096 | _RealType |
5097 | a() const |
5098 | { return _M_a; } |
5099 | |
5100 | _RealType |
5101 | b() const |
5102 | { return _M_b; } |
5103 | |
5104 | friend bool |
5105 | operator==(const param_type& __p1, const param_type& __p2) |
5106 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
5107 | |
5108 | friend bool |
5109 | operator!=(const param_type& __p1, const param_type& __p2) |
5110 | { return !(__p1 == __p2); } |
5111 | |
5112 | private: |
5113 | _RealType _M_a; |
5114 | _RealType _M_b; |
5115 | }; |
5116 | |
5117 | extreme_value_distribution() : extreme_value_distribution(0.0) { } |
5118 | |
5119 | explicit |
5120 | extreme_value_distribution(_RealType __a, _RealType __b = _RealType(1)) |
5121 | : _M_param(__a, __b) |
5122 | { } |
5123 | |
5124 | explicit |
5125 | extreme_value_distribution(const param_type& __p) |
5126 | : _M_param(__p) |
5127 | { } |
5128 | |
5129 | /** |
5130 | * @brief Resets the distribution state. |
5131 | */ |
5132 | void |
5133 | reset() |
5134 | { } |
5135 | |
5136 | /** |
5137 | * @brief Return the @f$a@f$ parameter of the distribution. |
5138 | */ |
5139 | _RealType |
5140 | a() const |
5141 | { return _M_param.a(); } |
5142 | |
5143 | /** |
5144 | * @brief Return the @f$b@f$ parameter of the distribution. |
5145 | */ |
5146 | _RealType |
5147 | b() const |
5148 | { return _M_param.b(); } |
5149 | |
5150 | /** |
5151 | * @brief Returns the parameter set of the distribution. |
5152 | */ |
5153 | param_type |
5154 | param() const |
5155 | { return _M_param; } |
5156 | |
5157 | /** |
5158 | * @brief Sets the parameter set of the distribution. |
5159 | * @param __param The new parameter set of the distribution. |
5160 | */ |
5161 | void |
5162 | param(const param_type& __param) |
5163 | { _M_param = __param; } |
5164 | |
5165 | /** |
5166 | * @brief Returns the greatest lower bound value of the distribution. |
5167 | */ |
5168 | result_type |
5169 | min() const |
5170 | { return std::numeric_limits<result_type>::lowest(); } |
5171 | |
5172 | /** |
5173 | * @brief Returns the least upper bound value of the distribution. |
5174 | */ |
5175 | result_type |
5176 | max() const |
5177 | { return std::numeric_limits<result_type>::max(); } |
5178 | |
5179 | /** |
5180 | * @brief Generating functions. |
5181 | */ |
5182 | template<typename _UniformRandomNumberGenerator> |
5183 | result_type |
5184 | operator()(_UniformRandomNumberGenerator& __urng) |
5185 | { return this->operator()(__urng, _M_param); } |
5186 | |
5187 | template<typename _UniformRandomNumberGenerator> |
5188 | result_type |
5189 | operator()(_UniformRandomNumberGenerator& __urng, |
5190 | const param_type& __p); |
5191 | |
5192 | template<typename _ForwardIterator, |
5193 | typename _UniformRandomNumberGenerator> |
5194 | void |
5195 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5196 | _UniformRandomNumberGenerator& __urng) |
5197 | { this->__generate(__f, __t, __urng, _M_param); } |
5198 | |
5199 | template<typename _ForwardIterator, |
5200 | typename _UniformRandomNumberGenerator> |
5201 | void |
5202 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5203 | _UniformRandomNumberGenerator& __urng, |
5204 | const param_type& __p) |
5205 | { this->__generate_impl(__f, __t, __urng, __p); } |
5206 | |
5207 | template<typename _UniformRandomNumberGenerator> |
5208 | void |
5209 | __generate(result_type* __f, result_type* __t, |
5210 | _UniformRandomNumberGenerator& __urng, |
5211 | const param_type& __p) |
5212 | { this->__generate_impl(__f, __t, __urng, __p); } |
5213 | |
5214 | /** |
5215 | * @brief Return true if two extreme value distributions have the same |
5216 | * parameters. |
5217 | */ |
5218 | friend bool |
5219 | operator==(const extreme_value_distribution& __d1, |
5220 | const extreme_value_distribution& __d2) |
5221 | { return __d1._M_param == __d2._M_param; } |
5222 | |
5223 | private: |
5224 | template<typename _ForwardIterator, |
5225 | typename _UniformRandomNumberGenerator> |
5226 | void |
5227 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
5228 | _UniformRandomNumberGenerator& __urng, |
5229 | const param_type& __p); |
5230 | |
5231 | param_type _M_param; |
5232 | }; |
5233 | |
5234 | /** |
5235 | * @brief Return true if two extreme value distributions have different |
5236 | * parameters. |
5237 | */ |
5238 | template<typename _RealType> |
5239 | inline bool |
5240 | operator!=(const std::extreme_value_distribution<_RealType>& __d1, |
5241 | const std::extreme_value_distribution<_RealType>& __d2) |
5242 | { return !(__d1 == __d2); } |
5243 | |
5244 | /** |
5245 | * @brief Inserts a %extreme_value_distribution random number distribution |
5246 | * @p __x into the output stream @p __os. |
5247 | * |
5248 | * @param __os An output stream. |
5249 | * @param __x A %extreme_value_distribution random number distribution. |
5250 | * |
5251 | * @returns The output stream with the state of @p __x inserted or in |
5252 | * an error state. |
5253 | */ |
5254 | template<typename _RealType, typename _CharT, typename _Traits> |
5255 | std::basic_ostream<_CharT, _Traits>& |
5256 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
5257 | const std::extreme_value_distribution<_RealType>& __x); |
5258 | |
5259 | /** |
5260 | * @brief Extracts a %extreme_value_distribution random number |
5261 | * distribution @p __x from the input stream @p __is. |
5262 | * |
5263 | * @param __is An input stream. |
5264 | * @param __x A %extreme_value_distribution random number |
5265 | * generator engine. |
5266 | * |
5267 | * @returns The input stream with @p __x extracted or in an error state. |
5268 | */ |
5269 | template<typename _RealType, typename _CharT, typename _Traits> |
5270 | std::basic_istream<_CharT, _Traits>& |
5271 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
5272 | std::extreme_value_distribution<_RealType>& __x); |
5273 | |
5274 | |
5275 | /** |
5276 | * @brief A discrete_distribution random number distribution. |
5277 | * |
5278 | * The formula for the discrete probability mass function is |
5279 | * |
5280 | */ |
5281 | template<typename _IntType = int> |
5282 | class discrete_distribution |
5283 | { |
5284 | static_assert(std::is_integral<_IntType>::value, |
5285 | "result_type must be an integral type" ); |
5286 | |
5287 | public: |
5288 | /** The type of the range of the distribution. */ |
5289 | typedef _IntType result_type; |
5290 | |
5291 | /** Parameter type. */ |
5292 | struct param_type |
5293 | { |
5294 | typedef discrete_distribution<_IntType> distribution_type; |
5295 | friend class discrete_distribution<_IntType>; |
5296 | |
5297 | param_type() |
5298 | : _M_prob(), _M_cp() |
5299 | { } |
5300 | |
5301 | template<typename _InputIterator> |
5302 | param_type(_InputIterator __wbegin, |
5303 | _InputIterator __wend) |
5304 | : _M_prob(__wbegin, __wend), _M_cp() |
5305 | { _M_initialize(); } |
5306 | |
5307 | param_type(initializer_list<double> __wil) |
5308 | : _M_prob(__wil.begin(), __wil.end()), _M_cp() |
5309 | { _M_initialize(); } |
5310 | |
5311 | template<typename _Func> |
5312 | param_type(size_t __nw, double __xmin, double __xmax, |
5313 | _Func __fw); |
5314 | |
5315 | // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/ |
5316 | param_type(const param_type&) = default; |
5317 | param_type& operator=(const param_type&) = default; |
5318 | |
5319 | std::vector<double> |
5320 | probabilities() const |
5321 | { return _M_prob.empty() ? std::vector<double>(1, 1.0) : _M_prob; } |
5322 | |
5323 | friend bool |
5324 | operator==(const param_type& __p1, const param_type& __p2) |
5325 | { return __p1._M_prob == __p2._M_prob; } |
5326 | |
5327 | friend bool |
5328 | operator!=(const param_type& __p1, const param_type& __p2) |
5329 | { return !(__p1 == __p2); } |
5330 | |
5331 | private: |
5332 | void |
5333 | _M_initialize(); |
5334 | |
5335 | std::vector<double> _M_prob; |
5336 | std::vector<double> _M_cp; |
5337 | }; |
5338 | |
5339 | discrete_distribution() |
5340 | : _M_param() |
5341 | { } |
5342 | |
5343 | template<typename _InputIterator> |
5344 | discrete_distribution(_InputIterator __wbegin, |
5345 | _InputIterator __wend) |
5346 | : _M_param(__wbegin, __wend) |
5347 | { } |
5348 | |
5349 | discrete_distribution(initializer_list<double> __wl) |
5350 | : _M_param(__wl) |
5351 | { } |
5352 | |
5353 | template<typename _Func> |
5354 | discrete_distribution(size_t __nw, double __xmin, double __xmax, |
5355 | _Func __fw) |
5356 | : _M_param(__nw, __xmin, __xmax, __fw) |
5357 | { } |
5358 | |
5359 | explicit |
5360 | discrete_distribution(const param_type& __p) |
5361 | : _M_param(__p) |
5362 | { } |
5363 | |
5364 | /** |
5365 | * @brief Resets the distribution state. |
5366 | */ |
5367 | void |
5368 | reset() |
5369 | { } |
5370 | |
5371 | /** |
5372 | * @brief Returns the probabilities of the distribution. |
5373 | */ |
5374 | std::vector<double> |
5375 | probabilities() const |
5376 | { |
5377 | return _M_param._M_prob.empty() |
5378 | ? std::vector<double>(1, 1.0) : _M_param._M_prob; |
5379 | } |
5380 | |
5381 | /** |
5382 | * @brief Returns the parameter set of the distribution. |
5383 | */ |
5384 | param_type |
5385 | param() const |
5386 | { return _M_param; } |
5387 | |
5388 | /** |
5389 | * @brief Sets the parameter set of the distribution. |
5390 | * @param __param The new parameter set of the distribution. |
5391 | */ |
5392 | void |
5393 | param(const param_type& __param) |
5394 | { _M_param = __param; } |
5395 | |
5396 | /** |
5397 | * @brief Returns the greatest lower bound value of the distribution. |
5398 | */ |
5399 | result_type |
5400 | min() const |
5401 | { return result_type(0); } |
5402 | |
5403 | /** |
5404 | * @brief Returns the least upper bound value of the distribution. |
5405 | */ |
5406 | result_type |
5407 | max() const |
5408 | { |
5409 | return _M_param._M_prob.empty() |
5410 | ? result_type(0) : result_type(_M_param._M_prob.size() - 1); |
5411 | } |
5412 | |
5413 | /** |
5414 | * @brief Generating functions. |
5415 | */ |
5416 | template<typename _UniformRandomNumberGenerator> |
5417 | result_type |
5418 | operator()(_UniformRandomNumberGenerator& __urng) |
5419 | { return this->operator()(__urng, _M_param); } |
5420 | |
5421 | template<typename _UniformRandomNumberGenerator> |
5422 | result_type |
5423 | operator()(_UniformRandomNumberGenerator& __urng, |
5424 | const param_type& __p); |
5425 | |
5426 | template<typename _ForwardIterator, |
5427 | typename _UniformRandomNumberGenerator> |
5428 | void |
5429 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5430 | _UniformRandomNumberGenerator& __urng) |
5431 | { this->__generate(__f, __t, __urng, _M_param); } |
5432 | |
5433 | template<typename _ForwardIterator, |
5434 | typename _UniformRandomNumberGenerator> |
5435 | void |
5436 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5437 | _UniformRandomNumberGenerator& __urng, |
5438 | const param_type& __p) |
5439 | { this->__generate_impl(__f, __t, __urng, __p); } |
5440 | |
5441 | template<typename _UniformRandomNumberGenerator> |
5442 | void |
5443 | __generate(result_type* __f, result_type* __t, |
5444 | _UniformRandomNumberGenerator& __urng, |
5445 | const param_type& __p) |
5446 | { this->__generate_impl(__f, __t, __urng, __p); } |
5447 | |
5448 | /** |
5449 | * @brief Return true if two discrete distributions have the same |
5450 | * parameters. |
5451 | */ |
5452 | friend bool |
5453 | operator==(const discrete_distribution& __d1, |
5454 | const discrete_distribution& __d2) |
5455 | { return __d1._M_param == __d2._M_param; } |
5456 | |
5457 | /** |
5458 | * @brief Inserts a %discrete_distribution random number distribution |
5459 | * @p __x into the output stream @p __os. |
5460 | * |
5461 | * @param __os An output stream. |
5462 | * @param __x A %discrete_distribution random number distribution. |
5463 | * |
5464 | * @returns The output stream with the state of @p __x inserted or in |
5465 | * an error state. |
5466 | */ |
5467 | template<typename _IntType1, typename _CharT, typename _Traits> |
5468 | friend std::basic_ostream<_CharT, _Traits>& |
5469 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
5470 | const std::discrete_distribution<_IntType1>& __x); |
5471 | |
5472 | /** |
5473 | * @brief Extracts a %discrete_distribution random number distribution |
5474 | * @p __x from the input stream @p __is. |
5475 | * |
5476 | * @param __is An input stream. |
5477 | * @param __x A %discrete_distribution random number |
5478 | * generator engine. |
5479 | * |
5480 | * @returns The input stream with @p __x extracted or in an error |
5481 | * state. |
5482 | */ |
5483 | template<typename _IntType1, typename _CharT, typename _Traits> |
5484 | friend std::basic_istream<_CharT, _Traits>& |
5485 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
5486 | std::discrete_distribution<_IntType1>& __x); |
5487 | |
5488 | private: |
5489 | template<typename _ForwardIterator, |
5490 | typename _UniformRandomNumberGenerator> |
5491 | void |
5492 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
5493 | _UniformRandomNumberGenerator& __urng, |
5494 | const param_type& __p); |
5495 | |
5496 | param_type _M_param; |
5497 | }; |
5498 | |
5499 | /** |
5500 | * @brief Return true if two discrete distributions have different |
5501 | * parameters. |
5502 | */ |
5503 | template<typename _IntType> |
5504 | inline bool |
5505 | operator!=(const std::discrete_distribution<_IntType>& __d1, |
5506 | const std::discrete_distribution<_IntType>& __d2) |
5507 | { return !(__d1 == __d2); } |
5508 | |
5509 | |
5510 | /** |
5511 | * @brief A piecewise_constant_distribution random number distribution. |
5512 | * |
5513 | * The formula for the piecewise constant probability mass function is |
5514 | * |
5515 | */ |
5516 | template<typename _RealType = double> |
5517 | class piecewise_constant_distribution |
5518 | { |
5519 | static_assert(std::is_floating_point<_RealType>::value, |
5520 | "result_type must be a floating point type" ); |
5521 | |
5522 | public: |
5523 | /** The type of the range of the distribution. */ |
5524 | typedef _RealType result_type; |
5525 | |
5526 | /** Parameter type. */ |
5527 | struct param_type |
5528 | { |
5529 | typedef piecewise_constant_distribution<_RealType> distribution_type; |
5530 | friend class piecewise_constant_distribution<_RealType>; |
5531 | |
5532 | param_type() |
5533 | : _M_int(), _M_den(), _M_cp() |
5534 | { } |
5535 | |
5536 | template<typename _InputIteratorB, typename _InputIteratorW> |
5537 | param_type(_InputIteratorB __bfirst, |
5538 | _InputIteratorB __bend, |
5539 | _InputIteratorW __wbegin); |
5540 | |
5541 | template<typename _Func> |
5542 | param_type(initializer_list<_RealType> __bi, _Func __fw); |
5543 | |
5544 | template<typename _Func> |
5545 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, |
5546 | _Func __fw); |
5547 | |
5548 | // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/ |
5549 | param_type(const param_type&) = default; |
5550 | param_type& operator=(const param_type&) = default; |
5551 | |
5552 | std::vector<_RealType> |
5553 | intervals() const |
5554 | { |
5555 | if (_M_int.empty()) |
5556 | { |
5557 | std::vector<_RealType> __tmp(2); |
5558 | __tmp[1] = _RealType(1); |
5559 | return __tmp; |
5560 | } |
5561 | else |
5562 | return _M_int; |
5563 | } |
5564 | |
5565 | std::vector<double> |
5566 | densities() const |
5567 | { return _M_den.empty() ? std::vector<double>(1, 1.0) : _M_den; } |
5568 | |
5569 | friend bool |
5570 | operator==(const param_type& __p1, const param_type& __p2) |
5571 | { return __p1._M_int == __p2._M_int && __p1._M_den == __p2._M_den; } |
5572 | |
5573 | friend bool |
5574 | operator!=(const param_type& __p1, const param_type& __p2) |
5575 | { return !(__p1 == __p2); } |
5576 | |
5577 | private: |
5578 | void |
5579 | _M_initialize(); |
5580 | |
5581 | std::vector<_RealType> _M_int; |
5582 | std::vector<double> _M_den; |
5583 | std::vector<double> _M_cp; |
5584 | }; |
5585 | |
5586 | piecewise_constant_distribution() |
5587 | : _M_param() |
5588 | { } |
5589 | |
5590 | template<typename _InputIteratorB, typename _InputIteratorW> |
5591 | piecewise_constant_distribution(_InputIteratorB __bfirst, |
5592 | _InputIteratorB __bend, |
5593 | _InputIteratorW __wbegin) |
5594 | : _M_param(__bfirst, __bend, __wbegin) |
5595 | { } |
5596 | |
5597 | template<typename _Func> |
5598 | piecewise_constant_distribution(initializer_list<_RealType> __bl, |
5599 | _Func __fw) |
5600 | : _M_param(__bl, __fw) |
5601 | { } |
5602 | |
5603 | template<typename _Func> |
5604 | piecewise_constant_distribution(size_t __nw, |
5605 | _RealType __xmin, _RealType __xmax, |
5606 | _Func __fw) |
5607 | : _M_param(__nw, __xmin, __xmax, __fw) |
5608 | { } |
5609 | |
5610 | explicit |
5611 | piecewise_constant_distribution(const param_type& __p) |
5612 | : _M_param(__p) |
5613 | { } |
5614 | |
5615 | /** |
5616 | * @brief Resets the distribution state. |
5617 | */ |
5618 | void |
5619 | reset() |
5620 | { } |
5621 | |
5622 | /** |
5623 | * @brief Returns a vector of the intervals. |
5624 | */ |
5625 | std::vector<_RealType> |
5626 | intervals() const |
5627 | { |
5628 | if (_M_param._M_int.empty()) |
5629 | { |
5630 | std::vector<_RealType> __tmp(2); |
5631 | __tmp[1] = _RealType(1); |
5632 | return __tmp; |
5633 | } |
5634 | else |
5635 | return _M_param._M_int; |
5636 | } |
5637 | |
5638 | /** |
5639 | * @brief Returns a vector of the probability densities. |
5640 | */ |
5641 | std::vector<double> |
5642 | densities() const |
5643 | { |
5644 | return _M_param._M_den.empty() |
5645 | ? std::vector<double>(1, 1.0) : _M_param._M_den; |
5646 | } |
5647 | |
5648 | /** |
5649 | * @brief Returns the parameter set of the distribution. |
5650 | */ |
5651 | param_type |
5652 | param() const |
5653 | { return _M_param; } |
5654 | |
5655 | /** |
5656 | * @brief Sets the parameter set of the distribution. |
5657 | * @param __param The new parameter set of the distribution. |
5658 | */ |
5659 | void |
5660 | param(const param_type& __param) |
5661 | { _M_param = __param; } |
5662 | |
5663 | /** |
5664 | * @brief Returns the greatest lower bound value of the distribution. |
5665 | */ |
5666 | result_type |
5667 | min() const |
5668 | { |
5669 | return _M_param._M_int.empty() |
5670 | ? result_type(0) : _M_param._M_int.front(); |
5671 | } |
5672 | |
5673 | /** |
5674 | * @brief Returns the least upper bound value of the distribution. |
5675 | */ |
5676 | result_type |
5677 | max() const |
5678 | { |
5679 | return _M_param._M_int.empty() |
5680 | ? result_type(1) : _M_param._M_int.back(); |
5681 | } |
5682 | |
5683 | /** |
5684 | * @brief Generating functions. |
5685 | */ |
5686 | template<typename _UniformRandomNumberGenerator> |
5687 | result_type |
5688 | operator()(_UniformRandomNumberGenerator& __urng) |
5689 | { return this->operator()(__urng, _M_param); } |
5690 | |
5691 | template<typename _UniformRandomNumberGenerator> |
5692 | result_type |
5693 | operator()(_UniformRandomNumberGenerator& __urng, |
5694 | const param_type& __p); |
5695 | |
5696 | template<typename _ForwardIterator, |
5697 | typename _UniformRandomNumberGenerator> |
5698 | void |
5699 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5700 | _UniformRandomNumberGenerator& __urng) |
5701 | { this->__generate(__f, __t, __urng, _M_param); } |
5702 | |
5703 | template<typename _ForwardIterator, |
5704 | typename _UniformRandomNumberGenerator> |
5705 | void |
5706 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5707 | _UniformRandomNumberGenerator& __urng, |
5708 | const param_type& __p) |
5709 | { this->__generate_impl(__f, __t, __urng, __p); } |
5710 | |
5711 | template<typename _UniformRandomNumberGenerator> |
5712 | void |
5713 | __generate(result_type* __f, result_type* __t, |
5714 | _UniformRandomNumberGenerator& __urng, |
5715 | const param_type& __p) |
5716 | { this->__generate_impl(__f, __t, __urng, __p); } |
5717 | |
5718 | /** |
5719 | * @brief Return true if two piecewise constant distributions have the |
5720 | * same parameters. |
5721 | */ |
5722 | friend bool |
5723 | operator==(const piecewise_constant_distribution& __d1, |
5724 | const piecewise_constant_distribution& __d2) |
5725 | { return __d1._M_param == __d2._M_param; } |
5726 | |
5727 | /** |
5728 | * @brief Inserts a %piecewise_constant_distribution random |
5729 | * number distribution @p __x into the output stream @p __os. |
5730 | * |
5731 | * @param __os An output stream. |
5732 | * @param __x A %piecewise_constant_distribution random number |
5733 | * distribution. |
5734 | * |
5735 | * @returns The output stream with the state of @p __x inserted or in |
5736 | * an error state. |
5737 | */ |
5738 | template<typename _RealType1, typename _CharT, typename _Traits> |
5739 | friend std::basic_ostream<_CharT, _Traits>& |
5740 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
5741 | const std::piecewise_constant_distribution<_RealType1>& __x); |
5742 | |
5743 | /** |
5744 | * @brief Extracts a %piecewise_constant_distribution random |
5745 | * number distribution @p __x from the input stream @p __is. |
5746 | * |
5747 | * @param __is An input stream. |
5748 | * @param __x A %piecewise_constant_distribution random number |
5749 | * generator engine. |
5750 | * |
5751 | * @returns The input stream with @p __x extracted or in an error |
5752 | * state. |
5753 | */ |
5754 | template<typename _RealType1, typename _CharT, typename _Traits> |
5755 | friend std::basic_istream<_CharT, _Traits>& |
5756 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
5757 | std::piecewise_constant_distribution<_RealType1>& __x); |
5758 | |
5759 | private: |
5760 | template<typename _ForwardIterator, |
5761 | typename _UniformRandomNumberGenerator> |
5762 | void |
5763 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
5764 | _UniformRandomNumberGenerator& __urng, |
5765 | const param_type& __p); |
5766 | |
5767 | param_type _M_param; |
5768 | }; |
5769 | |
5770 | /** |
5771 | * @brief Return true if two piecewise constant distributions have |
5772 | * different parameters. |
5773 | */ |
5774 | template<typename _RealType> |
5775 | inline bool |
5776 | operator!=(const std::piecewise_constant_distribution<_RealType>& __d1, |
5777 | const std::piecewise_constant_distribution<_RealType>& __d2) |
5778 | { return !(__d1 == __d2); } |
5779 | |
5780 | |
5781 | /** |
5782 | * @brief A piecewise_linear_distribution random number distribution. |
5783 | * |
5784 | * The formula for the piecewise linear probability mass function is |
5785 | * |
5786 | */ |
5787 | template<typename _RealType = double> |
5788 | class piecewise_linear_distribution |
5789 | { |
5790 | static_assert(std::is_floating_point<_RealType>::value, |
5791 | "result_type must be a floating point type" ); |
5792 | |
5793 | public: |
5794 | /** The type of the range of the distribution. */ |
5795 | typedef _RealType result_type; |
5796 | |
5797 | /** Parameter type. */ |
5798 | struct param_type |
5799 | { |
5800 | typedef piecewise_linear_distribution<_RealType> distribution_type; |
5801 | friend class piecewise_linear_distribution<_RealType>; |
5802 | |
5803 | param_type() |
5804 | : _M_int(), _M_den(), _M_cp(), _M_m() |
5805 | { } |
5806 | |
5807 | template<typename _InputIteratorB, typename _InputIteratorW> |
5808 | param_type(_InputIteratorB __bfirst, |
5809 | _InputIteratorB __bend, |
5810 | _InputIteratorW __wbegin); |
5811 | |
5812 | template<typename _Func> |
5813 | param_type(initializer_list<_RealType> __bl, _Func __fw); |
5814 | |
5815 | template<typename _Func> |
5816 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, |
5817 | _Func __fw); |
5818 | |
5819 | // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/ |
5820 | param_type(const param_type&) = default; |
5821 | param_type& operator=(const param_type&) = default; |
5822 | |
5823 | std::vector<_RealType> |
5824 | intervals() const |
5825 | { |
5826 | if (_M_int.empty()) |
5827 | { |
5828 | std::vector<_RealType> __tmp(2); |
5829 | __tmp[1] = _RealType(1); |
5830 | return __tmp; |
5831 | } |
5832 | else |
5833 | return _M_int; |
5834 | } |
5835 | |
5836 | std::vector<double> |
5837 | densities() const |
5838 | { return _M_den.empty() ? std::vector<double>(2, 1.0) : _M_den; } |
5839 | |
5840 | friend bool |
5841 | operator==(const param_type& __p1, const param_type& __p2) |
5842 | { return __p1._M_int == __p2._M_int && __p1._M_den == __p2._M_den; } |
5843 | |
5844 | friend bool |
5845 | operator!=(const param_type& __p1, const param_type& __p2) |
5846 | { return !(__p1 == __p2); } |
5847 | |
5848 | private: |
5849 | void |
5850 | _M_initialize(); |
5851 | |
5852 | std::vector<_RealType> _M_int; |
5853 | std::vector<double> _M_den; |
5854 | std::vector<double> _M_cp; |
5855 | std::vector<double> _M_m; |
5856 | }; |
5857 | |
5858 | piecewise_linear_distribution() |
5859 | : _M_param() |
5860 | { } |
5861 | |
5862 | template<typename _InputIteratorB, typename _InputIteratorW> |
5863 | piecewise_linear_distribution(_InputIteratorB __bfirst, |
5864 | _InputIteratorB __bend, |
5865 | _InputIteratorW __wbegin) |
5866 | : _M_param(__bfirst, __bend, __wbegin) |
5867 | { } |
5868 | |
5869 | template<typename _Func> |
5870 | piecewise_linear_distribution(initializer_list<_RealType> __bl, |
5871 | _Func __fw) |
5872 | : _M_param(__bl, __fw) |
5873 | { } |
5874 | |
5875 | template<typename _Func> |
5876 | piecewise_linear_distribution(size_t __nw, |
5877 | _RealType __xmin, _RealType __xmax, |
5878 | _Func __fw) |
5879 | : _M_param(__nw, __xmin, __xmax, __fw) |
5880 | { } |
5881 | |
5882 | explicit |
5883 | piecewise_linear_distribution(const param_type& __p) |
5884 | : _M_param(__p) |
5885 | { } |
5886 | |
5887 | /** |
5888 | * Resets the distribution state. |
5889 | */ |
5890 | void |
5891 | reset() |
5892 | { } |
5893 | |
5894 | /** |
5895 | * @brief Return the intervals of the distribution. |
5896 | */ |
5897 | std::vector<_RealType> |
5898 | intervals() const |
5899 | { |
5900 | if (_M_param._M_int.empty()) |
5901 | { |
5902 | std::vector<_RealType> __tmp(2); |
5903 | __tmp[1] = _RealType(1); |
5904 | return __tmp; |
5905 | } |
5906 | else |
5907 | return _M_param._M_int; |
5908 | } |
5909 | |
5910 | /** |
5911 | * @brief Return a vector of the probability densities of the |
5912 | * distribution. |
5913 | */ |
5914 | std::vector<double> |
5915 | densities() const |
5916 | { |
5917 | return _M_param._M_den.empty() |
5918 | ? std::vector<double>(2, 1.0) : _M_param._M_den; |
5919 | } |
5920 | |
5921 | /** |
5922 | * @brief Returns the parameter set of the distribution. |
5923 | */ |
5924 | param_type |
5925 | param() const |
5926 | { return _M_param; } |
5927 | |
5928 | /** |
5929 | * @brief Sets the parameter set of the distribution. |
5930 | * @param __param The new parameter set of the distribution. |
5931 | */ |
5932 | void |
5933 | param(const param_type& __param) |
5934 | { _M_param = __param; } |
5935 | |
5936 | /** |
5937 | * @brief Returns the greatest lower bound value of the distribution. |
5938 | */ |
5939 | result_type |
5940 | min() const |
5941 | { |
5942 | return _M_param._M_int.empty() |
5943 | ? result_type(0) : _M_param._M_int.front(); |
5944 | } |
5945 | |
5946 | /** |
5947 | * @brief Returns the least upper bound value of the distribution. |
5948 | */ |
5949 | result_type |
5950 | max() const |
5951 | { |
5952 | return _M_param._M_int.empty() |
5953 | ? result_type(1) : _M_param._M_int.back(); |
5954 | } |
5955 | |
5956 | /** |
5957 | * @brief Generating functions. |
5958 | */ |
5959 | template<typename _UniformRandomNumberGenerator> |
5960 | result_type |
5961 | operator()(_UniformRandomNumberGenerator& __urng) |
5962 | { return this->operator()(__urng, _M_param); } |
5963 | |
5964 | template<typename _UniformRandomNumberGenerator> |
5965 | result_type |
5966 | operator()(_UniformRandomNumberGenerator& __urng, |
5967 | const param_type& __p); |
5968 | |
5969 | template<typename _ForwardIterator, |
5970 | typename _UniformRandomNumberGenerator> |
5971 | void |
5972 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5973 | _UniformRandomNumberGenerator& __urng) |
5974 | { this->__generate(__f, __t, __urng, _M_param); } |
5975 | |
5976 | template<typename _ForwardIterator, |
5977 | typename _UniformRandomNumberGenerator> |
5978 | void |
5979 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5980 | _UniformRandomNumberGenerator& __urng, |
5981 | const param_type& __p) |
5982 | { this->__generate_impl(__f, __t, __urng, __p); } |
5983 | |
5984 | template<typename _UniformRandomNumberGenerator> |
5985 | void |
5986 | __generate(result_type* __f, result_type* __t, |
5987 | _UniformRandomNumberGenerator& __urng, |
5988 | const param_type& __p) |
5989 | { this->__generate_impl(__f, __t, __urng, __p); } |
5990 | |
5991 | /** |
5992 | * @brief Return true if two piecewise linear distributions have the |
5993 | * same parameters. |
5994 | */ |
5995 | friend bool |
5996 | operator==(const piecewise_linear_distribution& __d1, |
5997 | const piecewise_linear_distribution& __d2) |
5998 | { return __d1._M_param == __d2._M_param; } |
5999 | |
6000 | /** |
6001 | * @brief Inserts a %piecewise_linear_distribution random number |
6002 | * distribution @p __x into the output stream @p __os. |
6003 | * |
6004 | * @param __os An output stream. |
6005 | * @param __x A %piecewise_linear_distribution random number |
6006 | * distribution. |
6007 | * |
6008 | * @returns The output stream with the state of @p __x inserted or in |
6009 | * an error state. |
6010 | */ |
6011 | template<typename _RealType1, typename _CharT, typename _Traits> |
6012 | friend std::basic_ostream<_CharT, _Traits>& |
6013 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
6014 | const std::piecewise_linear_distribution<_RealType1>& __x); |
6015 | |
6016 | /** |
6017 | * @brief Extracts a %piecewise_linear_distribution random number |
6018 | * distribution @p __x from the input stream @p __is. |
6019 | * |
6020 | * @param __is An input stream. |
6021 | * @param __x A %piecewise_linear_distribution random number |
6022 | * generator engine. |
6023 | * |
6024 | * @returns The input stream with @p __x extracted or in an error |
6025 | * state. |
6026 | */ |
6027 | template<typename _RealType1, typename _CharT, typename _Traits> |
6028 | friend std::basic_istream<_CharT, _Traits>& |
6029 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
6030 | std::piecewise_linear_distribution<_RealType1>& __x); |
6031 | |
6032 | private: |
6033 | template<typename _ForwardIterator, |
6034 | typename _UniformRandomNumberGenerator> |
6035 | void |
6036 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
6037 | _UniformRandomNumberGenerator& __urng, |
6038 | const param_type& __p); |
6039 | |
6040 | param_type _M_param; |
6041 | }; |
6042 | |
6043 | /** |
6044 | * @brief Return true if two piecewise linear distributions have |
6045 | * different parameters. |
6046 | */ |
6047 | template<typename _RealType> |
6048 | inline bool |
6049 | operator!=(const std::piecewise_linear_distribution<_RealType>& __d1, |
6050 | const std::piecewise_linear_distribution<_RealType>& __d2) |
6051 | { return !(__d1 == __d2); } |
6052 | |
6053 | |
6054 | /// @} group random_distributions_poisson |
6055 | |
6056 | /// @} *group random_distributions |
6057 | |
6058 | /** |
6059 | * @addtogroup random_utilities Random Number Utilities |
6060 | * @ingroup random |
6061 | * @{ |
6062 | */ |
6063 | |
6064 | /** |
6065 | * @brief The seed_seq class generates sequences of seeds for random |
6066 | * number generators. |
6067 | */ |
6068 | class seed_seq |
6069 | { |
6070 | public: |
6071 | /** The type of the seed vales. */ |
6072 | typedef uint_least32_t result_type; |
6073 | |
6074 | /** Default constructor. */ |
6075 | seed_seq() noexcept |
6076 | : _M_v() |
6077 | { } |
6078 | |
6079 | template<typename _IntType, typename = _Require<is_integral<_IntType>>> |
6080 | seed_seq(std::initializer_list<_IntType> __il); |
6081 | |
6082 | template<typename _InputIterator> |
6083 | seed_seq(_InputIterator __begin, _InputIterator __end); |
6084 | |
6085 | // generating functions |
6086 | template<typename _RandomAccessIterator> |
6087 | void |
6088 | generate(_RandomAccessIterator __begin, _RandomAccessIterator __end); |
6089 | |
6090 | // property functions |
6091 | size_t size() const noexcept |
6092 | { return _M_v.size(); } |
6093 | |
6094 | template<typename _OutputIterator> |
6095 | void |
6096 | param(_OutputIterator __dest) const |
6097 | { std::copy(_M_v.begin(), _M_v.end(), __dest); } |
6098 | |
6099 | // no copy functions |
6100 | seed_seq(const seed_seq&) = delete; |
6101 | seed_seq& operator=(const seed_seq&) = delete; |
6102 | |
6103 | private: |
6104 | std::vector<result_type> _M_v; |
6105 | }; |
6106 | |
6107 | /// @} group random_utilities |
6108 | |
6109 | /// @} group random |
6110 | |
6111 | _GLIBCXX_END_NAMESPACE_VERSION |
6112 | } // namespace std |
6113 | |
6114 | #endif |
6115 | |