1 | //===--- APValue.cpp - Union class for APFloat/APSInt/Complex -------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the APValue class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/APValue.h" |
14 | #include "Linkage.h" |
15 | #include "clang/AST/ASTContext.h" |
16 | #include "clang/AST/CharUnits.h" |
17 | #include "clang/AST/DeclCXX.h" |
18 | #include "clang/AST/Expr.h" |
19 | #include "clang/AST/ExprCXX.h" |
20 | #include "clang/AST/Type.h" |
21 | #include "llvm/Support/ErrorHandling.h" |
22 | #include "llvm/Support/raw_ostream.h" |
23 | using namespace clang; |
24 | |
25 | /// The identity of a type_info object depends on the canonical unqualified |
26 | /// type only. |
27 | TypeInfoLValue::TypeInfoLValue(const Type *T) |
28 | : T(T->getCanonicalTypeUnqualified().getTypePtr()) {} |
29 | |
30 | void TypeInfoLValue::print(llvm::raw_ostream &Out, |
31 | const PrintingPolicy &Policy) const { |
32 | Out << "typeid(" ; |
33 | QualType(getType(), 0).print(OS&: Out, Policy); |
34 | Out << ")" ; |
35 | } |
36 | |
37 | static_assert( |
38 | 1 << llvm::PointerLikeTypeTraits<TypeInfoLValue>::NumLowBitsAvailable <= |
39 | alignof(Type), |
40 | "Type is insufficiently aligned" ); |
41 | |
42 | APValue::LValueBase::LValueBase(const ValueDecl *P, unsigned I, unsigned V) |
43 | : Ptr(P ? cast<ValueDecl>(Val: P->getCanonicalDecl()) : nullptr), Local{.CallIndex: I, .Version: V} {} |
44 | APValue::LValueBase::LValueBase(const Expr *P, unsigned I, unsigned V) |
45 | : Ptr(P), Local{.CallIndex: I, .Version: V} {} |
46 | |
47 | APValue::LValueBase APValue::LValueBase::getDynamicAlloc(DynamicAllocLValue LV, |
48 | QualType Type) { |
49 | LValueBase Base; |
50 | Base.Ptr = LV; |
51 | Base.DynamicAllocType = Type.getAsOpaquePtr(); |
52 | return Base; |
53 | } |
54 | |
55 | APValue::LValueBase APValue::LValueBase::getTypeInfo(TypeInfoLValue LV, |
56 | QualType TypeInfo) { |
57 | LValueBase Base; |
58 | Base.Ptr = LV; |
59 | Base.TypeInfoType = TypeInfo.getAsOpaquePtr(); |
60 | return Base; |
61 | } |
62 | |
63 | QualType APValue::LValueBase::getType() const { |
64 | if (!*this) return QualType(); |
65 | if (const ValueDecl *D = dyn_cast<const ValueDecl*>()) { |
66 | // FIXME: It's unclear where we're supposed to take the type from, and |
67 | // this actually matters for arrays of unknown bound. Eg: |
68 | // |
69 | // extern int arr[]; void f() { extern int arr[3]; }; |
70 | // constexpr int *p = &arr[1]; // valid? |
71 | // |
72 | // For now, we take the most complete type we can find. |
73 | for (auto *Redecl = cast<ValueDecl>(Val: D->getMostRecentDecl()); Redecl; |
74 | Redecl = cast_or_null<ValueDecl>(Val: Redecl->getPreviousDecl())) { |
75 | QualType T = Redecl->getType(); |
76 | if (!T->isIncompleteArrayType()) |
77 | return T; |
78 | } |
79 | return D->getType(); |
80 | } |
81 | |
82 | if (is<TypeInfoLValue>()) |
83 | return getTypeInfoType(); |
84 | |
85 | if (is<DynamicAllocLValue>()) |
86 | return getDynamicAllocType(); |
87 | |
88 | const Expr *Base = get<const Expr*>(); |
89 | |
90 | // For a materialized temporary, the type of the temporary we materialized |
91 | // may not be the type of the expression. |
92 | if (const MaterializeTemporaryExpr *MTE = |
93 | llvm::dyn_cast<MaterializeTemporaryExpr>(Val: Base)) { |
94 | SmallVector<const Expr *, 2> CommaLHSs; |
95 | SmallVector<SubobjectAdjustment, 2> Adjustments; |
96 | const Expr *Temp = MTE->getSubExpr(); |
97 | const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHS&: CommaLHSs, |
98 | Adjustments); |
99 | // Keep any cv-qualifiers from the reference if we generated a temporary |
100 | // for it directly. Otherwise use the type after adjustment. |
101 | if (!Adjustments.empty()) |
102 | return Inner->getType(); |
103 | } |
104 | |
105 | return Base->getType(); |
106 | } |
107 | |
108 | unsigned APValue::LValueBase::getCallIndex() const { |
109 | return (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) ? 0 |
110 | : Local.CallIndex; |
111 | } |
112 | |
113 | unsigned APValue::LValueBase::getVersion() const { |
114 | return (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) ? 0 : Local.Version; |
115 | } |
116 | |
117 | QualType APValue::LValueBase::getTypeInfoType() const { |
118 | assert(is<TypeInfoLValue>() && "not a type_info lvalue" ); |
119 | return QualType::getFromOpaquePtr(Ptr: TypeInfoType); |
120 | } |
121 | |
122 | QualType APValue::LValueBase::getDynamicAllocType() const { |
123 | assert(is<DynamicAllocLValue>() && "not a dynamic allocation lvalue" ); |
124 | return QualType::getFromOpaquePtr(Ptr: DynamicAllocType); |
125 | } |
126 | |
127 | void APValue::LValueBase::Profile(llvm::FoldingSetNodeID &ID) const { |
128 | ID.AddPointer(Ptr: Ptr.getOpaqueValue()); |
129 | if (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) |
130 | return; |
131 | ID.AddInteger(I: Local.CallIndex); |
132 | ID.AddInteger(I: Local.Version); |
133 | } |
134 | |
135 | namespace clang { |
136 | bool operator==(const APValue::LValueBase &LHS, |
137 | const APValue::LValueBase &RHS) { |
138 | if (LHS.Ptr != RHS.Ptr) |
139 | return false; |
140 | if (LHS.is<TypeInfoLValue>() || LHS.is<DynamicAllocLValue>()) |
141 | return true; |
142 | return LHS.Local.CallIndex == RHS.Local.CallIndex && |
143 | LHS.Local.Version == RHS.Local.Version; |
144 | } |
145 | } |
146 | |
147 | APValue::LValuePathEntry::LValuePathEntry(BaseOrMemberType BaseOrMember) { |
148 | if (const Decl *D = BaseOrMember.getPointer()) |
149 | BaseOrMember.setPointer(D->getCanonicalDecl()); |
150 | Value = reinterpret_cast<uintptr_t>(BaseOrMember.getOpaqueValue()); |
151 | } |
152 | |
153 | void APValue::LValuePathEntry::Profile(llvm::FoldingSetNodeID &ID) const { |
154 | ID.AddInteger(I: Value); |
155 | } |
156 | |
157 | APValue::LValuePathSerializationHelper::LValuePathSerializationHelper( |
158 | ArrayRef<LValuePathEntry> Path, QualType ElemTy) |
159 | : Ty((const void *)ElemTy.getTypePtrOrNull()), Path(Path) {} |
160 | |
161 | QualType APValue::LValuePathSerializationHelper::getType() { |
162 | return QualType::getFromOpaquePtr(Ptr: Ty); |
163 | } |
164 | |
165 | namespace { |
166 | struct LVBase { |
167 | APValue::LValueBase Base; |
168 | CharUnits Offset; |
169 | unsigned PathLength; |
170 | bool IsNullPtr : 1; |
171 | bool IsOnePastTheEnd : 1; |
172 | }; |
173 | } |
174 | |
175 | void *APValue::LValueBase::getOpaqueValue() const { |
176 | return Ptr.getOpaqueValue(); |
177 | } |
178 | |
179 | bool APValue::LValueBase::isNull() const { |
180 | return Ptr.isNull(); |
181 | } |
182 | |
183 | APValue::LValueBase::operator bool () const { |
184 | return static_cast<bool>(Ptr); |
185 | } |
186 | |
187 | clang::APValue::LValueBase |
188 | llvm::DenseMapInfo<clang::APValue::LValueBase>::getEmptyKey() { |
189 | clang::APValue::LValueBase B; |
190 | B.Ptr = DenseMapInfo<const ValueDecl*>::getEmptyKey(); |
191 | return B; |
192 | } |
193 | |
194 | clang::APValue::LValueBase |
195 | llvm::DenseMapInfo<clang::APValue::LValueBase>::getTombstoneKey() { |
196 | clang::APValue::LValueBase B; |
197 | B.Ptr = DenseMapInfo<const ValueDecl*>::getTombstoneKey(); |
198 | return B; |
199 | } |
200 | |
201 | namespace clang { |
202 | llvm::hash_code hash_value(const APValue::LValueBase &Base) { |
203 | if (Base.is<TypeInfoLValue>() || Base.is<DynamicAllocLValue>()) |
204 | return llvm::hash_value(ptr: Base.getOpaqueValue()); |
205 | return llvm::hash_combine(args: Base.getOpaqueValue(), args: Base.getCallIndex(), |
206 | args: Base.getVersion()); |
207 | } |
208 | } |
209 | |
210 | unsigned llvm::DenseMapInfo<clang::APValue::LValueBase>::getHashValue( |
211 | const clang::APValue::LValueBase &Base) { |
212 | return hash_value(Base); |
213 | } |
214 | |
215 | bool llvm::DenseMapInfo<clang::APValue::LValueBase>::isEqual( |
216 | const clang::APValue::LValueBase &LHS, |
217 | const clang::APValue::LValueBase &RHS) { |
218 | return LHS == RHS; |
219 | } |
220 | |
221 | struct APValue::LV : LVBase { |
222 | static const unsigned InlinePathSpace = |
223 | (DataSize - sizeof(LVBase)) / sizeof(LValuePathEntry); |
224 | |
225 | /// Path - The sequence of base classes, fields and array indices to follow to |
226 | /// walk from Base to the subobject. When performing GCC-style folding, there |
227 | /// may not be such a path. |
228 | union { |
229 | LValuePathEntry Path[InlinePathSpace]; |
230 | LValuePathEntry *PathPtr; |
231 | }; |
232 | |
233 | LV() { PathLength = (unsigned)-1; } |
234 | ~LV() { resizePath(Length: 0); } |
235 | |
236 | void resizePath(unsigned Length) { |
237 | if (Length == PathLength) |
238 | return; |
239 | if (hasPathPtr()) |
240 | delete [] PathPtr; |
241 | PathLength = Length; |
242 | if (hasPathPtr()) |
243 | PathPtr = new LValuePathEntry[Length]; |
244 | } |
245 | |
246 | bool hasPath() const { return PathLength != (unsigned)-1; } |
247 | bool hasPathPtr() const { return hasPath() && PathLength > InlinePathSpace; } |
248 | |
249 | LValuePathEntry *getPath() { return hasPathPtr() ? PathPtr : Path; } |
250 | const LValuePathEntry *getPath() const { |
251 | return hasPathPtr() ? PathPtr : Path; |
252 | } |
253 | }; |
254 | |
255 | namespace { |
256 | struct MemberPointerBase { |
257 | llvm::PointerIntPair<const ValueDecl*, 1, bool> MemberAndIsDerivedMember; |
258 | unsigned PathLength; |
259 | }; |
260 | } |
261 | |
262 | struct APValue::MemberPointerData : MemberPointerBase { |
263 | static const unsigned InlinePathSpace = |
264 | (DataSize - sizeof(MemberPointerBase)) / sizeof(const CXXRecordDecl*); |
265 | typedef const CXXRecordDecl *PathElem; |
266 | union { |
267 | PathElem Path[InlinePathSpace]; |
268 | PathElem *PathPtr; |
269 | }; |
270 | |
271 | MemberPointerData() { PathLength = 0; } |
272 | ~MemberPointerData() { resizePath(Length: 0); } |
273 | |
274 | void resizePath(unsigned Length) { |
275 | if (Length == PathLength) |
276 | return; |
277 | if (hasPathPtr()) |
278 | delete [] PathPtr; |
279 | PathLength = Length; |
280 | if (hasPathPtr()) |
281 | PathPtr = new PathElem[Length]; |
282 | } |
283 | |
284 | bool hasPathPtr() const { return PathLength > InlinePathSpace; } |
285 | |
286 | PathElem *getPath() { return hasPathPtr() ? PathPtr : Path; } |
287 | const PathElem *getPath() const { |
288 | return hasPathPtr() ? PathPtr : Path; |
289 | } |
290 | }; |
291 | |
292 | // FIXME: Reduce the malloc traffic here. |
293 | |
294 | APValue::Arr::Arr(unsigned NumElts, unsigned Size) : |
295 | Elts(new APValue[NumElts + (NumElts != Size ? 1 : 0)]), |
296 | NumElts(NumElts), ArrSize(Size) {} |
297 | APValue::Arr::~Arr() { delete [] Elts; } |
298 | |
299 | APValue::StructData::StructData(unsigned NumBases, unsigned NumFields) : |
300 | Elts(new APValue[NumBases+NumFields]), |
301 | NumBases(NumBases), NumFields(NumFields) {} |
302 | APValue::StructData::~StructData() { |
303 | delete [] Elts; |
304 | } |
305 | |
306 | APValue::UnionData::UnionData() : Field(nullptr), Value(new APValue) {} |
307 | APValue::UnionData::~UnionData () { |
308 | delete Value; |
309 | } |
310 | |
311 | APValue::APValue(const APValue &RHS) : Kind(None) { |
312 | switch (RHS.getKind()) { |
313 | case None: |
314 | case Indeterminate: |
315 | Kind = RHS.getKind(); |
316 | break; |
317 | case Int: |
318 | MakeInt(); |
319 | setInt(RHS.getInt()); |
320 | break; |
321 | case Float: |
322 | MakeFloat(); |
323 | setFloat(RHS.getFloat()); |
324 | break; |
325 | case FixedPoint: { |
326 | APFixedPoint FXCopy = RHS.getFixedPoint(); |
327 | MakeFixedPoint(FX: std::move(FXCopy)); |
328 | break; |
329 | } |
330 | case Vector: |
331 | MakeVector(); |
332 | setVector(E: ((const Vec *)(const char *)&RHS.Data)->Elts, |
333 | N: RHS.getVectorLength()); |
334 | break; |
335 | case ComplexInt: |
336 | MakeComplexInt(); |
337 | setComplexInt(R: RHS.getComplexIntReal(), I: RHS.getComplexIntImag()); |
338 | break; |
339 | case ComplexFloat: |
340 | MakeComplexFloat(); |
341 | setComplexFloat(R: RHS.getComplexFloatReal(), I: RHS.getComplexFloatImag()); |
342 | break; |
343 | case LValue: |
344 | MakeLValue(); |
345 | if (RHS.hasLValuePath()) |
346 | setLValue(B: RHS.getLValueBase(), O: RHS.getLValueOffset(), Path: RHS.getLValuePath(), |
347 | OnePastTheEnd: RHS.isLValueOnePastTheEnd(), IsNullPtr: RHS.isNullPointer()); |
348 | else |
349 | setLValue(B: RHS.getLValueBase(), O: RHS.getLValueOffset(), NoLValuePath(), |
350 | IsNullPtr: RHS.isNullPointer()); |
351 | break; |
352 | case Array: |
353 | MakeArray(InitElts: RHS.getArrayInitializedElts(), Size: RHS.getArraySize()); |
354 | for (unsigned I = 0, N = RHS.getArrayInitializedElts(); I != N; ++I) |
355 | getArrayInitializedElt(I) = RHS.getArrayInitializedElt(I); |
356 | if (RHS.hasArrayFiller()) |
357 | getArrayFiller() = RHS.getArrayFiller(); |
358 | break; |
359 | case Struct: |
360 | MakeStruct(B: RHS.getStructNumBases(), M: RHS.getStructNumFields()); |
361 | for (unsigned I = 0, N = RHS.getStructNumBases(); I != N; ++I) |
362 | getStructBase(i: I) = RHS.getStructBase(i: I); |
363 | for (unsigned I = 0, N = RHS.getStructNumFields(); I != N; ++I) |
364 | getStructField(i: I) = RHS.getStructField(i: I); |
365 | break; |
366 | case Union: |
367 | MakeUnion(); |
368 | setUnion(Field: RHS.getUnionField(), Value: RHS.getUnionValue()); |
369 | break; |
370 | case MemberPointer: |
371 | MakeMemberPointer(Member: RHS.getMemberPointerDecl(), |
372 | IsDerivedMember: RHS.isMemberPointerToDerivedMember(), |
373 | Path: RHS.getMemberPointerPath()); |
374 | break; |
375 | case AddrLabelDiff: |
376 | MakeAddrLabelDiff(); |
377 | setAddrLabelDiff(LHSExpr: RHS.getAddrLabelDiffLHS(), RHSExpr: RHS.getAddrLabelDiffRHS()); |
378 | break; |
379 | } |
380 | } |
381 | |
382 | APValue::APValue(APValue &&RHS) : Kind(RHS.Kind), Data(RHS.Data) { |
383 | RHS.Kind = None; |
384 | } |
385 | |
386 | APValue &APValue::operator=(const APValue &RHS) { |
387 | if (this != &RHS) |
388 | *this = APValue(RHS); |
389 | return *this; |
390 | } |
391 | |
392 | APValue &APValue::operator=(APValue &&RHS) { |
393 | if (this != &RHS) { |
394 | if (Kind != None && Kind != Indeterminate) |
395 | DestroyDataAndMakeUninit(); |
396 | Kind = RHS.Kind; |
397 | Data = RHS.Data; |
398 | RHS.Kind = None; |
399 | } |
400 | return *this; |
401 | } |
402 | |
403 | void APValue::DestroyDataAndMakeUninit() { |
404 | if (Kind == Int) |
405 | ((APSInt *)(char *)&Data)->~APSInt(); |
406 | else if (Kind == Float) |
407 | ((APFloat *)(char *)&Data)->~APFloat(); |
408 | else if (Kind == FixedPoint) |
409 | ((APFixedPoint *)(char *)&Data)->~APFixedPoint(); |
410 | else if (Kind == Vector) |
411 | ((Vec *)(char *)&Data)->~Vec(); |
412 | else if (Kind == ComplexInt) |
413 | ((ComplexAPSInt *)(char *)&Data)->~ComplexAPSInt(); |
414 | else if (Kind == ComplexFloat) |
415 | ((ComplexAPFloat *)(char *)&Data)->~ComplexAPFloat(); |
416 | else if (Kind == LValue) |
417 | ((LV *)(char *)&Data)->~LV(); |
418 | else if (Kind == Array) |
419 | ((Arr *)(char *)&Data)->~Arr(); |
420 | else if (Kind == Struct) |
421 | ((StructData *)(char *)&Data)->~StructData(); |
422 | else if (Kind == Union) |
423 | ((UnionData *)(char *)&Data)->~UnionData(); |
424 | else if (Kind == MemberPointer) |
425 | ((MemberPointerData *)(char *)&Data)->~MemberPointerData(); |
426 | else if (Kind == AddrLabelDiff) |
427 | ((AddrLabelDiffData *)(char *)&Data)->~AddrLabelDiffData(); |
428 | Kind = None; |
429 | } |
430 | |
431 | bool APValue::needsCleanup() const { |
432 | switch (getKind()) { |
433 | case None: |
434 | case Indeterminate: |
435 | case AddrLabelDiff: |
436 | return false; |
437 | case Struct: |
438 | case Union: |
439 | case Array: |
440 | case Vector: |
441 | return true; |
442 | case Int: |
443 | return getInt().needsCleanup(); |
444 | case Float: |
445 | return getFloat().needsCleanup(); |
446 | case FixedPoint: |
447 | return getFixedPoint().getValue().needsCleanup(); |
448 | case ComplexFloat: |
449 | assert(getComplexFloatImag().needsCleanup() == |
450 | getComplexFloatReal().needsCleanup() && |
451 | "In _Complex float types, real and imaginary values always have the " |
452 | "same size." ); |
453 | return getComplexFloatReal().needsCleanup(); |
454 | case ComplexInt: |
455 | assert(getComplexIntImag().needsCleanup() == |
456 | getComplexIntReal().needsCleanup() && |
457 | "In _Complex int types, real and imaginary values must have the " |
458 | "same size." ); |
459 | return getComplexIntReal().needsCleanup(); |
460 | case LValue: |
461 | return reinterpret_cast<const LV *>(&Data)->hasPathPtr(); |
462 | case MemberPointer: |
463 | return reinterpret_cast<const MemberPointerData *>(&Data)->hasPathPtr(); |
464 | } |
465 | llvm_unreachable("Unknown APValue kind!" ); |
466 | } |
467 | |
468 | void APValue::swap(APValue &RHS) { |
469 | std::swap(a&: Kind, b&: RHS.Kind); |
470 | std::swap(a&: Data, b&: RHS.Data); |
471 | } |
472 | |
473 | /// Profile the value of an APInt, excluding its bit-width. |
474 | static void profileIntValue(llvm::FoldingSetNodeID &ID, const llvm::APInt &V) { |
475 | for (unsigned I = 0, N = V.getBitWidth(); I < N; I += 32) |
476 | ID.AddInteger(I: (uint32_t)V.extractBitsAsZExtValue(numBits: std::min(a: 32u, b: N - I), bitPosition: I)); |
477 | } |
478 | |
479 | void APValue::Profile(llvm::FoldingSetNodeID &ID) const { |
480 | // Note that our profiling assumes that only APValues of the same type are |
481 | // ever compared. As a result, we don't consider collisions that could only |
482 | // happen if the types are different. (For example, structs with different |
483 | // numbers of members could profile the same.) |
484 | |
485 | ID.AddInteger(I: Kind); |
486 | |
487 | switch (Kind) { |
488 | case None: |
489 | case Indeterminate: |
490 | return; |
491 | |
492 | case AddrLabelDiff: |
493 | ID.AddPointer(Ptr: getAddrLabelDiffLHS()->getLabel()->getCanonicalDecl()); |
494 | ID.AddPointer(Ptr: getAddrLabelDiffRHS()->getLabel()->getCanonicalDecl()); |
495 | return; |
496 | |
497 | case Struct: |
498 | for (unsigned I = 0, N = getStructNumBases(); I != N; ++I) |
499 | getStructBase(i: I).Profile(ID); |
500 | for (unsigned I = 0, N = getStructNumFields(); I != N; ++I) |
501 | getStructField(i: I).Profile(ID); |
502 | return; |
503 | |
504 | case Union: |
505 | if (!getUnionField()) { |
506 | ID.AddInteger(I: 0); |
507 | return; |
508 | } |
509 | ID.AddInteger(I: getUnionField()->getFieldIndex() + 1); |
510 | getUnionValue().Profile(ID); |
511 | return; |
512 | |
513 | case Array: { |
514 | if (getArraySize() == 0) |
515 | return; |
516 | |
517 | // The profile should not depend on whether the array is expanded or |
518 | // not, but we don't want to profile the array filler many times for |
519 | // a large array. So treat all equal trailing elements as the filler. |
520 | // Elements are profiled in reverse order to support this, and the |
521 | // first profiled element is followed by a count. For example: |
522 | // |
523 | // ['a', 'c', 'x', 'x', 'x'] is profiled as |
524 | // [5, 'x', 3, 'c', 'a'] |
525 | llvm::FoldingSetNodeID FillerID; |
526 | (hasArrayFiller() ? getArrayFiller() |
527 | : getArrayInitializedElt(I: getArrayInitializedElts() - 1)) |
528 | .Profile(ID&: FillerID); |
529 | ID.AddNodeID(ID: FillerID); |
530 | unsigned NumFillers = getArraySize() - getArrayInitializedElts(); |
531 | unsigned N = getArrayInitializedElts(); |
532 | |
533 | // Count the number of elements equal to the last one. This loop ends |
534 | // by adding an integer indicating the number of such elements, with |
535 | // N set to the number of elements left to profile. |
536 | while (true) { |
537 | if (N == 0) { |
538 | // All elements are fillers. |
539 | assert(NumFillers == getArraySize()); |
540 | ID.AddInteger(I: NumFillers); |
541 | break; |
542 | } |
543 | |
544 | // No need to check if the last element is equal to the last |
545 | // element. |
546 | if (N != getArraySize()) { |
547 | llvm::FoldingSetNodeID ElemID; |
548 | getArrayInitializedElt(I: N - 1).Profile(ID&: ElemID); |
549 | if (ElemID != FillerID) { |
550 | ID.AddInteger(I: NumFillers); |
551 | ID.AddNodeID(ID: ElemID); |
552 | --N; |
553 | break; |
554 | } |
555 | } |
556 | |
557 | // This is a filler. |
558 | ++NumFillers; |
559 | --N; |
560 | } |
561 | |
562 | // Emit the remaining elements. |
563 | for (; N != 0; --N) |
564 | getArrayInitializedElt(I: N - 1).Profile(ID); |
565 | return; |
566 | } |
567 | |
568 | case Vector: |
569 | for (unsigned I = 0, N = getVectorLength(); I != N; ++I) |
570 | getVectorElt(I).Profile(ID); |
571 | return; |
572 | |
573 | case Int: |
574 | profileIntValue(ID, V: getInt()); |
575 | return; |
576 | |
577 | case Float: |
578 | profileIntValue(ID, V: getFloat().bitcastToAPInt()); |
579 | return; |
580 | |
581 | case FixedPoint: |
582 | profileIntValue(ID, V: getFixedPoint().getValue()); |
583 | return; |
584 | |
585 | case ComplexFloat: |
586 | profileIntValue(ID, V: getComplexFloatReal().bitcastToAPInt()); |
587 | profileIntValue(ID, V: getComplexFloatImag().bitcastToAPInt()); |
588 | return; |
589 | |
590 | case ComplexInt: |
591 | profileIntValue(ID, V: getComplexIntReal()); |
592 | profileIntValue(ID, V: getComplexIntImag()); |
593 | return; |
594 | |
595 | case LValue: |
596 | getLValueBase().Profile(ID); |
597 | ID.AddInteger(I: getLValueOffset().getQuantity()); |
598 | ID.AddInteger(I: (isNullPointer() ? 1 : 0) | |
599 | (isLValueOnePastTheEnd() ? 2 : 0) | |
600 | (hasLValuePath() ? 4 : 0)); |
601 | if (hasLValuePath()) { |
602 | ID.AddInteger(I: getLValuePath().size()); |
603 | // For uniqueness, we only need to profile the entries corresponding |
604 | // to union members, but we don't have the type here so we don't know |
605 | // how to interpret the entries. |
606 | for (LValuePathEntry E : getLValuePath()) |
607 | E.Profile(ID); |
608 | } |
609 | return; |
610 | |
611 | case MemberPointer: |
612 | ID.AddPointer(Ptr: getMemberPointerDecl()); |
613 | ID.AddInteger(I: isMemberPointerToDerivedMember()); |
614 | for (const CXXRecordDecl *D : getMemberPointerPath()) |
615 | ID.AddPointer(Ptr: D); |
616 | return; |
617 | } |
618 | |
619 | llvm_unreachable("Unknown APValue kind!" ); |
620 | } |
621 | |
622 | static double GetApproxValue(const llvm::APFloat &F) { |
623 | llvm::APFloat V = F; |
624 | bool ignored; |
625 | V.convert(ToSemantics: llvm::APFloat::IEEEdouble(), RM: llvm::APFloat::rmNearestTiesToEven, |
626 | losesInfo: &ignored); |
627 | return V.convertToDouble(); |
628 | } |
629 | |
630 | static bool TryPrintAsStringLiteral(raw_ostream &Out, |
631 | const PrintingPolicy &Policy, |
632 | const ArrayType *ATy, |
633 | ArrayRef<APValue> Inits) { |
634 | if (Inits.empty()) |
635 | return false; |
636 | |
637 | QualType Ty = ATy->getElementType(); |
638 | if (!Ty->isAnyCharacterType()) |
639 | return false; |
640 | |
641 | // Nothing we can do about a sequence that is not null-terminated |
642 | if (!Inits.back().isInt() || !Inits.back().getInt().isZero()) |
643 | return false; |
644 | |
645 | Inits = Inits.drop_back(); |
646 | |
647 | llvm::SmallString<40> Buf; |
648 | Buf.push_back(Elt: '"'); |
649 | |
650 | // Better than printing a two-digit sequence of 10 integers. |
651 | constexpr size_t MaxN = 36; |
652 | StringRef Ellipsis; |
653 | if (Inits.size() > MaxN && !Policy.EntireContentsOfLargeArray) { |
654 | Ellipsis = "[...]" ; |
655 | Inits = |
656 | Inits.take_front(N: std::min(a: MaxN - Ellipsis.size() / 2, b: Inits.size())); |
657 | } |
658 | |
659 | for (auto &Val : Inits) { |
660 | if (!Val.isInt()) |
661 | return false; |
662 | int64_t Char64 = Val.getInt().getExtValue(); |
663 | if (!isASCII(c: Char64)) |
664 | return false; // Bye bye, see you in integers. |
665 | auto Ch = static_cast<unsigned char>(Char64); |
666 | // The diagnostic message is 'quoted' |
667 | StringRef Escaped = escapeCStyle<EscapeChar::SingleAndDouble>(Ch); |
668 | if (Escaped.empty()) { |
669 | if (!isPrintable(c: Ch)) |
670 | return false; |
671 | Buf.emplace_back(Args&: Ch); |
672 | } else { |
673 | Buf.append(RHS: Escaped); |
674 | } |
675 | } |
676 | |
677 | Buf.append(RHS: Ellipsis); |
678 | Buf.push_back(Elt: '"'); |
679 | |
680 | if (Ty->isWideCharType()) |
681 | Out << 'L'; |
682 | else if (Ty->isChar8Type()) |
683 | Out << "u8" ; |
684 | else if (Ty->isChar16Type()) |
685 | Out << 'u'; |
686 | else if (Ty->isChar32Type()) |
687 | Out << 'U'; |
688 | |
689 | Out << Buf; |
690 | return true; |
691 | } |
692 | |
693 | void APValue::printPretty(raw_ostream &Out, const ASTContext &Ctx, |
694 | QualType Ty) const { |
695 | printPretty(OS&: Out, Policy: Ctx.getPrintingPolicy(), Ty, Ctx: &Ctx); |
696 | } |
697 | |
698 | void APValue::printPretty(raw_ostream &Out, const PrintingPolicy &Policy, |
699 | QualType Ty, const ASTContext *Ctx) const { |
700 | // There are no objects of type 'void', but values of this type can be |
701 | // returned from functions. |
702 | if (Ty->isVoidType()) { |
703 | Out << "void()" ; |
704 | return; |
705 | } |
706 | |
707 | if (const auto *AT = Ty->getAs<AtomicType>()) |
708 | Ty = AT->getValueType(); |
709 | |
710 | switch (getKind()) { |
711 | case APValue::None: |
712 | Out << "<out of lifetime>" ; |
713 | return; |
714 | case APValue::Indeterminate: |
715 | Out << "<uninitialized>" ; |
716 | return; |
717 | case APValue::Int: |
718 | if (Ty->isBooleanType()) |
719 | Out << (getInt().getBoolValue() ? "true" : "false" ); |
720 | else |
721 | Out << getInt(); |
722 | return; |
723 | case APValue::Float: |
724 | Out << GetApproxValue(F: getFloat()); |
725 | return; |
726 | case APValue::FixedPoint: |
727 | Out << getFixedPoint(); |
728 | return; |
729 | case APValue::Vector: { |
730 | Out << '{'; |
731 | QualType ElemTy = Ty->castAs<VectorType>()->getElementType(); |
732 | getVectorElt(I: 0).printPretty(Out, Policy, Ty: ElemTy, Ctx); |
733 | for (unsigned i = 1; i != getVectorLength(); ++i) { |
734 | Out << ", " ; |
735 | getVectorElt(I: i).printPretty(Out, Policy, Ty: ElemTy, Ctx); |
736 | } |
737 | Out << '}'; |
738 | return; |
739 | } |
740 | case APValue::ComplexInt: |
741 | Out << getComplexIntReal() << "+" << getComplexIntImag() << "i" ; |
742 | return; |
743 | case APValue::ComplexFloat: |
744 | Out << GetApproxValue(F: getComplexFloatReal()) << "+" |
745 | << GetApproxValue(F: getComplexFloatImag()) << "i" ; |
746 | return; |
747 | case APValue::LValue: { |
748 | bool IsReference = Ty->isReferenceType(); |
749 | QualType InnerTy |
750 | = IsReference ? Ty.getNonReferenceType() : Ty->getPointeeType(); |
751 | if (InnerTy.isNull()) |
752 | InnerTy = Ty; |
753 | |
754 | LValueBase Base = getLValueBase(); |
755 | if (!Base) { |
756 | if (isNullPointer()) { |
757 | Out << (Policy.Nullptr ? "nullptr" : "0" ); |
758 | } else if (IsReference) { |
759 | Out << "*(" << InnerTy.stream(Policy) << "*)" |
760 | << getLValueOffset().getQuantity(); |
761 | } else { |
762 | Out << "(" << Ty.stream(Policy) << ")" |
763 | << getLValueOffset().getQuantity(); |
764 | } |
765 | return; |
766 | } |
767 | |
768 | if (!hasLValuePath()) { |
769 | // No lvalue path: just print the offset. |
770 | CharUnits O = getLValueOffset(); |
771 | CharUnits S = Ctx ? Ctx->getTypeSizeInCharsIfKnown(Ty: InnerTy).value_or( |
772 | u: CharUnits::Zero()) |
773 | : CharUnits::Zero(); |
774 | if (!O.isZero()) { |
775 | if (IsReference) |
776 | Out << "*(" ; |
777 | if (S.isZero() || O % S) { |
778 | Out << "(char*)" ; |
779 | S = CharUnits::One(); |
780 | } |
781 | Out << '&'; |
782 | } else if (!IsReference) { |
783 | Out << '&'; |
784 | } |
785 | |
786 | if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) |
787 | Out << *VD; |
788 | else if (TypeInfoLValue TI = Base.dyn_cast<TypeInfoLValue>()) { |
789 | TI.print(Out, Policy); |
790 | } else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { |
791 | Out << "{*new " |
792 | << Base.getDynamicAllocType().stream(Policy) << "#" |
793 | << DA.getIndex() << "}" ; |
794 | } else { |
795 | assert(Base.get<const Expr *>() != nullptr && |
796 | "Expecting non-null Expr" ); |
797 | Base.get<const Expr*>()->printPretty(OS&: Out, Helper: nullptr, Policy); |
798 | } |
799 | |
800 | if (!O.isZero()) { |
801 | Out << " + " << (O / S); |
802 | if (IsReference) |
803 | Out << ')'; |
804 | } |
805 | return; |
806 | } |
807 | |
808 | // We have an lvalue path. Print it out nicely. |
809 | if (!IsReference) |
810 | Out << '&'; |
811 | else if (isLValueOnePastTheEnd()) |
812 | Out << "*(&" ; |
813 | |
814 | QualType ElemTy = Base.getType(); |
815 | if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) { |
816 | Out << *VD; |
817 | } else if (TypeInfoLValue TI = Base.dyn_cast<TypeInfoLValue>()) { |
818 | TI.print(Out, Policy); |
819 | } else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { |
820 | Out << "{*new " << Base.getDynamicAllocType().stream(Policy) << "#" |
821 | << DA.getIndex() << "}" ; |
822 | } else { |
823 | const Expr *E = Base.get<const Expr*>(); |
824 | assert(E != nullptr && "Expecting non-null Expr" ); |
825 | E->printPretty(OS&: Out, Helper: nullptr, Policy); |
826 | } |
827 | |
828 | ArrayRef<LValuePathEntry> Path = getLValuePath(); |
829 | const CXXRecordDecl *CastToBase = nullptr; |
830 | for (unsigned I = 0, N = Path.size(); I != N; ++I) { |
831 | if (ElemTy->isRecordType()) { |
832 | // The lvalue refers to a class type, so the next path entry is a base |
833 | // or member. |
834 | const Decl *BaseOrMember = Path[I].getAsBaseOrMember().getPointer(); |
835 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: BaseOrMember)) { |
836 | CastToBase = RD; |
837 | // Leave ElemTy referring to the most-derived class. The actual type |
838 | // doesn't matter except for array types. |
839 | } else { |
840 | const ValueDecl *VD = cast<ValueDecl>(Val: BaseOrMember); |
841 | Out << "." ; |
842 | if (CastToBase) |
843 | Out << *CastToBase << "::" ; |
844 | Out << *VD; |
845 | ElemTy = VD->getType(); |
846 | } |
847 | } else if (ElemTy->isAnyComplexType()) { |
848 | // The lvalue refers to a complex type |
849 | Out << (Path[I].getAsArrayIndex() == 0 ? ".real" : ".imag" ); |
850 | ElemTy = ElemTy->castAs<ComplexType>()->getElementType(); |
851 | } else { |
852 | // The lvalue must refer to an array. |
853 | Out << '[' << Path[I].getAsArrayIndex() << ']'; |
854 | ElemTy = ElemTy->castAsArrayTypeUnsafe()->getElementType(); |
855 | } |
856 | } |
857 | |
858 | // Handle formatting of one-past-the-end lvalues. |
859 | if (isLValueOnePastTheEnd()) { |
860 | // FIXME: If CastToBase is non-0, we should prefix the output with |
861 | // "(CastToBase*)". |
862 | Out << " + 1" ; |
863 | if (IsReference) |
864 | Out << ')'; |
865 | } |
866 | return; |
867 | } |
868 | case APValue::Array: { |
869 | const ArrayType *AT = Ty->castAsArrayTypeUnsafe(); |
870 | unsigned N = getArrayInitializedElts(); |
871 | if (N != 0 && TryPrintAsStringLiteral(Out, Policy, ATy: AT, |
872 | Inits: {&getArrayInitializedElt(I: 0), N})) |
873 | return; |
874 | QualType ElemTy = AT->getElementType(); |
875 | Out << '{'; |
876 | unsigned I = 0; |
877 | switch (N) { |
878 | case 0: |
879 | for (; I != N; ++I) { |
880 | Out << ", " ; |
881 | if (I == 10 && !Policy.EntireContentsOfLargeArray) { |
882 | Out << "...}" ; |
883 | return; |
884 | } |
885 | [[fallthrough]]; |
886 | default: |
887 | getArrayInitializedElt(I).printPretty(Out, Policy, Ty: ElemTy, Ctx); |
888 | } |
889 | } |
890 | Out << '}'; |
891 | return; |
892 | } |
893 | case APValue::Struct: { |
894 | Out << '{'; |
895 | const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl(); |
896 | bool First = true; |
897 | if (unsigned N = getStructNumBases()) { |
898 | const CXXRecordDecl *CD = cast<CXXRecordDecl>(Val: RD); |
899 | CXXRecordDecl::base_class_const_iterator BI = CD->bases_begin(); |
900 | for (unsigned I = 0; I != N; ++I, ++BI) { |
901 | assert(BI != CD->bases_end()); |
902 | if (!First) |
903 | Out << ", " ; |
904 | getStructBase(i: I).printPretty(Out, Policy, Ty: BI->getType(), Ctx); |
905 | First = false; |
906 | } |
907 | } |
908 | for (const auto *FI : RD->fields()) { |
909 | if (!First) |
910 | Out << ", " ; |
911 | if (FI->isUnnamedBitField()) |
912 | continue; |
913 | getStructField(i: FI->getFieldIndex()). |
914 | printPretty(Out, Policy, Ty: FI->getType(), Ctx); |
915 | First = false; |
916 | } |
917 | Out << '}'; |
918 | return; |
919 | } |
920 | case APValue::Union: |
921 | Out << '{'; |
922 | if (const FieldDecl *FD = getUnionField()) { |
923 | Out << "." << *FD << " = " ; |
924 | getUnionValue().printPretty(Out, Policy, Ty: FD->getType(), Ctx); |
925 | } |
926 | Out << '}'; |
927 | return; |
928 | case APValue::MemberPointer: |
929 | // FIXME: This is not enough to unambiguously identify the member in a |
930 | // multiple-inheritance scenario. |
931 | if (const ValueDecl *VD = getMemberPointerDecl()) { |
932 | Out << '&' << *cast<CXXRecordDecl>(Val: VD->getDeclContext()) << "::" << *VD; |
933 | return; |
934 | } |
935 | Out << "0" ; |
936 | return; |
937 | case APValue::AddrLabelDiff: |
938 | Out << "&&" << getAddrLabelDiffLHS()->getLabel()->getName(); |
939 | Out << " - " ; |
940 | Out << "&&" << getAddrLabelDiffRHS()->getLabel()->getName(); |
941 | return; |
942 | } |
943 | llvm_unreachable("Unknown APValue kind!" ); |
944 | } |
945 | |
946 | std::string APValue::getAsString(const ASTContext &Ctx, QualType Ty) const { |
947 | std::string Result; |
948 | llvm::raw_string_ostream Out(Result); |
949 | printPretty(Out, Ctx, Ty); |
950 | Out.flush(); |
951 | return Result; |
952 | } |
953 | |
954 | bool APValue::toIntegralConstant(APSInt &Result, QualType SrcTy, |
955 | const ASTContext &Ctx) const { |
956 | if (isInt()) { |
957 | Result = getInt(); |
958 | return true; |
959 | } |
960 | |
961 | if (isLValue() && isNullPointer()) { |
962 | Result = Ctx.MakeIntValue(Value: Ctx.getTargetNullPointerValue(QT: SrcTy), Type: SrcTy); |
963 | return true; |
964 | } |
965 | |
966 | if (isLValue() && !getLValueBase()) { |
967 | Result = Ctx.MakeIntValue(Value: getLValueOffset().getQuantity(), Type: SrcTy); |
968 | return true; |
969 | } |
970 | |
971 | return false; |
972 | } |
973 | |
974 | const APValue::LValueBase APValue::getLValueBase() const { |
975 | assert(isLValue() && "Invalid accessor" ); |
976 | return ((const LV *)(const void *)&Data)->Base; |
977 | } |
978 | |
979 | bool APValue::isLValueOnePastTheEnd() const { |
980 | assert(isLValue() && "Invalid accessor" ); |
981 | return ((const LV *)(const void *)&Data)->IsOnePastTheEnd; |
982 | } |
983 | |
984 | CharUnits &APValue::getLValueOffset() { |
985 | assert(isLValue() && "Invalid accessor" ); |
986 | return ((LV *)(void *)&Data)->Offset; |
987 | } |
988 | |
989 | bool APValue::hasLValuePath() const { |
990 | assert(isLValue() && "Invalid accessor" ); |
991 | return ((const LV *)(const char *)&Data)->hasPath(); |
992 | } |
993 | |
994 | ArrayRef<APValue::LValuePathEntry> APValue::getLValuePath() const { |
995 | assert(isLValue() && hasLValuePath() && "Invalid accessor" ); |
996 | const LV &LVal = *((const LV *)(const char *)&Data); |
997 | return llvm::ArrayRef(LVal.getPath(), LVal.PathLength); |
998 | } |
999 | |
1000 | unsigned APValue::getLValueCallIndex() const { |
1001 | assert(isLValue() && "Invalid accessor" ); |
1002 | return ((const LV *)(const char *)&Data)->Base.getCallIndex(); |
1003 | } |
1004 | |
1005 | unsigned APValue::getLValueVersion() const { |
1006 | assert(isLValue() && "Invalid accessor" ); |
1007 | return ((const LV *)(const char *)&Data)->Base.getVersion(); |
1008 | } |
1009 | |
1010 | bool APValue::isNullPointer() const { |
1011 | assert(isLValue() && "Invalid usage" ); |
1012 | return ((const LV *)(const char *)&Data)->IsNullPtr; |
1013 | } |
1014 | |
1015 | void APValue::setLValue(LValueBase B, const CharUnits &O, NoLValuePath, |
1016 | bool IsNullPtr) { |
1017 | assert(isLValue() && "Invalid accessor" ); |
1018 | LV &LVal = *((LV *)(char *)&Data); |
1019 | LVal.Base = B; |
1020 | LVal.IsOnePastTheEnd = false; |
1021 | LVal.Offset = O; |
1022 | LVal.resizePath(Length: (unsigned)-1); |
1023 | LVal.IsNullPtr = IsNullPtr; |
1024 | } |
1025 | |
1026 | MutableArrayRef<APValue::LValuePathEntry> |
1027 | APValue::setLValueUninit(LValueBase B, const CharUnits &O, unsigned Size, |
1028 | bool IsOnePastTheEnd, bool IsNullPtr) { |
1029 | assert(isLValue() && "Invalid accessor" ); |
1030 | LV &LVal = *((LV *)(char *)&Data); |
1031 | LVal.Base = B; |
1032 | LVal.IsOnePastTheEnd = IsOnePastTheEnd; |
1033 | LVal.Offset = O; |
1034 | LVal.IsNullPtr = IsNullPtr; |
1035 | LVal.resizePath(Length: Size); |
1036 | return {LVal.getPath(), Size}; |
1037 | } |
1038 | |
1039 | void APValue::setLValue(LValueBase B, const CharUnits &O, |
1040 | ArrayRef<LValuePathEntry> Path, bool IsOnePastTheEnd, |
1041 | bool IsNullPtr) { |
1042 | MutableArrayRef<APValue::LValuePathEntry> InternalPath = |
1043 | setLValueUninit(B, O, Size: Path.size(), IsOnePastTheEnd, IsNullPtr); |
1044 | if (Path.size()) { |
1045 | memcpy(dest: InternalPath.data(), src: Path.data(), |
1046 | n: Path.size() * sizeof(LValuePathEntry)); |
1047 | } |
1048 | } |
1049 | |
1050 | void APValue::setUnion(const FieldDecl *Field, const APValue &Value) { |
1051 | assert(isUnion() && "Invalid accessor" ); |
1052 | ((UnionData *)(char *)&Data)->Field = |
1053 | Field ? Field->getCanonicalDecl() : nullptr; |
1054 | *((UnionData *)(char *)&Data)->Value = Value; |
1055 | } |
1056 | |
1057 | const ValueDecl *APValue::getMemberPointerDecl() const { |
1058 | assert(isMemberPointer() && "Invalid accessor" ); |
1059 | const MemberPointerData &MPD = |
1060 | *((const MemberPointerData *)(const char *)&Data); |
1061 | return MPD.MemberAndIsDerivedMember.getPointer(); |
1062 | } |
1063 | |
1064 | bool APValue::isMemberPointerToDerivedMember() const { |
1065 | assert(isMemberPointer() && "Invalid accessor" ); |
1066 | const MemberPointerData &MPD = |
1067 | *((const MemberPointerData *)(const char *)&Data); |
1068 | return MPD.MemberAndIsDerivedMember.getInt(); |
1069 | } |
1070 | |
1071 | ArrayRef<const CXXRecordDecl*> APValue::getMemberPointerPath() const { |
1072 | assert(isMemberPointer() && "Invalid accessor" ); |
1073 | const MemberPointerData &MPD = |
1074 | *((const MemberPointerData *)(const char *)&Data); |
1075 | return llvm::ArrayRef(MPD.getPath(), MPD.PathLength); |
1076 | } |
1077 | |
1078 | void APValue::MakeLValue() { |
1079 | assert(isAbsent() && "Bad state change" ); |
1080 | static_assert(sizeof(LV) <= DataSize, "LV too big" ); |
1081 | new ((void *)(char *)&Data) LV(); |
1082 | Kind = LValue; |
1083 | } |
1084 | |
1085 | void APValue::MakeArray(unsigned InitElts, unsigned Size) { |
1086 | assert(isAbsent() && "Bad state change" ); |
1087 | new ((void *)(char *)&Data) Arr(InitElts, Size); |
1088 | Kind = Array; |
1089 | } |
1090 | |
1091 | MutableArrayRef<APValue::LValuePathEntry> |
1092 | setLValueUninit(APValue::LValueBase B, const CharUnits &O, unsigned Size, |
1093 | bool OnePastTheEnd, bool IsNullPtr); |
1094 | |
1095 | MutableArrayRef<const CXXRecordDecl *> |
1096 | APValue::setMemberPointerUninit(const ValueDecl *Member, bool IsDerivedMember, |
1097 | unsigned Size) { |
1098 | assert(isAbsent() && "Bad state change" ); |
1099 | MemberPointerData *MPD = new ((void *)(char *)&Data) MemberPointerData; |
1100 | Kind = MemberPointer; |
1101 | MPD->MemberAndIsDerivedMember.setPointer( |
1102 | Member ? cast<ValueDecl>(Val: Member->getCanonicalDecl()) : nullptr); |
1103 | MPD->MemberAndIsDerivedMember.setInt(IsDerivedMember); |
1104 | MPD->resizePath(Length: Size); |
1105 | return {MPD->getPath(), MPD->PathLength}; |
1106 | } |
1107 | |
1108 | void APValue::MakeMemberPointer(const ValueDecl *Member, bool IsDerivedMember, |
1109 | ArrayRef<const CXXRecordDecl *> Path) { |
1110 | MutableArrayRef<const CXXRecordDecl *> InternalPath = |
1111 | setMemberPointerUninit(Member, IsDerivedMember, Size: Path.size()); |
1112 | for (unsigned I = 0; I != Path.size(); ++I) |
1113 | InternalPath[I] = Path[I]->getCanonicalDecl(); |
1114 | } |
1115 | |
1116 | LinkageInfo LinkageComputer::getLVForValue(const APValue &V, |
1117 | LVComputationKind computation) { |
1118 | LinkageInfo LV = LinkageInfo::external(); |
1119 | |
1120 | auto MergeLV = [&](LinkageInfo MergeLV) { |
1121 | LV.merge(other: MergeLV); |
1122 | return LV.getLinkage() == Linkage::Internal; |
1123 | }; |
1124 | auto Merge = [&](const APValue &V) { |
1125 | return MergeLV(getLVForValue(V, computation)); |
1126 | }; |
1127 | |
1128 | switch (V.getKind()) { |
1129 | case APValue::None: |
1130 | case APValue::Indeterminate: |
1131 | case APValue::Int: |
1132 | case APValue::Float: |
1133 | case APValue::FixedPoint: |
1134 | case APValue::ComplexInt: |
1135 | case APValue::ComplexFloat: |
1136 | case APValue::Vector: |
1137 | break; |
1138 | |
1139 | case APValue::AddrLabelDiff: |
1140 | // Even for an inline function, it's not reasonable to treat a difference |
1141 | // between the addresses of labels as an external value. |
1142 | return LinkageInfo::internal(); |
1143 | |
1144 | case APValue::Struct: { |
1145 | for (unsigned I = 0, N = V.getStructNumBases(); I != N; ++I) |
1146 | if (Merge(V.getStructBase(i: I))) |
1147 | break; |
1148 | for (unsigned I = 0, N = V.getStructNumFields(); I != N; ++I) |
1149 | if (Merge(V.getStructField(i: I))) |
1150 | break; |
1151 | break; |
1152 | } |
1153 | |
1154 | case APValue::Union: |
1155 | if (V.getUnionField()) |
1156 | Merge(V.getUnionValue()); |
1157 | break; |
1158 | |
1159 | case APValue::Array: { |
1160 | for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I) |
1161 | if (Merge(V.getArrayInitializedElt(I))) |
1162 | break; |
1163 | if (V.hasArrayFiller()) |
1164 | Merge(V.getArrayFiller()); |
1165 | break; |
1166 | } |
1167 | |
1168 | case APValue::LValue: { |
1169 | if (!V.getLValueBase()) { |
1170 | // Null or absolute address: this is external. |
1171 | } else if (const auto *VD = |
1172 | V.getLValueBase().dyn_cast<const ValueDecl *>()) { |
1173 | if (VD && MergeLV(getLVForDecl(D: VD, computation))) |
1174 | break; |
1175 | } else if (const auto TI = V.getLValueBase().dyn_cast<TypeInfoLValue>()) { |
1176 | if (MergeLV(getLVForType(T: *TI.getType(), computation))) |
1177 | break; |
1178 | } else if (const Expr *E = V.getLValueBase().dyn_cast<const Expr *>()) { |
1179 | // Almost all expression bases are internal. The exception is |
1180 | // lifetime-extended temporaries. |
1181 | // FIXME: These should be modeled as having the |
1182 | // LifetimeExtendedTemporaryDecl itself as the base. |
1183 | // FIXME: If we permit Objective-C object literals in template arguments, |
1184 | // they should not imply internal linkage. |
1185 | auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: E); |
1186 | if (!MTE || MTE->getStorageDuration() == SD_FullExpression) |
1187 | return LinkageInfo::internal(); |
1188 | if (MergeLV(getLVForDecl(D: MTE->getExtendingDecl(), computation))) |
1189 | break; |
1190 | } else { |
1191 | assert(V.getLValueBase().is<DynamicAllocLValue>() && |
1192 | "unexpected LValueBase kind" ); |
1193 | return LinkageInfo::internal(); |
1194 | } |
1195 | // The lvalue path doesn't matter: pointers to all subobjects always have |
1196 | // the same visibility as pointers to the complete object. |
1197 | break; |
1198 | } |
1199 | |
1200 | case APValue::MemberPointer: |
1201 | if (const NamedDecl *D = V.getMemberPointerDecl()) |
1202 | MergeLV(getLVForDecl(D, computation)); |
1203 | // Note that we could have a base-to-derived conversion here to a member of |
1204 | // a derived class with less linkage/visibility. That's covered by the |
1205 | // linkage and visibility of the value's type. |
1206 | break; |
1207 | } |
1208 | |
1209 | return LV; |
1210 | } |
1211 | |