1 | //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the ASTContext interface. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/ASTContext.h" |
14 | #include "CXXABI.h" |
15 | #include "Interp/Context.h" |
16 | #include "clang/AST/APValue.h" |
17 | #include "clang/AST/ASTConcept.h" |
18 | #include "clang/AST/ASTMutationListener.h" |
19 | #include "clang/AST/ASTTypeTraits.h" |
20 | #include "clang/AST/Attr.h" |
21 | #include "clang/AST/AttrIterator.h" |
22 | #include "clang/AST/CharUnits.h" |
23 | #include "clang/AST/Comment.h" |
24 | #include "clang/AST/Decl.h" |
25 | #include "clang/AST/DeclBase.h" |
26 | #include "clang/AST/DeclCXX.h" |
27 | #include "clang/AST/DeclContextInternals.h" |
28 | #include "clang/AST/DeclObjC.h" |
29 | #include "clang/AST/DeclOpenMP.h" |
30 | #include "clang/AST/DeclTemplate.h" |
31 | #include "clang/AST/DeclarationName.h" |
32 | #include "clang/AST/DependenceFlags.h" |
33 | #include "clang/AST/Expr.h" |
34 | #include "clang/AST/ExprCXX.h" |
35 | #include "clang/AST/ExprConcepts.h" |
36 | #include "clang/AST/ExternalASTSource.h" |
37 | #include "clang/AST/Mangle.h" |
38 | #include "clang/AST/MangleNumberingContext.h" |
39 | #include "clang/AST/NestedNameSpecifier.h" |
40 | #include "clang/AST/ParentMapContext.h" |
41 | #include "clang/AST/RawCommentList.h" |
42 | #include "clang/AST/RecordLayout.h" |
43 | #include "clang/AST/Stmt.h" |
44 | #include "clang/AST/StmtOpenACC.h" |
45 | #include "clang/AST/TemplateBase.h" |
46 | #include "clang/AST/TemplateName.h" |
47 | #include "clang/AST/Type.h" |
48 | #include "clang/AST/TypeLoc.h" |
49 | #include "clang/AST/UnresolvedSet.h" |
50 | #include "clang/AST/VTableBuilder.h" |
51 | #include "clang/Basic/AddressSpaces.h" |
52 | #include "clang/Basic/Builtins.h" |
53 | #include "clang/Basic/CommentOptions.h" |
54 | #include "clang/Basic/ExceptionSpecificationType.h" |
55 | #include "clang/Basic/IdentifierTable.h" |
56 | #include "clang/Basic/LLVM.h" |
57 | #include "clang/Basic/LangOptions.h" |
58 | #include "clang/Basic/Linkage.h" |
59 | #include "clang/Basic/Module.h" |
60 | #include "clang/Basic/NoSanitizeList.h" |
61 | #include "clang/Basic/ObjCRuntime.h" |
62 | #include "clang/Basic/ProfileList.h" |
63 | #include "clang/Basic/SourceLocation.h" |
64 | #include "clang/Basic/SourceManager.h" |
65 | #include "clang/Basic/Specifiers.h" |
66 | #include "clang/Basic/TargetCXXABI.h" |
67 | #include "clang/Basic/TargetInfo.h" |
68 | #include "clang/Basic/XRayLists.h" |
69 | #include "llvm/ADT/APFixedPoint.h" |
70 | #include "llvm/ADT/APInt.h" |
71 | #include "llvm/ADT/APSInt.h" |
72 | #include "llvm/ADT/ArrayRef.h" |
73 | #include "llvm/ADT/DenseMap.h" |
74 | #include "llvm/ADT/DenseSet.h" |
75 | #include "llvm/ADT/FoldingSet.h" |
76 | #include "llvm/ADT/PointerUnion.h" |
77 | #include "llvm/ADT/STLExtras.h" |
78 | #include "llvm/ADT/SmallPtrSet.h" |
79 | #include "llvm/ADT/SmallVector.h" |
80 | #include "llvm/ADT/StringExtras.h" |
81 | #include "llvm/ADT/StringRef.h" |
82 | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
83 | #include "llvm/Support/Capacity.h" |
84 | #include "llvm/Support/Casting.h" |
85 | #include "llvm/Support/Compiler.h" |
86 | #include "llvm/Support/ErrorHandling.h" |
87 | #include "llvm/Support/MD5.h" |
88 | #include "llvm/Support/MathExtras.h" |
89 | #include "llvm/Support/SipHash.h" |
90 | #include "llvm/Support/raw_ostream.h" |
91 | #include "llvm/TargetParser/AArch64TargetParser.h" |
92 | #include "llvm/TargetParser/Triple.h" |
93 | #include <algorithm> |
94 | #include <cassert> |
95 | #include <cstddef> |
96 | #include <cstdint> |
97 | #include <cstdlib> |
98 | #include <map> |
99 | #include <memory> |
100 | #include <optional> |
101 | #include <string> |
102 | #include <tuple> |
103 | #include <utility> |
104 | |
105 | using namespace clang; |
106 | |
107 | enum FloatingRank { |
108 | BFloat16Rank, |
109 | Float16Rank, |
110 | HalfRank, |
111 | FloatRank, |
112 | DoubleRank, |
113 | LongDoubleRank, |
114 | Float128Rank, |
115 | Ibm128Rank |
116 | }; |
117 | |
118 | /// \returns The locations that are relevant when searching for Doc comments |
119 | /// related to \p D. |
120 | static SmallVector<SourceLocation, 2> |
121 | (const Decl *D, SourceManager &SourceMgr) { |
122 | assert(D); |
123 | |
124 | // User can not attach documentation to implicit declarations. |
125 | if (D->isImplicit()) |
126 | return {}; |
127 | |
128 | // User can not attach documentation to implicit instantiations. |
129 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
130 | if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
131 | return {}; |
132 | } |
133 | |
134 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
135 | if (VD->isStaticDataMember() && |
136 | VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
137 | return {}; |
138 | } |
139 | |
140 | if (const auto *CRD = dyn_cast<CXXRecordDecl>(Val: D)) { |
141 | if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
142 | return {}; |
143 | } |
144 | |
145 | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: D)) { |
146 | TemplateSpecializationKind TSK = CTSD->getSpecializationKind(); |
147 | if (TSK == TSK_ImplicitInstantiation || |
148 | TSK == TSK_Undeclared) |
149 | return {}; |
150 | } |
151 | |
152 | if (const auto *ED = dyn_cast<EnumDecl>(Val: D)) { |
153 | if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
154 | return {}; |
155 | } |
156 | if (const auto *TD = dyn_cast<TagDecl>(Val: D)) { |
157 | // When tag declaration (but not definition!) is part of the |
158 | // decl-specifier-seq of some other declaration, it doesn't get comment |
159 | if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition()) |
160 | return {}; |
161 | } |
162 | // TODO: handle comments for function parameters properly. |
163 | if (isa<ParmVarDecl>(Val: D)) |
164 | return {}; |
165 | |
166 | // TODO: we could look up template parameter documentation in the template |
167 | // documentation. |
168 | if (isa<TemplateTypeParmDecl>(Val: D) || |
169 | isa<NonTypeTemplateParmDecl>(Val: D) || |
170 | isa<TemplateTemplateParmDecl>(Val: D)) |
171 | return {}; |
172 | |
173 | SmallVector<SourceLocation, 2> Locations; |
174 | // Find declaration location. |
175 | // For Objective-C declarations we generally don't expect to have multiple |
176 | // declarators, thus use declaration starting location as the "declaration |
177 | // location". |
178 | // For all other declarations multiple declarators are used quite frequently, |
179 | // so we use the location of the identifier as the "declaration location". |
180 | SourceLocation BaseLocation; |
181 | if (isa<ObjCMethodDecl>(Val: D) || isa<ObjCContainerDecl>(Val: D) || |
182 | isa<ObjCPropertyDecl>(Val: D) || isa<RedeclarableTemplateDecl>(Val: D) || |
183 | isa<ClassTemplateSpecializationDecl>(Val: D) || |
184 | // Allow association with Y across {} in `typedef struct X {} Y`. |
185 | isa<TypedefDecl>(Val: D)) |
186 | BaseLocation = D->getBeginLoc(); |
187 | else |
188 | BaseLocation = D->getLocation(); |
189 | |
190 | if (!D->getLocation().isMacroID()) { |
191 | Locations.emplace_back(Args&: BaseLocation); |
192 | } else { |
193 | const auto *DeclCtx = D->getDeclContext(); |
194 | |
195 | // When encountering definitions generated from a macro (that are not |
196 | // contained by another declaration in the macro) we need to try and find |
197 | // the comment at the location of the expansion but if there is no comment |
198 | // there we should retry to see if there is a comment inside the macro as |
199 | // well. To this end we return first BaseLocation to first look at the |
200 | // expansion site, the second value is the spelling location of the |
201 | // beginning of the declaration defined inside the macro. |
202 | if (!(DeclCtx && |
203 | Decl::castFromDeclContext(DeclCtx)->getLocation().isMacroID())) { |
204 | Locations.emplace_back(Args: SourceMgr.getExpansionLoc(Loc: BaseLocation)); |
205 | } |
206 | |
207 | // We use Decl::getBeginLoc() and not just BaseLocation here to ensure that |
208 | // we don't refer to the macro argument location at the expansion site (this |
209 | // can happen if the name's spelling is provided via macro argument), and |
210 | // always to the declaration itself. |
211 | Locations.emplace_back(Args: SourceMgr.getSpellingLoc(Loc: D->getBeginLoc())); |
212 | } |
213 | |
214 | return Locations; |
215 | } |
216 | |
217 | RawComment *ASTContext::( |
218 | const Decl *D, const SourceLocation RepresentativeLocForDecl, |
219 | const std::map<unsigned, RawComment *> &) const { |
220 | // If the declaration doesn't map directly to a location in a file, we |
221 | // can't find the comment. |
222 | if (RepresentativeLocForDecl.isInvalid() || |
223 | !RepresentativeLocForDecl.isFileID()) |
224 | return nullptr; |
225 | |
226 | // If there are no comments anywhere, we won't find anything. |
227 | if (CommentsInTheFile.empty()) |
228 | return nullptr; |
229 | |
230 | // Decompose the location for the declaration and find the beginning of the |
231 | // file buffer. |
232 | const std::pair<FileID, unsigned> DeclLocDecomp = |
233 | SourceMgr.getDecomposedLoc(Loc: RepresentativeLocForDecl); |
234 | |
235 | // Slow path. |
236 | auto = |
237 | CommentsInTheFile.lower_bound(x: DeclLocDecomp.second); |
238 | |
239 | // First check whether we have a trailing comment. |
240 | if (OffsetCommentBehindDecl != CommentsInTheFile.end()) { |
241 | RawComment * = OffsetCommentBehindDecl->second; |
242 | if ((CommentBehindDecl->isDocumentation() || |
243 | LangOpts.CommentOpts.ParseAllComments) && |
244 | CommentBehindDecl->isTrailingComment() && |
245 | (isa<FieldDecl>(Val: D) || isa<EnumConstantDecl>(Val: D) || isa<VarDecl>(Val: D) || |
246 | isa<ObjCMethodDecl>(Val: D) || isa<ObjCPropertyDecl>(Val: D))) { |
247 | |
248 | // Check that Doxygen trailing comment comes after the declaration, starts |
249 | // on the same line and in the same file as the declaration. |
250 | if (SourceMgr.getLineNumber(FID: DeclLocDecomp.first, FilePos: DeclLocDecomp.second) == |
251 | Comments.getCommentBeginLine(C: CommentBehindDecl, File: DeclLocDecomp.first, |
252 | Offset: OffsetCommentBehindDecl->first)) { |
253 | return CommentBehindDecl; |
254 | } |
255 | } |
256 | } |
257 | |
258 | // The comment just after the declaration was not a trailing comment. |
259 | // Let's look at the previous comment. |
260 | if (OffsetCommentBehindDecl == CommentsInTheFile.begin()) |
261 | return nullptr; |
262 | |
263 | auto = --OffsetCommentBehindDecl; |
264 | RawComment * = OffsetCommentBeforeDecl->second; |
265 | |
266 | // Check that we actually have a non-member Doxygen comment. |
267 | if (!(CommentBeforeDecl->isDocumentation() || |
268 | LangOpts.CommentOpts.ParseAllComments) || |
269 | CommentBeforeDecl->isTrailingComment()) |
270 | return nullptr; |
271 | |
272 | // Decompose the end of the comment. |
273 | const unsigned = |
274 | Comments.getCommentEndOffset(C: CommentBeforeDecl); |
275 | |
276 | // Get the corresponding buffer. |
277 | bool Invalid = false; |
278 | const char *Buffer = SourceMgr.getBufferData(FID: DeclLocDecomp.first, |
279 | Invalid: &Invalid).data(); |
280 | if (Invalid) |
281 | return nullptr; |
282 | |
283 | // Extract text between the comment and declaration. |
284 | StringRef Text(Buffer + CommentEndOffset, |
285 | DeclLocDecomp.second - CommentEndOffset); |
286 | |
287 | // There should be no other declarations or preprocessor directives between |
288 | // comment and declaration. |
289 | if (Text.find_last_of(Chars: ";{}#@" ) != StringRef::npos) |
290 | return nullptr; |
291 | |
292 | return CommentBeforeDecl; |
293 | } |
294 | |
295 | RawComment *ASTContext::(const Decl *D) const { |
296 | const auto DeclLocs = getDeclLocsForCommentSearch(D, SourceMgr); |
297 | |
298 | for (const auto DeclLoc : DeclLocs) { |
299 | // If the declaration doesn't map directly to a location in a file, we |
300 | // can't find the comment. |
301 | if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) |
302 | continue; |
303 | |
304 | if (ExternalSource && !CommentsLoaded) { |
305 | ExternalSource->ReadComments(); |
306 | CommentsLoaded = true; |
307 | } |
308 | |
309 | if (Comments.empty()) |
310 | continue; |
311 | |
312 | const FileID File = SourceMgr.getDecomposedLoc(Loc: DeclLoc).first; |
313 | if (!File.isValid()) |
314 | continue; |
315 | |
316 | const auto = Comments.getCommentsInFile(File); |
317 | if (!CommentsInThisFile || CommentsInThisFile->empty()) |
318 | continue; |
319 | |
320 | if (RawComment * = |
321 | getRawCommentForDeclNoCacheImpl(D, RepresentativeLocForDecl: DeclLoc, CommentsInTheFile: *CommentsInThisFile)) |
322 | return Comment; |
323 | } |
324 | |
325 | return nullptr; |
326 | } |
327 | |
328 | void ASTContext::(const RawComment &RC) { |
329 | assert(LangOpts.RetainCommentsFromSystemHeaders || |
330 | !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin())); |
331 | Comments.addComment(RC, CommentOpts: LangOpts.CommentOpts, Allocator&: BumpAlloc); |
332 | } |
333 | |
334 | /// If we have a 'templated' declaration for a template, adjust 'D' to |
335 | /// refer to the actual template. |
336 | /// If we have an implicit instantiation, adjust 'D' to refer to template. |
337 | static const Decl &adjustDeclToTemplate(const Decl &D) { |
338 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: &D)) { |
339 | // Is this function declaration part of a function template? |
340 | if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) |
341 | return *FTD; |
342 | |
343 | // Nothing to do if function is not an implicit instantiation. |
344 | if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) |
345 | return D; |
346 | |
347 | // Function is an implicit instantiation of a function template? |
348 | if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate()) |
349 | return *FTD; |
350 | |
351 | // Function is instantiated from a member definition of a class template? |
352 | if (const FunctionDecl *MemberDecl = |
353 | FD->getInstantiatedFromMemberFunction()) |
354 | return *MemberDecl; |
355 | |
356 | return D; |
357 | } |
358 | if (const auto *VD = dyn_cast<VarDecl>(Val: &D)) { |
359 | // Static data member is instantiated from a member definition of a class |
360 | // template? |
361 | if (VD->isStaticDataMember()) |
362 | if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember()) |
363 | return *MemberDecl; |
364 | |
365 | return D; |
366 | } |
367 | if (const auto *CRD = dyn_cast<CXXRecordDecl>(Val: &D)) { |
368 | // Is this class declaration part of a class template? |
369 | if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate()) |
370 | return *CTD; |
371 | |
372 | // Class is an implicit instantiation of a class template or partial |
373 | // specialization? |
374 | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: CRD)) { |
375 | if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation) |
376 | return D; |
377 | llvm::PointerUnion<ClassTemplateDecl *, |
378 | ClassTemplatePartialSpecializationDecl *> |
379 | PU = CTSD->getSpecializedTemplateOrPartial(); |
380 | return PU.is<ClassTemplateDecl *>() |
381 | ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>()) |
382 | : *static_cast<const Decl *>( |
383 | PU.get<ClassTemplatePartialSpecializationDecl *>()); |
384 | } |
385 | |
386 | // Class is instantiated from a member definition of a class template? |
387 | if (const MemberSpecializationInfo *Info = |
388 | CRD->getMemberSpecializationInfo()) |
389 | return *Info->getInstantiatedFrom(); |
390 | |
391 | return D; |
392 | } |
393 | if (const auto *ED = dyn_cast<EnumDecl>(Val: &D)) { |
394 | // Enum is instantiated from a member definition of a class template? |
395 | if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum()) |
396 | return *MemberDecl; |
397 | |
398 | return D; |
399 | } |
400 | // FIXME: Adjust alias templates? |
401 | return D; |
402 | } |
403 | |
404 | const RawComment *ASTContext::( |
405 | const Decl *D, |
406 | const Decl **OriginalDecl) const { |
407 | if (!D) { |
408 | if (OriginalDecl) |
409 | OriginalDecl = nullptr; |
410 | return nullptr; |
411 | } |
412 | |
413 | D = &adjustDeclToTemplate(D: *D); |
414 | |
415 | // Any comment directly attached to D? |
416 | { |
417 | auto = DeclRawComments.find(Val: D); |
418 | if (DeclComment != DeclRawComments.end()) { |
419 | if (OriginalDecl) |
420 | *OriginalDecl = D; |
421 | return DeclComment->second; |
422 | } |
423 | } |
424 | |
425 | // Any comment attached to any redeclaration of D? |
426 | const Decl *CanonicalD = D->getCanonicalDecl(); |
427 | if (!CanonicalD) |
428 | return nullptr; |
429 | |
430 | { |
431 | auto = RedeclChainComments.find(Val: CanonicalD); |
432 | if (RedeclComment != RedeclChainComments.end()) { |
433 | if (OriginalDecl) |
434 | *OriginalDecl = RedeclComment->second; |
435 | auto = DeclRawComments.find(Val: RedeclComment->second); |
436 | assert(CommentAtRedecl != DeclRawComments.end() && |
437 | "This decl is supposed to have comment attached." ); |
438 | return CommentAtRedecl->second; |
439 | } |
440 | } |
441 | |
442 | // Any redeclarations of D that we haven't checked for comments yet? |
443 | // We can't use DenseMap::iterator directly since it'd get invalid. |
444 | auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * { |
445 | return CommentlessRedeclChains.lookup(Val: CanonicalD); |
446 | }(); |
447 | |
448 | for (const auto Redecl : D->redecls()) { |
449 | assert(Redecl); |
450 | // Skip all redeclarations that have been checked previously. |
451 | if (LastCheckedRedecl) { |
452 | if (LastCheckedRedecl == Redecl) { |
453 | LastCheckedRedecl = nullptr; |
454 | } |
455 | continue; |
456 | } |
457 | const RawComment * = getRawCommentForDeclNoCache(D: Redecl); |
458 | if (RedeclComment) { |
459 | cacheRawCommentForDecl(OriginalD: *Redecl, Comment: *RedeclComment); |
460 | if (OriginalDecl) |
461 | *OriginalDecl = Redecl; |
462 | return RedeclComment; |
463 | } |
464 | CommentlessRedeclChains[CanonicalD] = Redecl; |
465 | } |
466 | |
467 | if (OriginalDecl) |
468 | *OriginalDecl = nullptr; |
469 | return nullptr; |
470 | } |
471 | |
472 | void ASTContext::(const Decl &OriginalD, |
473 | const RawComment &) const { |
474 | assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments); |
475 | DeclRawComments.try_emplace(Key: &OriginalD, Args: &Comment); |
476 | const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl(); |
477 | RedeclChainComments.try_emplace(Key: CanonicalDecl, Args: &OriginalD); |
478 | CommentlessRedeclChains.erase(Val: CanonicalDecl); |
479 | } |
480 | |
481 | static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod, |
482 | SmallVectorImpl<const NamedDecl *> &Redeclared) { |
483 | const DeclContext *DC = ObjCMethod->getDeclContext(); |
484 | if (const auto *IMD = dyn_cast<ObjCImplDecl>(Val: DC)) { |
485 | const ObjCInterfaceDecl *ID = IMD->getClassInterface(); |
486 | if (!ID) |
487 | return; |
488 | // Add redeclared method here. |
489 | for (const auto *Ext : ID->known_extensions()) { |
490 | if (ObjCMethodDecl *RedeclaredMethod = |
491 | Ext->getMethod(Sel: ObjCMethod->getSelector(), |
492 | isInstance: ObjCMethod->isInstanceMethod())) |
493 | Redeclared.push_back(Elt: RedeclaredMethod); |
494 | } |
495 | } |
496 | } |
497 | |
498 | void ASTContext::(ArrayRef<Decl *> Decls, |
499 | const Preprocessor *PP) { |
500 | if (Comments.empty() || Decls.empty()) |
501 | return; |
502 | |
503 | FileID File; |
504 | for (const Decl *D : Decls) { |
505 | if (D->isInvalidDecl()) |
506 | continue; |
507 | |
508 | D = &adjustDeclToTemplate(D: *D); |
509 | SourceLocation Loc = D->getLocation(); |
510 | if (Loc.isValid()) { |
511 | // See if there are any new comments that are not attached to a decl. |
512 | // The location doesn't have to be precise - we care only about the file. |
513 | File = SourceMgr.getDecomposedLoc(Loc).first; |
514 | break; |
515 | } |
516 | } |
517 | |
518 | if (File.isInvalid()) |
519 | return; |
520 | |
521 | auto = Comments.getCommentsInFile(File); |
522 | if (!CommentsInThisFile || CommentsInThisFile->empty() || |
523 | CommentsInThisFile->rbegin()->second->isAttached()) |
524 | return; |
525 | |
526 | // There is at least one comment not attached to a decl. |
527 | // Maybe it should be attached to one of Decls? |
528 | // |
529 | // Note that this way we pick up not only comments that precede the |
530 | // declaration, but also comments that *follow* the declaration -- thanks to |
531 | // the lookahead in the lexer: we've consumed the semicolon and looked |
532 | // ahead through comments. |
533 | for (const Decl *D : Decls) { |
534 | assert(D); |
535 | if (D->isInvalidDecl()) |
536 | continue; |
537 | |
538 | D = &adjustDeclToTemplate(D: *D); |
539 | |
540 | if (DeclRawComments.count(Val: D) > 0) |
541 | continue; |
542 | |
543 | const auto DeclLocs = getDeclLocsForCommentSearch(D, SourceMgr); |
544 | |
545 | for (const auto DeclLoc : DeclLocs) { |
546 | if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) |
547 | continue; |
548 | |
549 | if (RawComment *const = getRawCommentForDeclNoCacheImpl( |
550 | D, RepresentativeLocForDecl: DeclLoc, CommentsInTheFile: *CommentsInThisFile)) { |
551 | cacheRawCommentForDecl(OriginalD: *D, Comment: *DocComment); |
552 | comments::FullComment *FC = DocComment->parse(Context: *this, PP, D); |
553 | ParsedComments[D->getCanonicalDecl()] = FC; |
554 | break; |
555 | } |
556 | } |
557 | } |
558 | } |
559 | |
560 | comments::FullComment *ASTContext::(comments::FullComment *FC, |
561 | const Decl *D) const { |
562 | auto *ThisDeclInfo = new (*this) comments::DeclInfo; |
563 | ThisDeclInfo->CommentDecl = D; |
564 | ThisDeclInfo->IsFilled = false; |
565 | ThisDeclInfo->fill(); |
566 | ThisDeclInfo->CommentDecl = FC->getDecl(); |
567 | if (!ThisDeclInfo->TemplateParameters) |
568 | ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters; |
569 | comments::FullComment *CFC = |
570 | new (*this) comments::FullComment(FC->getBlocks(), |
571 | ThisDeclInfo); |
572 | return CFC; |
573 | } |
574 | |
575 | comments::FullComment *ASTContext::(const Decl *D) const { |
576 | const RawComment *RC = getRawCommentForDeclNoCache(D); |
577 | return RC ? RC->parse(Context: *this, PP: nullptr, D) : nullptr; |
578 | } |
579 | |
580 | comments::FullComment *ASTContext::( |
581 | const Decl *D, |
582 | const Preprocessor *PP) const { |
583 | if (!D || D->isInvalidDecl()) |
584 | return nullptr; |
585 | D = &adjustDeclToTemplate(D: *D); |
586 | |
587 | const Decl *Canonical = D->getCanonicalDecl(); |
588 | llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos = |
589 | ParsedComments.find(Val: Canonical); |
590 | |
591 | if (Pos != ParsedComments.end()) { |
592 | if (Canonical != D) { |
593 | comments::FullComment *FC = Pos->second; |
594 | comments::FullComment *CFC = cloneFullComment(FC, D); |
595 | return CFC; |
596 | } |
597 | return Pos->second; |
598 | } |
599 | |
600 | const Decl *OriginalDecl = nullptr; |
601 | |
602 | const RawComment *RC = getRawCommentForAnyRedecl(D, OriginalDecl: &OriginalDecl); |
603 | if (!RC) { |
604 | if (isa<ObjCMethodDecl>(Val: D) || isa<FunctionDecl>(Val: D)) { |
605 | SmallVector<const NamedDecl*, 8> Overridden; |
606 | const auto *OMD = dyn_cast<ObjCMethodDecl>(Val: D); |
607 | if (OMD && OMD->isPropertyAccessor()) |
608 | if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) |
609 | if (comments::FullComment *FC = getCommentForDecl(D: PDecl, PP)) |
610 | return cloneFullComment(FC, D); |
611 | if (OMD) |
612 | addRedeclaredMethods(ObjCMethod: OMD, Redeclared&: Overridden); |
613 | getOverriddenMethods(Method: dyn_cast<NamedDecl>(Val: D), Overridden); |
614 | for (unsigned i = 0, e = Overridden.size(); i < e; i++) |
615 | if (comments::FullComment *FC = getCommentForDecl(D: Overridden[i], PP)) |
616 | return cloneFullComment(FC, D); |
617 | } |
618 | else if (const auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) { |
619 | // Attach any tag type's documentation to its typedef if latter |
620 | // does not have one of its own. |
621 | QualType QT = TD->getUnderlyingType(); |
622 | if (const auto *TT = QT->getAs<TagType>()) |
623 | if (const Decl *TD = TT->getDecl()) |
624 | if (comments::FullComment *FC = getCommentForDecl(D: TD, PP)) |
625 | return cloneFullComment(FC, D); |
626 | } |
627 | else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(Val: D)) { |
628 | while (IC->getSuperClass()) { |
629 | IC = IC->getSuperClass(); |
630 | if (comments::FullComment *FC = getCommentForDecl(D: IC, PP)) |
631 | return cloneFullComment(FC, D); |
632 | } |
633 | } |
634 | else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(Val: D)) { |
635 | if (const ObjCInterfaceDecl *IC = CD->getClassInterface()) |
636 | if (comments::FullComment *FC = getCommentForDecl(D: IC, PP)) |
637 | return cloneFullComment(FC, D); |
638 | } |
639 | else if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) { |
640 | if (!(RD = RD->getDefinition())) |
641 | return nullptr; |
642 | // Check non-virtual bases. |
643 | for (const auto &I : RD->bases()) { |
644 | if (I.isVirtual() || (I.getAccessSpecifier() != AS_public)) |
645 | continue; |
646 | QualType Ty = I.getType(); |
647 | if (Ty.isNull()) |
648 | continue; |
649 | if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) { |
650 | if (!(NonVirtualBase= NonVirtualBase->getDefinition())) |
651 | continue; |
652 | |
653 | if (comments::FullComment *FC = getCommentForDecl(D: (NonVirtualBase), PP)) |
654 | return cloneFullComment(FC, D); |
655 | } |
656 | } |
657 | // Check virtual bases. |
658 | for (const auto &I : RD->vbases()) { |
659 | if (I.getAccessSpecifier() != AS_public) |
660 | continue; |
661 | QualType Ty = I.getType(); |
662 | if (Ty.isNull()) |
663 | continue; |
664 | if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) { |
665 | if (!(VirtualBase= VirtualBase->getDefinition())) |
666 | continue; |
667 | if (comments::FullComment *FC = getCommentForDecl(D: (VirtualBase), PP)) |
668 | return cloneFullComment(FC, D); |
669 | } |
670 | } |
671 | } |
672 | return nullptr; |
673 | } |
674 | |
675 | // If the RawComment was attached to other redeclaration of this Decl, we |
676 | // should parse the comment in context of that other Decl. This is important |
677 | // because comments can contain references to parameter names which can be |
678 | // different across redeclarations. |
679 | if (D != OriginalDecl && OriginalDecl) |
680 | return getCommentForDecl(D: OriginalDecl, PP); |
681 | |
682 | comments::FullComment *FC = RC->parse(Context: *this, PP, D); |
683 | ParsedComments[Canonical] = FC; |
684 | return FC; |
685 | } |
686 | |
687 | void |
688 | ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID, |
689 | const ASTContext &C, |
690 | TemplateTemplateParmDecl *Parm) { |
691 | ID.AddInteger(I: Parm->getDepth()); |
692 | ID.AddInteger(I: Parm->getPosition()); |
693 | ID.AddBoolean(B: Parm->isParameterPack()); |
694 | |
695 | TemplateParameterList *Params = Parm->getTemplateParameters(); |
696 | ID.AddInteger(I: Params->size()); |
697 | for (TemplateParameterList::const_iterator P = Params->begin(), |
698 | PEnd = Params->end(); |
699 | P != PEnd; ++P) { |
700 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: *P)) { |
701 | ID.AddInteger(I: 0); |
702 | ID.AddBoolean(B: TTP->isParameterPack()); |
703 | if (TTP->isExpandedParameterPack()) { |
704 | ID.AddBoolean(B: true); |
705 | ID.AddInteger(I: TTP->getNumExpansionParameters()); |
706 | } else |
707 | ID.AddBoolean(B: false); |
708 | continue; |
709 | } |
710 | |
711 | if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: *P)) { |
712 | ID.AddInteger(I: 1); |
713 | ID.AddBoolean(B: NTTP->isParameterPack()); |
714 | ID.AddPointer(Ptr: C.getUnconstrainedType(T: C.getCanonicalType(T: NTTP->getType())) |
715 | .getAsOpaquePtr()); |
716 | if (NTTP->isExpandedParameterPack()) { |
717 | ID.AddBoolean(B: true); |
718 | ID.AddInteger(I: NTTP->getNumExpansionTypes()); |
719 | for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { |
720 | QualType T = NTTP->getExpansionType(I); |
721 | ID.AddPointer(Ptr: T.getCanonicalType().getAsOpaquePtr()); |
722 | } |
723 | } else |
724 | ID.AddBoolean(B: false); |
725 | continue; |
726 | } |
727 | |
728 | auto *TTP = cast<TemplateTemplateParmDecl>(Val: *P); |
729 | ID.AddInteger(I: 2); |
730 | Profile(ID, C, Parm: TTP); |
731 | } |
732 | } |
733 | |
734 | TemplateTemplateParmDecl * |
735 | ASTContext::getCanonicalTemplateTemplateParmDecl( |
736 | TemplateTemplateParmDecl *TTP) const { |
737 | // Check if we already have a canonical template template parameter. |
738 | llvm::FoldingSetNodeID ID; |
739 | CanonicalTemplateTemplateParm::Profile(ID, C: *this, Parm: TTP); |
740 | void *InsertPos = nullptr; |
741 | CanonicalTemplateTemplateParm *Canonical |
742 | = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); |
743 | if (Canonical) |
744 | return Canonical->getParam(); |
745 | |
746 | // Build a canonical template parameter list. |
747 | TemplateParameterList *Params = TTP->getTemplateParameters(); |
748 | SmallVector<NamedDecl *, 4> CanonParams; |
749 | CanonParams.reserve(N: Params->size()); |
750 | for (TemplateParameterList::const_iterator P = Params->begin(), |
751 | PEnd = Params->end(); |
752 | P != PEnd; ++P) { |
753 | // Note that, per C++20 [temp.over.link]/6, when determining whether |
754 | // template-parameters are equivalent, constraints are ignored. |
755 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: *P)) { |
756 | TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create( |
757 | C: *this, DC: getTranslationUnitDecl(), KeyLoc: SourceLocation(), NameLoc: SourceLocation(), |
758 | D: TTP->getDepth(), P: TTP->getIndex(), Id: nullptr, Typename: false, |
759 | ParameterPack: TTP->isParameterPack(), /*HasTypeConstraint=*/false, |
760 | NumExpanded: TTP->isExpandedParameterPack() |
761 | ? std::optional<unsigned>(TTP->getNumExpansionParameters()) |
762 | : std::nullopt); |
763 | CanonParams.push_back(Elt: NewTTP); |
764 | } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: *P)) { |
765 | QualType T = getUnconstrainedType(T: getCanonicalType(T: NTTP->getType())); |
766 | TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); |
767 | NonTypeTemplateParmDecl *Param; |
768 | if (NTTP->isExpandedParameterPack()) { |
769 | SmallVector<QualType, 2> ExpandedTypes; |
770 | SmallVector<TypeSourceInfo *, 2> ExpandedTInfos; |
771 | for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { |
772 | ExpandedTypes.push_back(Elt: getCanonicalType(T: NTTP->getExpansionType(I))); |
773 | ExpandedTInfos.push_back( |
774 | Elt: getTrivialTypeSourceInfo(T: ExpandedTypes.back())); |
775 | } |
776 | |
777 | Param = NonTypeTemplateParmDecl::Create(C: *this, DC: getTranslationUnitDecl(), |
778 | StartLoc: SourceLocation(), |
779 | IdLoc: SourceLocation(), |
780 | D: NTTP->getDepth(), |
781 | P: NTTP->getPosition(), Id: nullptr, |
782 | T, |
783 | TInfo, |
784 | ExpandedTypes, |
785 | ExpandedTInfos); |
786 | } else { |
787 | Param = NonTypeTemplateParmDecl::Create(C: *this, DC: getTranslationUnitDecl(), |
788 | StartLoc: SourceLocation(), |
789 | IdLoc: SourceLocation(), |
790 | D: NTTP->getDepth(), |
791 | P: NTTP->getPosition(), Id: nullptr, |
792 | T, |
793 | ParameterPack: NTTP->isParameterPack(), |
794 | TInfo); |
795 | } |
796 | CanonParams.push_back(Elt: Param); |
797 | } else |
798 | CanonParams.push_back(Elt: getCanonicalTemplateTemplateParmDecl( |
799 | TTP: cast<TemplateTemplateParmDecl>(Val: *P))); |
800 | } |
801 | |
802 | TemplateTemplateParmDecl *CanonTTP = TemplateTemplateParmDecl::Create( |
803 | C: *this, DC: getTranslationUnitDecl(), L: SourceLocation(), D: TTP->getDepth(), |
804 | P: TTP->getPosition(), ParameterPack: TTP->isParameterPack(), Id: nullptr, /*Typename=*/false, |
805 | Params: TemplateParameterList::Create(C: *this, TemplateLoc: SourceLocation(), LAngleLoc: SourceLocation(), |
806 | Params: CanonParams, RAngleLoc: SourceLocation(), |
807 | /*RequiresClause=*/nullptr)); |
808 | |
809 | // Get the new insert position for the node we care about. |
810 | Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); |
811 | assert(!Canonical && "Shouldn't be in the map!" ); |
812 | (void)Canonical; |
813 | |
814 | // Create the canonical template template parameter entry. |
815 | Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP); |
816 | CanonTemplateTemplateParms.InsertNode(N: Canonical, InsertPos); |
817 | return CanonTTP; |
818 | } |
819 | |
820 | TargetCXXABI::Kind ASTContext::getCXXABIKind() const { |
821 | auto Kind = getTargetInfo().getCXXABI().getKind(); |
822 | return getLangOpts().CXXABI.value_or(u&: Kind); |
823 | } |
824 | |
825 | CXXABI *ASTContext::createCXXABI(const TargetInfo &T) { |
826 | if (!LangOpts.CPlusPlus) return nullptr; |
827 | |
828 | switch (getCXXABIKind()) { |
829 | case TargetCXXABI::AppleARM64: |
830 | case TargetCXXABI::Fuchsia: |
831 | case TargetCXXABI::GenericARM: // Same as Itanium at this level |
832 | case TargetCXXABI::iOS: |
833 | case TargetCXXABI::WatchOS: |
834 | case TargetCXXABI::GenericAArch64: |
835 | case TargetCXXABI::GenericMIPS: |
836 | case TargetCXXABI::GenericItanium: |
837 | case TargetCXXABI::WebAssembly: |
838 | case TargetCXXABI::XL: |
839 | return CreateItaniumCXXABI(Ctx&: *this); |
840 | case TargetCXXABI::Microsoft: |
841 | return CreateMicrosoftCXXABI(Ctx&: *this); |
842 | } |
843 | llvm_unreachable("Invalid CXXABI type!" ); |
844 | } |
845 | |
846 | interp::Context &ASTContext::getInterpContext() { |
847 | if (!InterpContext) { |
848 | InterpContext.reset(p: new interp::Context(*this)); |
849 | } |
850 | return *InterpContext.get(); |
851 | } |
852 | |
853 | ParentMapContext &ASTContext::getParentMapContext() { |
854 | if (!ParentMapCtx) |
855 | ParentMapCtx.reset(p: new ParentMapContext(*this)); |
856 | return *ParentMapCtx.get(); |
857 | } |
858 | |
859 | static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI, |
860 | const LangOptions &LangOpts) { |
861 | switch (LangOpts.getAddressSpaceMapMangling()) { |
862 | case LangOptions::ASMM_Target: |
863 | return TI.useAddressSpaceMapMangling(); |
864 | case LangOptions::ASMM_On: |
865 | return true; |
866 | case LangOptions::ASMM_Off: |
867 | return false; |
868 | } |
869 | llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything." ); |
870 | } |
871 | |
872 | ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM, |
873 | IdentifierTable &idents, SelectorTable &sels, |
874 | Builtin::Context &builtins, TranslationUnitKind TUKind) |
875 | : ConstantArrayTypes(this_(), ConstantArrayTypesLog2InitSize), |
876 | DependentSizedArrayTypes(this_()), DependentSizedExtVectorTypes(this_()), |
877 | DependentAddressSpaceTypes(this_()), DependentVectorTypes(this_()), |
878 | DependentSizedMatrixTypes(this_()), |
879 | FunctionProtoTypes(this_(), FunctionProtoTypesLog2InitSize), |
880 | DependentTypeOfExprTypes(this_()), DependentDecltypeTypes(this_()), |
881 | TemplateSpecializationTypes(this_()), |
882 | DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()), |
883 | DependentBitIntTypes(this_()), SubstTemplateTemplateParmPacks(this_()), |
884 | ArrayParameterTypes(this_()), CanonTemplateTemplateParms(this_()), |
885 | SourceMgr(SM), LangOpts(LOpts), |
886 | NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)), |
887 | XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles, |
888 | LangOpts.XRayNeverInstrumentFiles, |
889 | LangOpts.XRayAttrListFiles, SM)), |
890 | ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)), |
891 | PrintingPolicy(LOpts), Idents(idents), Selectors(sels), |
892 | BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this), |
893 | Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), |
894 | CompCategories(this_()), LastSDM(nullptr, 0) { |
895 | addTranslationUnitDecl(); |
896 | } |
897 | |
898 | void ASTContext::cleanup() { |
899 | // Release the DenseMaps associated with DeclContext objects. |
900 | // FIXME: Is this the ideal solution? |
901 | ReleaseDeclContextMaps(); |
902 | |
903 | // Call all of the deallocation functions on all of their targets. |
904 | for (auto &Pair : Deallocations) |
905 | (Pair.first)(Pair.second); |
906 | Deallocations.clear(); |
907 | |
908 | // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed |
909 | // because they can contain DenseMaps. |
910 | for (llvm::DenseMap<const ObjCContainerDecl*, |
911 | const ASTRecordLayout*>::iterator |
912 | I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) |
913 | // Increment in loop to prevent using deallocated memory. |
914 | if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) |
915 | R->Destroy(Ctx&: *this); |
916 | ObjCLayouts.clear(); |
917 | |
918 | for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator |
919 | I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) { |
920 | // Increment in loop to prevent using deallocated memory. |
921 | if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) |
922 | R->Destroy(Ctx&: *this); |
923 | } |
924 | ASTRecordLayouts.clear(); |
925 | |
926 | for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(), |
927 | AEnd = DeclAttrs.end(); |
928 | A != AEnd; ++A) |
929 | A->second->~AttrVec(); |
930 | DeclAttrs.clear(); |
931 | |
932 | for (const auto &Value : ModuleInitializers) |
933 | Value.second->~PerModuleInitializers(); |
934 | ModuleInitializers.clear(); |
935 | } |
936 | |
937 | ASTContext::~ASTContext() { cleanup(); } |
938 | |
939 | void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) { |
940 | TraversalScope = TopLevelDecls; |
941 | getParentMapContext().clear(); |
942 | } |
943 | |
944 | void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const { |
945 | Deallocations.push_back(Elt: {Callback, Data}); |
946 | } |
947 | |
948 | void |
949 | ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) { |
950 | ExternalSource = std::move(Source); |
951 | } |
952 | |
953 | void ASTContext::PrintStats() const { |
954 | llvm::errs() << "\n*** AST Context Stats:\n" ; |
955 | llvm::errs() << " " << Types.size() << " types total.\n" ; |
956 | |
957 | unsigned counts[] = { |
958 | #define TYPE(Name, Parent) 0, |
959 | #define ABSTRACT_TYPE(Name, Parent) |
960 | #include "clang/AST/TypeNodes.inc" |
961 | 0 // Extra |
962 | }; |
963 | |
964 | for (unsigned i = 0, e = Types.size(); i != e; ++i) { |
965 | Type *T = Types[i]; |
966 | counts[(unsigned)T->getTypeClass()]++; |
967 | } |
968 | |
969 | unsigned Idx = 0; |
970 | unsigned TotalBytes = 0; |
971 | #define TYPE(Name, Parent) \ |
972 | if (counts[Idx]) \ |
973 | llvm::errs() << " " << counts[Idx] << " " << #Name \ |
974 | << " types, " << sizeof(Name##Type) << " each " \ |
975 | << "(" << counts[Idx] * sizeof(Name##Type) \ |
976 | << " bytes)\n"; \ |
977 | TotalBytes += counts[Idx] * sizeof(Name##Type); \ |
978 | ++Idx; |
979 | #define ABSTRACT_TYPE(Name, Parent) |
980 | #include "clang/AST/TypeNodes.inc" |
981 | |
982 | llvm::errs() << "Total bytes = " << TotalBytes << "\n" ; |
983 | |
984 | // Implicit special member functions. |
985 | llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/" |
986 | << NumImplicitDefaultConstructors |
987 | << " implicit default constructors created\n" ; |
988 | llvm::errs() << NumImplicitCopyConstructorsDeclared << "/" |
989 | << NumImplicitCopyConstructors |
990 | << " implicit copy constructors created\n" ; |
991 | if (getLangOpts().CPlusPlus) |
992 | llvm::errs() << NumImplicitMoveConstructorsDeclared << "/" |
993 | << NumImplicitMoveConstructors |
994 | << " implicit move constructors created\n" ; |
995 | llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/" |
996 | << NumImplicitCopyAssignmentOperators |
997 | << " implicit copy assignment operators created\n" ; |
998 | if (getLangOpts().CPlusPlus) |
999 | llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/" |
1000 | << NumImplicitMoveAssignmentOperators |
1001 | << " implicit move assignment operators created\n" ; |
1002 | llvm::errs() << NumImplicitDestructorsDeclared << "/" |
1003 | << NumImplicitDestructors |
1004 | << " implicit destructors created\n" ; |
1005 | |
1006 | if (ExternalSource) { |
1007 | llvm::errs() << "\n" ; |
1008 | ExternalSource->PrintStats(); |
1009 | } |
1010 | |
1011 | BumpAlloc.PrintStats(); |
1012 | } |
1013 | |
1014 | void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M, |
1015 | bool NotifyListeners) { |
1016 | if (NotifyListeners) |
1017 | if (auto *Listener = getASTMutationListener()) |
1018 | Listener->RedefinedHiddenDefinition(D: ND, M); |
1019 | |
1020 | MergedDefModules[cast<NamedDecl>(Val: ND->getCanonicalDecl())].push_back(NewVal: M); |
1021 | } |
1022 | |
1023 | void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) { |
1024 | auto It = MergedDefModules.find(Val: cast<NamedDecl>(Val: ND->getCanonicalDecl())); |
1025 | if (It == MergedDefModules.end()) |
1026 | return; |
1027 | |
1028 | auto &Merged = It->second; |
1029 | llvm::DenseSet<Module*> Found; |
1030 | for (Module *&M : Merged) |
1031 | if (!Found.insert(V: M).second) |
1032 | M = nullptr; |
1033 | llvm::erase(C&: Merged, V: nullptr); |
1034 | } |
1035 | |
1036 | ArrayRef<Module *> |
1037 | ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) { |
1038 | auto MergedIt = |
1039 | MergedDefModules.find(Val: cast<NamedDecl>(Val: Def->getCanonicalDecl())); |
1040 | if (MergedIt == MergedDefModules.end()) |
1041 | return std::nullopt; |
1042 | return MergedIt->second; |
1043 | } |
1044 | |
1045 | void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) { |
1046 | if (LazyInitializers.empty()) |
1047 | return; |
1048 | |
1049 | auto *Source = Ctx.getExternalSource(); |
1050 | assert(Source && "lazy initializers but no external source" ); |
1051 | |
1052 | auto LazyInits = std::move(LazyInitializers); |
1053 | LazyInitializers.clear(); |
1054 | |
1055 | for (auto ID : LazyInits) |
1056 | Initializers.push_back(Elt: Source->GetExternalDecl(ID)); |
1057 | |
1058 | assert(LazyInitializers.empty() && |
1059 | "GetExternalDecl for lazy module initializer added more inits" ); |
1060 | } |
1061 | |
1062 | void ASTContext::addModuleInitializer(Module *M, Decl *D) { |
1063 | // One special case: if we add a module initializer that imports another |
1064 | // module, and that module's only initializer is an ImportDecl, simplify. |
1065 | if (const auto *ID = dyn_cast<ImportDecl>(Val: D)) { |
1066 | auto It = ModuleInitializers.find(Val: ID->getImportedModule()); |
1067 | |
1068 | // Maybe the ImportDecl does nothing at all. (Common case.) |
1069 | if (It == ModuleInitializers.end()) |
1070 | return; |
1071 | |
1072 | // Maybe the ImportDecl only imports another ImportDecl. |
1073 | auto &Imported = *It->second; |
1074 | if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) { |
1075 | Imported.resolve(Ctx&: *this); |
1076 | auto *OnlyDecl = Imported.Initializers.front(); |
1077 | if (isa<ImportDecl>(Val: OnlyDecl)) |
1078 | D = OnlyDecl; |
1079 | } |
1080 | } |
1081 | |
1082 | auto *&Inits = ModuleInitializers[M]; |
1083 | if (!Inits) |
1084 | Inits = new (*this) PerModuleInitializers; |
1085 | Inits->Initializers.push_back(Elt: D); |
1086 | } |
1087 | |
1088 | void ASTContext::addLazyModuleInitializers(Module *M, |
1089 | ArrayRef<GlobalDeclID> IDs) { |
1090 | auto *&Inits = ModuleInitializers[M]; |
1091 | if (!Inits) |
1092 | Inits = new (*this) PerModuleInitializers; |
1093 | Inits->LazyInitializers.insert(I: Inits->LazyInitializers.end(), |
1094 | From: IDs.begin(), To: IDs.end()); |
1095 | } |
1096 | |
1097 | ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) { |
1098 | auto It = ModuleInitializers.find(Val: M); |
1099 | if (It == ModuleInitializers.end()) |
1100 | return std::nullopt; |
1101 | |
1102 | auto *Inits = It->second; |
1103 | Inits->resolve(Ctx&: *this); |
1104 | return Inits->Initializers; |
1105 | } |
1106 | |
1107 | void ASTContext::setCurrentNamedModule(Module *M) { |
1108 | assert(M->isNamedModule()); |
1109 | assert(!CurrentCXXNamedModule && |
1110 | "We should set named module for ASTContext for only once" ); |
1111 | CurrentCXXNamedModule = M; |
1112 | } |
1113 | |
1114 | bool ASTContext::isInSameModule(const Module *M1, const Module *M2) { |
1115 | if (!M1 != !M2) |
1116 | return false; |
1117 | |
1118 | /// Get the representative module for M. The representative module is the |
1119 | /// first module unit for a specific primary module name. So that the module |
1120 | /// units have the same representative module belongs to the same module. |
1121 | /// |
1122 | /// The process is helpful to reduce the expensive string operations. |
1123 | auto GetRepresentativeModule = [this](const Module *M) { |
1124 | auto Iter = SameModuleLookupSet.find(Val: M); |
1125 | if (Iter != SameModuleLookupSet.end()) |
1126 | return Iter->second; |
1127 | |
1128 | const Module *RepresentativeModule = |
1129 | PrimaryModuleNameMap.try_emplace(Key: M->getPrimaryModuleInterfaceName(), Args&: M) |
1130 | .first->second; |
1131 | SameModuleLookupSet[M] = RepresentativeModule; |
1132 | return RepresentativeModule; |
1133 | }; |
1134 | |
1135 | assert(M1 && "Shouldn't call `isInSameModule` if both M1 and M2 are none." ); |
1136 | return GetRepresentativeModule(M1) == GetRepresentativeModule(M2); |
1137 | } |
1138 | |
1139 | ExternCContextDecl *ASTContext::getExternCContextDecl() const { |
1140 | if (!ExternCContext) |
1141 | ExternCContext = ExternCContextDecl::Create(C: *this, TU: getTranslationUnitDecl()); |
1142 | |
1143 | return ExternCContext; |
1144 | } |
1145 | |
1146 | BuiltinTemplateDecl * |
1147 | ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK, |
1148 | const IdentifierInfo *II) const { |
1149 | auto *BuiltinTemplate = |
1150 | BuiltinTemplateDecl::Create(C: *this, DC: getTranslationUnitDecl(), Name: II, BTK); |
1151 | BuiltinTemplate->setImplicit(); |
1152 | getTranslationUnitDecl()->addDecl(D: BuiltinTemplate); |
1153 | |
1154 | return BuiltinTemplate; |
1155 | } |
1156 | |
1157 | BuiltinTemplateDecl * |
1158 | ASTContext::getMakeIntegerSeqDecl() const { |
1159 | if (!MakeIntegerSeqDecl) |
1160 | MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK: BTK__make_integer_seq, |
1161 | II: getMakeIntegerSeqName()); |
1162 | return MakeIntegerSeqDecl; |
1163 | } |
1164 | |
1165 | BuiltinTemplateDecl * |
1166 | ASTContext::getTypePackElementDecl() const { |
1167 | if (!TypePackElementDecl) |
1168 | TypePackElementDecl = buildBuiltinTemplateDecl(BTK: BTK__type_pack_element, |
1169 | II: getTypePackElementName()); |
1170 | return TypePackElementDecl; |
1171 | } |
1172 | |
1173 | RecordDecl *ASTContext::buildImplicitRecord(StringRef Name, |
1174 | RecordDecl::TagKind TK) const { |
1175 | SourceLocation Loc; |
1176 | RecordDecl *NewDecl; |
1177 | if (getLangOpts().CPlusPlus) |
1178 | NewDecl = CXXRecordDecl::Create(C: *this, TK, DC: getTranslationUnitDecl(), StartLoc: Loc, |
1179 | IdLoc: Loc, Id: &Idents.get(Name)); |
1180 | else |
1181 | NewDecl = RecordDecl::Create(C: *this, TK, DC: getTranslationUnitDecl(), StartLoc: Loc, IdLoc: Loc, |
1182 | Id: &Idents.get(Name)); |
1183 | NewDecl->setImplicit(); |
1184 | NewDecl->addAttr(A: TypeVisibilityAttr::CreateImplicit( |
1185 | Ctx&: const_cast<ASTContext &>(*this), Visibility: TypeVisibilityAttr::Default)); |
1186 | return NewDecl; |
1187 | } |
1188 | |
1189 | TypedefDecl *ASTContext::buildImplicitTypedef(QualType T, |
1190 | StringRef Name) const { |
1191 | TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); |
1192 | TypedefDecl *NewDecl = TypedefDecl::Create( |
1193 | C&: const_cast<ASTContext &>(*this), DC: getTranslationUnitDecl(), |
1194 | StartLoc: SourceLocation(), IdLoc: SourceLocation(), Id: &Idents.get(Name), TInfo); |
1195 | NewDecl->setImplicit(); |
1196 | return NewDecl; |
1197 | } |
1198 | |
1199 | TypedefDecl *ASTContext::getInt128Decl() const { |
1200 | if (!Int128Decl) |
1201 | Int128Decl = buildImplicitTypedef(T: Int128Ty, Name: "__int128_t" ); |
1202 | return Int128Decl; |
1203 | } |
1204 | |
1205 | TypedefDecl *ASTContext::getUInt128Decl() const { |
1206 | if (!UInt128Decl) |
1207 | UInt128Decl = buildImplicitTypedef(T: UnsignedInt128Ty, Name: "__uint128_t" ); |
1208 | return UInt128Decl; |
1209 | } |
1210 | |
1211 | void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) { |
1212 | auto *Ty = new (*this, alignof(BuiltinType)) BuiltinType(K); |
1213 | R = CanQualType::CreateUnsafe(Other: QualType(Ty, 0)); |
1214 | Types.push_back(Elt: Ty); |
1215 | } |
1216 | |
1217 | void ASTContext::InitBuiltinTypes(const TargetInfo &Target, |
1218 | const TargetInfo *AuxTarget) { |
1219 | assert((!this->Target || this->Target == &Target) && |
1220 | "Incorrect target reinitialization" ); |
1221 | assert(VoidTy.isNull() && "Context reinitialized?" ); |
1222 | |
1223 | this->Target = &Target; |
1224 | this->AuxTarget = AuxTarget; |
1225 | |
1226 | ABI.reset(p: createCXXABI(T: Target)); |
1227 | AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(TI: Target, LangOpts); |
1228 | |
1229 | // C99 6.2.5p19. |
1230 | InitBuiltinType(R&: VoidTy, K: BuiltinType::Void); |
1231 | |
1232 | // C99 6.2.5p2. |
1233 | InitBuiltinType(R&: BoolTy, K: BuiltinType::Bool); |
1234 | // C99 6.2.5p3. |
1235 | if (LangOpts.CharIsSigned) |
1236 | InitBuiltinType(R&: CharTy, K: BuiltinType::Char_S); |
1237 | else |
1238 | InitBuiltinType(R&: CharTy, K: BuiltinType::Char_U); |
1239 | // C99 6.2.5p4. |
1240 | InitBuiltinType(R&: SignedCharTy, K: BuiltinType::SChar); |
1241 | InitBuiltinType(R&: ShortTy, K: BuiltinType::Short); |
1242 | InitBuiltinType(R&: IntTy, K: BuiltinType::Int); |
1243 | InitBuiltinType(R&: LongTy, K: BuiltinType::Long); |
1244 | InitBuiltinType(R&: LongLongTy, K: BuiltinType::LongLong); |
1245 | |
1246 | // C99 6.2.5p6. |
1247 | InitBuiltinType(R&: UnsignedCharTy, K: BuiltinType::UChar); |
1248 | InitBuiltinType(R&: UnsignedShortTy, K: BuiltinType::UShort); |
1249 | InitBuiltinType(R&: UnsignedIntTy, K: BuiltinType::UInt); |
1250 | InitBuiltinType(R&: UnsignedLongTy, K: BuiltinType::ULong); |
1251 | InitBuiltinType(R&: UnsignedLongLongTy, K: BuiltinType::ULongLong); |
1252 | |
1253 | // C99 6.2.5p10. |
1254 | InitBuiltinType(R&: FloatTy, K: BuiltinType::Float); |
1255 | InitBuiltinType(R&: DoubleTy, K: BuiltinType::Double); |
1256 | InitBuiltinType(R&: LongDoubleTy, K: BuiltinType::LongDouble); |
1257 | |
1258 | // GNU extension, __float128 for IEEE quadruple precision |
1259 | InitBuiltinType(R&: Float128Ty, K: BuiltinType::Float128); |
1260 | |
1261 | // __ibm128 for IBM extended precision |
1262 | InitBuiltinType(R&: Ibm128Ty, K: BuiltinType::Ibm128); |
1263 | |
1264 | // C11 extension ISO/IEC TS 18661-3 |
1265 | InitBuiltinType(R&: Float16Ty, K: BuiltinType::Float16); |
1266 | |
1267 | // ISO/IEC JTC1 SC22 WG14 N1169 Extension |
1268 | InitBuiltinType(R&: ShortAccumTy, K: BuiltinType::ShortAccum); |
1269 | InitBuiltinType(R&: AccumTy, K: BuiltinType::Accum); |
1270 | InitBuiltinType(R&: LongAccumTy, K: BuiltinType::LongAccum); |
1271 | InitBuiltinType(R&: UnsignedShortAccumTy, K: BuiltinType::UShortAccum); |
1272 | InitBuiltinType(R&: UnsignedAccumTy, K: BuiltinType::UAccum); |
1273 | InitBuiltinType(R&: UnsignedLongAccumTy, K: BuiltinType::ULongAccum); |
1274 | InitBuiltinType(R&: ShortFractTy, K: BuiltinType::ShortFract); |
1275 | InitBuiltinType(R&: FractTy, K: BuiltinType::Fract); |
1276 | InitBuiltinType(R&: LongFractTy, K: BuiltinType::LongFract); |
1277 | InitBuiltinType(R&: UnsignedShortFractTy, K: BuiltinType::UShortFract); |
1278 | InitBuiltinType(R&: UnsignedFractTy, K: BuiltinType::UFract); |
1279 | InitBuiltinType(R&: UnsignedLongFractTy, K: BuiltinType::ULongFract); |
1280 | InitBuiltinType(R&: SatShortAccumTy, K: BuiltinType::SatShortAccum); |
1281 | InitBuiltinType(R&: SatAccumTy, K: BuiltinType::SatAccum); |
1282 | InitBuiltinType(R&: SatLongAccumTy, K: BuiltinType::SatLongAccum); |
1283 | InitBuiltinType(R&: SatUnsignedShortAccumTy, K: BuiltinType::SatUShortAccum); |
1284 | InitBuiltinType(R&: SatUnsignedAccumTy, K: BuiltinType::SatUAccum); |
1285 | InitBuiltinType(R&: SatUnsignedLongAccumTy, K: BuiltinType::SatULongAccum); |
1286 | InitBuiltinType(R&: SatShortFractTy, K: BuiltinType::SatShortFract); |
1287 | InitBuiltinType(R&: SatFractTy, K: BuiltinType::SatFract); |
1288 | InitBuiltinType(R&: SatLongFractTy, K: BuiltinType::SatLongFract); |
1289 | InitBuiltinType(R&: SatUnsignedShortFractTy, K: BuiltinType::SatUShortFract); |
1290 | InitBuiltinType(R&: SatUnsignedFractTy, K: BuiltinType::SatUFract); |
1291 | InitBuiltinType(R&: SatUnsignedLongFractTy, K: BuiltinType::SatULongFract); |
1292 | |
1293 | // GNU extension, 128-bit integers. |
1294 | InitBuiltinType(R&: Int128Ty, K: BuiltinType::Int128); |
1295 | InitBuiltinType(R&: UnsignedInt128Ty, K: BuiltinType::UInt128); |
1296 | |
1297 | // C++ 3.9.1p5 |
1298 | if (TargetInfo::isTypeSigned(T: Target.getWCharType())) |
1299 | InitBuiltinType(R&: WCharTy, K: BuiltinType::WChar_S); |
1300 | else // -fshort-wchar makes wchar_t be unsigned. |
1301 | InitBuiltinType(R&: WCharTy, K: BuiltinType::WChar_U); |
1302 | if (LangOpts.CPlusPlus && LangOpts.WChar) |
1303 | WideCharTy = WCharTy; |
1304 | else { |
1305 | // C99 (or C++ using -fno-wchar). |
1306 | WideCharTy = getFromTargetType(Type: Target.getWCharType()); |
1307 | } |
1308 | |
1309 | WIntTy = getFromTargetType(Type: Target.getWIntType()); |
1310 | |
1311 | // C++20 (proposed) |
1312 | InitBuiltinType(R&: Char8Ty, K: BuiltinType::Char8); |
1313 | |
1314 | if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ |
1315 | InitBuiltinType(R&: Char16Ty, K: BuiltinType::Char16); |
1316 | else // C99 |
1317 | Char16Ty = getFromTargetType(Type: Target.getChar16Type()); |
1318 | |
1319 | if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ |
1320 | InitBuiltinType(R&: Char32Ty, K: BuiltinType::Char32); |
1321 | else // C99 |
1322 | Char32Ty = getFromTargetType(Type: Target.getChar32Type()); |
1323 | |
1324 | // Placeholder type for type-dependent expressions whose type is |
1325 | // completely unknown. No code should ever check a type against |
1326 | // DependentTy and users should never see it; however, it is here to |
1327 | // help diagnose failures to properly check for type-dependent |
1328 | // expressions. |
1329 | InitBuiltinType(R&: DependentTy, K: BuiltinType::Dependent); |
1330 | |
1331 | // Placeholder type for functions. |
1332 | InitBuiltinType(R&: OverloadTy, K: BuiltinType::Overload); |
1333 | |
1334 | // Placeholder type for bound members. |
1335 | InitBuiltinType(R&: BoundMemberTy, K: BuiltinType::BoundMember); |
1336 | |
1337 | // Placeholder type for unresolved templates. |
1338 | InitBuiltinType(R&: UnresolvedTemplateTy, K: BuiltinType::UnresolvedTemplate); |
1339 | |
1340 | // Placeholder type for pseudo-objects. |
1341 | InitBuiltinType(R&: PseudoObjectTy, K: BuiltinType::PseudoObject); |
1342 | |
1343 | // "any" type; useful for debugger-like clients. |
1344 | InitBuiltinType(R&: UnknownAnyTy, K: BuiltinType::UnknownAny); |
1345 | |
1346 | // Placeholder type for unbridged ARC casts. |
1347 | InitBuiltinType(R&: ARCUnbridgedCastTy, K: BuiltinType::ARCUnbridgedCast); |
1348 | |
1349 | // Placeholder type for builtin functions. |
1350 | InitBuiltinType(R&: BuiltinFnTy, K: BuiltinType::BuiltinFn); |
1351 | |
1352 | // Placeholder type for OMP array sections. |
1353 | if (LangOpts.OpenMP) { |
1354 | InitBuiltinType(R&: ArraySectionTy, K: BuiltinType::ArraySection); |
1355 | InitBuiltinType(R&: OMPArrayShapingTy, K: BuiltinType::OMPArrayShaping); |
1356 | InitBuiltinType(R&: OMPIteratorTy, K: BuiltinType::OMPIterator); |
1357 | } |
1358 | // Placeholder type for OpenACC array sections, if we are ALSO in OMP mode, |
1359 | // don't bother, as we're just using the same type as OMP. |
1360 | if (LangOpts.OpenACC && !LangOpts.OpenMP) { |
1361 | InitBuiltinType(R&: ArraySectionTy, K: BuiltinType::ArraySection); |
1362 | } |
1363 | if (LangOpts.MatrixTypes) |
1364 | InitBuiltinType(R&: IncompleteMatrixIdxTy, K: BuiltinType::IncompleteMatrixIdx); |
1365 | |
1366 | // Builtin types for 'id', 'Class', and 'SEL'. |
1367 | InitBuiltinType(R&: ObjCBuiltinIdTy, K: BuiltinType::ObjCId); |
1368 | InitBuiltinType(R&: ObjCBuiltinClassTy, K: BuiltinType::ObjCClass); |
1369 | InitBuiltinType(R&: ObjCBuiltinSelTy, K: BuiltinType::ObjCSel); |
1370 | |
1371 | if (LangOpts.OpenCL) { |
1372 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
1373 | InitBuiltinType(SingletonId, BuiltinType::Id); |
1374 | #include "clang/Basic/OpenCLImageTypes.def" |
1375 | |
1376 | InitBuiltinType(R&: OCLSamplerTy, K: BuiltinType::OCLSampler); |
1377 | InitBuiltinType(R&: OCLEventTy, K: BuiltinType::OCLEvent); |
1378 | InitBuiltinType(R&: OCLClkEventTy, K: BuiltinType::OCLClkEvent); |
1379 | InitBuiltinType(R&: OCLQueueTy, K: BuiltinType::OCLQueue); |
1380 | InitBuiltinType(R&: OCLReserveIDTy, K: BuiltinType::OCLReserveID); |
1381 | |
1382 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
1383 | InitBuiltinType(Id##Ty, BuiltinType::Id); |
1384 | #include "clang/Basic/OpenCLExtensionTypes.def" |
1385 | } |
1386 | |
1387 | if (Target.hasAArch64SVETypes() || |
1388 | (AuxTarget && AuxTarget->hasAArch64SVETypes())) { |
1389 | #define SVE_TYPE(Name, Id, SingletonId) \ |
1390 | InitBuiltinType(SingletonId, BuiltinType::Id); |
1391 | #include "clang/Basic/AArch64SVEACLETypes.def" |
1392 | } |
1393 | |
1394 | if (Target.getTriple().isPPC64()) { |
1395 | #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \ |
1396 | InitBuiltinType(Id##Ty, BuiltinType::Id); |
1397 | #include "clang/Basic/PPCTypes.def" |
1398 | #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \ |
1399 | InitBuiltinType(Id##Ty, BuiltinType::Id); |
1400 | #include "clang/Basic/PPCTypes.def" |
1401 | } |
1402 | |
1403 | if (Target.hasRISCVVTypes()) { |
1404 | #define RVV_TYPE(Name, Id, SingletonId) \ |
1405 | InitBuiltinType(SingletonId, BuiltinType::Id); |
1406 | #include "clang/Basic/RISCVVTypes.def" |
1407 | } |
1408 | |
1409 | if (Target.getTriple().isWasm() && Target.hasFeature(Feature: "reference-types" )) { |
1410 | #define WASM_TYPE(Name, Id, SingletonId) \ |
1411 | InitBuiltinType(SingletonId, BuiltinType::Id); |
1412 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
1413 | } |
1414 | |
1415 | if (Target.getTriple().isAMDGPU() || |
1416 | (AuxTarget && AuxTarget->getTriple().isAMDGPU())) { |
1417 | #define AMDGPU_TYPE(Name, Id, SingletonId) \ |
1418 | InitBuiltinType(SingletonId, BuiltinType::Id); |
1419 | #include "clang/Basic/AMDGPUTypes.def" |
1420 | } |
1421 | |
1422 | // Builtin type for __objc_yes and __objc_no |
1423 | ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ? |
1424 | SignedCharTy : BoolTy); |
1425 | |
1426 | ObjCConstantStringType = QualType(); |
1427 | |
1428 | ObjCSuperType = QualType(); |
1429 | |
1430 | // void * type |
1431 | if (LangOpts.OpenCLGenericAddressSpace) { |
1432 | auto Q = VoidTy.getQualifiers(); |
1433 | Q.setAddressSpace(LangAS::opencl_generic); |
1434 | VoidPtrTy = getPointerType(T: getCanonicalType( |
1435 | T: getQualifiedType(T: VoidTy.getUnqualifiedType(), Qs: Q))); |
1436 | } else { |
1437 | VoidPtrTy = getPointerType(T: VoidTy); |
1438 | } |
1439 | |
1440 | // nullptr type (C++0x 2.14.7) |
1441 | InitBuiltinType(R&: NullPtrTy, K: BuiltinType::NullPtr); |
1442 | |
1443 | // half type (OpenCL 6.1.1.1) / ARM NEON __fp16 |
1444 | InitBuiltinType(R&: HalfTy, K: BuiltinType::Half); |
1445 | |
1446 | InitBuiltinType(R&: BFloat16Ty, K: BuiltinType::BFloat16); |
1447 | |
1448 | // Builtin type used to help define __builtin_va_list. |
1449 | VaListTagDecl = nullptr; |
1450 | |
1451 | // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls. |
1452 | if (LangOpts.MicrosoftExt || LangOpts.Borland) { |
1453 | MSGuidTagDecl = buildImplicitRecord(Name: "_GUID" ); |
1454 | getTranslationUnitDecl()->addDecl(D: MSGuidTagDecl); |
1455 | } |
1456 | } |
1457 | |
1458 | DiagnosticsEngine &ASTContext::getDiagnostics() const { |
1459 | return SourceMgr.getDiagnostics(); |
1460 | } |
1461 | |
1462 | AttrVec& ASTContext::getDeclAttrs(const Decl *D) { |
1463 | AttrVec *&Result = DeclAttrs[D]; |
1464 | if (!Result) { |
1465 | void *Mem = Allocate(Size: sizeof(AttrVec)); |
1466 | Result = new (Mem) AttrVec; |
1467 | } |
1468 | |
1469 | return *Result; |
1470 | } |
1471 | |
1472 | /// Erase the attributes corresponding to the given declaration. |
1473 | void ASTContext::eraseDeclAttrs(const Decl *D) { |
1474 | llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(Val: D); |
1475 | if (Pos != DeclAttrs.end()) { |
1476 | Pos->second->~AttrVec(); |
1477 | DeclAttrs.erase(I: Pos); |
1478 | } |
1479 | } |
1480 | |
1481 | // FIXME: Remove ? |
1482 | MemberSpecializationInfo * |
1483 | ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) { |
1484 | assert(Var->isStaticDataMember() && "Not a static data member" ); |
1485 | return getTemplateOrSpecializationInfo(Var) |
1486 | .dyn_cast<MemberSpecializationInfo *>(); |
1487 | } |
1488 | |
1489 | ASTContext::TemplateOrSpecializationInfo |
1490 | ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) { |
1491 | llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos = |
1492 | TemplateOrInstantiation.find(Val: Var); |
1493 | if (Pos == TemplateOrInstantiation.end()) |
1494 | return {}; |
1495 | |
1496 | return Pos->second; |
1497 | } |
1498 | |
1499 | void |
1500 | ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, |
1501 | TemplateSpecializationKind TSK, |
1502 | SourceLocation PointOfInstantiation) { |
1503 | assert(Inst->isStaticDataMember() && "Not a static data member" ); |
1504 | assert(Tmpl->isStaticDataMember() && "Not a static data member" ); |
1505 | setTemplateOrSpecializationInfo(Inst, TSI: new (*this) MemberSpecializationInfo( |
1506 | Tmpl, TSK, PointOfInstantiation)); |
1507 | } |
1508 | |
1509 | void |
1510 | ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst, |
1511 | TemplateOrSpecializationInfo TSI) { |
1512 | assert(!TemplateOrInstantiation[Inst] && |
1513 | "Already noted what the variable was instantiated from" ); |
1514 | TemplateOrInstantiation[Inst] = TSI; |
1515 | } |
1516 | |
1517 | NamedDecl * |
1518 | ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) { |
1519 | return InstantiatedFromUsingDecl.lookup(Val: UUD); |
1520 | } |
1521 | |
1522 | void |
1523 | ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) { |
1524 | assert((isa<UsingDecl>(Pattern) || |
1525 | isa<UnresolvedUsingValueDecl>(Pattern) || |
1526 | isa<UnresolvedUsingTypenameDecl>(Pattern)) && |
1527 | "pattern decl is not a using decl" ); |
1528 | assert((isa<UsingDecl>(Inst) || |
1529 | isa<UnresolvedUsingValueDecl>(Inst) || |
1530 | isa<UnresolvedUsingTypenameDecl>(Inst)) && |
1531 | "instantiation did not produce a using decl" ); |
1532 | assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists" ); |
1533 | InstantiatedFromUsingDecl[Inst] = Pattern; |
1534 | } |
1535 | |
1536 | UsingEnumDecl * |
1537 | ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) { |
1538 | return InstantiatedFromUsingEnumDecl.lookup(Val: UUD); |
1539 | } |
1540 | |
1541 | void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst, |
1542 | UsingEnumDecl *Pattern) { |
1543 | assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists" ); |
1544 | InstantiatedFromUsingEnumDecl[Inst] = Pattern; |
1545 | } |
1546 | |
1547 | UsingShadowDecl * |
1548 | ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) { |
1549 | return InstantiatedFromUsingShadowDecl.lookup(Val: Inst); |
1550 | } |
1551 | |
1552 | void |
1553 | ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst, |
1554 | UsingShadowDecl *Pattern) { |
1555 | assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists" ); |
1556 | InstantiatedFromUsingShadowDecl[Inst] = Pattern; |
1557 | } |
1558 | |
1559 | FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) { |
1560 | return InstantiatedFromUnnamedFieldDecl.lookup(Val: Field); |
1561 | } |
1562 | |
1563 | void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, |
1564 | FieldDecl *Tmpl) { |
1565 | assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed" ); |
1566 | assert(!Tmpl->getDeclName() && "Template field decl is not unnamed" ); |
1567 | assert(!InstantiatedFromUnnamedFieldDecl[Inst] && |
1568 | "Already noted what unnamed field was instantiated from" ); |
1569 | |
1570 | InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl; |
1571 | } |
1572 | |
1573 | ASTContext::overridden_cxx_method_iterator |
1574 | ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const { |
1575 | return overridden_methods(Method).begin(); |
1576 | } |
1577 | |
1578 | ASTContext::overridden_cxx_method_iterator |
1579 | ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const { |
1580 | return overridden_methods(Method).end(); |
1581 | } |
1582 | |
1583 | unsigned |
1584 | ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const { |
1585 | auto Range = overridden_methods(Method); |
1586 | return Range.end() - Range.begin(); |
1587 | } |
1588 | |
1589 | ASTContext::overridden_method_range |
1590 | ASTContext::overridden_methods(const CXXMethodDecl *Method) const { |
1591 | llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos = |
1592 | OverriddenMethods.find(Val: Method->getCanonicalDecl()); |
1593 | if (Pos == OverriddenMethods.end()) |
1594 | return overridden_method_range(nullptr, nullptr); |
1595 | return overridden_method_range(Pos->second.begin(), Pos->second.end()); |
1596 | } |
1597 | |
1598 | void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method, |
1599 | const CXXMethodDecl *Overridden) { |
1600 | assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl()); |
1601 | OverriddenMethods[Method].push_back(NewVal: Overridden); |
1602 | } |
1603 | |
1604 | void ASTContext::getOverriddenMethods( |
1605 | const NamedDecl *D, |
1606 | SmallVectorImpl<const NamedDecl *> &Overridden) const { |
1607 | assert(D); |
1608 | |
1609 | if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(Val: D)) { |
1610 | Overridden.append(in_start: overridden_methods_begin(Method: CXXMethod), |
1611 | in_end: overridden_methods_end(Method: CXXMethod)); |
1612 | return; |
1613 | } |
1614 | |
1615 | const auto *Method = dyn_cast<ObjCMethodDecl>(Val: D); |
1616 | if (!Method) |
1617 | return; |
1618 | |
1619 | SmallVector<const ObjCMethodDecl *, 8> OverDecls; |
1620 | Method->getOverriddenMethods(Overridden&: OverDecls); |
1621 | Overridden.append(in_start: OverDecls.begin(), in_end: OverDecls.end()); |
1622 | } |
1623 | |
1624 | void ASTContext::addedLocalImportDecl(ImportDecl *Import) { |
1625 | assert(!Import->getNextLocalImport() && |
1626 | "Import declaration already in the chain" ); |
1627 | assert(!Import->isFromASTFile() && "Non-local import declaration" ); |
1628 | if (!FirstLocalImport) { |
1629 | FirstLocalImport = Import; |
1630 | LastLocalImport = Import; |
1631 | return; |
1632 | } |
1633 | |
1634 | LastLocalImport->setNextLocalImport(Import); |
1635 | LastLocalImport = Import; |
1636 | } |
1637 | |
1638 | //===----------------------------------------------------------------------===// |
1639 | // Type Sizing and Analysis |
1640 | //===----------------------------------------------------------------------===// |
1641 | |
1642 | /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified |
1643 | /// scalar floating point type. |
1644 | const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { |
1645 | switch (T->castAs<BuiltinType>()->getKind()) { |
1646 | default: |
1647 | llvm_unreachable("Not a floating point type!" ); |
1648 | case BuiltinType::BFloat16: |
1649 | return Target->getBFloat16Format(); |
1650 | case BuiltinType::Float16: |
1651 | return Target->getHalfFormat(); |
1652 | case BuiltinType::Half: |
1653 | return Target->getHalfFormat(); |
1654 | case BuiltinType::Float: return Target->getFloatFormat(); |
1655 | case BuiltinType::Double: return Target->getDoubleFormat(); |
1656 | case BuiltinType::Ibm128: |
1657 | return Target->getIbm128Format(); |
1658 | case BuiltinType::LongDouble: |
1659 | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice) |
1660 | return AuxTarget->getLongDoubleFormat(); |
1661 | return Target->getLongDoubleFormat(); |
1662 | case BuiltinType::Float128: |
1663 | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice) |
1664 | return AuxTarget->getFloat128Format(); |
1665 | return Target->getFloat128Format(); |
1666 | } |
1667 | } |
1668 | |
1669 | CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const { |
1670 | unsigned Align = Target->getCharWidth(); |
1671 | |
1672 | const unsigned AlignFromAttr = D->getMaxAlignment(); |
1673 | if (AlignFromAttr) |
1674 | Align = AlignFromAttr; |
1675 | |
1676 | // __attribute__((aligned)) can increase or decrease alignment |
1677 | // *except* on a struct or struct member, where it only increases |
1678 | // alignment unless 'packed' is also specified. |
1679 | // |
1680 | // It is an error for alignas to decrease alignment, so we can |
1681 | // ignore that possibility; Sema should diagnose it. |
1682 | bool UseAlignAttrOnly; |
1683 | if (const FieldDecl *FD = dyn_cast<FieldDecl>(Val: D)) |
1684 | UseAlignAttrOnly = |
1685 | FD->hasAttr<PackedAttr>() || FD->getParent()->hasAttr<PackedAttr>(); |
1686 | else |
1687 | UseAlignAttrOnly = AlignFromAttr != 0; |
1688 | // If we're using the align attribute only, just ignore everything |
1689 | // else about the declaration and its type. |
1690 | if (UseAlignAttrOnly) { |
1691 | // do nothing |
1692 | } else if (const auto *VD = dyn_cast<ValueDecl>(Val: D)) { |
1693 | QualType T = VD->getType(); |
1694 | if (const auto *RT = T->getAs<ReferenceType>()) { |
1695 | if (ForAlignof) |
1696 | T = RT->getPointeeType(); |
1697 | else |
1698 | T = getPointerType(T: RT->getPointeeType()); |
1699 | } |
1700 | QualType BaseT = getBaseElementType(QT: T); |
1701 | if (T->isFunctionType()) |
1702 | Align = getTypeInfoImpl(T: T.getTypePtr()).Align; |
1703 | else if (!BaseT->isIncompleteType()) { |
1704 | // Adjust alignments of declarations with array type by the |
1705 | // large-array alignment on the target. |
1706 | if (const ArrayType *arrayType = getAsArrayType(T)) { |
1707 | unsigned MinWidth = Target->getLargeArrayMinWidth(); |
1708 | if (!ForAlignof && MinWidth) { |
1709 | if (isa<VariableArrayType>(Val: arrayType)) |
1710 | Align = std::max(a: Align, b: Target->getLargeArrayAlign()); |
1711 | else if (isa<ConstantArrayType>(Val: arrayType) && |
1712 | MinWidth <= getTypeSize(T: cast<ConstantArrayType>(Val: arrayType))) |
1713 | Align = std::max(a: Align, b: Target->getLargeArrayAlign()); |
1714 | } |
1715 | } |
1716 | Align = std::max(a: Align, b: getPreferredTypeAlign(T: T.getTypePtr())); |
1717 | if (BaseT.getQualifiers().hasUnaligned()) |
1718 | Align = Target->getCharWidth(); |
1719 | } |
1720 | |
1721 | // Ensure miminum alignment for global variables. |
1722 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) |
1723 | if (VD->hasGlobalStorage() && !ForAlignof) { |
1724 | uint64_t TypeSize = |
1725 | !BaseT->isIncompleteType() ? getTypeSize(T: T.getTypePtr()) : 0; |
1726 | Align = std::max(a: Align, b: getMinGlobalAlignOfVar(Size: TypeSize, VD)); |
1727 | } |
1728 | |
1729 | // Fields can be subject to extra alignment constraints, like if |
1730 | // the field is packed, the struct is packed, or the struct has a |
1731 | // a max-field-alignment constraint (#pragma pack). So calculate |
1732 | // the actual alignment of the field within the struct, and then |
1733 | // (as we're expected to) constrain that by the alignment of the type. |
1734 | if (const auto *Field = dyn_cast<FieldDecl>(Val: VD)) { |
1735 | const RecordDecl *Parent = Field->getParent(); |
1736 | // We can only produce a sensible answer if the record is valid. |
1737 | if (!Parent->isInvalidDecl()) { |
1738 | const ASTRecordLayout &Layout = getASTRecordLayout(D: Parent); |
1739 | |
1740 | // Start with the record's overall alignment. |
1741 | unsigned FieldAlign = toBits(CharSize: Layout.getAlignment()); |
1742 | |
1743 | // Use the GCD of that and the offset within the record. |
1744 | uint64_t Offset = Layout.getFieldOffset(FieldNo: Field->getFieldIndex()); |
1745 | if (Offset > 0) { |
1746 | // Alignment is always a power of 2, so the GCD will be a power of 2, |
1747 | // which means we get to do this crazy thing instead of Euclid's. |
1748 | uint64_t LowBitOfOffset = Offset & (~Offset + 1); |
1749 | if (LowBitOfOffset < FieldAlign) |
1750 | FieldAlign = static_cast<unsigned>(LowBitOfOffset); |
1751 | } |
1752 | |
1753 | Align = std::min(a: Align, b: FieldAlign); |
1754 | } |
1755 | } |
1756 | } |
1757 | |
1758 | // Some targets have hard limitation on the maximum requestable alignment in |
1759 | // aligned attribute for static variables. |
1760 | const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute(); |
1761 | const auto *VD = dyn_cast<VarDecl>(Val: D); |
1762 | if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static) |
1763 | Align = std::min(a: Align, b: MaxAlignedAttr); |
1764 | |
1765 | return toCharUnitsFromBits(BitSize: Align); |
1766 | } |
1767 | |
1768 | CharUnits ASTContext::getExnObjectAlignment() const { |
1769 | return toCharUnitsFromBits(BitSize: Target->getExnObjectAlignment()); |
1770 | } |
1771 | |
1772 | // getTypeInfoDataSizeInChars - Return the size of a type, in |
1773 | // chars. If the type is a record, its data size is returned. This is |
1774 | // the size of the memcpy that's performed when assigning this type |
1775 | // using a trivial copy/move assignment operator. |
1776 | TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const { |
1777 | TypeInfoChars Info = getTypeInfoInChars(T); |
1778 | |
1779 | // In C++, objects can sometimes be allocated into the tail padding |
1780 | // of a base-class subobject. We decide whether that's possible |
1781 | // during class layout, so here we can just trust the layout results. |
1782 | if (getLangOpts().CPlusPlus) { |
1783 | if (const auto *RT = T->getAs<RecordType>(); |
1784 | RT && !RT->getDecl()->isInvalidDecl()) { |
1785 | const ASTRecordLayout &layout = getASTRecordLayout(D: RT->getDecl()); |
1786 | Info.Width = layout.getDataSize(); |
1787 | } |
1788 | } |
1789 | |
1790 | return Info; |
1791 | } |
1792 | |
1793 | /// getConstantArrayInfoInChars - Performing the computation in CharUnits |
1794 | /// instead of in bits prevents overflowing the uint64_t for some large arrays. |
1795 | TypeInfoChars |
1796 | static getConstantArrayInfoInChars(const ASTContext &Context, |
1797 | const ConstantArrayType *CAT) { |
1798 | TypeInfoChars EltInfo = Context.getTypeInfoInChars(T: CAT->getElementType()); |
1799 | uint64_t Size = CAT->getZExtSize(); |
1800 | assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <= |
1801 | (uint64_t)(-1)/Size) && |
1802 | "Overflow in array type char size evaluation" ); |
1803 | uint64_t Width = EltInfo.Width.getQuantity() * Size; |
1804 | unsigned Align = EltInfo.Align.getQuantity(); |
1805 | if (!Context.getTargetInfo().getCXXABI().isMicrosoft() || |
1806 | Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default) == 64) |
1807 | Width = llvm::alignTo(Value: Width, Align); |
1808 | return TypeInfoChars(CharUnits::fromQuantity(Quantity: Width), |
1809 | CharUnits::fromQuantity(Quantity: Align), |
1810 | EltInfo.AlignRequirement); |
1811 | } |
1812 | |
1813 | TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const { |
1814 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: T)) |
1815 | return getConstantArrayInfoInChars(Context: *this, CAT); |
1816 | TypeInfo Info = getTypeInfo(T); |
1817 | return TypeInfoChars(toCharUnitsFromBits(BitSize: Info.Width), |
1818 | toCharUnitsFromBits(BitSize: Info.Align), Info.AlignRequirement); |
1819 | } |
1820 | |
1821 | TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const { |
1822 | return getTypeInfoInChars(T: T.getTypePtr()); |
1823 | } |
1824 | |
1825 | bool ASTContext::isPromotableIntegerType(QualType T) const { |
1826 | // HLSL doesn't promote all small integer types to int, it |
1827 | // just uses the rank-based promotion rules for all types. |
1828 | if (getLangOpts().HLSL) |
1829 | return false; |
1830 | |
1831 | if (const auto *BT = T->getAs<BuiltinType>()) |
1832 | switch (BT->getKind()) { |
1833 | case BuiltinType::Bool: |
1834 | case BuiltinType::Char_S: |
1835 | case BuiltinType::Char_U: |
1836 | case BuiltinType::SChar: |
1837 | case BuiltinType::UChar: |
1838 | case BuiltinType::Short: |
1839 | case BuiltinType::UShort: |
1840 | case BuiltinType::WChar_S: |
1841 | case BuiltinType::WChar_U: |
1842 | case BuiltinType::Char8: |
1843 | case BuiltinType::Char16: |
1844 | case BuiltinType::Char32: |
1845 | return true; |
1846 | default: |
1847 | return false; |
1848 | } |
1849 | |
1850 | // Enumerated types are promotable to their compatible integer types |
1851 | // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2). |
1852 | if (const auto *ET = T->getAs<EnumType>()) { |
1853 | if (T->isDependentType() || ET->getDecl()->getPromotionType().isNull() || |
1854 | ET->getDecl()->isScoped()) |
1855 | return false; |
1856 | |
1857 | return true; |
1858 | } |
1859 | |
1860 | return false; |
1861 | } |
1862 | |
1863 | bool ASTContext::isAlignmentRequired(const Type *T) const { |
1864 | return getTypeInfo(T).AlignRequirement != AlignRequirementKind::None; |
1865 | } |
1866 | |
1867 | bool ASTContext::isAlignmentRequired(QualType T) const { |
1868 | return isAlignmentRequired(T: T.getTypePtr()); |
1869 | } |
1870 | |
1871 | unsigned ASTContext::getTypeAlignIfKnown(QualType T, |
1872 | bool NeedsPreferredAlignment) const { |
1873 | // An alignment on a typedef overrides anything else. |
1874 | if (const auto *TT = T->getAs<TypedefType>()) |
1875 | if (unsigned Align = TT->getDecl()->getMaxAlignment()) |
1876 | return Align; |
1877 | |
1878 | // If we have an (array of) complete type, we're done. |
1879 | T = getBaseElementType(QT: T); |
1880 | if (!T->isIncompleteType()) |
1881 | return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T); |
1882 | |
1883 | // If we had an array type, its element type might be a typedef |
1884 | // type with an alignment attribute. |
1885 | if (const auto *TT = T->getAs<TypedefType>()) |
1886 | if (unsigned Align = TT->getDecl()->getMaxAlignment()) |
1887 | return Align; |
1888 | |
1889 | // Otherwise, see if the declaration of the type had an attribute. |
1890 | if (const auto *TT = T->getAs<TagType>()) |
1891 | return TT->getDecl()->getMaxAlignment(); |
1892 | |
1893 | return 0; |
1894 | } |
1895 | |
1896 | TypeInfo ASTContext::getTypeInfo(const Type *T) const { |
1897 | TypeInfoMap::iterator I = MemoizedTypeInfo.find(Val: T); |
1898 | if (I != MemoizedTypeInfo.end()) |
1899 | return I->second; |
1900 | |
1901 | // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup. |
1902 | TypeInfo TI = getTypeInfoImpl(T); |
1903 | MemoizedTypeInfo[T] = TI; |
1904 | return TI; |
1905 | } |
1906 | |
1907 | /// getTypeInfoImpl - Return the size of the specified type, in bits. This |
1908 | /// method does not work on incomplete types. |
1909 | /// |
1910 | /// FIXME: Pointers into different addr spaces could have different sizes and |
1911 | /// alignment requirements: getPointerInfo should take an AddrSpace, this |
1912 | /// should take a QualType, &c. |
1913 | TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const { |
1914 | uint64_t Width = 0; |
1915 | unsigned Align = 8; |
1916 | AlignRequirementKind AlignRequirement = AlignRequirementKind::None; |
1917 | LangAS AS = LangAS::Default; |
1918 | switch (T->getTypeClass()) { |
1919 | #define TYPE(Class, Base) |
1920 | #define ABSTRACT_TYPE(Class, Base) |
1921 | #define NON_CANONICAL_TYPE(Class, Base) |
1922 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
1923 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \ |
1924 | case Type::Class: \ |
1925 | assert(!T->isDependentType() && "should not see dependent types here"); \ |
1926 | return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr()); |
1927 | #include "clang/AST/TypeNodes.inc" |
1928 | llvm_unreachable("Should not see dependent types" ); |
1929 | |
1930 | case Type::FunctionNoProto: |
1931 | case Type::FunctionProto: |
1932 | // GCC extension: alignof(function) = 32 bits |
1933 | Width = 0; |
1934 | Align = 32; |
1935 | break; |
1936 | |
1937 | case Type::IncompleteArray: |
1938 | case Type::VariableArray: |
1939 | case Type::ConstantArray: |
1940 | case Type::ArrayParameter: { |
1941 | // Model non-constant sized arrays as size zero, but track the alignment. |
1942 | uint64_t Size = 0; |
1943 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: T)) |
1944 | Size = CAT->getZExtSize(); |
1945 | |
1946 | TypeInfo EltInfo = getTypeInfo(T: cast<ArrayType>(Val: T)->getElementType()); |
1947 | assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && |
1948 | "Overflow in array type bit size evaluation" ); |
1949 | Width = EltInfo.Width * Size; |
1950 | Align = EltInfo.Align; |
1951 | AlignRequirement = EltInfo.AlignRequirement; |
1952 | if (!getTargetInfo().getCXXABI().isMicrosoft() || |
1953 | getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default) == 64) |
1954 | Width = llvm::alignTo(Value: Width, Align); |
1955 | break; |
1956 | } |
1957 | |
1958 | case Type::ExtVector: |
1959 | case Type::Vector: { |
1960 | const auto *VT = cast<VectorType>(Val: T); |
1961 | TypeInfo EltInfo = getTypeInfo(T: VT->getElementType()); |
1962 | Width = VT->isExtVectorBoolType() ? VT->getNumElements() |
1963 | : EltInfo.Width * VT->getNumElements(); |
1964 | // Enforce at least byte size and alignment. |
1965 | Width = std::max<unsigned>(a: 8, b: Width); |
1966 | Align = std::max<unsigned>(a: 8, b: Width); |
1967 | |
1968 | // If the alignment is not a power of 2, round up to the next power of 2. |
1969 | // This happens for non-power-of-2 length vectors. |
1970 | if (Align & (Align-1)) { |
1971 | Align = llvm::bit_ceil(Value: Align); |
1972 | Width = llvm::alignTo(Value: Width, Align); |
1973 | } |
1974 | // Adjust the alignment based on the target max. |
1975 | uint64_t TargetVectorAlign = Target->getMaxVectorAlign(); |
1976 | if (TargetVectorAlign && TargetVectorAlign < Align) |
1977 | Align = TargetVectorAlign; |
1978 | if (VT->getVectorKind() == VectorKind::SveFixedLengthData) |
1979 | // Adjust the alignment for fixed-length SVE vectors. This is important |
1980 | // for non-power-of-2 vector lengths. |
1981 | Align = 128; |
1982 | else if (VT->getVectorKind() == VectorKind::SveFixedLengthPredicate) |
1983 | // Adjust the alignment for fixed-length SVE predicates. |
1984 | Align = 16; |
1985 | else if (VT->getVectorKind() == VectorKind::RVVFixedLengthData || |
1986 | VT->getVectorKind() == VectorKind::RVVFixedLengthMask) |
1987 | // Adjust the alignment for fixed-length RVV vectors. |
1988 | Align = std::min<unsigned>(a: 64, b: Width); |
1989 | break; |
1990 | } |
1991 | |
1992 | case Type::ConstantMatrix: { |
1993 | const auto *MT = cast<ConstantMatrixType>(Val: T); |
1994 | TypeInfo ElementInfo = getTypeInfo(T: MT->getElementType()); |
1995 | // The internal layout of a matrix value is implementation defined. |
1996 | // Initially be ABI compatible with arrays with respect to alignment and |
1997 | // size. |
1998 | Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns(); |
1999 | Align = ElementInfo.Align; |
2000 | break; |
2001 | } |
2002 | |
2003 | case Type::Builtin: |
2004 | switch (cast<BuiltinType>(Val: T)->getKind()) { |
2005 | default: llvm_unreachable("Unknown builtin type!" ); |
2006 | case BuiltinType::Void: |
2007 | // GCC extension: alignof(void) = 8 bits. |
2008 | Width = 0; |
2009 | Align = 8; |
2010 | break; |
2011 | case BuiltinType::Bool: |
2012 | Width = Target->getBoolWidth(); |
2013 | Align = Target->getBoolAlign(); |
2014 | break; |
2015 | case BuiltinType::Char_S: |
2016 | case BuiltinType::Char_U: |
2017 | case BuiltinType::UChar: |
2018 | case BuiltinType::SChar: |
2019 | case BuiltinType::Char8: |
2020 | Width = Target->getCharWidth(); |
2021 | Align = Target->getCharAlign(); |
2022 | break; |
2023 | case BuiltinType::WChar_S: |
2024 | case BuiltinType::WChar_U: |
2025 | Width = Target->getWCharWidth(); |
2026 | Align = Target->getWCharAlign(); |
2027 | break; |
2028 | case BuiltinType::Char16: |
2029 | Width = Target->getChar16Width(); |
2030 | Align = Target->getChar16Align(); |
2031 | break; |
2032 | case BuiltinType::Char32: |
2033 | Width = Target->getChar32Width(); |
2034 | Align = Target->getChar32Align(); |
2035 | break; |
2036 | case BuiltinType::UShort: |
2037 | case BuiltinType::Short: |
2038 | Width = Target->getShortWidth(); |
2039 | Align = Target->getShortAlign(); |
2040 | break; |
2041 | case BuiltinType::UInt: |
2042 | case BuiltinType::Int: |
2043 | Width = Target->getIntWidth(); |
2044 | Align = Target->getIntAlign(); |
2045 | break; |
2046 | case BuiltinType::ULong: |
2047 | case BuiltinType::Long: |
2048 | Width = Target->getLongWidth(); |
2049 | Align = Target->getLongAlign(); |
2050 | break; |
2051 | case BuiltinType::ULongLong: |
2052 | case BuiltinType::LongLong: |
2053 | Width = Target->getLongLongWidth(); |
2054 | Align = Target->getLongLongAlign(); |
2055 | break; |
2056 | case BuiltinType::Int128: |
2057 | case BuiltinType::UInt128: |
2058 | Width = 128; |
2059 | Align = Target->getInt128Align(); |
2060 | break; |
2061 | case BuiltinType::ShortAccum: |
2062 | case BuiltinType::UShortAccum: |
2063 | case BuiltinType::SatShortAccum: |
2064 | case BuiltinType::SatUShortAccum: |
2065 | Width = Target->getShortAccumWidth(); |
2066 | Align = Target->getShortAccumAlign(); |
2067 | break; |
2068 | case BuiltinType::Accum: |
2069 | case BuiltinType::UAccum: |
2070 | case BuiltinType::SatAccum: |
2071 | case BuiltinType::SatUAccum: |
2072 | Width = Target->getAccumWidth(); |
2073 | Align = Target->getAccumAlign(); |
2074 | break; |
2075 | case BuiltinType::LongAccum: |
2076 | case BuiltinType::ULongAccum: |
2077 | case BuiltinType::SatLongAccum: |
2078 | case BuiltinType::SatULongAccum: |
2079 | Width = Target->getLongAccumWidth(); |
2080 | Align = Target->getLongAccumAlign(); |
2081 | break; |
2082 | case BuiltinType::ShortFract: |
2083 | case BuiltinType::UShortFract: |
2084 | case BuiltinType::SatShortFract: |
2085 | case BuiltinType::SatUShortFract: |
2086 | Width = Target->getShortFractWidth(); |
2087 | Align = Target->getShortFractAlign(); |
2088 | break; |
2089 | case BuiltinType::Fract: |
2090 | case BuiltinType::UFract: |
2091 | case BuiltinType::SatFract: |
2092 | case BuiltinType::SatUFract: |
2093 | Width = Target->getFractWidth(); |
2094 | Align = Target->getFractAlign(); |
2095 | break; |
2096 | case BuiltinType::LongFract: |
2097 | case BuiltinType::ULongFract: |
2098 | case BuiltinType::SatLongFract: |
2099 | case BuiltinType::SatULongFract: |
2100 | Width = Target->getLongFractWidth(); |
2101 | Align = Target->getLongFractAlign(); |
2102 | break; |
2103 | case BuiltinType::BFloat16: |
2104 | if (Target->hasBFloat16Type()) { |
2105 | Width = Target->getBFloat16Width(); |
2106 | Align = Target->getBFloat16Align(); |
2107 | } else if ((getLangOpts().SYCLIsDevice || |
2108 | (getLangOpts().OpenMP && |
2109 | getLangOpts().OpenMPIsTargetDevice)) && |
2110 | AuxTarget->hasBFloat16Type()) { |
2111 | Width = AuxTarget->getBFloat16Width(); |
2112 | Align = AuxTarget->getBFloat16Align(); |
2113 | } |
2114 | break; |
2115 | case BuiltinType::Float16: |
2116 | case BuiltinType::Half: |
2117 | if (Target->hasFloat16Type() || !getLangOpts().OpenMP || |
2118 | !getLangOpts().OpenMPIsTargetDevice) { |
2119 | Width = Target->getHalfWidth(); |
2120 | Align = Target->getHalfAlign(); |
2121 | } else { |
2122 | assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && |
2123 | "Expected OpenMP device compilation." ); |
2124 | Width = AuxTarget->getHalfWidth(); |
2125 | Align = AuxTarget->getHalfAlign(); |
2126 | } |
2127 | break; |
2128 | case BuiltinType::Float: |
2129 | Width = Target->getFloatWidth(); |
2130 | Align = Target->getFloatAlign(); |
2131 | break; |
2132 | case BuiltinType::Double: |
2133 | Width = Target->getDoubleWidth(); |
2134 | Align = Target->getDoubleAlign(); |
2135 | break; |
2136 | case BuiltinType::Ibm128: |
2137 | Width = Target->getIbm128Width(); |
2138 | Align = Target->getIbm128Align(); |
2139 | break; |
2140 | case BuiltinType::LongDouble: |
2141 | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && |
2142 | (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() || |
2143 | Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) { |
2144 | Width = AuxTarget->getLongDoubleWidth(); |
2145 | Align = AuxTarget->getLongDoubleAlign(); |
2146 | } else { |
2147 | Width = Target->getLongDoubleWidth(); |
2148 | Align = Target->getLongDoubleAlign(); |
2149 | } |
2150 | break; |
2151 | case BuiltinType::Float128: |
2152 | if (Target->hasFloat128Type() || !getLangOpts().OpenMP || |
2153 | !getLangOpts().OpenMPIsTargetDevice) { |
2154 | Width = Target->getFloat128Width(); |
2155 | Align = Target->getFloat128Align(); |
2156 | } else { |
2157 | assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && |
2158 | "Expected OpenMP device compilation." ); |
2159 | Width = AuxTarget->getFloat128Width(); |
2160 | Align = AuxTarget->getFloat128Align(); |
2161 | } |
2162 | break; |
2163 | case BuiltinType::NullPtr: |
2164 | // C++ 3.9.1p11: sizeof(nullptr_t) == sizeof(void*) |
2165 | Width = Target->getPointerWidth(AddrSpace: LangAS::Default); |
2166 | Align = Target->getPointerAlign(AddrSpace: LangAS::Default); |
2167 | break; |
2168 | case BuiltinType::ObjCId: |
2169 | case BuiltinType::ObjCClass: |
2170 | case BuiltinType::ObjCSel: |
2171 | Width = Target->getPointerWidth(AddrSpace: LangAS::Default); |
2172 | Align = Target->getPointerAlign(AddrSpace: LangAS::Default); |
2173 | break; |
2174 | case BuiltinType::OCLSampler: |
2175 | case BuiltinType::OCLEvent: |
2176 | case BuiltinType::OCLClkEvent: |
2177 | case BuiltinType::OCLQueue: |
2178 | case BuiltinType::OCLReserveID: |
2179 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
2180 | case BuiltinType::Id: |
2181 | #include "clang/Basic/OpenCLImageTypes.def" |
2182 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
2183 | case BuiltinType::Id: |
2184 | #include "clang/Basic/OpenCLExtensionTypes.def" |
2185 | AS = Target->getOpenCLTypeAddrSpace(TK: getOpenCLTypeKind(T)); |
2186 | Width = Target->getPointerWidth(AddrSpace: AS); |
2187 | Align = Target->getPointerAlign(AddrSpace: AS); |
2188 | break; |
2189 | // The SVE types are effectively target-specific. The length of an |
2190 | // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple |
2191 | // of 128 bits. There is one predicate bit for each vector byte, so the |
2192 | // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits. |
2193 | // |
2194 | // Because the length is only known at runtime, we use a dummy value |
2195 | // of 0 for the static length. The alignment values are those defined |
2196 | // by the Procedure Call Standard for the Arm Architecture. |
2197 | #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits, \ |
2198 | IsSigned, IsFP, IsBF) \ |
2199 | case BuiltinType::Id: \ |
2200 | Width = 0; \ |
2201 | Align = 128; \ |
2202 | break; |
2203 | #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls) \ |
2204 | case BuiltinType::Id: \ |
2205 | Width = 0; \ |
2206 | Align = 16; \ |
2207 | break; |
2208 | #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingletonId) \ |
2209 | case BuiltinType::Id: \ |
2210 | Width = 0; \ |
2211 | Align = 16; \ |
2212 | break; |
2213 | #include "clang/Basic/AArch64SVEACLETypes.def" |
2214 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
2215 | case BuiltinType::Id: \ |
2216 | Width = Size; \ |
2217 | Align = Size; \ |
2218 | break; |
2219 | #include "clang/Basic/PPCTypes.def" |
2220 | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned, \ |
2221 | IsFP, IsBF) \ |
2222 | case BuiltinType::Id: \ |
2223 | Width = 0; \ |
2224 | Align = ElBits; \ |
2225 | break; |
2226 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind) \ |
2227 | case BuiltinType::Id: \ |
2228 | Width = 0; \ |
2229 | Align = 8; \ |
2230 | break; |
2231 | #include "clang/Basic/RISCVVTypes.def" |
2232 | #define WASM_TYPE(Name, Id, SingletonId) \ |
2233 | case BuiltinType::Id: \ |
2234 | Width = 0; \ |
2235 | Align = 8; \ |
2236 | break; |
2237 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
2238 | #define AMDGPU_OPAQUE_PTR_TYPE(NAME, MANGLEDNAME, AS, WIDTH, ALIGN, ID, \ |
2239 | SINGLETONID) \ |
2240 | case BuiltinType::ID: \ |
2241 | Width = WIDTH; \ |
2242 | Align = ALIGN; \ |
2243 | break; |
2244 | #include "clang/Basic/AMDGPUTypes.def" |
2245 | } |
2246 | break; |
2247 | case Type::ObjCObjectPointer: |
2248 | Width = Target->getPointerWidth(AddrSpace: LangAS::Default); |
2249 | Align = Target->getPointerAlign(AddrSpace: LangAS::Default); |
2250 | break; |
2251 | case Type::BlockPointer: |
2252 | AS = cast<BlockPointerType>(Val: T)->getPointeeType().getAddressSpace(); |
2253 | Width = Target->getPointerWidth(AddrSpace: AS); |
2254 | Align = Target->getPointerAlign(AddrSpace: AS); |
2255 | break; |
2256 | case Type::LValueReference: |
2257 | case Type::RValueReference: |
2258 | // alignof and sizeof should never enter this code path here, so we go |
2259 | // the pointer route. |
2260 | AS = cast<ReferenceType>(Val: T)->getPointeeType().getAddressSpace(); |
2261 | Width = Target->getPointerWidth(AddrSpace: AS); |
2262 | Align = Target->getPointerAlign(AddrSpace: AS); |
2263 | break; |
2264 | case Type::Pointer: |
2265 | AS = cast<PointerType>(Val: T)->getPointeeType().getAddressSpace(); |
2266 | Width = Target->getPointerWidth(AddrSpace: AS); |
2267 | Align = Target->getPointerAlign(AddrSpace: AS); |
2268 | break; |
2269 | case Type::MemberPointer: { |
2270 | const auto *MPT = cast<MemberPointerType>(Val: T); |
2271 | CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT); |
2272 | Width = MPI.Width; |
2273 | Align = MPI.Align; |
2274 | break; |
2275 | } |
2276 | case Type::Complex: { |
2277 | // Complex types have the same alignment as their elements, but twice the |
2278 | // size. |
2279 | TypeInfo EltInfo = getTypeInfo(T: cast<ComplexType>(Val: T)->getElementType()); |
2280 | Width = EltInfo.Width * 2; |
2281 | Align = EltInfo.Align; |
2282 | break; |
2283 | } |
2284 | case Type::ObjCObject: |
2285 | return getTypeInfo(T: cast<ObjCObjectType>(Val: T)->getBaseType().getTypePtr()); |
2286 | case Type::Adjusted: |
2287 | case Type::Decayed: |
2288 | return getTypeInfo(T: cast<AdjustedType>(Val: T)->getAdjustedType().getTypePtr()); |
2289 | case Type::ObjCInterface: { |
2290 | const auto *ObjCI = cast<ObjCInterfaceType>(Val: T); |
2291 | if (ObjCI->getDecl()->isInvalidDecl()) { |
2292 | Width = 8; |
2293 | Align = 8; |
2294 | break; |
2295 | } |
2296 | const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(D: ObjCI->getDecl()); |
2297 | Width = toBits(CharSize: Layout.getSize()); |
2298 | Align = toBits(CharSize: Layout.getAlignment()); |
2299 | break; |
2300 | } |
2301 | case Type::BitInt: { |
2302 | const auto *EIT = cast<BitIntType>(Val: T); |
2303 | Align = Target->getBitIntAlign(NumBits: EIT->getNumBits()); |
2304 | Width = Target->getBitIntWidth(NumBits: EIT->getNumBits()); |
2305 | break; |
2306 | } |
2307 | case Type::Record: |
2308 | case Type::Enum: { |
2309 | const auto *TT = cast<TagType>(Val: T); |
2310 | |
2311 | if (TT->getDecl()->isInvalidDecl()) { |
2312 | Width = 8; |
2313 | Align = 8; |
2314 | break; |
2315 | } |
2316 | |
2317 | if (const auto *ET = dyn_cast<EnumType>(Val: TT)) { |
2318 | const EnumDecl *ED = ET->getDecl(); |
2319 | TypeInfo Info = |
2320 | getTypeInfo(T: ED->getIntegerType()->getUnqualifiedDesugaredType()); |
2321 | if (unsigned AttrAlign = ED->getMaxAlignment()) { |
2322 | Info.Align = AttrAlign; |
2323 | Info.AlignRequirement = AlignRequirementKind::RequiredByEnum; |
2324 | } |
2325 | return Info; |
2326 | } |
2327 | |
2328 | const auto *RT = cast<RecordType>(Val: TT); |
2329 | const RecordDecl *RD = RT->getDecl(); |
2330 | const ASTRecordLayout &Layout = getASTRecordLayout(D: RD); |
2331 | Width = toBits(CharSize: Layout.getSize()); |
2332 | Align = toBits(CharSize: Layout.getAlignment()); |
2333 | AlignRequirement = RD->hasAttr<AlignedAttr>() |
2334 | ? AlignRequirementKind::RequiredByRecord |
2335 | : AlignRequirementKind::None; |
2336 | break; |
2337 | } |
2338 | |
2339 | case Type::SubstTemplateTypeParm: |
2340 | return getTypeInfo(T: cast<SubstTemplateTypeParmType>(Val: T)-> |
2341 | getReplacementType().getTypePtr()); |
2342 | |
2343 | case Type::Auto: |
2344 | case Type::DeducedTemplateSpecialization: { |
2345 | const auto *A = cast<DeducedType>(Val: T); |
2346 | assert(!A->getDeducedType().isNull() && |
2347 | "cannot request the size of an undeduced or dependent auto type" ); |
2348 | return getTypeInfo(T: A->getDeducedType().getTypePtr()); |
2349 | } |
2350 | |
2351 | case Type::Paren: |
2352 | return getTypeInfo(T: cast<ParenType>(Val: T)->getInnerType().getTypePtr()); |
2353 | |
2354 | case Type::MacroQualified: |
2355 | return getTypeInfo( |
2356 | T: cast<MacroQualifiedType>(Val: T)->getUnderlyingType().getTypePtr()); |
2357 | |
2358 | case Type::ObjCTypeParam: |
2359 | return getTypeInfo(T: cast<ObjCTypeParamType>(Val: T)->desugar().getTypePtr()); |
2360 | |
2361 | case Type::Using: |
2362 | return getTypeInfo(T: cast<UsingType>(Val: T)->desugar().getTypePtr()); |
2363 | |
2364 | case Type::Typedef: { |
2365 | const auto *TT = cast<TypedefType>(Val: T); |
2366 | TypeInfo Info = getTypeInfo(T: TT->desugar().getTypePtr()); |
2367 | // If the typedef has an aligned attribute on it, it overrides any computed |
2368 | // alignment we have. This violates the GCC documentation (which says that |
2369 | // attribute(aligned) can only round up) but matches its implementation. |
2370 | if (unsigned AttrAlign = TT->getDecl()->getMaxAlignment()) { |
2371 | Align = AttrAlign; |
2372 | AlignRequirement = AlignRequirementKind::RequiredByTypedef; |
2373 | } else { |
2374 | Align = Info.Align; |
2375 | AlignRequirement = Info.AlignRequirement; |
2376 | } |
2377 | Width = Info.Width; |
2378 | break; |
2379 | } |
2380 | |
2381 | case Type::Elaborated: |
2382 | return getTypeInfo(T: cast<ElaboratedType>(Val: T)->getNamedType().getTypePtr()); |
2383 | |
2384 | case Type::Attributed: |
2385 | return getTypeInfo( |
2386 | T: cast<AttributedType>(Val: T)->getEquivalentType().getTypePtr()); |
2387 | |
2388 | case Type::CountAttributed: |
2389 | return getTypeInfo(T: cast<CountAttributedType>(Val: T)->desugar().getTypePtr()); |
2390 | |
2391 | case Type::BTFTagAttributed: |
2392 | return getTypeInfo( |
2393 | T: cast<BTFTagAttributedType>(Val: T)->getWrappedType().getTypePtr()); |
2394 | |
2395 | case Type::Atomic: { |
2396 | // Start with the base type information. |
2397 | TypeInfo Info = getTypeInfo(T: cast<AtomicType>(Val: T)->getValueType()); |
2398 | Width = Info.Width; |
2399 | Align = Info.Align; |
2400 | |
2401 | if (!Width) { |
2402 | // An otherwise zero-sized type should still generate an |
2403 | // atomic operation. |
2404 | Width = Target->getCharWidth(); |
2405 | assert(Align); |
2406 | } else if (Width <= Target->getMaxAtomicPromoteWidth()) { |
2407 | // If the size of the type doesn't exceed the platform's max |
2408 | // atomic promotion width, make the size and alignment more |
2409 | // favorable to atomic operations: |
2410 | |
2411 | // Round the size up to a power of 2. |
2412 | Width = llvm::bit_ceil(Value: Width); |
2413 | |
2414 | // Set the alignment equal to the size. |
2415 | Align = static_cast<unsigned>(Width); |
2416 | } |
2417 | } |
2418 | break; |
2419 | |
2420 | case Type::Pipe: |
2421 | Width = Target->getPointerWidth(AddrSpace: LangAS::opencl_global); |
2422 | Align = Target->getPointerAlign(AddrSpace: LangAS::opencl_global); |
2423 | break; |
2424 | } |
2425 | |
2426 | assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2" ); |
2427 | return TypeInfo(Width, Align, AlignRequirement); |
2428 | } |
2429 | |
2430 | unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const { |
2431 | UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(Val: T); |
2432 | if (I != MemoizedUnadjustedAlign.end()) |
2433 | return I->second; |
2434 | |
2435 | unsigned UnadjustedAlign; |
2436 | if (const auto *RT = T->getAs<RecordType>()) { |
2437 | const RecordDecl *RD = RT->getDecl(); |
2438 | const ASTRecordLayout &Layout = getASTRecordLayout(D: RD); |
2439 | UnadjustedAlign = toBits(CharSize: Layout.getUnadjustedAlignment()); |
2440 | } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) { |
2441 | const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(D: ObjCI->getDecl()); |
2442 | UnadjustedAlign = toBits(CharSize: Layout.getUnadjustedAlignment()); |
2443 | } else { |
2444 | UnadjustedAlign = getTypeAlign(T: T->getUnqualifiedDesugaredType()); |
2445 | } |
2446 | |
2447 | MemoizedUnadjustedAlign[T] = UnadjustedAlign; |
2448 | return UnadjustedAlign; |
2449 | } |
2450 | |
2451 | unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const { |
2452 | unsigned SimdAlign = llvm::OpenMPIRBuilder::getOpenMPDefaultSimdAlign( |
2453 | TargetTriple: getTargetInfo().getTriple(), Features: Target->getTargetOpts().FeatureMap); |
2454 | return SimdAlign; |
2455 | } |
2456 | |
2457 | /// toCharUnitsFromBits - Convert a size in bits to a size in characters. |
2458 | CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const { |
2459 | return CharUnits::fromQuantity(Quantity: BitSize / getCharWidth()); |
2460 | } |
2461 | |
2462 | /// toBits - Convert a size in characters to a size in characters. |
2463 | int64_t ASTContext::toBits(CharUnits CharSize) const { |
2464 | return CharSize.getQuantity() * getCharWidth(); |
2465 | } |
2466 | |
2467 | /// getTypeSizeInChars - Return the size of the specified type, in characters. |
2468 | /// This method does not work on incomplete types. |
2469 | CharUnits ASTContext::getTypeSizeInChars(QualType T) const { |
2470 | return getTypeInfoInChars(T).Width; |
2471 | } |
2472 | CharUnits ASTContext::getTypeSizeInChars(const Type *T) const { |
2473 | return getTypeInfoInChars(T).Width; |
2474 | } |
2475 | |
2476 | /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in |
2477 | /// characters. This method does not work on incomplete types. |
2478 | CharUnits ASTContext::getTypeAlignInChars(QualType T) const { |
2479 | return toCharUnitsFromBits(BitSize: getTypeAlign(T)); |
2480 | } |
2481 | CharUnits ASTContext::getTypeAlignInChars(const Type *T) const { |
2482 | return toCharUnitsFromBits(BitSize: getTypeAlign(T)); |
2483 | } |
2484 | |
2485 | /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a |
2486 | /// type, in characters, before alignment adjustments. This method does |
2487 | /// not work on incomplete types. |
2488 | CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const { |
2489 | return toCharUnitsFromBits(BitSize: getTypeUnadjustedAlign(T)); |
2490 | } |
2491 | CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const { |
2492 | return toCharUnitsFromBits(BitSize: getTypeUnadjustedAlign(T)); |
2493 | } |
2494 | |
2495 | /// getPreferredTypeAlign - Return the "preferred" alignment of the specified |
2496 | /// type for the current target in bits. This can be different than the ABI |
2497 | /// alignment in cases where it is beneficial for performance or backwards |
2498 | /// compatibility preserving to overalign a data type. (Note: despite the name, |
2499 | /// the preferred alignment is ABI-impacting, and not an optimization.) |
2500 | unsigned ASTContext::getPreferredTypeAlign(const Type *T) const { |
2501 | TypeInfo TI = getTypeInfo(T); |
2502 | unsigned ABIAlign = TI.Align; |
2503 | |
2504 | T = T->getBaseElementTypeUnsafe(); |
2505 | |
2506 | // The preferred alignment of member pointers is that of a pointer. |
2507 | if (T->isMemberPointerType()) |
2508 | return getPreferredTypeAlign(T: getPointerDiffType().getTypePtr()); |
2509 | |
2510 | if (!Target->allowsLargerPreferedTypeAlignment()) |
2511 | return ABIAlign; |
2512 | |
2513 | if (const auto *RT = T->getAs<RecordType>()) { |
2514 | const RecordDecl *RD = RT->getDecl(); |
2515 | |
2516 | // When used as part of a typedef, or together with a 'packed' attribute, |
2517 | // the 'aligned' attribute can be used to decrease alignment. Note that the |
2518 | // 'packed' case is already taken into consideration when computing the |
2519 | // alignment, we only need to handle the typedef case here. |
2520 | if (TI.AlignRequirement == AlignRequirementKind::RequiredByTypedef || |
2521 | RD->isInvalidDecl()) |
2522 | return ABIAlign; |
2523 | |
2524 | unsigned PreferredAlign = static_cast<unsigned>( |
2525 | toBits(CharSize: getASTRecordLayout(D: RD).PreferredAlignment)); |
2526 | assert(PreferredAlign >= ABIAlign && |
2527 | "PreferredAlign should be at least as large as ABIAlign." ); |
2528 | return PreferredAlign; |
2529 | } |
2530 | |
2531 | // Double (and, for targets supporting AIX `power` alignment, long double) and |
2532 | // long long should be naturally aligned (despite requiring less alignment) if |
2533 | // possible. |
2534 | if (const auto *CT = T->getAs<ComplexType>()) |
2535 | T = CT->getElementType().getTypePtr(); |
2536 | if (const auto *ET = T->getAs<EnumType>()) |
2537 | T = ET->getDecl()->getIntegerType().getTypePtr(); |
2538 | if (T->isSpecificBuiltinType(K: BuiltinType::Double) || |
2539 | T->isSpecificBuiltinType(K: BuiltinType::LongLong) || |
2540 | T->isSpecificBuiltinType(K: BuiltinType::ULongLong) || |
2541 | (T->isSpecificBuiltinType(K: BuiltinType::LongDouble) && |
2542 | Target->defaultsToAIXPowerAlignment())) |
2543 | // Don't increase the alignment if an alignment attribute was specified on a |
2544 | // typedef declaration. |
2545 | if (!TI.isAlignRequired()) |
2546 | return std::max(a: ABIAlign, b: (unsigned)getTypeSize(T)); |
2547 | |
2548 | return ABIAlign; |
2549 | } |
2550 | |
2551 | /// getTargetDefaultAlignForAttributeAligned - Return the default alignment |
2552 | /// for __attribute__((aligned)) on this target, to be used if no alignment |
2553 | /// value is specified. |
2554 | unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const { |
2555 | return getTargetInfo().getDefaultAlignForAttributeAligned(); |
2556 | } |
2557 | |
2558 | /// getAlignOfGlobalVar - Return the alignment in bits that should be given |
2559 | /// to a global variable of the specified type. |
2560 | unsigned ASTContext::getAlignOfGlobalVar(QualType T, const VarDecl *VD) const { |
2561 | uint64_t TypeSize = getTypeSize(T: T.getTypePtr()); |
2562 | return std::max(a: getPreferredTypeAlign(T), |
2563 | b: getMinGlobalAlignOfVar(Size: TypeSize, VD)); |
2564 | } |
2565 | |
2566 | /// getAlignOfGlobalVarInChars - Return the alignment in characters that |
2567 | /// should be given to a global variable of the specified type. |
2568 | CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T, |
2569 | const VarDecl *VD) const { |
2570 | return toCharUnitsFromBits(BitSize: getAlignOfGlobalVar(T, VD)); |
2571 | } |
2572 | |
2573 | unsigned ASTContext::getMinGlobalAlignOfVar(uint64_t Size, |
2574 | const VarDecl *VD) const { |
2575 | // Make the default handling as that of a non-weak definition in the |
2576 | // current translation unit. |
2577 | bool HasNonWeakDef = !VD || (VD->hasDefinition() && !VD->isWeak()); |
2578 | return getTargetInfo().getMinGlobalAlign(Size, HasNonWeakDef); |
2579 | } |
2580 | |
2581 | CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const { |
2582 | CharUnits Offset = CharUnits::Zero(); |
2583 | const ASTRecordLayout *Layout = &getASTRecordLayout(D: RD); |
2584 | while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) { |
2585 | Offset += Layout->getBaseClassOffset(Base); |
2586 | Layout = &getASTRecordLayout(D: Base); |
2587 | } |
2588 | return Offset; |
2589 | } |
2590 | |
2591 | CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const { |
2592 | const ValueDecl *MPD = MP.getMemberPointerDecl(); |
2593 | CharUnits ThisAdjustment = CharUnits::Zero(); |
2594 | ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath(); |
2595 | bool DerivedMember = MP.isMemberPointerToDerivedMember(); |
2596 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: MPD->getDeclContext()); |
2597 | for (unsigned I = 0, N = Path.size(); I != N; ++I) { |
2598 | const CXXRecordDecl *Base = RD; |
2599 | const CXXRecordDecl *Derived = Path[I]; |
2600 | if (DerivedMember) |
2601 | std::swap(a&: Base, b&: Derived); |
2602 | ThisAdjustment += getASTRecordLayout(D: Derived).getBaseClassOffset(Base); |
2603 | RD = Path[I]; |
2604 | } |
2605 | if (DerivedMember) |
2606 | ThisAdjustment = -ThisAdjustment; |
2607 | return ThisAdjustment; |
2608 | } |
2609 | |
2610 | /// DeepCollectObjCIvars - |
2611 | /// This routine first collects all declared, but not synthesized, ivars in |
2612 | /// super class and then collects all ivars, including those synthesized for |
2613 | /// current class. This routine is used for implementation of current class |
2614 | /// when all ivars, declared and synthesized are known. |
2615 | void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, |
2616 | bool leafClass, |
2617 | SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const { |
2618 | if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) |
2619 | DeepCollectObjCIvars(OI: SuperClass, leafClass: false, Ivars); |
2620 | if (!leafClass) { |
2621 | llvm::append_range(C&: Ivars, R: OI->ivars()); |
2622 | } else { |
2623 | auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI); |
2624 | for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv; |
2625 | Iv= Iv->getNextIvar()) |
2626 | Ivars.push_back(Elt: Iv); |
2627 | } |
2628 | } |
2629 | |
2630 | /// CollectInheritedProtocols - Collect all protocols in current class and |
2631 | /// those inherited by it. |
2632 | void ASTContext::CollectInheritedProtocols(const Decl *CDecl, |
2633 | llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) { |
2634 | if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(Val: CDecl)) { |
2635 | // We can use protocol_iterator here instead of |
2636 | // all_referenced_protocol_iterator since we are walking all categories. |
2637 | for (auto *Proto : OI->all_referenced_protocols()) { |
2638 | CollectInheritedProtocols(CDecl: Proto, Protocols); |
2639 | } |
2640 | |
2641 | // Categories of this Interface. |
2642 | for (const auto *Cat : OI->visible_categories()) |
2643 | CollectInheritedProtocols(CDecl: Cat, Protocols); |
2644 | |
2645 | if (ObjCInterfaceDecl *SD = OI->getSuperClass()) |
2646 | while (SD) { |
2647 | CollectInheritedProtocols(CDecl: SD, Protocols); |
2648 | SD = SD->getSuperClass(); |
2649 | } |
2650 | } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(Val: CDecl)) { |
2651 | for (auto *Proto : OC->protocols()) { |
2652 | CollectInheritedProtocols(CDecl: Proto, Protocols); |
2653 | } |
2654 | } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(Val: CDecl)) { |
2655 | // Insert the protocol. |
2656 | if (!Protocols.insert( |
2657 | Ptr: const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second) |
2658 | return; |
2659 | |
2660 | for (auto *Proto : OP->protocols()) |
2661 | CollectInheritedProtocols(CDecl: Proto, Protocols); |
2662 | } |
2663 | } |
2664 | |
2665 | static bool unionHasUniqueObjectRepresentations(const ASTContext &Context, |
2666 | const RecordDecl *RD, |
2667 | bool CheckIfTriviallyCopyable) { |
2668 | assert(RD->isUnion() && "Must be union type" ); |
2669 | CharUnits UnionSize = Context.getTypeSizeInChars(T: RD->getTypeForDecl()); |
2670 | |
2671 | for (const auto *Field : RD->fields()) { |
2672 | if (!Context.hasUniqueObjectRepresentations(Ty: Field->getType(), |
2673 | CheckIfTriviallyCopyable)) |
2674 | return false; |
2675 | CharUnits FieldSize = Context.getTypeSizeInChars(T: Field->getType()); |
2676 | if (FieldSize != UnionSize) |
2677 | return false; |
2678 | } |
2679 | return !RD->field_empty(); |
2680 | } |
2681 | |
2682 | static int64_t getSubobjectOffset(const FieldDecl *Field, |
2683 | const ASTContext &Context, |
2684 | const clang::ASTRecordLayout & /*Layout*/) { |
2685 | return Context.getFieldOffset(FD: Field); |
2686 | } |
2687 | |
2688 | static int64_t getSubobjectOffset(const CXXRecordDecl *RD, |
2689 | const ASTContext &Context, |
2690 | const clang::ASTRecordLayout &Layout) { |
2691 | return Context.toBits(CharSize: Layout.getBaseClassOffset(Base: RD)); |
2692 | } |
2693 | |
2694 | static std::optional<int64_t> |
2695 | structHasUniqueObjectRepresentations(const ASTContext &Context, |
2696 | const RecordDecl *RD, |
2697 | bool CheckIfTriviallyCopyable); |
2698 | |
2699 | static std::optional<int64_t> |
2700 | getSubobjectSizeInBits(const FieldDecl *Field, const ASTContext &Context, |
2701 | bool CheckIfTriviallyCopyable) { |
2702 | if (Field->getType()->isRecordType()) { |
2703 | const RecordDecl *RD = Field->getType()->getAsRecordDecl(); |
2704 | if (!RD->isUnion()) |
2705 | return structHasUniqueObjectRepresentations(Context, RD, |
2706 | CheckIfTriviallyCopyable); |
2707 | } |
2708 | |
2709 | // A _BitInt type may not be unique if it has padding bits |
2710 | // but if it is a bitfield the padding bits are not used. |
2711 | bool IsBitIntType = Field->getType()->isBitIntType(); |
2712 | if (!Field->getType()->isReferenceType() && !IsBitIntType && |
2713 | !Context.hasUniqueObjectRepresentations(Ty: Field->getType(), |
2714 | CheckIfTriviallyCopyable)) |
2715 | return std::nullopt; |
2716 | |
2717 | int64_t FieldSizeInBits = |
2718 | Context.toBits(CharSize: Context.getTypeSizeInChars(T: Field->getType())); |
2719 | if (Field->isBitField()) { |
2720 | // If we have explicit padding bits, they don't contribute bits |
2721 | // to the actual object representation, so return 0. |
2722 | if (Field->isUnnamedBitField()) |
2723 | return 0; |
2724 | |
2725 | int64_t BitfieldSize = Field->getBitWidthValue(Ctx: Context); |
2726 | if (IsBitIntType) { |
2727 | if ((unsigned)BitfieldSize > |
2728 | cast<BitIntType>(Val: Field->getType())->getNumBits()) |
2729 | return std::nullopt; |
2730 | } else if (BitfieldSize > FieldSizeInBits) { |
2731 | return std::nullopt; |
2732 | } |
2733 | FieldSizeInBits = BitfieldSize; |
2734 | } else if (IsBitIntType && !Context.hasUniqueObjectRepresentations( |
2735 | Ty: Field->getType(), CheckIfTriviallyCopyable)) { |
2736 | return std::nullopt; |
2737 | } |
2738 | return FieldSizeInBits; |
2739 | } |
2740 | |
2741 | static std::optional<int64_t> |
2742 | getSubobjectSizeInBits(const CXXRecordDecl *RD, const ASTContext &Context, |
2743 | bool CheckIfTriviallyCopyable) { |
2744 | return structHasUniqueObjectRepresentations(Context, RD, |
2745 | CheckIfTriviallyCopyable); |
2746 | } |
2747 | |
2748 | template <typename RangeT> |
2749 | static std::optional<int64_t> structSubobjectsHaveUniqueObjectRepresentations( |
2750 | const RangeT &Subobjects, int64_t CurOffsetInBits, |
2751 | const ASTContext &Context, const clang::ASTRecordLayout &Layout, |
2752 | bool CheckIfTriviallyCopyable) { |
2753 | for (const auto *Subobject : Subobjects) { |
2754 | std::optional<int64_t> SizeInBits = |
2755 | getSubobjectSizeInBits(Subobject, Context, CheckIfTriviallyCopyable); |
2756 | if (!SizeInBits) |
2757 | return std::nullopt; |
2758 | if (*SizeInBits != 0) { |
2759 | int64_t Offset = getSubobjectOffset(Subobject, Context, Layout); |
2760 | if (Offset != CurOffsetInBits) |
2761 | return std::nullopt; |
2762 | CurOffsetInBits += *SizeInBits; |
2763 | } |
2764 | } |
2765 | return CurOffsetInBits; |
2766 | } |
2767 | |
2768 | static std::optional<int64_t> |
2769 | structHasUniqueObjectRepresentations(const ASTContext &Context, |
2770 | const RecordDecl *RD, |
2771 | bool CheckIfTriviallyCopyable) { |
2772 | assert(!RD->isUnion() && "Must be struct/class type" ); |
2773 | const auto &Layout = Context.getASTRecordLayout(D: RD); |
2774 | |
2775 | int64_t CurOffsetInBits = 0; |
2776 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RD)) { |
2777 | if (ClassDecl->isDynamicClass()) |
2778 | return std::nullopt; |
2779 | |
2780 | SmallVector<CXXRecordDecl *, 4> Bases; |
2781 | for (const auto &Base : ClassDecl->bases()) { |
2782 | // Empty types can be inherited from, and non-empty types can potentially |
2783 | // have tail padding, so just make sure there isn't an error. |
2784 | Bases.emplace_back(Args: Base.getType()->getAsCXXRecordDecl()); |
2785 | } |
2786 | |
2787 | llvm::sort(C&: Bases, Comp: [&](const CXXRecordDecl *L, const CXXRecordDecl *R) { |
2788 | return Layout.getBaseClassOffset(Base: L) < Layout.getBaseClassOffset(Base: R); |
2789 | }); |
2790 | |
2791 | std::optional<int64_t> OffsetAfterBases = |
2792 | structSubobjectsHaveUniqueObjectRepresentations( |
2793 | Subobjects: Bases, CurOffsetInBits, Context, Layout, CheckIfTriviallyCopyable); |
2794 | if (!OffsetAfterBases) |
2795 | return std::nullopt; |
2796 | CurOffsetInBits = *OffsetAfterBases; |
2797 | } |
2798 | |
2799 | std::optional<int64_t> OffsetAfterFields = |
2800 | structSubobjectsHaveUniqueObjectRepresentations( |
2801 | Subobjects: RD->fields(), CurOffsetInBits, Context, Layout, |
2802 | CheckIfTriviallyCopyable); |
2803 | if (!OffsetAfterFields) |
2804 | return std::nullopt; |
2805 | CurOffsetInBits = *OffsetAfterFields; |
2806 | |
2807 | return CurOffsetInBits; |
2808 | } |
2809 | |
2810 | bool ASTContext::hasUniqueObjectRepresentations( |
2811 | QualType Ty, bool CheckIfTriviallyCopyable) const { |
2812 | // C++17 [meta.unary.prop]: |
2813 | // The predicate condition for a template specialization |
2814 | // has_unique_object_representations<T> shall be satisfied if and only if: |
2815 | // (9.1) - T is trivially copyable, and |
2816 | // (9.2) - any two objects of type T with the same value have the same |
2817 | // object representation, where: |
2818 | // - two objects of array or non-union class type are considered to have |
2819 | // the same value if their respective sequences of direct subobjects |
2820 | // have the same values, and |
2821 | // - two objects of union type are considered to have the same value if |
2822 | // they have the same active member and the corresponding members have |
2823 | // the same value. |
2824 | // The set of scalar types for which this condition holds is |
2825 | // implementation-defined. [ Note: If a type has padding bits, the condition |
2826 | // does not hold; otherwise, the condition holds true for unsigned integral |
2827 | // types. -- end note ] |
2828 | assert(!Ty.isNull() && "Null QualType sent to unique object rep check" ); |
2829 | |
2830 | // Arrays are unique only if their element type is unique. |
2831 | if (Ty->isArrayType()) |
2832 | return hasUniqueObjectRepresentations(Ty: getBaseElementType(QT: Ty), |
2833 | CheckIfTriviallyCopyable); |
2834 | |
2835 | assert((Ty->isVoidType() || !Ty->isIncompleteType()) && |
2836 | "hasUniqueObjectRepresentations should not be called with an " |
2837 | "incomplete type" ); |
2838 | |
2839 | // (9.1) - T is trivially copyable... |
2840 | if (CheckIfTriviallyCopyable && !Ty.isTriviallyCopyableType(Context: *this)) |
2841 | return false; |
2842 | |
2843 | // All integrals and enums are unique. |
2844 | if (Ty->isIntegralOrEnumerationType()) { |
2845 | // Except _BitInt types that have padding bits. |
2846 | if (const auto *BIT = Ty->getAs<BitIntType>()) |
2847 | return getTypeSize(T: BIT) == BIT->getNumBits(); |
2848 | |
2849 | return true; |
2850 | } |
2851 | |
2852 | // All other pointers are unique. |
2853 | if (Ty->isPointerType()) |
2854 | return true; |
2855 | |
2856 | if (const auto *MPT = Ty->getAs<MemberPointerType>()) |
2857 | return !ABI->getMemberPointerInfo(MPT).HasPadding; |
2858 | |
2859 | if (Ty->isRecordType()) { |
2860 | const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl(); |
2861 | |
2862 | if (Record->isInvalidDecl()) |
2863 | return false; |
2864 | |
2865 | if (Record->isUnion()) |
2866 | return unionHasUniqueObjectRepresentations(Context: *this, RD: Record, |
2867 | CheckIfTriviallyCopyable); |
2868 | |
2869 | std::optional<int64_t> StructSize = structHasUniqueObjectRepresentations( |
2870 | Context: *this, RD: Record, CheckIfTriviallyCopyable); |
2871 | |
2872 | return StructSize && *StructSize == static_cast<int64_t>(getTypeSize(T: Ty)); |
2873 | } |
2874 | |
2875 | // FIXME: More cases to handle here (list by rsmith): |
2876 | // vectors (careful about, eg, vector of 3 foo) |
2877 | // _Complex int and friends |
2878 | // _Atomic T |
2879 | // Obj-C block pointers |
2880 | // Obj-C object pointers |
2881 | // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t, |
2882 | // clk_event_t, queue_t, reserve_id_t) |
2883 | // There're also Obj-C class types and the Obj-C selector type, but I think it |
2884 | // makes sense for those to return false here. |
2885 | |
2886 | return false; |
2887 | } |
2888 | |
2889 | unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const { |
2890 | unsigned count = 0; |
2891 | // Count ivars declared in class extension. |
2892 | for (const auto *Ext : OI->known_extensions()) |
2893 | count += Ext->ivar_size(); |
2894 | |
2895 | // Count ivar defined in this class's implementation. This |
2896 | // includes synthesized ivars. |
2897 | if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) |
2898 | count += ImplDecl->ivar_size(); |
2899 | |
2900 | return count; |
2901 | } |
2902 | |
2903 | bool ASTContext::isSentinelNullExpr(const Expr *E) { |
2904 | if (!E) |
2905 | return false; |
2906 | |
2907 | // nullptr_t is always treated as null. |
2908 | if (E->getType()->isNullPtrType()) return true; |
2909 | |
2910 | if (E->getType()->isAnyPointerType() && |
2911 | E->IgnoreParenCasts()->isNullPointerConstant(Ctx&: *this, |
2912 | NPC: Expr::NPC_ValueDependentIsNull)) |
2913 | return true; |
2914 | |
2915 | // Unfortunately, __null has type 'int'. |
2916 | if (isa<GNUNullExpr>(Val: E)) return true; |
2917 | |
2918 | return false; |
2919 | } |
2920 | |
2921 | /// Get the implementation of ObjCInterfaceDecl, or nullptr if none |
2922 | /// exists. |
2923 | ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) { |
2924 | llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator |
2925 | I = ObjCImpls.find(Val: D); |
2926 | if (I != ObjCImpls.end()) |
2927 | return cast<ObjCImplementationDecl>(Val: I->second); |
2928 | return nullptr; |
2929 | } |
2930 | |
2931 | /// Get the implementation of ObjCCategoryDecl, or nullptr if none |
2932 | /// exists. |
2933 | ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) { |
2934 | llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator |
2935 | I = ObjCImpls.find(Val: D); |
2936 | if (I != ObjCImpls.end()) |
2937 | return cast<ObjCCategoryImplDecl>(Val: I->second); |
2938 | return nullptr; |
2939 | } |
2940 | |
2941 | /// Set the implementation of ObjCInterfaceDecl. |
2942 | void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD, |
2943 | ObjCImplementationDecl *ImplD) { |
2944 | assert(IFaceD && ImplD && "Passed null params" ); |
2945 | ObjCImpls[IFaceD] = ImplD; |
2946 | } |
2947 | |
2948 | /// Set the implementation of ObjCCategoryDecl. |
2949 | void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD, |
2950 | ObjCCategoryImplDecl *ImplD) { |
2951 | assert(CatD && ImplD && "Passed null params" ); |
2952 | ObjCImpls[CatD] = ImplD; |
2953 | } |
2954 | |
2955 | const ObjCMethodDecl * |
2956 | ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const { |
2957 | return ObjCMethodRedecls.lookup(Val: MD); |
2958 | } |
2959 | |
2960 | void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD, |
2961 | const ObjCMethodDecl *Redecl) { |
2962 | assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration" ); |
2963 | ObjCMethodRedecls[MD] = Redecl; |
2964 | } |
2965 | |
2966 | const ObjCInterfaceDecl *ASTContext::getObjContainingInterface( |
2967 | const NamedDecl *ND) const { |
2968 | if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(Val: ND->getDeclContext())) |
2969 | return ID; |
2970 | if (const auto *CD = dyn_cast<ObjCCategoryDecl>(Val: ND->getDeclContext())) |
2971 | return CD->getClassInterface(); |
2972 | if (const auto *IMD = dyn_cast<ObjCImplDecl>(Val: ND->getDeclContext())) |
2973 | return IMD->getClassInterface(); |
2974 | |
2975 | return nullptr; |
2976 | } |
2977 | |
2978 | /// Get the copy initialization expression of VarDecl, or nullptr if |
2979 | /// none exists. |
2980 | BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const { |
2981 | assert(VD && "Passed null params" ); |
2982 | assert(VD->hasAttr<BlocksAttr>() && |
2983 | "getBlockVarCopyInits - not __block var" ); |
2984 | auto I = BlockVarCopyInits.find(Val: VD); |
2985 | if (I != BlockVarCopyInits.end()) |
2986 | return I->second; |
2987 | return {nullptr, false}; |
2988 | } |
2989 | |
2990 | /// Set the copy initialization expression of a block var decl. |
2991 | void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr, |
2992 | bool CanThrow) { |
2993 | assert(VD && CopyExpr && "Passed null params" ); |
2994 | assert(VD->hasAttr<BlocksAttr>() && |
2995 | "setBlockVarCopyInits - not __block var" ); |
2996 | BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow); |
2997 | } |
2998 | |
2999 | TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T, |
3000 | unsigned DataSize) const { |
3001 | if (!DataSize) |
3002 | DataSize = TypeLoc::getFullDataSizeForType(Ty: T); |
3003 | else |
3004 | assert(DataSize == TypeLoc::getFullDataSizeForType(T) && |
3005 | "incorrect data size provided to CreateTypeSourceInfo!" ); |
3006 | |
3007 | auto *TInfo = |
3008 | (TypeSourceInfo*)BumpAlloc.Allocate(Size: sizeof(TypeSourceInfo) + DataSize, Alignment: 8); |
3009 | new (TInfo) TypeSourceInfo(T, DataSize); |
3010 | return TInfo; |
3011 | } |
3012 | |
3013 | TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T, |
3014 | SourceLocation L) const { |
3015 | TypeSourceInfo *DI = CreateTypeSourceInfo(T); |
3016 | DI->getTypeLoc().initialize(Context&: const_cast<ASTContext &>(*this), Loc: L); |
3017 | return DI; |
3018 | } |
3019 | |
3020 | const ASTRecordLayout & |
3021 | ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const { |
3022 | return getObjCLayout(D, Impl: nullptr); |
3023 | } |
3024 | |
3025 | const ASTRecordLayout & |
3026 | ASTContext::getASTObjCImplementationLayout( |
3027 | const ObjCImplementationDecl *D) const { |
3028 | return getObjCLayout(D: D->getClassInterface(), Impl: D); |
3029 | } |
3030 | |
3031 | static auto getCanonicalTemplateArguments(const ASTContext &C, |
3032 | ArrayRef<TemplateArgument> Args, |
3033 | bool &AnyNonCanonArgs) { |
3034 | SmallVector<TemplateArgument, 16> CanonArgs(Args); |
3035 | for (auto &Arg : CanonArgs) { |
3036 | TemplateArgument OrigArg = Arg; |
3037 | Arg = C.getCanonicalTemplateArgument(Arg); |
3038 | AnyNonCanonArgs |= !Arg.structurallyEquals(Other: OrigArg); |
3039 | } |
3040 | return CanonArgs; |
3041 | } |
3042 | |
3043 | //===----------------------------------------------------------------------===// |
3044 | // Type creation/memoization methods |
3045 | //===----------------------------------------------------------------------===// |
3046 | |
3047 | QualType |
3048 | ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const { |
3049 | unsigned fastQuals = quals.getFastQualifiers(); |
3050 | quals.removeFastQualifiers(); |
3051 | |
3052 | // Check if we've already instantiated this type. |
3053 | llvm::FoldingSetNodeID ID; |
3054 | ExtQuals::Profile(ID, BaseType: baseType, Quals: quals); |
3055 | void *insertPos = nullptr; |
3056 | if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos&: insertPos)) { |
3057 | assert(eq->getQualifiers() == quals); |
3058 | return QualType(eq, fastQuals); |
3059 | } |
3060 | |
3061 | // If the base type is not canonical, make the appropriate canonical type. |
3062 | QualType canon; |
3063 | if (!baseType->isCanonicalUnqualified()) { |
3064 | SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split(); |
3065 | canonSplit.Quals.addConsistentQualifiers(qs: quals); |
3066 | canon = getExtQualType(baseType: canonSplit.Ty, quals: canonSplit.Quals); |
3067 | |
3068 | // Re-find the insert position. |
3069 | (void) ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos&: insertPos); |
3070 | } |
3071 | |
3072 | auto *eq = new (*this, alignof(ExtQuals)) ExtQuals(baseType, canon, quals); |
3073 | ExtQualNodes.InsertNode(N: eq, InsertPos: insertPos); |
3074 | return QualType(eq, fastQuals); |
3075 | } |
3076 | |
3077 | QualType ASTContext::getAddrSpaceQualType(QualType T, |
3078 | LangAS AddressSpace) const { |
3079 | QualType CanT = getCanonicalType(T); |
3080 | if (CanT.getAddressSpace() == AddressSpace) |
3081 | return T; |
3082 | |
3083 | // If we are composing extended qualifiers together, merge together |
3084 | // into one ExtQuals node. |
3085 | QualifierCollector Quals; |
3086 | const Type *TypeNode = Quals.strip(type: T); |
3087 | |
3088 | // If this type already has an address space specified, it cannot get |
3089 | // another one. |
3090 | assert(!Quals.hasAddressSpace() && |
3091 | "Type cannot be in multiple addr spaces!" ); |
3092 | Quals.addAddressSpace(space: AddressSpace); |
3093 | |
3094 | return getExtQualType(baseType: TypeNode, quals: Quals); |
3095 | } |
3096 | |
3097 | QualType ASTContext::removeAddrSpaceQualType(QualType T) const { |
3098 | // If the type is not qualified with an address space, just return it |
3099 | // immediately. |
3100 | if (!T.hasAddressSpace()) |
3101 | return T; |
3102 | |
3103 | QualifierCollector Quals; |
3104 | const Type *TypeNode; |
3105 | // For arrays, strip the qualifier off the element type, then reconstruct the |
3106 | // array type |
3107 | if (T.getTypePtr()->isArrayType()) { |
3108 | T = getUnqualifiedArrayType(T, Quals); |
3109 | TypeNode = T.getTypePtr(); |
3110 | } else { |
3111 | // If we are composing extended qualifiers together, merge together |
3112 | // into one ExtQuals node. |
3113 | while (T.hasAddressSpace()) { |
3114 | TypeNode = Quals.strip(type: T); |
3115 | |
3116 | // If the type no longer has an address space after stripping qualifiers, |
3117 | // jump out. |
3118 | if (!QualType(TypeNode, 0).hasAddressSpace()) |
3119 | break; |
3120 | |
3121 | // There might be sugar in the way. Strip it and try again. |
3122 | T = T.getSingleStepDesugaredType(Context: *this); |
3123 | } |
3124 | } |
3125 | |
3126 | Quals.removeAddressSpace(); |
3127 | |
3128 | // Removal of the address space can mean there are no longer any |
3129 | // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts) |
3130 | // or required. |
3131 | if (Quals.hasNonFastQualifiers()) |
3132 | return getExtQualType(baseType: TypeNode, quals: Quals); |
3133 | else |
3134 | return QualType(TypeNode, Quals.getFastQualifiers()); |
3135 | } |
3136 | |
3137 | uint16_t |
3138 | ASTContext::getPointerAuthVTablePointerDiscriminator(const CXXRecordDecl *RD) { |
3139 | assert(RD->isPolymorphic() && |
3140 | "Attempted to get vtable pointer discriminator on a monomorphic type" ); |
3141 | std::unique_ptr<MangleContext> MC(createMangleContext()); |
3142 | SmallString<256> Str; |
3143 | llvm::raw_svector_ostream Out(Str); |
3144 | MC->mangleCXXVTable(RD, Out); |
3145 | return llvm::getPointerAuthStableSipHash(S: Str); |
3146 | } |
3147 | |
3148 | /// Encode a function type for use in the discriminator of a function pointer |
3149 | /// type. We can't use the itanium scheme for this since C has quite permissive |
3150 | /// rules for type compatibility that we need to be compatible with. |
3151 | /// |
3152 | /// Formally, this function associates every function pointer type T with an |
3153 | /// encoded string E(T). Let the equivalence relation T1 ~ T2 be defined as |
3154 | /// E(T1) == E(T2). E(T) is part of the ABI of values of type T. C type |
3155 | /// compatibility requires equivalent treatment under the ABI, so |
3156 | /// CCompatible(T1, T2) must imply E(T1) == E(T2), that is, CCompatible must be |
3157 | /// a subset of ~. Crucially, however, it must be a proper subset because |
3158 | /// CCompatible is not an equivalence relation: for example, int[] is compatible |
3159 | /// with both int[1] and int[2], but the latter are not compatible with each |
3160 | /// other. Therefore this encoding function must be careful to only distinguish |
3161 | /// types if there is no third type with which they are both required to be |
3162 | /// compatible. |
3163 | static void encodeTypeForFunctionPointerAuth(const ASTContext &Ctx, |
3164 | raw_ostream &OS, QualType QT) { |
3165 | // FIXME: Consider address space qualifiers. |
3166 | const Type *T = QT.getCanonicalType().getTypePtr(); |
3167 | |
3168 | // FIXME: Consider using the C++ type mangling when we encounter a construct |
3169 | // that is incompatible with C. |
3170 | |
3171 | switch (T->getTypeClass()) { |
3172 | case Type::Atomic: |
3173 | return encodeTypeForFunctionPointerAuth( |
3174 | Ctx, OS, QT: cast<AtomicType>(Val: T)->getValueType()); |
3175 | |
3176 | case Type::LValueReference: |
3177 | OS << "R" ; |
3178 | encodeTypeForFunctionPointerAuth(Ctx, OS, |
3179 | QT: cast<ReferenceType>(Val: T)->getPointeeType()); |
3180 | return; |
3181 | case Type::RValueReference: |
3182 | OS << "O" ; |
3183 | encodeTypeForFunctionPointerAuth(Ctx, OS, |
3184 | QT: cast<ReferenceType>(Val: T)->getPointeeType()); |
3185 | return; |
3186 | |
3187 | case Type::Pointer: |
3188 | // C11 6.7.6.1p2: |
3189 | // For two pointer types to be compatible, both shall be identically |
3190 | // qualified and both shall be pointers to compatible types. |
3191 | // FIXME: we should also consider pointee types. |
3192 | OS << "P" ; |
3193 | return; |
3194 | |
3195 | case Type::ObjCObjectPointer: |
3196 | case Type::BlockPointer: |
3197 | OS << "P" ; |
3198 | return; |
3199 | |
3200 | case Type::Complex: |
3201 | OS << "C" ; |
3202 | return encodeTypeForFunctionPointerAuth( |
3203 | Ctx, OS, QT: cast<ComplexType>(Val: T)->getElementType()); |
3204 | |
3205 | case Type::VariableArray: |
3206 | case Type::ConstantArray: |
3207 | case Type::IncompleteArray: |
3208 | case Type::ArrayParameter: |
3209 | // C11 6.7.6.2p6: |
3210 | // For two array types to be compatible, both shall have compatible |
3211 | // element types, and if both size specifiers are present, and are integer |
3212 | // constant expressions, then both size specifiers shall have the same |
3213 | // constant value [...] |
3214 | // |
3215 | // So since ElemType[N] has to be compatible ElemType[], we can't encode the |
3216 | // width of the array. |
3217 | OS << "A" ; |
3218 | return encodeTypeForFunctionPointerAuth( |
3219 | Ctx, OS, QT: cast<ArrayType>(Val: T)->getElementType()); |
3220 | |
3221 | case Type::ObjCInterface: |
3222 | case Type::ObjCObject: |
3223 | OS << "<objc_object>" ; |
3224 | return; |
3225 | |
3226 | case Type::Enum: { |
3227 | // C11 6.7.2.2p4: |
3228 | // Each enumerated type shall be compatible with char, a signed integer |
3229 | // type, or an unsigned integer type. |
3230 | // |
3231 | // So we have to treat enum types as integers. |
3232 | QualType UnderlyingType = cast<EnumType>(Val: T)->getDecl()->getIntegerType(); |
3233 | return encodeTypeForFunctionPointerAuth( |
3234 | Ctx, OS, QT: UnderlyingType.isNull() ? Ctx.IntTy : UnderlyingType); |
3235 | } |
3236 | |
3237 | case Type::FunctionNoProto: |
3238 | case Type::FunctionProto: { |
3239 | // C11 6.7.6.3p15: |
3240 | // For two function types to be compatible, both shall specify compatible |
3241 | // return types. Moreover, the parameter type lists, if both are present, |
3242 | // shall agree in the number of parameters and in the use of the ellipsis |
3243 | // terminator; corresponding parameters shall have compatible types. |
3244 | // |
3245 | // That paragraph goes on to describe how unprototyped functions are to be |
3246 | // handled, which we ignore here. Unprototyped function pointers are hashed |
3247 | // as though they were prototyped nullary functions since thats probably |
3248 | // what the user meant. This behavior is non-conforming. |
3249 | // FIXME: If we add a "custom discriminator" function type attribute we |
3250 | // should encode functions as their discriminators. |
3251 | OS << "F" ; |
3252 | const auto *FuncType = cast<FunctionType>(Val: T); |
3253 | encodeTypeForFunctionPointerAuth(Ctx, OS, QT: FuncType->getReturnType()); |
3254 | if (const auto *FPT = dyn_cast<FunctionProtoType>(Val: FuncType)) { |
3255 | for (QualType Param : FPT->param_types()) { |
3256 | Param = Ctx.getSignatureParameterType(T: Param); |
3257 | encodeTypeForFunctionPointerAuth(Ctx, OS, QT: Param); |
3258 | } |
3259 | if (FPT->isVariadic()) |
3260 | OS << "z" ; |
3261 | } |
3262 | OS << "E" ; |
3263 | return; |
3264 | } |
3265 | |
3266 | case Type::MemberPointer: { |
3267 | OS << "M" ; |
3268 | const auto *MPT = T->getAs<MemberPointerType>(); |
3269 | encodeTypeForFunctionPointerAuth(Ctx, OS, QT: QualType(MPT->getClass(), 0)); |
3270 | encodeTypeForFunctionPointerAuth(Ctx, OS, QT: MPT->getPointeeType()); |
3271 | return; |
3272 | } |
3273 | case Type::ExtVector: |
3274 | case Type::Vector: |
3275 | OS << "Dv" << Ctx.getTypeSizeInChars(T).getQuantity(); |
3276 | break; |
3277 | |
3278 | // Don't bother discriminating based on these types. |
3279 | case Type::Pipe: |
3280 | case Type::BitInt: |
3281 | case Type::ConstantMatrix: |
3282 | OS << "?" ; |
3283 | return; |
3284 | |
3285 | case Type::Builtin: { |
3286 | const auto *BTy = T->getAs<BuiltinType>(); |
3287 | switch (BTy->getKind()) { |
3288 | #define SIGNED_TYPE(Id, SingletonId) \ |
3289 | case BuiltinType::Id: \ |
3290 | OS << "i"; \ |
3291 | return; |
3292 | #define UNSIGNED_TYPE(Id, SingletonId) \ |
3293 | case BuiltinType::Id: \ |
3294 | OS << "i"; \ |
3295 | return; |
3296 | #define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id: |
3297 | #define BUILTIN_TYPE(Id, SingletonId) |
3298 | #include "clang/AST/BuiltinTypes.def" |
3299 | llvm_unreachable("placeholder types should not appear here." ); |
3300 | |
3301 | case BuiltinType::Half: |
3302 | OS << "Dh" ; |
3303 | return; |
3304 | case BuiltinType::Float: |
3305 | OS << "f" ; |
3306 | return; |
3307 | case BuiltinType::Double: |
3308 | OS << "d" ; |
3309 | return; |
3310 | case BuiltinType::LongDouble: |
3311 | OS << "e" ; |
3312 | return; |
3313 | case BuiltinType::Float16: |
3314 | OS << "DF16_" ; |
3315 | return; |
3316 | case BuiltinType::Float128: |
3317 | OS << "g" ; |
3318 | return; |
3319 | |
3320 | case BuiltinType::Void: |
3321 | OS << "v" ; |
3322 | return; |
3323 | |
3324 | case BuiltinType::ObjCId: |
3325 | case BuiltinType::ObjCClass: |
3326 | case BuiltinType::ObjCSel: |
3327 | case BuiltinType::NullPtr: |
3328 | OS << "P" ; |
3329 | return; |
3330 | |
3331 | // Don't bother discriminating based on OpenCL types. |
3332 | case BuiltinType::OCLSampler: |
3333 | case BuiltinType::OCLEvent: |
3334 | case BuiltinType::OCLClkEvent: |
3335 | case BuiltinType::OCLQueue: |
3336 | case BuiltinType::OCLReserveID: |
3337 | case BuiltinType::BFloat16: |
3338 | case BuiltinType::VectorQuad: |
3339 | case BuiltinType::VectorPair: |
3340 | OS << "?" ; |
3341 | return; |
3342 | |
3343 | // Don't bother discriminating based on these seldom-used types. |
3344 | case BuiltinType::Ibm128: |
3345 | return; |
3346 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
3347 | case BuiltinType::Id: \ |
3348 | return; |
3349 | #include "clang/Basic/OpenCLImageTypes.def" |
3350 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
3351 | case BuiltinType::Id: \ |
3352 | return; |
3353 | #include "clang/Basic/OpenCLExtensionTypes.def" |
3354 | #define SVE_TYPE(Name, Id, SingletonId) \ |
3355 | case BuiltinType::Id: \ |
3356 | return; |
3357 | #include "clang/Basic/AArch64SVEACLETypes.def" |
3358 | case BuiltinType::Dependent: |
3359 | llvm_unreachable("should never get here" ); |
3360 | case BuiltinType::AMDGPUBufferRsrc: |
3361 | case BuiltinType::WasmExternRef: |
3362 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
3363 | #include "clang/Basic/RISCVVTypes.def" |
3364 | llvm_unreachable("not yet implemented" ); |
3365 | } |
3366 | } |
3367 | case Type::Record: { |
3368 | const RecordDecl *RD = T->getAs<RecordType>()->getDecl(); |
3369 | const IdentifierInfo *II = RD->getIdentifier(); |
3370 | |
3371 | // In C++, an immediate typedef of an anonymous struct or union |
3372 | // is considered to name it for ODR purposes, but C's specification |
3373 | // of type compatibility does not have a similar rule. Using the typedef |
3374 | // name in function type discriminators anyway, as we do here, |
3375 | // therefore technically violates the C standard: two function pointer |
3376 | // types defined in terms of two typedef'd anonymous structs with |
3377 | // different names are formally still compatible, but we are assigning |
3378 | // them different discriminators and therefore incompatible ABIs. |
3379 | // |
3380 | // This is a relatively minor violation that significantly improves |
3381 | // discrimination in some cases and has not caused problems in |
3382 | // practice. Regardless, it is now part of the ABI in places where |
3383 | // function type discrimination is used, and it can no longer be |
3384 | // changed except on new platforms. |
3385 | |
3386 | if (!II) |
3387 | if (const TypedefNameDecl *Typedef = RD->getTypedefNameForAnonDecl()) |
3388 | II = Typedef->getDeclName().getAsIdentifierInfo(); |
3389 | |
3390 | if (!II) { |
3391 | OS << "<anonymous_record>" ; |
3392 | return; |
3393 | } |
3394 | OS << II->getLength() << II->getName(); |
3395 | return; |
3396 | } |
3397 | case Type::DeducedTemplateSpecialization: |
3398 | case Type::Auto: |
3399 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
3400 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
3401 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
3402 | #define ABSTRACT_TYPE(Class, Base) |
3403 | #define TYPE(Class, Base) |
3404 | #include "clang/AST/TypeNodes.inc" |
3405 | llvm_unreachable("unexpected non-canonical or dependent type!" ); |
3406 | return; |
3407 | } |
3408 | } |
3409 | |
3410 | uint16_t ASTContext::getPointerAuthTypeDiscriminator(QualType T) { |
3411 | assert(!T->isDependentType() && |
3412 | "cannot compute type discriminator of a dependent type" ); |
3413 | |
3414 | SmallString<256> Str; |
3415 | llvm::raw_svector_ostream Out(Str); |
3416 | |
3417 | if (T->isFunctionPointerType() || T->isFunctionReferenceType()) |
3418 | T = T->getPointeeType(); |
3419 | |
3420 | if (T->isFunctionType()) { |
3421 | encodeTypeForFunctionPointerAuth(Ctx: *this, OS&: Out, QT: T); |
3422 | } else { |
3423 | T = T.getUnqualifiedType(); |
3424 | std::unique_ptr<MangleContext> MC(createMangleContext()); |
3425 | MC->mangleCanonicalTypeName(T, Out); |
3426 | } |
3427 | |
3428 | return llvm::getPointerAuthStableSipHash(S: Str); |
3429 | } |
3430 | |
3431 | QualType ASTContext::getObjCGCQualType(QualType T, |
3432 | Qualifiers::GC GCAttr) const { |
3433 | QualType CanT = getCanonicalType(T); |
3434 | if (CanT.getObjCGCAttr() == GCAttr) |
3435 | return T; |
3436 | |
3437 | if (const auto *ptr = T->getAs<PointerType>()) { |
3438 | QualType Pointee = ptr->getPointeeType(); |
3439 | if (Pointee->isAnyPointerType()) { |
3440 | QualType ResultType = getObjCGCQualType(T: Pointee, GCAttr); |
3441 | return getPointerType(T: ResultType); |
3442 | } |
3443 | } |
3444 | |
3445 | // If we are composing extended qualifiers together, merge together |
3446 | // into one ExtQuals node. |
3447 | QualifierCollector Quals; |
3448 | const Type *TypeNode = Quals.strip(type: T); |
3449 | |
3450 | // If this type already has an ObjCGC specified, it cannot get |
3451 | // another one. |
3452 | assert(!Quals.hasObjCGCAttr() && |
3453 | "Type cannot have multiple ObjCGCs!" ); |
3454 | Quals.addObjCGCAttr(type: GCAttr); |
3455 | |
3456 | return getExtQualType(baseType: TypeNode, quals: Quals); |
3457 | } |
3458 | |
3459 | QualType ASTContext::removePtrSizeAddrSpace(QualType T) const { |
3460 | if (const PointerType *Ptr = T->getAs<PointerType>()) { |
3461 | QualType Pointee = Ptr->getPointeeType(); |
3462 | if (isPtrSizeAddressSpace(AS: Pointee.getAddressSpace())) { |
3463 | return getPointerType(T: removeAddrSpaceQualType(T: Pointee)); |
3464 | } |
3465 | } |
3466 | return T; |
3467 | } |
3468 | |
3469 | QualType ASTContext::getCountAttributedType( |
3470 | QualType WrappedTy, Expr *CountExpr, bool CountInBytes, bool OrNull, |
3471 | ArrayRef<TypeCoupledDeclRefInfo> DependentDecls) const { |
3472 | assert(WrappedTy->isPointerType() || WrappedTy->isArrayType()); |
3473 | |
3474 | llvm::FoldingSetNodeID ID; |
3475 | CountAttributedType::Profile(ID, WrappedTy, CountExpr, CountInBytes, Nullable: OrNull); |
3476 | |
3477 | void *InsertPos = nullptr; |
3478 | CountAttributedType *CATy = |
3479 | CountAttributedTypes.FindNodeOrInsertPos(ID, InsertPos); |
3480 | if (CATy) |
3481 | return QualType(CATy, 0); |
3482 | |
3483 | QualType CanonTy = getCanonicalType(T: WrappedTy); |
3484 | size_t Size = CountAttributedType::totalSizeToAlloc<TypeCoupledDeclRefInfo>( |
3485 | Counts: DependentDecls.size()); |
3486 | CATy = (CountAttributedType *)Allocate(Size, Align: TypeAlignment); |
3487 | new (CATy) CountAttributedType(WrappedTy, CanonTy, CountExpr, CountInBytes, |
3488 | OrNull, DependentDecls); |
3489 | Types.push_back(Elt: CATy); |
3490 | CountAttributedTypes.InsertNode(N: CATy, InsertPos); |
3491 | |
3492 | return QualType(CATy, 0); |
3493 | } |
3494 | |
3495 | const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T, |
3496 | FunctionType::ExtInfo Info) { |
3497 | if (T->getExtInfo() == Info) |
3498 | return T; |
3499 | |
3500 | QualType Result; |
3501 | if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(Val: T)) { |
3502 | Result = getFunctionNoProtoType(ResultTy: FNPT->getReturnType(), Info); |
3503 | } else { |
3504 | const auto *FPT = cast<FunctionProtoType>(Val: T); |
3505 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
3506 | EPI.ExtInfo = Info; |
3507 | Result = getFunctionType(ResultTy: FPT->getReturnType(), Args: FPT->getParamTypes(), EPI); |
3508 | } |
3509 | |
3510 | return cast<FunctionType>(Val: Result.getTypePtr()); |
3511 | } |
3512 | |
3513 | void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD, |
3514 | QualType ResultType) { |
3515 | FD = FD->getMostRecentDecl(); |
3516 | while (true) { |
3517 | const auto *FPT = FD->getType()->castAs<FunctionProtoType>(); |
3518 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
3519 | FD->setType(getFunctionType(ResultTy: ResultType, Args: FPT->getParamTypes(), EPI)); |
3520 | if (FunctionDecl *Next = FD->getPreviousDecl()) |
3521 | FD = Next; |
3522 | else |
3523 | break; |
3524 | } |
3525 | if (ASTMutationListener *L = getASTMutationListener()) |
3526 | L->DeducedReturnType(FD, ReturnType: ResultType); |
3527 | } |
3528 | |
3529 | /// Get a function type and produce the equivalent function type with the |
3530 | /// specified exception specification. Type sugar that can be present on a |
3531 | /// declaration of a function with an exception specification is permitted |
3532 | /// and preserved. Other type sugar (for instance, typedefs) is not. |
3533 | QualType ASTContext::getFunctionTypeWithExceptionSpec( |
3534 | QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const { |
3535 | // Might have some parens. |
3536 | if (const auto *PT = dyn_cast<ParenType>(Val&: Orig)) |
3537 | return getParenType( |
3538 | NamedType: getFunctionTypeWithExceptionSpec(Orig: PT->getInnerType(), ESI)); |
3539 | |
3540 | // Might be wrapped in a macro qualified type. |
3541 | if (const auto *MQT = dyn_cast<MacroQualifiedType>(Val&: Orig)) |
3542 | return getMacroQualifiedType( |
3543 | UnderlyingTy: getFunctionTypeWithExceptionSpec(Orig: MQT->getUnderlyingType(), ESI), |
3544 | MacroII: MQT->getMacroIdentifier()); |
3545 | |
3546 | // Might have a calling-convention attribute. |
3547 | if (const auto *AT = dyn_cast<AttributedType>(Val&: Orig)) |
3548 | return getAttributedType( |
3549 | attrKind: AT->getAttrKind(), |
3550 | modifiedType: getFunctionTypeWithExceptionSpec(Orig: AT->getModifiedType(), ESI), |
3551 | equivalentType: getFunctionTypeWithExceptionSpec(Orig: AT->getEquivalentType(), ESI)); |
3552 | |
3553 | // Anything else must be a function type. Rebuild it with the new exception |
3554 | // specification. |
3555 | const auto *Proto = Orig->castAs<FunctionProtoType>(); |
3556 | return getFunctionType( |
3557 | ResultTy: Proto->getReturnType(), Args: Proto->getParamTypes(), |
3558 | EPI: Proto->getExtProtoInfo().withExceptionSpec(ESI)); |
3559 | } |
3560 | |
3561 | bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T, |
3562 | QualType U) const { |
3563 | return hasSameType(T1: T, T2: U) || |
3564 | (getLangOpts().CPlusPlus17 && |
3565 | hasSameType(T1: getFunctionTypeWithExceptionSpec(Orig: T, ESI: EST_None), |
3566 | T2: getFunctionTypeWithExceptionSpec(Orig: U, ESI: EST_None))); |
3567 | } |
3568 | |
3569 | QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) { |
3570 | if (const auto *Proto = T->getAs<FunctionProtoType>()) { |
3571 | QualType RetTy = removePtrSizeAddrSpace(T: Proto->getReturnType()); |
3572 | SmallVector<QualType, 16> Args(Proto->param_types().size()); |
3573 | for (unsigned i = 0, n = Args.size(); i != n; ++i) |
3574 | Args[i] = removePtrSizeAddrSpace(T: Proto->param_types()[i]); |
3575 | return getFunctionType(ResultTy: RetTy, Args, EPI: Proto->getExtProtoInfo()); |
3576 | } |
3577 | |
3578 | if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) { |
3579 | QualType RetTy = removePtrSizeAddrSpace(T: Proto->getReturnType()); |
3580 | return getFunctionNoProtoType(ResultTy: RetTy, Info: Proto->getExtInfo()); |
3581 | } |
3582 | |
3583 | return T; |
3584 | } |
3585 | |
3586 | bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) { |
3587 | return hasSameType(T1: T, T2: U) || |
3588 | hasSameType(T1: getFunctionTypeWithoutPtrSizes(T), |
3589 | T2: getFunctionTypeWithoutPtrSizes(T: U)); |
3590 | } |
3591 | |
3592 | void ASTContext::adjustExceptionSpec( |
3593 | FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI, |
3594 | bool AsWritten) { |
3595 | // Update the type. |
3596 | QualType Updated = |
3597 | getFunctionTypeWithExceptionSpec(Orig: FD->getType(), ESI); |
3598 | FD->setType(Updated); |
3599 | |
3600 | if (!AsWritten) |
3601 | return; |
3602 | |
3603 | // Update the type in the type source information too. |
3604 | if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) { |
3605 | // If the type and the type-as-written differ, we may need to update |
3606 | // the type-as-written too. |
3607 | if (TSInfo->getType() != FD->getType()) |
3608 | Updated = getFunctionTypeWithExceptionSpec(Orig: TSInfo->getType(), ESI); |
3609 | |
3610 | // FIXME: When we get proper type location information for exceptions, |
3611 | // we'll also have to rebuild the TypeSourceInfo. For now, we just patch |
3612 | // up the TypeSourceInfo; |
3613 | assert(TypeLoc::getFullDataSizeForType(Updated) == |
3614 | TypeLoc::getFullDataSizeForType(TSInfo->getType()) && |
3615 | "TypeLoc size mismatch from updating exception specification" ); |
3616 | TSInfo->overrideType(T: Updated); |
3617 | } |
3618 | } |
3619 | |
3620 | /// getComplexType - Return the uniqued reference to the type for a complex |
3621 | /// number with the specified element type. |
3622 | QualType ASTContext::getComplexType(QualType T) const { |
3623 | // Unique pointers, to guarantee there is only one pointer of a particular |
3624 | // structure. |
3625 | llvm::FoldingSetNodeID ID; |
3626 | ComplexType::Profile(ID, Element: T); |
3627 | |
3628 | void *InsertPos = nullptr; |
3629 | if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) |
3630 | return QualType(CT, 0); |
3631 | |
3632 | // If the pointee type isn't canonical, this won't be a canonical type either, |
3633 | // so fill in the canonical type field. |
3634 | QualType Canonical; |
3635 | if (!T.isCanonical()) { |
3636 | Canonical = getComplexType(T: getCanonicalType(T)); |
3637 | |
3638 | // Get the new insert position for the node we care about. |
3639 | ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); |
3640 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
3641 | } |
3642 | auto *New = new (*this, alignof(ComplexType)) ComplexType(T, Canonical); |
3643 | Types.push_back(Elt: New); |
3644 | ComplexTypes.InsertNode(N: New, InsertPos); |
3645 | return QualType(New, 0); |
3646 | } |
3647 | |
3648 | /// getPointerType - Return the uniqued reference to the type for a pointer to |
3649 | /// the specified type. |
3650 | QualType ASTContext::getPointerType(QualType T) const { |
3651 | // Unique pointers, to guarantee there is only one pointer of a particular |
3652 | // structure. |
3653 | llvm::FoldingSetNodeID ID; |
3654 | PointerType::Profile(ID, Pointee: T); |
3655 | |
3656 | void *InsertPos = nullptr; |
3657 | if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
3658 | return QualType(PT, 0); |
3659 | |
3660 | // If the pointee type isn't canonical, this won't be a canonical type either, |
3661 | // so fill in the canonical type field. |
3662 | QualType Canonical; |
3663 | if (!T.isCanonical()) { |
3664 | Canonical = getPointerType(T: getCanonicalType(T)); |
3665 | |
3666 | // Get the new insert position for the node we care about. |
3667 | PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
3668 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
3669 | } |
3670 | auto *New = new (*this, alignof(PointerType)) PointerType(T, Canonical); |
3671 | Types.push_back(Elt: New); |
3672 | PointerTypes.InsertNode(N: New, InsertPos); |
3673 | return QualType(New, 0); |
3674 | } |
3675 | |
3676 | QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const { |
3677 | llvm::FoldingSetNodeID ID; |
3678 | AdjustedType::Profile(ID, Orig, New); |
3679 | void *InsertPos = nullptr; |
3680 | AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
3681 | if (AT) |
3682 | return QualType(AT, 0); |
3683 | |
3684 | QualType Canonical = getCanonicalType(T: New); |
3685 | |
3686 | // Get the new insert position for the node we care about. |
3687 | AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
3688 | assert(!AT && "Shouldn't be in the map!" ); |
3689 | |
3690 | AT = new (*this, alignof(AdjustedType)) |
3691 | AdjustedType(Type::Adjusted, Orig, New, Canonical); |
3692 | Types.push_back(Elt: AT); |
3693 | AdjustedTypes.InsertNode(N: AT, InsertPos); |
3694 | return QualType(AT, 0); |
3695 | } |
3696 | |
3697 | QualType ASTContext::getDecayedType(QualType Orig, QualType Decayed) const { |
3698 | llvm::FoldingSetNodeID ID; |
3699 | AdjustedType::Profile(ID, Orig, New: Decayed); |
3700 | void *InsertPos = nullptr; |
3701 | AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
3702 | if (AT) |
3703 | return QualType(AT, 0); |
3704 | |
3705 | QualType Canonical = getCanonicalType(T: Decayed); |
3706 | |
3707 | // Get the new insert position for the node we care about. |
3708 | AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
3709 | assert(!AT && "Shouldn't be in the map!" ); |
3710 | |
3711 | AT = new (*this, alignof(DecayedType)) DecayedType(Orig, Decayed, Canonical); |
3712 | Types.push_back(Elt: AT); |
3713 | AdjustedTypes.InsertNode(N: AT, InsertPos); |
3714 | return QualType(AT, 0); |
3715 | } |
3716 | |
3717 | QualType ASTContext::getDecayedType(QualType T) const { |
3718 | assert((T->isArrayType() || T->isFunctionType()) && "T does not decay" ); |
3719 | |
3720 | QualType Decayed; |
3721 | |
3722 | // C99 6.7.5.3p7: |
3723 | // A declaration of a parameter as "array of type" shall be |
3724 | // adjusted to "qualified pointer to type", where the type |
3725 | // qualifiers (if any) are those specified within the [ and ] of |
3726 | // the array type derivation. |
3727 | if (T->isArrayType()) |
3728 | Decayed = getArrayDecayedType(T); |
3729 | |
3730 | // C99 6.7.5.3p8: |
3731 | // A declaration of a parameter as "function returning type" |
3732 | // shall be adjusted to "pointer to function returning type", as |
3733 | // in 6.3.2.1. |
3734 | if (T->isFunctionType()) |
3735 | Decayed = getPointerType(T); |
3736 | |
3737 | return getDecayedType(Orig: T, Decayed); |
3738 | } |
3739 | |
3740 | QualType ASTContext::getArrayParameterType(QualType Ty) const { |
3741 | if (Ty->isArrayParameterType()) |
3742 | return Ty; |
3743 | assert(Ty->isConstantArrayType() && "Ty must be an array type." ); |
3744 | const auto *ATy = cast<ConstantArrayType>(Val&: Ty); |
3745 | llvm::FoldingSetNodeID ID; |
3746 | ATy->Profile(ID, Ctx: *this, ET: ATy->getElementType(), ArraySize: ATy->getZExtSize(), |
3747 | SizeExpr: ATy->getSizeExpr(), SizeMod: ATy->getSizeModifier(), |
3748 | TypeQuals: ATy->getIndexTypeQualifiers().getAsOpaqueValue()); |
3749 | void *InsertPos = nullptr; |
3750 | ArrayParameterType *AT = |
3751 | ArrayParameterTypes.FindNodeOrInsertPos(ID, InsertPos); |
3752 | if (AT) |
3753 | return QualType(AT, 0); |
3754 | |
3755 | QualType Canonical; |
3756 | if (!Ty.isCanonical()) { |
3757 | Canonical = getArrayParameterType(Ty: getCanonicalType(T: Ty)); |
3758 | |
3759 | // Get the new insert position for the node we care about. |
3760 | AT = ArrayParameterTypes.FindNodeOrInsertPos(ID, InsertPos); |
3761 | assert(!AT && "Shouldn't be in the map!" ); |
3762 | } |
3763 | |
3764 | AT = new (*this, alignof(ArrayParameterType)) |
3765 | ArrayParameterType(ATy, Canonical); |
3766 | Types.push_back(Elt: AT); |
3767 | ArrayParameterTypes.InsertNode(N: AT, InsertPos); |
3768 | return QualType(AT, 0); |
3769 | } |
3770 | |
3771 | /// getBlockPointerType - Return the uniqued reference to the type for |
3772 | /// a pointer to the specified block. |
3773 | QualType ASTContext::getBlockPointerType(QualType T) const { |
3774 | assert(T->isFunctionType() && "block of function types only" ); |
3775 | // Unique pointers, to guarantee there is only one block of a particular |
3776 | // structure. |
3777 | llvm::FoldingSetNodeID ID; |
3778 | BlockPointerType::Profile(ID, Pointee: T); |
3779 | |
3780 | void *InsertPos = nullptr; |
3781 | if (BlockPointerType *PT = |
3782 | BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
3783 | return QualType(PT, 0); |
3784 | |
3785 | // If the block pointee type isn't canonical, this won't be a canonical |
3786 | // type either so fill in the canonical type field. |
3787 | QualType Canonical; |
3788 | if (!T.isCanonical()) { |
3789 | Canonical = getBlockPointerType(T: getCanonicalType(T)); |
3790 | |
3791 | // Get the new insert position for the node we care about. |
3792 | BlockPointerType *NewIP = |
3793 | BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
3794 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
3795 | } |
3796 | auto *New = |
3797 | new (*this, alignof(BlockPointerType)) BlockPointerType(T, Canonical); |
3798 | Types.push_back(Elt: New); |
3799 | BlockPointerTypes.InsertNode(N: New, InsertPos); |
3800 | return QualType(New, 0); |
3801 | } |
3802 | |
3803 | /// getLValueReferenceType - Return the uniqued reference to the type for an |
3804 | /// lvalue reference to the specified type. |
3805 | QualType |
3806 | ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const { |
3807 | assert((!T->isPlaceholderType() || |
3808 | T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && |
3809 | "Unresolved placeholder type" ); |
3810 | |
3811 | // Unique pointers, to guarantee there is only one pointer of a particular |
3812 | // structure. |
3813 | llvm::FoldingSetNodeID ID; |
3814 | ReferenceType::Profile(ID, Referencee: T, SpelledAsLValue); |
3815 | |
3816 | void *InsertPos = nullptr; |
3817 | if (LValueReferenceType *RT = |
3818 | LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
3819 | return QualType(RT, 0); |
3820 | |
3821 | const auto *InnerRef = T->getAs<ReferenceType>(); |
3822 | |
3823 | // If the referencee type isn't canonical, this won't be a canonical type |
3824 | // either, so fill in the canonical type field. |
3825 | QualType Canonical; |
3826 | if (!SpelledAsLValue || InnerRef || !T.isCanonical()) { |
3827 | QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); |
3828 | Canonical = getLValueReferenceType(T: getCanonicalType(T: PointeeType)); |
3829 | |
3830 | // Get the new insert position for the node we care about. |
3831 | LValueReferenceType *NewIP = |
3832 | LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
3833 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
3834 | } |
3835 | |
3836 | auto *New = new (*this, alignof(LValueReferenceType)) |
3837 | LValueReferenceType(T, Canonical, SpelledAsLValue); |
3838 | Types.push_back(Elt: New); |
3839 | LValueReferenceTypes.InsertNode(N: New, InsertPos); |
3840 | |
3841 | return QualType(New, 0); |
3842 | } |
3843 | |
3844 | /// getRValueReferenceType - Return the uniqued reference to the type for an |
3845 | /// rvalue reference to the specified type. |
3846 | QualType ASTContext::getRValueReferenceType(QualType T) const { |
3847 | assert((!T->isPlaceholderType() || |
3848 | T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && |
3849 | "Unresolved placeholder type" ); |
3850 | |
3851 | // Unique pointers, to guarantee there is only one pointer of a particular |
3852 | // structure. |
3853 | llvm::FoldingSetNodeID ID; |
3854 | ReferenceType::Profile(ID, Referencee: T, SpelledAsLValue: false); |
3855 | |
3856 | void *InsertPos = nullptr; |
3857 | if (RValueReferenceType *RT = |
3858 | RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
3859 | return QualType(RT, 0); |
3860 | |
3861 | const auto *InnerRef = T->getAs<ReferenceType>(); |
3862 | |
3863 | // If the referencee type isn't canonical, this won't be a canonical type |
3864 | // either, so fill in the canonical type field. |
3865 | QualType Canonical; |
3866 | if (InnerRef || !T.isCanonical()) { |
3867 | QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); |
3868 | Canonical = getRValueReferenceType(T: getCanonicalType(T: PointeeType)); |
3869 | |
3870 | // Get the new insert position for the node we care about. |
3871 | RValueReferenceType *NewIP = |
3872 | RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
3873 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
3874 | } |
3875 | |
3876 | auto *New = new (*this, alignof(RValueReferenceType)) |
3877 | RValueReferenceType(T, Canonical); |
3878 | Types.push_back(Elt: New); |
3879 | RValueReferenceTypes.InsertNode(N: New, InsertPos); |
3880 | return QualType(New, 0); |
3881 | } |
3882 | |
3883 | /// getMemberPointerType - Return the uniqued reference to the type for a |
3884 | /// member pointer to the specified type, in the specified class. |
3885 | QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const { |
3886 | // Unique pointers, to guarantee there is only one pointer of a particular |
3887 | // structure. |
3888 | llvm::FoldingSetNodeID ID; |
3889 | MemberPointerType::Profile(ID, Pointee: T, Class: Cls); |
3890 | |
3891 | void *InsertPos = nullptr; |
3892 | if (MemberPointerType *PT = |
3893 | MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
3894 | return QualType(PT, 0); |
3895 | |
3896 | // If the pointee or class type isn't canonical, this won't be a canonical |
3897 | // type either, so fill in the canonical type field. |
3898 | QualType Canonical; |
3899 | if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) { |
3900 | Canonical = getMemberPointerType(T: getCanonicalType(T),Cls: getCanonicalType(T: Cls)); |
3901 | |
3902 | // Get the new insert position for the node we care about. |
3903 | MemberPointerType *NewIP = |
3904 | MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
3905 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
3906 | } |
3907 | auto *New = new (*this, alignof(MemberPointerType)) |
3908 | MemberPointerType(T, Cls, Canonical); |
3909 | Types.push_back(Elt: New); |
3910 | MemberPointerTypes.InsertNode(N: New, InsertPos); |
3911 | return QualType(New, 0); |
3912 | } |
3913 | |
3914 | /// getConstantArrayType - Return the unique reference to the type for an |
3915 | /// array of the specified element type. |
3916 | QualType ASTContext::getConstantArrayType(QualType EltTy, |
3917 | const llvm::APInt &ArySizeIn, |
3918 | const Expr *SizeExpr, |
3919 | ArraySizeModifier ASM, |
3920 | unsigned IndexTypeQuals) const { |
3921 | assert((EltTy->isDependentType() || |
3922 | EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && |
3923 | "Constant array of VLAs is illegal!" ); |
3924 | |
3925 | // We only need the size as part of the type if it's instantiation-dependent. |
3926 | if (SizeExpr && !SizeExpr->isInstantiationDependent()) |
3927 | SizeExpr = nullptr; |
3928 | |
3929 | // Convert the array size into a canonical width matching the pointer size for |
3930 | // the target. |
3931 | llvm::APInt ArySize(ArySizeIn); |
3932 | ArySize = ArySize.zextOrTrunc(width: Target->getMaxPointerWidth()); |
3933 | |
3934 | llvm::FoldingSetNodeID ID; |
3935 | ConstantArrayType::Profile(ID, Ctx: *this, ET: EltTy, ArraySize: ArySize.getZExtValue(), SizeExpr, |
3936 | SizeMod: ASM, TypeQuals: IndexTypeQuals); |
3937 | |
3938 | void *InsertPos = nullptr; |
3939 | if (ConstantArrayType *ATP = |
3940 | ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) |
3941 | return QualType(ATP, 0); |
3942 | |
3943 | // If the element type isn't canonical or has qualifiers, or the array bound |
3944 | // is instantiation-dependent, this won't be a canonical type either, so fill |
3945 | // in the canonical type field. |
3946 | QualType Canon; |
3947 | // FIXME: Check below should look for qualifiers behind sugar. |
3948 | if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) { |
3949 | SplitQualType canonSplit = getCanonicalType(T: EltTy).split(); |
3950 | Canon = getConstantArrayType(EltTy: QualType(canonSplit.Ty, 0), ArySizeIn: ArySize, SizeExpr: nullptr, |
3951 | ASM, IndexTypeQuals); |
3952 | Canon = getQualifiedType(T: Canon, Qs: canonSplit.Quals); |
3953 | |
3954 | // Get the new insert position for the node we care about. |
3955 | ConstantArrayType *NewIP = |
3956 | ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); |
3957 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
3958 | } |
3959 | |
3960 | auto *New = ConstantArrayType::Create(Ctx: *this, ET: EltTy, Can: Canon, Sz: ArySize, SzExpr: SizeExpr, |
3961 | SzMod: ASM, Qual: IndexTypeQuals); |
3962 | ConstantArrayTypes.InsertNode(N: New, InsertPos); |
3963 | Types.push_back(Elt: New); |
3964 | return QualType(New, 0); |
3965 | } |
3966 | |
3967 | /// getVariableArrayDecayedType - Turns the given type, which may be |
3968 | /// variably-modified, into the corresponding type with all the known |
3969 | /// sizes replaced with [*]. |
3970 | QualType ASTContext::getVariableArrayDecayedType(QualType type) const { |
3971 | // Vastly most common case. |
3972 | if (!type->isVariablyModifiedType()) return type; |
3973 | |
3974 | QualType result; |
3975 | |
3976 | SplitQualType split = type.getSplitDesugaredType(); |
3977 | const Type *ty = split.Ty; |
3978 | switch (ty->getTypeClass()) { |
3979 | #define TYPE(Class, Base) |
3980 | #define ABSTRACT_TYPE(Class, Base) |
3981 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
3982 | #include "clang/AST/TypeNodes.inc" |
3983 | llvm_unreachable("didn't desugar past all non-canonical types?" ); |
3984 | |
3985 | // These types should never be variably-modified. |
3986 | case Type::Builtin: |
3987 | case Type::Complex: |
3988 | case Type::Vector: |
3989 | case Type::DependentVector: |
3990 | case Type::ExtVector: |
3991 | case Type::DependentSizedExtVector: |
3992 | case Type::ConstantMatrix: |
3993 | case Type::DependentSizedMatrix: |
3994 | case Type::DependentAddressSpace: |
3995 | case Type::ObjCObject: |
3996 | case Type::ObjCInterface: |
3997 | case Type::ObjCObjectPointer: |
3998 | case Type::Record: |
3999 | case Type::Enum: |
4000 | case Type::UnresolvedUsing: |
4001 | case Type::TypeOfExpr: |
4002 | case Type::TypeOf: |
4003 | case Type::Decltype: |
4004 | case Type::UnaryTransform: |
4005 | case Type::DependentName: |
4006 | case Type::InjectedClassName: |
4007 | case Type::TemplateSpecialization: |
4008 | case Type::DependentTemplateSpecialization: |
4009 | case Type::TemplateTypeParm: |
4010 | case Type::SubstTemplateTypeParmPack: |
4011 | case Type::Auto: |
4012 | case Type::DeducedTemplateSpecialization: |
4013 | case Type::PackExpansion: |
4014 | case Type::PackIndexing: |
4015 | case Type::BitInt: |
4016 | case Type::DependentBitInt: |
4017 | case Type::ArrayParameter: |
4018 | llvm_unreachable("type should never be variably-modified" ); |
4019 | |
4020 | // These types can be variably-modified but should never need to |
4021 | // further decay. |
4022 | case Type::FunctionNoProto: |
4023 | case Type::FunctionProto: |
4024 | case Type::BlockPointer: |
4025 | case Type::MemberPointer: |
4026 | case Type::Pipe: |
4027 | return type; |
4028 | |
4029 | // These types can be variably-modified. All these modifications |
4030 | // preserve structure except as noted by comments. |
4031 | // TODO: if we ever care about optimizing VLAs, there are no-op |
4032 | // optimizations available here. |
4033 | case Type::Pointer: |
4034 | result = getPointerType(T: getVariableArrayDecayedType( |
4035 | type: cast<PointerType>(Val: ty)->getPointeeType())); |
4036 | break; |
4037 | |
4038 | case Type::LValueReference: { |
4039 | const auto *lv = cast<LValueReferenceType>(Val: ty); |
4040 | result = getLValueReferenceType( |
4041 | T: getVariableArrayDecayedType(type: lv->getPointeeType()), |
4042 | SpelledAsLValue: lv->isSpelledAsLValue()); |
4043 | break; |
4044 | } |
4045 | |
4046 | case Type::RValueReference: { |
4047 | const auto *lv = cast<RValueReferenceType>(Val: ty); |
4048 | result = getRValueReferenceType( |
4049 | T: getVariableArrayDecayedType(type: lv->getPointeeType())); |
4050 | break; |
4051 | } |
4052 | |
4053 | case Type::Atomic: { |
4054 | const auto *at = cast<AtomicType>(Val: ty); |
4055 | result = getAtomicType(T: getVariableArrayDecayedType(type: at->getValueType())); |
4056 | break; |
4057 | } |
4058 | |
4059 | case Type::ConstantArray: { |
4060 | const auto *cat = cast<ConstantArrayType>(Val: ty); |
4061 | result = getConstantArrayType( |
4062 | EltTy: getVariableArrayDecayedType(type: cat->getElementType()), |
4063 | ArySizeIn: cat->getSize(), |
4064 | SizeExpr: cat->getSizeExpr(), |
4065 | ASM: cat->getSizeModifier(), |
4066 | IndexTypeQuals: cat->getIndexTypeCVRQualifiers()); |
4067 | break; |
4068 | } |
4069 | |
4070 | case Type::DependentSizedArray: { |
4071 | const auto *dat = cast<DependentSizedArrayType>(Val: ty); |
4072 | result = getDependentSizedArrayType( |
4073 | EltTy: getVariableArrayDecayedType(type: dat->getElementType()), |
4074 | NumElts: dat->getSizeExpr(), |
4075 | ASM: dat->getSizeModifier(), |
4076 | IndexTypeQuals: dat->getIndexTypeCVRQualifiers(), |
4077 | Brackets: dat->getBracketsRange()); |
4078 | break; |
4079 | } |
4080 | |
4081 | // Turn incomplete types into [*] types. |
4082 | case Type::IncompleteArray: { |
4083 | const auto *iat = cast<IncompleteArrayType>(Val: ty); |
4084 | result = |
4085 | getVariableArrayType(EltTy: getVariableArrayDecayedType(type: iat->getElementType()), |
4086 | /*size*/ NumElts: nullptr, ASM: ArraySizeModifier::Normal, |
4087 | IndexTypeQuals: iat->getIndexTypeCVRQualifiers(), Brackets: SourceRange()); |
4088 | break; |
4089 | } |
4090 | |
4091 | // Turn VLA types into [*] types. |
4092 | case Type::VariableArray: { |
4093 | const auto *vat = cast<VariableArrayType>(Val: ty); |
4094 | result = getVariableArrayType( |
4095 | EltTy: getVariableArrayDecayedType(type: vat->getElementType()), |
4096 | /*size*/ NumElts: nullptr, ASM: ArraySizeModifier::Star, |
4097 | IndexTypeQuals: vat->getIndexTypeCVRQualifiers(), Brackets: vat->getBracketsRange()); |
4098 | break; |
4099 | } |
4100 | } |
4101 | |
4102 | // Apply the top-level qualifiers from the original. |
4103 | return getQualifiedType(T: result, Qs: split.Quals); |
4104 | } |
4105 | |
4106 | /// getVariableArrayType - Returns a non-unique reference to the type for a |
4107 | /// variable array of the specified element type. |
4108 | QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts, |
4109 | ArraySizeModifier ASM, |
4110 | unsigned IndexTypeQuals, |
4111 | SourceRange Brackets) const { |
4112 | // Since we don't unique expressions, it isn't possible to unique VLA's |
4113 | // that have an expression provided for their size. |
4114 | QualType Canon; |
4115 | |
4116 | // Be sure to pull qualifiers off the element type. |
4117 | // FIXME: Check below should look for qualifiers behind sugar. |
4118 | if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { |
4119 | SplitQualType canonSplit = getCanonicalType(T: EltTy).split(); |
4120 | Canon = getVariableArrayType(EltTy: QualType(canonSplit.Ty, 0), NumElts, ASM, |
4121 | IndexTypeQuals, Brackets); |
4122 | Canon = getQualifiedType(T: Canon, Qs: canonSplit.Quals); |
4123 | } |
4124 | |
4125 | auto *New = new (*this, alignof(VariableArrayType)) |
4126 | VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets); |
4127 | |
4128 | VariableArrayTypes.push_back(x: New); |
4129 | Types.push_back(Elt: New); |
4130 | return QualType(New, 0); |
4131 | } |
4132 | |
4133 | /// getDependentSizedArrayType - Returns a non-unique reference to |
4134 | /// the type for a dependently-sized array of the specified element |
4135 | /// type. |
4136 | QualType ASTContext::getDependentSizedArrayType(QualType elementType, |
4137 | Expr *numElements, |
4138 | ArraySizeModifier ASM, |
4139 | unsigned elementTypeQuals, |
4140 | SourceRange brackets) const { |
4141 | assert((!numElements || numElements->isTypeDependent() || |
4142 | numElements->isValueDependent()) && |
4143 | "Size must be type- or value-dependent!" ); |
4144 | |
4145 | SplitQualType canonElementType = getCanonicalType(T: elementType).split(); |
4146 | |
4147 | void *insertPos = nullptr; |
4148 | llvm::FoldingSetNodeID ID; |
4149 | DependentSizedArrayType::Profile( |
4150 | ID, Context: *this, ET: numElements ? QualType(canonElementType.Ty, 0) : elementType, |
4151 | SizeMod: ASM, TypeQuals: elementTypeQuals, E: numElements); |
4152 | |
4153 | // Look for an existing type with these properties. |
4154 | DependentSizedArrayType *canonTy = |
4155 | DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos&: insertPos); |
4156 | |
4157 | // Dependently-sized array types that do not have a specified number |
4158 | // of elements will have their sizes deduced from a dependent |
4159 | // initializer. |
4160 | if (!numElements) { |
4161 | if (canonTy) |
4162 | return QualType(canonTy, 0); |
4163 | |
4164 | auto *newType = new (*this, alignof(DependentSizedArrayType)) |
4165 | DependentSizedArrayType(elementType, QualType(), numElements, ASM, |
4166 | elementTypeQuals, brackets); |
4167 | DependentSizedArrayTypes.InsertNode(N: newType, InsertPos: insertPos); |
4168 | Types.push_back(Elt: newType); |
4169 | return QualType(newType, 0); |
4170 | } |
4171 | |
4172 | // If we don't have one, build one. |
4173 | if (!canonTy) { |
4174 | canonTy = new (*this, alignof(DependentSizedArrayType)) |
4175 | DependentSizedArrayType(QualType(canonElementType.Ty, 0), QualType(), |
4176 | numElements, ASM, elementTypeQuals, brackets); |
4177 | DependentSizedArrayTypes.InsertNode(N: canonTy, InsertPos: insertPos); |
4178 | Types.push_back(Elt: canonTy); |
4179 | } |
4180 | |
4181 | // Apply qualifiers from the element type to the array. |
4182 | QualType canon = getQualifiedType(T: QualType(canonTy,0), |
4183 | Qs: canonElementType.Quals); |
4184 | |
4185 | // If we didn't need extra canonicalization for the element type or the size |
4186 | // expression, then just use that as our result. |
4187 | if (QualType(canonElementType.Ty, 0) == elementType && |
4188 | canonTy->getSizeExpr() == numElements) |
4189 | return canon; |
4190 | |
4191 | // Otherwise, we need to build a type which follows the spelling |
4192 | // of the element type. |
4193 | auto *sugaredType = new (*this, alignof(DependentSizedArrayType)) |
4194 | DependentSizedArrayType(elementType, canon, numElements, ASM, |
4195 | elementTypeQuals, brackets); |
4196 | Types.push_back(Elt: sugaredType); |
4197 | return QualType(sugaredType, 0); |
4198 | } |
4199 | |
4200 | QualType ASTContext::getIncompleteArrayType(QualType elementType, |
4201 | ArraySizeModifier ASM, |
4202 | unsigned elementTypeQuals) const { |
4203 | llvm::FoldingSetNodeID ID; |
4204 | IncompleteArrayType::Profile(ID, ET: elementType, SizeMod: ASM, TypeQuals: elementTypeQuals); |
4205 | |
4206 | void *insertPos = nullptr; |
4207 | if (IncompleteArrayType *iat = |
4208 | IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos&: insertPos)) |
4209 | return QualType(iat, 0); |
4210 | |
4211 | // If the element type isn't canonical, this won't be a canonical type |
4212 | // either, so fill in the canonical type field. We also have to pull |
4213 | // qualifiers off the element type. |
4214 | QualType canon; |
4215 | |
4216 | // FIXME: Check below should look for qualifiers behind sugar. |
4217 | if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) { |
4218 | SplitQualType canonSplit = getCanonicalType(T: elementType).split(); |
4219 | canon = getIncompleteArrayType(elementType: QualType(canonSplit.Ty, 0), |
4220 | ASM, elementTypeQuals); |
4221 | canon = getQualifiedType(T: canon, Qs: canonSplit.Quals); |
4222 | |
4223 | // Get the new insert position for the node we care about. |
4224 | IncompleteArrayType *existing = |
4225 | IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos&: insertPos); |
4226 | assert(!existing && "Shouldn't be in the map!" ); (void) existing; |
4227 | } |
4228 | |
4229 | auto *newType = new (*this, alignof(IncompleteArrayType)) |
4230 | IncompleteArrayType(elementType, canon, ASM, elementTypeQuals); |
4231 | |
4232 | IncompleteArrayTypes.InsertNode(N: newType, InsertPos: insertPos); |
4233 | Types.push_back(Elt: newType); |
4234 | return QualType(newType, 0); |
4235 | } |
4236 | |
4237 | ASTContext::BuiltinVectorTypeInfo |
4238 | ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const { |
4239 | #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS) \ |
4240 | {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \ |
4241 | NUMVECTORS}; |
4242 | |
4243 | #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS) \ |
4244 | {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS}; |
4245 | |
4246 | switch (Ty->getKind()) { |
4247 | default: |
4248 | llvm_unreachable("Unsupported builtin vector type" ); |
4249 | case BuiltinType::SveInt8: |
4250 | return SVE_INT_ELTTY(8, 16, true, 1); |
4251 | case BuiltinType::SveUint8: |
4252 | return SVE_INT_ELTTY(8, 16, false, 1); |
4253 | case BuiltinType::SveInt8x2: |
4254 | return SVE_INT_ELTTY(8, 16, true, 2); |
4255 | case BuiltinType::SveUint8x2: |
4256 | return SVE_INT_ELTTY(8, 16, false, 2); |
4257 | case BuiltinType::SveInt8x3: |
4258 | return SVE_INT_ELTTY(8, 16, true, 3); |
4259 | case BuiltinType::SveUint8x3: |
4260 | return SVE_INT_ELTTY(8, 16, false, 3); |
4261 | case BuiltinType::SveInt8x4: |
4262 | return SVE_INT_ELTTY(8, 16, true, 4); |
4263 | case BuiltinType::SveUint8x4: |
4264 | return SVE_INT_ELTTY(8, 16, false, 4); |
4265 | case BuiltinType::SveInt16: |
4266 | return SVE_INT_ELTTY(16, 8, true, 1); |
4267 | case BuiltinType::SveUint16: |
4268 | return SVE_INT_ELTTY(16, 8, false, 1); |
4269 | case BuiltinType::SveInt16x2: |
4270 | return SVE_INT_ELTTY(16, 8, true, 2); |
4271 | case BuiltinType::SveUint16x2: |
4272 | return SVE_INT_ELTTY(16, 8, false, 2); |
4273 | case BuiltinType::SveInt16x3: |
4274 | return SVE_INT_ELTTY(16, 8, true, 3); |
4275 | case BuiltinType::SveUint16x3: |
4276 | return SVE_INT_ELTTY(16, 8, false, 3); |
4277 | case BuiltinType::SveInt16x4: |
4278 | return SVE_INT_ELTTY(16, 8, true, 4); |
4279 | case BuiltinType::SveUint16x4: |
4280 | return SVE_INT_ELTTY(16, 8, false, 4); |
4281 | case BuiltinType::SveInt32: |
4282 | return SVE_INT_ELTTY(32, 4, true, 1); |
4283 | case BuiltinType::SveUint32: |
4284 | return SVE_INT_ELTTY(32, 4, false, 1); |
4285 | case BuiltinType::SveInt32x2: |
4286 | return SVE_INT_ELTTY(32, 4, true, 2); |
4287 | case BuiltinType::SveUint32x2: |
4288 | return SVE_INT_ELTTY(32, 4, false, 2); |
4289 | case BuiltinType::SveInt32x3: |
4290 | return SVE_INT_ELTTY(32, 4, true, 3); |
4291 | case BuiltinType::SveUint32x3: |
4292 | return SVE_INT_ELTTY(32, 4, false, 3); |
4293 | case BuiltinType::SveInt32x4: |
4294 | return SVE_INT_ELTTY(32, 4, true, 4); |
4295 | case BuiltinType::SveUint32x4: |
4296 | return SVE_INT_ELTTY(32, 4, false, 4); |
4297 | case BuiltinType::SveInt64: |
4298 | return SVE_INT_ELTTY(64, 2, true, 1); |
4299 | case BuiltinType::SveUint64: |
4300 | return SVE_INT_ELTTY(64, 2, false, 1); |
4301 | case BuiltinType::SveInt64x2: |
4302 | return SVE_INT_ELTTY(64, 2, true, 2); |
4303 | case BuiltinType::SveUint64x2: |
4304 | return SVE_INT_ELTTY(64, 2, false, 2); |
4305 | case BuiltinType::SveInt64x3: |
4306 | return SVE_INT_ELTTY(64, 2, true, 3); |
4307 | case BuiltinType::SveUint64x3: |
4308 | return SVE_INT_ELTTY(64, 2, false, 3); |
4309 | case BuiltinType::SveInt64x4: |
4310 | return SVE_INT_ELTTY(64, 2, true, 4); |
4311 | case BuiltinType::SveUint64x4: |
4312 | return SVE_INT_ELTTY(64, 2, false, 4); |
4313 | case BuiltinType::SveBool: |
4314 | return SVE_ELTTY(BoolTy, 16, 1); |
4315 | case BuiltinType::SveBoolx2: |
4316 | return SVE_ELTTY(BoolTy, 16, 2); |
4317 | case BuiltinType::SveBoolx4: |
4318 | return SVE_ELTTY(BoolTy, 16, 4); |
4319 | case BuiltinType::SveFloat16: |
4320 | return SVE_ELTTY(HalfTy, 8, 1); |
4321 | case BuiltinType::SveFloat16x2: |
4322 | return SVE_ELTTY(HalfTy, 8, 2); |
4323 | case BuiltinType::SveFloat16x3: |
4324 | return SVE_ELTTY(HalfTy, 8, 3); |
4325 | case BuiltinType::SveFloat16x4: |
4326 | return SVE_ELTTY(HalfTy, 8, 4); |
4327 | case BuiltinType::SveFloat32: |
4328 | return SVE_ELTTY(FloatTy, 4, 1); |
4329 | case BuiltinType::SveFloat32x2: |
4330 | return SVE_ELTTY(FloatTy, 4, 2); |
4331 | case BuiltinType::SveFloat32x3: |
4332 | return SVE_ELTTY(FloatTy, 4, 3); |
4333 | case BuiltinType::SveFloat32x4: |
4334 | return SVE_ELTTY(FloatTy, 4, 4); |
4335 | case BuiltinType::SveFloat64: |
4336 | return SVE_ELTTY(DoubleTy, 2, 1); |
4337 | case BuiltinType::SveFloat64x2: |
4338 | return SVE_ELTTY(DoubleTy, 2, 2); |
4339 | case BuiltinType::SveFloat64x3: |
4340 | return SVE_ELTTY(DoubleTy, 2, 3); |
4341 | case BuiltinType::SveFloat64x4: |
4342 | return SVE_ELTTY(DoubleTy, 2, 4); |
4343 | case BuiltinType::SveBFloat16: |
4344 | return SVE_ELTTY(BFloat16Ty, 8, 1); |
4345 | case BuiltinType::SveBFloat16x2: |
4346 | return SVE_ELTTY(BFloat16Ty, 8, 2); |
4347 | case BuiltinType::SveBFloat16x3: |
4348 | return SVE_ELTTY(BFloat16Ty, 8, 3); |
4349 | case BuiltinType::SveBFloat16x4: |
4350 | return SVE_ELTTY(BFloat16Ty, 8, 4); |
4351 | #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF, \ |
4352 | IsSigned) \ |
4353 | case BuiltinType::Id: \ |
4354 | return {getIntTypeForBitwidth(ElBits, IsSigned), \ |
4355 | llvm::ElementCount::getScalable(NumEls), NF}; |
4356 | #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF) \ |
4357 | case BuiltinType::Id: \ |
4358 | return {ElBits == 16 ? Float16Ty : (ElBits == 32 ? FloatTy : DoubleTy), \ |
4359 | llvm::ElementCount::getScalable(NumEls), NF}; |
4360 | #define RVV_VECTOR_TYPE_BFLOAT(Name, Id, SingletonId, NumEls, ElBits, NF) \ |
4361 | case BuiltinType::Id: \ |
4362 | return {BFloat16Ty, llvm::ElementCount::getScalable(NumEls), NF}; |
4363 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ |
4364 | case BuiltinType::Id: \ |
4365 | return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1}; |
4366 | #include "clang/Basic/RISCVVTypes.def" |
4367 | } |
4368 | } |
4369 | |
4370 | /// getExternrefType - Return a WebAssembly externref type, which represents an |
4371 | /// opaque reference to a host value. |
4372 | QualType ASTContext::getWebAssemblyExternrefType() const { |
4373 | if (Target->getTriple().isWasm() && Target->hasFeature(Feature: "reference-types" )) { |
4374 | #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS) \ |
4375 | if (BuiltinType::Id == BuiltinType::WasmExternRef) \ |
4376 | return SingletonId; |
4377 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
4378 | } |
4379 | llvm_unreachable( |
4380 | "shouldn't try to generate type externref outside WebAssembly target" ); |
4381 | } |
4382 | |
4383 | /// getScalableVectorType - Return the unique reference to a scalable vector |
4384 | /// type of the specified element type and size. VectorType must be a built-in |
4385 | /// type. |
4386 | QualType ASTContext::getScalableVectorType(QualType EltTy, unsigned NumElts, |
4387 | unsigned NumFields) const { |
4388 | if (Target->hasAArch64SVETypes()) { |
4389 | uint64_t EltTySize = getTypeSize(T: EltTy); |
4390 | #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits, \ |
4391 | IsSigned, IsFP, IsBF) \ |
4392 | if (!EltTy->isBooleanType() && \ |
4393 | ((EltTy->hasIntegerRepresentation() && \ |
4394 | EltTy->hasSignedIntegerRepresentation() == IsSigned) || \ |
4395 | (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() && \ |
4396 | IsFP && !IsBF) || \ |
4397 | (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() && \ |
4398 | IsBF && !IsFP)) && \ |
4399 | EltTySize == ElBits && NumElts == NumEls) { \ |
4400 | return SingletonId; \ |
4401 | } |
4402 | #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls) \ |
4403 | if (EltTy->isBooleanType() && NumElts == NumEls) \ |
4404 | return SingletonId; |
4405 | #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingleTonId) |
4406 | #include "clang/Basic/AArch64SVEACLETypes.def" |
4407 | } else if (Target->hasRISCVVTypes()) { |
4408 | uint64_t EltTySize = getTypeSize(T: EltTy); |
4409 | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned, \ |
4410 | IsFP, IsBF) \ |
4411 | if (!EltTy->isBooleanType() && \ |
4412 | ((EltTy->hasIntegerRepresentation() && \ |
4413 | EltTy->hasSignedIntegerRepresentation() == IsSigned) || \ |
4414 | (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() && \ |
4415 | IsFP && !IsBF) || \ |
4416 | (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() && \ |
4417 | IsBF && !IsFP)) && \ |
4418 | EltTySize == ElBits && NumElts == NumEls && NumFields == NF) \ |
4419 | return SingletonId; |
4420 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ |
4421 | if (EltTy->isBooleanType() && NumElts == NumEls) \ |
4422 | return SingletonId; |
4423 | #include "clang/Basic/RISCVVTypes.def" |
4424 | } |
4425 | return QualType(); |
4426 | } |
4427 | |
4428 | /// getVectorType - Return the unique reference to a vector type of |
4429 | /// the specified element type and size. VectorType must be a built-in type. |
4430 | QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts, |
4431 | VectorKind VecKind) const { |
4432 | assert(vecType->isBuiltinType() || |
4433 | (vecType->isBitIntType() && |
4434 | // Only support _BitInt elements with byte-sized power of 2 NumBits. |
4435 | llvm::isPowerOf2_32(vecType->castAs<BitIntType>()->getNumBits()) && |
4436 | vecType->castAs<BitIntType>()->getNumBits() >= 8)); |
4437 | |
4438 | // Check if we've already instantiated a vector of this type. |
4439 | llvm::FoldingSetNodeID ID; |
4440 | VectorType::Profile(ID, ElementType: vecType, NumElements: NumElts, TypeClass: Type::Vector, VecKind); |
4441 | |
4442 | void *InsertPos = nullptr; |
4443 | if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4444 | return QualType(VTP, 0); |
4445 | |
4446 | // If the element type isn't canonical, this won't be a canonical type either, |
4447 | // so fill in the canonical type field. |
4448 | QualType Canonical; |
4449 | if (!vecType.isCanonical()) { |
4450 | Canonical = getVectorType(vecType: getCanonicalType(T: vecType), NumElts, VecKind); |
4451 | |
4452 | // Get the new insert position for the node we care about. |
4453 | VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4454 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
4455 | } |
4456 | auto *New = new (*this, alignof(VectorType)) |
4457 | VectorType(vecType, NumElts, Canonical, VecKind); |
4458 | VectorTypes.InsertNode(N: New, InsertPos); |
4459 | Types.push_back(Elt: New); |
4460 | return QualType(New, 0); |
4461 | } |
4462 | |
4463 | QualType ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr, |
4464 | SourceLocation AttrLoc, |
4465 | VectorKind VecKind) const { |
4466 | llvm::FoldingSetNodeID ID; |
4467 | DependentVectorType::Profile(ID, Context: *this, ElementType: getCanonicalType(T: VecType), SizeExpr, |
4468 | VecKind); |
4469 | void *InsertPos = nullptr; |
4470 | DependentVectorType *Canon = |
4471 | DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4472 | DependentVectorType *New; |
4473 | |
4474 | if (Canon) { |
4475 | New = new (*this, alignof(DependentVectorType)) DependentVectorType( |
4476 | VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind); |
4477 | } else { |
4478 | QualType CanonVecTy = getCanonicalType(T: VecType); |
4479 | if (CanonVecTy == VecType) { |
4480 | New = new (*this, alignof(DependentVectorType)) |
4481 | DependentVectorType(VecType, QualType(), SizeExpr, AttrLoc, VecKind); |
4482 | |
4483 | DependentVectorType *CanonCheck = |
4484 | DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4485 | assert(!CanonCheck && |
4486 | "Dependent-sized vector_size canonical type broken" ); |
4487 | (void)CanonCheck; |
4488 | DependentVectorTypes.InsertNode(N: New, InsertPos); |
4489 | } else { |
4490 | QualType CanonTy = getDependentVectorType(VecType: CanonVecTy, SizeExpr, |
4491 | AttrLoc: SourceLocation(), VecKind); |
4492 | New = new (*this, alignof(DependentVectorType)) |
4493 | DependentVectorType(VecType, CanonTy, SizeExpr, AttrLoc, VecKind); |
4494 | } |
4495 | } |
4496 | |
4497 | Types.push_back(Elt: New); |
4498 | return QualType(New, 0); |
4499 | } |
4500 | |
4501 | /// getExtVectorType - Return the unique reference to an extended vector type of |
4502 | /// the specified element type and size. VectorType must be a built-in type. |
4503 | QualType ASTContext::getExtVectorType(QualType vecType, |
4504 | unsigned NumElts) const { |
4505 | assert(vecType->isBuiltinType() || vecType->isDependentType() || |
4506 | (vecType->isBitIntType() && |
4507 | // Only support _BitInt elements with byte-sized power of 2 NumBits. |
4508 | llvm::isPowerOf2_32(vecType->castAs<BitIntType>()->getNumBits()) && |
4509 | vecType->castAs<BitIntType>()->getNumBits() >= 8)); |
4510 | |
4511 | // Check if we've already instantiated a vector of this type. |
4512 | llvm::FoldingSetNodeID ID; |
4513 | VectorType::Profile(ID, ElementType: vecType, NumElements: NumElts, TypeClass: Type::ExtVector, |
4514 | VecKind: VectorKind::Generic); |
4515 | void *InsertPos = nullptr; |
4516 | if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4517 | return QualType(VTP, 0); |
4518 | |
4519 | // If the element type isn't canonical, this won't be a canonical type either, |
4520 | // so fill in the canonical type field. |
4521 | QualType Canonical; |
4522 | if (!vecType.isCanonical()) { |
4523 | Canonical = getExtVectorType(vecType: getCanonicalType(T: vecType), NumElts); |
4524 | |
4525 | // Get the new insert position for the node we care about. |
4526 | VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4527 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
4528 | } |
4529 | auto *New = new (*this, alignof(ExtVectorType)) |
4530 | ExtVectorType(vecType, NumElts, Canonical); |
4531 | VectorTypes.InsertNode(N: New, InsertPos); |
4532 | Types.push_back(Elt: New); |
4533 | return QualType(New, 0); |
4534 | } |
4535 | |
4536 | QualType |
4537 | ASTContext::getDependentSizedExtVectorType(QualType vecType, |
4538 | Expr *SizeExpr, |
4539 | SourceLocation AttrLoc) const { |
4540 | llvm::FoldingSetNodeID ID; |
4541 | DependentSizedExtVectorType::Profile(ID, Context: *this, ElementType: getCanonicalType(T: vecType), |
4542 | SizeExpr); |
4543 | |
4544 | void *InsertPos = nullptr; |
4545 | DependentSizedExtVectorType *Canon |
4546 | = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4547 | DependentSizedExtVectorType *New; |
4548 | if (Canon) { |
4549 | // We already have a canonical version of this array type; use it as |
4550 | // the canonical type for a newly-built type. |
4551 | New = new (*this, alignof(DependentSizedExtVectorType)) |
4552 | DependentSizedExtVectorType(vecType, QualType(Canon, 0), SizeExpr, |
4553 | AttrLoc); |
4554 | } else { |
4555 | QualType CanonVecTy = getCanonicalType(T: vecType); |
4556 | if (CanonVecTy == vecType) { |
4557 | New = new (*this, alignof(DependentSizedExtVectorType)) |
4558 | DependentSizedExtVectorType(vecType, QualType(), SizeExpr, AttrLoc); |
4559 | |
4560 | DependentSizedExtVectorType *CanonCheck |
4561 | = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4562 | assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken" ); |
4563 | (void)CanonCheck; |
4564 | DependentSizedExtVectorTypes.InsertNode(N: New, InsertPos); |
4565 | } else { |
4566 | QualType CanonExtTy = getDependentSizedExtVectorType(vecType: CanonVecTy, SizeExpr, |
4567 | AttrLoc: SourceLocation()); |
4568 | New = new (*this, alignof(DependentSizedExtVectorType)) |
4569 | DependentSizedExtVectorType(vecType, CanonExtTy, SizeExpr, AttrLoc); |
4570 | } |
4571 | } |
4572 | |
4573 | Types.push_back(Elt: New); |
4574 | return QualType(New, 0); |
4575 | } |
4576 | |
4577 | QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows, |
4578 | unsigned NumColumns) const { |
4579 | llvm::FoldingSetNodeID ID; |
4580 | ConstantMatrixType::Profile(ID, ElementType: ElementTy, NumRows, NumColumns, |
4581 | TypeClass: Type::ConstantMatrix); |
4582 | |
4583 | assert(MatrixType::isValidElementType(ElementTy) && |
4584 | "need a valid element type" ); |
4585 | assert(ConstantMatrixType::isDimensionValid(NumRows) && |
4586 | ConstantMatrixType::isDimensionValid(NumColumns) && |
4587 | "need valid matrix dimensions" ); |
4588 | void *InsertPos = nullptr; |
4589 | if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4590 | return QualType(MTP, 0); |
4591 | |
4592 | QualType Canonical; |
4593 | if (!ElementTy.isCanonical()) { |
4594 | Canonical = |
4595 | getConstantMatrixType(ElementTy: getCanonicalType(T: ElementTy), NumRows, NumColumns); |
4596 | |
4597 | ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos); |
4598 | assert(!NewIP && "Matrix type shouldn't already exist in the map" ); |
4599 | (void)NewIP; |
4600 | } |
4601 | |
4602 | auto *New = new (*this, alignof(ConstantMatrixType)) |
4603 | ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical); |
4604 | MatrixTypes.InsertNode(N: New, InsertPos); |
4605 | Types.push_back(Elt: New); |
4606 | return QualType(New, 0); |
4607 | } |
4608 | |
4609 | QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy, |
4610 | Expr *RowExpr, |
4611 | Expr *ColumnExpr, |
4612 | SourceLocation AttrLoc) const { |
4613 | QualType CanonElementTy = getCanonicalType(T: ElementTy); |
4614 | llvm::FoldingSetNodeID ID; |
4615 | DependentSizedMatrixType::Profile(ID, Context: *this, ElementType: CanonElementTy, RowExpr, |
4616 | ColumnExpr); |
4617 | |
4618 | void *InsertPos = nullptr; |
4619 | DependentSizedMatrixType *Canon = |
4620 | DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); |
4621 | |
4622 | if (!Canon) { |
4623 | Canon = new (*this, alignof(DependentSizedMatrixType)) |
4624 | DependentSizedMatrixType(CanonElementTy, QualType(), RowExpr, |
4625 | ColumnExpr, AttrLoc); |
4626 | #ifndef NDEBUG |
4627 | DependentSizedMatrixType *CanonCheck = |
4628 | DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); |
4629 | assert(!CanonCheck && "Dependent-sized matrix canonical type broken" ); |
4630 | #endif |
4631 | DependentSizedMatrixTypes.InsertNode(N: Canon, InsertPos); |
4632 | Types.push_back(Elt: Canon); |
4633 | } |
4634 | |
4635 | // Already have a canonical version of the matrix type |
4636 | // |
4637 | // If it exactly matches the requested type, use it directly. |
4638 | if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr && |
4639 | Canon->getRowExpr() == ColumnExpr) |
4640 | return QualType(Canon, 0); |
4641 | |
4642 | // Use Canon as the canonical type for newly-built type. |
4643 | DependentSizedMatrixType *New = new (*this, alignof(DependentSizedMatrixType)) |
4644 | DependentSizedMatrixType(ElementTy, QualType(Canon, 0), RowExpr, |
4645 | ColumnExpr, AttrLoc); |
4646 | Types.push_back(Elt: New); |
4647 | return QualType(New, 0); |
4648 | } |
4649 | |
4650 | QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType, |
4651 | Expr *AddrSpaceExpr, |
4652 | SourceLocation AttrLoc) const { |
4653 | assert(AddrSpaceExpr->isInstantiationDependent()); |
4654 | |
4655 | QualType canonPointeeType = getCanonicalType(T: PointeeType); |
4656 | |
4657 | void *insertPos = nullptr; |
4658 | llvm::FoldingSetNodeID ID; |
4659 | DependentAddressSpaceType::Profile(ID, Context: *this, PointeeType: canonPointeeType, |
4660 | AddrSpaceExpr); |
4661 | |
4662 | DependentAddressSpaceType *canonTy = |
4663 | DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, InsertPos&: insertPos); |
4664 | |
4665 | if (!canonTy) { |
4666 | canonTy = new (*this, alignof(DependentAddressSpaceType)) |
4667 | DependentAddressSpaceType(canonPointeeType, QualType(), AddrSpaceExpr, |
4668 | AttrLoc); |
4669 | DependentAddressSpaceTypes.InsertNode(N: canonTy, InsertPos: insertPos); |
4670 | Types.push_back(Elt: canonTy); |
4671 | } |
4672 | |
4673 | if (canonPointeeType == PointeeType && |
4674 | canonTy->getAddrSpaceExpr() == AddrSpaceExpr) |
4675 | return QualType(canonTy, 0); |
4676 | |
4677 | auto *sugaredType = new (*this, alignof(DependentAddressSpaceType)) |
4678 | DependentAddressSpaceType(PointeeType, QualType(canonTy, 0), |
4679 | AddrSpaceExpr, AttrLoc); |
4680 | Types.push_back(Elt: sugaredType); |
4681 | return QualType(sugaredType, 0); |
4682 | } |
4683 | |
4684 | /// Determine whether \p T is canonical as the result type of a function. |
4685 | static bool isCanonicalResultType(QualType T) { |
4686 | return T.isCanonical() && |
4687 | (T.getObjCLifetime() == Qualifiers::OCL_None || |
4688 | T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone); |
4689 | } |
4690 | |
4691 | /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. |
4692 | QualType |
4693 | ASTContext::getFunctionNoProtoType(QualType ResultTy, |
4694 | const FunctionType::ExtInfo &Info) const { |
4695 | // FIXME: This assertion cannot be enabled (yet) because the ObjC rewriter |
4696 | // functionality creates a function without a prototype regardless of |
4697 | // language mode (so it makes them even in C++). Once the rewriter has been |
4698 | // fixed, this assertion can be enabled again. |
4699 | //assert(!LangOpts.requiresStrictPrototypes() && |
4700 | // "strict prototypes are disabled"); |
4701 | |
4702 | // Unique functions, to guarantee there is only one function of a particular |
4703 | // structure. |
4704 | llvm::FoldingSetNodeID ID; |
4705 | FunctionNoProtoType::Profile(ID, ResultType: ResultTy, Info); |
4706 | |
4707 | void *InsertPos = nullptr; |
4708 | if (FunctionNoProtoType *FT = |
4709 | FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4710 | return QualType(FT, 0); |
4711 | |
4712 | QualType Canonical; |
4713 | if (!isCanonicalResultType(T: ResultTy)) { |
4714 | Canonical = |
4715 | getFunctionNoProtoType(ResultTy: getCanonicalFunctionResultType(ResultType: ResultTy), Info); |
4716 | |
4717 | // Get the new insert position for the node we care about. |
4718 | FunctionNoProtoType *NewIP = |
4719 | FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); |
4720 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
4721 | } |
4722 | |
4723 | auto *New = new (*this, alignof(FunctionNoProtoType)) |
4724 | FunctionNoProtoType(ResultTy, Canonical, Info); |
4725 | Types.push_back(Elt: New); |
4726 | FunctionNoProtoTypes.InsertNode(N: New, InsertPos); |
4727 | return QualType(New, 0); |
4728 | } |
4729 | |
4730 | CanQualType |
4731 | ASTContext::getCanonicalFunctionResultType(QualType ResultType) const { |
4732 | CanQualType CanResultType = getCanonicalType(T: ResultType); |
4733 | |
4734 | // Canonical result types do not have ARC lifetime qualifiers. |
4735 | if (CanResultType.getQualifiers().hasObjCLifetime()) { |
4736 | Qualifiers Qs = CanResultType.getQualifiers(); |
4737 | Qs.removeObjCLifetime(); |
4738 | return CanQualType::CreateUnsafe( |
4739 | Other: getQualifiedType(T: CanResultType.getUnqualifiedType(), Qs)); |
4740 | } |
4741 | |
4742 | return CanResultType; |
4743 | } |
4744 | |
4745 | static bool isCanonicalExceptionSpecification( |
4746 | const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) { |
4747 | if (ESI.Type == EST_None) |
4748 | return true; |
4749 | if (!NoexceptInType) |
4750 | return false; |
4751 | |
4752 | // C++17 onwards: exception specification is part of the type, as a simple |
4753 | // boolean "can this function type throw". |
4754 | if (ESI.Type == EST_BasicNoexcept) |
4755 | return true; |
4756 | |
4757 | // A noexcept(expr) specification is (possibly) canonical if expr is |
4758 | // value-dependent. |
4759 | if (ESI.Type == EST_DependentNoexcept) |
4760 | return true; |
4761 | |
4762 | // A dynamic exception specification is canonical if it only contains pack |
4763 | // expansions (so we can't tell whether it's non-throwing) and all its |
4764 | // contained types are canonical. |
4765 | if (ESI.Type == EST_Dynamic) { |
4766 | bool AnyPackExpansions = false; |
4767 | for (QualType ET : ESI.Exceptions) { |
4768 | if (!ET.isCanonical()) |
4769 | return false; |
4770 | if (ET->getAs<PackExpansionType>()) |
4771 | AnyPackExpansions = true; |
4772 | } |
4773 | return AnyPackExpansions; |
4774 | } |
4775 | |
4776 | return false; |
4777 | } |
4778 | |
4779 | QualType ASTContext::getFunctionTypeInternal( |
4780 | QualType ResultTy, ArrayRef<QualType> ArgArray, |
4781 | const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const { |
4782 | size_t NumArgs = ArgArray.size(); |
4783 | |
4784 | // Unique functions, to guarantee there is only one function of a particular |
4785 | // structure. |
4786 | llvm::FoldingSetNodeID ID; |
4787 | FunctionProtoType::Profile(ID, Result: ResultTy, ArgTys: ArgArray.begin(), NumArgs, EPI, |
4788 | Context: *this, Canonical: true); |
4789 | |
4790 | QualType Canonical; |
4791 | bool Unique = false; |
4792 | |
4793 | void *InsertPos = nullptr; |
4794 | if (FunctionProtoType *FPT = |
4795 | FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) { |
4796 | QualType Existing = QualType(FPT, 0); |
4797 | |
4798 | // If we find a pre-existing equivalent FunctionProtoType, we can just reuse |
4799 | // it so long as our exception specification doesn't contain a dependent |
4800 | // noexcept expression, or we're just looking for a canonical type. |
4801 | // Otherwise, we're going to need to create a type |
4802 | // sugar node to hold the concrete expression. |
4803 | if (OnlyWantCanonical || !isComputedNoexcept(ESpecType: EPI.ExceptionSpec.Type) || |
4804 | EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr()) |
4805 | return Existing; |
4806 | |
4807 | // We need a new type sugar node for this one, to hold the new noexcept |
4808 | // expression. We do no canonicalization here, but that's OK since we don't |
4809 | // expect to see the same noexcept expression much more than once. |
4810 | Canonical = getCanonicalType(T: Existing); |
4811 | Unique = true; |
4812 | } |
4813 | |
4814 | bool NoexceptInType = getLangOpts().CPlusPlus17; |
4815 | bool IsCanonicalExceptionSpec = |
4816 | isCanonicalExceptionSpecification(ESI: EPI.ExceptionSpec, NoexceptInType); |
4817 | |
4818 | // Determine whether the type being created is already canonical or not. |
4819 | bool isCanonical = !Unique && IsCanonicalExceptionSpec && |
4820 | isCanonicalResultType(T: ResultTy) && !EPI.HasTrailingReturn; |
4821 | for (unsigned i = 0; i != NumArgs && isCanonical; ++i) |
4822 | if (!ArgArray[i].isCanonicalAsParam()) |
4823 | isCanonical = false; |
4824 | |
4825 | if (OnlyWantCanonical) |
4826 | assert(isCanonical && |
4827 | "given non-canonical parameters constructing canonical type" ); |
4828 | |
4829 | // If this type isn't canonical, get the canonical version of it if we don't |
4830 | // already have it. The exception spec is only partially part of the |
4831 | // canonical type, and only in C++17 onwards. |
4832 | if (!isCanonical && Canonical.isNull()) { |
4833 | SmallVector<QualType, 16> CanonicalArgs; |
4834 | CanonicalArgs.reserve(N: NumArgs); |
4835 | for (unsigned i = 0; i != NumArgs; ++i) |
4836 | CanonicalArgs.push_back(Elt: getCanonicalParamType(T: ArgArray[i])); |
4837 | |
4838 | llvm::SmallVector<QualType, 8> ExceptionTypeStorage; |
4839 | FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI; |
4840 | CanonicalEPI.HasTrailingReturn = false; |
4841 | |
4842 | if (IsCanonicalExceptionSpec) { |
4843 | // Exception spec is already OK. |
4844 | } else if (NoexceptInType) { |
4845 | switch (EPI.ExceptionSpec.Type) { |
4846 | case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated: |
4847 | // We don't know yet. It shouldn't matter what we pick here; no-one |
4848 | // should ever look at this. |
4849 | [[fallthrough]]; |
4850 | case EST_None: case EST_MSAny: case EST_NoexceptFalse: |
4851 | CanonicalEPI.ExceptionSpec.Type = EST_None; |
4852 | break; |
4853 | |
4854 | // A dynamic exception specification is almost always "not noexcept", |
4855 | // with the exception that a pack expansion might expand to no types. |
4856 | case EST_Dynamic: { |
4857 | bool AnyPacks = false; |
4858 | for (QualType ET : EPI.ExceptionSpec.Exceptions) { |
4859 | if (ET->getAs<PackExpansionType>()) |
4860 | AnyPacks = true; |
4861 | ExceptionTypeStorage.push_back(Elt: getCanonicalType(T: ET)); |
4862 | } |
4863 | if (!AnyPacks) |
4864 | CanonicalEPI.ExceptionSpec.Type = EST_None; |
4865 | else { |
4866 | CanonicalEPI.ExceptionSpec.Type = EST_Dynamic; |
4867 | CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage; |
4868 | } |
4869 | break; |
4870 | } |
4871 | |
4872 | case EST_DynamicNone: |
4873 | case EST_BasicNoexcept: |
4874 | case EST_NoexceptTrue: |
4875 | case EST_NoThrow: |
4876 | CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept; |
4877 | break; |
4878 | |
4879 | case EST_DependentNoexcept: |
4880 | llvm_unreachable("dependent noexcept is already canonical" ); |
4881 | } |
4882 | } else { |
4883 | CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo(); |
4884 | } |
4885 | |
4886 | // Adjust the canonical function result type. |
4887 | CanQualType CanResultTy = getCanonicalFunctionResultType(ResultType: ResultTy); |
4888 | Canonical = |
4889 | getFunctionTypeInternal(ResultTy: CanResultTy, ArgArray: CanonicalArgs, EPI: CanonicalEPI, OnlyWantCanonical: true); |
4890 | |
4891 | // Get the new insert position for the node we care about. |
4892 | FunctionProtoType *NewIP = |
4893 | FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); |
4894 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
4895 | } |
4896 | |
4897 | // Compute the needed size to hold this FunctionProtoType and the |
4898 | // various trailing objects. |
4899 | auto ESH = FunctionProtoType::getExceptionSpecSize( |
4900 | EST: EPI.ExceptionSpec.Type, NumExceptions: EPI.ExceptionSpec.Exceptions.size()); |
4901 | size_t Size = FunctionProtoType::totalSizeToAlloc< |
4902 | QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields, |
4903 | FunctionType::FunctionTypeArmAttributes, FunctionType::ExceptionType, |
4904 | Expr *, FunctionDecl *, FunctionProtoType::ExtParameterInfo, Qualifiers, |
4905 | FunctionEffect, EffectConditionExpr>( |
4906 | Counts: NumArgs, Counts: EPI.Variadic, Counts: EPI.requiresFunctionProtoTypeExtraBitfields(), |
4907 | Counts: EPI.requiresFunctionProtoTypeArmAttributes(), Counts: ESH.NumExceptionType, |
4908 | Counts: ESH.NumExprPtr, Counts: ESH.NumFunctionDeclPtr, |
4909 | Counts: EPI.ExtParameterInfos ? NumArgs : 0, |
4910 | Counts: EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0, Counts: EPI.FunctionEffects.size(), |
4911 | Counts: EPI.FunctionEffects.conditions().size()); |
4912 | |
4913 | auto *FTP = (FunctionProtoType *)Allocate(Size, Align: alignof(FunctionProtoType)); |
4914 | FunctionProtoType::ExtProtoInfo newEPI = EPI; |
4915 | new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI); |
4916 | Types.push_back(Elt: FTP); |
4917 | if (!Unique) |
4918 | FunctionProtoTypes.InsertNode(N: FTP, InsertPos); |
4919 | if (!EPI.FunctionEffects.empty()) |
4920 | AnyFunctionEffects = true; |
4921 | return QualType(FTP, 0); |
4922 | } |
4923 | |
4924 | QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const { |
4925 | llvm::FoldingSetNodeID ID; |
4926 | PipeType::Profile(ID, T, isRead: ReadOnly); |
4927 | |
4928 | void *InsertPos = nullptr; |
4929 | if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4930 | return QualType(PT, 0); |
4931 | |
4932 | // If the pipe element type isn't canonical, this won't be a canonical type |
4933 | // either, so fill in the canonical type field. |
4934 | QualType Canonical; |
4935 | if (!T.isCanonical()) { |
4936 | Canonical = getPipeType(T: getCanonicalType(T), ReadOnly); |
4937 | |
4938 | // Get the new insert position for the node we care about. |
4939 | PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos); |
4940 | assert(!NewIP && "Shouldn't be in the map!" ); |
4941 | (void)NewIP; |
4942 | } |
4943 | auto *New = new (*this, alignof(PipeType)) PipeType(T, Canonical, ReadOnly); |
4944 | Types.push_back(Elt: New); |
4945 | PipeTypes.InsertNode(N: New, InsertPos); |
4946 | return QualType(New, 0); |
4947 | } |
4948 | |
4949 | QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const { |
4950 | // OpenCL v1.1 s6.5.3: a string literal is in the constant address space. |
4951 | return LangOpts.OpenCL ? getAddrSpaceQualType(T: Ty, AddressSpace: LangAS::opencl_constant) |
4952 | : Ty; |
4953 | } |
4954 | |
4955 | QualType ASTContext::getReadPipeType(QualType T) const { |
4956 | return getPipeType(T, ReadOnly: true); |
4957 | } |
4958 | |
4959 | QualType ASTContext::getWritePipeType(QualType T) const { |
4960 | return getPipeType(T, ReadOnly: false); |
4961 | } |
4962 | |
4963 | QualType ASTContext::getBitIntType(bool IsUnsigned, unsigned NumBits) const { |
4964 | llvm::FoldingSetNodeID ID; |
4965 | BitIntType::Profile(ID, IsUnsigned, NumBits); |
4966 | |
4967 | void *InsertPos = nullptr; |
4968 | if (BitIntType *EIT = BitIntTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4969 | return QualType(EIT, 0); |
4970 | |
4971 | auto *New = new (*this, alignof(BitIntType)) BitIntType(IsUnsigned, NumBits); |
4972 | BitIntTypes.InsertNode(N: New, InsertPos); |
4973 | Types.push_back(Elt: New); |
4974 | return QualType(New, 0); |
4975 | } |
4976 | |
4977 | QualType ASTContext::getDependentBitIntType(bool IsUnsigned, |
4978 | Expr *NumBitsExpr) const { |
4979 | assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent" ); |
4980 | llvm::FoldingSetNodeID ID; |
4981 | DependentBitIntType::Profile(ID, Context: *this, IsUnsigned, NumBitsExpr); |
4982 | |
4983 | void *InsertPos = nullptr; |
4984 | if (DependentBitIntType *Existing = |
4985 | DependentBitIntTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4986 | return QualType(Existing, 0); |
4987 | |
4988 | auto *New = new (*this, alignof(DependentBitIntType)) |
4989 | DependentBitIntType(IsUnsigned, NumBitsExpr); |
4990 | DependentBitIntTypes.InsertNode(N: New, InsertPos); |
4991 | |
4992 | Types.push_back(Elt: New); |
4993 | return QualType(New, 0); |
4994 | } |
4995 | |
4996 | #ifndef NDEBUG |
4997 | static bool NeedsInjectedClassNameType(const RecordDecl *D) { |
4998 | if (!isa<CXXRecordDecl>(D)) return false; |
4999 | const auto *RD = cast<CXXRecordDecl>(D); |
5000 | if (isa<ClassTemplatePartialSpecializationDecl>(RD)) |
5001 | return true; |
5002 | if (RD->getDescribedClassTemplate() && |
5003 | !isa<ClassTemplateSpecializationDecl>(RD)) |
5004 | return true; |
5005 | return false; |
5006 | } |
5007 | #endif |
5008 | |
5009 | /// getInjectedClassNameType - Return the unique reference to the |
5010 | /// injected class name type for the specified templated declaration. |
5011 | QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl, |
5012 | QualType TST) const { |
5013 | assert(NeedsInjectedClassNameType(Decl)); |
5014 | if (Decl->TypeForDecl) { |
5015 | assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); |
5016 | } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) { |
5017 | assert(PrevDecl->TypeForDecl && "previous declaration has no type" ); |
5018 | Decl->TypeForDecl = PrevDecl->TypeForDecl; |
5019 | assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); |
5020 | } else { |
5021 | Type *newType = new (*this, alignof(InjectedClassNameType)) |
5022 | InjectedClassNameType(Decl, TST); |
5023 | Decl->TypeForDecl = newType; |
5024 | Types.push_back(Elt: newType); |
5025 | } |
5026 | return QualType(Decl->TypeForDecl, 0); |
5027 | } |
5028 | |
5029 | /// getTypeDeclType - Return the unique reference to the type for the |
5030 | /// specified type declaration. |
5031 | QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const { |
5032 | assert(Decl && "Passed null for Decl param" ); |
5033 | assert(!Decl->TypeForDecl && "TypeForDecl present in slow case" ); |
5034 | |
5035 | if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Val: Decl)) |
5036 | return getTypedefType(Decl: Typedef); |
5037 | |
5038 | assert(!isa<TemplateTypeParmDecl>(Decl) && |
5039 | "Template type parameter types are always available." ); |
5040 | |
5041 | if (const auto *Record = dyn_cast<RecordDecl>(Val: Decl)) { |
5042 | assert(Record->isFirstDecl() && "struct/union has previous declaration" ); |
5043 | assert(!NeedsInjectedClassNameType(Record)); |
5044 | return getRecordType(Decl: Record); |
5045 | } else if (const auto *Enum = dyn_cast<EnumDecl>(Val: Decl)) { |
5046 | assert(Enum->isFirstDecl() && "enum has previous declaration" ); |
5047 | return getEnumType(Decl: Enum); |
5048 | } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Val: Decl)) { |
5049 | return getUnresolvedUsingType(Decl: Using); |
5050 | } else |
5051 | llvm_unreachable("TypeDecl without a type?" ); |
5052 | |
5053 | return QualType(Decl->TypeForDecl, 0); |
5054 | } |
5055 | |
5056 | /// getTypedefType - Return the unique reference to the type for the |
5057 | /// specified typedef name decl. |
5058 | QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl, |
5059 | QualType Underlying) const { |
5060 | if (!Decl->TypeForDecl) { |
5061 | if (Underlying.isNull()) |
5062 | Underlying = Decl->getUnderlyingType(); |
5063 | auto *NewType = new (*this, alignof(TypedefType)) TypedefType( |
5064 | Type::Typedef, Decl, QualType(), getCanonicalType(T: Underlying)); |
5065 | Decl->TypeForDecl = NewType; |
5066 | Types.push_back(Elt: NewType); |
5067 | return QualType(NewType, 0); |
5068 | } |
5069 | if (Underlying.isNull() || Decl->getUnderlyingType() == Underlying) |
5070 | return QualType(Decl->TypeForDecl, 0); |
5071 | assert(hasSameType(Decl->getUnderlyingType(), Underlying)); |
5072 | |
5073 | llvm::FoldingSetNodeID ID; |
5074 | TypedefType::Profile(ID, Decl, Underlying); |
5075 | |
5076 | void *InsertPos = nullptr; |
5077 | if (TypedefType *T = TypedefTypes.FindNodeOrInsertPos(ID, InsertPos)) { |
5078 | assert(!T->typeMatchesDecl() && |
5079 | "non-divergent case should be handled with TypeDecl" ); |
5080 | return QualType(T, 0); |
5081 | } |
5082 | |
5083 | void *Mem = Allocate(Size: TypedefType::totalSizeToAlloc<QualType>(Counts: true), |
5084 | Align: alignof(TypedefType)); |
5085 | auto *NewType = new (Mem) TypedefType(Type::Typedef, Decl, Underlying, |
5086 | getCanonicalType(T: Underlying)); |
5087 | TypedefTypes.InsertNode(N: NewType, InsertPos); |
5088 | Types.push_back(Elt: NewType); |
5089 | return QualType(NewType, 0); |
5090 | } |
5091 | |
5092 | QualType ASTContext::getUsingType(const UsingShadowDecl *Found, |
5093 | QualType Underlying) const { |
5094 | llvm::FoldingSetNodeID ID; |
5095 | UsingType::Profile(ID, Found, Underlying); |
5096 | |
5097 | void *InsertPos = nullptr; |
5098 | if (UsingType *T = UsingTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5099 | return QualType(T, 0); |
5100 | |
5101 | const Type *TypeForDecl = |
5102 | cast<TypeDecl>(Val: Found->getTargetDecl())->getTypeForDecl(); |
5103 | |
5104 | assert(!Underlying.hasLocalQualifiers()); |
5105 | QualType Canon = Underlying->getCanonicalTypeInternal(); |
5106 | assert(TypeForDecl->getCanonicalTypeInternal() == Canon); |
5107 | |
5108 | if (Underlying.getTypePtr() == TypeForDecl) |
5109 | Underlying = QualType(); |
5110 | void *Mem = |
5111 | Allocate(Size: UsingType::totalSizeToAlloc<QualType>(Counts: !Underlying.isNull()), |
5112 | Align: alignof(UsingType)); |
5113 | UsingType *NewType = new (Mem) UsingType(Found, Underlying, Canon); |
5114 | Types.push_back(Elt: NewType); |
5115 | UsingTypes.InsertNode(N: NewType, InsertPos); |
5116 | return QualType(NewType, 0); |
5117 | } |
5118 | |
5119 | QualType ASTContext::getRecordType(const RecordDecl *Decl) const { |
5120 | if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
5121 | |
5122 | if (const RecordDecl *PrevDecl = Decl->getPreviousDecl()) |
5123 | if (PrevDecl->TypeForDecl) |
5124 | return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); |
5125 | |
5126 | auto *newType = new (*this, alignof(RecordType)) RecordType(Decl); |
5127 | Decl->TypeForDecl = newType; |
5128 | Types.push_back(Elt: newType); |
5129 | return QualType(newType, 0); |
5130 | } |
5131 | |
5132 | QualType ASTContext::getEnumType(const EnumDecl *Decl) const { |
5133 | if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
5134 | |
5135 | if (const EnumDecl *PrevDecl = Decl->getPreviousDecl()) |
5136 | if (PrevDecl->TypeForDecl) |
5137 | return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); |
5138 | |
5139 | auto *newType = new (*this, alignof(EnumType)) EnumType(Decl); |
5140 | Decl->TypeForDecl = newType; |
5141 | Types.push_back(Elt: newType); |
5142 | return QualType(newType, 0); |
5143 | } |
5144 | |
5145 | QualType ASTContext::getUnresolvedUsingType( |
5146 | const UnresolvedUsingTypenameDecl *Decl) const { |
5147 | if (Decl->TypeForDecl) |
5148 | return QualType(Decl->TypeForDecl, 0); |
5149 | |
5150 | if (const UnresolvedUsingTypenameDecl *CanonicalDecl = |
5151 | Decl->getCanonicalDecl()) |
5152 | if (CanonicalDecl->TypeForDecl) |
5153 | return QualType(Decl->TypeForDecl = CanonicalDecl->TypeForDecl, 0); |
5154 | |
5155 | Type *newType = |
5156 | new (*this, alignof(UnresolvedUsingType)) UnresolvedUsingType(Decl); |
5157 | Decl->TypeForDecl = newType; |
5158 | Types.push_back(Elt: newType); |
5159 | return QualType(newType, 0); |
5160 | } |
5161 | |
5162 | QualType ASTContext::getAttributedType(attr::Kind attrKind, |
5163 | QualType modifiedType, |
5164 | QualType equivalentType) const { |
5165 | llvm::FoldingSetNodeID id; |
5166 | AttributedType::Profile(ID&: id, attrKind, modified: modifiedType, equivalent: equivalentType); |
5167 | |
5168 | void *insertPos = nullptr; |
5169 | AttributedType *type = AttributedTypes.FindNodeOrInsertPos(ID: id, InsertPos&: insertPos); |
5170 | if (type) return QualType(type, 0); |
5171 | |
5172 | QualType canon = getCanonicalType(T: equivalentType); |
5173 | type = new (*this, alignof(AttributedType)) |
5174 | AttributedType(canon, attrKind, modifiedType, equivalentType); |
5175 | |
5176 | Types.push_back(Elt: type); |
5177 | AttributedTypes.InsertNode(N: type, InsertPos: insertPos); |
5178 | |
5179 | return QualType(type, 0); |
5180 | } |
5181 | |
5182 | QualType ASTContext::getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr, |
5183 | QualType Wrapped) { |
5184 | llvm::FoldingSetNodeID ID; |
5185 | BTFTagAttributedType::Profile(ID, Wrapped, BTFAttr); |
5186 | |
5187 | void *InsertPos = nullptr; |
5188 | BTFTagAttributedType *Ty = |
5189 | BTFTagAttributedTypes.FindNodeOrInsertPos(ID, InsertPos); |
5190 | if (Ty) |
5191 | return QualType(Ty, 0); |
5192 | |
5193 | QualType Canon = getCanonicalType(T: Wrapped); |
5194 | Ty = new (*this, alignof(BTFTagAttributedType)) |
5195 | BTFTagAttributedType(Canon, Wrapped, BTFAttr); |
5196 | |
5197 | Types.push_back(Elt: Ty); |
5198 | BTFTagAttributedTypes.InsertNode(N: Ty, InsertPos); |
5199 | |
5200 | return QualType(Ty, 0); |
5201 | } |
5202 | |
5203 | /// Retrieve a substitution-result type. |
5204 | QualType ASTContext::getSubstTemplateTypeParmType( |
5205 | QualType Replacement, Decl *AssociatedDecl, unsigned Index, |
5206 | std::optional<unsigned> PackIndex) const { |
5207 | llvm::FoldingSetNodeID ID; |
5208 | SubstTemplateTypeParmType::Profile(ID, Replacement, AssociatedDecl, Index, |
5209 | PackIndex); |
5210 | void *InsertPos = nullptr; |
5211 | SubstTemplateTypeParmType *SubstParm = |
5212 | SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
5213 | |
5214 | if (!SubstParm) { |
5215 | void *Mem = Allocate(Size: SubstTemplateTypeParmType::totalSizeToAlloc<QualType>( |
5216 | Counts: !Replacement.isCanonical()), |
5217 | Align: alignof(SubstTemplateTypeParmType)); |
5218 | SubstParm = new (Mem) SubstTemplateTypeParmType(Replacement, AssociatedDecl, |
5219 | Index, PackIndex); |
5220 | Types.push_back(Elt: SubstParm); |
5221 | SubstTemplateTypeParmTypes.InsertNode(N: SubstParm, InsertPos); |
5222 | } |
5223 | |
5224 | return QualType(SubstParm, 0); |
5225 | } |
5226 | |
5227 | /// Retrieve a |
5228 | QualType |
5229 | ASTContext::getSubstTemplateTypeParmPackType(Decl *AssociatedDecl, |
5230 | unsigned Index, bool Final, |
5231 | const TemplateArgument &ArgPack) { |
5232 | #ifndef NDEBUG |
5233 | for (const auto &P : ArgPack.pack_elements()) |
5234 | assert(P.getKind() == TemplateArgument::Type && "Pack contains a non-type" ); |
5235 | #endif |
5236 | |
5237 | llvm::FoldingSetNodeID ID; |
5238 | SubstTemplateTypeParmPackType::Profile(ID, AssociatedDecl, Index, Final, |
5239 | ArgPack); |
5240 | void *InsertPos = nullptr; |
5241 | if (SubstTemplateTypeParmPackType *SubstParm = |
5242 | SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5243 | return QualType(SubstParm, 0); |
5244 | |
5245 | QualType Canon; |
5246 | { |
5247 | TemplateArgument CanonArgPack = getCanonicalTemplateArgument(Arg: ArgPack); |
5248 | if (!AssociatedDecl->isCanonicalDecl() || |
5249 | !CanonArgPack.structurallyEquals(Other: ArgPack)) { |
5250 | Canon = getSubstTemplateTypeParmPackType( |
5251 | AssociatedDecl: AssociatedDecl->getCanonicalDecl(), Index, Final, ArgPack: CanonArgPack); |
5252 | [[maybe_unused]] const auto *Nothing = |
5253 | SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos); |
5254 | assert(!Nothing); |
5255 | } |
5256 | } |
5257 | |
5258 | auto *SubstParm = new (*this, alignof(SubstTemplateTypeParmPackType)) |
5259 | SubstTemplateTypeParmPackType(Canon, AssociatedDecl, Index, Final, |
5260 | ArgPack); |
5261 | Types.push_back(Elt: SubstParm); |
5262 | SubstTemplateTypeParmPackTypes.InsertNode(N: SubstParm, InsertPos); |
5263 | return QualType(SubstParm, 0); |
5264 | } |
5265 | |
5266 | /// Retrieve the template type parameter type for a template |
5267 | /// parameter or parameter pack with the given depth, index, and (optionally) |
5268 | /// name. |
5269 | QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, |
5270 | bool ParameterPack, |
5271 | TemplateTypeParmDecl *TTPDecl) const { |
5272 | llvm::FoldingSetNodeID ID; |
5273 | TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl); |
5274 | void *InsertPos = nullptr; |
5275 | TemplateTypeParmType *TypeParm |
5276 | = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
5277 | |
5278 | if (TypeParm) |
5279 | return QualType(TypeParm, 0); |
5280 | |
5281 | if (TTPDecl) { |
5282 | QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack); |
5283 | TypeParm = new (*this, alignof(TemplateTypeParmType)) |
5284 | TemplateTypeParmType(TTPDecl, Canon); |
5285 | |
5286 | TemplateTypeParmType *TypeCheck |
5287 | = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
5288 | assert(!TypeCheck && "Template type parameter canonical type broken" ); |
5289 | (void)TypeCheck; |
5290 | } else |
5291 | TypeParm = new (*this, alignof(TemplateTypeParmType)) |
5292 | TemplateTypeParmType(Depth, Index, ParameterPack); |
5293 | |
5294 | Types.push_back(Elt: TypeParm); |
5295 | TemplateTypeParmTypes.InsertNode(N: TypeParm, InsertPos); |
5296 | |
5297 | return QualType(TypeParm, 0); |
5298 | } |
5299 | |
5300 | TypeSourceInfo * |
5301 | ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name, |
5302 | SourceLocation NameLoc, |
5303 | const TemplateArgumentListInfo &Args, |
5304 | QualType Underlying) const { |
5305 | assert(!Name.getAsDependentTemplateName() && |
5306 | "No dependent template names here!" ); |
5307 | QualType TST = |
5308 | getTemplateSpecializationType(T: Name, Args: Args.arguments(), Canon: Underlying); |
5309 | |
5310 | TypeSourceInfo *DI = CreateTypeSourceInfo(T: TST); |
5311 | TemplateSpecializationTypeLoc TL = |
5312 | DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>(); |
5313 | TL.setTemplateKeywordLoc(SourceLocation()); |
5314 | TL.setTemplateNameLoc(NameLoc); |
5315 | TL.setLAngleLoc(Args.getLAngleLoc()); |
5316 | TL.setRAngleLoc(Args.getRAngleLoc()); |
5317 | for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) |
5318 | TL.setArgLocInfo(i, AI: Args[i].getLocInfo()); |
5319 | return DI; |
5320 | } |
5321 | |
5322 | QualType |
5323 | ASTContext::getTemplateSpecializationType(TemplateName Template, |
5324 | ArrayRef<TemplateArgumentLoc> Args, |
5325 | QualType Underlying) const { |
5326 | assert(!Template.getAsDependentTemplateName() && |
5327 | "No dependent template names here!" ); |
5328 | |
5329 | SmallVector<TemplateArgument, 4> ArgVec; |
5330 | ArgVec.reserve(N: Args.size()); |
5331 | for (const TemplateArgumentLoc &Arg : Args) |
5332 | ArgVec.push_back(Elt: Arg.getArgument()); |
5333 | |
5334 | return getTemplateSpecializationType(T: Template, Args: ArgVec, Canon: Underlying); |
5335 | } |
5336 | |
5337 | #ifndef NDEBUG |
5338 | static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) { |
5339 | for (const TemplateArgument &Arg : Args) |
5340 | if (Arg.isPackExpansion()) |
5341 | return true; |
5342 | |
5343 | return true; |
5344 | } |
5345 | #endif |
5346 | |
5347 | QualType |
5348 | ASTContext::getTemplateSpecializationType(TemplateName Template, |
5349 | ArrayRef<TemplateArgument> Args, |
5350 | QualType Underlying) const { |
5351 | assert(!Template.getAsDependentTemplateName() && |
5352 | "No dependent template names here!" ); |
5353 | |
5354 | const auto *TD = Template.getAsTemplateDecl(); |
5355 | bool IsTypeAlias = TD && TD->isTypeAlias(); |
5356 | QualType CanonType; |
5357 | if (!Underlying.isNull()) |
5358 | CanonType = getCanonicalType(T: Underlying); |
5359 | else { |
5360 | // We can get here with an alias template when the specialization contains |
5361 | // a pack expansion that does not match up with a parameter pack. |
5362 | assert((!IsTypeAlias || hasAnyPackExpansions(Args)) && |
5363 | "Caller must compute aliased type" ); |
5364 | IsTypeAlias = false; |
5365 | CanonType = getCanonicalTemplateSpecializationType(T: Template, Args); |
5366 | } |
5367 | |
5368 | // Allocate the (non-canonical) template specialization type, but don't |
5369 | // try to unique it: these types typically have location information that |
5370 | // we don't unique and don't want to lose. |
5371 | void *Mem = Allocate(Size: sizeof(TemplateSpecializationType) + |
5372 | sizeof(TemplateArgument) * Args.size() + |
5373 | (IsTypeAlias ? sizeof(QualType) : 0), |
5374 | Align: alignof(TemplateSpecializationType)); |
5375 | auto *Spec |
5376 | = new (Mem) TemplateSpecializationType(Template, Args, CanonType, |
5377 | IsTypeAlias ? Underlying : QualType()); |
5378 | |
5379 | Types.push_back(Elt: Spec); |
5380 | return QualType(Spec, 0); |
5381 | } |
5382 | |
5383 | QualType ASTContext::getCanonicalTemplateSpecializationType( |
5384 | TemplateName Template, ArrayRef<TemplateArgument> Args) const { |
5385 | assert(!Template.getAsDependentTemplateName() && |
5386 | "No dependent template names here!" ); |
5387 | |
5388 | // Build the canonical template specialization type. |
5389 | TemplateName CanonTemplate = getCanonicalTemplateName(Name: Template); |
5390 | bool AnyNonCanonArgs = false; |
5391 | auto CanonArgs = |
5392 | ::getCanonicalTemplateArguments(C: *this, Args, AnyNonCanonArgs); |
5393 | |
5394 | // Determine whether this canonical template specialization type already |
5395 | // exists. |
5396 | llvm::FoldingSetNodeID ID; |
5397 | TemplateSpecializationType::Profile(ID, T: CanonTemplate, |
5398 | Args: CanonArgs, Context: *this); |
5399 | |
5400 | void *InsertPos = nullptr; |
5401 | TemplateSpecializationType *Spec |
5402 | = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); |
5403 | |
5404 | if (!Spec) { |
5405 | // Allocate a new canonical template specialization type. |
5406 | void *Mem = Allocate(Size: (sizeof(TemplateSpecializationType) + |
5407 | sizeof(TemplateArgument) * CanonArgs.size()), |
5408 | Align: alignof(TemplateSpecializationType)); |
5409 | Spec = new (Mem) TemplateSpecializationType(CanonTemplate, |
5410 | CanonArgs, |
5411 | QualType(), QualType()); |
5412 | Types.push_back(Elt: Spec); |
5413 | TemplateSpecializationTypes.InsertNode(N: Spec, InsertPos); |
5414 | } |
5415 | |
5416 | assert(Spec->isDependentType() && |
5417 | "Non-dependent template-id type must have a canonical type" ); |
5418 | return QualType(Spec, 0); |
5419 | } |
5420 | |
5421 | QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword, |
5422 | NestedNameSpecifier *NNS, |
5423 | QualType NamedType, |
5424 | TagDecl *OwnedTagDecl) const { |
5425 | llvm::FoldingSetNodeID ID; |
5426 | ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl); |
5427 | |
5428 | void *InsertPos = nullptr; |
5429 | ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); |
5430 | if (T) |
5431 | return QualType(T, 0); |
5432 | |
5433 | QualType Canon = NamedType; |
5434 | if (!Canon.isCanonical()) { |
5435 | Canon = getCanonicalType(T: NamedType); |
5436 | ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); |
5437 | assert(!CheckT && "Elaborated canonical type broken" ); |
5438 | (void)CheckT; |
5439 | } |
5440 | |
5441 | void *Mem = |
5442 | Allocate(Size: ElaboratedType::totalSizeToAlloc<TagDecl *>(Counts: !!OwnedTagDecl), |
5443 | Align: alignof(ElaboratedType)); |
5444 | T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl); |
5445 | |
5446 | Types.push_back(Elt: T); |
5447 | ElaboratedTypes.InsertNode(N: T, InsertPos); |
5448 | return QualType(T, 0); |
5449 | } |
5450 | |
5451 | QualType |
5452 | ASTContext::getParenType(QualType InnerType) const { |
5453 | llvm::FoldingSetNodeID ID; |
5454 | ParenType::Profile(ID, Inner: InnerType); |
5455 | |
5456 | void *InsertPos = nullptr; |
5457 | ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); |
5458 | if (T) |
5459 | return QualType(T, 0); |
5460 | |
5461 | QualType Canon = InnerType; |
5462 | if (!Canon.isCanonical()) { |
5463 | Canon = getCanonicalType(T: InnerType); |
5464 | ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); |
5465 | assert(!CheckT && "Paren canonical type broken" ); |
5466 | (void)CheckT; |
5467 | } |
5468 | |
5469 | T = new (*this, alignof(ParenType)) ParenType(InnerType, Canon); |
5470 | Types.push_back(Elt: T); |
5471 | ParenTypes.InsertNode(N: T, InsertPos); |
5472 | return QualType(T, 0); |
5473 | } |
5474 | |
5475 | QualType |
5476 | ASTContext::getMacroQualifiedType(QualType UnderlyingTy, |
5477 | const IdentifierInfo *MacroII) const { |
5478 | QualType Canon = UnderlyingTy; |
5479 | if (!Canon.isCanonical()) |
5480 | Canon = getCanonicalType(T: UnderlyingTy); |
5481 | |
5482 | auto *newType = new (*this, alignof(MacroQualifiedType)) |
5483 | MacroQualifiedType(UnderlyingTy, Canon, MacroII); |
5484 | Types.push_back(Elt: newType); |
5485 | return QualType(newType, 0); |
5486 | } |
5487 | |
5488 | QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword, |
5489 | NestedNameSpecifier *NNS, |
5490 | const IdentifierInfo *Name, |
5491 | QualType Canon) const { |
5492 | if (Canon.isNull()) { |
5493 | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
5494 | if (CanonNNS != NNS) |
5495 | Canon = getDependentNameType(Keyword, NNS: CanonNNS, Name); |
5496 | } |
5497 | |
5498 | llvm::FoldingSetNodeID ID; |
5499 | DependentNameType::Profile(ID, Keyword, NNS, Name); |
5500 | |
5501 | void *InsertPos = nullptr; |
5502 | DependentNameType *T |
5503 | = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos); |
5504 | if (T) |
5505 | return QualType(T, 0); |
5506 | |
5507 | T = new (*this, alignof(DependentNameType)) |
5508 | DependentNameType(Keyword, NNS, Name, Canon); |
5509 | Types.push_back(Elt: T); |
5510 | DependentNameTypes.InsertNode(N: T, InsertPos); |
5511 | return QualType(T, 0); |
5512 | } |
5513 | |
5514 | QualType ASTContext::getDependentTemplateSpecializationType( |
5515 | ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, |
5516 | const IdentifierInfo *Name, ArrayRef<TemplateArgumentLoc> Args) const { |
5517 | // TODO: avoid this copy |
5518 | SmallVector<TemplateArgument, 16> ArgCopy; |
5519 | for (unsigned I = 0, E = Args.size(); I != E; ++I) |
5520 | ArgCopy.push_back(Elt: Args[I].getArgument()); |
5521 | return getDependentTemplateSpecializationType(Keyword, NNS, Name, Args: ArgCopy); |
5522 | } |
5523 | |
5524 | QualType |
5525 | ASTContext::getDependentTemplateSpecializationType( |
5526 | ElaboratedTypeKeyword Keyword, |
5527 | NestedNameSpecifier *NNS, |
5528 | const IdentifierInfo *Name, |
5529 | ArrayRef<TemplateArgument> Args) const { |
5530 | assert((!NNS || NNS->isDependent()) && |
5531 | "nested-name-specifier must be dependent" ); |
5532 | |
5533 | llvm::FoldingSetNodeID ID; |
5534 | DependentTemplateSpecializationType::Profile(ID, Context: *this, Keyword, Qualifier: NNS, |
5535 | Name, Args); |
5536 | |
5537 | void *InsertPos = nullptr; |
5538 | DependentTemplateSpecializationType *T |
5539 | = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); |
5540 | if (T) |
5541 | return QualType(T, 0); |
5542 | |
5543 | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
5544 | |
5545 | ElaboratedTypeKeyword CanonKeyword = Keyword; |
5546 | if (Keyword == ElaboratedTypeKeyword::None) |
5547 | CanonKeyword = ElaboratedTypeKeyword::Typename; |
5548 | |
5549 | bool AnyNonCanonArgs = false; |
5550 | auto CanonArgs = |
5551 | ::getCanonicalTemplateArguments(C: *this, Args, AnyNonCanonArgs); |
5552 | |
5553 | QualType Canon; |
5554 | if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) { |
5555 | Canon = getDependentTemplateSpecializationType(Keyword: CanonKeyword, NNS: CanonNNS, |
5556 | Name, |
5557 | Args: CanonArgs); |
5558 | |
5559 | // Find the insert position again. |
5560 | [[maybe_unused]] auto *Nothing = |
5561 | DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); |
5562 | assert(!Nothing && "canonical type broken" ); |
5563 | } |
5564 | |
5565 | void *Mem = Allocate(Size: (sizeof(DependentTemplateSpecializationType) + |
5566 | sizeof(TemplateArgument) * Args.size()), |
5567 | Align: alignof(DependentTemplateSpecializationType)); |
5568 | T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS, |
5569 | Name, Args, Canon); |
5570 | Types.push_back(Elt: T); |
5571 | DependentTemplateSpecializationTypes.InsertNode(N: T, InsertPos); |
5572 | return QualType(T, 0); |
5573 | } |
5574 | |
5575 | TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) { |
5576 | TemplateArgument Arg; |
5577 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: Param)) { |
5578 | QualType ArgType = getTypeDeclType(Decl: TTP); |
5579 | if (TTP->isParameterPack()) |
5580 | ArgType = getPackExpansionType(Pattern: ArgType, NumExpansions: std::nullopt); |
5581 | |
5582 | Arg = TemplateArgument(ArgType); |
5583 | } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) { |
5584 | QualType T = |
5585 | NTTP->getType().getNonPackExpansionType().getNonLValueExprType(Context: *this); |
5586 | // For class NTTPs, ensure we include the 'const' so the type matches that |
5587 | // of a real template argument. |
5588 | // FIXME: It would be more faithful to model this as something like an |
5589 | // lvalue-to-rvalue conversion applied to a const-qualified lvalue. |
5590 | if (T->isRecordType()) |
5591 | T.addConst(); |
5592 | Expr *E = new (*this) DeclRefExpr( |
5593 | *this, NTTP, /*RefersToEnclosingVariableOrCapture*/ false, T, |
5594 | Expr::getValueKindForType(T: NTTP->getType()), NTTP->getLocation()); |
5595 | |
5596 | if (NTTP->isParameterPack()) |
5597 | E = new (*this) |
5598 | PackExpansionExpr(DependentTy, E, NTTP->getLocation(), std::nullopt); |
5599 | Arg = TemplateArgument(E); |
5600 | } else { |
5601 | auto *TTP = cast<TemplateTemplateParmDecl>(Val: Param); |
5602 | TemplateName Name = getQualifiedTemplateName( |
5603 | NNS: nullptr, /*TemplateKeyword=*/false, Template: TemplateName(TTP)); |
5604 | if (TTP->isParameterPack()) |
5605 | Arg = TemplateArgument(Name, std::optional<unsigned>()); |
5606 | else |
5607 | Arg = TemplateArgument(Name); |
5608 | } |
5609 | |
5610 | if (Param->isTemplateParameterPack()) |
5611 | Arg = TemplateArgument::CreatePackCopy(Context&: *this, Args: Arg); |
5612 | |
5613 | return Arg; |
5614 | } |
5615 | |
5616 | void |
5617 | ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params, |
5618 | SmallVectorImpl<TemplateArgument> &Args) { |
5619 | Args.reserve(N: Args.size() + Params->size()); |
5620 | |
5621 | for (NamedDecl *Param : *Params) |
5622 | Args.push_back(Elt: getInjectedTemplateArg(Param)); |
5623 | } |
5624 | |
5625 | QualType ASTContext::getPackExpansionType(QualType Pattern, |
5626 | std::optional<unsigned> NumExpansions, |
5627 | bool ExpectPackInType) { |
5628 | assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) && |
5629 | "Pack expansions must expand one or more parameter packs" ); |
5630 | |
5631 | llvm::FoldingSetNodeID ID; |
5632 | PackExpansionType::Profile(ID, Pattern, NumExpansions); |
5633 | |
5634 | void *InsertPos = nullptr; |
5635 | PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); |
5636 | if (T) |
5637 | return QualType(T, 0); |
5638 | |
5639 | QualType Canon; |
5640 | if (!Pattern.isCanonical()) { |
5641 | Canon = getPackExpansionType(Pattern: getCanonicalType(T: Pattern), NumExpansions, |
5642 | /*ExpectPackInType=*/false); |
5643 | |
5644 | // Find the insert position again, in case we inserted an element into |
5645 | // PackExpansionTypes and invalidated our insert position. |
5646 | PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); |
5647 | } |
5648 | |
5649 | T = new (*this, alignof(PackExpansionType)) |
5650 | PackExpansionType(Pattern, Canon, NumExpansions); |
5651 | Types.push_back(Elt: T); |
5652 | PackExpansionTypes.InsertNode(N: T, InsertPos); |
5653 | return QualType(T, 0); |
5654 | } |
5655 | |
5656 | /// CmpProtocolNames - Comparison predicate for sorting protocols |
5657 | /// alphabetically. |
5658 | static int CmpProtocolNames(ObjCProtocolDecl *const *LHS, |
5659 | ObjCProtocolDecl *const *RHS) { |
5660 | return DeclarationName::compare(LHS: (*LHS)->getDeclName(), RHS: (*RHS)->getDeclName()); |
5661 | } |
5662 | |
5663 | static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) { |
5664 | if (Protocols.empty()) return true; |
5665 | |
5666 | if (Protocols[0]->getCanonicalDecl() != Protocols[0]) |
5667 | return false; |
5668 | |
5669 | for (unsigned i = 1; i != Protocols.size(); ++i) |
5670 | if (CmpProtocolNames(LHS: &Protocols[i - 1], RHS: &Protocols[i]) >= 0 || |
5671 | Protocols[i]->getCanonicalDecl() != Protocols[i]) |
5672 | return false; |
5673 | return true; |
5674 | } |
5675 | |
5676 | static void |
5677 | SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) { |
5678 | // Sort protocols, keyed by name. |
5679 | llvm::array_pod_sort(Start: Protocols.begin(), End: Protocols.end(), Compare: CmpProtocolNames); |
5680 | |
5681 | // Canonicalize. |
5682 | for (ObjCProtocolDecl *&P : Protocols) |
5683 | P = P->getCanonicalDecl(); |
5684 | |
5685 | // Remove duplicates. |
5686 | auto ProtocolsEnd = std::unique(first: Protocols.begin(), last: Protocols.end()); |
5687 | Protocols.erase(CS: ProtocolsEnd, CE: Protocols.end()); |
5688 | } |
5689 | |
5690 | QualType ASTContext::getObjCObjectType(QualType BaseType, |
5691 | ObjCProtocolDecl * const *Protocols, |
5692 | unsigned NumProtocols) const { |
5693 | return getObjCObjectType(Base: BaseType, typeArgs: {}, |
5694 | protocols: llvm::ArrayRef(Protocols, NumProtocols), |
5695 | /*isKindOf=*/false); |
5696 | } |
5697 | |
5698 | QualType ASTContext::getObjCObjectType( |
5699 | QualType baseType, |
5700 | ArrayRef<QualType> typeArgs, |
5701 | ArrayRef<ObjCProtocolDecl *> protocols, |
5702 | bool isKindOf) const { |
5703 | // If the base type is an interface and there aren't any protocols or |
5704 | // type arguments to add, then the interface type will do just fine. |
5705 | if (typeArgs.empty() && protocols.empty() && !isKindOf && |
5706 | isa<ObjCInterfaceType>(Val: baseType)) |
5707 | return baseType; |
5708 | |
5709 | // Look in the folding set for an existing type. |
5710 | llvm::FoldingSetNodeID ID; |
5711 | ObjCObjectTypeImpl::Profile(ID, Base: baseType, typeArgs, protocols, isKindOf); |
5712 | void *InsertPos = nullptr; |
5713 | if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5714 | return QualType(QT, 0); |
5715 | |
5716 | // Determine the type arguments to be used for canonicalization, |
5717 | // which may be explicitly specified here or written on the base |
5718 | // type. |
5719 | ArrayRef<QualType> effectiveTypeArgs = typeArgs; |
5720 | if (effectiveTypeArgs.empty()) { |
5721 | if (const auto *baseObject = baseType->getAs<ObjCObjectType>()) |
5722 | effectiveTypeArgs = baseObject->getTypeArgs(); |
5723 | } |
5724 | |
5725 | // Build the canonical type, which has the canonical base type and a |
5726 | // sorted-and-uniqued list of protocols and the type arguments |
5727 | // canonicalized. |
5728 | QualType canonical; |
5729 | bool typeArgsAreCanonical = llvm::all_of( |
5730 | Range&: effectiveTypeArgs, P: [&](QualType type) { return type.isCanonical(); }); |
5731 | bool protocolsSorted = areSortedAndUniqued(Protocols: protocols); |
5732 | if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) { |
5733 | // Determine the canonical type arguments. |
5734 | ArrayRef<QualType> canonTypeArgs; |
5735 | SmallVector<QualType, 4> canonTypeArgsVec; |
5736 | if (!typeArgsAreCanonical) { |
5737 | canonTypeArgsVec.reserve(N: effectiveTypeArgs.size()); |
5738 | for (auto typeArg : effectiveTypeArgs) |
5739 | canonTypeArgsVec.push_back(Elt: getCanonicalType(T: typeArg)); |
5740 | canonTypeArgs = canonTypeArgsVec; |
5741 | } else { |
5742 | canonTypeArgs = effectiveTypeArgs; |
5743 | } |
5744 | |
5745 | ArrayRef<ObjCProtocolDecl *> canonProtocols; |
5746 | SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec; |
5747 | if (!protocolsSorted) { |
5748 | canonProtocolsVec.append(in_start: protocols.begin(), in_end: protocols.end()); |
5749 | SortAndUniqueProtocols(Protocols&: canonProtocolsVec); |
5750 | canonProtocols = canonProtocolsVec; |
5751 | } else { |
5752 | canonProtocols = protocols; |
5753 | } |
5754 | |
5755 | canonical = getObjCObjectType(baseType: getCanonicalType(T: baseType), typeArgs: canonTypeArgs, |
5756 | protocols: canonProtocols, isKindOf); |
5757 | |
5758 | // Regenerate InsertPos. |
5759 | ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos); |
5760 | } |
5761 | |
5762 | unsigned size = sizeof(ObjCObjectTypeImpl); |
5763 | size += typeArgs.size() * sizeof(QualType); |
5764 | size += protocols.size() * sizeof(ObjCProtocolDecl *); |
5765 | void *mem = Allocate(Size: size, Align: alignof(ObjCObjectTypeImpl)); |
5766 | auto *T = |
5767 | new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols, |
5768 | isKindOf); |
5769 | |
5770 | Types.push_back(Elt: T); |
5771 | ObjCObjectTypes.InsertNode(N: T, InsertPos); |
5772 | return QualType(T, 0); |
5773 | } |
5774 | |
5775 | /// Apply Objective-C protocol qualifiers to the given type. |
5776 | /// If this is for the canonical type of a type parameter, we can apply |
5777 | /// protocol qualifiers on the ObjCObjectPointerType. |
5778 | QualType |
5779 | ASTContext::applyObjCProtocolQualifiers(QualType type, |
5780 | ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError, |
5781 | bool allowOnPointerType) const { |
5782 | hasError = false; |
5783 | |
5784 | if (const auto *objT = dyn_cast<ObjCTypeParamType>(Val: type.getTypePtr())) { |
5785 | return getObjCTypeParamType(Decl: objT->getDecl(), protocols); |
5786 | } |
5787 | |
5788 | // Apply protocol qualifiers to ObjCObjectPointerType. |
5789 | if (allowOnPointerType) { |
5790 | if (const auto *objPtr = |
5791 | dyn_cast<ObjCObjectPointerType>(Val: type.getTypePtr())) { |
5792 | const ObjCObjectType *objT = objPtr->getObjectType(); |
5793 | // Merge protocol lists and construct ObjCObjectType. |
5794 | SmallVector<ObjCProtocolDecl*, 8> protocolsVec; |
5795 | protocolsVec.append(in_start: objT->qual_begin(), |
5796 | in_end: objT->qual_end()); |
5797 | protocolsVec.append(in_start: protocols.begin(), in_end: protocols.end()); |
5798 | ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec; |
5799 | type = getObjCObjectType( |
5800 | baseType: objT->getBaseType(), |
5801 | typeArgs: objT->getTypeArgsAsWritten(), |
5802 | protocols, |
5803 | isKindOf: objT->isKindOfTypeAsWritten()); |
5804 | return getObjCObjectPointerType(OIT: type); |
5805 | } |
5806 | } |
5807 | |
5808 | // Apply protocol qualifiers to ObjCObjectType. |
5809 | if (const auto *objT = dyn_cast<ObjCObjectType>(Val: type.getTypePtr())){ |
5810 | // FIXME: Check for protocols to which the class type is already |
5811 | // known to conform. |
5812 | |
5813 | return getObjCObjectType(baseType: objT->getBaseType(), |
5814 | typeArgs: objT->getTypeArgsAsWritten(), |
5815 | protocols, |
5816 | isKindOf: objT->isKindOfTypeAsWritten()); |
5817 | } |
5818 | |
5819 | // If the canonical type is ObjCObjectType, ... |
5820 | if (type->isObjCObjectType()) { |
5821 | // Silently overwrite any existing protocol qualifiers. |
5822 | // TODO: determine whether that's the right thing to do. |
5823 | |
5824 | // FIXME: Check for protocols to which the class type is already |
5825 | // known to conform. |
5826 | return getObjCObjectType(baseType: type, typeArgs: {}, protocols, isKindOf: false); |
5827 | } |
5828 | |
5829 | // id<protocol-list> |
5830 | if (type->isObjCIdType()) { |
5831 | const auto *objPtr = type->castAs<ObjCObjectPointerType>(); |
5832 | type = getObjCObjectType(baseType: ObjCBuiltinIdTy, typeArgs: {}, protocols, |
5833 | isKindOf: objPtr->isKindOfType()); |
5834 | return getObjCObjectPointerType(OIT: type); |
5835 | } |
5836 | |
5837 | // Class<protocol-list> |
5838 | if (type->isObjCClassType()) { |
5839 | const auto *objPtr = type->castAs<ObjCObjectPointerType>(); |
5840 | type = getObjCObjectType(baseType: ObjCBuiltinClassTy, typeArgs: {}, protocols, |
5841 | isKindOf: objPtr->isKindOfType()); |
5842 | return getObjCObjectPointerType(OIT: type); |
5843 | } |
5844 | |
5845 | hasError = true; |
5846 | return type; |
5847 | } |
5848 | |
5849 | QualType |
5850 | ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl, |
5851 | ArrayRef<ObjCProtocolDecl *> protocols) const { |
5852 | // Look in the folding set for an existing type. |
5853 | llvm::FoldingSetNodeID ID; |
5854 | ObjCTypeParamType::Profile(ID, OTPDecl: Decl, CanonicalType: Decl->getUnderlyingType(), protocols); |
5855 | void *InsertPos = nullptr; |
5856 | if (ObjCTypeParamType *TypeParam = |
5857 | ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5858 | return QualType(TypeParam, 0); |
5859 | |
5860 | // We canonicalize to the underlying type. |
5861 | QualType Canonical = getCanonicalType(T: Decl->getUnderlyingType()); |
5862 | if (!protocols.empty()) { |
5863 | // Apply the protocol qualifers. |
5864 | bool hasError; |
5865 | Canonical = getCanonicalType(T: applyObjCProtocolQualifiers( |
5866 | type: Canonical, protocols, hasError, allowOnPointerType: true /*allowOnPointerType*/)); |
5867 | assert(!hasError && "Error when apply protocol qualifier to bound type" ); |
5868 | } |
5869 | |
5870 | unsigned size = sizeof(ObjCTypeParamType); |
5871 | size += protocols.size() * sizeof(ObjCProtocolDecl *); |
5872 | void *mem = Allocate(Size: size, Align: alignof(ObjCTypeParamType)); |
5873 | auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols); |
5874 | |
5875 | Types.push_back(Elt: newType); |
5876 | ObjCTypeParamTypes.InsertNode(N: newType, InsertPos); |
5877 | return QualType(newType, 0); |
5878 | } |
5879 | |
5880 | void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig, |
5881 | ObjCTypeParamDecl *New) const { |
5882 | New->setTypeSourceInfo(getTrivialTypeSourceInfo(T: Orig->getUnderlyingType())); |
5883 | // Update TypeForDecl after updating TypeSourceInfo. |
5884 | auto NewTypeParamTy = cast<ObjCTypeParamType>(Val: New->getTypeForDecl()); |
5885 | SmallVector<ObjCProtocolDecl *, 8> protocols; |
5886 | protocols.append(in_start: NewTypeParamTy->qual_begin(), in_end: NewTypeParamTy->qual_end()); |
5887 | QualType UpdatedTy = getObjCTypeParamType(Decl: New, protocols); |
5888 | New->setTypeForDecl(UpdatedTy.getTypePtr()); |
5889 | } |
5890 | |
5891 | /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's |
5892 | /// protocol list adopt all protocols in QT's qualified-id protocol |
5893 | /// list. |
5894 | bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT, |
5895 | ObjCInterfaceDecl *IC) { |
5896 | if (!QT->isObjCQualifiedIdType()) |
5897 | return false; |
5898 | |
5899 | if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) { |
5900 | // If both the right and left sides have qualifiers. |
5901 | for (auto *Proto : OPT->quals()) { |
5902 | if (!IC->ClassImplementsProtocol(lProto: Proto, lookupCategory: false)) |
5903 | return false; |
5904 | } |
5905 | return true; |
5906 | } |
5907 | return false; |
5908 | } |
5909 | |
5910 | /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in |
5911 | /// QT's qualified-id protocol list adopt all protocols in IDecl's list |
5912 | /// of protocols. |
5913 | bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT, |
5914 | ObjCInterfaceDecl *IDecl) { |
5915 | if (!QT->isObjCQualifiedIdType()) |
5916 | return false; |
5917 | const auto *OPT = QT->getAs<ObjCObjectPointerType>(); |
5918 | if (!OPT) |
5919 | return false; |
5920 | if (!IDecl->hasDefinition()) |
5921 | return false; |
5922 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols; |
5923 | CollectInheritedProtocols(CDecl: IDecl, Protocols&: InheritedProtocols); |
5924 | if (InheritedProtocols.empty()) |
5925 | return false; |
5926 | // Check that if every protocol in list of id<plist> conforms to a protocol |
5927 | // of IDecl's, then bridge casting is ok. |
5928 | bool Conforms = false; |
5929 | for (auto *Proto : OPT->quals()) { |
5930 | Conforms = false; |
5931 | for (auto *PI : InheritedProtocols) { |
5932 | if (ProtocolCompatibleWithProtocol(lProto: Proto, rProto: PI)) { |
5933 | Conforms = true; |
5934 | break; |
5935 | } |
5936 | } |
5937 | if (!Conforms) |
5938 | break; |
5939 | } |
5940 | if (Conforms) |
5941 | return true; |
5942 | |
5943 | for (auto *PI : InheritedProtocols) { |
5944 | // If both the right and left sides have qualifiers. |
5945 | bool Adopts = false; |
5946 | for (auto *Proto : OPT->quals()) { |
5947 | // return 'true' if 'PI' is in the inheritance hierarchy of Proto |
5948 | if ((Adopts = ProtocolCompatibleWithProtocol(lProto: PI, rProto: Proto))) |
5949 | break; |
5950 | } |
5951 | if (!Adopts) |
5952 | return false; |
5953 | } |
5954 | return true; |
5955 | } |
5956 | |
5957 | /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for |
5958 | /// the given object type. |
5959 | QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const { |
5960 | llvm::FoldingSetNodeID ID; |
5961 | ObjCObjectPointerType::Profile(ID, T: ObjectT); |
5962 | |
5963 | void *InsertPos = nullptr; |
5964 | if (ObjCObjectPointerType *QT = |
5965 | ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5966 | return QualType(QT, 0); |
5967 | |
5968 | // Find the canonical object type. |
5969 | QualType Canonical; |
5970 | if (!ObjectT.isCanonical()) { |
5971 | Canonical = getObjCObjectPointerType(ObjectT: getCanonicalType(T: ObjectT)); |
5972 | |
5973 | // Regenerate InsertPos. |
5974 | ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
5975 | } |
5976 | |
5977 | // No match. |
5978 | void *Mem = |
5979 | Allocate(Size: sizeof(ObjCObjectPointerType), Align: alignof(ObjCObjectPointerType)); |
5980 | auto *QType = |
5981 | new (Mem) ObjCObjectPointerType(Canonical, ObjectT); |
5982 | |
5983 | Types.push_back(Elt: QType); |
5984 | ObjCObjectPointerTypes.InsertNode(N: QType, InsertPos); |
5985 | return QualType(QType, 0); |
5986 | } |
5987 | |
5988 | /// getObjCInterfaceType - Return the unique reference to the type for the |
5989 | /// specified ObjC interface decl. The list of protocols is optional. |
5990 | QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl, |
5991 | ObjCInterfaceDecl *PrevDecl) const { |
5992 | if (Decl->TypeForDecl) |
5993 | return QualType(Decl->TypeForDecl, 0); |
5994 | |
5995 | if (PrevDecl) { |
5996 | assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl" ); |
5997 | Decl->TypeForDecl = PrevDecl->TypeForDecl; |
5998 | return QualType(PrevDecl->TypeForDecl, 0); |
5999 | } |
6000 | |
6001 | // Prefer the definition, if there is one. |
6002 | if (const ObjCInterfaceDecl *Def = Decl->getDefinition()) |
6003 | Decl = Def; |
6004 | |
6005 | void *Mem = Allocate(Size: sizeof(ObjCInterfaceType), Align: alignof(ObjCInterfaceType)); |
6006 | auto *T = new (Mem) ObjCInterfaceType(Decl); |
6007 | Decl->TypeForDecl = T; |
6008 | Types.push_back(Elt: T); |
6009 | return QualType(T, 0); |
6010 | } |
6011 | |
6012 | /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique |
6013 | /// TypeOfExprType AST's (since expression's are never shared). For example, |
6014 | /// multiple declarations that refer to "typeof(x)" all contain different |
6015 | /// DeclRefExpr's. This doesn't effect the type checker, since it operates |
6016 | /// on canonical type's (which are always unique). |
6017 | QualType ASTContext::getTypeOfExprType(Expr *tofExpr, TypeOfKind Kind) const { |
6018 | TypeOfExprType *toe; |
6019 | if (tofExpr->isTypeDependent()) { |
6020 | llvm::FoldingSetNodeID ID; |
6021 | DependentTypeOfExprType::Profile(ID, Context: *this, E: tofExpr, |
6022 | IsUnqual: Kind == TypeOfKind::Unqualified); |
6023 | |
6024 | void *InsertPos = nullptr; |
6025 | DependentTypeOfExprType *Canon = |
6026 | DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos); |
6027 | if (Canon) { |
6028 | // We already have a "canonical" version of an identical, dependent |
6029 | // typeof(expr) type. Use that as our canonical type. |
6030 | toe = new (*this, alignof(TypeOfExprType)) TypeOfExprType( |
6031 | *this, tofExpr, Kind, QualType((TypeOfExprType *)Canon, 0)); |
6032 | } else { |
6033 | // Build a new, canonical typeof(expr) type. |
6034 | Canon = new (*this, alignof(DependentTypeOfExprType)) |
6035 | DependentTypeOfExprType(*this, tofExpr, Kind); |
6036 | DependentTypeOfExprTypes.InsertNode(N: Canon, InsertPos); |
6037 | toe = Canon; |
6038 | } |
6039 | } else { |
6040 | QualType Canonical = getCanonicalType(T: tofExpr->getType()); |
6041 | toe = new (*this, alignof(TypeOfExprType)) |
6042 | TypeOfExprType(*this, tofExpr, Kind, Canonical); |
6043 | } |
6044 | Types.push_back(Elt: toe); |
6045 | return QualType(toe, 0); |
6046 | } |
6047 | |
6048 | /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique |
6049 | /// TypeOfType nodes. The only motivation to unique these nodes would be |
6050 | /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be |
6051 | /// an issue. This doesn't affect the type checker, since it operates |
6052 | /// on canonical types (which are always unique). |
6053 | QualType ASTContext::getTypeOfType(QualType tofType, TypeOfKind Kind) const { |
6054 | QualType Canonical = getCanonicalType(T: tofType); |
6055 | auto *tot = new (*this, alignof(TypeOfType)) |
6056 | TypeOfType(*this, tofType, Canonical, Kind); |
6057 | Types.push_back(Elt: tot); |
6058 | return QualType(tot, 0); |
6059 | } |
6060 | |
6061 | /// getReferenceQualifiedType - Given an expr, will return the type for |
6062 | /// that expression, as in [dcl.type.simple]p4 but without taking id-expressions |
6063 | /// and class member access into account. |
6064 | QualType ASTContext::getReferenceQualifiedType(const Expr *E) const { |
6065 | // C++11 [dcl.type.simple]p4: |
6066 | // [...] |
6067 | QualType T = E->getType(); |
6068 | switch (E->getValueKind()) { |
6069 | // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the |
6070 | // type of e; |
6071 | case VK_XValue: |
6072 | return getRValueReferenceType(T); |
6073 | // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the |
6074 | // type of e; |
6075 | case VK_LValue: |
6076 | return getLValueReferenceType(T); |
6077 | // - otherwise, decltype(e) is the type of e. |
6078 | case VK_PRValue: |
6079 | return T; |
6080 | } |
6081 | llvm_unreachable("Unknown value kind" ); |
6082 | } |
6083 | |
6084 | /// Unlike many "get<Type>" functions, we don't unique DecltypeType |
6085 | /// nodes. This would never be helpful, since each such type has its own |
6086 | /// expression, and would not give a significant memory saving, since there |
6087 | /// is an Expr tree under each such type. |
6088 | QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const { |
6089 | DecltypeType *dt; |
6090 | |
6091 | // C++11 [temp.type]p2: |
6092 | // If an expression e involves a template parameter, decltype(e) denotes a |
6093 | // unique dependent type. Two such decltype-specifiers refer to the same |
6094 | // type only if their expressions are equivalent (14.5.6.1). |
6095 | if (e->isInstantiationDependent()) { |
6096 | llvm::FoldingSetNodeID ID; |
6097 | DependentDecltypeType::Profile(ID, Context: *this, E: e); |
6098 | |
6099 | void *InsertPos = nullptr; |
6100 | DependentDecltypeType *Canon |
6101 | = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos); |
6102 | if (!Canon) { |
6103 | // Build a new, canonical decltype(expr) type. |
6104 | Canon = new (*this, alignof(DependentDecltypeType)) |
6105 | DependentDecltypeType(e, DependentTy); |
6106 | DependentDecltypeTypes.InsertNode(N: Canon, InsertPos); |
6107 | } |
6108 | dt = new (*this, alignof(DecltypeType)) |
6109 | DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0)); |
6110 | } else { |
6111 | dt = new (*this, alignof(DecltypeType)) |
6112 | DecltypeType(e, UnderlyingType, getCanonicalType(T: UnderlyingType)); |
6113 | } |
6114 | Types.push_back(Elt: dt); |
6115 | return QualType(dt, 0); |
6116 | } |
6117 | |
6118 | QualType ASTContext::getPackIndexingType(QualType Pattern, Expr *IndexExpr, |
6119 | bool FullySubstituted, |
6120 | ArrayRef<QualType> Expansions, |
6121 | int Index) const { |
6122 | QualType Canonical; |
6123 | if (FullySubstituted && Index != -1) { |
6124 | Canonical = getCanonicalType(T: Expansions[Index]); |
6125 | } else { |
6126 | llvm::FoldingSetNodeID ID; |
6127 | PackIndexingType::Profile(ID, Context: *this, Pattern, E: IndexExpr); |
6128 | void *InsertPos = nullptr; |
6129 | PackIndexingType *Canon = |
6130 | DependentPackIndexingTypes.FindNodeOrInsertPos(ID, InsertPos); |
6131 | if (!Canon) { |
6132 | void *Mem = Allocate( |
6133 | Size: PackIndexingType::totalSizeToAlloc<QualType>(Counts: Expansions.size()), |
6134 | Align: TypeAlignment); |
6135 | Canon = new (Mem) |
6136 | PackIndexingType(*this, QualType(), Pattern, IndexExpr, Expansions); |
6137 | DependentPackIndexingTypes.InsertNode(N: Canon, InsertPos); |
6138 | } |
6139 | Canonical = QualType(Canon, 0); |
6140 | } |
6141 | |
6142 | void *Mem = |
6143 | Allocate(Size: PackIndexingType::totalSizeToAlloc<QualType>(Counts: Expansions.size()), |
6144 | Align: TypeAlignment); |
6145 | auto *T = new (Mem) |
6146 | PackIndexingType(*this, Canonical, Pattern, IndexExpr, Expansions); |
6147 | Types.push_back(Elt: T); |
6148 | return QualType(T, 0); |
6149 | } |
6150 | |
6151 | /// getUnaryTransformationType - We don't unique these, since the memory |
6152 | /// savings are minimal and these are rare. |
6153 | QualType ASTContext::getUnaryTransformType(QualType BaseType, |
6154 | QualType UnderlyingType, |
6155 | UnaryTransformType::UTTKind Kind) |
6156 | const { |
6157 | UnaryTransformType *ut = nullptr; |
6158 | |
6159 | if (BaseType->isDependentType()) { |
6160 | // Look in the folding set for an existing type. |
6161 | llvm::FoldingSetNodeID ID; |
6162 | DependentUnaryTransformType::Profile(ID, BaseType: getCanonicalType(T: BaseType), UKind: Kind); |
6163 | |
6164 | void *InsertPos = nullptr; |
6165 | DependentUnaryTransformType *Canon |
6166 | = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos); |
6167 | |
6168 | if (!Canon) { |
6169 | // Build a new, canonical __underlying_type(type) type. |
6170 | Canon = new (*this, alignof(DependentUnaryTransformType)) |
6171 | DependentUnaryTransformType(*this, getCanonicalType(T: BaseType), Kind); |
6172 | DependentUnaryTransformTypes.InsertNode(N: Canon, InsertPos); |
6173 | } |
6174 | ut = new (*this, alignof(UnaryTransformType)) |
6175 | UnaryTransformType(BaseType, QualType(), Kind, QualType(Canon, 0)); |
6176 | } else { |
6177 | QualType CanonType = getCanonicalType(T: UnderlyingType); |
6178 | ut = new (*this, alignof(UnaryTransformType)) |
6179 | UnaryTransformType(BaseType, UnderlyingType, Kind, CanonType); |
6180 | } |
6181 | Types.push_back(Elt: ut); |
6182 | return QualType(ut, 0); |
6183 | } |
6184 | |
6185 | QualType ASTContext::getAutoTypeInternal( |
6186 | QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent, |
6187 | bool IsPack, ConceptDecl *TypeConstraintConcept, |
6188 | ArrayRef<TemplateArgument> TypeConstraintArgs, bool IsCanon) const { |
6189 | if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && |
6190 | !TypeConstraintConcept && !IsDependent) |
6191 | return getAutoDeductType(); |
6192 | |
6193 | // Look in the folding set for an existing type. |
6194 | void *InsertPos = nullptr; |
6195 | llvm::FoldingSetNodeID ID; |
6196 | AutoType::Profile(ID, Context: *this, Deduced: DeducedType, Keyword, IsDependent, |
6197 | CD: TypeConstraintConcept, Arguments: TypeConstraintArgs); |
6198 | if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos)) |
6199 | return QualType(AT, 0); |
6200 | |
6201 | QualType Canon; |
6202 | if (!IsCanon) { |
6203 | if (!DeducedType.isNull()) { |
6204 | Canon = DeducedType.getCanonicalType(); |
6205 | } else if (TypeConstraintConcept) { |
6206 | bool AnyNonCanonArgs = false; |
6207 | ConceptDecl *CanonicalConcept = TypeConstraintConcept->getCanonicalDecl(); |
6208 | auto CanonicalConceptArgs = ::getCanonicalTemplateArguments( |
6209 | C: *this, Args: TypeConstraintArgs, AnyNonCanonArgs); |
6210 | if (CanonicalConcept != TypeConstraintConcept || AnyNonCanonArgs) { |
6211 | Canon = |
6212 | getAutoTypeInternal(DeducedType: QualType(), Keyword, IsDependent, IsPack, |
6213 | TypeConstraintConcept: CanonicalConcept, TypeConstraintArgs: CanonicalConceptArgs, IsCanon: true); |
6214 | // Find the insert position again. |
6215 | [[maybe_unused]] auto *Nothing = |
6216 | AutoTypes.FindNodeOrInsertPos(ID, InsertPos); |
6217 | assert(!Nothing && "canonical type broken" ); |
6218 | } |
6219 | } |
6220 | } |
6221 | |
6222 | void *Mem = Allocate(Size: sizeof(AutoType) + |
6223 | sizeof(TemplateArgument) * TypeConstraintArgs.size(), |
6224 | Align: alignof(AutoType)); |
6225 | auto *AT = new (Mem) AutoType( |
6226 | DeducedType, Keyword, |
6227 | (IsDependent ? TypeDependence::DependentInstantiation |
6228 | : TypeDependence::None) | |
6229 | (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None), |
6230 | Canon, TypeConstraintConcept, TypeConstraintArgs); |
6231 | Types.push_back(Elt: AT); |
6232 | AutoTypes.InsertNode(N: AT, InsertPos); |
6233 | return QualType(AT, 0); |
6234 | } |
6235 | |
6236 | /// getAutoType - Return the uniqued reference to the 'auto' type which has been |
6237 | /// deduced to the given type, or to the canonical undeduced 'auto' type, or the |
6238 | /// canonical deduced-but-dependent 'auto' type. |
6239 | QualType |
6240 | ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword, |
6241 | bool IsDependent, bool IsPack, |
6242 | ConceptDecl *TypeConstraintConcept, |
6243 | ArrayRef<TemplateArgument> TypeConstraintArgs) const { |
6244 | assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack" ); |
6245 | assert((!IsDependent || DeducedType.isNull()) && |
6246 | "A dependent auto should be undeduced" ); |
6247 | return getAutoTypeInternal(DeducedType, Keyword, IsDependent, IsPack, |
6248 | TypeConstraintConcept, TypeConstraintArgs); |
6249 | } |
6250 | |
6251 | QualType ASTContext::getUnconstrainedType(QualType T) const { |
6252 | QualType CanonT = T.getCanonicalType(); |
6253 | |
6254 | // Remove a type-constraint from a top-level auto or decltype(auto). |
6255 | if (auto *AT = CanonT->getAs<AutoType>()) { |
6256 | if (!AT->isConstrained()) |
6257 | return T; |
6258 | return getQualifiedType(T: getAutoType(DeducedType: QualType(), Keyword: AT->getKeyword(), |
6259 | IsDependent: AT->isDependentType(), |
6260 | IsPack: AT->containsUnexpandedParameterPack()), |
6261 | Qs: T.getQualifiers()); |
6262 | } |
6263 | |
6264 | // FIXME: We only support constrained auto at the top level in the type of a |
6265 | // non-type template parameter at the moment. Once we lift that restriction, |
6266 | // we'll need to recursively build types containing auto here. |
6267 | assert(!CanonT->getContainedAutoType() || |
6268 | !CanonT->getContainedAutoType()->isConstrained()); |
6269 | return T; |
6270 | } |
6271 | |
6272 | /// Return the uniqued reference to the deduced template specialization type |
6273 | /// which has been deduced to the given type, or to the canonical undeduced |
6274 | /// such type, or the canonical deduced-but-dependent such type. |
6275 | QualType ASTContext::getDeducedTemplateSpecializationType( |
6276 | TemplateName Template, QualType DeducedType, bool IsDependent) const { |
6277 | // Look in the folding set for an existing type. |
6278 | void *InsertPos = nullptr; |
6279 | llvm::FoldingSetNodeID ID; |
6280 | DeducedTemplateSpecializationType::Profile(ID, Template, Deduced: DeducedType, |
6281 | IsDependent); |
6282 | if (DeducedTemplateSpecializationType *DTST = |
6283 | DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos)) |
6284 | return QualType(DTST, 0); |
6285 | |
6286 | auto *DTST = new (*this, alignof(DeducedTemplateSpecializationType)) |
6287 | DeducedTemplateSpecializationType(Template, DeducedType, IsDependent); |
6288 | llvm::FoldingSetNodeID TempID; |
6289 | DTST->Profile(ID&: TempID); |
6290 | assert(ID == TempID && "ID does not match" ); |
6291 | Types.push_back(Elt: DTST); |
6292 | DeducedTemplateSpecializationTypes.InsertNode(N: DTST, InsertPos); |
6293 | return QualType(DTST, 0); |
6294 | } |
6295 | |
6296 | /// getAtomicType - Return the uniqued reference to the atomic type for |
6297 | /// the given value type. |
6298 | QualType ASTContext::getAtomicType(QualType T) const { |
6299 | // Unique pointers, to guarantee there is only one pointer of a particular |
6300 | // structure. |
6301 | llvm::FoldingSetNodeID ID; |
6302 | AtomicType::Profile(ID, T); |
6303 | |
6304 | void *InsertPos = nullptr; |
6305 | if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos)) |
6306 | return QualType(AT, 0); |
6307 | |
6308 | // If the atomic value type isn't canonical, this won't be a canonical type |
6309 | // either, so fill in the canonical type field. |
6310 | QualType Canonical; |
6311 | if (!T.isCanonical()) { |
6312 | Canonical = getAtomicType(T: getCanonicalType(T)); |
6313 | |
6314 | // Get the new insert position for the node we care about. |
6315 | AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos); |
6316 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
6317 | } |
6318 | auto *New = new (*this, alignof(AtomicType)) AtomicType(T, Canonical); |
6319 | Types.push_back(Elt: New); |
6320 | AtomicTypes.InsertNode(N: New, InsertPos); |
6321 | return QualType(New, 0); |
6322 | } |
6323 | |
6324 | /// getAutoDeductType - Get type pattern for deducing against 'auto'. |
6325 | QualType ASTContext::getAutoDeductType() const { |
6326 | if (AutoDeductTy.isNull()) |
6327 | AutoDeductTy = QualType(new (*this, alignof(AutoType)) |
6328 | AutoType(QualType(), AutoTypeKeyword::Auto, |
6329 | TypeDependence::None, QualType(), |
6330 | /*concept*/ nullptr, /*args*/ {}), |
6331 | 0); |
6332 | return AutoDeductTy; |
6333 | } |
6334 | |
6335 | /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'. |
6336 | QualType ASTContext::getAutoRRefDeductType() const { |
6337 | if (AutoRRefDeductTy.isNull()) |
6338 | AutoRRefDeductTy = getRValueReferenceType(T: getAutoDeductType()); |
6339 | assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern" ); |
6340 | return AutoRRefDeductTy; |
6341 | } |
6342 | |
6343 | /// getTagDeclType - Return the unique reference to the type for the |
6344 | /// specified TagDecl (struct/union/class/enum) decl. |
6345 | QualType ASTContext::getTagDeclType(const TagDecl *Decl) const { |
6346 | assert(Decl); |
6347 | // FIXME: What is the design on getTagDeclType when it requires casting |
6348 | // away const? mutable? |
6349 | return getTypeDeclType(Decl: const_cast<TagDecl*>(Decl)); |
6350 | } |
6351 | |
6352 | /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result |
6353 | /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and |
6354 | /// needs to agree with the definition in <stddef.h>. |
6355 | CanQualType ASTContext::getSizeType() const { |
6356 | return getFromTargetType(Type: Target->getSizeType()); |
6357 | } |
6358 | |
6359 | /// Return the unique signed counterpart of the integer type |
6360 | /// corresponding to size_t. |
6361 | CanQualType ASTContext::getSignedSizeType() const { |
6362 | return getFromTargetType(Type: Target->getSignedSizeType()); |
6363 | } |
6364 | |
6365 | /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5). |
6366 | CanQualType ASTContext::getIntMaxType() const { |
6367 | return getFromTargetType(Type: Target->getIntMaxType()); |
6368 | } |
6369 | |
6370 | /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5). |
6371 | CanQualType ASTContext::getUIntMaxType() const { |
6372 | return getFromTargetType(Type: Target->getUIntMaxType()); |
6373 | } |
6374 | |
6375 | /// getSignedWCharType - Return the type of "signed wchar_t". |
6376 | /// Used when in C++, as a GCC extension. |
6377 | QualType ASTContext::getSignedWCharType() const { |
6378 | // FIXME: derive from "Target" ? |
6379 | return WCharTy; |
6380 | } |
6381 | |
6382 | /// getUnsignedWCharType - Return the type of "unsigned wchar_t". |
6383 | /// Used when in C++, as a GCC extension. |
6384 | QualType ASTContext::getUnsignedWCharType() const { |
6385 | // FIXME: derive from "Target" ? |
6386 | return UnsignedIntTy; |
6387 | } |
6388 | |
6389 | QualType ASTContext::getIntPtrType() const { |
6390 | return getFromTargetType(Type: Target->getIntPtrType()); |
6391 | } |
6392 | |
6393 | QualType ASTContext::getUIntPtrType() const { |
6394 | return getCorrespondingUnsignedType(T: getIntPtrType()); |
6395 | } |
6396 | |
6397 | /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17) |
6398 | /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). |
6399 | QualType ASTContext::getPointerDiffType() const { |
6400 | return getFromTargetType(Type: Target->getPtrDiffType(AddrSpace: LangAS::Default)); |
6401 | } |
6402 | |
6403 | /// Return the unique unsigned counterpart of "ptrdiff_t" |
6404 | /// integer type. The standard (C11 7.21.6.1p7) refers to this type |
6405 | /// in the definition of %tu format specifier. |
6406 | QualType ASTContext::getUnsignedPointerDiffType() const { |
6407 | return getFromTargetType(Type: Target->getUnsignedPtrDiffType(AddrSpace: LangAS::Default)); |
6408 | } |
6409 | |
6410 | /// Return the unique type for "pid_t" defined in |
6411 | /// <sys/types.h>. We need this to compute the correct type for vfork(). |
6412 | QualType ASTContext::getProcessIDType() const { |
6413 | return getFromTargetType(Type: Target->getProcessIDType()); |
6414 | } |
6415 | |
6416 | //===----------------------------------------------------------------------===// |
6417 | // Type Operators |
6418 | //===----------------------------------------------------------------------===// |
6419 | |
6420 | CanQualType ASTContext::getCanonicalParamType(QualType T) const { |
6421 | // Push qualifiers into arrays, and then discard any remaining |
6422 | // qualifiers. |
6423 | T = getCanonicalType(T); |
6424 | T = getVariableArrayDecayedType(type: T); |
6425 | const Type *Ty = T.getTypePtr(); |
6426 | QualType Result; |
6427 | if (getLangOpts().HLSL && isa<ConstantArrayType>(Val: Ty)) { |
6428 | Result = getArrayParameterType(Ty: QualType(Ty, 0)); |
6429 | } else if (isa<ArrayType>(Val: Ty)) { |
6430 | Result = getArrayDecayedType(T: QualType(Ty,0)); |
6431 | } else if (isa<FunctionType>(Val: Ty)) { |
6432 | Result = getPointerType(T: QualType(Ty, 0)); |
6433 | } else { |
6434 | Result = QualType(Ty, 0); |
6435 | } |
6436 | |
6437 | return CanQualType::CreateUnsafe(Other: Result); |
6438 | } |
6439 | |
6440 | QualType ASTContext::getUnqualifiedArrayType(QualType type, |
6441 | Qualifiers &quals) const { |
6442 | SplitQualType splitType = type.getSplitUnqualifiedType(); |
6443 | |
6444 | // FIXME: getSplitUnqualifiedType() actually walks all the way to |
6445 | // the unqualified desugared type and then drops it on the floor. |
6446 | // We then have to strip that sugar back off with |
6447 | // getUnqualifiedDesugaredType(), which is silly. |
6448 | const auto *AT = |
6449 | dyn_cast<ArrayType>(Val: splitType.Ty->getUnqualifiedDesugaredType()); |
6450 | |
6451 | // If we don't have an array, just use the results in splitType. |
6452 | if (!AT) { |
6453 | quals = splitType.Quals; |
6454 | return QualType(splitType.Ty, 0); |
6455 | } |
6456 | |
6457 | // Otherwise, recurse on the array's element type. |
6458 | QualType elementType = AT->getElementType(); |
6459 | QualType unqualElementType = getUnqualifiedArrayType(type: elementType, quals); |
6460 | |
6461 | // If that didn't change the element type, AT has no qualifiers, so we |
6462 | // can just use the results in splitType. |
6463 | if (elementType == unqualElementType) { |
6464 | assert(quals.empty()); // from the recursive call |
6465 | quals = splitType.Quals; |
6466 | return QualType(splitType.Ty, 0); |
6467 | } |
6468 | |
6469 | // Otherwise, add in the qualifiers from the outermost type, then |
6470 | // build the type back up. |
6471 | quals.addConsistentQualifiers(qs: splitType.Quals); |
6472 | |
6473 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: AT)) { |
6474 | return getConstantArrayType(EltTy: unqualElementType, ArySizeIn: CAT->getSize(), |
6475 | SizeExpr: CAT->getSizeExpr(), ASM: CAT->getSizeModifier(), IndexTypeQuals: 0); |
6476 | } |
6477 | |
6478 | if (const auto *IAT = dyn_cast<IncompleteArrayType>(Val: AT)) { |
6479 | return getIncompleteArrayType(elementType: unqualElementType, ASM: IAT->getSizeModifier(), elementTypeQuals: 0); |
6480 | } |
6481 | |
6482 | if (const auto *VAT = dyn_cast<VariableArrayType>(Val: AT)) { |
6483 | return getVariableArrayType(EltTy: unqualElementType, |
6484 | NumElts: VAT->getSizeExpr(), |
6485 | ASM: VAT->getSizeModifier(), |
6486 | IndexTypeQuals: VAT->getIndexTypeCVRQualifiers(), |
6487 | Brackets: VAT->getBracketsRange()); |
6488 | } |
6489 | |
6490 | const auto *DSAT = cast<DependentSizedArrayType>(Val: AT); |
6491 | return getDependentSizedArrayType(elementType: unqualElementType, numElements: DSAT->getSizeExpr(), |
6492 | ASM: DSAT->getSizeModifier(), elementTypeQuals: 0, |
6493 | brackets: SourceRange()); |
6494 | } |
6495 | |
6496 | /// Attempt to unwrap two types that may both be array types with the same bound |
6497 | /// (or both be array types of unknown bound) for the purpose of comparing the |
6498 | /// cv-decomposition of two types per C++ [conv.qual]. |
6499 | /// |
6500 | /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in |
6501 | /// C++20 [conv.qual], if permitted by the current language mode. |
6502 | void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2, |
6503 | bool AllowPiMismatch) { |
6504 | while (true) { |
6505 | auto *AT1 = getAsArrayType(T: T1); |
6506 | if (!AT1) |
6507 | return; |
6508 | |
6509 | auto *AT2 = getAsArrayType(T: T2); |
6510 | if (!AT2) |
6511 | return; |
6512 | |
6513 | // If we don't have two array types with the same constant bound nor two |
6514 | // incomplete array types, we've unwrapped everything we can. |
6515 | // C++20 also permits one type to be a constant array type and the other |
6516 | // to be an incomplete array type. |
6517 | // FIXME: Consider also unwrapping array of unknown bound and VLA. |
6518 | if (auto *CAT1 = dyn_cast<ConstantArrayType>(Val: AT1)) { |
6519 | auto *CAT2 = dyn_cast<ConstantArrayType>(Val: AT2); |
6520 | if (!((CAT2 && CAT1->getSize() == CAT2->getSize()) || |
6521 | (AllowPiMismatch && getLangOpts().CPlusPlus20 && |
6522 | isa<IncompleteArrayType>(Val: AT2)))) |
6523 | return; |
6524 | } else if (isa<IncompleteArrayType>(Val: AT1)) { |
6525 | if (!(isa<IncompleteArrayType>(Val: AT2) || |
6526 | (AllowPiMismatch && getLangOpts().CPlusPlus20 && |
6527 | isa<ConstantArrayType>(Val: AT2)))) |
6528 | return; |
6529 | } else { |
6530 | return; |
6531 | } |
6532 | |
6533 | T1 = AT1->getElementType(); |
6534 | T2 = AT2->getElementType(); |
6535 | } |
6536 | } |
6537 | |
6538 | /// Attempt to unwrap two types that may be similar (C++ [conv.qual]). |
6539 | /// |
6540 | /// If T1 and T2 are both pointer types of the same kind, or both array types |
6541 | /// with the same bound, unwraps layers from T1 and T2 until a pointer type is |
6542 | /// unwrapped. Top-level qualifiers on T1 and T2 are ignored. |
6543 | /// |
6544 | /// This function will typically be called in a loop that successively |
6545 | /// "unwraps" pointer and pointer-to-member types to compare them at each |
6546 | /// level. |
6547 | /// |
6548 | /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in |
6549 | /// C++20 [conv.qual], if permitted by the current language mode. |
6550 | /// |
6551 | /// \return \c true if a pointer type was unwrapped, \c false if we reached a |
6552 | /// pair of types that can't be unwrapped further. |
6553 | bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2, |
6554 | bool AllowPiMismatch) { |
6555 | UnwrapSimilarArrayTypes(T1, T2, AllowPiMismatch); |
6556 | |
6557 | const auto *T1PtrType = T1->getAs<PointerType>(); |
6558 | const auto *T2PtrType = T2->getAs<PointerType>(); |
6559 | if (T1PtrType && T2PtrType) { |
6560 | T1 = T1PtrType->getPointeeType(); |
6561 | T2 = T2PtrType->getPointeeType(); |
6562 | return true; |
6563 | } |
6564 | |
6565 | const auto *T1MPType = T1->getAs<MemberPointerType>(); |
6566 | const auto *T2MPType = T2->getAs<MemberPointerType>(); |
6567 | if (T1MPType && T2MPType && |
6568 | hasSameUnqualifiedType(T1: QualType(T1MPType->getClass(), 0), |
6569 | T2: QualType(T2MPType->getClass(), 0))) { |
6570 | T1 = T1MPType->getPointeeType(); |
6571 | T2 = T2MPType->getPointeeType(); |
6572 | return true; |
6573 | } |
6574 | |
6575 | if (getLangOpts().ObjC) { |
6576 | const auto *T1OPType = T1->getAs<ObjCObjectPointerType>(); |
6577 | const auto *T2OPType = T2->getAs<ObjCObjectPointerType>(); |
6578 | if (T1OPType && T2OPType) { |
6579 | T1 = T1OPType->getPointeeType(); |
6580 | T2 = T2OPType->getPointeeType(); |
6581 | return true; |
6582 | } |
6583 | } |
6584 | |
6585 | // FIXME: Block pointers, too? |
6586 | |
6587 | return false; |
6588 | } |
6589 | |
6590 | bool ASTContext::hasSimilarType(QualType T1, QualType T2) { |
6591 | while (true) { |
6592 | Qualifiers Quals; |
6593 | T1 = getUnqualifiedArrayType(type: T1, quals&: Quals); |
6594 | T2 = getUnqualifiedArrayType(type: T2, quals&: Quals); |
6595 | if (hasSameType(T1, T2)) |
6596 | return true; |
6597 | if (!UnwrapSimilarTypes(T1, T2)) |
6598 | return false; |
6599 | } |
6600 | } |
6601 | |
6602 | bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) { |
6603 | while (true) { |
6604 | Qualifiers Quals1, Quals2; |
6605 | T1 = getUnqualifiedArrayType(type: T1, quals&: Quals1); |
6606 | T2 = getUnqualifiedArrayType(type: T2, quals&: Quals2); |
6607 | |
6608 | Quals1.removeCVRQualifiers(); |
6609 | Quals2.removeCVRQualifiers(); |
6610 | if (Quals1 != Quals2) |
6611 | return false; |
6612 | |
6613 | if (hasSameType(T1, T2)) |
6614 | return true; |
6615 | |
6616 | if (!UnwrapSimilarTypes(T1, T2, /*AllowPiMismatch*/ false)) |
6617 | return false; |
6618 | } |
6619 | } |
6620 | |
6621 | DeclarationNameInfo |
6622 | ASTContext::getNameForTemplate(TemplateName Name, |
6623 | SourceLocation NameLoc) const { |
6624 | switch (Name.getKind()) { |
6625 | case TemplateName::QualifiedTemplate: |
6626 | case TemplateName::Template: |
6627 | // DNInfo work in progress: CHECKME: what about DNLoc? |
6628 | return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(), |
6629 | NameLoc); |
6630 | |
6631 | case TemplateName::OverloadedTemplate: { |
6632 | OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate(); |
6633 | // DNInfo work in progress: CHECKME: what about DNLoc? |
6634 | return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc); |
6635 | } |
6636 | |
6637 | case TemplateName::AssumedTemplate: { |
6638 | AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName(); |
6639 | return DeclarationNameInfo(Storage->getDeclName(), NameLoc); |
6640 | } |
6641 | |
6642 | case TemplateName::DependentTemplate: { |
6643 | DependentTemplateName *DTN = Name.getAsDependentTemplateName(); |
6644 | DeclarationName DName; |
6645 | if (DTN->isIdentifier()) { |
6646 | DName = DeclarationNames.getIdentifier(ID: DTN->getIdentifier()); |
6647 | return DeclarationNameInfo(DName, NameLoc); |
6648 | } else { |
6649 | DName = DeclarationNames.getCXXOperatorName(Op: DTN->getOperator()); |
6650 | // DNInfo work in progress: FIXME: source locations? |
6651 | DeclarationNameLoc DNLoc = |
6652 | DeclarationNameLoc::makeCXXOperatorNameLoc(Range: SourceRange()); |
6653 | return DeclarationNameInfo(DName, NameLoc, DNLoc); |
6654 | } |
6655 | } |
6656 | |
6657 | case TemplateName::SubstTemplateTemplateParm: { |
6658 | SubstTemplateTemplateParmStorage *subst |
6659 | = Name.getAsSubstTemplateTemplateParm(); |
6660 | return DeclarationNameInfo(subst->getParameter()->getDeclName(), |
6661 | NameLoc); |
6662 | } |
6663 | |
6664 | case TemplateName::SubstTemplateTemplateParmPack: { |
6665 | SubstTemplateTemplateParmPackStorage *subst |
6666 | = Name.getAsSubstTemplateTemplateParmPack(); |
6667 | return DeclarationNameInfo(subst->getParameterPack()->getDeclName(), |
6668 | NameLoc); |
6669 | } |
6670 | case TemplateName::UsingTemplate: |
6671 | return DeclarationNameInfo(Name.getAsUsingShadowDecl()->getDeclName(), |
6672 | NameLoc); |
6673 | } |
6674 | |
6675 | llvm_unreachable("bad template name kind!" ); |
6676 | } |
6677 | |
6678 | TemplateName |
6679 | ASTContext::getCanonicalTemplateName(const TemplateName &Name) const { |
6680 | switch (Name.getKind()) { |
6681 | case TemplateName::UsingTemplate: |
6682 | case TemplateName::QualifiedTemplate: |
6683 | case TemplateName::Template: { |
6684 | TemplateDecl *Template = Name.getAsTemplateDecl(); |
6685 | if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: Template)) |
6686 | Template = getCanonicalTemplateTemplateParmDecl(TTP); |
6687 | |
6688 | // The canonical template name is the canonical template declaration. |
6689 | return TemplateName(cast<TemplateDecl>(Val: Template->getCanonicalDecl())); |
6690 | } |
6691 | |
6692 | case TemplateName::OverloadedTemplate: |
6693 | case TemplateName::AssumedTemplate: |
6694 | llvm_unreachable("cannot canonicalize unresolved template" ); |
6695 | |
6696 | case TemplateName::DependentTemplate: { |
6697 | DependentTemplateName *DTN = Name.getAsDependentTemplateName(); |
6698 | assert(DTN && "Non-dependent template names must refer to template decls." ); |
6699 | return DTN->CanonicalTemplateName; |
6700 | } |
6701 | |
6702 | case TemplateName::SubstTemplateTemplateParm: { |
6703 | SubstTemplateTemplateParmStorage *subst |
6704 | = Name.getAsSubstTemplateTemplateParm(); |
6705 | return getCanonicalTemplateName(Name: subst->getReplacement()); |
6706 | } |
6707 | |
6708 | case TemplateName::SubstTemplateTemplateParmPack: { |
6709 | SubstTemplateTemplateParmPackStorage *subst = |
6710 | Name.getAsSubstTemplateTemplateParmPack(); |
6711 | TemplateArgument canonArgPack = |
6712 | getCanonicalTemplateArgument(Arg: subst->getArgumentPack()); |
6713 | return getSubstTemplateTemplateParmPack( |
6714 | ArgPack: canonArgPack, AssociatedDecl: subst->getAssociatedDecl()->getCanonicalDecl(), |
6715 | Index: subst->getFinal(), Final: subst->getIndex()); |
6716 | } |
6717 | } |
6718 | |
6719 | llvm_unreachable("bad template name!" ); |
6720 | } |
6721 | |
6722 | bool ASTContext::hasSameTemplateName(const TemplateName &X, |
6723 | const TemplateName &Y) const { |
6724 | return getCanonicalTemplateName(Name: X).getAsVoidPointer() == |
6725 | getCanonicalTemplateName(Name: Y).getAsVoidPointer(); |
6726 | } |
6727 | |
6728 | bool ASTContext::isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const { |
6729 | if (!XCE != !YCE) |
6730 | return false; |
6731 | |
6732 | if (!XCE) |
6733 | return true; |
6734 | |
6735 | llvm::FoldingSetNodeID XCEID, YCEID; |
6736 | XCE->Profile(ID&: XCEID, Context: *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true); |
6737 | YCE->Profile(ID&: YCEID, Context: *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true); |
6738 | return XCEID == YCEID; |
6739 | } |
6740 | |
6741 | bool ASTContext::isSameTypeConstraint(const TypeConstraint *XTC, |
6742 | const TypeConstraint *YTC) const { |
6743 | if (!XTC != !YTC) |
6744 | return false; |
6745 | |
6746 | if (!XTC) |
6747 | return true; |
6748 | |
6749 | auto *NCX = XTC->getNamedConcept(); |
6750 | auto *NCY = YTC->getNamedConcept(); |
6751 | if (!NCX || !NCY || !isSameEntity(X: NCX, Y: NCY)) |
6752 | return false; |
6753 | if (XTC->getConceptReference()->hasExplicitTemplateArgs() != |
6754 | YTC->getConceptReference()->hasExplicitTemplateArgs()) |
6755 | return false; |
6756 | if (XTC->getConceptReference()->hasExplicitTemplateArgs()) |
6757 | if (XTC->getConceptReference() |
6758 | ->getTemplateArgsAsWritten() |
6759 | ->NumTemplateArgs != |
6760 | YTC->getConceptReference()->getTemplateArgsAsWritten()->NumTemplateArgs) |
6761 | return false; |
6762 | |
6763 | // Compare slowly by profiling. |
6764 | // |
6765 | // We couldn't compare the profiling result for the template |
6766 | // args here. Consider the following example in different modules: |
6767 | // |
6768 | // template <__integer_like _Tp, C<_Tp> Sentinel> |
6769 | // constexpr _Tp operator()(_Tp &&__t, Sentinel &&last) const { |
6770 | // return __t; |
6771 | // } |
6772 | // |
6773 | // When we compare the profiling result for `C<_Tp>` in different |
6774 | // modules, it will compare the type of `_Tp` in different modules. |
6775 | // However, the type of `_Tp` in different modules refer to different |
6776 | // types here naturally. So we couldn't compare the profiling result |
6777 | // for the template args directly. |
6778 | return isSameConstraintExpr(XCE: XTC->getImmediatelyDeclaredConstraint(), |
6779 | YCE: YTC->getImmediatelyDeclaredConstraint()); |
6780 | } |
6781 | |
6782 | bool ASTContext::isSameTemplateParameter(const NamedDecl *X, |
6783 | const NamedDecl *Y) const { |
6784 | if (X->getKind() != Y->getKind()) |
6785 | return false; |
6786 | |
6787 | if (auto *TX = dyn_cast<TemplateTypeParmDecl>(Val: X)) { |
6788 | auto *TY = cast<TemplateTypeParmDecl>(Val: Y); |
6789 | if (TX->isParameterPack() != TY->isParameterPack()) |
6790 | return false; |
6791 | if (TX->hasTypeConstraint() != TY->hasTypeConstraint()) |
6792 | return false; |
6793 | return isSameTypeConstraint(XTC: TX->getTypeConstraint(), |
6794 | YTC: TY->getTypeConstraint()); |
6795 | } |
6796 | |
6797 | if (auto *TX = dyn_cast<NonTypeTemplateParmDecl>(Val: X)) { |
6798 | auto *TY = cast<NonTypeTemplateParmDecl>(Val: Y); |
6799 | return TX->isParameterPack() == TY->isParameterPack() && |
6800 | TX->getASTContext().hasSameType(T1: TX->getType(), T2: TY->getType()) && |
6801 | isSameConstraintExpr(XCE: TX->getPlaceholderTypeConstraint(), |
6802 | YCE: TY->getPlaceholderTypeConstraint()); |
6803 | } |
6804 | |
6805 | auto *TX = cast<TemplateTemplateParmDecl>(Val: X); |
6806 | auto *TY = cast<TemplateTemplateParmDecl>(Val: Y); |
6807 | return TX->isParameterPack() == TY->isParameterPack() && |
6808 | isSameTemplateParameterList(X: TX->getTemplateParameters(), |
6809 | Y: TY->getTemplateParameters()); |
6810 | } |
6811 | |
6812 | bool ASTContext::isSameTemplateParameterList( |
6813 | const TemplateParameterList *X, const TemplateParameterList *Y) const { |
6814 | if (X->size() != Y->size()) |
6815 | return false; |
6816 | |
6817 | for (unsigned I = 0, N = X->size(); I != N; ++I) |
6818 | if (!isSameTemplateParameter(X: X->getParam(Idx: I), Y: Y->getParam(Idx: I))) |
6819 | return false; |
6820 | |
6821 | return isSameConstraintExpr(XCE: X->getRequiresClause(), YCE: Y->getRequiresClause()); |
6822 | } |
6823 | |
6824 | bool ASTContext::isSameDefaultTemplateArgument(const NamedDecl *X, |
6825 | const NamedDecl *Y) const { |
6826 | // If the type parameter isn't the same already, we don't need to check the |
6827 | // default argument further. |
6828 | if (!isSameTemplateParameter(X, Y)) |
6829 | return false; |
6830 | |
6831 | if (auto *TTPX = dyn_cast<TemplateTypeParmDecl>(Val: X)) { |
6832 | auto *TTPY = cast<TemplateTypeParmDecl>(Val: Y); |
6833 | if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument()) |
6834 | return false; |
6835 | |
6836 | return hasSameType(T1: TTPX->getDefaultArgument().getArgument().getAsType(), |
6837 | T2: TTPY->getDefaultArgument().getArgument().getAsType()); |
6838 | } |
6839 | |
6840 | if (auto *NTTPX = dyn_cast<NonTypeTemplateParmDecl>(Val: X)) { |
6841 | auto *NTTPY = cast<NonTypeTemplateParmDecl>(Val: Y); |
6842 | if (!NTTPX->hasDefaultArgument() || !NTTPY->hasDefaultArgument()) |
6843 | return false; |
6844 | |
6845 | Expr *DefaultArgumentX = |
6846 | NTTPX->getDefaultArgument().getArgument().getAsExpr()->IgnoreImpCasts(); |
6847 | Expr *DefaultArgumentY = |
6848 | NTTPY->getDefaultArgument().getArgument().getAsExpr()->IgnoreImpCasts(); |
6849 | llvm::FoldingSetNodeID XID, YID; |
6850 | DefaultArgumentX->Profile(ID&: XID, Context: *this, /*Canonical=*/true); |
6851 | DefaultArgumentY->Profile(ID&: YID, Context: *this, /*Canonical=*/true); |
6852 | return XID == YID; |
6853 | } |
6854 | |
6855 | auto *TTPX = cast<TemplateTemplateParmDecl>(Val: X); |
6856 | auto *TTPY = cast<TemplateTemplateParmDecl>(Val: Y); |
6857 | |
6858 | if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument()) |
6859 | return false; |
6860 | |
6861 | const TemplateArgument &TAX = TTPX->getDefaultArgument().getArgument(); |
6862 | const TemplateArgument &TAY = TTPY->getDefaultArgument().getArgument(); |
6863 | return hasSameTemplateName(X: TAX.getAsTemplate(), Y: TAY.getAsTemplate()); |
6864 | } |
6865 | |
6866 | static NamespaceDecl *getNamespace(const NestedNameSpecifier *X) { |
6867 | if (auto *NS = X->getAsNamespace()) |
6868 | return NS; |
6869 | if (auto *NAS = X->getAsNamespaceAlias()) |
6870 | return NAS->getNamespace(); |
6871 | return nullptr; |
6872 | } |
6873 | |
6874 | static bool isSameQualifier(const NestedNameSpecifier *X, |
6875 | const NestedNameSpecifier *Y) { |
6876 | if (auto *NSX = getNamespace(X)) { |
6877 | auto *NSY = getNamespace(X: Y); |
6878 | if (!NSY || NSX->getCanonicalDecl() != NSY->getCanonicalDecl()) |
6879 | return false; |
6880 | } else if (X->getKind() != Y->getKind()) |
6881 | return false; |
6882 | |
6883 | // FIXME: For namespaces and types, we're permitted to check that the entity |
6884 | // is named via the same tokens. We should probably do so. |
6885 | switch (X->getKind()) { |
6886 | case NestedNameSpecifier::Identifier: |
6887 | if (X->getAsIdentifier() != Y->getAsIdentifier()) |
6888 | return false; |
6889 | break; |
6890 | case NestedNameSpecifier::Namespace: |
6891 | case NestedNameSpecifier::NamespaceAlias: |
6892 | // We've already checked that we named the same namespace. |
6893 | break; |
6894 | case NestedNameSpecifier::TypeSpec: |
6895 | case NestedNameSpecifier::TypeSpecWithTemplate: |
6896 | if (X->getAsType()->getCanonicalTypeInternal() != |
6897 | Y->getAsType()->getCanonicalTypeInternal()) |
6898 | return false; |
6899 | break; |
6900 | case NestedNameSpecifier::Global: |
6901 | case NestedNameSpecifier::Super: |
6902 | return true; |
6903 | } |
6904 | |
6905 | // Recurse into earlier portion of NNS, if any. |
6906 | auto *PX = X->getPrefix(); |
6907 | auto *PY = Y->getPrefix(); |
6908 | if (PX && PY) |
6909 | return isSameQualifier(X: PX, Y: PY); |
6910 | return !PX && !PY; |
6911 | } |
6912 | |
6913 | /// Determine whether the attributes we can overload on are identical for A and |
6914 | /// B. Will ignore any overloadable attrs represented in the type of A and B. |
6915 | static bool hasSameOverloadableAttrs(const FunctionDecl *A, |
6916 | const FunctionDecl *B) { |
6917 | // Note that pass_object_size attributes are represented in the function's |
6918 | // ExtParameterInfo, so we don't need to check them here. |
6919 | |
6920 | llvm::FoldingSetNodeID Cand1ID, Cand2ID; |
6921 | auto AEnableIfAttrs = A->specific_attrs<EnableIfAttr>(); |
6922 | auto BEnableIfAttrs = B->specific_attrs<EnableIfAttr>(); |
6923 | |
6924 | for (auto Pair : zip_longest(t&: AEnableIfAttrs, u&: BEnableIfAttrs)) { |
6925 | std::optional<EnableIfAttr *> Cand1A = std::get<0>(t&: Pair); |
6926 | std::optional<EnableIfAttr *> Cand2A = std::get<1>(t&: Pair); |
6927 | |
6928 | // Return false if the number of enable_if attributes is different. |
6929 | if (!Cand1A || !Cand2A) |
6930 | return false; |
6931 | |
6932 | Cand1ID.clear(); |
6933 | Cand2ID.clear(); |
6934 | |
6935 | (*Cand1A)->getCond()->Profile(ID&: Cand1ID, Context: A->getASTContext(), Canonical: true); |
6936 | (*Cand2A)->getCond()->Profile(ID&: Cand2ID, Context: B->getASTContext(), Canonical: true); |
6937 | |
6938 | // Return false if any of the enable_if expressions of A and B are |
6939 | // different. |
6940 | if (Cand1ID != Cand2ID) |
6941 | return false; |
6942 | } |
6943 | return true; |
6944 | } |
6945 | |
6946 | bool ASTContext::isSameEntity(const NamedDecl *X, const NamedDecl *Y) const { |
6947 | // Caution: this function is called by the AST reader during deserialization, |
6948 | // so it cannot rely on AST invariants being met. Non-trivial accessors |
6949 | // should be avoided, along with any traversal of redeclaration chains. |
6950 | |
6951 | if (X == Y) |
6952 | return true; |
6953 | |
6954 | if (X->getDeclName() != Y->getDeclName()) |
6955 | return false; |
6956 | |
6957 | // Must be in the same context. |
6958 | // |
6959 | // Note that we can't use DeclContext::Equals here, because the DeclContexts |
6960 | // could be two different declarations of the same function. (We will fix the |
6961 | // semantic DC to refer to the primary definition after merging.) |
6962 | if (!declaresSameEntity(D1: cast<Decl>(Val: X->getDeclContext()->getRedeclContext()), |
6963 | D2: cast<Decl>(Val: Y->getDeclContext()->getRedeclContext()))) |
6964 | return false; |
6965 | |
6966 | // Two typedefs refer to the same entity if they have the same underlying |
6967 | // type. |
6968 | if (const auto *TypedefX = dyn_cast<TypedefNameDecl>(Val: X)) |
6969 | if (const auto *TypedefY = dyn_cast<TypedefNameDecl>(Val: Y)) |
6970 | return hasSameType(T1: TypedefX->getUnderlyingType(), |
6971 | T2: TypedefY->getUnderlyingType()); |
6972 | |
6973 | // Must have the same kind. |
6974 | if (X->getKind() != Y->getKind()) |
6975 | return false; |
6976 | |
6977 | // Objective-C classes and protocols with the same name always match. |
6978 | if (isa<ObjCInterfaceDecl>(Val: X) || isa<ObjCProtocolDecl>(Val: X)) |
6979 | return true; |
6980 | |
6981 | if (isa<ClassTemplateSpecializationDecl>(Val: X)) { |
6982 | // No need to handle these here: we merge them when adding them to the |
6983 | // template. |
6984 | return false; |
6985 | } |
6986 | |
6987 | // Compatible tags match. |
6988 | if (const auto *TagX = dyn_cast<TagDecl>(Val: X)) { |
6989 | const auto *TagY = cast<TagDecl>(Val: Y); |
6990 | return (TagX->getTagKind() == TagY->getTagKind()) || |
6991 | ((TagX->getTagKind() == TagTypeKind::Struct || |
6992 | TagX->getTagKind() == TagTypeKind::Class || |
6993 | TagX->getTagKind() == TagTypeKind::Interface) && |
6994 | (TagY->getTagKind() == TagTypeKind::Struct || |
6995 | TagY->getTagKind() == TagTypeKind::Class || |
6996 | TagY->getTagKind() == TagTypeKind::Interface)); |
6997 | } |
6998 | |
6999 | // Functions with the same type and linkage match. |
7000 | // FIXME: This needs to cope with merging of prototyped/non-prototyped |
7001 | // functions, etc. |
7002 | if (const auto *FuncX = dyn_cast<FunctionDecl>(Val: X)) { |
7003 | const auto *FuncY = cast<FunctionDecl>(Val: Y); |
7004 | if (const auto *CtorX = dyn_cast<CXXConstructorDecl>(Val: X)) { |
7005 | const auto *CtorY = cast<CXXConstructorDecl>(Val: Y); |
7006 | if (CtorX->getInheritedConstructor() && |
7007 | !isSameEntity(X: CtorX->getInheritedConstructor().getConstructor(), |
7008 | Y: CtorY->getInheritedConstructor().getConstructor())) |
7009 | return false; |
7010 | } |
7011 | |
7012 | if (FuncX->isMultiVersion() != FuncY->isMultiVersion()) |
7013 | return false; |
7014 | |
7015 | // Multiversioned functions with different feature strings are represented |
7016 | // as separate declarations. |
7017 | if (FuncX->isMultiVersion()) { |
7018 | const auto *TAX = FuncX->getAttr<TargetAttr>(); |
7019 | const auto *TAY = FuncY->getAttr<TargetAttr>(); |
7020 | assert(TAX && TAY && "Multiversion Function without target attribute" ); |
7021 | |
7022 | if (TAX->getFeaturesStr() != TAY->getFeaturesStr()) |
7023 | return false; |
7024 | } |
7025 | |
7026 | // Per C++20 [temp.over.link]/4, friends in different classes are sometimes |
7027 | // not the same entity if they are constrained. |
7028 | if ((FuncX->isMemberLikeConstrainedFriend() || |
7029 | FuncY->isMemberLikeConstrainedFriend()) && |
7030 | !FuncX->getLexicalDeclContext()->Equals( |
7031 | DC: FuncY->getLexicalDeclContext())) { |
7032 | return false; |
7033 | } |
7034 | |
7035 | if (!isSameConstraintExpr(XCE: FuncX->getTrailingRequiresClause(), |
7036 | YCE: FuncY->getTrailingRequiresClause())) |
7037 | return false; |
7038 | |
7039 | auto GetTypeAsWritten = [](const FunctionDecl *FD) { |
7040 | // Map to the first declaration that we've already merged into this one. |
7041 | // The TSI of redeclarations might not match (due to calling conventions |
7042 | // being inherited onto the type but not the TSI), but the TSI type of |
7043 | // the first declaration of the function should match across modules. |
7044 | FD = FD->getCanonicalDecl(); |
7045 | return FD->getTypeSourceInfo() ? FD->getTypeSourceInfo()->getType() |
7046 | : FD->getType(); |
7047 | }; |
7048 | QualType XT = GetTypeAsWritten(FuncX), YT = GetTypeAsWritten(FuncY); |
7049 | if (!hasSameType(T1: XT, T2: YT)) { |
7050 | // We can get functions with different types on the redecl chain in C++17 |
7051 | // if they have differing exception specifications and at least one of |
7052 | // the excpetion specs is unresolved. |
7053 | auto *XFPT = XT->getAs<FunctionProtoType>(); |
7054 | auto *YFPT = YT->getAs<FunctionProtoType>(); |
7055 | if (getLangOpts().CPlusPlus17 && XFPT && YFPT && |
7056 | (isUnresolvedExceptionSpec(ESpecType: XFPT->getExceptionSpecType()) || |
7057 | isUnresolvedExceptionSpec(ESpecType: YFPT->getExceptionSpecType())) && |
7058 | hasSameFunctionTypeIgnoringExceptionSpec(T: XT, U: YT)) |
7059 | return true; |
7060 | return false; |
7061 | } |
7062 | |
7063 | return FuncX->getLinkageInternal() == FuncY->getLinkageInternal() && |
7064 | hasSameOverloadableAttrs(A: FuncX, B: FuncY); |
7065 | } |
7066 | |
7067 | // Variables with the same type and linkage match. |
7068 | if (const auto *VarX = dyn_cast<VarDecl>(Val: X)) { |
7069 | const auto *VarY = cast<VarDecl>(Val: Y); |
7070 | if (VarX->getLinkageInternal() == VarY->getLinkageInternal()) { |
7071 | // During deserialization, we might compare variables before we load |
7072 | // their types. Assume the types will end up being the same. |
7073 | if (VarX->getType().isNull() || VarY->getType().isNull()) |
7074 | return true; |
7075 | |
7076 | if (hasSameType(T1: VarX->getType(), T2: VarY->getType())) |
7077 | return true; |
7078 | |
7079 | // We can get decls with different types on the redecl chain. Eg. |
7080 | // template <typename T> struct S { static T Var[]; }; // #1 |
7081 | // template <typename T> T S<T>::Var[sizeof(T)]; // #2 |
7082 | // Only? happens when completing an incomplete array type. In this case |
7083 | // when comparing #1 and #2 we should go through their element type. |
7084 | const ArrayType *VarXTy = getAsArrayType(T: VarX->getType()); |
7085 | const ArrayType *VarYTy = getAsArrayType(T: VarY->getType()); |
7086 | if (!VarXTy || !VarYTy) |
7087 | return false; |
7088 | if (VarXTy->isIncompleteArrayType() || VarYTy->isIncompleteArrayType()) |
7089 | return hasSameType(T1: VarXTy->getElementType(), T2: VarYTy->getElementType()); |
7090 | } |
7091 | return false; |
7092 | } |
7093 | |
7094 | // Namespaces with the same name and inlinedness match. |
7095 | if (const auto *NamespaceX = dyn_cast<NamespaceDecl>(Val: X)) { |
7096 | const auto *NamespaceY = cast<NamespaceDecl>(Val: Y); |
7097 | return NamespaceX->isInline() == NamespaceY->isInline(); |
7098 | } |
7099 | |
7100 | // Identical template names and kinds match if their template parameter lists |
7101 | // and patterns match. |
7102 | if (const auto *TemplateX = dyn_cast<TemplateDecl>(Val: X)) { |
7103 | const auto *TemplateY = cast<TemplateDecl>(Val: Y); |
7104 | |
7105 | // ConceptDecl wouldn't be the same if their constraint expression differs. |
7106 | if (const auto *ConceptX = dyn_cast<ConceptDecl>(Val: X)) { |
7107 | const auto *ConceptY = cast<ConceptDecl>(Val: Y); |
7108 | if (!isSameConstraintExpr(XCE: ConceptX->getConstraintExpr(), |
7109 | YCE: ConceptY->getConstraintExpr())) |
7110 | return false; |
7111 | } |
7112 | |
7113 | return isSameEntity(X: TemplateX->getTemplatedDecl(), |
7114 | Y: TemplateY->getTemplatedDecl()) && |
7115 | isSameTemplateParameterList(X: TemplateX->getTemplateParameters(), |
7116 | Y: TemplateY->getTemplateParameters()); |
7117 | } |
7118 | |
7119 | // Fields with the same name and the same type match. |
7120 | if (const auto *FDX = dyn_cast<FieldDecl>(Val: X)) { |
7121 | const auto *FDY = cast<FieldDecl>(Val: Y); |
7122 | // FIXME: Also check the bitwidth is odr-equivalent, if any. |
7123 | return hasSameType(T1: FDX->getType(), T2: FDY->getType()); |
7124 | } |
7125 | |
7126 | // Indirect fields with the same target field match. |
7127 | if (const auto *IFDX = dyn_cast<IndirectFieldDecl>(Val: X)) { |
7128 | const auto *IFDY = cast<IndirectFieldDecl>(Val: Y); |
7129 | return IFDX->getAnonField()->getCanonicalDecl() == |
7130 | IFDY->getAnonField()->getCanonicalDecl(); |
7131 | } |
7132 | |
7133 | // Enumerators with the same name match. |
7134 | if (isa<EnumConstantDecl>(Val: X)) |
7135 | // FIXME: Also check the value is odr-equivalent. |
7136 | return true; |
7137 | |
7138 | // Using shadow declarations with the same target match. |
7139 | if (const auto *USX = dyn_cast<UsingShadowDecl>(Val: X)) { |
7140 | const auto *USY = cast<UsingShadowDecl>(Val: Y); |
7141 | return declaresSameEntity(D1: USX->getTargetDecl(), D2: USY->getTargetDecl()); |
7142 | } |
7143 | |
7144 | // Using declarations with the same qualifier match. (We already know that |
7145 | // the name matches.) |
7146 | if (const auto *UX = dyn_cast<UsingDecl>(Val: X)) { |
7147 | const auto *UY = cast<UsingDecl>(Val: Y); |
7148 | return isSameQualifier(X: UX->getQualifier(), Y: UY->getQualifier()) && |
7149 | UX->hasTypename() == UY->hasTypename() && |
7150 | UX->isAccessDeclaration() == UY->isAccessDeclaration(); |
7151 | } |
7152 | if (const auto *UX = dyn_cast<UnresolvedUsingValueDecl>(Val: X)) { |
7153 | const auto *UY = cast<UnresolvedUsingValueDecl>(Val: Y); |
7154 | return isSameQualifier(X: UX->getQualifier(), Y: UY->getQualifier()) && |
7155 | UX->isAccessDeclaration() == UY->isAccessDeclaration(); |
7156 | } |
7157 | if (const auto *UX = dyn_cast<UnresolvedUsingTypenameDecl>(Val: X)) { |
7158 | return isSameQualifier( |
7159 | X: UX->getQualifier(), |
7160 | Y: cast<UnresolvedUsingTypenameDecl>(Val: Y)->getQualifier()); |
7161 | } |
7162 | |
7163 | // Using-pack declarations are only created by instantiation, and match if |
7164 | // they're instantiated from matching UnresolvedUsing...Decls. |
7165 | if (const auto *UX = dyn_cast<UsingPackDecl>(Val: X)) { |
7166 | return declaresSameEntity( |
7167 | D1: UX->getInstantiatedFromUsingDecl(), |
7168 | D2: cast<UsingPackDecl>(Val: Y)->getInstantiatedFromUsingDecl()); |
7169 | } |
7170 | |
7171 | // Namespace alias definitions with the same target match. |
7172 | if (const auto *NAX = dyn_cast<NamespaceAliasDecl>(Val: X)) { |
7173 | const auto *NAY = cast<NamespaceAliasDecl>(Val: Y); |
7174 | return NAX->getNamespace()->Equals(DC: NAY->getNamespace()); |
7175 | } |
7176 | |
7177 | return false; |
7178 | } |
7179 | |
7180 | TemplateArgument |
7181 | ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const { |
7182 | switch (Arg.getKind()) { |
7183 | case TemplateArgument::Null: |
7184 | return Arg; |
7185 | |
7186 | case TemplateArgument::Expression: |
7187 | return Arg; |
7188 | |
7189 | case TemplateArgument::Declaration: { |
7190 | auto *D = cast<ValueDecl>(Val: Arg.getAsDecl()->getCanonicalDecl()); |
7191 | return TemplateArgument(D, getCanonicalType(T: Arg.getParamTypeForDecl()), |
7192 | Arg.getIsDefaulted()); |
7193 | } |
7194 | |
7195 | case TemplateArgument::NullPtr: |
7196 | return TemplateArgument(getCanonicalType(T: Arg.getNullPtrType()), |
7197 | /*isNullPtr*/ true, Arg.getIsDefaulted()); |
7198 | |
7199 | case TemplateArgument::Template: |
7200 | return TemplateArgument(getCanonicalTemplateName(Name: Arg.getAsTemplate()), |
7201 | Arg.getIsDefaulted()); |
7202 | |
7203 | case TemplateArgument::TemplateExpansion: |
7204 | return TemplateArgument( |
7205 | getCanonicalTemplateName(Name: Arg.getAsTemplateOrTemplatePattern()), |
7206 | Arg.getNumTemplateExpansions(), Arg.getIsDefaulted()); |
7207 | |
7208 | case TemplateArgument::Integral: |
7209 | return TemplateArgument(Arg, getCanonicalType(T: Arg.getIntegralType())); |
7210 | |
7211 | case TemplateArgument::StructuralValue: |
7212 | return TemplateArgument(*this, |
7213 | getCanonicalType(T: Arg.getStructuralValueType()), |
7214 | Arg.getAsStructuralValue()); |
7215 | |
7216 | case TemplateArgument::Type: |
7217 | return TemplateArgument(getCanonicalType(T: Arg.getAsType()), |
7218 | /*isNullPtr*/ false, Arg.getIsDefaulted()); |
7219 | |
7220 | case TemplateArgument::Pack: { |
7221 | bool AnyNonCanonArgs = false; |
7222 | auto CanonArgs = ::getCanonicalTemplateArguments( |
7223 | C: *this, Args: Arg.pack_elements(), AnyNonCanonArgs); |
7224 | if (!AnyNonCanonArgs) |
7225 | return Arg; |
7226 | return TemplateArgument::CreatePackCopy(Context&: const_cast<ASTContext &>(*this), |
7227 | Args: CanonArgs); |
7228 | } |
7229 | } |
7230 | |
7231 | // Silence GCC warning |
7232 | llvm_unreachable("Unhandled template argument kind" ); |
7233 | } |
7234 | |
7235 | NestedNameSpecifier * |
7236 | ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const { |
7237 | if (!NNS) |
7238 | return nullptr; |
7239 | |
7240 | switch (NNS->getKind()) { |
7241 | case NestedNameSpecifier::Identifier: |
7242 | // Canonicalize the prefix but keep the identifier the same. |
7243 | return NestedNameSpecifier::Create(Context: *this, |
7244 | Prefix: getCanonicalNestedNameSpecifier(NNS: NNS->getPrefix()), |
7245 | II: NNS->getAsIdentifier()); |
7246 | |
7247 | case NestedNameSpecifier::Namespace: |
7248 | // A namespace is canonical; build a nested-name-specifier with |
7249 | // this namespace and no prefix. |
7250 | return NestedNameSpecifier::Create(Context: *this, Prefix: nullptr, |
7251 | NS: NNS->getAsNamespace()->getFirstDecl()); |
7252 | |
7253 | case NestedNameSpecifier::NamespaceAlias: |
7254 | // A namespace is canonical; build a nested-name-specifier with |
7255 | // this namespace and no prefix. |
7256 | return NestedNameSpecifier::Create( |
7257 | Context: *this, Prefix: nullptr, |
7258 | NS: NNS->getAsNamespaceAlias()->getNamespace()->getFirstDecl()); |
7259 | |
7260 | // The difference between TypeSpec and TypeSpecWithTemplate is that the |
7261 | // latter will have the 'template' keyword when printed. |
7262 | case NestedNameSpecifier::TypeSpec: |
7263 | case NestedNameSpecifier::TypeSpecWithTemplate: { |
7264 | const Type *T = getCanonicalType(T: NNS->getAsType()); |
7265 | |
7266 | // If we have some kind of dependent-named type (e.g., "typename T::type"), |
7267 | // break it apart into its prefix and identifier, then reconsititute those |
7268 | // as the canonical nested-name-specifier. This is required to canonicalize |
7269 | // a dependent nested-name-specifier involving typedefs of dependent-name |
7270 | // types, e.g., |
7271 | // typedef typename T::type T1; |
7272 | // typedef typename T1::type T2; |
7273 | if (const auto *DNT = T->getAs<DependentNameType>()) |
7274 | return NestedNameSpecifier::Create(Context: *this, Prefix: DNT->getQualifier(), |
7275 | II: DNT->getIdentifier()); |
7276 | if (const auto *DTST = T->getAs<DependentTemplateSpecializationType>()) |
7277 | return NestedNameSpecifier::Create(Context: *this, Prefix: DTST->getQualifier(), Template: true, T); |
7278 | |
7279 | // TODO: Set 'Template' parameter to true for other template types. |
7280 | return NestedNameSpecifier::Create(Context: *this, Prefix: nullptr, Template: false, T); |
7281 | } |
7282 | |
7283 | case NestedNameSpecifier::Global: |
7284 | case NestedNameSpecifier::Super: |
7285 | // The global specifier and __super specifer are canonical and unique. |
7286 | return NNS; |
7287 | } |
7288 | |
7289 | llvm_unreachable("Invalid NestedNameSpecifier::Kind!" ); |
7290 | } |
7291 | |
7292 | const ArrayType *ASTContext::getAsArrayType(QualType T) const { |
7293 | // Handle the non-qualified case efficiently. |
7294 | if (!T.hasLocalQualifiers()) { |
7295 | // Handle the common positive case fast. |
7296 | if (const auto *AT = dyn_cast<ArrayType>(Val&: T)) |
7297 | return AT; |
7298 | } |
7299 | |
7300 | // Handle the common negative case fast. |
7301 | if (!isa<ArrayType>(Val: T.getCanonicalType())) |
7302 | return nullptr; |
7303 | |
7304 | // Apply any qualifiers from the array type to the element type. This |
7305 | // implements C99 6.7.3p8: "If the specification of an array type includes |
7306 | // any type qualifiers, the element type is so qualified, not the array type." |
7307 | |
7308 | // If we get here, we either have type qualifiers on the type, or we have |
7309 | // sugar such as a typedef in the way. If we have type qualifiers on the type |
7310 | // we must propagate them down into the element type. |
7311 | |
7312 | SplitQualType split = T.getSplitDesugaredType(); |
7313 | Qualifiers qs = split.Quals; |
7314 | |
7315 | // If we have a simple case, just return now. |
7316 | const auto *ATy = dyn_cast<ArrayType>(Val: split.Ty); |
7317 | if (!ATy || qs.empty()) |
7318 | return ATy; |
7319 | |
7320 | // Otherwise, we have an array and we have qualifiers on it. Push the |
7321 | // qualifiers into the array element type and return a new array type. |
7322 | QualType NewEltTy = getQualifiedType(T: ATy->getElementType(), Qs: qs); |
7323 | |
7324 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: ATy)) |
7325 | return cast<ArrayType>(Val: getConstantArrayType(EltTy: NewEltTy, ArySizeIn: CAT->getSize(), |
7326 | SizeExpr: CAT->getSizeExpr(), |
7327 | ASM: CAT->getSizeModifier(), |
7328 | IndexTypeQuals: CAT->getIndexTypeCVRQualifiers())); |
7329 | if (const auto *IAT = dyn_cast<IncompleteArrayType>(Val: ATy)) |
7330 | return cast<ArrayType>(Val: getIncompleteArrayType(elementType: NewEltTy, |
7331 | ASM: IAT->getSizeModifier(), |
7332 | elementTypeQuals: IAT->getIndexTypeCVRQualifiers())); |
7333 | |
7334 | if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(Val: ATy)) |
7335 | return cast<ArrayType>( |
7336 | Val: getDependentSizedArrayType(elementType: NewEltTy, |
7337 | numElements: DSAT->getSizeExpr(), |
7338 | ASM: DSAT->getSizeModifier(), |
7339 | elementTypeQuals: DSAT->getIndexTypeCVRQualifiers(), |
7340 | brackets: DSAT->getBracketsRange())); |
7341 | |
7342 | const auto *VAT = cast<VariableArrayType>(Val: ATy); |
7343 | return cast<ArrayType>(Val: getVariableArrayType(EltTy: NewEltTy, |
7344 | NumElts: VAT->getSizeExpr(), |
7345 | ASM: VAT->getSizeModifier(), |
7346 | IndexTypeQuals: VAT->getIndexTypeCVRQualifiers(), |
7347 | Brackets: VAT->getBracketsRange())); |
7348 | } |
7349 | |
7350 | QualType ASTContext::getAdjustedParameterType(QualType T) const { |
7351 | if (getLangOpts().HLSL && T->isConstantArrayType()) |
7352 | return getArrayParameterType(Ty: T); |
7353 | if (T->isArrayType() || T->isFunctionType()) |
7354 | return getDecayedType(T); |
7355 | return T; |
7356 | } |
7357 | |
7358 | QualType ASTContext::getSignatureParameterType(QualType T) const { |
7359 | T = getVariableArrayDecayedType(type: T); |
7360 | T = getAdjustedParameterType(T); |
7361 | return T.getUnqualifiedType(); |
7362 | } |
7363 | |
7364 | QualType ASTContext::getExceptionObjectType(QualType T) const { |
7365 | // C++ [except.throw]p3: |
7366 | // A throw-expression initializes a temporary object, called the exception |
7367 | // object, the type of which is determined by removing any top-level |
7368 | // cv-qualifiers from the static type of the operand of throw and adjusting |
7369 | // the type from "array of T" or "function returning T" to "pointer to T" |
7370 | // or "pointer to function returning T", [...] |
7371 | T = getVariableArrayDecayedType(type: T); |
7372 | if (T->isArrayType() || T->isFunctionType()) |
7373 | T = getDecayedType(T); |
7374 | return T.getUnqualifiedType(); |
7375 | } |
7376 | |
7377 | /// getArrayDecayedType - Return the properly qualified result of decaying the |
7378 | /// specified array type to a pointer. This operation is non-trivial when |
7379 | /// handling typedefs etc. The canonical type of "T" must be an array type, |
7380 | /// this returns a pointer to a properly qualified element of the array. |
7381 | /// |
7382 | /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. |
7383 | QualType ASTContext::getArrayDecayedType(QualType Ty) const { |
7384 | // Get the element type with 'getAsArrayType' so that we don't lose any |
7385 | // typedefs in the element type of the array. This also handles propagation |
7386 | // of type qualifiers from the array type into the element type if present |
7387 | // (C99 6.7.3p8). |
7388 | const ArrayType *PrettyArrayType = getAsArrayType(T: Ty); |
7389 | assert(PrettyArrayType && "Not an array type!" ); |
7390 | |
7391 | QualType PtrTy = getPointerType(T: PrettyArrayType->getElementType()); |
7392 | |
7393 | // int x[restrict 4] -> int *restrict |
7394 | QualType Result = getQualifiedType(T: PtrTy, |
7395 | Qs: PrettyArrayType->getIndexTypeQualifiers()); |
7396 | |
7397 | // int x[_Nullable] -> int * _Nullable |
7398 | if (auto Nullability = Ty->getNullability()) { |
7399 | Result = const_cast<ASTContext *>(this)->getAttributedType( |
7400 | attrKind: AttributedType::getNullabilityAttrKind(kind: *Nullability), modifiedType: Result, equivalentType: Result); |
7401 | } |
7402 | return Result; |
7403 | } |
7404 | |
7405 | QualType ASTContext::getBaseElementType(const ArrayType *array) const { |
7406 | return getBaseElementType(QT: array->getElementType()); |
7407 | } |
7408 | |
7409 | QualType ASTContext::getBaseElementType(QualType type) const { |
7410 | Qualifiers qs; |
7411 | while (true) { |
7412 | SplitQualType split = type.getSplitDesugaredType(); |
7413 | const ArrayType *array = split.Ty->getAsArrayTypeUnsafe(); |
7414 | if (!array) break; |
7415 | |
7416 | type = array->getElementType(); |
7417 | qs.addConsistentQualifiers(qs: split.Quals); |
7418 | } |
7419 | |
7420 | return getQualifiedType(T: type, Qs: qs); |
7421 | } |
7422 | |
7423 | /// getConstantArrayElementCount - Returns number of constant array elements. |
7424 | uint64_t |
7425 | ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const { |
7426 | uint64_t ElementCount = 1; |
7427 | do { |
7428 | ElementCount *= CA->getZExtSize(); |
7429 | CA = dyn_cast_or_null<ConstantArrayType>( |
7430 | Val: CA->getElementType()->getAsArrayTypeUnsafe()); |
7431 | } while (CA); |
7432 | return ElementCount; |
7433 | } |
7434 | |
7435 | uint64_t ASTContext::getArrayInitLoopExprElementCount( |
7436 | const ArrayInitLoopExpr *AILE) const { |
7437 | if (!AILE) |
7438 | return 0; |
7439 | |
7440 | uint64_t ElementCount = 1; |
7441 | |
7442 | do { |
7443 | ElementCount *= AILE->getArraySize().getZExtValue(); |
7444 | AILE = dyn_cast<ArrayInitLoopExpr>(Val: AILE->getSubExpr()); |
7445 | } while (AILE); |
7446 | |
7447 | return ElementCount; |
7448 | } |
7449 | |
7450 | /// getFloatingRank - Return a relative rank for floating point types. |
7451 | /// This routine will assert if passed a built-in type that isn't a float. |
7452 | static FloatingRank getFloatingRank(QualType T) { |
7453 | if (const auto *CT = T->getAs<ComplexType>()) |
7454 | return getFloatingRank(T: CT->getElementType()); |
7455 | |
7456 | switch (T->castAs<BuiltinType>()->getKind()) { |
7457 | default: llvm_unreachable("getFloatingRank(): not a floating type" ); |
7458 | case BuiltinType::Float16: return Float16Rank; |
7459 | case BuiltinType::Half: return HalfRank; |
7460 | case BuiltinType::Float: return FloatRank; |
7461 | case BuiltinType::Double: return DoubleRank; |
7462 | case BuiltinType::LongDouble: return LongDoubleRank; |
7463 | case BuiltinType::Float128: return Float128Rank; |
7464 | case BuiltinType::BFloat16: return BFloat16Rank; |
7465 | case BuiltinType::Ibm128: return Ibm128Rank; |
7466 | } |
7467 | } |
7468 | |
7469 | /// getFloatingTypeOrder - Compare the rank of the two specified floating |
7470 | /// point types, ignoring the domain of the type (i.e. 'double' == |
7471 | /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If |
7472 | /// LHS < RHS, return -1. |
7473 | int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const { |
7474 | FloatingRank LHSR = getFloatingRank(T: LHS); |
7475 | FloatingRank RHSR = getFloatingRank(T: RHS); |
7476 | |
7477 | if (LHSR == RHSR) |
7478 | return 0; |
7479 | if (LHSR > RHSR) |
7480 | return 1; |
7481 | return -1; |
7482 | } |
7483 | |
7484 | int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const { |
7485 | if (&getFloatTypeSemantics(T: LHS) == &getFloatTypeSemantics(T: RHS)) |
7486 | return 0; |
7487 | return getFloatingTypeOrder(LHS, RHS); |
7488 | } |
7489 | |
7490 | /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This |
7491 | /// routine will assert if passed a built-in type that isn't an integer or enum, |
7492 | /// or if it is not canonicalized. |
7493 | unsigned ASTContext::getIntegerRank(const Type *T) const { |
7494 | assert(T->isCanonicalUnqualified() && "T should be canonicalized" ); |
7495 | |
7496 | // Results in this 'losing' to any type of the same size, but winning if |
7497 | // larger. |
7498 | if (const auto *EIT = dyn_cast<BitIntType>(Val: T)) |
7499 | return 0 + (EIT->getNumBits() << 3); |
7500 | |
7501 | switch (cast<BuiltinType>(Val: T)->getKind()) { |
7502 | default: llvm_unreachable("getIntegerRank(): not a built-in integer" ); |
7503 | case BuiltinType::Bool: |
7504 | return 1 + (getIntWidth(T: BoolTy) << 3); |
7505 | case BuiltinType::Char_S: |
7506 | case BuiltinType::Char_U: |
7507 | case BuiltinType::SChar: |
7508 | case BuiltinType::UChar: |
7509 | return 2 + (getIntWidth(T: CharTy) << 3); |
7510 | case BuiltinType::Short: |
7511 | case BuiltinType::UShort: |
7512 | return 3 + (getIntWidth(T: ShortTy) << 3); |
7513 | case BuiltinType::Int: |
7514 | case BuiltinType::UInt: |
7515 | return 4 + (getIntWidth(T: IntTy) << 3); |
7516 | case BuiltinType::Long: |
7517 | case BuiltinType::ULong: |
7518 | return 5 + (getIntWidth(T: LongTy) << 3); |
7519 | case BuiltinType::LongLong: |
7520 | case BuiltinType::ULongLong: |
7521 | return 6 + (getIntWidth(T: LongLongTy) << 3); |
7522 | case BuiltinType::Int128: |
7523 | case BuiltinType::UInt128: |
7524 | return 7 + (getIntWidth(T: Int128Ty) << 3); |
7525 | |
7526 | // "The ranks of char8_t, char16_t, char32_t, and wchar_t equal the ranks of |
7527 | // their underlying types" [c++20 conv.rank] |
7528 | case BuiltinType::Char8: |
7529 | return getIntegerRank(T: UnsignedCharTy.getTypePtr()); |
7530 | case BuiltinType::Char16: |
7531 | return getIntegerRank( |
7532 | T: getFromTargetType(Type: Target->getChar16Type()).getTypePtr()); |
7533 | case BuiltinType::Char32: |
7534 | return getIntegerRank( |
7535 | T: getFromTargetType(Type: Target->getChar32Type()).getTypePtr()); |
7536 | case BuiltinType::WChar_S: |
7537 | case BuiltinType::WChar_U: |
7538 | return getIntegerRank( |
7539 | T: getFromTargetType(Type: Target->getWCharType()).getTypePtr()); |
7540 | } |
7541 | } |
7542 | |
7543 | /// Whether this is a promotable bitfield reference according |
7544 | /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions). |
7545 | /// |
7546 | /// \returns the type this bit-field will promote to, or NULL if no |
7547 | /// promotion occurs. |
7548 | QualType ASTContext::isPromotableBitField(Expr *E) const { |
7549 | if (E->isTypeDependent() || E->isValueDependent()) |
7550 | return {}; |
7551 | |
7552 | // C++ [conv.prom]p5: |
7553 | // If the bit-field has an enumerated type, it is treated as any other |
7554 | // value of that type for promotion purposes. |
7555 | if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType()) |
7556 | return {}; |
7557 | |
7558 | // FIXME: We should not do this unless E->refersToBitField() is true. This |
7559 | // matters in C where getSourceBitField() will find bit-fields for various |
7560 | // cases where the source expression is not a bit-field designator. |
7561 | |
7562 | FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields? |
7563 | if (!Field) |
7564 | return {}; |
7565 | |
7566 | QualType FT = Field->getType(); |
7567 | |
7568 | uint64_t BitWidth = Field->getBitWidthValue(Ctx: *this); |
7569 | uint64_t IntSize = getTypeSize(T: IntTy); |
7570 | // C++ [conv.prom]p5: |
7571 | // A prvalue for an integral bit-field can be converted to a prvalue of type |
7572 | // int if int can represent all the values of the bit-field; otherwise, it |
7573 | // can be converted to unsigned int if unsigned int can represent all the |
7574 | // values of the bit-field. If the bit-field is larger yet, no integral |
7575 | // promotion applies to it. |
7576 | // C11 6.3.1.1/2: |
7577 | // [For a bit-field of type _Bool, int, signed int, or unsigned int:] |
7578 | // If an int can represent all values of the original type (as restricted by |
7579 | // the width, for a bit-field), the value is converted to an int; otherwise, |
7580 | // it is converted to an unsigned int. |
7581 | // |
7582 | // FIXME: C does not permit promotion of a 'long : 3' bitfield to int. |
7583 | // We perform that promotion here to match GCC and C++. |
7584 | // FIXME: C does not permit promotion of an enum bit-field whose rank is |
7585 | // greater than that of 'int'. We perform that promotion to match GCC. |
7586 | // |
7587 | // C23 6.3.1.1p2: |
7588 | // The value from a bit-field of a bit-precise integer type is converted to |
7589 | // the corresponding bit-precise integer type. (The rest is the same as in |
7590 | // C11.) |
7591 | if (QualType QT = Field->getType(); QT->isBitIntType()) |
7592 | return QT; |
7593 | |
7594 | if (BitWidth < IntSize) |
7595 | return IntTy; |
7596 | |
7597 | if (BitWidth == IntSize) |
7598 | return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy; |
7599 | |
7600 | // Bit-fields wider than int are not subject to promotions, and therefore act |
7601 | // like the base type. GCC has some weird bugs in this area that we |
7602 | // deliberately do not follow (GCC follows a pre-standard resolution to |
7603 | // C's DR315 which treats bit-width as being part of the type, and this leaks |
7604 | // into their semantics in some cases). |
7605 | return {}; |
7606 | } |
7607 | |
7608 | /// getPromotedIntegerType - Returns the type that Promotable will |
7609 | /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable |
7610 | /// integer type. |
7611 | QualType ASTContext::getPromotedIntegerType(QualType Promotable) const { |
7612 | assert(!Promotable.isNull()); |
7613 | assert(isPromotableIntegerType(Promotable)); |
7614 | if (const auto *ET = Promotable->getAs<EnumType>()) |
7615 | return ET->getDecl()->getPromotionType(); |
7616 | |
7617 | if (const auto *BT = Promotable->getAs<BuiltinType>()) { |
7618 | // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t |
7619 | // (3.9.1) can be converted to a prvalue of the first of the following |
7620 | // types that can represent all the values of its underlying type: |
7621 | // int, unsigned int, long int, unsigned long int, long long int, or |
7622 | // unsigned long long int [...] |
7623 | // FIXME: Is there some better way to compute this? |
7624 | if (BT->getKind() == BuiltinType::WChar_S || |
7625 | BT->getKind() == BuiltinType::WChar_U || |
7626 | BT->getKind() == BuiltinType::Char8 || |
7627 | BT->getKind() == BuiltinType::Char16 || |
7628 | BT->getKind() == BuiltinType::Char32) { |
7629 | bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S; |
7630 | uint64_t FromSize = getTypeSize(T: BT); |
7631 | QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy, |
7632 | LongLongTy, UnsignedLongLongTy }; |
7633 | for (const auto &PT : PromoteTypes) { |
7634 | uint64_t ToSize = getTypeSize(T: PT); |
7635 | if (FromSize < ToSize || |
7636 | (FromSize == ToSize && FromIsSigned == PT->isSignedIntegerType())) |
7637 | return PT; |
7638 | } |
7639 | llvm_unreachable("char type should fit into long long" ); |
7640 | } |
7641 | } |
7642 | |
7643 | // At this point, we should have a signed or unsigned integer type. |
7644 | if (Promotable->isSignedIntegerType()) |
7645 | return IntTy; |
7646 | uint64_t PromotableSize = getIntWidth(T: Promotable); |
7647 | uint64_t IntSize = getIntWidth(T: IntTy); |
7648 | assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize); |
7649 | return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy; |
7650 | } |
7651 | |
7652 | /// Recurses in pointer/array types until it finds an objc retainable |
7653 | /// type and returns its ownership. |
7654 | Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const { |
7655 | while (!T.isNull()) { |
7656 | if (T.getObjCLifetime() != Qualifiers::OCL_None) |
7657 | return T.getObjCLifetime(); |
7658 | if (T->isArrayType()) |
7659 | T = getBaseElementType(type: T); |
7660 | else if (const auto *PT = T->getAs<PointerType>()) |
7661 | T = PT->getPointeeType(); |
7662 | else if (const auto *RT = T->getAs<ReferenceType>()) |
7663 | T = RT->getPointeeType(); |
7664 | else |
7665 | break; |
7666 | } |
7667 | |
7668 | return Qualifiers::OCL_None; |
7669 | } |
7670 | |
7671 | static const Type *getIntegerTypeForEnum(const EnumType *ET) { |
7672 | // Incomplete enum types are not treated as integer types. |
7673 | // FIXME: In C++, enum types are never integer types. |
7674 | if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) |
7675 | return ET->getDecl()->getIntegerType().getTypePtr(); |
7676 | return nullptr; |
7677 | } |
7678 | |
7679 | /// getIntegerTypeOrder - Returns the highest ranked integer type: |
7680 | /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If |
7681 | /// LHS < RHS, return -1. |
7682 | int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const { |
7683 | const Type *LHSC = getCanonicalType(T: LHS).getTypePtr(); |
7684 | const Type *RHSC = getCanonicalType(T: RHS).getTypePtr(); |
7685 | |
7686 | // Unwrap enums to their underlying type. |
7687 | if (const auto *ET = dyn_cast<EnumType>(Val: LHSC)) |
7688 | LHSC = getIntegerTypeForEnum(ET); |
7689 | if (const auto *ET = dyn_cast<EnumType>(Val: RHSC)) |
7690 | RHSC = getIntegerTypeForEnum(ET); |
7691 | |
7692 | if (LHSC == RHSC) return 0; |
7693 | |
7694 | bool LHSUnsigned = LHSC->isUnsignedIntegerType(); |
7695 | bool RHSUnsigned = RHSC->isUnsignedIntegerType(); |
7696 | |
7697 | unsigned LHSRank = getIntegerRank(T: LHSC); |
7698 | unsigned RHSRank = getIntegerRank(T: RHSC); |
7699 | |
7700 | if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. |
7701 | if (LHSRank == RHSRank) return 0; |
7702 | return LHSRank > RHSRank ? 1 : -1; |
7703 | } |
7704 | |
7705 | // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. |
7706 | if (LHSUnsigned) { |
7707 | // If the unsigned [LHS] type is larger, return it. |
7708 | if (LHSRank >= RHSRank) |
7709 | return 1; |
7710 | |
7711 | // If the signed type can represent all values of the unsigned type, it |
7712 | // wins. Because we are dealing with 2's complement and types that are |
7713 | // powers of two larger than each other, this is always safe. |
7714 | return -1; |
7715 | } |
7716 | |
7717 | // If the unsigned [RHS] type is larger, return it. |
7718 | if (RHSRank >= LHSRank) |
7719 | return -1; |
7720 | |
7721 | // If the signed type can represent all values of the unsigned type, it |
7722 | // wins. Because we are dealing with 2's complement and types that are |
7723 | // powers of two larger than each other, this is always safe. |
7724 | return 1; |
7725 | } |
7726 | |
7727 | TypedefDecl *ASTContext::getCFConstantStringDecl() const { |
7728 | if (CFConstantStringTypeDecl) |
7729 | return CFConstantStringTypeDecl; |
7730 | |
7731 | assert(!CFConstantStringTagDecl && |
7732 | "tag and typedef should be initialized together" ); |
7733 | CFConstantStringTagDecl = buildImplicitRecord(Name: "__NSConstantString_tag" ); |
7734 | CFConstantStringTagDecl->startDefinition(); |
7735 | |
7736 | struct { |
7737 | QualType Type; |
7738 | const char *Name; |
7739 | } Fields[5]; |
7740 | unsigned Count = 0; |
7741 | |
7742 | /// Objective-C ABI |
7743 | /// |
7744 | /// typedef struct __NSConstantString_tag { |
7745 | /// const int *isa; |
7746 | /// int flags; |
7747 | /// const char *str; |
7748 | /// long length; |
7749 | /// } __NSConstantString; |
7750 | /// |
7751 | /// Swift ABI (4.1, 4.2) |
7752 | /// |
7753 | /// typedef struct __NSConstantString_tag { |
7754 | /// uintptr_t _cfisa; |
7755 | /// uintptr_t _swift_rc; |
7756 | /// _Atomic(uint64_t) _cfinfoa; |
7757 | /// const char *_ptr; |
7758 | /// uint32_t _length; |
7759 | /// } __NSConstantString; |
7760 | /// |
7761 | /// Swift ABI (5.0) |
7762 | /// |
7763 | /// typedef struct __NSConstantString_tag { |
7764 | /// uintptr_t _cfisa; |
7765 | /// uintptr_t _swift_rc; |
7766 | /// _Atomic(uint64_t) _cfinfoa; |
7767 | /// const char *_ptr; |
7768 | /// uintptr_t _length; |
7769 | /// } __NSConstantString; |
7770 | |
7771 | const auto CFRuntime = getLangOpts().CFRuntime; |
7772 | if (static_cast<unsigned>(CFRuntime) < |
7773 | static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) { |
7774 | Fields[Count++] = { .Type: getPointerType(T: IntTy.withConst()), .Name: "isa" }; |
7775 | Fields[Count++] = { .Type: IntTy, .Name: "flags" }; |
7776 | Fields[Count++] = { .Type: getPointerType(T: CharTy.withConst()), .Name: "str" }; |
7777 | Fields[Count++] = { .Type: LongTy, .Name: "length" }; |
7778 | } else { |
7779 | Fields[Count++] = { .Type: getUIntPtrType(), .Name: "_cfisa" }; |
7780 | Fields[Count++] = { .Type: getUIntPtrType(), .Name: "_swift_rc" }; |
7781 | Fields[Count++] = { .Type: getFromTargetType(Type: Target->getUInt64Type()), .Name: "_swift_rc" }; |
7782 | Fields[Count++] = { .Type: getPointerType(T: CharTy.withConst()), .Name: "_ptr" }; |
7783 | if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || |
7784 | CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) |
7785 | Fields[Count++] = { .Type: IntTy, .Name: "_ptr" }; |
7786 | else |
7787 | Fields[Count++] = { .Type: getUIntPtrType(), .Name: "_ptr" }; |
7788 | } |
7789 | |
7790 | // Create fields |
7791 | for (unsigned i = 0; i < Count; ++i) { |
7792 | FieldDecl *Field = |
7793 | FieldDecl::Create(C: *this, DC: CFConstantStringTagDecl, StartLoc: SourceLocation(), |
7794 | IdLoc: SourceLocation(), Id: &Idents.get(Name: Fields[i].Name), |
7795 | T: Fields[i].Type, /*TInfo=*/nullptr, |
7796 | /*BitWidth=*/BW: nullptr, /*Mutable=*/false, InitStyle: ICIS_NoInit); |
7797 | Field->setAccess(AS_public); |
7798 | CFConstantStringTagDecl->addDecl(D: Field); |
7799 | } |
7800 | |
7801 | CFConstantStringTagDecl->completeDefinition(); |
7802 | // This type is designed to be compatible with NSConstantString, but cannot |
7803 | // use the same name, since NSConstantString is an interface. |
7804 | auto tagType = getTagDeclType(Decl: CFConstantStringTagDecl); |
7805 | CFConstantStringTypeDecl = |
7806 | buildImplicitTypedef(T: tagType, Name: "__NSConstantString" ); |
7807 | |
7808 | return CFConstantStringTypeDecl; |
7809 | } |
7810 | |
7811 | RecordDecl *ASTContext::getCFConstantStringTagDecl() const { |
7812 | if (!CFConstantStringTagDecl) |
7813 | getCFConstantStringDecl(); // Build the tag and the typedef. |
7814 | return CFConstantStringTagDecl; |
7815 | } |
7816 | |
7817 | // getCFConstantStringType - Return the type used for constant CFStrings. |
7818 | QualType ASTContext::getCFConstantStringType() const { |
7819 | return getTypedefType(Decl: getCFConstantStringDecl()); |
7820 | } |
7821 | |
7822 | QualType ASTContext::getObjCSuperType() const { |
7823 | if (ObjCSuperType.isNull()) { |
7824 | RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord(Name: "objc_super" ); |
7825 | getTranslationUnitDecl()->addDecl(D: ObjCSuperTypeDecl); |
7826 | ObjCSuperType = getTagDeclType(Decl: ObjCSuperTypeDecl); |
7827 | } |
7828 | return ObjCSuperType; |
7829 | } |
7830 | |
7831 | void ASTContext::setCFConstantStringType(QualType T) { |
7832 | const auto *TD = T->castAs<TypedefType>(); |
7833 | CFConstantStringTypeDecl = cast<TypedefDecl>(Val: TD->getDecl()); |
7834 | const auto *TagType = |
7835 | CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>(); |
7836 | CFConstantStringTagDecl = TagType->getDecl(); |
7837 | } |
7838 | |
7839 | QualType ASTContext::getBlockDescriptorType() const { |
7840 | if (BlockDescriptorType) |
7841 | return getTagDeclType(Decl: BlockDescriptorType); |
7842 | |
7843 | RecordDecl *RD; |
7844 | // FIXME: Needs the FlagAppleBlock bit. |
7845 | RD = buildImplicitRecord(Name: "__block_descriptor" ); |
7846 | RD->startDefinition(); |
7847 | |
7848 | QualType FieldTypes[] = { |
7849 | UnsignedLongTy, |
7850 | UnsignedLongTy, |
7851 | }; |
7852 | |
7853 | static const char *const FieldNames[] = { |
7854 | "reserved" , |
7855 | "Size" |
7856 | }; |
7857 | |
7858 | for (size_t i = 0; i < 2; ++i) { |
7859 | FieldDecl *Field = FieldDecl::Create( |
7860 | C: *this, DC: RD, StartLoc: SourceLocation(), IdLoc: SourceLocation(), |
7861 | Id: &Idents.get(Name: FieldNames[i]), T: FieldTypes[i], /*TInfo=*/nullptr, |
7862 | /*BitWidth=*/BW: nullptr, /*Mutable=*/false, InitStyle: ICIS_NoInit); |
7863 | Field->setAccess(AS_public); |
7864 | RD->addDecl(D: Field); |
7865 | } |
7866 | |
7867 | RD->completeDefinition(); |
7868 | |
7869 | BlockDescriptorType = RD; |
7870 | |
7871 | return getTagDeclType(Decl: BlockDescriptorType); |
7872 | } |
7873 | |
7874 | QualType ASTContext::getBlockDescriptorExtendedType() const { |
7875 | if (BlockDescriptorExtendedType) |
7876 | return getTagDeclType(Decl: BlockDescriptorExtendedType); |
7877 | |
7878 | RecordDecl *RD; |
7879 | // FIXME: Needs the FlagAppleBlock bit. |
7880 | RD = buildImplicitRecord(Name: "__block_descriptor_withcopydispose" ); |
7881 | RD->startDefinition(); |
7882 | |
7883 | QualType FieldTypes[] = { |
7884 | UnsignedLongTy, |
7885 | UnsignedLongTy, |
7886 | getPointerType(T: VoidPtrTy), |
7887 | getPointerType(T: VoidPtrTy) |
7888 | }; |
7889 | |
7890 | static const char *const FieldNames[] = { |
7891 | "reserved" , |
7892 | "Size" , |
7893 | "CopyFuncPtr" , |
7894 | "DestroyFuncPtr" |
7895 | }; |
7896 | |
7897 | for (size_t i = 0; i < 4; ++i) { |
7898 | FieldDecl *Field = FieldDecl::Create( |
7899 | C: *this, DC: RD, StartLoc: SourceLocation(), IdLoc: SourceLocation(), |
7900 | Id: &Idents.get(Name: FieldNames[i]), T: FieldTypes[i], /*TInfo=*/nullptr, |
7901 | /*BitWidth=*/BW: nullptr, |
7902 | /*Mutable=*/false, InitStyle: ICIS_NoInit); |
7903 | Field->setAccess(AS_public); |
7904 | RD->addDecl(D: Field); |
7905 | } |
7906 | |
7907 | RD->completeDefinition(); |
7908 | |
7909 | BlockDescriptorExtendedType = RD; |
7910 | return getTagDeclType(Decl: BlockDescriptorExtendedType); |
7911 | } |
7912 | |
7913 | OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const { |
7914 | const auto *BT = dyn_cast<BuiltinType>(Val: T); |
7915 | |
7916 | if (!BT) { |
7917 | if (isa<PipeType>(Val: T)) |
7918 | return OCLTK_Pipe; |
7919 | |
7920 | return OCLTK_Default; |
7921 | } |
7922 | |
7923 | switch (BT->getKind()) { |
7924 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
7925 | case BuiltinType::Id: \ |
7926 | return OCLTK_Image; |
7927 | #include "clang/Basic/OpenCLImageTypes.def" |
7928 | |
7929 | case BuiltinType::OCLClkEvent: |
7930 | return OCLTK_ClkEvent; |
7931 | |
7932 | case BuiltinType::OCLEvent: |
7933 | return OCLTK_Event; |
7934 | |
7935 | case BuiltinType::OCLQueue: |
7936 | return OCLTK_Queue; |
7937 | |
7938 | case BuiltinType::OCLReserveID: |
7939 | return OCLTK_ReserveID; |
7940 | |
7941 | case BuiltinType::OCLSampler: |
7942 | return OCLTK_Sampler; |
7943 | |
7944 | default: |
7945 | return OCLTK_Default; |
7946 | } |
7947 | } |
7948 | |
7949 | LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const { |
7950 | return Target->getOpenCLTypeAddrSpace(TK: getOpenCLTypeKind(T)); |
7951 | } |
7952 | |
7953 | /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty" |
7954 | /// requires copy/dispose. Note that this must match the logic |
7955 | /// in buildByrefHelpers. |
7956 | bool ASTContext::BlockRequiresCopying(QualType Ty, |
7957 | const VarDecl *D) { |
7958 | if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) { |
7959 | const Expr *copyExpr = getBlockVarCopyInit(VD: D).getCopyExpr(); |
7960 | if (!copyExpr && record->hasTrivialDestructor()) return false; |
7961 | |
7962 | return true; |
7963 | } |
7964 | |
7965 | // The block needs copy/destroy helpers if Ty is non-trivial to destructively |
7966 | // move or destroy. |
7967 | if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType()) |
7968 | return true; |
7969 | |
7970 | if (!Ty->isObjCRetainableType()) return false; |
7971 | |
7972 | Qualifiers qs = Ty.getQualifiers(); |
7973 | |
7974 | // If we have lifetime, that dominates. |
7975 | if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { |
7976 | switch (lifetime) { |
7977 | case Qualifiers::OCL_None: llvm_unreachable("impossible" ); |
7978 | |
7979 | // These are just bits as far as the runtime is concerned. |
7980 | case Qualifiers::OCL_ExplicitNone: |
7981 | case Qualifiers::OCL_Autoreleasing: |
7982 | return false; |
7983 | |
7984 | // These cases should have been taken care of when checking the type's |
7985 | // non-triviality. |
7986 | case Qualifiers::OCL_Weak: |
7987 | case Qualifiers::OCL_Strong: |
7988 | llvm_unreachable("impossible" ); |
7989 | } |
7990 | llvm_unreachable("fell out of lifetime switch!" ); |
7991 | } |
7992 | return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) || |
7993 | Ty->isObjCObjectPointerType()); |
7994 | } |
7995 | |
7996 | bool ASTContext::getByrefLifetime(QualType Ty, |
7997 | Qualifiers::ObjCLifetime &LifeTime, |
7998 | bool &HasByrefExtendedLayout) const { |
7999 | if (!getLangOpts().ObjC || |
8000 | getLangOpts().getGC() != LangOptions::NonGC) |
8001 | return false; |
8002 | |
8003 | HasByrefExtendedLayout = false; |
8004 | if (Ty->isRecordType()) { |
8005 | HasByrefExtendedLayout = true; |
8006 | LifeTime = Qualifiers::OCL_None; |
8007 | } else if ((LifeTime = Ty.getObjCLifetime())) { |
8008 | // Honor the ARC qualifiers. |
8009 | } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) { |
8010 | // The MRR rule. |
8011 | LifeTime = Qualifiers::OCL_ExplicitNone; |
8012 | } else { |
8013 | LifeTime = Qualifiers::OCL_None; |
8014 | } |
8015 | return true; |
8016 | } |
8017 | |
8018 | CanQualType ASTContext::getNSUIntegerType() const { |
8019 | assert(Target && "Expected target to be initialized" ); |
8020 | const llvm::Triple &T = Target->getTriple(); |
8021 | // Windows is LLP64 rather than LP64 |
8022 | if (T.isOSWindows() && T.isArch64Bit()) |
8023 | return UnsignedLongLongTy; |
8024 | return UnsignedLongTy; |
8025 | } |
8026 | |
8027 | CanQualType ASTContext::getNSIntegerType() const { |
8028 | assert(Target && "Expected target to be initialized" ); |
8029 | const llvm::Triple &T = Target->getTriple(); |
8030 | // Windows is LLP64 rather than LP64 |
8031 | if (T.isOSWindows() && T.isArch64Bit()) |
8032 | return LongLongTy; |
8033 | return LongTy; |
8034 | } |
8035 | |
8036 | TypedefDecl *ASTContext::getObjCInstanceTypeDecl() { |
8037 | if (!ObjCInstanceTypeDecl) |
8038 | ObjCInstanceTypeDecl = |
8039 | buildImplicitTypedef(T: getObjCIdType(), Name: "instancetype" ); |
8040 | return ObjCInstanceTypeDecl; |
8041 | } |
8042 | |
8043 | // This returns true if a type has been typedefed to BOOL: |
8044 | // typedef <type> BOOL; |
8045 | static bool isTypeTypedefedAsBOOL(QualType T) { |
8046 | if (const auto *TT = dyn_cast<TypedefType>(Val&: T)) |
8047 | if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) |
8048 | return II->isStr(Str: "BOOL" ); |
8049 | |
8050 | return false; |
8051 | } |
8052 | |
8053 | /// getObjCEncodingTypeSize returns size of type for objective-c encoding |
8054 | /// purpose. |
8055 | CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const { |
8056 | if (!type->isIncompleteArrayType() && type->isIncompleteType()) |
8057 | return CharUnits::Zero(); |
8058 | |
8059 | CharUnits sz = getTypeSizeInChars(T: type); |
8060 | |
8061 | // Make all integer and enum types at least as large as an int |
8062 | if (sz.isPositive() && type->isIntegralOrEnumerationType()) |
8063 | sz = std::max(a: sz, b: getTypeSizeInChars(T: IntTy)); |
8064 | // Treat arrays as pointers, since that's how they're passed in. |
8065 | else if (type->isArrayType()) |
8066 | sz = getTypeSizeInChars(T: VoidPtrTy); |
8067 | return sz; |
8068 | } |
8069 | |
8070 | bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const { |
8071 | return getTargetInfo().getCXXABI().isMicrosoft() && |
8072 | VD->isStaticDataMember() && |
8073 | VD->getType()->isIntegralOrEnumerationType() && |
8074 | !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit(); |
8075 | } |
8076 | |
8077 | ASTContext::InlineVariableDefinitionKind |
8078 | ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const { |
8079 | if (!VD->isInline()) |
8080 | return InlineVariableDefinitionKind::None; |
8081 | |
8082 | // In almost all cases, it's a weak definition. |
8083 | auto *First = VD->getFirstDecl(); |
8084 | if (First->isInlineSpecified() || !First->isStaticDataMember()) |
8085 | return InlineVariableDefinitionKind::Weak; |
8086 | |
8087 | // If there's a file-context declaration in this translation unit, it's a |
8088 | // non-discardable definition. |
8089 | for (auto *D : VD->redecls()) |
8090 | if (D->getLexicalDeclContext()->isFileContext() && |
8091 | !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr())) |
8092 | return InlineVariableDefinitionKind::Strong; |
8093 | |
8094 | // If we've not seen one yet, we don't know. |
8095 | return InlineVariableDefinitionKind::WeakUnknown; |
8096 | } |
8097 | |
8098 | static std::string charUnitsToString(const CharUnits &CU) { |
8099 | return llvm::itostr(X: CU.getQuantity()); |
8100 | } |
8101 | |
8102 | /// getObjCEncodingForBlock - Return the encoded type for this block |
8103 | /// declaration. |
8104 | std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const { |
8105 | std::string S; |
8106 | |
8107 | const BlockDecl *Decl = Expr->getBlockDecl(); |
8108 | QualType BlockTy = |
8109 | Expr->getType()->castAs<BlockPointerType>()->getPointeeType(); |
8110 | QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType(); |
8111 | // Encode result type. |
8112 | if (getLangOpts().EncodeExtendedBlockSig) |
8113 | getObjCEncodingForMethodParameter(QT: Decl::OBJC_TQ_None, T: BlockReturnTy, S, |
8114 | Extended: true /*Extended*/); |
8115 | else |
8116 | getObjCEncodingForType(T: BlockReturnTy, S); |
8117 | // Compute size of all parameters. |
8118 | // Start with computing size of a pointer in number of bytes. |
8119 | // FIXME: There might(should) be a better way of doing this computation! |
8120 | CharUnits PtrSize = getTypeSizeInChars(T: VoidPtrTy); |
8121 | CharUnits ParmOffset = PtrSize; |
8122 | for (auto *PI : Decl->parameters()) { |
8123 | QualType PType = PI->getType(); |
8124 | CharUnits sz = getObjCEncodingTypeSize(type: PType); |
8125 | if (sz.isZero()) |
8126 | continue; |
8127 | assert(sz.isPositive() && "BlockExpr - Incomplete param type" ); |
8128 | ParmOffset += sz; |
8129 | } |
8130 | // Size of the argument frame |
8131 | S += charUnitsToString(CU: ParmOffset); |
8132 | // Block pointer and offset. |
8133 | S += "@?0" ; |
8134 | |
8135 | // Argument types. |
8136 | ParmOffset = PtrSize; |
8137 | for (auto *PVDecl : Decl->parameters()) { |
8138 | QualType PType = PVDecl->getOriginalType(); |
8139 | if (const auto *AT = |
8140 | dyn_cast<ArrayType>(Val: PType->getCanonicalTypeInternal())) { |
8141 | // Use array's original type only if it has known number of |
8142 | // elements. |
8143 | if (!isa<ConstantArrayType>(Val: AT)) |
8144 | PType = PVDecl->getType(); |
8145 | } else if (PType->isFunctionType()) |
8146 | PType = PVDecl->getType(); |
8147 | if (getLangOpts().EncodeExtendedBlockSig) |
8148 | getObjCEncodingForMethodParameter(QT: Decl::OBJC_TQ_None, T: PType, |
8149 | S, Extended: true /*Extended*/); |
8150 | else |
8151 | getObjCEncodingForType(T: PType, S); |
8152 | S += charUnitsToString(CU: ParmOffset); |
8153 | ParmOffset += getObjCEncodingTypeSize(type: PType); |
8154 | } |
8155 | |
8156 | return S; |
8157 | } |
8158 | |
8159 | std::string |
8160 | ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const { |
8161 | std::string S; |
8162 | // Encode result type. |
8163 | getObjCEncodingForType(T: Decl->getReturnType(), S); |
8164 | CharUnits ParmOffset; |
8165 | // Compute size of all parameters. |
8166 | for (auto *PI : Decl->parameters()) { |
8167 | QualType PType = PI->getType(); |
8168 | CharUnits sz = getObjCEncodingTypeSize(type: PType); |
8169 | if (sz.isZero()) |
8170 | continue; |
8171 | |
8172 | assert(sz.isPositive() && |
8173 | "getObjCEncodingForFunctionDecl - Incomplete param type" ); |
8174 | ParmOffset += sz; |
8175 | } |
8176 | S += charUnitsToString(CU: ParmOffset); |
8177 | ParmOffset = CharUnits::Zero(); |
8178 | |
8179 | // Argument types. |
8180 | for (auto *PVDecl : Decl->parameters()) { |
8181 | QualType PType = PVDecl->getOriginalType(); |
8182 | if (const auto *AT = |
8183 | dyn_cast<ArrayType>(Val: PType->getCanonicalTypeInternal())) { |
8184 | // Use array's original type only if it has known number of |
8185 | // elements. |
8186 | if (!isa<ConstantArrayType>(Val: AT)) |
8187 | PType = PVDecl->getType(); |
8188 | } else if (PType->isFunctionType()) |
8189 | PType = PVDecl->getType(); |
8190 | getObjCEncodingForType(T: PType, S); |
8191 | S += charUnitsToString(CU: ParmOffset); |
8192 | ParmOffset += getObjCEncodingTypeSize(type: PType); |
8193 | } |
8194 | |
8195 | return S; |
8196 | } |
8197 | |
8198 | /// getObjCEncodingForMethodParameter - Return the encoded type for a single |
8199 | /// method parameter or return type. If Extended, include class names and |
8200 | /// block object types. |
8201 | void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, |
8202 | QualType T, std::string& S, |
8203 | bool Extended) const { |
8204 | // Encode type qualifier, 'in', 'inout', etc. for the parameter. |
8205 | getObjCEncodingForTypeQualifier(QT, S); |
8206 | // Encode parameter type. |
8207 | ObjCEncOptions Options = ObjCEncOptions() |
8208 | .setExpandPointedToStructures() |
8209 | .setExpandStructures() |
8210 | .setIsOutermostType(); |
8211 | if (Extended) |
8212 | Options.setEncodeBlockParameters().setEncodeClassNames(); |
8213 | getObjCEncodingForTypeImpl(t: T, S, Options, /*Field=*/nullptr); |
8214 | } |
8215 | |
8216 | /// getObjCEncodingForMethodDecl - Return the encoded type for this method |
8217 | /// declaration. |
8218 | std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, |
8219 | bool Extended) const { |
8220 | // FIXME: This is not very efficient. |
8221 | // Encode return type. |
8222 | std::string S; |
8223 | getObjCEncodingForMethodParameter(QT: Decl->getObjCDeclQualifier(), |
8224 | T: Decl->getReturnType(), S, Extended); |
8225 | // Compute size of all parameters. |
8226 | // Start with computing size of a pointer in number of bytes. |
8227 | // FIXME: There might(should) be a better way of doing this computation! |
8228 | CharUnits PtrSize = getTypeSizeInChars(T: VoidPtrTy); |
8229 | // The first two arguments (self and _cmd) are pointers; account for |
8230 | // their size. |
8231 | CharUnits ParmOffset = 2 * PtrSize; |
8232 | for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), |
8233 | E = Decl->sel_param_end(); PI != E; ++PI) { |
8234 | QualType PType = (*PI)->getType(); |
8235 | CharUnits sz = getObjCEncodingTypeSize(type: PType); |
8236 | if (sz.isZero()) |
8237 | continue; |
8238 | |
8239 | assert(sz.isPositive() && |
8240 | "getObjCEncodingForMethodDecl - Incomplete param type" ); |
8241 | ParmOffset += sz; |
8242 | } |
8243 | S += charUnitsToString(CU: ParmOffset); |
8244 | S += "@0:" ; |
8245 | S += charUnitsToString(CU: PtrSize); |
8246 | |
8247 | // Argument types. |
8248 | ParmOffset = 2 * PtrSize; |
8249 | for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), |
8250 | E = Decl->sel_param_end(); PI != E; ++PI) { |
8251 | const ParmVarDecl *PVDecl = *PI; |
8252 | QualType PType = PVDecl->getOriginalType(); |
8253 | if (const auto *AT = |
8254 | dyn_cast<ArrayType>(Val: PType->getCanonicalTypeInternal())) { |
8255 | // Use array's original type only if it has known number of |
8256 | // elements. |
8257 | if (!isa<ConstantArrayType>(Val: AT)) |
8258 | PType = PVDecl->getType(); |
8259 | } else if (PType->isFunctionType()) |
8260 | PType = PVDecl->getType(); |
8261 | getObjCEncodingForMethodParameter(QT: PVDecl->getObjCDeclQualifier(), |
8262 | T: PType, S, Extended); |
8263 | S += charUnitsToString(CU: ParmOffset); |
8264 | ParmOffset += getObjCEncodingTypeSize(type: PType); |
8265 | } |
8266 | |
8267 | return S; |
8268 | } |
8269 | |
8270 | ObjCPropertyImplDecl * |
8271 | ASTContext::getObjCPropertyImplDeclForPropertyDecl( |
8272 | const ObjCPropertyDecl *PD, |
8273 | const Decl *Container) const { |
8274 | if (!Container) |
8275 | return nullptr; |
8276 | if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Val: Container)) { |
8277 | for (auto *PID : CID->property_impls()) |
8278 | if (PID->getPropertyDecl() == PD) |
8279 | return PID; |
8280 | } else { |
8281 | const auto *OID = cast<ObjCImplementationDecl>(Val: Container); |
8282 | for (auto *PID : OID->property_impls()) |
8283 | if (PID->getPropertyDecl() == PD) |
8284 | return PID; |
8285 | } |
8286 | return nullptr; |
8287 | } |
8288 | |
8289 | /// getObjCEncodingForPropertyDecl - Return the encoded type for this |
8290 | /// property declaration. If non-NULL, Container must be either an |
8291 | /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be |
8292 | /// NULL when getting encodings for protocol properties. |
8293 | /// Property attributes are stored as a comma-delimited C string. The simple |
8294 | /// attributes readonly and bycopy are encoded as single characters. The |
8295 | /// parametrized attributes, getter=name, setter=name, and ivar=name, are |
8296 | /// encoded as single characters, followed by an identifier. Property types |
8297 | /// are also encoded as a parametrized attribute. The characters used to encode |
8298 | /// these attributes are defined by the following enumeration: |
8299 | /// @code |
8300 | /// enum PropertyAttributes { |
8301 | /// kPropertyReadOnly = 'R', // property is read-only. |
8302 | /// kPropertyBycopy = 'C', // property is a copy of the value last assigned |
8303 | /// kPropertyByref = '&', // property is a reference to the value last assigned |
8304 | /// kPropertyDynamic = 'D', // property is dynamic |
8305 | /// kPropertyGetter = 'G', // followed by getter selector name |
8306 | /// kPropertySetter = 'S', // followed by setter selector name |
8307 | /// kPropertyInstanceVariable = 'V' // followed by instance variable name |
8308 | /// kPropertyType = 'T' // followed by old-style type encoding. |
8309 | /// kPropertyWeak = 'W' // 'weak' property |
8310 | /// kPropertyStrong = 'P' // property GC'able |
8311 | /// kPropertyNonAtomic = 'N' // property non-atomic |
8312 | /// kPropertyOptional = '?' // property optional |
8313 | /// }; |
8314 | /// @endcode |
8315 | std::string |
8316 | ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, |
8317 | const Decl *Container) const { |
8318 | // Collect information from the property implementation decl(s). |
8319 | bool Dynamic = false; |
8320 | ObjCPropertyImplDecl *SynthesizePID = nullptr; |
8321 | |
8322 | if (ObjCPropertyImplDecl *PropertyImpDecl = |
8323 | getObjCPropertyImplDeclForPropertyDecl(PD, Container)) { |
8324 | if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic) |
8325 | Dynamic = true; |
8326 | else |
8327 | SynthesizePID = PropertyImpDecl; |
8328 | } |
8329 | |
8330 | // FIXME: This is not very efficient. |
8331 | std::string S = "T" ; |
8332 | |
8333 | // Encode result type. |
8334 | // GCC has some special rules regarding encoding of properties which |
8335 | // closely resembles encoding of ivars. |
8336 | getObjCEncodingForPropertyType(T: PD->getType(), S); |
8337 | |
8338 | if (PD->isOptional()) |
8339 | S += ",?" ; |
8340 | |
8341 | if (PD->isReadOnly()) { |
8342 | S += ",R" ; |
8343 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy) |
8344 | S += ",C" ; |
8345 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain) |
8346 | S += ",&" ; |
8347 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak) |
8348 | S += ",W" ; |
8349 | } else { |
8350 | switch (PD->getSetterKind()) { |
8351 | case ObjCPropertyDecl::Assign: break; |
8352 | case ObjCPropertyDecl::Copy: S += ",C" ; break; |
8353 | case ObjCPropertyDecl::Retain: S += ",&" ; break; |
8354 | case ObjCPropertyDecl::Weak: S += ",W" ; break; |
8355 | } |
8356 | } |
8357 | |
8358 | // It really isn't clear at all what this means, since properties |
8359 | // are "dynamic by default". |
8360 | if (Dynamic) |
8361 | S += ",D" ; |
8362 | |
8363 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic) |
8364 | S += ",N" ; |
8365 | |
8366 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) { |
8367 | S += ",G" ; |
8368 | S += PD->getGetterName().getAsString(); |
8369 | } |
8370 | |
8371 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) { |
8372 | S += ",S" ; |
8373 | S += PD->getSetterName().getAsString(); |
8374 | } |
8375 | |
8376 | if (SynthesizePID) { |
8377 | const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); |
8378 | S += ",V" ; |
8379 | S += OID->getNameAsString(); |
8380 | } |
8381 | |
8382 | // FIXME: OBJCGC: weak & strong |
8383 | return S; |
8384 | } |
8385 | |
8386 | /// getLegacyIntegralTypeEncoding - |
8387 | /// Another legacy compatibility encoding: 32-bit longs are encoded as |
8388 | /// 'l' or 'L' , but not always. For typedefs, we need to use |
8389 | /// 'i' or 'I' instead if encoding a struct field, or a pointer! |
8390 | void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { |
8391 | if (PointeeTy->getAs<TypedefType>()) { |
8392 | if (const auto *BT = PointeeTy->getAs<BuiltinType>()) { |
8393 | if (BT->getKind() == BuiltinType::ULong && getIntWidth(T: PointeeTy) == 32) |
8394 | PointeeTy = UnsignedIntTy; |
8395 | else |
8396 | if (BT->getKind() == BuiltinType::Long && getIntWidth(T: PointeeTy) == 32) |
8397 | PointeeTy = IntTy; |
8398 | } |
8399 | } |
8400 | } |
8401 | |
8402 | void ASTContext::getObjCEncodingForType(QualType T, std::string& S, |
8403 | const FieldDecl *Field, |
8404 | QualType *NotEncodedT) const { |
8405 | // We follow the behavior of gcc, expanding structures which are |
8406 | // directly pointed to, and expanding embedded structures. Note that |
8407 | // these rules are sufficient to prevent recursive encoding of the |
8408 | // same type. |
8409 | getObjCEncodingForTypeImpl(t: T, S, |
8410 | Options: ObjCEncOptions() |
8411 | .setExpandPointedToStructures() |
8412 | .setExpandStructures() |
8413 | .setIsOutermostType(), |
8414 | Field, NotEncodedT); |
8415 | } |
8416 | |
8417 | void ASTContext::getObjCEncodingForPropertyType(QualType T, |
8418 | std::string& S) const { |
8419 | // Encode result type. |
8420 | // GCC has some special rules regarding encoding of properties which |
8421 | // closely resembles encoding of ivars. |
8422 | getObjCEncodingForTypeImpl(t: T, S, |
8423 | Options: ObjCEncOptions() |
8424 | .setExpandPointedToStructures() |
8425 | .setExpandStructures() |
8426 | .setIsOutermostType() |
8427 | .setEncodingProperty(), |
8428 | /*Field=*/nullptr); |
8429 | } |
8430 | |
8431 | static char getObjCEncodingForPrimitiveType(const ASTContext *C, |
8432 | const BuiltinType *BT) { |
8433 | BuiltinType::Kind kind = BT->getKind(); |
8434 | switch (kind) { |
8435 | case BuiltinType::Void: return 'v'; |
8436 | case BuiltinType::Bool: return 'B'; |
8437 | case BuiltinType::Char8: |
8438 | case BuiltinType::Char_U: |
8439 | case BuiltinType::UChar: return 'C'; |
8440 | case BuiltinType::Char16: |
8441 | case BuiltinType::UShort: return 'S'; |
8442 | case BuiltinType::Char32: |
8443 | case BuiltinType::UInt: return 'I'; |
8444 | case BuiltinType::ULong: |
8445 | return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q'; |
8446 | case BuiltinType::UInt128: return 'T'; |
8447 | case BuiltinType::ULongLong: return 'Q'; |
8448 | case BuiltinType::Char_S: |
8449 | case BuiltinType::SChar: return 'c'; |
8450 | case BuiltinType::Short: return 's'; |
8451 | case BuiltinType::WChar_S: |
8452 | case BuiltinType::WChar_U: |
8453 | case BuiltinType::Int: return 'i'; |
8454 | case BuiltinType::Long: |
8455 | return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q'; |
8456 | case BuiltinType::LongLong: return 'q'; |
8457 | case BuiltinType::Int128: return 't'; |
8458 | case BuiltinType::Float: return 'f'; |
8459 | case BuiltinType::Double: return 'd'; |
8460 | case BuiltinType::LongDouble: return 'D'; |
8461 | case BuiltinType::NullPtr: return '*'; // like char* |
8462 | |
8463 | case BuiltinType::BFloat16: |
8464 | case BuiltinType::Float16: |
8465 | case BuiltinType::Float128: |
8466 | case BuiltinType::Ibm128: |
8467 | case BuiltinType::Half: |
8468 | case BuiltinType::ShortAccum: |
8469 | case BuiltinType::Accum: |
8470 | case BuiltinType::LongAccum: |
8471 | case BuiltinType::UShortAccum: |
8472 | case BuiltinType::UAccum: |
8473 | case BuiltinType::ULongAccum: |
8474 | case BuiltinType::ShortFract: |
8475 | case BuiltinType::Fract: |
8476 | case BuiltinType::LongFract: |
8477 | case BuiltinType::UShortFract: |
8478 | case BuiltinType::UFract: |
8479 | case BuiltinType::ULongFract: |
8480 | case BuiltinType::SatShortAccum: |
8481 | case BuiltinType::SatAccum: |
8482 | case BuiltinType::SatLongAccum: |
8483 | case BuiltinType::SatUShortAccum: |
8484 | case BuiltinType::SatUAccum: |
8485 | case BuiltinType::SatULongAccum: |
8486 | case BuiltinType::SatShortFract: |
8487 | case BuiltinType::SatFract: |
8488 | case BuiltinType::SatLongFract: |
8489 | case BuiltinType::SatUShortFract: |
8490 | case BuiltinType::SatUFract: |
8491 | case BuiltinType::SatULongFract: |
8492 | // FIXME: potentially need @encodes for these! |
8493 | return ' '; |
8494 | |
8495 | #define SVE_TYPE(Name, Id, SingletonId) \ |
8496 | case BuiltinType::Id: |
8497 | #include "clang/Basic/AArch64SVEACLETypes.def" |
8498 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
8499 | #include "clang/Basic/RISCVVTypes.def" |
8500 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
8501 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
8502 | #define AMDGPU_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
8503 | #include "clang/Basic/AMDGPUTypes.def" |
8504 | { |
8505 | DiagnosticsEngine &Diags = C->getDiagnostics(); |
8506 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
8507 | FormatString: "cannot yet @encode type %0" ); |
8508 | Diags.Report(DiagID) << BT->getName(Policy: C->getPrintingPolicy()); |
8509 | return ' '; |
8510 | } |
8511 | |
8512 | case BuiltinType::ObjCId: |
8513 | case BuiltinType::ObjCClass: |
8514 | case BuiltinType::ObjCSel: |
8515 | llvm_unreachable("@encoding ObjC primitive type" ); |
8516 | |
8517 | // OpenCL and placeholder types don't need @encodings. |
8518 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
8519 | case BuiltinType::Id: |
8520 | #include "clang/Basic/OpenCLImageTypes.def" |
8521 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
8522 | case BuiltinType::Id: |
8523 | #include "clang/Basic/OpenCLExtensionTypes.def" |
8524 | case BuiltinType::OCLEvent: |
8525 | case BuiltinType::OCLClkEvent: |
8526 | case BuiltinType::OCLQueue: |
8527 | case BuiltinType::OCLReserveID: |
8528 | case BuiltinType::OCLSampler: |
8529 | case BuiltinType::Dependent: |
8530 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
8531 | case BuiltinType::Id: |
8532 | #include "clang/Basic/PPCTypes.def" |
8533 | #define BUILTIN_TYPE(KIND, ID) |
8534 | #define PLACEHOLDER_TYPE(KIND, ID) \ |
8535 | case BuiltinType::KIND: |
8536 | #include "clang/AST/BuiltinTypes.def" |
8537 | llvm_unreachable("invalid builtin type for @encode" ); |
8538 | } |
8539 | llvm_unreachable("invalid BuiltinType::Kind value" ); |
8540 | } |
8541 | |
8542 | static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) { |
8543 | EnumDecl *Enum = ET->getDecl(); |
8544 | |
8545 | // The encoding of an non-fixed enum type is always 'i', regardless of size. |
8546 | if (!Enum->isFixed()) |
8547 | return 'i'; |
8548 | |
8549 | // The encoding of a fixed enum type matches its fixed underlying type. |
8550 | const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>(); |
8551 | return getObjCEncodingForPrimitiveType(C, BT); |
8552 | } |
8553 | |
8554 | static void EncodeBitField(const ASTContext *Ctx, std::string& S, |
8555 | QualType T, const FieldDecl *FD) { |
8556 | assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl" ); |
8557 | S += 'b'; |
8558 | // The NeXT runtime encodes bit fields as b followed by the number of bits. |
8559 | // The GNU runtime requires more information; bitfields are encoded as b, |
8560 | // then the offset (in bits) of the first element, then the type of the |
8561 | // bitfield, then the size in bits. For example, in this structure: |
8562 | // |
8563 | // struct |
8564 | // { |
8565 | // int integer; |
8566 | // int flags:2; |
8567 | // }; |
8568 | // On a 32-bit system, the encoding for flags would be b2 for the NeXT |
8569 | // runtime, but b32i2 for the GNU runtime. The reason for this extra |
8570 | // information is not especially sensible, but we're stuck with it for |
8571 | // compatibility with GCC, although providing it breaks anything that |
8572 | // actually uses runtime introspection and wants to work on both runtimes... |
8573 | if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) { |
8574 | uint64_t Offset; |
8575 | |
8576 | if (const auto *IVD = dyn_cast<ObjCIvarDecl>(Val: FD)) { |
8577 | Offset = Ctx->lookupFieldBitOffset(OID: IVD->getContainingInterface(), ID: nullptr, |
8578 | Ivar: IVD); |
8579 | } else { |
8580 | const RecordDecl *RD = FD->getParent(); |
8581 | const ASTRecordLayout &RL = Ctx->getASTRecordLayout(D: RD); |
8582 | Offset = RL.getFieldOffset(FieldNo: FD->getFieldIndex()); |
8583 | } |
8584 | |
8585 | S += llvm::utostr(X: Offset); |
8586 | |
8587 | if (const auto *ET = T->getAs<EnumType>()) |
8588 | S += ObjCEncodingForEnumType(C: Ctx, ET); |
8589 | else { |
8590 | const auto *BT = T->castAs<BuiltinType>(); |
8591 | S += getObjCEncodingForPrimitiveType(C: Ctx, BT); |
8592 | } |
8593 | } |
8594 | S += llvm::utostr(X: FD->getBitWidthValue(Ctx: *Ctx)); |
8595 | } |
8596 | |
8597 | // Helper function for determining whether the encoded type string would include |
8598 | // a template specialization type. |
8599 | static bool hasTemplateSpecializationInEncodedString(const Type *T, |
8600 | bool VisitBasesAndFields) { |
8601 | T = T->getBaseElementTypeUnsafe(); |
8602 | |
8603 | if (auto *PT = T->getAs<PointerType>()) |
8604 | return hasTemplateSpecializationInEncodedString( |
8605 | T: PT->getPointeeType().getTypePtr(), VisitBasesAndFields: false); |
8606 | |
8607 | auto *CXXRD = T->getAsCXXRecordDecl(); |
8608 | |
8609 | if (!CXXRD) |
8610 | return false; |
8611 | |
8612 | if (isa<ClassTemplateSpecializationDecl>(Val: CXXRD)) |
8613 | return true; |
8614 | |
8615 | if (!CXXRD->hasDefinition() || !VisitBasesAndFields) |
8616 | return false; |
8617 | |
8618 | for (const auto &B : CXXRD->bases()) |
8619 | if (hasTemplateSpecializationInEncodedString(T: B.getType().getTypePtr(), |
8620 | VisitBasesAndFields: true)) |
8621 | return true; |
8622 | |
8623 | for (auto *FD : CXXRD->fields()) |
8624 | if (hasTemplateSpecializationInEncodedString(T: FD->getType().getTypePtr(), |
8625 | VisitBasesAndFields: true)) |
8626 | return true; |
8627 | |
8628 | return false; |
8629 | } |
8630 | |
8631 | // FIXME: Use SmallString for accumulating string. |
8632 | void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S, |
8633 | const ObjCEncOptions Options, |
8634 | const FieldDecl *FD, |
8635 | QualType *NotEncodedT) const { |
8636 | CanQualType CT = getCanonicalType(T); |
8637 | switch (CT->getTypeClass()) { |
8638 | case Type::Builtin: |
8639 | case Type::Enum: |
8640 | if (FD && FD->isBitField()) |
8641 | return EncodeBitField(Ctx: this, S, T, FD); |
8642 | if (const auto *BT = dyn_cast<BuiltinType>(Val&: CT)) |
8643 | S += getObjCEncodingForPrimitiveType(C: this, BT); |
8644 | else |
8645 | S += ObjCEncodingForEnumType(C: this, ET: cast<EnumType>(Val&: CT)); |
8646 | return; |
8647 | |
8648 | case Type::Complex: |
8649 | S += 'j'; |
8650 | getObjCEncodingForTypeImpl(T: T->castAs<ComplexType>()->getElementType(), S, |
8651 | Options: ObjCEncOptions(), |
8652 | /*Field=*/FD: nullptr); |
8653 | return; |
8654 | |
8655 | case Type::Atomic: |
8656 | S += 'A'; |
8657 | getObjCEncodingForTypeImpl(T: T->castAs<AtomicType>()->getValueType(), S, |
8658 | Options: ObjCEncOptions(), |
8659 | /*Field=*/FD: nullptr); |
8660 | return; |
8661 | |
8662 | // encoding for pointer or reference types. |
8663 | case Type::Pointer: |
8664 | case Type::LValueReference: |
8665 | case Type::RValueReference: { |
8666 | QualType PointeeTy; |
8667 | if (isa<PointerType>(Val: CT)) { |
8668 | const auto *PT = T->castAs<PointerType>(); |
8669 | if (PT->isObjCSelType()) { |
8670 | S += ':'; |
8671 | return; |
8672 | } |
8673 | PointeeTy = PT->getPointeeType(); |
8674 | } else { |
8675 | PointeeTy = T->castAs<ReferenceType>()->getPointeeType(); |
8676 | } |
8677 | |
8678 | bool isReadOnly = false; |
8679 | // For historical/compatibility reasons, the read-only qualifier of the |
8680 | // pointee gets emitted _before_ the '^'. The read-only qualifier of |
8681 | // the pointer itself gets ignored, _unless_ we are looking at a typedef! |
8682 | // Also, do not emit the 'r' for anything but the outermost type! |
8683 | if (T->getAs<TypedefType>()) { |
8684 | if (Options.IsOutermostType() && T.isConstQualified()) { |
8685 | isReadOnly = true; |
8686 | S += 'r'; |
8687 | } |
8688 | } else if (Options.IsOutermostType()) { |
8689 | QualType P = PointeeTy; |
8690 | while (auto PT = P->getAs<PointerType>()) |
8691 | P = PT->getPointeeType(); |
8692 | if (P.isConstQualified()) { |
8693 | isReadOnly = true; |
8694 | S += 'r'; |
8695 | } |
8696 | } |
8697 | if (isReadOnly) { |
8698 | // Another legacy compatibility encoding. Some ObjC qualifier and type |
8699 | // combinations need to be rearranged. |
8700 | // Rewrite "in const" from "nr" to "rn" |
8701 | if (StringRef(S).ends_with(Suffix: "nr" )) |
8702 | S.replace(i1: S.end()-2, i2: S.end(), s: "rn" ); |
8703 | } |
8704 | |
8705 | if (PointeeTy->isCharType()) { |
8706 | // char pointer types should be encoded as '*' unless it is a |
8707 | // type that has been typedef'd to 'BOOL'. |
8708 | if (!isTypeTypedefedAsBOOL(T: PointeeTy)) { |
8709 | S += '*'; |
8710 | return; |
8711 | } |
8712 | } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) { |
8713 | // GCC binary compat: Need to convert "struct objc_class *" to "#". |
8714 | if (RTy->getDecl()->getIdentifier() == &Idents.get(Name: "objc_class" )) { |
8715 | S += '#'; |
8716 | return; |
8717 | } |
8718 | // GCC binary compat: Need to convert "struct objc_object *" to "@". |
8719 | if (RTy->getDecl()->getIdentifier() == &Idents.get(Name: "objc_object" )) { |
8720 | S += '@'; |
8721 | return; |
8722 | } |
8723 | // If the encoded string for the class includes template names, just emit |
8724 | // "^v" for pointers to the class. |
8725 | if (getLangOpts().CPlusPlus && |
8726 | (!getLangOpts().EncodeCXXClassTemplateSpec && |
8727 | hasTemplateSpecializationInEncodedString( |
8728 | T: RTy, VisitBasesAndFields: Options.ExpandPointedToStructures()))) { |
8729 | S += "^v" ; |
8730 | return; |
8731 | } |
8732 | // fall through... |
8733 | } |
8734 | S += '^'; |
8735 | getLegacyIntegralTypeEncoding(PointeeTy); |
8736 | |
8737 | ObjCEncOptions NewOptions; |
8738 | if (Options.ExpandPointedToStructures()) |
8739 | NewOptions.setExpandStructures(); |
8740 | getObjCEncodingForTypeImpl(T: PointeeTy, S, Options: NewOptions, |
8741 | /*Field=*/FD: nullptr, NotEncodedT); |
8742 | return; |
8743 | } |
8744 | |
8745 | case Type::ConstantArray: |
8746 | case Type::IncompleteArray: |
8747 | case Type::VariableArray: { |
8748 | const auto *AT = cast<ArrayType>(Val&: CT); |
8749 | |
8750 | if (isa<IncompleteArrayType>(Val: AT) && !Options.IsStructField()) { |
8751 | // Incomplete arrays are encoded as a pointer to the array element. |
8752 | S += '^'; |
8753 | |
8754 | getObjCEncodingForTypeImpl( |
8755 | T: AT->getElementType(), S, |
8756 | Options: Options.keepingOnly(Mask: ObjCEncOptions().setExpandStructures()), FD); |
8757 | } else { |
8758 | S += '['; |
8759 | |
8760 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: AT)) |
8761 | S += llvm::utostr(X: CAT->getZExtSize()); |
8762 | else { |
8763 | //Variable length arrays are encoded as a regular array with 0 elements. |
8764 | assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && |
8765 | "Unknown array type!" ); |
8766 | S += '0'; |
8767 | } |
8768 | |
8769 | getObjCEncodingForTypeImpl( |
8770 | T: AT->getElementType(), S, |
8771 | Options: Options.keepingOnly(Mask: ObjCEncOptions().setExpandStructures()), FD, |
8772 | NotEncodedT); |
8773 | S += ']'; |
8774 | } |
8775 | return; |
8776 | } |
8777 | |
8778 | case Type::FunctionNoProto: |
8779 | case Type::FunctionProto: |
8780 | S += '?'; |
8781 | return; |
8782 | |
8783 | case Type::Record: { |
8784 | RecordDecl *RDecl = cast<RecordType>(Val&: CT)->getDecl(); |
8785 | S += RDecl->isUnion() ? '(' : '{'; |
8786 | // Anonymous structures print as '?' |
8787 | if (const IdentifierInfo *II = RDecl->getIdentifier()) { |
8788 | S += II->getName(); |
8789 | if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: RDecl)) { |
8790 | const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); |
8791 | llvm::raw_string_ostream OS(S); |
8792 | printTemplateArgumentList(OS, Args: TemplateArgs.asArray(), |
8793 | Policy: getPrintingPolicy()); |
8794 | } |
8795 | } else { |
8796 | S += '?'; |
8797 | } |
8798 | if (Options.ExpandStructures()) { |
8799 | S += '='; |
8800 | if (!RDecl->isUnion()) { |
8801 | getObjCEncodingForStructureImpl(RD: RDecl, S, Field: FD, includeVBases: true, NotEncodedT); |
8802 | } else { |
8803 | for (const auto *Field : RDecl->fields()) { |
8804 | if (FD) { |
8805 | S += '"'; |
8806 | S += Field->getNameAsString(); |
8807 | S += '"'; |
8808 | } |
8809 | |
8810 | // Special case bit-fields. |
8811 | if (Field->isBitField()) { |
8812 | getObjCEncodingForTypeImpl(T: Field->getType(), S, |
8813 | Options: ObjCEncOptions().setExpandStructures(), |
8814 | FD: Field); |
8815 | } else { |
8816 | QualType qt = Field->getType(); |
8817 | getLegacyIntegralTypeEncoding(PointeeTy&: qt); |
8818 | getObjCEncodingForTypeImpl( |
8819 | T: qt, S, |
8820 | Options: ObjCEncOptions().setExpandStructures().setIsStructField(), FD, |
8821 | NotEncodedT); |
8822 | } |
8823 | } |
8824 | } |
8825 | } |
8826 | S += RDecl->isUnion() ? ')' : '}'; |
8827 | return; |
8828 | } |
8829 | |
8830 | case Type::BlockPointer: { |
8831 | const auto *BT = T->castAs<BlockPointerType>(); |
8832 | S += "@?" ; // Unlike a pointer-to-function, which is "^?". |
8833 | if (Options.EncodeBlockParameters()) { |
8834 | const auto *FT = BT->getPointeeType()->castAs<FunctionType>(); |
8835 | |
8836 | S += '<'; |
8837 | // Block return type |
8838 | getObjCEncodingForTypeImpl(T: FT->getReturnType(), S, |
8839 | Options: Options.forComponentType(), FD, NotEncodedT); |
8840 | // Block self |
8841 | S += "@?" ; |
8842 | // Block parameters |
8843 | if (const auto *FPT = dyn_cast<FunctionProtoType>(Val: FT)) { |
8844 | for (const auto &I : FPT->param_types()) |
8845 | getObjCEncodingForTypeImpl(T: I, S, Options: Options.forComponentType(), FD, |
8846 | NotEncodedT); |
8847 | } |
8848 | S += '>'; |
8849 | } |
8850 | return; |
8851 | } |
8852 | |
8853 | case Type::ObjCObject: { |
8854 | // hack to match legacy encoding of *id and *Class |
8855 | QualType Ty = getObjCObjectPointerType(ObjectT: CT); |
8856 | if (Ty->isObjCIdType()) { |
8857 | S += "{objc_object=}" ; |
8858 | return; |
8859 | } |
8860 | else if (Ty->isObjCClassType()) { |
8861 | S += "{objc_class=}" ; |
8862 | return; |
8863 | } |
8864 | // TODO: Double check to make sure this intentionally falls through. |
8865 | [[fallthrough]]; |
8866 | } |
8867 | |
8868 | case Type::ObjCInterface: { |
8869 | // Ignore protocol qualifiers when mangling at this level. |
8870 | // @encode(class_name) |
8871 | ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface(); |
8872 | S += '{'; |
8873 | S += OI->getObjCRuntimeNameAsString(); |
8874 | if (Options.ExpandStructures()) { |
8875 | S += '='; |
8876 | SmallVector<const ObjCIvarDecl*, 32> Ivars; |
8877 | DeepCollectObjCIvars(OI, leafClass: true, Ivars); |
8878 | for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { |
8879 | const FieldDecl *Field = Ivars[i]; |
8880 | if (Field->isBitField()) |
8881 | getObjCEncodingForTypeImpl(T: Field->getType(), S, |
8882 | Options: ObjCEncOptions().setExpandStructures(), |
8883 | FD: Field); |
8884 | else |
8885 | getObjCEncodingForTypeImpl(T: Field->getType(), S, |
8886 | Options: ObjCEncOptions().setExpandStructures(), FD, |
8887 | NotEncodedT); |
8888 | } |
8889 | } |
8890 | S += '}'; |
8891 | return; |
8892 | } |
8893 | |
8894 | case Type::ObjCObjectPointer: { |
8895 | const auto *OPT = T->castAs<ObjCObjectPointerType>(); |
8896 | if (OPT->isObjCIdType()) { |
8897 | S += '@'; |
8898 | return; |
8899 | } |
8900 | |
8901 | if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) { |
8902 | // FIXME: Consider if we need to output qualifiers for 'Class<p>'. |
8903 | // Since this is a binary compatibility issue, need to consult with |
8904 | // runtime folks. Fortunately, this is a *very* obscure construct. |
8905 | S += '#'; |
8906 | return; |
8907 | } |
8908 | |
8909 | if (OPT->isObjCQualifiedIdType()) { |
8910 | getObjCEncodingForTypeImpl( |
8911 | T: getObjCIdType(), S, |
8912 | Options: Options.keepingOnly(Mask: ObjCEncOptions() |
8913 | .setExpandPointedToStructures() |
8914 | .setExpandStructures()), |
8915 | FD); |
8916 | if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) { |
8917 | // Note that we do extended encoding of protocol qualifier list |
8918 | // Only when doing ivar or property encoding. |
8919 | S += '"'; |
8920 | for (const auto *I : OPT->quals()) { |
8921 | S += '<'; |
8922 | S += I->getObjCRuntimeNameAsString(); |
8923 | S += '>'; |
8924 | } |
8925 | S += '"'; |
8926 | } |
8927 | return; |
8928 | } |
8929 | |
8930 | S += '@'; |
8931 | if (OPT->getInterfaceDecl() && |
8932 | (FD || Options.EncodingProperty() || Options.EncodeClassNames())) { |
8933 | S += '"'; |
8934 | S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString(); |
8935 | for (const auto *I : OPT->quals()) { |
8936 | S += '<'; |
8937 | S += I->getObjCRuntimeNameAsString(); |
8938 | S += '>'; |
8939 | } |
8940 | S += '"'; |
8941 | } |
8942 | return; |
8943 | } |
8944 | |
8945 | // gcc just blithely ignores member pointers. |
8946 | // FIXME: we should do better than that. 'M' is available. |
8947 | case Type::MemberPointer: |
8948 | // This matches gcc's encoding, even though technically it is insufficient. |
8949 | //FIXME. We should do a better job than gcc. |
8950 | case Type::Vector: |
8951 | case Type::ExtVector: |
8952 | // Until we have a coherent encoding of these three types, issue warning. |
8953 | if (NotEncodedT) |
8954 | *NotEncodedT = T; |
8955 | return; |
8956 | |
8957 | case Type::ConstantMatrix: |
8958 | if (NotEncodedT) |
8959 | *NotEncodedT = T; |
8960 | return; |
8961 | |
8962 | case Type::BitInt: |
8963 | if (NotEncodedT) |
8964 | *NotEncodedT = T; |
8965 | return; |
8966 | |
8967 | // We could see an undeduced auto type here during error recovery. |
8968 | // Just ignore it. |
8969 | case Type::Auto: |
8970 | case Type::DeducedTemplateSpecialization: |
8971 | return; |
8972 | |
8973 | case Type::ArrayParameter: |
8974 | case Type::Pipe: |
8975 | #define ABSTRACT_TYPE(KIND, BASE) |
8976 | #define TYPE(KIND, BASE) |
8977 | #define DEPENDENT_TYPE(KIND, BASE) \ |
8978 | case Type::KIND: |
8979 | #define NON_CANONICAL_TYPE(KIND, BASE) \ |
8980 | case Type::KIND: |
8981 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \ |
8982 | case Type::KIND: |
8983 | #include "clang/AST/TypeNodes.inc" |
8984 | llvm_unreachable("@encode for dependent type!" ); |
8985 | } |
8986 | llvm_unreachable("bad type kind!" ); |
8987 | } |
8988 | |
8989 | void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl, |
8990 | std::string &S, |
8991 | const FieldDecl *FD, |
8992 | bool includeVBases, |
8993 | QualType *NotEncodedT) const { |
8994 | assert(RDecl && "Expected non-null RecordDecl" ); |
8995 | assert(!RDecl->isUnion() && "Should not be called for unions" ); |
8996 | if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl()) |
8997 | return; |
8998 | |
8999 | const auto *CXXRec = dyn_cast<CXXRecordDecl>(Val: RDecl); |
9000 | std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets; |
9001 | const ASTRecordLayout &layout = getASTRecordLayout(D: RDecl); |
9002 | |
9003 | if (CXXRec) { |
9004 | for (const auto &BI : CXXRec->bases()) { |
9005 | if (!BI.isVirtual()) { |
9006 | CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); |
9007 | if (base->isEmpty()) |
9008 | continue; |
9009 | uint64_t offs = toBits(CharSize: layout.getBaseClassOffset(Base: base)); |
9010 | FieldOrBaseOffsets.insert(position: FieldOrBaseOffsets.upper_bound(x: offs), |
9011 | x: std::make_pair(x&: offs, y&: base)); |
9012 | } |
9013 | } |
9014 | } |
9015 | |
9016 | for (FieldDecl *Field : RDecl->fields()) { |
9017 | if (!Field->isZeroLengthBitField(Ctx: *this) && Field->isZeroSize(Ctx: *this)) |
9018 | continue; |
9019 | uint64_t offs = layout.getFieldOffset(FieldNo: Field->getFieldIndex()); |
9020 | FieldOrBaseOffsets.insert(position: FieldOrBaseOffsets.upper_bound(x: offs), |
9021 | x: std::make_pair(x&: offs, y&: Field)); |
9022 | } |
9023 | |
9024 | if (CXXRec && includeVBases) { |
9025 | for (const auto &BI : CXXRec->vbases()) { |
9026 | CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); |
9027 | if (base->isEmpty()) |
9028 | continue; |
9029 | uint64_t offs = toBits(CharSize: layout.getVBaseClassOffset(VBase: base)); |
9030 | if (offs >= uint64_t(toBits(CharSize: layout.getNonVirtualSize())) && |
9031 | FieldOrBaseOffsets.find(x: offs) == FieldOrBaseOffsets.end()) |
9032 | FieldOrBaseOffsets.insert(position: FieldOrBaseOffsets.end(), |
9033 | x: std::make_pair(x&: offs, y&: base)); |
9034 | } |
9035 | } |
9036 | |
9037 | CharUnits size; |
9038 | if (CXXRec) { |
9039 | size = includeVBases ? layout.getSize() : layout.getNonVirtualSize(); |
9040 | } else { |
9041 | size = layout.getSize(); |
9042 | } |
9043 | |
9044 | #ifndef NDEBUG |
9045 | uint64_t CurOffs = 0; |
9046 | #endif |
9047 | std::multimap<uint64_t, NamedDecl *>::iterator |
9048 | CurLayObj = FieldOrBaseOffsets.begin(); |
9049 | |
9050 | if (CXXRec && CXXRec->isDynamicClass() && |
9051 | (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) { |
9052 | if (FD) { |
9053 | S += "\"_vptr$" ; |
9054 | std::string recname = CXXRec->getNameAsString(); |
9055 | if (recname.empty()) recname = "?" ; |
9056 | S += recname; |
9057 | S += '"'; |
9058 | } |
9059 | S += "^^?" ; |
9060 | #ifndef NDEBUG |
9061 | CurOffs += getTypeSize(VoidPtrTy); |
9062 | #endif |
9063 | } |
9064 | |
9065 | if (!RDecl->hasFlexibleArrayMember()) { |
9066 | // Mark the end of the structure. |
9067 | uint64_t offs = toBits(CharSize: size); |
9068 | FieldOrBaseOffsets.insert(position: FieldOrBaseOffsets.upper_bound(x: offs), |
9069 | x: std::make_pair(x&: offs, y: nullptr)); |
9070 | } |
9071 | |
9072 | for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) { |
9073 | #ifndef NDEBUG |
9074 | assert(CurOffs <= CurLayObj->first); |
9075 | if (CurOffs < CurLayObj->first) { |
9076 | uint64_t padding = CurLayObj->first - CurOffs; |
9077 | // FIXME: There doesn't seem to be a way to indicate in the encoding that |
9078 | // packing/alignment of members is different that normal, in which case |
9079 | // the encoding will be out-of-sync with the real layout. |
9080 | // If the runtime switches to just consider the size of types without |
9081 | // taking into account alignment, we could make padding explicit in the |
9082 | // encoding (e.g. using arrays of chars). The encoding strings would be |
9083 | // longer then though. |
9084 | CurOffs += padding; |
9085 | } |
9086 | #endif |
9087 | |
9088 | NamedDecl *dcl = CurLayObj->second; |
9089 | if (!dcl) |
9090 | break; // reached end of structure. |
9091 | |
9092 | if (auto *base = dyn_cast<CXXRecordDecl>(Val: dcl)) { |
9093 | // We expand the bases without their virtual bases since those are going |
9094 | // in the initial structure. Note that this differs from gcc which |
9095 | // expands virtual bases each time one is encountered in the hierarchy, |
9096 | // making the encoding type bigger than it really is. |
9097 | getObjCEncodingForStructureImpl(RDecl: base, S, FD, /*includeVBases*/false, |
9098 | NotEncodedT); |
9099 | assert(!base->isEmpty()); |
9100 | #ifndef NDEBUG |
9101 | CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize()); |
9102 | #endif |
9103 | } else { |
9104 | const auto *field = cast<FieldDecl>(Val: dcl); |
9105 | if (FD) { |
9106 | S += '"'; |
9107 | S += field->getNameAsString(); |
9108 | S += '"'; |
9109 | } |
9110 | |
9111 | if (field->isBitField()) { |
9112 | EncodeBitField(Ctx: this, S, T: field->getType(), FD: field); |
9113 | #ifndef NDEBUG |
9114 | CurOffs += field->getBitWidthValue(*this); |
9115 | #endif |
9116 | } else { |
9117 | QualType qt = field->getType(); |
9118 | getLegacyIntegralTypeEncoding(PointeeTy&: qt); |
9119 | getObjCEncodingForTypeImpl( |
9120 | T: qt, S, Options: ObjCEncOptions().setExpandStructures().setIsStructField(), |
9121 | FD, NotEncodedT); |
9122 | #ifndef NDEBUG |
9123 | CurOffs += getTypeSize(field->getType()); |
9124 | #endif |
9125 | } |
9126 | } |
9127 | } |
9128 | } |
9129 | |
9130 | void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, |
9131 | std::string& S) const { |
9132 | if (QT & Decl::OBJC_TQ_In) |
9133 | S += 'n'; |
9134 | if (QT & Decl::OBJC_TQ_Inout) |
9135 | S += 'N'; |
9136 | if (QT & Decl::OBJC_TQ_Out) |
9137 | S += 'o'; |
9138 | if (QT & Decl::OBJC_TQ_Bycopy) |
9139 | S += 'O'; |
9140 | if (QT & Decl::OBJC_TQ_Byref) |
9141 | S += 'R'; |
9142 | if (QT & Decl::OBJC_TQ_Oneway) |
9143 | S += 'V'; |
9144 | } |
9145 | |
9146 | TypedefDecl *ASTContext::getObjCIdDecl() const { |
9147 | if (!ObjCIdDecl) { |
9148 | QualType T = getObjCObjectType(BaseType: ObjCBuiltinIdTy, Protocols: {}, NumProtocols: {}); |
9149 | T = getObjCObjectPointerType(ObjectT: T); |
9150 | ObjCIdDecl = buildImplicitTypedef(T, Name: "id" ); |
9151 | } |
9152 | return ObjCIdDecl; |
9153 | } |
9154 | |
9155 | TypedefDecl *ASTContext::getObjCSelDecl() const { |
9156 | if (!ObjCSelDecl) { |
9157 | QualType T = getPointerType(T: ObjCBuiltinSelTy); |
9158 | ObjCSelDecl = buildImplicitTypedef(T, Name: "SEL" ); |
9159 | } |
9160 | return ObjCSelDecl; |
9161 | } |
9162 | |
9163 | TypedefDecl *ASTContext::getObjCClassDecl() const { |
9164 | if (!ObjCClassDecl) { |
9165 | QualType T = getObjCObjectType(BaseType: ObjCBuiltinClassTy, Protocols: {}, NumProtocols: {}); |
9166 | T = getObjCObjectPointerType(ObjectT: T); |
9167 | ObjCClassDecl = buildImplicitTypedef(T, Name: "Class" ); |
9168 | } |
9169 | return ObjCClassDecl; |
9170 | } |
9171 | |
9172 | ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const { |
9173 | if (!ObjCProtocolClassDecl) { |
9174 | ObjCProtocolClassDecl |
9175 | = ObjCInterfaceDecl::Create(C: *this, DC: getTranslationUnitDecl(), |
9176 | atLoc: SourceLocation(), |
9177 | Id: &Idents.get(Name: "Protocol" ), |
9178 | /*typeParamList=*/nullptr, |
9179 | /*PrevDecl=*/nullptr, |
9180 | ClassLoc: SourceLocation(), isInternal: true); |
9181 | } |
9182 | |
9183 | return ObjCProtocolClassDecl; |
9184 | } |
9185 | |
9186 | //===----------------------------------------------------------------------===// |
9187 | // __builtin_va_list Construction Functions |
9188 | //===----------------------------------------------------------------------===// |
9189 | |
9190 | static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context, |
9191 | StringRef Name) { |
9192 | // typedef char* __builtin[_ms]_va_list; |
9193 | QualType T = Context->getPointerType(T: Context->CharTy); |
9194 | return Context->buildImplicitTypedef(T, Name); |
9195 | } |
9196 | |
9197 | static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) { |
9198 | return CreateCharPtrNamedVaListDecl(Context, Name: "__builtin_ms_va_list" ); |
9199 | } |
9200 | |
9201 | static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) { |
9202 | return CreateCharPtrNamedVaListDecl(Context, Name: "__builtin_va_list" ); |
9203 | } |
9204 | |
9205 | static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) { |
9206 | // typedef void* __builtin_va_list; |
9207 | QualType T = Context->getPointerType(T: Context->VoidTy); |
9208 | return Context->buildImplicitTypedef(T, Name: "__builtin_va_list" ); |
9209 | } |
9210 | |
9211 | static TypedefDecl * |
9212 | CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) { |
9213 | // struct __va_list |
9214 | RecordDecl *VaListTagDecl = Context->buildImplicitRecord(Name: "__va_list" ); |
9215 | if (Context->getLangOpts().CPlusPlus) { |
9216 | // namespace std { struct __va_list { |
9217 | auto *NS = NamespaceDecl::Create( |
9218 | C&: const_cast<ASTContext &>(*Context), DC: Context->getTranslationUnitDecl(), |
9219 | /*Inline=*/false, StartLoc: SourceLocation(), IdLoc: SourceLocation(), |
9220 | Id: &Context->Idents.get(Name: "std" ), |
9221 | /*PrevDecl=*/nullptr, /*Nested=*/false); |
9222 | NS->setImplicit(); |
9223 | VaListTagDecl->setDeclContext(NS); |
9224 | } |
9225 | |
9226 | VaListTagDecl->startDefinition(); |
9227 | |
9228 | const size_t NumFields = 5; |
9229 | QualType FieldTypes[NumFields]; |
9230 | const char *FieldNames[NumFields]; |
9231 | |
9232 | // void *__stack; |
9233 | FieldTypes[0] = Context->getPointerType(T: Context->VoidTy); |
9234 | FieldNames[0] = "__stack" ; |
9235 | |
9236 | // void *__gr_top; |
9237 | FieldTypes[1] = Context->getPointerType(T: Context->VoidTy); |
9238 | FieldNames[1] = "__gr_top" ; |
9239 | |
9240 | // void *__vr_top; |
9241 | FieldTypes[2] = Context->getPointerType(T: Context->VoidTy); |
9242 | FieldNames[2] = "__vr_top" ; |
9243 | |
9244 | // int __gr_offs; |
9245 | FieldTypes[3] = Context->IntTy; |
9246 | FieldNames[3] = "__gr_offs" ; |
9247 | |
9248 | // int __vr_offs; |
9249 | FieldTypes[4] = Context->IntTy; |
9250 | FieldNames[4] = "__vr_offs" ; |
9251 | |
9252 | // Create fields |
9253 | for (unsigned i = 0; i < NumFields; ++i) { |
9254 | FieldDecl *Field = FieldDecl::Create(C: const_cast<ASTContext &>(*Context), |
9255 | DC: VaListTagDecl, |
9256 | StartLoc: SourceLocation(), |
9257 | IdLoc: SourceLocation(), |
9258 | Id: &Context->Idents.get(Name: FieldNames[i]), |
9259 | T: FieldTypes[i], /*TInfo=*/nullptr, |
9260 | /*BitWidth=*/BW: nullptr, |
9261 | /*Mutable=*/false, |
9262 | InitStyle: ICIS_NoInit); |
9263 | Field->setAccess(AS_public); |
9264 | VaListTagDecl->addDecl(D: Field); |
9265 | } |
9266 | VaListTagDecl->completeDefinition(); |
9267 | Context->VaListTagDecl = VaListTagDecl; |
9268 | QualType VaListTagType = Context->getRecordType(Decl: VaListTagDecl); |
9269 | |
9270 | // } __builtin_va_list; |
9271 | return Context->buildImplicitTypedef(T: VaListTagType, Name: "__builtin_va_list" ); |
9272 | } |
9273 | |
9274 | static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) { |
9275 | // typedef struct __va_list_tag { |
9276 | RecordDecl *VaListTagDecl; |
9277 | |
9278 | VaListTagDecl = Context->buildImplicitRecord(Name: "__va_list_tag" ); |
9279 | VaListTagDecl->startDefinition(); |
9280 | |
9281 | const size_t NumFields = 5; |
9282 | QualType FieldTypes[NumFields]; |
9283 | const char *FieldNames[NumFields]; |
9284 | |
9285 | // unsigned char gpr; |
9286 | FieldTypes[0] = Context->UnsignedCharTy; |
9287 | FieldNames[0] = "gpr" ; |
9288 | |
9289 | // unsigned char fpr; |
9290 | FieldTypes[1] = Context->UnsignedCharTy; |
9291 | FieldNames[1] = "fpr" ; |
9292 | |
9293 | // unsigned short reserved; |
9294 | FieldTypes[2] = Context->UnsignedShortTy; |
9295 | FieldNames[2] = "reserved" ; |
9296 | |
9297 | // void* overflow_arg_area; |
9298 | FieldTypes[3] = Context->getPointerType(T: Context->VoidTy); |
9299 | FieldNames[3] = "overflow_arg_area" ; |
9300 | |
9301 | // void* reg_save_area; |
9302 | FieldTypes[4] = Context->getPointerType(T: Context->VoidTy); |
9303 | FieldNames[4] = "reg_save_area" ; |
9304 | |
9305 | // Create fields |
9306 | for (unsigned i = 0; i < NumFields; ++i) { |
9307 | FieldDecl *Field = FieldDecl::Create(C: *Context, DC: VaListTagDecl, |
9308 | StartLoc: SourceLocation(), |
9309 | IdLoc: SourceLocation(), |
9310 | Id: &Context->Idents.get(Name: FieldNames[i]), |
9311 | T: FieldTypes[i], /*TInfo=*/nullptr, |
9312 | /*BitWidth=*/BW: nullptr, |
9313 | /*Mutable=*/false, |
9314 | InitStyle: ICIS_NoInit); |
9315 | Field->setAccess(AS_public); |
9316 | VaListTagDecl->addDecl(D: Field); |
9317 | } |
9318 | VaListTagDecl->completeDefinition(); |
9319 | Context->VaListTagDecl = VaListTagDecl; |
9320 | QualType VaListTagType = Context->getRecordType(Decl: VaListTagDecl); |
9321 | |
9322 | // } __va_list_tag; |
9323 | TypedefDecl *VaListTagTypedefDecl = |
9324 | Context->buildImplicitTypedef(T: VaListTagType, Name: "__va_list_tag" ); |
9325 | |
9326 | QualType VaListTagTypedefType = |
9327 | Context->getTypedefType(Decl: VaListTagTypedefDecl); |
9328 | |
9329 | // typedef __va_list_tag __builtin_va_list[1]; |
9330 | llvm::APInt Size(Context->getTypeSize(T: Context->getSizeType()), 1); |
9331 | QualType VaListTagArrayType = Context->getConstantArrayType( |
9332 | EltTy: VaListTagTypedefType, ArySizeIn: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
9333 | return Context->buildImplicitTypedef(T: VaListTagArrayType, Name: "__builtin_va_list" ); |
9334 | } |
9335 | |
9336 | static TypedefDecl * |
9337 | CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) { |
9338 | // struct __va_list_tag { |
9339 | RecordDecl *VaListTagDecl; |
9340 | VaListTagDecl = Context->buildImplicitRecord(Name: "__va_list_tag" ); |
9341 | VaListTagDecl->startDefinition(); |
9342 | |
9343 | const size_t NumFields = 4; |
9344 | QualType FieldTypes[NumFields]; |
9345 | const char *FieldNames[NumFields]; |
9346 | |
9347 | // unsigned gp_offset; |
9348 | FieldTypes[0] = Context->UnsignedIntTy; |
9349 | FieldNames[0] = "gp_offset" ; |
9350 | |
9351 | // unsigned fp_offset; |
9352 | FieldTypes[1] = Context->UnsignedIntTy; |
9353 | FieldNames[1] = "fp_offset" ; |
9354 | |
9355 | // void* overflow_arg_area; |
9356 | FieldTypes[2] = Context->getPointerType(T: Context->VoidTy); |
9357 | FieldNames[2] = "overflow_arg_area" ; |
9358 | |
9359 | // void* reg_save_area; |
9360 | FieldTypes[3] = Context->getPointerType(T: Context->VoidTy); |
9361 | FieldNames[3] = "reg_save_area" ; |
9362 | |
9363 | // Create fields |
9364 | for (unsigned i = 0; i < NumFields; ++i) { |
9365 | FieldDecl *Field = FieldDecl::Create(C: const_cast<ASTContext &>(*Context), |
9366 | DC: VaListTagDecl, |
9367 | StartLoc: SourceLocation(), |
9368 | IdLoc: SourceLocation(), |
9369 | Id: &Context->Idents.get(Name: FieldNames[i]), |
9370 | T: FieldTypes[i], /*TInfo=*/nullptr, |
9371 | /*BitWidth=*/BW: nullptr, |
9372 | /*Mutable=*/false, |
9373 | InitStyle: ICIS_NoInit); |
9374 | Field->setAccess(AS_public); |
9375 | VaListTagDecl->addDecl(D: Field); |
9376 | } |
9377 | VaListTagDecl->completeDefinition(); |
9378 | Context->VaListTagDecl = VaListTagDecl; |
9379 | QualType VaListTagType = Context->getRecordType(Decl: VaListTagDecl); |
9380 | |
9381 | // }; |
9382 | |
9383 | // typedef struct __va_list_tag __builtin_va_list[1]; |
9384 | llvm::APInt Size(Context->getTypeSize(T: Context->getSizeType()), 1); |
9385 | QualType VaListTagArrayType = Context->getConstantArrayType( |
9386 | EltTy: VaListTagType, ArySizeIn: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
9387 | return Context->buildImplicitTypedef(T: VaListTagArrayType, Name: "__builtin_va_list" ); |
9388 | } |
9389 | |
9390 | static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) { |
9391 | // typedef int __builtin_va_list[4]; |
9392 | llvm::APInt Size(Context->getTypeSize(T: Context->getSizeType()), 4); |
9393 | QualType IntArrayType = Context->getConstantArrayType( |
9394 | EltTy: Context->IntTy, ArySizeIn: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
9395 | return Context->buildImplicitTypedef(T: IntArrayType, Name: "__builtin_va_list" ); |
9396 | } |
9397 | |
9398 | static TypedefDecl * |
9399 | CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) { |
9400 | // struct __va_list |
9401 | RecordDecl *VaListDecl = Context->buildImplicitRecord(Name: "__va_list" ); |
9402 | if (Context->getLangOpts().CPlusPlus) { |
9403 | // namespace std { struct __va_list { |
9404 | NamespaceDecl *NS; |
9405 | NS = NamespaceDecl::Create(C&: const_cast<ASTContext &>(*Context), |
9406 | DC: Context->getTranslationUnitDecl(), |
9407 | /*Inline=*/false, StartLoc: SourceLocation(), |
9408 | IdLoc: SourceLocation(), Id: &Context->Idents.get(Name: "std" ), |
9409 | /*PrevDecl=*/nullptr, /*Nested=*/false); |
9410 | NS->setImplicit(); |
9411 | VaListDecl->setDeclContext(NS); |
9412 | } |
9413 | |
9414 | VaListDecl->startDefinition(); |
9415 | |
9416 | // void * __ap; |
9417 | FieldDecl *Field = FieldDecl::Create(C: const_cast<ASTContext &>(*Context), |
9418 | DC: VaListDecl, |
9419 | StartLoc: SourceLocation(), |
9420 | IdLoc: SourceLocation(), |
9421 | Id: &Context->Idents.get(Name: "__ap" ), |
9422 | T: Context->getPointerType(T: Context->VoidTy), |
9423 | /*TInfo=*/nullptr, |
9424 | /*BitWidth=*/BW: nullptr, |
9425 | /*Mutable=*/false, |
9426 | InitStyle: ICIS_NoInit); |
9427 | Field->setAccess(AS_public); |
9428 | VaListDecl->addDecl(D: Field); |
9429 | |
9430 | // }; |
9431 | VaListDecl->completeDefinition(); |
9432 | Context->VaListTagDecl = VaListDecl; |
9433 | |
9434 | // typedef struct __va_list __builtin_va_list; |
9435 | QualType T = Context->getRecordType(Decl: VaListDecl); |
9436 | return Context->buildImplicitTypedef(T, Name: "__builtin_va_list" ); |
9437 | } |
9438 | |
9439 | static TypedefDecl * |
9440 | CreateSystemZBuiltinVaListDecl(const ASTContext *Context) { |
9441 | // struct __va_list_tag { |
9442 | RecordDecl *VaListTagDecl; |
9443 | VaListTagDecl = Context->buildImplicitRecord(Name: "__va_list_tag" ); |
9444 | VaListTagDecl->startDefinition(); |
9445 | |
9446 | const size_t NumFields = 4; |
9447 | QualType FieldTypes[NumFields]; |
9448 | const char *FieldNames[NumFields]; |
9449 | |
9450 | // long __gpr; |
9451 | FieldTypes[0] = Context->LongTy; |
9452 | FieldNames[0] = "__gpr" ; |
9453 | |
9454 | // long __fpr; |
9455 | FieldTypes[1] = Context->LongTy; |
9456 | FieldNames[1] = "__fpr" ; |
9457 | |
9458 | // void *__overflow_arg_area; |
9459 | FieldTypes[2] = Context->getPointerType(T: Context->VoidTy); |
9460 | FieldNames[2] = "__overflow_arg_area" ; |
9461 | |
9462 | // void *__reg_save_area; |
9463 | FieldTypes[3] = Context->getPointerType(T: Context->VoidTy); |
9464 | FieldNames[3] = "__reg_save_area" ; |
9465 | |
9466 | // Create fields |
9467 | for (unsigned i = 0; i < NumFields; ++i) { |
9468 | FieldDecl *Field = FieldDecl::Create(C: const_cast<ASTContext &>(*Context), |
9469 | DC: VaListTagDecl, |
9470 | StartLoc: SourceLocation(), |
9471 | IdLoc: SourceLocation(), |
9472 | Id: &Context->Idents.get(Name: FieldNames[i]), |
9473 | T: FieldTypes[i], /*TInfo=*/nullptr, |
9474 | /*BitWidth=*/BW: nullptr, |
9475 | /*Mutable=*/false, |
9476 | InitStyle: ICIS_NoInit); |
9477 | Field->setAccess(AS_public); |
9478 | VaListTagDecl->addDecl(D: Field); |
9479 | } |
9480 | VaListTagDecl->completeDefinition(); |
9481 | Context->VaListTagDecl = VaListTagDecl; |
9482 | QualType VaListTagType = Context->getRecordType(Decl: VaListTagDecl); |
9483 | |
9484 | // }; |
9485 | |
9486 | // typedef __va_list_tag __builtin_va_list[1]; |
9487 | llvm::APInt Size(Context->getTypeSize(T: Context->getSizeType()), 1); |
9488 | QualType VaListTagArrayType = Context->getConstantArrayType( |
9489 | EltTy: VaListTagType, ArySizeIn: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
9490 | |
9491 | return Context->buildImplicitTypedef(T: VaListTagArrayType, Name: "__builtin_va_list" ); |
9492 | } |
9493 | |
9494 | static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) { |
9495 | // typedef struct __va_list_tag { |
9496 | RecordDecl *VaListTagDecl; |
9497 | VaListTagDecl = Context->buildImplicitRecord(Name: "__va_list_tag" ); |
9498 | VaListTagDecl->startDefinition(); |
9499 | |
9500 | const size_t NumFields = 3; |
9501 | QualType FieldTypes[NumFields]; |
9502 | const char *FieldNames[NumFields]; |
9503 | |
9504 | // void *CurrentSavedRegisterArea; |
9505 | FieldTypes[0] = Context->getPointerType(T: Context->VoidTy); |
9506 | FieldNames[0] = "__current_saved_reg_area_pointer" ; |
9507 | |
9508 | // void *SavedRegAreaEnd; |
9509 | FieldTypes[1] = Context->getPointerType(T: Context->VoidTy); |
9510 | FieldNames[1] = "__saved_reg_area_end_pointer" ; |
9511 | |
9512 | // void *OverflowArea; |
9513 | FieldTypes[2] = Context->getPointerType(T: Context->VoidTy); |
9514 | FieldNames[2] = "__overflow_area_pointer" ; |
9515 | |
9516 | // Create fields |
9517 | for (unsigned i = 0; i < NumFields; ++i) { |
9518 | FieldDecl *Field = FieldDecl::Create( |
9519 | C: const_cast<ASTContext &>(*Context), DC: VaListTagDecl, StartLoc: SourceLocation(), |
9520 | IdLoc: SourceLocation(), Id: &Context->Idents.get(Name: FieldNames[i]), T: FieldTypes[i], |
9521 | /*TInfo=*/nullptr, |
9522 | /*BitWidth=*/BW: nullptr, |
9523 | /*Mutable=*/false, InitStyle: ICIS_NoInit); |
9524 | Field->setAccess(AS_public); |
9525 | VaListTagDecl->addDecl(D: Field); |
9526 | } |
9527 | VaListTagDecl->completeDefinition(); |
9528 | Context->VaListTagDecl = VaListTagDecl; |
9529 | QualType VaListTagType = Context->getRecordType(Decl: VaListTagDecl); |
9530 | |
9531 | // } __va_list_tag; |
9532 | TypedefDecl *VaListTagTypedefDecl = |
9533 | Context->buildImplicitTypedef(T: VaListTagType, Name: "__va_list_tag" ); |
9534 | |
9535 | QualType VaListTagTypedefType = Context->getTypedefType(Decl: VaListTagTypedefDecl); |
9536 | |
9537 | // typedef __va_list_tag __builtin_va_list[1]; |
9538 | llvm::APInt Size(Context->getTypeSize(T: Context->getSizeType()), 1); |
9539 | QualType VaListTagArrayType = Context->getConstantArrayType( |
9540 | EltTy: VaListTagTypedefType, ArySizeIn: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
9541 | |
9542 | return Context->buildImplicitTypedef(T: VaListTagArrayType, Name: "__builtin_va_list" ); |
9543 | } |
9544 | |
9545 | static TypedefDecl *CreateVaListDecl(const ASTContext *Context, |
9546 | TargetInfo::BuiltinVaListKind Kind) { |
9547 | switch (Kind) { |
9548 | case TargetInfo::CharPtrBuiltinVaList: |
9549 | return CreateCharPtrBuiltinVaListDecl(Context); |
9550 | case TargetInfo::VoidPtrBuiltinVaList: |
9551 | return CreateVoidPtrBuiltinVaListDecl(Context); |
9552 | case TargetInfo::AArch64ABIBuiltinVaList: |
9553 | return CreateAArch64ABIBuiltinVaListDecl(Context); |
9554 | case TargetInfo::PowerABIBuiltinVaList: |
9555 | return CreatePowerABIBuiltinVaListDecl(Context); |
9556 | case TargetInfo::X86_64ABIBuiltinVaList: |
9557 | return CreateX86_64ABIBuiltinVaListDecl(Context); |
9558 | case TargetInfo::PNaClABIBuiltinVaList: |
9559 | return CreatePNaClABIBuiltinVaListDecl(Context); |
9560 | case TargetInfo::AAPCSABIBuiltinVaList: |
9561 | return CreateAAPCSABIBuiltinVaListDecl(Context); |
9562 | case TargetInfo::SystemZBuiltinVaList: |
9563 | return CreateSystemZBuiltinVaListDecl(Context); |
9564 | case TargetInfo::HexagonBuiltinVaList: |
9565 | return CreateHexagonBuiltinVaListDecl(Context); |
9566 | } |
9567 | |
9568 | llvm_unreachable("Unhandled __builtin_va_list type kind" ); |
9569 | } |
9570 | |
9571 | TypedefDecl *ASTContext::getBuiltinVaListDecl() const { |
9572 | if (!BuiltinVaListDecl) { |
9573 | BuiltinVaListDecl = CreateVaListDecl(Context: this, Kind: Target->getBuiltinVaListKind()); |
9574 | assert(BuiltinVaListDecl->isImplicit()); |
9575 | } |
9576 | |
9577 | return BuiltinVaListDecl; |
9578 | } |
9579 | |
9580 | Decl *ASTContext::getVaListTagDecl() const { |
9581 | // Force the creation of VaListTagDecl by building the __builtin_va_list |
9582 | // declaration. |
9583 | if (!VaListTagDecl) |
9584 | (void)getBuiltinVaListDecl(); |
9585 | |
9586 | return VaListTagDecl; |
9587 | } |
9588 | |
9589 | TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const { |
9590 | if (!BuiltinMSVaListDecl) |
9591 | BuiltinMSVaListDecl = CreateMSVaListDecl(Context: this); |
9592 | |
9593 | return BuiltinMSVaListDecl; |
9594 | } |
9595 | |
9596 | bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const { |
9597 | // Allow redecl custom type checking builtin for HLSL. |
9598 | if (LangOpts.HLSL && FD->getBuiltinID() != Builtin::NotBuiltin && |
9599 | BuiltinInfo.hasCustomTypechecking(ID: FD->getBuiltinID())) |
9600 | return true; |
9601 | return BuiltinInfo.canBeRedeclared(ID: FD->getBuiltinID()); |
9602 | } |
9603 | |
9604 | void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { |
9605 | assert(ObjCConstantStringType.isNull() && |
9606 | "'NSConstantString' type already set!" ); |
9607 | |
9608 | ObjCConstantStringType = getObjCInterfaceType(Decl); |
9609 | } |
9610 | |
9611 | /// Retrieve the template name that corresponds to a non-empty |
9612 | /// lookup. |
9613 | TemplateName |
9614 | ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin, |
9615 | UnresolvedSetIterator End) const { |
9616 | unsigned size = End - Begin; |
9617 | assert(size > 1 && "set is not overloaded!" ); |
9618 | |
9619 | void *memory = Allocate(Size: sizeof(OverloadedTemplateStorage) + |
9620 | size * sizeof(FunctionTemplateDecl*)); |
9621 | auto *OT = new (memory) OverloadedTemplateStorage(size); |
9622 | |
9623 | NamedDecl **Storage = OT->getStorage(); |
9624 | for (UnresolvedSetIterator I = Begin; I != End; ++I) { |
9625 | NamedDecl *D = *I; |
9626 | assert(isa<FunctionTemplateDecl>(D) || |
9627 | isa<UnresolvedUsingValueDecl>(D) || |
9628 | (isa<UsingShadowDecl>(D) && |
9629 | isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))); |
9630 | *Storage++ = D; |
9631 | } |
9632 | |
9633 | return TemplateName(OT); |
9634 | } |
9635 | |
9636 | /// Retrieve a template name representing an unqualified-id that has been |
9637 | /// assumed to name a template for ADL purposes. |
9638 | TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const { |
9639 | auto *OT = new (*this) AssumedTemplateStorage(Name); |
9640 | return TemplateName(OT); |
9641 | } |
9642 | |
9643 | /// Retrieve the template name that represents a qualified |
9644 | /// template name such as \c std::vector. |
9645 | TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, |
9646 | bool TemplateKeyword, |
9647 | TemplateName Template) const { |
9648 | assert(Template.getKind() == TemplateName::Template || |
9649 | Template.getKind() == TemplateName::UsingTemplate); |
9650 | |
9651 | // FIXME: Canonicalization? |
9652 | llvm::FoldingSetNodeID ID; |
9653 | QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, TN: Template); |
9654 | |
9655 | void *InsertPos = nullptr; |
9656 | QualifiedTemplateName *QTN = |
9657 | QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
9658 | if (!QTN) { |
9659 | QTN = new (*this, alignof(QualifiedTemplateName)) |
9660 | QualifiedTemplateName(NNS, TemplateKeyword, Template); |
9661 | QualifiedTemplateNames.InsertNode(N: QTN, InsertPos); |
9662 | } |
9663 | |
9664 | return TemplateName(QTN); |
9665 | } |
9666 | |
9667 | /// Retrieve the template name that represents a dependent |
9668 | /// template name such as \c MetaFun::template apply. |
9669 | TemplateName |
9670 | ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, |
9671 | const IdentifierInfo *Name) const { |
9672 | assert((!NNS || NNS->isDependent()) && |
9673 | "Nested name specifier must be dependent" ); |
9674 | |
9675 | llvm::FoldingSetNodeID ID; |
9676 | DependentTemplateName::Profile(ID, NNS, Identifier: Name); |
9677 | |
9678 | void *InsertPos = nullptr; |
9679 | DependentTemplateName *QTN = |
9680 | DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
9681 | |
9682 | if (QTN) |
9683 | return TemplateName(QTN); |
9684 | |
9685 | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
9686 | if (CanonNNS == NNS) { |
9687 | QTN = new (*this, alignof(DependentTemplateName)) |
9688 | DependentTemplateName(NNS, Name); |
9689 | } else { |
9690 | TemplateName Canon = getDependentTemplateName(NNS: CanonNNS, Name); |
9691 | QTN = new (*this, alignof(DependentTemplateName)) |
9692 | DependentTemplateName(NNS, Name, Canon); |
9693 | DependentTemplateName *CheckQTN = |
9694 | DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
9695 | assert(!CheckQTN && "Dependent type name canonicalization broken" ); |
9696 | (void)CheckQTN; |
9697 | } |
9698 | |
9699 | DependentTemplateNames.InsertNode(N: QTN, InsertPos); |
9700 | return TemplateName(QTN); |
9701 | } |
9702 | |
9703 | /// Retrieve the template name that represents a dependent |
9704 | /// template name such as \c MetaFun::template operator+. |
9705 | TemplateName |
9706 | ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, |
9707 | OverloadedOperatorKind Operator) const { |
9708 | assert((!NNS || NNS->isDependent()) && |
9709 | "Nested name specifier must be dependent" ); |
9710 | |
9711 | llvm::FoldingSetNodeID ID; |
9712 | DependentTemplateName::Profile(ID, NNS, Operator); |
9713 | |
9714 | void *InsertPos = nullptr; |
9715 | DependentTemplateName *QTN |
9716 | = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
9717 | |
9718 | if (QTN) |
9719 | return TemplateName(QTN); |
9720 | |
9721 | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
9722 | if (CanonNNS == NNS) { |
9723 | QTN = new (*this, alignof(DependentTemplateName)) |
9724 | DependentTemplateName(NNS, Operator); |
9725 | } else { |
9726 | TemplateName Canon = getDependentTemplateName(NNS: CanonNNS, Operator); |
9727 | QTN = new (*this, alignof(DependentTemplateName)) |
9728 | DependentTemplateName(NNS, Operator, Canon); |
9729 | |
9730 | DependentTemplateName *CheckQTN |
9731 | = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
9732 | assert(!CheckQTN && "Dependent template name canonicalization broken" ); |
9733 | (void)CheckQTN; |
9734 | } |
9735 | |
9736 | DependentTemplateNames.InsertNode(N: QTN, InsertPos); |
9737 | return TemplateName(QTN); |
9738 | } |
9739 | |
9740 | TemplateName ASTContext::getSubstTemplateTemplateParm( |
9741 | TemplateName Replacement, Decl *AssociatedDecl, unsigned Index, |
9742 | std::optional<unsigned> PackIndex) const { |
9743 | llvm::FoldingSetNodeID ID; |
9744 | SubstTemplateTemplateParmStorage::Profile(ID, Replacement, AssociatedDecl, |
9745 | Index, PackIndex); |
9746 | |
9747 | void *insertPos = nullptr; |
9748 | SubstTemplateTemplateParmStorage *subst |
9749 | = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos&: insertPos); |
9750 | |
9751 | if (!subst) { |
9752 | subst = new (*this) SubstTemplateTemplateParmStorage( |
9753 | Replacement, AssociatedDecl, Index, PackIndex); |
9754 | SubstTemplateTemplateParms.InsertNode(N: subst, InsertPos: insertPos); |
9755 | } |
9756 | |
9757 | return TemplateName(subst); |
9758 | } |
9759 | |
9760 | TemplateName |
9761 | ASTContext::getSubstTemplateTemplateParmPack(const TemplateArgument &ArgPack, |
9762 | Decl *AssociatedDecl, |
9763 | unsigned Index, bool Final) const { |
9764 | auto &Self = const_cast<ASTContext &>(*this); |
9765 | llvm::FoldingSetNodeID ID; |
9766 | SubstTemplateTemplateParmPackStorage::Profile(ID, Context&: Self, ArgPack, |
9767 | AssociatedDecl, Index, Final); |
9768 | |
9769 | void *InsertPos = nullptr; |
9770 | SubstTemplateTemplateParmPackStorage *Subst |
9771 | = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos); |
9772 | |
9773 | if (!Subst) { |
9774 | Subst = new (*this) SubstTemplateTemplateParmPackStorage( |
9775 | ArgPack.pack_elements(), AssociatedDecl, Index, Final); |
9776 | SubstTemplateTemplateParmPacks.InsertNode(N: Subst, InsertPos); |
9777 | } |
9778 | |
9779 | return TemplateName(Subst); |
9780 | } |
9781 | |
9782 | /// getFromTargetType - Given one of the integer types provided by |
9783 | /// TargetInfo, produce the corresponding type. The unsigned @p Type |
9784 | /// is actually a value of type @c TargetInfo::IntType. |
9785 | CanQualType ASTContext::getFromTargetType(unsigned Type) const { |
9786 | switch (Type) { |
9787 | case TargetInfo::NoInt: return {}; |
9788 | case TargetInfo::SignedChar: return SignedCharTy; |
9789 | case TargetInfo::UnsignedChar: return UnsignedCharTy; |
9790 | case TargetInfo::SignedShort: return ShortTy; |
9791 | case TargetInfo::UnsignedShort: return UnsignedShortTy; |
9792 | case TargetInfo::SignedInt: return IntTy; |
9793 | case TargetInfo::UnsignedInt: return UnsignedIntTy; |
9794 | case TargetInfo::SignedLong: return LongTy; |
9795 | case TargetInfo::UnsignedLong: return UnsignedLongTy; |
9796 | case TargetInfo::SignedLongLong: return LongLongTy; |
9797 | case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; |
9798 | } |
9799 | |
9800 | llvm_unreachable("Unhandled TargetInfo::IntType value" ); |
9801 | } |
9802 | |
9803 | //===----------------------------------------------------------------------===// |
9804 | // Type Predicates. |
9805 | //===----------------------------------------------------------------------===// |
9806 | |
9807 | /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's |
9808 | /// garbage collection attribute. |
9809 | /// |
9810 | Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const { |
9811 | if (getLangOpts().getGC() == LangOptions::NonGC) |
9812 | return Qualifiers::GCNone; |
9813 | |
9814 | assert(getLangOpts().ObjC); |
9815 | Qualifiers::GC GCAttrs = Ty.getObjCGCAttr(); |
9816 | |
9817 | // Default behaviour under objective-C's gc is for ObjC pointers |
9818 | // (or pointers to them) be treated as though they were declared |
9819 | // as __strong. |
9820 | if (GCAttrs == Qualifiers::GCNone) { |
9821 | if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) |
9822 | return Qualifiers::Strong; |
9823 | else if (Ty->isPointerType()) |
9824 | return getObjCGCAttrKind(Ty: Ty->castAs<PointerType>()->getPointeeType()); |
9825 | } else { |
9826 | // It's not valid to set GC attributes on anything that isn't a |
9827 | // pointer. |
9828 | #ifndef NDEBUG |
9829 | QualType CT = Ty->getCanonicalTypeInternal(); |
9830 | while (const auto *AT = dyn_cast<ArrayType>(CT)) |
9831 | CT = AT->getElementType(); |
9832 | assert(CT->isAnyPointerType() || CT->isBlockPointerType()); |
9833 | #endif |
9834 | } |
9835 | return GCAttrs; |
9836 | } |
9837 | |
9838 | //===----------------------------------------------------------------------===// |
9839 | // Type Compatibility Testing |
9840 | //===----------------------------------------------------------------------===// |
9841 | |
9842 | /// areCompatVectorTypes - Return true if the two specified vector types are |
9843 | /// compatible. |
9844 | static bool areCompatVectorTypes(const VectorType *LHS, |
9845 | const VectorType *RHS) { |
9846 | assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); |
9847 | return LHS->getElementType() == RHS->getElementType() && |
9848 | LHS->getNumElements() == RHS->getNumElements(); |
9849 | } |
9850 | |
9851 | /// areCompatMatrixTypes - Return true if the two specified matrix types are |
9852 | /// compatible. |
9853 | static bool areCompatMatrixTypes(const ConstantMatrixType *LHS, |
9854 | const ConstantMatrixType *RHS) { |
9855 | assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); |
9856 | return LHS->getElementType() == RHS->getElementType() && |
9857 | LHS->getNumRows() == RHS->getNumRows() && |
9858 | LHS->getNumColumns() == RHS->getNumColumns(); |
9859 | } |
9860 | |
9861 | bool ASTContext::areCompatibleVectorTypes(QualType FirstVec, |
9862 | QualType SecondVec) { |
9863 | assert(FirstVec->isVectorType() && "FirstVec should be a vector type" ); |
9864 | assert(SecondVec->isVectorType() && "SecondVec should be a vector type" ); |
9865 | |
9866 | if (hasSameUnqualifiedType(T1: FirstVec, T2: SecondVec)) |
9867 | return true; |
9868 | |
9869 | // Treat Neon vector types and most AltiVec vector types as if they are the |
9870 | // equivalent GCC vector types. |
9871 | const auto *First = FirstVec->castAs<VectorType>(); |
9872 | const auto *Second = SecondVec->castAs<VectorType>(); |
9873 | if (First->getNumElements() == Second->getNumElements() && |
9874 | hasSameType(T1: First->getElementType(), T2: Second->getElementType()) && |
9875 | First->getVectorKind() != VectorKind::AltiVecPixel && |
9876 | First->getVectorKind() != VectorKind::AltiVecBool && |
9877 | Second->getVectorKind() != VectorKind::AltiVecPixel && |
9878 | Second->getVectorKind() != VectorKind::AltiVecBool && |
9879 | First->getVectorKind() != VectorKind::SveFixedLengthData && |
9880 | First->getVectorKind() != VectorKind::SveFixedLengthPredicate && |
9881 | Second->getVectorKind() != VectorKind::SveFixedLengthData && |
9882 | Second->getVectorKind() != VectorKind::SveFixedLengthPredicate && |
9883 | First->getVectorKind() != VectorKind::RVVFixedLengthData && |
9884 | Second->getVectorKind() != VectorKind::RVVFixedLengthData && |
9885 | First->getVectorKind() != VectorKind::RVVFixedLengthMask && |
9886 | Second->getVectorKind() != VectorKind::RVVFixedLengthMask) |
9887 | return true; |
9888 | |
9889 | return false; |
9890 | } |
9891 | |
9892 | /// getSVETypeSize - Return SVE vector or predicate register size. |
9893 | static uint64_t getSVETypeSize(ASTContext &Context, const BuiltinType *Ty) { |
9894 | assert(Ty->isSveVLSBuiltinType() && "Invalid SVE Type" ); |
9895 | if (Ty->getKind() == BuiltinType::SveBool || |
9896 | Ty->getKind() == BuiltinType::SveCount) |
9897 | return (Context.getLangOpts().VScaleMin * 128) / Context.getCharWidth(); |
9898 | return Context.getLangOpts().VScaleMin * 128; |
9899 | } |
9900 | |
9901 | bool ASTContext::areCompatibleSveTypes(QualType FirstType, |
9902 | QualType SecondType) { |
9903 | auto IsValidCast = [this](QualType FirstType, QualType SecondType) { |
9904 | if (const auto *BT = FirstType->getAs<BuiltinType>()) { |
9905 | if (const auto *VT = SecondType->getAs<VectorType>()) { |
9906 | // Predicates have the same representation as uint8 so we also have to |
9907 | // check the kind to make these types incompatible. |
9908 | if (VT->getVectorKind() == VectorKind::SveFixedLengthPredicate) |
9909 | return BT->getKind() == BuiltinType::SveBool; |
9910 | else if (VT->getVectorKind() == VectorKind::SveFixedLengthData) |
9911 | return VT->getElementType().getCanonicalType() == |
9912 | FirstType->getSveEltType(Ctx: *this); |
9913 | else if (VT->getVectorKind() == VectorKind::Generic) |
9914 | return getTypeSize(T: SecondType) == getSVETypeSize(Context&: *this, Ty: BT) && |
9915 | hasSameType(T1: VT->getElementType(), |
9916 | T2: getBuiltinVectorTypeInfo(Ty: BT).ElementType); |
9917 | } |
9918 | } |
9919 | return false; |
9920 | }; |
9921 | |
9922 | return IsValidCast(FirstType, SecondType) || |
9923 | IsValidCast(SecondType, FirstType); |
9924 | } |
9925 | |
9926 | bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType, |
9927 | QualType SecondType) { |
9928 | auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) { |
9929 | const auto *BT = FirstType->getAs<BuiltinType>(); |
9930 | if (!BT) |
9931 | return false; |
9932 | |
9933 | const auto *VecTy = SecondType->getAs<VectorType>(); |
9934 | if (VecTy && (VecTy->getVectorKind() == VectorKind::SveFixedLengthData || |
9935 | VecTy->getVectorKind() == VectorKind::Generic)) { |
9936 | const LangOptions::LaxVectorConversionKind LVCKind = |
9937 | getLangOpts().getLaxVectorConversions(); |
9938 | |
9939 | // Can not convert between sve predicates and sve vectors because of |
9940 | // different size. |
9941 | if (BT->getKind() == BuiltinType::SveBool && |
9942 | VecTy->getVectorKind() == VectorKind::SveFixedLengthData) |
9943 | return false; |
9944 | |
9945 | // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion. |
9946 | // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly |
9947 | // converts to VLAT and VLAT implicitly converts to GNUT." |
9948 | // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and |
9949 | // predicates. |
9950 | if (VecTy->getVectorKind() == VectorKind::Generic && |
9951 | getTypeSize(T: SecondType) != getSVETypeSize(Context&: *this, Ty: BT)) |
9952 | return false; |
9953 | |
9954 | // If -flax-vector-conversions=all is specified, the types are |
9955 | // certainly compatible. |
9956 | if (LVCKind == LangOptions::LaxVectorConversionKind::All) |
9957 | return true; |
9958 | |
9959 | // If -flax-vector-conversions=integer is specified, the types are |
9960 | // compatible if the elements are integer types. |
9961 | if (LVCKind == LangOptions::LaxVectorConversionKind::Integer) |
9962 | return VecTy->getElementType().getCanonicalType()->isIntegerType() && |
9963 | FirstType->getSveEltType(Ctx: *this)->isIntegerType(); |
9964 | } |
9965 | |
9966 | return false; |
9967 | }; |
9968 | |
9969 | return IsLaxCompatible(FirstType, SecondType) || |
9970 | IsLaxCompatible(SecondType, FirstType); |
9971 | } |
9972 | |
9973 | /// getRVVTypeSize - Return RVV vector register size. |
9974 | static uint64_t getRVVTypeSize(ASTContext &Context, const BuiltinType *Ty) { |
9975 | assert(Ty->isRVVVLSBuiltinType() && "Invalid RVV Type" ); |
9976 | auto VScale = Context.getTargetInfo().getVScaleRange(LangOpts: Context.getLangOpts()); |
9977 | if (!VScale) |
9978 | return 0; |
9979 | |
9980 | ASTContext::BuiltinVectorTypeInfo Info = Context.getBuiltinVectorTypeInfo(Ty); |
9981 | |
9982 | uint64_t EltSize = Context.getTypeSize(T: Info.ElementType); |
9983 | if (Info.ElementType == Context.BoolTy) |
9984 | EltSize = 1; |
9985 | |
9986 | uint64_t MinElts = Info.EC.getKnownMinValue(); |
9987 | return VScale->first * MinElts * EltSize; |
9988 | } |
9989 | |
9990 | bool ASTContext::areCompatibleRVVTypes(QualType FirstType, |
9991 | QualType SecondType) { |
9992 | assert( |
9993 | ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || |
9994 | (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && |
9995 | "Expected RVV builtin type and vector type!" ); |
9996 | |
9997 | auto IsValidCast = [this](QualType FirstType, QualType SecondType) { |
9998 | if (const auto *BT = FirstType->getAs<BuiltinType>()) { |
9999 | if (const auto *VT = SecondType->getAs<VectorType>()) { |
10000 | if (VT->getVectorKind() == VectorKind::RVVFixedLengthMask) { |
10001 | BuiltinVectorTypeInfo Info = getBuiltinVectorTypeInfo(Ty: BT); |
10002 | return FirstType->isRVVVLSBuiltinType() && |
10003 | Info.ElementType == BoolTy && |
10004 | getTypeSize(T: SecondType) == getRVVTypeSize(Context&: *this, Ty: BT); |
10005 | } |
10006 | if (VT->getVectorKind() == VectorKind::RVVFixedLengthData || |
10007 | VT->getVectorKind() == VectorKind::Generic) |
10008 | return FirstType->isRVVVLSBuiltinType() && |
10009 | getTypeSize(T: SecondType) == getRVVTypeSize(Context&: *this, Ty: BT) && |
10010 | hasSameType(T1: VT->getElementType(), |
10011 | T2: getBuiltinVectorTypeInfo(Ty: BT).ElementType); |
10012 | } |
10013 | } |
10014 | return false; |
10015 | }; |
10016 | |
10017 | return IsValidCast(FirstType, SecondType) || |
10018 | IsValidCast(SecondType, FirstType); |
10019 | } |
10020 | |
10021 | bool ASTContext::areLaxCompatibleRVVTypes(QualType FirstType, |
10022 | QualType SecondType) { |
10023 | assert( |
10024 | ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || |
10025 | (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && |
10026 | "Expected RVV builtin type and vector type!" ); |
10027 | |
10028 | auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) { |
10029 | const auto *BT = FirstType->getAs<BuiltinType>(); |
10030 | if (!BT) |
10031 | return false; |
10032 | |
10033 | if (!BT->isRVVVLSBuiltinType()) |
10034 | return false; |
10035 | |
10036 | const auto *VecTy = SecondType->getAs<VectorType>(); |
10037 | if (VecTy && VecTy->getVectorKind() == VectorKind::Generic) { |
10038 | const LangOptions::LaxVectorConversionKind LVCKind = |
10039 | getLangOpts().getLaxVectorConversions(); |
10040 | |
10041 | // If __riscv_v_fixed_vlen != N do not allow vector lax conversion. |
10042 | if (getTypeSize(T: SecondType) != getRVVTypeSize(Context&: *this, Ty: BT)) |
10043 | return false; |
10044 | |
10045 | // If -flax-vector-conversions=all is specified, the types are |
10046 | // certainly compatible. |
10047 | if (LVCKind == LangOptions::LaxVectorConversionKind::All) |
10048 | return true; |
10049 | |
10050 | // If -flax-vector-conversions=integer is specified, the types are |
10051 | // compatible if the elements are integer types. |
10052 | if (LVCKind == LangOptions::LaxVectorConversionKind::Integer) |
10053 | return VecTy->getElementType().getCanonicalType()->isIntegerType() && |
10054 | FirstType->getRVVEltType(Ctx: *this)->isIntegerType(); |
10055 | } |
10056 | |
10057 | return false; |
10058 | }; |
10059 | |
10060 | return IsLaxCompatible(FirstType, SecondType) || |
10061 | IsLaxCompatible(SecondType, FirstType); |
10062 | } |
10063 | |
10064 | bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const { |
10065 | while (true) { |
10066 | // __strong id |
10067 | if (const AttributedType *Attr = dyn_cast<AttributedType>(Val&: Ty)) { |
10068 | if (Attr->getAttrKind() == attr::ObjCOwnership) |
10069 | return true; |
10070 | |
10071 | Ty = Attr->getModifiedType(); |
10072 | |
10073 | // X *__strong (...) |
10074 | } else if (const ParenType *Paren = dyn_cast<ParenType>(Val&: Ty)) { |
10075 | Ty = Paren->getInnerType(); |
10076 | |
10077 | // We do not want to look through typedefs, typeof(expr), |
10078 | // typeof(type), or any other way that the type is somehow |
10079 | // abstracted. |
10080 | } else { |
10081 | return false; |
10082 | } |
10083 | } |
10084 | } |
10085 | |
10086 | //===----------------------------------------------------------------------===// |
10087 | // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. |
10088 | //===----------------------------------------------------------------------===// |
10089 | |
10090 | /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the |
10091 | /// inheritance hierarchy of 'rProto'. |
10092 | bool |
10093 | ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, |
10094 | ObjCProtocolDecl *rProto) const { |
10095 | if (declaresSameEntity(D1: lProto, D2: rProto)) |
10096 | return true; |
10097 | for (auto *PI : rProto->protocols()) |
10098 | if (ProtocolCompatibleWithProtocol(lProto, rProto: PI)) |
10099 | return true; |
10100 | return false; |
10101 | } |
10102 | |
10103 | /// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and |
10104 | /// Class<pr1, ...>. |
10105 | bool ASTContext::ObjCQualifiedClassTypesAreCompatible( |
10106 | const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) { |
10107 | for (auto *lhsProto : lhs->quals()) { |
10108 | bool match = false; |
10109 | for (auto *rhsProto : rhs->quals()) { |
10110 | if (ProtocolCompatibleWithProtocol(lProto: lhsProto, rProto: rhsProto)) { |
10111 | match = true; |
10112 | break; |
10113 | } |
10114 | } |
10115 | if (!match) |
10116 | return false; |
10117 | } |
10118 | return true; |
10119 | } |
10120 | |
10121 | /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an |
10122 | /// ObjCQualifiedIDType. |
10123 | bool ASTContext::ObjCQualifiedIdTypesAreCompatible( |
10124 | const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs, |
10125 | bool compare) { |
10126 | // Allow id<P..> and an 'id' in all cases. |
10127 | if (lhs->isObjCIdType() || rhs->isObjCIdType()) |
10128 | return true; |
10129 | |
10130 | // Don't allow id<P..> to convert to Class or Class<P..> in either direction. |
10131 | if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() || |
10132 | rhs->isObjCClassType() || rhs->isObjCQualifiedClassType()) |
10133 | return false; |
10134 | |
10135 | if (lhs->isObjCQualifiedIdType()) { |
10136 | if (rhs->qual_empty()) { |
10137 | // If the RHS is a unqualified interface pointer "NSString*", |
10138 | // make sure we check the class hierarchy. |
10139 | if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { |
10140 | for (auto *I : lhs->quals()) { |
10141 | // when comparing an id<P> on lhs with a static type on rhs, |
10142 | // see if static class implements all of id's protocols, directly or |
10143 | // through its super class and categories. |
10144 | if (!rhsID->ClassImplementsProtocol(lProto: I, lookupCategory: true)) |
10145 | return false; |
10146 | } |
10147 | } |
10148 | // If there are no qualifiers and no interface, we have an 'id'. |
10149 | return true; |
10150 | } |
10151 | // Both the right and left sides have qualifiers. |
10152 | for (auto *lhsProto : lhs->quals()) { |
10153 | bool match = false; |
10154 | |
10155 | // when comparing an id<P> on lhs with a static type on rhs, |
10156 | // see if static class implements all of id's protocols, directly or |
10157 | // through its super class and categories. |
10158 | for (auto *rhsProto : rhs->quals()) { |
10159 | if (ProtocolCompatibleWithProtocol(lProto: lhsProto, rProto: rhsProto) || |
10160 | (compare && ProtocolCompatibleWithProtocol(lProto: rhsProto, rProto: lhsProto))) { |
10161 | match = true; |
10162 | break; |
10163 | } |
10164 | } |
10165 | // If the RHS is a qualified interface pointer "NSString<P>*", |
10166 | // make sure we check the class hierarchy. |
10167 | if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { |
10168 | for (auto *I : lhs->quals()) { |
10169 | // when comparing an id<P> on lhs with a static type on rhs, |
10170 | // see if static class implements all of id's protocols, directly or |
10171 | // through its super class and categories. |
10172 | if (rhsID->ClassImplementsProtocol(lProto: I, lookupCategory: true)) { |
10173 | match = true; |
10174 | break; |
10175 | } |
10176 | } |
10177 | } |
10178 | if (!match) |
10179 | return false; |
10180 | } |
10181 | |
10182 | return true; |
10183 | } |
10184 | |
10185 | assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>" ); |
10186 | |
10187 | if (lhs->getInterfaceType()) { |
10188 | // If both the right and left sides have qualifiers. |
10189 | for (auto *lhsProto : lhs->quals()) { |
10190 | bool match = false; |
10191 | |
10192 | // when comparing an id<P> on rhs with a static type on lhs, |
10193 | // see if static class implements all of id's protocols, directly or |
10194 | // through its super class and categories. |
10195 | // First, lhs protocols in the qualifier list must be found, direct |
10196 | // or indirect in rhs's qualifier list or it is a mismatch. |
10197 | for (auto *rhsProto : rhs->quals()) { |
10198 | if (ProtocolCompatibleWithProtocol(lProto: lhsProto, rProto: rhsProto) || |
10199 | (compare && ProtocolCompatibleWithProtocol(lProto: rhsProto, rProto: lhsProto))) { |
10200 | match = true; |
10201 | break; |
10202 | } |
10203 | } |
10204 | if (!match) |
10205 | return false; |
10206 | } |
10207 | |
10208 | // Static class's protocols, or its super class or category protocols |
10209 | // must be found, direct or indirect in rhs's qualifier list or it is a mismatch. |
10210 | if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) { |
10211 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; |
10212 | CollectInheritedProtocols(CDecl: lhsID, Protocols&: LHSInheritedProtocols); |
10213 | // This is rather dubious but matches gcc's behavior. If lhs has |
10214 | // no type qualifier and its class has no static protocol(s) |
10215 | // assume that it is mismatch. |
10216 | if (LHSInheritedProtocols.empty() && lhs->qual_empty()) |
10217 | return false; |
10218 | for (auto *lhsProto : LHSInheritedProtocols) { |
10219 | bool match = false; |
10220 | for (auto *rhsProto : rhs->quals()) { |
10221 | if (ProtocolCompatibleWithProtocol(lProto: lhsProto, rProto: rhsProto) || |
10222 | (compare && ProtocolCompatibleWithProtocol(lProto: rhsProto, rProto: lhsProto))) { |
10223 | match = true; |
10224 | break; |
10225 | } |
10226 | } |
10227 | if (!match) |
10228 | return false; |
10229 | } |
10230 | } |
10231 | return true; |
10232 | } |
10233 | return false; |
10234 | } |
10235 | |
10236 | /// canAssignObjCInterfaces - Return true if the two interface types are |
10237 | /// compatible for assignment from RHS to LHS. This handles validation of any |
10238 | /// protocol qualifiers on the LHS or RHS. |
10239 | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, |
10240 | const ObjCObjectPointerType *RHSOPT) { |
10241 | const ObjCObjectType* LHS = LHSOPT->getObjectType(); |
10242 | const ObjCObjectType* RHS = RHSOPT->getObjectType(); |
10243 | |
10244 | // If either type represents the built-in 'id' type, return true. |
10245 | if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId()) |
10246 | return true; |
10247 | |
10248 | // Function object that propagates a successful result or handles |
10249 | // __kindof types. |
10250 | auto finish = [&](bool succeeded) -> bool { |
10251 | if (succeeded) |
10252 | return true; |
10253 | |
10254 | if (!RHS->isKindOfType()) |
10255 | return false; |
10256 | |
10257 | // Strip off __kindof and protocol qualifiers, then check whether |
10258 | // we can assign the other way. |
10259 | return canAssignObjCInterfaces(LHSOPT: RHSOPT->stripObjCKindOfTypeAndQuals(ctx: *this), |
10260 | RHSOPT: LHSOPT->stripObjCKindOfTypeAndQuals(ctx: *this)); |
10261 | }; |
10262 | |
10263 | // Casts from or to id<P> are allowed when the other side has compatible |
10264 | // protocols. |
10265 | if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) { |
10266 | return finish(ObjCQualifiedIdTypesAreCompatible(lhs: LHSOPT, rhs: RHSOPT, compare: false)); |
10267 | } |
10268 | |
10269 | // Verify protocol compatibility for casts from Class<P1> to Class<P2>. |
10270 | if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) { |
10271 | return finish(ObjCQualifiedClassTypesAreCompatible(lhs: LHSOPT, rhs: RHSOPT)); |
10272 | } |
10273 | |
10274 | // Casts from Class to Class<Foo>, or vice-versa, are allowed. |
10275 | if (LHS->isObjCClass() && RHS->isObjCClass()) { |
10276 | return true; |
10277 | } |
10278 | |
10279 | // If we have 2 user-defined types, fall into that path. |
10280 | if (LHS->getInterface() && RHS->getInterface()) { |
10281 | return finish(canAssignObjCInterfaces(LHS, RHS)); |
10282 | } |
10283 | |
10284 | return false; |
10285 | } |
10286 | |
10287 | /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written |
10288 | /// for providing type-safety for objective-c pointers used to pass/return |
10289 | /// arguments in block literals. When passed as arguments, passing 'A*' where |
10290 | /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is |
10291 | /// not OK. For the return type, the opposite is not OK. |
10292 | bool ASTContext::canAssignObjCInterfacesInBlockPointer( |
10293 | const ObjCObjectPointerType *LHSOPT, |
10294 | const ObjCObjectPointerType *RHSOPT, |
10295 | bool BlockReturnType) { |
10296 | |
10297 | // Function object that propagates a successful result or handles |
10298 | // __kindof types. |
10299 | auto finish = [&](bool succeeded) -> bool { |
10300 | if (succeeded) |
10301 | return true; |
10302 | |
10303 | const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT; |
10304 | if (!Expected->isKindOfType()) |
10305 | return false; |
10306 | |
10307 | // Strip off __kindof and protocol qualifiers, then check whether |
10308 | // we can assign the other way. |
10309 | return canAssignObjCInterfacesInBlockPointer( |
10310 | LHSOPT: RHSOPT->stripObjCKindOfTypeAndQuals(ctx: *this), |
10311 | RHSOPT: LHSOPT->stripObjCKindOfTypeAndQuals(ctx: *this), |
10312 | BlockReturnType); |
10313 | }; |
10314 | |
10315 | if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType()) |
10316 | return true; |
10317 | |
10318 | if (LHSOPT->isObjCBuiltinType()) { |
10319 | return finish(RHSOPT->isObjCBuiltinType() || |
10320 | RHSOPT->isObjCQualifiedIdType()); |
10321 | } |
10322 | |
10323 | if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) { |
10324 | if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking) |
10325 | // Use for block parameters previous type checking for compatibility. |
10326 | return finish(ObjCQualifiedIdTypesAreCompatible(lhs: LHSOPT, rhs: RHSOPT, compare: false) || |
10327 | // Or corrected type checking as in non-compat mode. |
10328 | (!BlockReturnType && |
10329 | ObjCQualifiedIdTypesAreCompatible(lhs: RHSOPT, rhs: LHSOPT, compare: false))); |
10330 | else |
10331 | return finish(ObjCQualifiedIdTypesAreCompatible( |
10332 | lhs: (BlockReturnType ? LHSOPT : RHSOPT), |
10333 | rhs: (BlockReturnType ? RHSOPT : LHSOPT), compare: false)); |
10334 | } |
10335 | |
10336 | const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType(); |
10337 | const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType(); |
10338 | if (LHS && RHS) { // We have 2 user-defined types. |
10339 | if (LHS != RHS) { |
10340 | if (LHS->getDecl()->isSuperClassOf(I: RHS->getDecl())) |
10341 | return finish(BlockReturnType); |
10342 | if (RHS->getDecl()->isSuperClassOf(I: LHS->getDecl())) |
10343 | return finish(!BlockReturnType); |
10344 | } |
10345 | else |
10346 | return true; |
10347 | } |
10348 | return false; |
10349 | } |
10350 | |
10351 | /// Comparison routine for Objective-C protocols to be used with |
10352 | /// llvm::array_pod_sort. |
10353 | static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs, |
10354 | ObjCProtocolDecl * const *rhs) { |
10355 | return (*lhs)->getName().compare(RHS: (*rhs)->getName()); |
10356 | } |
10357 | |
10358 | /// getIntersectionOfProtocols - This routine finds the intersection of set |
10359 | /// of protocols inherited from two distinct objective-c pointer objects with |
10360 | /// the given common base. |
10361 | /// It is used to build composite qualifier list of the composite type of |
10362 | /// the conditional expression involving two objective-c pointer objects. |
10363 | static |
10364 | void getIntersectionOfProtocols(ASTContext &Context, |
10365 | const ObjCInterfaceDecl *CommonBase, |
10366 | const ObjCObjectPointerType *LHSOPT, |
10367 | const ObjCObjectPointerType *RHSOPT, |
10368 | SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) { |
10369 | |
10370 | const ObjCObjectType* LHS = LHSOPT->getObjectType(); |
10371 | const ObjCObjectType* RHS = RHSOPT->getObjectType(); |
10372 | assert(LHS->getInterface() && "LHS must have an interface base" ); |
10373 | assert(RHS->getInterface() && "RHS must have an interface base" ); |
10374 | |
10375 | // Add all of the protocols for the LHS. |
10376 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet; |
10377 | |
10378 | // Start with the protocol qualifiers. |
10379 | for (auto *proto : LHS->quals()) { |
10380 | Context.CollectInheritedProtocols(CDecl: proto, Protocols&: LHSProtocolSet); |
10381 | } |
10382 | |
10383 | // Also add the protocols associated with the LHS interface. |
10384 | Context.CollectInheritedProtocols(CDecl: LHS->getInterface(), Protocols&: LHSProtocolSet); |
10385 | |
10386 | // Add all of the protocols for the RHS. |
10387 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet; |
10388 | |
10389 | // Start with the protocol qualifiers. |
10390 | for (auto *proto : RHS->quals()) { |
10391 | Context.CollectInheritedProtocols(CDecl: proto, Protocols&: RHSProtocolSet); |
10392 | } |
10393 | |
10394 | // Also add the protocols associated with the RHS interface. |
10395 | Context.CollectInheritedProtocols(CDecl: RHS->getInterface(), Protocols&: RHSProtocolSet); |
10396 | |
10397 | // Compute the intersection of the collected protocol sets. |
10398 | for (auto *proto : LHSProtocolSet) { |
10399 | if (RHSProtocolSet.count(Ptr: proto)) |
10400 | IntersectionSet.push_back(Elt: proto); |
10401 | } |
10402 | |
10403 | // Compute the set of protocols that is implied by either the common type or |
10404 | // the protocols within the intersection. |
10405 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols; |
10406 | Context.CollectInheritedProtocols(CDecl: CommonBase, Protocols&: ImpliedProtocols); |
10407 | |
10408 | // Remove any implied protocols from the list of inherited protocols. |
10409 | if (!ImpliedProtocols.empty()) { |
10410 | llvm::erase_if(C&: IntersectionSet, P: [&](ObjCProtocolDecl *proto) -> bool { |
10411 | return ImpliedProtocols.contains(Ptr: proto); |
10412 | }); |
10413 | } |
10414 | |
10415 | // Sort the remaining protocols by name. |
10416 | llvm::array_pod_sort(Start: IntersectionSet.begin(), End: IntersectionSet.end(), |
10417 | Compare: compareObjCProtocolsByName); |
10418 | } |
10419 | |
10420 | /// Determine whether the first type is a subtype of the second. |
10421 | static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs, |
10422 | QualType rhs) { |
10423 | // Common case: two object pointers. |
10424 | const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>(); |
10425 | const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); |
10426 | if (lhsOPT && rhsOPT) |
10427 | return ctx.canAssignObjCInterfaces(LHSOPT: lhsOPT, RHSOPT: rhsOPT); |
10428 | |
10429 | // Two block pointers. |
10430 | const auto *lhsBlock = lhs->getAs<BlockPointerType>(); |
10431 | const auto *rhsBlock = rhs->getAs<BlockPointerType>(); |
10432 | if (lhsBlock && rhsBlock) |
10433 | return ctx.typesAreBlockPointerCompatible(lhs, rhs); |
10434 | |
10435 | // If either is an unqualified 'id' and the other is a block, it's |
10436 | // acceptable. |
10437 | if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) || |
10438 | (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock)) |
10439 | return true; |
10440 | |
10441 | return false; |
10442 | } |
10443 | |
10444 | // Check that the given Objective-C type argument lists are equivalent. |
10445 | static bool sameObjCTypeArgs(ASTContext &ctx, |
10446 | const ObjCInterfaceDecl *iface, |
10447 | ArrayRef<QualType> lhsArgs, |
10448 | ArrayRef<QualType> rhsArgs, |
10449 | bool stripKindOf) { |
10450 | if (lhsArgs.size() != rhsArgs.size()) |
10451 | return false; |
10452 | |
10453 | ObjCTypeParamList *typeParams = iface->getTypeParamList(); |
10454 | if (!typeParams) |
10455 | return false; |
10456 | |
10457 | for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) { |
10458 | if (ctx.hasSameType(T1: lhsArgs[i], T2: rhsArgs[i])) |
10459 | continue; |
10460 | |
10461 | switch (typeParams->begin()[i]->getVariance()) { |
10462 | case ObjCTypeParamVariance::Invariant: |
10463 | if (!stripKindOf || |
10464 | !ctx.hasSameType(T1: lhsArgs[i].stripObjCKindOfType(ctx), |
10465 | T2: rhsArgs[i].stripObjCKindOfType(ctx))) { |
10466 | return false; |
10467 | } |
10468 | break; |
10469 | |
10470 | case ObjCTypeParamVariance::Covariant: |
10471 | if (!canAssignObjCObjectTypes(ctx, lhs: lhsArgs[i], rhs: rhsArgs[i])) |
10472 | return false; |
10473 | break; |
10474 | |
10475 | case ObjCTypeParamVariance::Contravariant: |
10476 | if (!canAssignObjCObjectTypes(ctx, lhs: rhsArgs[i], rhs: lhsArgs[i])) |
10477 | return false; |
10478 | break; |
10479 | } |
10480 | } |
10481 | |
10482 | return true; |
10483 | } |
10484 | |
10485 | QualType ASTContext::areCommonBaseCompatible( |
10486 | const ObjCObjectPointerType *Lptr, |
10487 | const ObjCObjectPointerType *Rptr) { |
10488 | const ObjCObjectType *LHS = Lptr->getObjectType(); |
10489 | const ObjCObjectType *RHS = Rptr->getObjectType(); |
10490 | const ObjCInterfaceDecl* LDecl = LHS->getInterface(); |
10491 | const ObjCInterfaceDecl* RDecl = RHS->getInterface(); |
10492 | |
10493 | if (!LDecl || !RDecl) |
10494 | return {}; |
10495 | |
10496 | // When either LHS or RHS is a kindof type, we should return a kindof type. |
10497 | // For example, for common base of kindof(ASub1) and kindof(ASub2), we return |
10498 | // kindof(A). |
10499 | bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType(); |
10500 | |
10501 | // Follow the left-hand side up the class hierarchy until we either hit a |
10502 | // root or find the RHS. Record the ancestors in case we don't find it. |
10503 | llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4> |
10504 | LHSAncestors; |
10505 | while (true) { |
10506 | // Record this ancestor. We'll need this if the common type isn't in the |
10507 | // path from the LHS to the root. |
10508 | LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS; |
10509 | |
10510 | if (declaresSameEntity(D1: LHS->getInterface(), D2: RDecl)) { |
10511 | // Get the type arguments. |
10512 | ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten(); |
10513 | bool anyChanges = false; |
10514 | if (LHS->isSpecialized() && RHS->isSpecialized()) { |
10515 | // Both have type arguments, compare them. |
10516 | if (!sameObjCTypeArgs(ctx&: *this, iface: LHS->getInterface(), |
10517 | lhsArgs: LHS->getTypeArgs(), rhsArgs: RHS->getTypeArgs(), |
10518 | /*stripKindOf=*/true)) |
10519 | return {}; |
10520 | } else if (LHS->isSpecialized() != RHS->isSpecialized()) { |
10521 | // If only one has type arguments, the result will not have type |
10522 | // arguments. |
10523 | LHSTypeArgs = {}; |
10524 | anyChanges = true; |
10525 | } |
10526 | |
10527 | // Compute the intersection of protocols. |
10528 | SmallVector<ObjCProtocolDecl *, 8> Protocols; |
10529 | getIntersectionOfProtocols(Context&: *this, CommonBase: LHS->getInterface(), LHSOPT: Lptr, RHSOPT: Rptr, |
10530 | IntersectionSet&: Protocols); |
10531 | if (!Protocols.empty()) |
10532 | anyChanges = true; |
10533 | |
10534 | // If anything in the LHS will have changed, build a new result type. |
10535 | // If we need to return a kindof type but LHS is not a kindof type, we |
10536 | // build a new result type. |
10537 | if (anyChanges || LHS->isKindOfType() != anyKindOf) { |
10538 | QualType Result = getObjCInterfaceType(Decl: LHS->getInterface()); |
10539 | Result = getObjCObjectType(baseType: Result, typeArgs: LHSTypeArgs, protocols: Protocols, |
10540 | isKindOf: anyKindOf || LHS->isKindOfType()); |
10541 | return getObjCObjectPointerType(ObjectT: Result); |
10542 | } |
10543 | |
10544 | return getObjCObjectPointerType(ObjectT: QualType(LHS, 0)); |
10545 | } |
10546 | |
10547 | // Find the superclass. |
10548 | QualType LHSSuperType = LHS->getSuperClassType(); |
10549 | if (LHSSuperType.isNull()) |
10550 | break; |
10551 | |
10552 | LHS = LHSSuperType->castAs<ObjCObjectType>(); |
10553 | } |
10554 | |
10555 | // We didn't find anything by following the LHS to its root; now check |
10556 | // the RHS against the cached set of ancestors. |
10557 | while (true) { |
10558 | auto KnownLHS = LHSAncestors.find(Val: RHS->getInterface()->getCanonicalDecl()); |
10559 | if (KnownLHS != LHSAncestors.end()) { |
10560 | LHS = KnownLHS->second; |
10561 | |
10562 | // Get the type arguments. |
10563 | ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten(); |
10564 | bool anyChanges = false; |
10565 | if (LHS->isSpecialized() && RHS->isSpecialized()) { |
10566 | // Both have type arguments, compare them. |
10567 | if (!sameObjCTypeArgs(ctx&: *this, iface: LHS->getInterface(), |
10568 | lhsArgs: LHS->getTypeArgs(), rhsArgs: RHS->getTypeArgs(), |
10569 | /*stripKindOf=*/true)) |
10570 | return {}; |
10571 | } else if (LHS->isSpecialized() != RHS->isSpecialized()) { |
10572 | // If only one has type arguments, the result will not have type |
10573 | // arguments. |
10574 | RHSTypeArgs = {}; |
10575 | anyChanges = true; |
10576 | } |
10577 | |
10578 | // Compute the intersection of protocols. |
10579 | SmallVector<ObjCProtocolDecl *, 8> Protocols; |
10580 | getIntersectionOfProtocols(Context&: *this, CommonBase: RHS->getInterface(), LHSOPT: Lptr, RHSOPT: Rptr, |
10581 | IntersectionSet&: Protocols); |
10582 | if (!Protocols.empty()) |
10583 | anyChanges = true; |
10584 | |
10585 | // If we need to return a kindof type but RHS is not a kindof type, we |
10586 | // build a new result type. |
10587 | if (anyChanges || RHS->isKindOfType() != anyKindOf) { |
10588 | QualType Result = getObjCInterfaceType(Decl: RHS->getInterface()); |
10589 | Result = getObjCObjectType(baseType: Result, typeArgs: RHSTypeArgs, protocols: Protocols, |
10590 | isKindOf: anyKindOf || RHS->isKindOfType()); |
10591 | return getObjCObjectPointerType(ObjectT: Result); |
10592 | } |
10593 | |
10594 | return getObjCObjectPointerType(ObjectT: QualType(RHS, 0)); |
10595 | } |
10596 | |
10597 | // Find the superclass of the RHS. |
10598 | QualType RHSSuperType = RHS->getSuperClassType(); |
10599 | if (RHSSuperType.isNull()) |
10600 | break; |
10601 | |
10602 | RHS = RHSSuperType->castAs<ObjCObjectType>(); |
10603 | } |
10604 | |
10605 | return {}; |
10606 | } |
10607 | |
10608 | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS, |
10609 | const ObjCObjectType *RHS) { |
10610 | assert(LHS->getInterface() && "LHS is not an interface type" ); |
10611 | assert(RHS->getInterface() && "RHS is not an interface type" ); |
10612 | |
10613 | // Verify that the base decls are compatible: the RHS must be a subclass of |
10614 | // the LHS. |
10615 | ObjCInterfaceDecl *LHSInterface = LHS->getInterface(); |
10616 | bool IsSuperClass = LHSInterface->isSuperClassOf(I: RHS->getInterface()); |
10617 | if (!IsSuperClass) |
10618 | return false; |
10619 | |
10620 | // If the LHS has protocol qualifiers, determine whether all of them are |
10621 | // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the |
10622 | // LHS). |
10623 | if (LHS->getNumProtocols() > 0) { |
10624 | // OK if conversion of LHS to SuperClass results in narrowing of types |
10625 | // ; i.e., SuperClass may implement at least one of the protocols |
10626 | // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok. |
10627 | // But not SuperObj<P1,P2,P3> = lhs<P1,P2>. |
10628 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols; |
10629 | CollectInheritedProtocols(CDecl: RHS->getInterface(), Protocols&: SuperClassInheritedProtocols); |
10630 | // Also, if RHS has explicit quelifiers, include them for comparing with LHS's |
10631 | // qualifiers. |
10632 | for (auto *RHSPI : RHS->quals()) |
10633 | CollectInheritedProtocols(CDecl: RHSPI, Protocols&: SuperClassInheritedProtocols); |
10634 | // If there is no protocols associated with RHS, it is not a match. |
10635 | if (SuperClassInheritedProtocols.empty()) |
10636 | return false; |
10637 | |
10638 | for (const auto *LHSProto : LHS->quals()) { |
10639 | bool SuperImplementsProtocol = false; |
10640 | for (auto *SuperClassProto : SuperClassInheritedProtocols) |
10641 | if (SuperClassProto->lookupProtocolNamed(PName: LHSProto->getIdentifier())) { |
10642 | SuperImplementsProtocol = true; |
10643 | break; |
10644 | } |
10645 | if (!SuperImplementsProtocol) |
10646 | return false; |
10647 | } |
10648 | } |
10649 | |
10650 | // If the LHS is specialized, we may need to check type arguments. |
10651 | if (LHS->isSpecialized()) { |
10652 | // Follow the superclass chain until we've matched the LHS class in the |
10653 | // hierarchy. This substitutes type arguments through. |
10654 | const ObjCObjectType *RHSSuper = RHS; |
10655 | while (!declaresSameEntity(D1: RHSSuper->getInterface(), D2: LHSInterface)) |
10656 | RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>(); |
10657 | |
10658 | // If the RHS is specializd, compare type arguments. |
10659 | if (RHSSuper->isSpecialized() && |
10660 | !sameObjCTypeArgs(ctx&: *this, iface: LHS->getInterface(), |
10661 | lhsArgs: LHS->getTypeArgs(), rhsArgs: RHSSuper->getTypeArgs(), |
10662 | /*stripKindOf=*/true)) { |
10663 | return false; |
10664 | } |
10665 | } |
10666 | |
10667 | return true; |
10668 | } |
10669 | |
10670 | bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { |
10671 | // get the "pointed to" types |
10672 | const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>(); |
10673 | const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>(); |
10674 | |
10675 | if (!LHSOPT || !RHSOPT) |
10676 | return false; |
10677 | |
10678 | return canAssignObjCInterfaces(LHSOPT, RHSOPT) || |
10679 | canAssignObjCInterfaces(LHSOPT: RHSOPT, RHSOPT: LHSOPT); |
10680 | } |
10681 | |
10682 | bool ASTContext::canBindObjCObjectType(QualType To, QualType From) { |
10683 | return canAssignObjCInterfaces( |
10684 | LHSOPT: getObjCObjectPointerType(ObjectT: To)->castAs<ObjCObjectPointerType>(), |
10685 | RHSOPT: getObjCObjectPointerType(ObjectT: From)->castAs<ObjCObjectPointerType>()); |
10686 | } |
10687 | |
10688 | /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, |
10689 | /// both shall have the identically qualified version of a compatible type. |
10690 | /// C99 6.2.7p1: Two types have compatible types if their types are the |
10691 | /// same. See 6.7.[2,3,5] for additional rules. |
10692 | bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS, |
10693 | bool CompareUnqualified) { |
10694 | if (getLangOpts().CPlusPlus) |
10695 | return hasSameType(T1: LHS, T2: RHS); |
10696 | |
10697 | return !mergeTypes(LHS, RHS, OfBlockPointer: false, Unqualified: CompareUnqualified).isNull(); |
10698 | } |
10699 | |
10700 | bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) { |
10701 | return typesAreCompatible(LHS, RHS); |
10702 | } |
10703 | |
10704 | bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) { |
10705 | return !mergeTypes(LHS, RHS, OfBlockPointer: true).isNull(); |
10706 | } |
10707 | |
10708 | /// mergeTransparentUnionType - if T is a transparent union type and a member |
10709 | /// of T is compatible with SubType, return the merged type, else return |
10710 | /// QualType() |
10711 | QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType, |
10712 | bool OfBlockPointer, |
10713 | bool Unqualified) { |
10714 | if (const RecordType *UT = T->getAsUnionType()) { |
10715 | RecordDecl *UD = UT->getDecl(); |
10716 | if (UD->hasAttr<TransparentUnionAttr>()) { |
10717 | for (const auto *I : UD->fields()) { |
10718 | QualType ET = I->getType().getUnqualifiedType(); |
10719 | QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified); |
10720 | if (!MT.isNull()) |
10721 | return MT; |
10722 | } |
10723 | } |
10724 | } |
10725 | |
10726 | return {}; |
10727 | } |
10728 | |
10729 | /// mergeFunctionParameterTypes - merge two types which appear as function |
10730 | /// parameter types |
10731 | QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs, |
10732 | bool OfBlockPointer, |
10733 | bool Unqualified) { |
10734 | // GNU extension: two types are compatible if they appear as a function |
10735 | // argument, one of the types is a transparent union type and the other |
10736 | // type is compatible with a union member |
10737 | QualType lmerge = mergeTransparentUnionType(T: lhs, SubType: rhs, OfBlockPointer, |
10738 | Unqualified); |
10739 | if (!lmerge.isNull()) |
10740 | return lmerge; |
10741 | |
10742 | QualType rmerge = mergeTransparentUnionType(T: rhs, SubType: lhs, OfBlockPointer, |
10743 | Unqualified); |
10744 | if (!rmerge.isNull()) |
10745 | return rmerge; |
10746 | |
10747 | return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified); |
10748 | } |
10749 | |
10750 | QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs, |
10751 | bool OfBlockPointer, bool Unqualified, |
10752 | bool AllowCXX, |
10753 | bool IsConditionalOperator) { |
10754 | const auto *lbase = lhs->castAs<FunctionType>(); |
10755 | const auto *rbase = rhs->castAs<FunctionType>(); |
10756 | const auto *lproto = dyn_cast<FunctionProtoType>(Val: lbase); |
10757 | const auto *rproto = dyn_cast<FunctionProtoType>(Val: rbase); |
10758 | bool allLTypes = true; |
10759 | bool allRTypes = true; |
10760 | |
10761 | // Check return type |
10762 | QualType retType; |
10763 | if (OfBlockPointer) { |
10764 | QualType RHS = rbase->getReturnType(); |
10765 | QualType LHS = lbase->getReturnType(); |
10766 | bool UnqualifiedResult = Unqualified; |
10767 | if (!UnqualifiedResult) |
10768 | UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers()); |
10769 | retType = mergeTypes(LHS, RHS, OfBlockPointer: true, Unqualified: UnqualifiedResult, BlockReturnType: true); |
10770 | } |
10771 | else |
10772 | retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), OfBlockPointer: false, |
10773 | Unqualified); |
10774 | if (retType.isNull()) |
10775 | return {}; |
10776 | |
10777 | if (Unqualified) |
10778 | retType = retType.getUnqualifiedType(); |
10779 | |
10780 | CanQualType LRetType = getCanonicalType(T: lbase->getReturnType()); |
10781 | CanQualType RRetType = getCanonicalType(T: rbase->getReturnType()); |
10782 | if (Unqualified) { |
10783 | LRetType = LRetType.getUnqualifiedType(); |
10784 | RRetType = RRetType.getUnqualifiedType(); |
10785 | } |
10786 | |
10787 | if (getCanonicalType(T: retType) != LRetType) |
10788 | allLTypes = false; |
10789 | if (getCanonicalType(T: retType) != RRetType) |
10790 | allRTypes = false; |
10791 | |
10792 | // FIXME: double check this |
10793 | // FIXME: should we error if lbase->getRegParmAttr() != 0 && |
10794 | // rbase->getRegParmAttr() != 0 && |
10795 | // lbase->getRegParmAttr() != rbase->getRegParmAttr()? |
10796 | FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo(); |
10797 | FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo(); |
10798 | |
10799 | // Compatible functions must have compatible calling conventions |
10800 | if (lbaseInfo.getCC() != rbaseInfo.getCC()) |
10801 | return {}; |
10802 | |
10803 | // Regparm is part of the calling convention. |
10804 | if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm()) |
10805 | return {}; |
10806 | if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm()) |
10807 | return {}; |
10808 | |
10809 | if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult()) |
10810 | return {}; |
10811 | if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs()) |
10812 | return {}; |
10813 | if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck()) |
10814 | return {}; |
10815 | |
10816 | // When merging declarations, it's common for supplemental information like |
10817 | // attributes to only be present in one of the declarations, and we generally |
10818 | // want type merging to preserve the union of information. So a merged |
10819 | // function type should be noreturn if it was noreturn in *either* operand |
10820 | // type. |
10821 | // |
10822 | // But for the conditional operator, this is backwards. The result of the |
10823 | // operator could be either operand, and its type should conservatively |
10824 | // reflect that. So a function type in a composite type is noreturn only |
10825 | // if it's noreturn in *both* operand types. |
10826 | // |
10827 | // Arguably, noreturn is a kind of subtype, and the conditional operator |
10828 | // ought to produce the most specific common supertype of its operand types. |
10829 | // That would differ from this rule in contravariant positions. However, |
10830 | // neither C nor C++ generally uses this kind of subtype reasoning. Also, |
10831 | // as a practical matter, it would only affect C code that does abstraction of |
10832 | // higher-order functions (taking noreturn callbacks!), which is uncommon to |
10833 | // say the least. So we use the simpler rule. |
10834 | bool NoReturn = IsConditionalOperator |
10835 | ? lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn() |
10836 | : lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn(); |
10837 | if (lbaseInfo.getNoReturn() != NoReturn) |
10838 | allLTypes = false; |
10839 | if (rbaseInfo.getNoReturn() != NoReturn) |
10840 | allRTypes = false; |
10841 | |
10842 | FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(noReturn: NoReturn); |
10843 | |
10844 | std::optional<FunctionEffectSet> MergedFX; |
10845 | |
10846 | if (lproto && rproto) { // two C99 style function prototypes |
10847 | assert((AllowCXX || |
10848 | (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) && |
10849 | "C++ shouldn't be here" ); |
10850 | // Compatible functions must have the same number of parameters |
10851 | if (lproto->getNumParams() != rproto->getNumParams()) |
10852 | return {}; |
10853 | |
10854 | // Variadic and non-variadic functions aren't compatible |
10855 | if (lproto->isVariadic() != rproto->isVariadic()) |
10856 | return {}; |
10857 | |
10858 | if (lproto->getMethodQuals() != rproto->getMethodQuals()) |
10859 | return {}; |
10860 | |
10861 | // Function effects are handled similarly to noreturn, see above. |
10862 | FunctionEffectsRef LHSFX = lproto->getFunctionEffects(); |
10863 | FunctionEffectsRef RHSFX = rproto->getFunctionEffects(); |
10864 | if (LHSFX != RHSFX) { |
10865 | if (IsConditionalOperator) |
10866 | MergedFX = FunctionEffectSet::getIntersection(LHS: LHSFX, RHS: RHSFX); |
10867 | else { |
10868 | FunctionEffectSet::Conflicts Errs; |
10869 | MergedFX = FunctionEffectSet::getUnion(LHS: LHSFX, RHS: RHSFX, Errs); |
10870 | // Here we're discarding a possible error due to conflicts in the effect |
10871 | // sets. But we're not in a context where we can report it. The |
10872 | // operation does however guarantee maintenance of invariants. |
10873 | } |
10874 | if (*MergedFX != LHSFX) |
10875 | allLTypes = false; |
10876 | if (*MergedFX != RHSFX) |
10877 | allRTypes = false; |
10878 | } |
10879 | |
10880 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos; |
10881 | bool canUseLeft, canUseRight; |
10882 | if (!mergeExtParameterInfo(FirstFnType: lproto, SecondFnType: rproto, CanUseFirst&: canUseLeft, CanUseSecond&: canUseRight, |
10883 | NewParamInfos&: newParamInfos)) |
10884 | return {}; |
10885 | |
10886 | if (!canUseLeft) |
10887 | allLTypes = false; |
10888 | if (!canUseRight) |
10889 | allRTypes = false; |
10890 | |
10891 | // Check parameter type compatibility |
10892 | SmallVector<QualType, 10> types; |
10893 | for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) { |
10894 | QualType lParamType = lproto->getParamType(i).getUnqualifiedType(); |
10895 | QualType rParamType = rproto->getParamType(i).getUnqualifiedType(); |
10896 | QualType paramType = mergeFunctionParameterTypes( |
10897 | lhs: lParamType, rhs: rParamType, OfBlockPointer, Unqualified); |
10898 | if (paramType.isNull()) |
10899 | return {}; |
10900 | |
10901 | if (Unqualified) |
10902 | paramType = paramType.getUnqualifiedType(); |
10903 | |
10904 | types.push_back(Elt: paramType); |
10905 | if (Unqualified) { |
10906 | lParamType = lParamType.getUnqualifiedType(); |
10907 | rParamType = rParamType.getUnqualifiedType(); |
10908 | } |
10909 | |
10910 | if (getCanonicalType(T: paramType) != getCanonicalType(T: lParamType)) |
10911 | allLTypes = false; |
10912 | if (getCanonicalType(T: paramType) != getCanonicalType(T: rParamType)) |
10913 | allRTypes = false; |
10914 | } |
10915 | |
10916 | if (allLTypes) return lhs; |
10917 | if (allRTypes) return rhs; |
10918 | |
10919 | FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo(); |
10920 | EPI.ExtInfo = einfo; |
10921 | EPI.ExtParameterInfos = |
10922 | newParamInfos.empty() ? nullptr : newParamInfos.data(); |
10923 | if (MergedFX) |
10924 | EPI.FunctionEffects = *MergedFX; |
10925 | return getFunctionType(ResultTy: retType, Args: types, EPI); |
10926 | } |
10927 | |
10928 | if (lproto) allRTypes = false; |
10929 | if (rproto) allLTypes = false; |
10930 | |
10931 | const FunctionProtoType *proto = lproto ? lproto : rproto; |
10932 | if (proto) { |
10933 | assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here" ); |
10934 | if (proto->isVariadic()) |
10935 | return {}; |
10936 | // Check that the types are compatible with the types that |
10937 | // would result from default argument promotions (C99 6.7.5.3p15). |
10938 | // The only types actually affected are promotable integer |
10939 | // types and floats, which would be passed as a different |
10940 | // type depending on whether the prototype is visible. |
10941 | for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) { |
10942 | QualType paramTy = proto->getParamType(i); |
10943 | |
10944 | // Look at the converted type of enum types, since that is the type used |
10945 | // to pass enum values. |
10946 | if (const auto *Enum = paramTy->getAs<EnumType>()) { |
10947 | paramTy = Enum->getDecl()->getIntegerType(); |
10948 | if (paramTy.isNull()) |
10949 | return {}; |
10950 | } |
10951 | |
10952 | if (isPromotableIntegerType(T: paramTy) || |
10953 | getCanonicalType(T: paramTy).getUnqualifiedType() == FloatTy) |
10954 | return {}; |
10955 | } |
10956 | |
10957 | if (allLTypes) return lhs; |
10958 | if (allRTypes) return rhs; |
10959 | |
10960 | FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo(); |
10961 | EPI.ExtInfo = einfo; |
10962 | if (MergedFX) |
10963 | EPI.FunctionEffects = *MergedFX; |
10964 | return getFunctionType(ResultTy: retType, Args: proto->getParamTypes(), EPI); |
10965 | } |
10966 | |
10967 | if (allLTypes) return lhs; |
10968 | if (allRTypes) return rhs; |
10969 | return getFunctionNoProtoType(ResultTy: retType, Info: einfo); |
10970 | } |
10971 | |
10972 | /// Given that we have an enum type and a non-enum type, try to merge them. |
10973 | static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET, |
10974 | QualType other, bool isBlockReturnType) { |
10975 | // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, |
10976 | // a signed integer type, or an unsigned integer type. |
10977 | // Compatibility is based on the underlying type, not the promotion |
10978 | // type. |
10979 | QualType underlyingType = ET->getDecl()->getIntegerType(); |
10980 | if (underlyingType.isNull()) |
10981 | return {}; |
10982 | if (Context.hasSameType(T1: underlyingType, T2: other)) |
10983 | return other; |
10984 | |
10985 | // In block return types, we're more permissive and accept any |
10986 | // integral type of the same size. |
10987 | if (isBlockReturnType && other->isIntegerType() && |
10988 | Context.getTypeSize(T: underlyingType) == Context.getTypeSize(T: other)) |
10989 | return other; |
10990 | |
10991 | return {}; |
10992 | } |
10993 | |
10994 | QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, bool OfBlockPointer, |
10995 | bool Unqualified, bool BlockReturnType, |
10996 | bool IsConditionalOperator) { |
10997 | // For C++ we will not reach this code with reference types (see below), |
10998 | // for OpenMP variant call overloading we might. |
10999 | // |
11000 | // C++ [expr]: If an expression initially has the type "reference to T", the |
11001 | // type is adjusted to "T" prior to any further analysis, the expression |
11002 | // designates the object or function denoted by the reference, and the |
11003 | // expression is an lvalue unless the reference is an rvalue reference and |
11004 | // the expression is a function call (possibly inside parentheses). |
11005 | auto *LHSRefTy = LHS->getAs<ReferenceType>(); |
11006 | auto *RHSRefTy = RHS->getAs<ReferenceType>(); |
11007 | if (LangOpts.OpenMP && LHSRefTy && RHSRefTy && |
11008 | LHS->getTypeClass() == RHS->getTypeClass()) |
11009 | return mergeTypes(LHS: LHSRefTy->getPointeeType(), RHS: RHSRefTy->getPointeeType(), |
11010 | OfBlockPointer, Unqualified, BlockReturnType); |
11011 | if (LHSRefTy || RHSRefTy) |
11012 | return {}; |
11013 | |
11014 | if (Unqualified) { |
11015 | LHS = LHS.getUnqualifiedType(); |
11016 | RHS = RHS.getUnqualifiedType(); |
11017 | } |
11018 | |
11019 | QualType LHSCan = getCanonicalType(T: LHS), |
11020 | RHSCan = getCanonicalType(T: RHS); |
11021 | |
11022 | // If two types are identical, they are compatible. |
11023 | if (LHSCan == RHSCan) |
11024 | return LHS; |
11025 | |
11026 | // If the qualifiers are different, the types aren't compatible... mostly. |
11027 | Qualifiers LQuals = LHSCan.getLocalQualifiers(); |
11028 | Qualifiers RQuals = RHSCan.getLocalQualifiers(); |
11029 | if (LQuals != RQuals) { |
11030 | // If any of these qualifiers are different, we have a type |
11031 | // mismatch. |
11032 | if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || |
11033 | LQuals.getAddressSpace() != RQuals.getAddressSpace() || |
11034 | LQuals.getObjCLifetime() != RQuals.getObjCLifetime() || |
11035 | LQuals.hasUnaligned() != RQuals.hasUnaligned()) |
11036 | return {}; |
11037 | |
11038 | // Exactly one GC qualifier difference is allowed: __strong is |
11039 | // okay if the other type has no GC qualifier but is an Objective |
11040 | // C object pointer (i.e. implicitly strong by default). We fix |
11041 | // this by pretending that the unqualified type was actually |
11042 | // qualified __strong. |
11043 | Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); |
11044 | Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); |
11045 | assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements" ); |
11046 | |
11047 | if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) |
11048 | return {}; |
11049 | |
11050 | if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) { |
11051 | return mergeTypes(LHS, RHS: getObjCGCQualType(T: RHS, GCAttr: Qualifiers::Strong)); |
11052 | } |
11053 | if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) { |
11054 | return mergeTypes(LHS: getObjCGCQualType(T: LHS, GCAttr: Qualifiers::Strong), RHS); |
11055 | } |
11056 | return {}; |
11057 | } |
11058 | |
11059 | // Okay, qualifiers are equal. |
11060 | |
11061 | Type::TypeClass LHSClass = LHSCan->getTypeClass(); |
11062 | Type::TypeClass RHSClass = RHSCan->getTypeClass(); |
11063 | |
11064 | // We want to consider the two function types to be the same for these |
11065 | // comparisons, just force one to the other. |
11066 | if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; |
11067 | if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; |
11068 | |
11069 | // Same as above for arrays |
11070 | if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) |
11071 | LHSClass = Type::ConstantArray; |
11072 | if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) |
11073 | RHSClass = Type::ConstantArray; |
11074 | |
11075 | // ObjCInterfaces are just specialized ObjCObjects. |
11076 | if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject; |
11077 | if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject; |
11078 | |
11079 | // Canonicalize ExtVector -> Vector. |
11080 | if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; |
11081 | if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; |
11082 | |
11083 | // If the canonical type classes don't match. |
11084 | if (LHSClass != RHSClass) { |
11085 | // Note that we only have special rules for turning block enum |
11086 | // returns into block int returns, not vice-versa. |
11087 | if (const auto *ETy = LHS->getAs<EnumType>()) { |
11088 | return mergeEnumWithInteger(Context&: *this, ET: ETy, other: RHS, isBlockReturnType: false); |
11089 | } |
11090 | if (const EnumType* ETy = RHS->getAs<EnumType>()) { |
11091 | return mergeEnumWithInteger(Context&: *this, ET: ETy, other: LHS, isBlockReturnType: BlockReturnType); |
11092 | } |
11093 | // allow block pointer type to match an 'id' type. |
11094 | if (OfBlockPointer && !BlockReturnType) { |
11095 | if (LHS->isObjCIdType() && RHS->isBlockPointerType()) |
11096 | return LHS; |
11097 | if (RHS->isObjCIdType() && LHS->isBlockPointerType()) |
11098 | return RHS; |
11099 | } |
11100 | // Allow __auto_type to match anything; it merges to the type with more |
11101 | // information. |
11102 | if (const auto *AT = LHS->getAs<AutoType>()) { |
11103 | if (!AT->isDeduced() && AT->isGNUAutoType()) |
11104 | return RHS; |
11105 | } |
11106 | if (const auto *AT = RHS->getAs<AutoType>()) { |
11107 | if (!AT->isDeduced() && AT->isGNUAutoType()) |
11108 | return LHS; |
11109 | } |
11110 | return {}; |
11111 | } |
11112 | |
11113 | // The canonical type classes match. |
11114 | switch (LHSClass) { |
11115 | #define TYPE(Class, Base) |
11116 | #define ABSTRACT_TYPE(Class, Base) |
11117 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
11118 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
11119 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
11120 | #include "clang/AST/TypeNodes.inc" |
11121 | llvm_unreachable("Non-canonical and dependent types shouldn't get here" ); |
11122 | |
11123 | case Type::Auto: |
11124 | case Type::DeducedTemplateSpecialization: |
11125 | case Type::LValueReference: |
11126 | case Type::RValueReference: |
11127 | case Type::MemberPointer: |
11128 | llvm_unreachable("C++ should never be in mergeTypes" ); |
11129 | |
11130 | case Type::ObjCInterface: |
11131 | case Type::IncompleteArray: |
11132 | case Type::VariableArray: |
11133 | case Type::FunctionProto: |
11134 | case Type::ExtVector: |
11135 | llvm_unreachable("Types are eliminated above" ); |
11136 | |
11137 | case Type::Pointer: |
11138 | { |
11139 | // Merge two pointer types, while trying to preserve typedef info |
11140 | QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType(); |
11141 | QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType(); |
11142 | if (Unqualified) { |
11143 | LHSPointee = LHSPointee.getUnqualifiedType(); |
11144 | RHSPointee = RHSPointee.getUnqualifiedType(); |
11145 | } |
11146 | QualType ResultType = mergeTypes(LHS: LHSPointee, RHS: RHSPointee, OfBlockPointer: false, |
11147 | Unqualified); |
11148 | if (ResultType.isNull()) |
11149 | return {}; |
11150 | if (getCanonicalType(T: LHSPointee) == getCanonicalType(T: ResultType)) |
11151 | return LHS; |
11152 | if (getCanonicalType(T: RHSPointee) == getCanonicalType(T: ResultType)) |
11153 | return RHS; |
11154 | return getPointerType(T: ResultType); |
11155 | } |
11156 | case Type::BlockPointer: |
11157 | { |
11158 | // Merge two block pointer types, while trying to preserve typedef info |
11159 | QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType(); |
11160 | QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType(); |
11161 | if (Unqualified) { |
11162 | LHSPointee = LHSPointee.getUnqualifiedType(); |
11163 | RHSPointee = RHSPointee.getUnqualifiedType(); |
11164 | } |
11165 | if (getLangOpts().OpenCL) { |
11166 | Qualifiers LHSPteeQual = LHSPointee.getQualifiers(); |
11167 | Qualifiers RHSPteeQual = RHSPointee.getQualifiers(); |
11168 | // Blocks can't be an expression in a ternary operator (OpenCL v2.0 |
11169 | // 6.12.5) thus the following check is asymmetric. |
11170 | if (!LHSPteeQual.isAddressSpaceSupersetOf(other: RHSPteeQual)) |
11171 | return {}; |
11172 | LHSPteeQual.removeAddressSpace(); |
11173 | RHSPteeQual.removeAddressSpace(); |
11174 | LHSPointee = |
11175 | QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue()); |
11176 | RHSPointee = |
11177 | QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue()); |
11178 | } |
11179 | QualType ResultType = mergeTypes(LHS: LHSPointee, RHS: RHSPointee, OfBlockPointer, |
11180 | Unqualified); |
11181 | if (ResultType.isNull()) |
11182 | return {}; |
11183 | if (getCanonicalType(T: LHSPointee) == getCanonicalType(T: ResultType)) |
11184 | return LHS; |
11185 | if (getCanonicalType(T: RHSPointee) == getCanonicalType(T: ResultType)) |
11186 | return RHS; |
11187 | return getBlockPointerType(T: ResultType); |
11188 | } |
11189 | case Type::Atomic: |
11190 | { |
11191 | // Merge two pointer types, while trying to preserve typedef info |
11192 | QualType LHSValue = LHS->castAs<AtomicType>()->getValueType(); |
11193 | QualType RHSValue = RHS->castAs<AtomicType>()->getValueType(); |
11194 | if (Unqualified) { |
11195 | LHSValue = LHSValue.getUnqualifiedType(); |
11196 | RHSValue = RHSValue.getUnqualifiedType(); |
11197 | } |
11198 | QualType ResultType = mergeTypes(LHS: LHSValue, RHS: RHSValue, OfBlockPointer: false, |
11199 | Unqualified); |
11200 | if (ResultType.isNull()) |
11201 | return {}; |
11202 | if (getCanonicalType(T: LHSValue) == getCanonicalType(T: ResultType)) |
11203 | return LHS; |
11204 | if (getCanonicalType(T: RHSValue) == getCanonicalType(T: ResultType)) |
11205 | return RHS; |
11206 | return getAtomicType(T: ResultType); |
11207 | } |
11208 | case Type::ConstantArray: |
11209 | { |
11210 | const ConstantArrayType* LCAT = getAsConstantArrayType(T: LHS); |
11211 | const ConstantArrayType* RCAT = getAsConstantArrayType(T: RHS); |
11212 | if (LCAT && RCAT && RCAT->getZExtSize() != LCAT->getZExtSize()) |
11213 | return {}; |
11214 | |
11215 | QualType LHSElem = getAsArrayType(T: LHS)->getElementType(); |
11216 | QualType RHSElem = getAsArrayType(T: RHS)->getElementType(); |
11217 | if (Unqualified) { |
11218 | LHSElem = LHSElem.getUnqualifiedType(); |
11219 | RHSElem = RHSElem.getUnqualifiedType(); |
11220 | } |
11221 | |
11222 | QualType ResultType = mergeTypes(LHS: LHSElem, RHS: RHSElem, OfBlockPointer: false, Unqualified); |
11223 | if (ResultType.isNull()) |
11224 | return {}; |
11225 | |
11226 | const VariableArrayType* LVAT = getAsVariableArrayType(T: LHS); |
11227 | const VariableArrayType* RVAT = getAsVariableArrayType(T: RHS); |
11228 | |
11229 | // If either side is a variable array, and both are complete, check whether |
11230 | // the current dimension is definite. |
11231 | if (LVAT || RVAT) { |
11232 | auto SizeFetch = [this](const VariableArrayType* VAT, |
11233 | const ConstantArrayType* CAT) |
11234 | -> std::pair<bool,llvm::APInt> { |
11235 | if (VAT) { |
11236 | std::optional<llvm::APSInt> TheInt; |
11237 | Expr *E = VAT->getSizeExpr(); |
11238 | if (E && (TheInt = E->getIntegerConstantExpr(Ctx: *this))) |
11239 | return std::make_pair(x: true, y&: *TheInt); |
11240 | return std::make_pair(x: false, y: llvm::APSInt()); |
11241 | } |
11242 | if (CAT) |
11243 | return std::make_pair(x: true, y: CAT->getSize()); |
11244 | return std::make_pair(x: false, y: llvm::APInt()); |
11245 | }; |
11246 | |
11247 | bool HaveLSize, HaveRSize; |
11248 | llvm::APInt LSize, RSize; |
11249 | std::tie(args&: HaveLSize, args&: LSize) = SizeFetch(LVAT, LCAT); |
11250 | std::tie(args&: HaveRSize, args&: RSize) = SizeFetch(RVAT, RCAT); |
11251 | if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(I1: LSize, I2: RSize)) |
11252 | return {}; // Definite, but unequal, array dimension |
11253 | } |
11254 | |
11255 | if (LCAT && getCanonicalType(T: LHSElem) == getCanonicalType(T: ResultType)) |
11256 | return LHS; |
11257 | if (RCAT && getCanonicalType(T: RHSElem) == getCanonicalType(T: ResultType)) |
11258 | return RHS; |
11259 | if (LCAT) |
11260 | return getConstantArrayType(EltTy: ResultType, ArySizeIn: LCAT->getSize(), |
11261 | SizeExpr: LCAT->getSizeExpr(), ASM: ArraySizeModifier(), IndexTypeQuals: 0); |
11262 | if (RCAT) |
11263 | return getConstantArrayType(EltTy: ResultType, ArySizeIn: RCAT->getSize(), |
11264 | SizeExpr: RCAT->getSizeExpr(), ASM: ArraySizeModifier(), IndexTypeQuals: 0); |
11265 | if (LVAT && getCanonicalType(T: LHSElem) == getCanonicalType(T: ResultType)) |
11266 | return LHS; |
11267 | if (RVAT && getCanonicalType(T: RHSElem) == getCanonicalType(T: ResultType)) |
11268 | return RHS; |
11269 | if (LVAT) { |
11270 | // FIXME: This isn't correct! But tricky to implement because |
11271 | // the array's size has to be the size of LHS, but the type |
11272 | // has to be different. |
11273 | return LHS; |
11274 | } |
11275 | if (RVAT) { |
11276 | // FIXME: This isn't correct! But tricky to implement because |
11277 | // the array's size has to be the size of RHS, but the type |
11278 | // has to be different. |
11279 | return RHS; |
11280 | } |
11281 | if (getCanonicalType(T: LHSElem) == getCanonicalType(T: ResultType)) return LHS; |
11282 | if (getCanonicalType(T: RHSElem) == getCanonicalType(T: ResultType)) return RHS; |
11283 | return getIncompleteArrayType(elementType: ResultType, ASM: ArraySizeModifier(), elementTypeQuals: 0); |
11284 | } |
11285 | case Type::FunctionNoProto: |
11286 | return mergeFunctionTypes(lhs: LHS, rhs: RHS, OfBlockPointer, Unqualified, |
11287 | /*AllowCXX=*/false, IsConditionalOperator); |
11288 | case Type::Record: |
11289 | case Type::Enum: |
11290 | return {}; |
11291 | case Type::Builtin: |
11292 | // Only exactly equal builtin types are compatible, which is tested above. |
11293 | return {}; |
11294 | case Type::Complex: |
11295 | // Distinct complex types are incompatible. |
11296 | return {}; |
11297 | case Type::Vector: |
11298 | // FIXME: The merged type should be an ExtVector! |
11299 | if (areCompatVectorTypes(LHS: LHSCan->castAs<VectorType>(), |
11300 | RHS: RHSCan->castAs<VectorType>())) |
11301 | return LHS; |
11302 | return {}; |
11303 | case Type::ConstantMatrix: |
11304 | if (areCompatMatrixTypes(LHS: LHSCan->castAs<ConstantMatrixType>(), |
11305 | RHS: RHSCan->castAs<ConstantMatrixType>())) |
11306 | return LHS; |
11307 | return {}; |
11308 | case Type::ObjCObject: { |
11309 | // Check if the types are assignment compatible. |
11310 | // FIXME: This should be type compatibility, e.g. whether |
11311 | // "LHS x; RHS x;" at global scope is legal. |
11312 | if (canAssignObjCInterfaces(LHS: LHS->castAs<ObjCObjectType>(), |
11313 | RHS: RHS->castAs<ObjCObjectType>())) |
11314 | return LHS; |
11315 | return {}; |
11316 | } |
11317 | case Type::ObjCObjectPointer: |
11318 | if (OfBlockPointer) { |
11319 | if (canAssignObjCInterfacesInBlockPointer( |
11320 | LHSOPT: LHS->castAs<ObjCObjectPointerType>(), |
11321 | RHSOPT: RHS->castAs<ObjCObjectPointerType>(), BlockReturnType)) |
11322 | return LHS; |
11323 | return {}; |
11324 | } |
11325 | if (canAssignObjCInterfaces(LHSOPT: LHS->castAs<ObjCObjectPointerType>(), |
11326 | RHSOPT: RHS->castAs<ObjCObjectPointerType>())) |
11327 | return LHS; |
11328 | return {}; |
11329 | case Type::Pipe: |
11330 | assert(LHS != RHS && |
11331 | "Equivalent pipe types should have already been handled!" ); |
11332 | return {}; |
11333 | case Type::ArrayParameter: |
11334 | assert(LHS != RHS && |
11335 | "Equivalent ArrayParameter types should have already been handled!" ); |
11336 | return {}; |
11337 | case Type::BitInt: { |
11338 | // Merge two bit-precise int types, while trying to preserve typedef info. |
11339 | bool LHSUnsigned = LHS->castAs<BitIntType>()->isUnsigned(); |
11340 | bool RHSUnsigned = RHS->castAs<BitIntType>()->isUnsigned(); |
11341 | unsigned LHSBits = LHS->castAs<BitIntType>()->getNumBits(); |
11342 | unsigned RHSBits = RHS->castAs<BitIntType>()->getNumBits(); |
11343 | |
11344 | // Like unsigned/int, shouldn't have a type if they don't match. |
11345 | if (LHSUnsigned != RHSUnsigned) |
11346 | return {}; |
11347 | |
11348 | if (LHSBits != RHSBits) |
11349 | return {}; |
11350 | return LHS; |
11351 | } |
11352 | } |
11353 | |
11354 | llvm_unreachable("Invalid Type::Class!" ); |
11355 | } |
11356 | |
11357 | bool ASTContext::mergeExtParameterInfo( |
11358 | const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType, |
11359 | bool &CanUseFirst, bool &CanUseSecond, |
11360 | SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) { |
11361 | assert(NewParamInfos.empty() && "param info list not empty" ); |
11362 | CanUseFirst = CanUseSecond = true; |
11363 | bool FirstHasInfo = FirstFnType->hasExtParameterInfos(); |
11364 | bool SecondHasInfo = SecondFnType->hasExtParameterInfos(); |
11365 | |
11366 | // Fast path: if the first type doesn't have ext parameter infos, |
11367 | // we match if and only if the second type also doesn't have them. |
11368 | if (!FirstHasInfo && !SecondHasInfo) |
11369 | return true; |
11370 | |
11371 | bool NeedParamInfo = false; |
11372 | size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size() |
11373 | : SecondFnType->getExtParameterInfos().size(); |
11374 | |
11375 | for (size_t I = 0; I < E; ++I) { |
11376 | FunctionProtoType::ExtParameterInfo FirstParam, SecondParam; |
11377 | if (FirstHasInfo) |
11378 | FirstParam = FirstFnType->getExtParameterInfo(I); |
11379 | if (SecondHasInfo) |
11380 | SecondParam = SecondFnType->getExtParameterInfo(I); |
11381 | |
11382 | // Cannot merge unless everything except the noescape flag matches. |
11383 | if (FirstParam.withIsNoEscape(NoEscape: false) != SecondParam.withIsNoEscape(NoEscape: false)) |
11384 | return false; |
11385 | |
11386 | bool FirstNoEscape = FirstParam.isNoEscape(); |
11387 | bool SecondNoEscape = SecondParam.isNoEscape(); |
11388 | bool IsNoEscape = FirstNoEscape && SecondNoEscape; |
11389 | NewParamInfos.push_back(Elt: FirstParam.withIsNoEscape(NoEscape: IsNoEscape)); |
11390 | if (NewParamInfos.back().getOpaqueValue()) |
11391 | NeedParamInfo = true; |
11392 | if (FirstNoEscape != IsNoEscape) |
11393 | CanUseFirst = false; |
11394 | if (SecondNoEscape != IsNoEscape) |
11395 | CanUseSecond = false; |
11396 | } |
11397 | |
11398 | if (!NeedParamInfo) |
11399 | NewParamInfos.clear(); |
11400 | |
11401 | return true; |
11402 | } |
11403 | |
11404 | void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) { |
11405 | ObjCLayouts[CD] = nullptr; |
11406 | } |
11407 | |
11408 | /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and |
11409 | /// 'RHS' attributes and returns the merged version; including for function |
11410 | /// return types. |
11411 | QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) { |
11412 | QualType LHSCan = getCanonicalType(T: LHS), |
11413 | RHSCan = getCanonicalType(T: RHS); |
11414 | // If two types are identical, they are compatible. |
11415 | if (LHSCan == RHSCan) |
11416 | return LHS; |
11417 | if (RHSCan->isFunctionType()) { |
11418 | if (!LHSCan->isFunctionType()) |
11419 | return {}; |
11420 | QualType OldReturnType = |
11421 | cast<FunctionType>(Val: RHSCan.getTypePtr())->getReturnType(); |
11422 | QualType NewReturnType = |
11423 | cast<FunctionType>(Val: LHSCan.getTypePtr())->getReturnType(); |
11424 | QualType ResReturnType = |
11425 | mergeObjCGCQualifiers(LHS: NewReturnType, RHS: OldReturnType); |
11426 | if (ResReturnType.isNull()) |
11427 | return {}; |
11428 | if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) { |
11429 | // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo(); |
11430 | // In either case, use OldReturnType to build the new function type. |
11431 | const auto *F = LHS->castAs<FunctionType>(); |
11432 | if (const auto *FPT = cast<FunctionProtoType>(Val: F)) { |
11433 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
11434 | EPI.ExtInfo = getFunctionExtInfo(t: LHS); |
11435 | QualType ResultType = |
11436 | getFunctionType(ResultTy: OldReturnType, Args: FPT->getParamTypes(), EPI); |
11437 | return ResultType; |
11438 | } |
11439 | } |
11440 | return {}; |
11441 | } |
11442 | |
11443 | // If the qualifiers are different, the types can still be merged. |
11444 | Qualifiers LQuals = LHSCan.getLocalQualifiers(); |
11445 | Qualifiers RQuals = RHSCan.getLocalQualifiers(); |
11446 | if (LQuals != RQuals) { |
11447 | // If any of these qualifiers are different, we have a type mismatch. |
11448 | if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || |
11449 | LQuals.getAddressSpace() != RQuals.getAddressSpace()) |
11450 | return {}; |
11451 | |
11452 | // Exactly one GC qualifier difference is allowed: __strong is |
11453 | // okay if the other type has no GC qualifier but is an Objective |
11454 | // C object pointer (i.e. implicitly strong by default). We fix |
11455 | // this by pretending that the unqualified type was actually |
11456 | // qualified __strong. |
11457 | Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); |
11458 | Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); |
11459 | assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements" ); |
11460 | |
11461 | if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) |
11462 | return {}; |
11463 | |
11464 | if (GC_L == Qualifiers::Strong) |
11465 | return LHS; |
11466 | if (GC_R == Qualifiers::Strong) |
11467 | return RHS; |
11468 | return {}; |
11469 | } |
11470 | |
11471 | if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) { |
11472 | QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType(); |
11473 | QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType(); |
11474 | QualType ResQT = mergeObjCGCQualifiers(LHS: LHSBaseQT, RHS: RHSBaseQT); |
11475 | if (ResQT == LHSBaseQT) |
11476 | return LHS; |
11477 | if (ResQT == RHSBaseQT) |
11478 | return RHS; |
11479 | } |
11480 | return {}; |
11481 | } |
11482 | |
11483 | //===----------------------------------------------------------------------===// |
11484 | // Integer Predicates |
11485 | //===----------------------------------------------------------------------===// |
11486 | |
11487 | unsigned ASTContext::getIntWidth(QualType T) const { |
11488 | if (const auto *ET = T->getAs<EnumType>()) |
11489 | T = ET->getDecl()->getIntegerType(); |
11490 | if (T->isBooleanType()) |
11491 | return 1; |
11492 | if (const auto *EIT = T->getAs<BitIntType>()) |
11493 | return EIT->getNumBits(); |
11494 | // For builtin types, just use the standard type sizing method |
11495 | return (unsigned)getTypeSize(T); |
11496 | } |
11497 | |
11498 | QualType ASTContext::getCorrespondingUnsignedType(QualType T) const { |
11499 | assert((T->hasIntegerRepresentation() || T->isEnumeralType() || |
11500 | T->isFixedPointType()) && |
11501 | "Unexpected type" ); |
11502 | |
11503 | // Turn <4 x signed int> -> <4 x unsigned int> |
11504 | if (const auto *VTy = T->getAs<VectorType>()) |
11505 | return getVectorType(vecType: getCorrespondingUnsignedType(T: VTy->getElementType()), |
11506 | NumElts: VTy->getNumElements(), VecKind: VTy->getVectorKind()); |
11507 | |
11508 | // For _BitInt, return an unsigned _BitInt with same width. |
11509 | if (const auto *EITy = T->getAs<BitIntType>()) |
11510 | return getBitIntType(/*Unsigned=*/IsUnsigned: true, NumBits: EITy->getNumBits()); |
11511 | |
11512 | // For enums, get the underlying integer type of the enum, and let the general |
11513 | // integer type signchanging code handle it. |
11514 | if (const auto *ETy = T->getAs<EnumType>()) |
11515 | T = ETy->getDecl()->getIntegerType(); |
11516 | |
11517 | switch (T->castAs<BuiltinType>()->getKind()) { |
11518 | case BuiltinType::Char_U: |
11519 | // Plain `char` is mapped to `unsigned char` even if it's already unsigned |
11520 | case BuiltinType::Char_S: |
11521 | case BuiltinType::SChar: |
11522 | case BuiltinType::Char8: |
11523 | return UnsignedCharTy; |
11524 | case BuiltinType::Short: |
11525 | return UnsignedShortTy; |
11526 | case BuiltinType::Int: |
11527 | return UnsignedIntTy; |
11528 | case BuiltinType::Long: |
11529 | return UnsignedLongTy; |
11530 | case BuiltinType::LongLong: |
11531 | return UnsignedLongLongTy; |
11532 | case BuiltinType::Int128: |
11533 | return UnsignedInt128Ty; |
11534 | // wchar_t is special. It is either signed or not, but when it's signed, |
11535 | // there's no matching "unsigned wchar_t". Therefore we return the unsigned |
11536 | // version of its underlying type instead. |
11537 | case BuiltinType::WChar_S: |
11538 | return getUnsignedWCharType(); |
11539 | |
11540 | case BuiltinType::ShortAccum: |
11541 | return UnsignedShortAccumTy; |
11542 | case BuiltinType::Accum: |
11543 | return UnsignedAccumTy; |
11544 | case BuiltinType::LongAccum: |
11545 | return UnsignedLongAccumTy; |
11546 | case BuiltinType::SatShortAccum: |
11547 | return SatUnsignedShortAccumTy; |
11548 | case BuiltinType::SatAccum: |
11549 | return SatUnsignedAccumTy; |
11550 | case BuiltinType::SatLongAccum: |
11551 | return SatUnsignedLongAccumTy; |
11552 | case BuiltinType::ShortFract: |
11553 | return UnsignedShortFractTy; |
11554 | case BuiltinType::Fract: |
11555 | return UnsignedFractTy; |
11556 | case BuiltinType::LongFract: |
11557 | return UnsignedLongFractTy; |
11558 | case BuiltinType::SatShortFract: |
11559 | return SatUnsignedShortFractTy; |
11560 | case BuiltinType::SatFract: |
11561 | return SatUnsignedFractTy; |
11562 | case BuiltinType::SatLongFract: |
11563 | return SatUnsignedLongFractTy; |
11564 | default: |
11565 | assert((T->hasUnsignedIntegerRepresentation() || |
11566 | T->isUnsignedFixedPointType()) && |
11567 | "Unexpected signed integer or fixed point type" ); |
11568 | return T; |
11569 | } |
11570 | } |
11571 | |
11572 | QualType ASTContext::getCorrespondingSignedType(QualType T) const { |
11573 | assert((T->hasIntegerRepresentation() || T->isEnumeralType() || |
11574 | T->isFixedPointType()) && |
11575 | "Unexpected type" ); |
11576 | |
11577 | // Turn <4 x unsigned int> -> <4 x signed int> |
11578 | if (const auto *VTy = T->getAs<VectorType>()) |
11579 | return getVectorType(vecType: getCorrespondingSignedType(T: VTy->getElementType()), |
11580 | NumElts: VTy->getNumElements(), VecKind: VTy->getVectorKind()); |
11581 | |
11582 | // For _BitInt, return a signed _BitInt with same width. |
11583 | if (const auto *EITy = T->getAs<BitIntType>()) |
11584 | return getBitIntType(/*Unsigned=*/IsUnsigned: false, NumBits: EITy->getNumBits()); |
11585 | |
11586 | // For enums, get the underlying integer type of the enum, and let the general |
11587 | // integer type signchanging code handle it. |
11588 | if (const auto *ETy = T->getAs<EnumType>()) |
11589 | T = ETy->getDecl()->getIntegerType(); |
11590 | |
11591 | switch (T->castAs<BuiltinType>()->getKind()) { |
11592 | case BuiltinType::Char_S: |
11593 | // Plain `char` is mapped to `signed char` even if it's already signed |
11594 | case BuiltinType::Char_U: |
11595 | case BuiltinType::UChar: |
11596 | case BuiltinType::Char8: |
11597 | return SignedCharTy; |
11598 | case BuiltinType::UShort: |
11599 | return ShortTy; |
11600 | case BuiltinType::UInt: |
11601 | return IntTy; |
11602 | case BuiltinType::ULong: |
11603 | return LongTy; |
11604 | case BuiltinType::ULongLong: |
11605 | return LongLongTy; |
11606 | case BuiltinType::UInt128: |
11607 | return Int128Ty; |
11608 | // wchar_t is special. It is either unsigned or not, but when it's unsigned, |
11609 | // there's no matching "signed wchar_t". Therefore we return the signed |
11610 | // version of its underlying type instead. |
11611 | case BuiltinType::WChar_U: |
11612 | return getSignedWCharType(); |
11613 | |
11614 | case BuiltinType::UShortAccum: |
11615 | return ShortAccumTy; |
11616 | case BuiltinType::UAccum: |
11617 | return AccumTy; |
11618 | case BuiltinType::ULongAccum: |
11619 | return LongAccumTy; |
11620 | case BuiltinType::SatUShortAccum: |
11621 | return SatShortAccumTy; |
11622 | case BuiltinType::SatUAccum: |
11623 | return SatAccumTy; |
11624 | case BuiltinType::SatULongAccum: |
11625 | return SatLongAccumTy; |
11626 | case BuiltinType::UShortFract: |
11627 | return ShortFractTy; |
11628 | case BuiltinType::UFract: |
11629 | return FractTy; |
11630 | case BuiltinType::ULongFract: |
11631 | return LongFractTy; |
11632 | case BuiltinType::SatUShortFract: |
11633 | return SatShortFractTy; |
11634 | case BuiltinType::SatUFract: |
11635 | return SatFractTy; |
11636 | case BuiltinType::SatULongFract: |
11637 | return SatLongFractTy; |
11638 | default: |
11639 | assert( |
11640 | (T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) && |
11641 | "Unexpected signed integer or fixed point type" ); |
11642 | return T; |
11643 | } |
11644 | } |
11645 | |
11646 | ASTMutationListener::~ASTMutationListener() = default; |
11647 | |
11648 | void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD, |
11649 | QualType ReturnType) {} |
11650 | |
11651 | //===----------------------------------------------------------------------===// |
11652 | // Builtin Type Computation |
11653 | //===----------------------------------------------------------------------===// |
11654 | |
11655 | /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the |
11656 | /// pointer over the consumed characters. This returns the resultant type. If |
11657 | /// AllowTypeModifiers is false then modifier like * are not parsed, just basic |
11658 | /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of |
11659 | /// a vector of "i*". |
11660 | /// |
11661 | /// RequiresICE is filled in on return to indicate whether the value is required |
11662 | /// to be an Integer Constant Expression. |
11663 | static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context, |
11664 | ASTContext::GetBuiltinTypeError &Error, |
11665 | bool &RequiresICE, |
11666 | bool AllowTypeModifiers) { |
11667 | // Modifiers. |
11668 | int HowLong = 0; |
11669 | bool Signed = false, Unsigned = false; |
11670 | RequiresICE = false; |
11671 | |
11672 | // Read the prefixed modifiers first. |
11673 | bool Done = false; |
11674 | #ifndef NDEBUG |
11675 | bool IsSpecial = false; |
11676 | #endif |
11677 | while (!Done) { |
11678 | switch (*Str++) { |
11679 | default: Done = true; --Str; break; |
11680 | case 'I': |
11681 | RequiresICE = true; |
11682 | break; |
11683 | case 'S': |
11684 | assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!" ); |
11685 | assert(!Signed && "Can't use 'S' modifier multiple times!" ); |
11686 | Signed = true; |
11687 | break; |
11688 | case 'U': |
11689 | assert(!Signed && "Can't use both 'S' and 'U' modifiers!" ); |
11690 | assert(!Unsigned && "Can't use 'U' modifier multiple times!" ); |
11691 | Unsigned = true; |
11692 | break; |
11693 | case 'L': |
11694 | assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers" ); |
11695 | assert(HowLong <= 2 && "Can't have LLLL modifier" ); |
11696 | ++HowLong; |
11697 | break; |
11698 | case 'N': |
11699 | // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise. |
11700 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!" ); |
11701 | assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!" ); |
11702 | #ifndef NDEBUG |
11703 | IsSpecial = true; |
11704 | #endif |
11705 | if (Context.getTargetInfo().getLongWidth() == 32) |
11706 | ++HowLong; |
11707 | break; |
11708 | case 'W': |
11709 | // This modifier represents int64 type. |
11710 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!" ); |
11711 | assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!" ); |
11712 | #ifndef NDEBUG |
11713 | IsSpecial = true; |
11714 | #endif |
11715 | switch (Context.getTargetInfo().getInt64Type()) { |
11716 | default: |
11717 | llvm_unreachable("Unexpected integer type" ); |
11718 | case TargetInfo::SignedLong: |
11719 | HowLong = 1; |
11720 | break; |
11721 | case TargetInfo::SignedLongLong: |
11722 | HowLong = 2; |
11723 | break; |
11724 | } |
11725 | break; |
11726 | case 'Z': |
11727 | // This modifier represents int32 type. |
11728 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!" ); |
11729 | assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!" ); |
11730 | #ifndef NDEBUG |
11731 | IsSpecial = true; |
11732 | #endif |
11733 | switch (Context.getTargetInfo().getIntTypeByWidth(BitWidth: 32, IsSigned: true)) { |
11734 | default: |
11735 | llvm_unreachable("Unexpected integer type" ); |
11736 | case TargetInfo::SignedInt: |
11737 | HowLong = 0; |
11738 | break; |
11739 | case TargetInfo::SignedLong: |
11740 | HowLong = 1; |
11741 | break; |
11742 | case TargetInfo::SignedLongLong: |
11743 | HowLong = 2; |
11744 | break; |
11745 | } |
11746 | break; |
11747 | case 'O': |
11748 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!" ); |
11749 | assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!" ); |
11750 | #ifndef NDEBUG |
11751 | IsSpecial = true; |
11752 | #endif |
11753 | if (Context.getLangOpts().OpenCL) |
11754 | HowLong = 1; |
11755 | else |
11756 | HowLong = 2; |
11757 | break; |
11758 | } |
11759 | } |
11760 | |
11761 | QualType Type; |
11762 | |
11763 | // Read the base type. |
11764 | switch (*Str++) { |
11765 | default: llvm_unreachable("Unknown builtin type letter!" ); |
11766 | case 'x': |
11767 | assert(HowLong == 0 && !Signed && !Unsigned && |
11768 | "Bad modifiers used with 'x'!" ); |
11769 | Type = Context.Float16Ty; |
11770 | break; |
11771 | case 'y': |
11772 | assert(HowLong == 0 && !Signed && !Unsigned && |
11773 | "Bad modifiers used with 'y'!" ); |
11774 | Type = Context.BFloat16Ty; |
11775 | break; |
11776 | case 'v': |
11777 | assert(HowLong == 0 && !Signed && !Unsigned && |
11778 | "Bad modifiers used with 'v'!" ); |
11779 | Type = Context.VoidTy; |
11780 | break; |
11781 | case 'h': |
11782 | assert(HowLong == 0 && !Signed && !Unsigned && |
11783 | "Bad modifiers used with 'h'!" ); |
11784 | Type = Context.HalfTy; |
11785 | break; |
11786 | case 'f': |
11787 | assert(HowLong == 0 && !Signed && !Unsigned && |
11788 | "Bad modifiers used with 'f'!" ); |
11789 | Type = Context.FloatTy; |
11790 | break; |
11791 | case 'd': |
11792 | assert(HowLong < 3 && !Signed && !Unsigned && |
11793 | "Bad modifiers used with 'd'!" ); |
11794 | if (HowLong == 1) |
11795 | Type = Context.LongDoubleTy; |
11796 | else if (HowLong == 2) |
11797 | Type = Context.Float128Ty; |
11798 | else |
11799 | Type = Context.DoubleTy; |
11800 | break; |
11801 | case 's': |
11802 | assert(HowLong == 0 && "Bad modifiers used with 's'!" ); |
11803 | if (Unsigned) |
11804 | Type = Context.UnsignedShortTy; |
11805 | else |
11806 | Type = Context.ShortTy; |
11807 | break; |
11808 | case 'i': |
11809 | if (HowLong == 3) |
11810 | Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty; |
11811 | else if (HowLong == 2) |
11812 | Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy; |
11813 | else if (HowLong == 1) |
11814 | Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy; |
11815 | else |
11816 | Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy; |
11817 | break; |
11818 | case 'c': |
11819 | assert(HowLong == 0 && "Bad modifiers used with 'c'!" ); |
11820 | if (Signed) |
11821 | Type = Context.SignedCharTy; |
11822 | else if (Unsigned) |
11823 | Type = Context.UnsignedCharTy; |
11824 | else |
11825 | Type = Context.CharTy; |
11826 | break; |
11827 | case 'b': // boolean |
11828 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!" ); |
11829 | Type = Context.BoolTy; |
11830 | break; |
11831 | case 'z': // size_t. |
11832 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!" ); |
11833 | Type = Context.getSizeType(); |
11834 | break; |
11835 | case 'w': // wchar_t. |
11836 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!" ); |
11837 | Type = Context.getWideCharType(); |
11838 | break; |
11839 | case 'F': |
11840 | Type = Context.getCFConstantStringType(); |
11841 | break; |
11842 | case 'G': |
11843 | Type = Context.getObjCIdType(); |
11844 | break; |
11845 | case 'H': |
11846 | Type = Context.getObjCSelType(); |
11847 | break; |
11848 | case 'M': |
11849 | Type = Context.getObjCSuperType(); |
11850 | break; |
11851 | case 'a': |
11852 | Type = Context.getBuiltinVaListType(); |
11853 | assert(!Type.isNull() && "builtin va list type not initialized!" ); |
11854 | break; |
11855 | case 'A': |
11856 | // This is a "reference" to a va_list; however, what exactly |
11857 | // this means depends on how va_list is defined. There are two |
11858 | // different kinds of va_list: ones passed by value, and ones |
11859 | // passed by reference. An example of a by-value va_list is |
11860 | // x86, where va_list is a char*. An example of by-ref va_list |
11861 | // is x86-64, where va_list is a __va_list_tag[1]. For x86, |
11862 | // we want this argument to be a char*&; for x86-64, we want |
11863 | // it to be a __va_list_tag*. |
11864 | Type = Context.getBuiltinVaListType(); |
11865 | assert(!Type.isNull() && "builtin va list type not initialized!" ); |
11866 | if (Type->isArrayType()) |
11867 | Type = Context.getArrayDecayedType(Ty: Type); |
11868 | else |
11869 | Type = Context.getLValueReferenceType(T: Type); |
11870 | break; |
11871 | case 'q': { |
11872 | char *End; |
11873 | unsigned NumElements = strtoul(nptr: Str, endptr: &End, base: 10); |
11874 | assert(End != Str && "Missing vector size" ); |
11875 | Str = End; |
11876 | |
11877 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, |
11878 | RequiresICE, AllowTypeModifiers: false); |
11879 | assert(!RequiresICE && "Can't require vector ICE" ); |
11880 | |
11881 | Type = Context.getScalableVectorType(EltTy: ElementType, NumElts: NumElements); |
11882 | break; |
11883 | } |
11884 | case 'Q': { |
11885 | switch (*Str++) { |
11886 | case 'a': { |
11887 | Type = Context.SveCountTy; |
11888 | break; |
11889 | } |
11890 | case 'b': { |
11891 | Type = Context.AMDGPUBufferRsrcTy; |
11892 | break; |
11893 | } |
11894 | default: |
11895 | llvm_unreachable("Unexpected target builtin type" ); |
11896 | } |
11897 | break; |
11898 | } |
11899 | case 'V': { |
11900 | char *End; |
11901 | unsigned NumElements = strtoul(nptr: Str, endptr: &End, base: 10); |
11902 | assert(End != Str && "Missing vector size" ); |
11903 | Str = End; |
11904 | |
11905 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, |
11906 | RequiresICE, AllowTypeModifiers: false); |
11907 | assert(!RequiresICE && "Can't require vector ICE" ); |
11908 | |
11909 | // TODO: No way to make AltiVec vectors in builtins yet. |
11910 | Type = Context.getVectorType(vecType: ElementType, NumElts: NumElements, VecKind: VectorKind::Generic); |
11911 | break; |
11912 | } |
11913 | case 'E': { |
11914 | char *End; |
11915 | |
11916 | unsigned NumElements = strtoul(nptr: Str, endptr: &End, base: 10); |
11917 | assert(End != Str && "Missing vector size" ); |
11918 | |
11919 | Str = End; |
11920 | |
11921 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, |
11922 | AllowTypeModifiers: false); |
11923 | Type = Context.getExtVectorType(vecType: ElementType, NumElts: NumElements); |
11924 | break; |
11925 | } |
11926 | case 'X': { |
11927 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, |
11928 | AllowTypeModifiers: false); |
11929 | assert(!RequiresICE && "Can't require complex ICE" ); |
11930 | Type = Context.getComplexType(T: ElementType); |
11931 | break; |
11932 | } |
11933 | case 'Y': |
11934 | Type = Context.getPointerDiffType(); |
11935 | break; |
11936 | case 'P': |
11937 | Type = Context.getFILEType(); |
11938 | if (Type.isNull()) { |
11939 | Error = ASTContext::GE_Missing_stdio; |
11940 | return {}; |
11941 | } |
11942 | break; |
11943 | case 'J': |
11944 | if (Signed) |
11945 | Type = Context.getsigjmp_bufType(); |
11946 | else |
11947 | Type = Context.getjmp_bufType(); |
11948 | |
11949 | if (Type.isNull()) { |
11950 | Error = ASTContext::GE_Missing_setjmp; |
11951 | return {}; |
11952 | } |
11953 | break; |
11954 | case 'K': |
11955 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!" ); |
11956 | Type = Context.getucontext_tType(); |
11957 | |
11958 | if (Type.isNull()) { |
11959 | Error = ASTContext::GE_Missing_ucontext; |
11960 | return {}; |
11961 | } |
11962 | break; |
11963 | case 'p': |
11964 | Type = Context.getProcessIDType(); |
11965 | break; |
11966 | } |
11967 | |
11968 | // If there are modifiers and if we're allowed to parse them, go for it. |
11969 | Done = !AllowTypeModifiers; |
11970 | while (!Done) { |
11971 | switch (char c = *Str++) { |
11972 | default: Done = true; --Str; break; |
11973 | case '*': |
11974 | case '&': { |
11975 | // Both pointers and references can have their pointee types |
11976 | // qualified with an address space. |
11977 | char *End; |
11978 | unsigned AddrSpace = strtoul(nptr: Str, endptr: &End, base: 10); |
11979 | if (End != Str) { |
11980 | // Note AddrSpace == 0 is not the same as an unspecified address space. |
11981 | Type = Context.getAddrSpaceQualType( |
11982 | T: Type, |
11983 | AddressSpace: Context.getLangASForBuiltinAddressSpace(AS: AddrSpace)); |
11984 | Str = End; |
11985 | } |
11986 | if (c == '*') |
11987 | Type = Context.getPointerType(T: Type); |
11988 | else |
11989 | Type = Context.getLValueReferenceType(T: Type); |
11990 | break; |
11991 | } |
11992 | // FIXME: There's no way to have a built-in with an rvalue ref arg. |
11993 | case 'C': |
11994 | Type = Type.withConst(); |
11995 | break; |
11996 | case 'D': |
11997 | Type = Context.getVolatileType(T: Type); |
11998 | break; |
11999 | case 'R': |
12000 | Type = Type.withRestrict(); |
12001 | break; |
12002 | } |
12003 | } |
12004 | |
12005 | assert((!RequiresICE || Type->isIntegralOrEnumerationType()) && |
12006 | "Integer constant 'I' type must be an integer" ); |
12007 | |
12008 | return Type; |
12009 | } |
12010 | |
12011 | // On some targets such as PowerPC, some of the builtins are defined with custom |
12012 | // type descriptors for target-dependent types. These descriptors are decoded in |
12013 | // other functions, but it may be useful to be able to fall back to default |
12014 | // descriptor decoding to define builtins mixing target-dependent and target- |
12015 | // independent types. This function allows decoding one type descriptor with |
12016 | // default decoding. |
12017 | QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context, |
12018 | GetBuiltinTypeError &Error, bool &RequireICE, |
12019 | bool AllowTypeModifiers) const { |
12020 | return DecodeTypeFromStr(Str, Context, Error, RequiresICE&: RequireICE, AllowTypeModifiers); |
12021 | } |
12022 | |
12023 | /// GetBuiltinType - Return the type for the specified builtin. |
12024 | QualType ASTContext::GetBuiltinType(unsigned Id, |
12025 | GetBuiltinTypeError &Error, |
12026 | unsigned *IntegerConstantArgs) const { |
12027 | const char *TypeStr = BuiltinInfo.getTypeString(ID: Id); |
12028 | if (TypeStr[0] == '\0') { |
12029 | Error = GE_Missing_type; |
12030 | return {}; |
12031 | } |
12032 | |
12033 | SmallVector<QualType, 8> ArgTypes; |
12034 | |
12035 | bool RequiresICE = false; |
12036 | Error = GE_None; |
12037 | QualType ResType = DecodeTypeFromStr(Str&: TypeStr, Context: *this, Error, |
12038 | RequiresICE, AllowTypeModifiers: true); |
12039 | if (Error != GE_None) |
12040 | return {}; |
12041 | |
12042 | assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE" ); |
12043 | |
12044 | while (TypeStr[0] && TypeStr[0] != '.') { |
12045 | QualType Ty = DecodeTypeFromStr(Str&: TypeStr, Context: *this, Error, RequiresICE, AllowTypeModifiers: true); |
12046 | if (Error != GE_None) |
12047 | return {}; |
12048 | |
12049 | // If this argument is required to be an IntegerConstantExpression and the |
12050 | // caller cares, fill in the bitmask we return. |
12051 | if (RequiresICE && IntegerConstantArgs) |
12052 | *IntegerConstantArgs |= 1 << ArgTypes.size(); |
12053 | |
12054 | // Do array -> pointer decay. The builtin should use the decayed type. |
12055 | if (Ty->isArrayType()) |
12056 | Ty = getArrayDecayedType(Ty); |
12057 | |
12058 | ArgTypes.push_back(Elt: Ty); |
12059 | } |
12060 | |
12061 | if (Id == Builtin::BI__GetExceptionInfo) |
12062 | return {}; |
12063 | |
12064 | assert((TypeStr[0] != '.' || TypeStr[1] == 0) && |
12065 | "'.' should only occur at end of builtin type list!" ); |
12066 | |
12067 | bool Variadic = (TypeStr[0] == '.'); |
12068 | |
12069 | FunctionType::ExtInfo EI(getDefaultCallingConvention( |
12070 | IsVariadic: Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); |
12071 | if (BuiltinInfo.isNoReturn(ID: Id)) EI = EI.withNoReturn(noReturn: true); |
12072 | |
12073 | |
12074 | // We really shouldn't be making a no-proto type here. |
12075 | if (ArgTypes.empty() && Variadic && !getLangOpts().requiresStrictPrototypes()) |
12076 | return getFunctionNoProtoType(ResultTy: ResType, Info: EI); |
12077 | |
12078 | FunctionProtoType::ExtProtoInfo EPI; |
12079 | EPI.ExtInfo = EI; |
12080 | EPI.Variadic = Variadic; |
12081 | if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(ID: Id)) |
12082 | EPI.ExceptionSpec.Type = |
12083 | getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; |
12084 | |
12085 | return getFunctionType(ResultTy: ResType, Args: ArgTypes, EPI); |
12086 | } |
12087 | |
12088 | static GVALinkage basicGVALinkageForFunction(const ASTContext &Context, |
12089 | const FunctionDecl *FD) { |
12090 | if (!FD->isExternallyVisible()) |
12091 | return GVA_Internal; |
12092 | |
12093 | // Non-user-provided functions get emitted as weak definitions with every |
12094 | // use, no matter whether they've been explicitly instantiated etc. |
12095 | if (!FD->isUserProvided()) |
12096 | return GVA_DiscardableODR; |
12097 | |
12098 | GVALinkage External; |
12099 | switch (FD->getTemplateSpecializationKind()) { |
12100 | case TSK_Undeclared: |
12101 | case TSK_ExplicitSpecialization: |
12102 | External = GVA_StrongExternal; |
12103 | break; |
12104 | |
12105 | case TSK_ExplicitInstantiationDefinition: |
12106 | return GVA_StrongODR; |
12107 | |
12108 | // C++11 [temp.explicit]p10: |
12109 | // [ Note: The intent is that an inline function that is the subject of |
12110 | // an explicit instantiation declaration will still be implicitly |
12111 | // instantiated when used so that the body can be considered for |
12112 | // inlining, but that no out-of-line copy of the inline function would be |
12113 | // generated in the translation unit. -- end note ] |
12114 | case TSK_ExplicitInstantiationDeclaration: |
12115 | return GVA_AvailableExternally; |
12116 | |
12117 | case TSK_ImplicitInstantiation: |
12118 | External = GVA_DiscardableODR; |
12119 | break; |
12120 | } |
12121 | |
12122 | if (!FD->isInlined()) |
12123 | return External; |
12124 | |
12125 | if ((!Context.getLangOpts().CPlusPlus && |
12126 | !Context.getTargetInfo().getCXXABI().isMicrosoft() && |
12127 | !FD->hasAttr<DLLExportAttr>()) || |
12128 | FD->hasAttr<GNUInlineAttr>()) { |
12129 | // FIXME: This doesn't match gcc's behavior for dllexport inline functions. |
12130 | |
12131 | // GNU or C99 inline semantics. Determine whether this symbol should be |
12132 | // externally visible. |
12133 | if (FD->isInlineDefinitionExternallyVisible()) |
12134 | return External; |
12135 | |
12136 | // C99 inline semantics, where the symbol is not externally visible. |
12137 | return GVA_AvailableExternally; |
12138 | } |
12139 | |
12140 | // Functions specified with extern and inline in -fms-compatibility mode |
12141 | // forcibly get emitted. While the body of the function cannot be later |
12142 | // replaced, the function definition cannot be discarded. |
12143 | if (FD->isMSExternInline()) |
12144 | return GVA_StrongODR; |
12145 | |
12146 | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && |
12147 | isa<CXXConstructorDecl>(Val: FD) && |
12148 | cast<CXXConstructorDecl>(Val: FD)->isInheritingConstructor()) |
12149 | // Our approach to inheriting constructors is fundamentally different from |
12150 | // that used by the MS ABI, so keep our inheriting constructor thunks |
12151 | // internal rather than trying to pick an unambiguous mangling for them. |
12152 | return GVA_Internal; |
12153 | |
12154 | return GVA_DiscardableODR; |
12155 | } |
12156 | |
12157 | static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context, |
12158 | const Decl *D, GVALinkage L) { |
12159 | // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx |
12160 | // dllexport/dllimport on inline functions. |
12161 | if (D->hasAttr<DLLImportAttr>()) { |
12162 | if (L == GVA_DiscardableODR || L == GVA_StrongODR) |
12163 | return GVA_AvailableExternally; |
12164 | } else if (D->hasAttr<DLLExportAttr>()) { |
12165 | if (L == GVA_DiscardableODR) |
12166 | return GVA_StrongODR; |
12167 | } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) { |
12168 | // Device-side functions with __global__ attribute must always be |
12169 | // visible externally so they can be launched from host. |
12170 | if (D->hasAttr<CUDAGlobalAttr>() && |
12171 | (L == GVA_DiscardableODR || L == GVA_Internal)) |
12172 | return GVA_StrongODR; |
12173 | // Single source offloading languages like CUDA/HIP need to be able to |
12174 | // access static device variables from host code of the same compilation |
12175 | // unit. This is done by externalizing the static variable with a shared |
12176 | // name between the host and device compilation which is the same for the |
12177 | // same compilation unit whereas different among different compilation |
12178 | // units. |
12179 | if (Context.shouldExternalize(D)) |
12180 | return GVA_StrongExternal; |
12181 | } |
12182 | return L; |
12183 | } |
12184 | |
12185 | /// Adjust the GVALinkage for a declaration based on what an external AST source |
12186 | /// knows about whether there can be other definitions of this declaration. |
12187 | static GVALinkage |
12188 | adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D, |
12189 | GVALinkage L) { |
12190 | ExternalASTSource *Source = Ctx.getExternalSource(); |
12191 | if (!Source) |
12192 | return L; |
12193 | |
12194 | switch (Source->hasExternalDefinitions(D)) { |
12195 | case ExternalASTSource::EK_Never: |
12196 | // Other translation units rely on us to provide the definition. |
12197 | if (L == GVA_DiscardableODR) |
12198 | return GVA_StrongODR; |
12199 | break; |
12200 | |
12201 | case ExternalASTSource::EK_Always: |
12202 | return GVA_AvailableExternally; |
12203 | |
12204 | case ExternalASTSource::EK_ReplyHazy: |
12205 | break; |
12206 | } |
12207 | return L; |
12208 | } |
12209 | |
12210 | GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const { |
12211 | return adjustGVALinkageForExternalDefinitionKind(Ctx: *this, D: FD, |
12212 | L: adjustGVALinkageForAttributes(Context: *this, D: FD, |
12213 | L: basicGVALinkageForFunction(Context: *this, FD))); |
12214 | } |
12215 | |
12216 | static GVALinkage basicGVALinkageForVariable(const ASTContext &Context, |
12217 | const VarDecl *VD) { |
12218 | // As an extension for interactive REPLs, make sure constant variables are |
12219 | // only emitted once instead of LinkageComputer::getLVForNamespaceScopeDecl |
12220 | // marking them as internal. |
12221 | if (Context.getLangOpts().CPlusPlus && |
12222 | Context.getLangOpts().IncrementalExtensions && |
12223 | VD->getType().isConstQualified() && |
12224 | !VD->getType().isVolatileQualified() && !VD->isInline() && |
12225 | !isa<VarTemplateSpecializationDecl>(Val: VD) && !VD->getDescribedVarTemplate()) |
12226 | return GVA_DiscardableODR; |
12227 | |
12228 | if (!VD->isExternallyVisible()) |
12229 | return GVA_Internal; |
12230 | |
12231 | if (VD->isStaticLocal()) { |
12232 | const DeclContext *LexicalContext = VD->getParentFunctionOrMethod(); |
12233 | while (LexicalContext && !isa<FunctionDecl>(Val: LexicalContext)) |
12234 | LexicalContext = LexicalContext->getLexicalParent(); |
12235 | |
12236 | // ObjC Blocks can create local variables that don't have a FunctionDecl |
12237 | // LexicalContext. |
12238 | if (!LexicalContext) |
12239 | return GVA_DiscardableODR; |
12240 | |
12241 | // Otherwise, let the static local variable inherit its linkage from the |
12242 | // nearest enclosing function. |
12243 | auto StaticLocalLinkage = |
12244 | Context.GetGVALinkageForFunction(FD: cast<FunctionDecl>(Val: LexicalContext)); |
12245 | |
12246 | // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must |
12247 | // be emitted in any object with references to the symbol for the object it |
12248 | // contains, whether inline or out-of-line." |
12249 | // Similar behavior is observed with MSVC. An alternative ABI could use |
12250 | // StrongODR/AvailableExternally to match the function, but none are |
12251 | // known/supported currently. |
12252 | if (StaticLocalLinkage == GVA_StrongODR || |
12253 | StaticLocalLinkage == GVA_AvailableExternally) |
12254 | return GVA_DiscardableODR; |
12255 | return StaticLocalLinkage; |
12256 | } |
12257 | |
12258 | // MSVC treats in-class initialized static data members as definitions. |
12259 | // By giving them non-strong linkage, out-of-line definitions won't |
12260 | // cause link errors. |
12261 | if (Context.isMSStaticDataMemberInlineDefinition(VD)) |
12262 | return GVA_DiscardableODR; |
12263 | |
12264 | // Most non-template variables have strong linkage; inline variables are |
12265 | // linkonce_odr or (occasionally, for compatibility) weak_odr. |
12266 | GVALinkage StrongLinkage; |
12267 | switch (Context.getInlineVariableDefinitionKind(VD)) { |
12268 | case ASTContext::InlineVariableDefinitionKind::None: |
12269 | StrongLinkage = GVA_StrongExternal; |
12270 | break; |
12271 | case ASTContext::InlineVariableDefinitionKind::Weak: |
12272 | case ASTContext::InlineVariableDefinitionKind::WeakUnknown: |
12273 | StrongLinkage = GVA_DiscardableODR; |
12274 | break; |
12275 | case ASTContext::InlineVariableDefinitionKind::Strong: |
12276 | StrongLinkage = GVA_StrongODR; |
12277 | break; |
12278 | } |
12279 | |
12280 | switch (VD->getTemplateSpecializationKind()) { |
12281 | case TSK_Undeclared: |
12282 | return StrongLinkage; |
12283 | |
12284 | case TSK_ExplicitSpecialization: |
12285 | return Context.getTargetInfo().getCXXABI().isMicrosoft() && |
12286 | VD->isStaticDataMember() |
12287 | ? GVA_StrongODR |
12288 | : StrongLinkage; |
12289 | |
12290 | case TSK_ExplicitInstantiationDefinition: |
12291 | return GVA_StrongODR; |
12292 | |
12293 | case TSK_ExplicitInstantiationDeclaration: |
12294 | return GVA_AvailableExternally; |
12295 | |
12296 | case TSK_ImplicitInstantiation: |
12297 | return GVA_DiscardableODR; |
12298 | } |
12299 | |
12300 | llvm_unreachable("Invalid Linkage!" ); |
12301 | } |
12302 | |
12303 | GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) const { |
12304 | return adjustGVALinkageForExternalDefinitionKind(Ctx: *this, D: VD, |
12305 | L: adjustGVALinkageForAttributes(Context: *this, D: VD, |
12306 | L: basicGVALinkageForVariable(Context: *this, VD))); |
12307 | } |
12308 | |
12309 | bool ASTContext::DeclMustBeEmitted(const Decl *D) { |
12310 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
12311 | if (!VD->isFileVarDecl()) |
12312 | return false; |
12313 | // Global named register variables (GNU extension) are never emitted. |
12314 | if (VD->getStorageClass() == SC_Register) |
12315 | return false; |
12316 | if (VD->getDescribedVarTemplate() || |
12317 | isa<VarTemplatePartialSpecializationDecl>(Val: VD)) |
12318 | return false; |
12319 | } else if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
12320 | // We never need to emit an uninstantiated function template. |
12321 | if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) |
12322 | return false; |
12323 | } else if (isa<PragmaCommentDecl>(Val: D)) |
12324 | return true; |
12325 | else if (isa<PragmaDetectMismatchDecl>(Val: D)) |
12326 | return true; |
12327 | else if (isa<OMPRequiresDecl>(Val: D)) |
12328 | return true; |
12329 | else if (isa<OMPThreadPrivateDecl>(Val: D)) |
12330 | return !D->getDeclContext()->isDependentContext(); |
12331 | else if (isa<OMPAllocateDecl>(Val: D)) |
12332 | return !D->getDeclContext()->isDependentContext(); |
12333 | else if (isa<OMPDeclareReductionDecl>(Val: D) || isa<OMPDeclareMapperDecl>(Val: D)) |
12334 | return !D->getDeclContext()->isDependentContext(); |
12335 | else if (isa<ImportDecl>(Val: D)) |
12336 | return true; |
12337 | else |
12338 | return false; |
12339 | |
12340 | // If this is a member of a class template, we do not need to emit it. |
12341 | if (D->getDeclContext()->isDependentContext()) |
12342 | return false; |
12343 | |
12344 | // Weak references don't produce any output by themselves. |
12345 | if (D->hasAttr<WeakRefAttr>()) |
12346 | return false; |
12347 | |
12348 | // Aliases and used decls are required. |
12349 | if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) |
12350 | return true; |
12351 | |
12352 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
12353 | // Forward declarations aren't required. |
12354 | if (!FD->doesThisDeclarationHaveABody()) |
12355 | return FD->doesDeclarationForceExternallyVisibleDefinition(); |
12356 | |
12357 | // Constructors and destructors are required. |
12358 | if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) |
12359 | return true; |
12360 | |
12361 | // The key function for a class is required. This rule only comes |
12362 | // into play when inline functions can be key functions, though. |
12363 | if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { |
12364 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
12365 | const CXXRecordDecl *RD = MD->getParent(); |
12366 | if (MD->isOutOfLine() && RD->isDynamicClass()) { |
12367 | const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD); |
12368 | if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) |
12369 | return true; |
12370 | } |
12371 | } |
12372 | } |
12373 | |
12374 | GVALinkage Linkage = GetGVALinkageForFunction(FD); |
12375 | |
12376 | // static, static inline, always_inline, and extern inline functions can |
12377 | // always be deferred. Normal inline functions can be deferred in C99/C++. |
12378 | // Implicit template instantiations can also be deferred in C++. |
12379 | return !isDiscardableGVALinkage(L: Linkage); |
12380 | } |
12381 | |
12382 | const auto *VD = cast<VarDecl>(Val: D); |
12383 | assert(VD->isFileVarDecl() && "Expected file scoped var" ); |
12384 | |
12385 | // If the decl is marked as `declare target to`, it should be emitted for the |
12386 | // host and for the device. |
12387 | if (LangOpts.OpenMP && |
12388 | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) |
12389 | return true; |
12390 | |
12391 | if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly && |
12392 | !isMSStaticDataMemberInlineDefinition(VD)) |
12393 | return false; |
12394 | |
12395 | if (VD->shouldEmitInExternalSource()) |
12396 | return false; |
12397 | |
12398 | // Variables that can be needed in other TUs are required. |
12399 | auto Linkage = GetGVALinkageForVariable(VD); |
12400 | if (!isDiscardableGVALinkage(L: Linkage)) |
12401 | return true; |
12402 | |
12403 | // We never need to emit a variable that is available in another TU. |
12404 | if (Linkage == GVA_AvailableExternally) |
12405 | return false; |
12406 | |
12407 | // Variables that have destruction with side-effects are required. |
12408 | if (VD->needsDestruction(Ctx: *this)) |
12409 | return true; |
12410 | |
12411 | // Variables that have initialization with side-effects are required. |
12412 | if (VD->getInit() && VD->getInit()->HasSideEffects(Ctx: *this) && |
12413 | // We can get a value-dependent initializer during error recovery. |
12414 | (VD->getInit()->isValueDependent() || !VD->evaluateValue())) |
12415 | return true; |
12416 | |
12417 | // Likewise, variables with tuple-like bindings are required if their |
12418 | // bindings have side-effects. |
12419 | if (const auto *DD = dyn_cast<DecompositionDecl>(Val: VD)) |
12420 | for (const auto *BD : DD->bindings()) |
12421 | if (const auto *BindingVD = BD->getHoldingVar()) |
12422 | if (DeclMustBeEmitted(D: BindingVD)) |
12423 | return true; |
12424 | |
12425 | return false; |
12426 | } |
12427 | |
12428 | void ASTContext::forEachMultiversionedFunctionVersion( |
12429 | const FunctionDecl *FD, |
12430 | llvm::function_ref<void(FunctionDecl *)> Pred) const { |
12431 | assert(FD->isMultiVersion() && "Only valid for multiversioned functions" ); |
12432 | llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls; |
12433 | FD = FD->getMostRecentDecl(); |
12434 | // FIXME: The order of traversal here matters and depends on the order of |
12435 | // lookup results, which happens to be (mostly) oldest-to-newest, but we |
12436 | // shouldn't rely on that. |
12437 | for (auto *CurDecl : |
12438 | FD->getDeclContext()->getRedeclContext()->lookup(Name: FD->getDeclName())) { |
12439 | FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl(); |
12440 | if (CurFD && hasSameType(T1: CurFD->getType(), T2: FD->getType()) && |
12441 | !SeenDecls.contains(V: CurFD)) { |
12442 | SeenDecls.insert(V: CurFD); |
12443 | Pred(CurFD); |
12444 | } |
12445 | } |
12446 | } |
12447 | |
12448 | CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic, |
12449 | bool IsCXXMethod, |
12450 | bool IsBuiltin) const { |
12451 | // Pass through to the C++ ABI object |
12452 | if (IsCXXMethod) |
12453 | return ABI->getDefaultMethodCallConv(isVariadic: IsVariadic); |
12454 | |
12455 | // Builtins ignore user-specified default calling convention and remain the |
12456 | // Target's default calling convention. |
12457 | if (!IsBuiltin) { |
12458 | switch (LangOpts.getDefaultCallingConv()) { |
12459 | case LangOptions::DCC_None: |
12460 | break; |
12461 | case LangOptions::DCC_CDecl: |
12462 | return CC_C; |
12463 | case LangOptions::DCC_FastCall: |
12464 | if (getTargetInfo().hasFeature(Feature: "sse2" ) && !IsVariadic) |
12465 | return CC_X86FastCall; |
12466 | break; |
12467 | case LangOptions::DCC_StdCall: |
12468 | if (!IsVariadic) |
12469 | return CC_X86StdCall; |
12470 | break; |
12471 | case LangOptions::DCC_VectorCall: |
12472 | // __vectorcall cannot be applied to variadic functions. |
12473 | if (!IsVariadic) |
12474 | return CC_X86VectorCall; |
12475 | break; |
12476 | case LangOptions::DCC_RegCall: |
12477 | // __regcall cannot be applied to variadic functions. |
12478 | if (!IsVariadic) |
12479 | return CC_X86RegCall; |
12480 | break; |
12481 | case LangOptions::DCC_RtdCall: |
12482 | if (!IsVariadic) |
12483 | return CC_M68kRTD; |
12484 | break; |
12485 | } |
12486 | } |
12487 | return Target->getDefaultCallingConv(); |
12488 | } |
12489 | |
12490 | bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const { |
12491 | // Pass through to the C++ ABI object |
12492 | return ABI->isNearlyEmpty(RD); |
12493 | } |
12494 | |
12495 | VTableContextBase *ASTContext::getVTableContext() { |
12496 | if (!VTContext.get()) { |
12497 | auto ABI = Target->getCXXABI(); |
12498 | if (ABI.isMicrosoft()) |
12499 | VTContext.reset(p: new MicrosoftVTableContext(*this)); |
12500 | else { |
12501 | auto ComponentLayout = getLangOpts().RelativeCXXABIVTables |
12502 | ? ItaniumVTableContext::Relative |
12503 | : ItaniumVTableContext::Pointer; |
12504 | VTContext.reset(p: new ItaniumVTableContext(*this, ComponentLayout)); |
12505 | } |
12506 | } |
12507 | return VTContext.get(); |
12508 | } |
12509 | |
12510 | MangleContext *ASTContext::createMangleContext(const TargetInfo *T) { |
12511 | if (!T) |
12512 | T = Target; |
12513 | switch (T->getCXXABI().getKind()) { |
12514 | case TargetCXXABI::AppleARM64: |
12515 | case TargetCXXABI::Fuchsia: |
12516 | case TargetCXXABI::GenericAArch64: |
12517 | case TargetCXXABI::GenericItanium: |
12518 | case TargetCXXABI::GenericARM: |
12519 | case TargetCXXABI::GenericMIPS: |
12520 | case TargetCXXABI::iOS: |
12521 | case TargetCXXABI::WebAssembly: |
12522 | case TargetCXXABI::WatchOS: |
12523 | case TargetCXXABI::XL: |
12524 | return ItaniumMangleContext::create(Context&: *this, Diags&: getDiagnostics()); |
12525 | case TargetCXXABI::Microsoft: |
12526 | return MicrosoftMangleContext::create(Context&: *this, Diags&: getDiagnostics()); |
12527 | } |
12528 | llvm_unreachable("Unsupported ABI" ); |
12529 | } |
12530 | |
12531 | MangleContext *ASTContext::createDeviceMangleContext(const TargetInfo &T) { |
12532 | assert(T.getCXXABI().getKind() != TargetCXXABI::Microsoft && |
12533 | "Device mangle context does not support Microsoft mangling." ); |
12534 | switch (T.getCXXABI().getKind()) { |
12535 | case TargetCXXABI::AppleARM64: |
12536 | case TargetCXXABI::Fuchsia: |
12537 | case TargetCXXABI::GenericAArch64: |
12538 | case TargetCXXABI::GenericItanium: |
12539 | case TargetCXXABI::GenericARM: |
12540 | case TargetCXXABI::GenericMIPS: |
12541 | case TargetCXXABI::iOS: |
12542 | case TargetCXXABI::WebAssembly: |
12543 | case TargetCXXABI::WatchOS: |
12544 | case TargetCXXABI::XL: |
12545 | return ItaniumMangleContext::create( |
12546 | Context&: *this, Diags&: getDiagnostics(), |
12547 | Discriminator: [](ASTContext &, const NamedDecl *ND) -> std::optional<unsigned> { |
12548 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) |
12549 | return RD->getDeviceLambdaManglingNumber(); |
12550 | return std::nullopt; |
12551 | }, |
12552 | /*IsAux=*/true); |
12553 | case TargetCXXABI::Microsoft: |
12554 | return MicrosoftMangleContext::create(Context&: *this, Diags&: getDiagnostics(), |
12555 | /*IsAux=*/true); |
12556 | } |
12557 | llvm_unreachable("Unsupported ABI" ); |
12558 | } |
12559 | |
12560 | CXXABI::~CXXABI() = default; |
12561 | |
12562 | size_t ASTContext::getSideTableAllocatedMemory() const { |
12563 | return ASTRecordLayouts.getMemorySize() + |
12564 | llvm::capacity_in_bytes(X: ObjCLayouts) + |
12565 | llvm::capacity_in_bytes(X: KeyFunctions) + |
12566 | llvm::capacity_in_bytes(X: ObjCImpls) + |
12567 | llvm::capacity_in_bytes(X: BlockVarCopyInits) + |
12568 | llvm::capacity_in_bytes(X: DeclAttrs) + |
12569 | llvm::capacity_in_bytes(X: TemplateOrInstantiation) + |
12570 | llvm::capacity_in_bytes(X: InstantiatedFromUsingDecl) + |
12571 | llvm::capacity_in_bytes(X: InstantiatedFromUsingShadowDecl) + |
12572 | llvm::capacity_in_bytes(X: InstantiatedFromUnnamedFieldDecl) + |
12573 | llvm::capacity_in_bytes(X: OverriddenMethods) + |
12574 | llvm::capacity_in_bytes(X: Types) + |
12575 | llvm::capacity_in_bytes(x: VariableArrayTypes); |
12576 | } |
12577 | |
12578 | /// getIntTypeForBitwidth - |
12579 | /// sets integer QualTy according to specified details: |
12580 | /// bitwidth, signed/unsigned. |
12581 | /// Returns empty type if there is no appropriate target types. |
12582 | QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth, |
12583 | unsigned Signed) const { |
12584 | TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(BitWidth: DestWidth, IsSigned: Signed); |
12585 | CanQualType QualTy = getFromTargetType(Type: Ty); |
12586 | if (!QualTy && DestWidth == 128) |
12587 | return Signed ? Int128Ty : UnsignedInt128Ty; |
12588 | return QualTy; |
12589 | } |
12590 | |
12591 | /// getRealTypeForBitwidth - |
12592 | /// sets floating point QualTy according to specified bitwidth. |
12593 | /// Returns empty type if there is no appropriate target types. |
12594 | QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth, |
12595 | FloatModeKind ExplicitType) const { |
12596 | FloatModeKind Ty = |
12597 | getTargetInfo().getRealTypeByWidth(BitWidth: DestWidth, ExplicitType); |
12598 | switch (Ty) { |
12599 | case FloatModeKind::Half: |
12600 | return HalfTy; |
12601 | case FloatModeKind::Float: |
12602 | return FloatTy; |
12603 | case FloatModeKind::Double: |
12604 | return DoubleTy; |
12605 | case FloatModeKind::LongDouble: |
12606 | return LongDoubleTy; |
12607 | case FloatModeKind::Float128: |
12608 | return Float128Ty; |
12609 | case FloatModeKind::Ibm128: |
12610 | return Ibm128Ty; |
12611 | case FloatModeKind::NoFloat: |
12612 | return {}; |
12613 | } |
12614 | |
12615 | llvm_unreachable("Unhandled TargetInfo::RealType value" ); |
12616 | } |
12617 | |
12618 | void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) { |
12619 | if (Number <= 1) |
12620 | return; |
12621 | |
12622 | MangleNumbers[ND] = Number; |
12623 | |
12624 | if (Listener) |
12625 | Listener->AddedManglingNumber(D: ND, Number); |
12626 | } |
12627 | |
12628 | unsigned ASTContext::getManglingNumber(const NamedDecl *ND, |
12629 | bool ForAuxTarget) const { |
12630 | auto I = MangleNumbers.find(Key: ND); |
12631 | unsigned Res = I != MangleNumbers.end() ? I->second : 1; |
12632 | // CUDA/HIP host compilation encodes host and device mangling numbers |
12633 | // as lower and upper half of 32 bit integer. |
12634 | if (LangOpts.CUDA && !LangOpts.CUDAIsDevice) { |
12635 | Res = ForAuxTarget ? Res >> 16 : Res & 0xFFFF; |
12636 | } else { |
12637 | assert(!ForAuxTarget && "Only CUDA/HIP host compilation supports mangling " |
12638 | "number for aux target" ); |
12639 | } |
12640 | return Res > 1 ? Res : 1; |
12641 | } |
12642 | |
12643 | void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) { |
12644 | if (Number <= 1) |
12645 | return; |
12646 | |
12647 | StaticLocalNumbers[VD] = Number; |
12648 | |
12649 | if (Listener) |
12650 | Listener->AddedStaticLocalNumbers(D: VD, Number); |
12651 | } |
12652 | |
12653 | unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const { |
12654 | auto I = StaticLocalNumbers.find(Key: VD); |
12655 | return I != StaticLocalNumbers.end() ? I->second : 1; |
12656 | } |
12657 | |
12658 | MangleNumberingContext & |
12659 | ASTContext::getManglingNumberContext(const DeclContext *DC) { |
12660 | assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. |
12661 | std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC]; |
12662 | if (!MCtx) |
12663 | MCtx = createMangleNumberingContext(); |
12664 | return *MCtx; |
12665 | } |
12666 | |
12667 | MangleNumberingContext & |
12668 | ASTContext::(NeedExtraManglingDecl_t, const Decl *D) { |
12669 | assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. |
12670 | std::unique_ptr<MangleNumberingContext> &MCtx = |
12671 | ExtraMangleNumberingContexts[D]; |
12672 | if (!MCtx) |
12673 | MCtx = createMangleNumberingContext(); |
12674 | return *MCtx; |
12675 | } |
12676 | |
12677 | std::unique_ptr<MangleNumberingContext> |
12678 | ASTContext::createMangleNumberingContext() const { |
12679 | return ABI->createMangleNumberingContext(); |
12680 | } |
12681 | |
12682 | const CXXConstructorDecl * |
12683 | ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) { |
12684 | return ABI->getCopyConstructorForExceptionObject( |
12685 | cast<CXXRecordDecl>(Val: RD->getFirstDecl())); |
12686 | } |
12687 | |
12688 | void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD, |
12689 | CXXConstructorDecl *CD) { |
12690 | return ABI->addCopyConstructorForExceptionObject( |
12691 | cast<CXXRecordDecl>(Val: RD->getFirstDecl()), |
12692 | cast<CXXConstructorDecl>(Val: CD->getFirstDecl())); |
12693 | } |
12694 | |
12695 | void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD, |
12696 | TypedefNameDecl *DD) { |
12697 | return ABI->addTypedefNameForUnnamedTagDecl(TD, DD); |
12698 | } |
12699 | |
12700 | TypedefNameDecl * |
12701 | ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) { |
12702 | return ABI->getTypedefNameForUnnamedTagDecl(TD); |
12703 | } |
12704 | |
12705 | void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD, |
12706 | DeclaratorDecl *DD) { |
12707 | return ABI->addDeclaratorForUnnamedTagDecl(TD, DD); |
12708 | } |
12709 | |
12710 | DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) { |
12711 | return ABI->getDeclaratorForUnnamedTagDecl(TD); |
12712 | } |
12713 | |
12714 | void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) { |
12715 | ParamIndices[D] = index; |
12716 | } |
12717 | |
12718 | unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const { |
12719 | ParameterIndexTable::const_iterator I = ParamIndices.find(Val: D); |
12720 | assert(I != ParamIndices.end() && |
12721 | "ParmIndices lacks entry set by ParmVarDecl" ); |
12722 | return I->second; |
12723 | } |
12724 | |
12725 | QualType ASTContext::getStringLiteralArrayType(QualType EltTy, |
12726 | unsigned Length) const { |
12727 | // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). |
12728 | if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings) |
12729 | EltTy = EltTy.withConst(); |
12730 | |
12731 | EltTy = adjustStringLiteralBaseType(Ty: EltTy); |
12732 | |
12733 | // Get an array type for the string, according to C99 6.4.5. This includes |
12734 | // the null terminator character. |
12735 | return getConstantArrayType(EltTy, ArySizeIn: llvm::APInt(32, Length + 1), SizeExpr: nullptr, |
12736 | ASM: ArraySizeModifier::Normal, /*IndexTypeQuals*/ 0); |
12737 | } |
12738 | |
12739 | StringLiteral * |
12740 | ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const { |
12741 | StringLiteral *&Result = StringLiteralCache[Key]; |
12742 | if (!Result) |
12743 | Result = StringLiteral::Create( |
12744 | Ctx: *this, Str: Key, Kind: StringLiteralKind::Ordinary, |
12745 | /*Pascal*/ false, Ty: getStringLiteralArrayType(EltTy: CharTy, Length: Key.size()), |
12746 | Loc: SourceLocation()); |
12747 | return Result; |
12748 | } |
12749 | |
12750 | MSGuidDecl * |
12751 | ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const { |
12752 | assert(MSGuidTagDecl && "building MS GUID without MS extensions?" ); |
12753 | |
12754 | llvm::FoldingSetNodeID ID; |
12755 | MSGuidDecl::Profile(ID, P: Parts); |
12756 | |
12757 | void *InsertPos; |
12758 | if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos)) |
12759 | return Existing; |
12760 | |
12761 | QualType GUIDType = getMSGuidType().withConst(); |
12762 | MSGuidDecl *New = MSGuidDecl::Create(C: *this, T: GUIDType, P: Parts); |
12763 | MSGuidDecls.InsertNode(N: New, InsertPos); |
12764 | return New; |
12765 | } |
12766 | |
12767 | UnnamedGlobalConstantDecl * |
12768 | ASTContext::getUnnamedGlobalConstantDecl(QualType Ty, |
12769 | const APValue &APVal) const { |
12770 | llvm::FoldingSetNodeID ID; |
12771 | UnnamedGlobalConstantDecl::Profile(ID, Ty, APVal); |
12772 | |
12773 | void *InsertPos; |
12774 | if (UnnamedGlobalConstantDecl *Existing = |
12775 | UnnamedGlobalConstantDecls.FindNodeOrInsertPos(ID, InsertPos)) |
12776 | return Existing; |
12777 | |
12778 | UnnamedGlobalConstantDecl *New = |
12779 | UnnamedGlobalConstantDecl::Create(C: *this, T: Ty, APVal); |
12780 | UnnamedGlobalConstantDecls.InsertNode(N: New, InsertPos); |
12781 | return New; |
12782 | } |
12783 | |
12784 | TemplateParamObjectDecl * |
12785 | ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const { |
12786 | assert(T->isRecordType() && "template param object of unexpected type" ); |
12787 | |
12788 | // C++ [temp.param]p8: |
12789 | // [...] a static storage duration object of type 'const T' [...] |
12790 | T.addConst(); |
12791 | |
12792 | llvm::FoldingSetNodeID ID; |
12793 | TemplateParamObjectDecl::Profile(ID, T, V); |
12794 | |
12795 | void *InsertPos; |
12796 | if (TemplateParamObjectDecl *Existing = |
12797 | TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos)) |
12798 | return Existing; |
12799 | |
12800 | TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(C: *this, T, V); |
12801 | TemplateParamObjectDecls.InsertNode(N: New, InsertPos); |
12802 | return New; |
12803 | } |
12804 | |
12805 | bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const { |
12806 | const llvm::Triple &T = getTargetInfo().getTriple(); |
12807 | if (!T.isOSDarwin()) |
12808 | return false; |
12809 | |
12810 | if (!(T.isiOS() && T.isOSVersionLT(Major: 7)) && |
12811 | !(T.isMacOSX() && T.isOSVersionLT(Major: 10, Minor: 9))) |
12812 | return false; |
12813 | |
12814 | QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); |
12815 | CharUnits sizeChars = getTypeSizeInChars(T: AtomicTy); |
12816 | uint64_t Size = sizeChars.getQuantity(); |
12817 | CharUnits alignChars = getTypeAlignInChars(T: AtomicTy); |
12818 | unsigned Align = alignChars.getQuantity(); |
12819 | unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth(); |
12820 | return (Size != Align || toBits(CharSize: sizeChars) > MaxInlineWidthInBits); |
12821 | } |
12822 | |
12823 | bool |
12824 | ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl, |
12825 | const ObjCMethodDecl *MethodImpl) { |
12826 | // No point trying to match an unavailable/deprecated mothod. |
12827 | if (MethodDecl->hasAttr<UnavailableAttr>() |
12828 | || MethodDecl->hasAttr<DeprecatedAttr>()) |
12829 | return false; |
12830 | if (MethodDecl->getObjCDeclQualifier() != |
12831 | MethodImpl->getObjCDeclQualifier()) |
12832 | return false; |
12833 | if (!hasSameType(T1: MethodDecl->getReturnType(), T2: MethodImpl->getReturnType())) |
12834 | return false; |
12835 | |
12836 | if (MethodDecl->param_size() != MethodImpl->param_size()) |
12837 | return false; |
12838 | |
12839 | for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(), |
12840 | IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(), |
12841 | EF = MethodDecl->param_end(); |
12842 | IM != EM && IF != EF; ++IM, ++IF) { |
12843 | const ParmVarDecl *DeclVar = (*IF); |
12844 | const ParmVarDecl *ImplVar = (*IM); |
12845 | if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier()) |
12846 | return false; |
12847 | if (!hasSameType(T1: DeclVar->getType(), T2: ImplVar->getType())) |
12848 | return false; |
12849 | } |
12850 | |
12851 | return (MethodDecl->isVariadic() == MethodImpl->isVariadic()); |
12852 | } |
12853 | |
12854 | uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const { |
12855 | LangAS AS; |
12856 | if (QT->getUnqualifiedDesugaredType()->isNullPtrType()) |
12857 | AS = LangAS::Default; |
12858 | else |
12859 | AS = QT->getPointeeType().getAddressSpace(); |
12860 | |
12861 | return getTargetInfo().getNullPointerValue(AddrSpace: AS); |
12862 | } |
12863 | |
12864 | unsigned ASTContext::getTargetAddressSpace(LangAS AS) const { |
12865 | return getTargetInfo().getTargetAddressSpace(AS); |
12866 | } |
12867 | |
12868 | bool ASTContext::hasSameExpr(const Expr *X, const Expr *Y) const { |
12869 | if (X == Y) |
12870 | return true; |
12871 | if (!X || !Y) |
12872 | return false; |
12873 | llvm::FoldingSetNodeID IDX, IDY; |
12874 | X->Profile(ID&: IDX, Context: *this, /*Canonical=*/true); |
12875 | Y->Profile(ID&: IDY, Context: *this, /*Canonical=*/true); |
12876 | return IDX == IDY; |
12877 | } |
12878 | |
12879 | // The getCommon* helpers return, for given 'same' X and Y entities given as |
12880 | // inputs, another entity which is also the 'same' as the inputs, but which |
12881 | // is closer to the canonical form of the inputs, each according to a given |
12882 | // criteria. |
12883 | // The getCommon*Checked variants are 'null inputs not-allowed' equivalents of |
12884 | // the regular ones. |
12885 | |
12886 | static Decl *getCommonDecl(Decl *X, Decl *Y) { |
12887 | if (!declaresSameEntity(D1: X, D2: Y)) |
12888 | return nullptr; |
12889 | for (const Decl *DX : X->redecls()) { |
12890 | // If we reach Y before reaching the first decl, that means X is older. |
12891 | if (DX == Y) |
12892 | return X; |
12893 | // If we reach the first decl, then Y is older. |
12894 | if (DX->isFirstDecl()) |
12895 | return Y; |
12896 | } |
12897 | llvm_unreachable("Corrupt redecls chain" ); |
12898 | } |
12899 | |
12900 | template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true> |
12901 | static T *getCommonDecl(T *X, T *Y) { |
12902 | return cast_or_null<T>( |
12903 | getCommonDecl(X: const_cast<Decl *>(cast_or_null<Decl>(X)), |
12904 | Y: const_cast<Decl *>(cast_or_null<Decl>(Y)))); |
12905 | } |
12906 | |
12907 | template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true> |
12908 | static T *getCommonDeclChecked(T *X, T *Y) { |
12909 | return cast<T>(getCommonDecl(X: const_cast<Decl *>(cast<Decl>(X)), |
12910 | Y: const_cast<Decl *>(cast<Decl>(Y)))); |
12911 | } |
12912 | |
12913 | static TemplateName getCommonTemplateName(ASTContext &Ctx, TemplateName X, |
12914 | TemplateName Y) { |
12915 | if (X.getAsVoidPointer() == Y.getAsVoidPointer()) |
12916 | return X; |
12917 | // FIXME: There are cases here where we could find a common template name |
12918 | // with more sugar. For example one could be a SubstTemplateTemplate* |
12919 | // replacing the other. |
12920 | TemplateName CX = Ctx.getCanonicalTemplateName(Name: X); |
12921 | if (CX.getAsVoidPointer() != |
12922 | Ctx.getCanonicalTemplateName(Name: Y).getAsVoidPointer()) |
12923 | return TemplateName(); |
12924 | return CX; |
12925 | } |
12926 | |
12927 | static TemplateName |
12928 | getCommonTemplateNameChecked(ASTContext &Ctx, TemplateName X, TemplateName Y) { |
12929 | TemplateName R = getCommonTemplateName(Ctx, X, Y); |
12930 | assert(R.getAsVoidPointer() != nullptr); |
12931 | return R; |
12932 | } |
12933 | |
12934 | static auto getCommonTypes(ASTContext &Ctx, ArrayRef<QualType> Xs, |
12935 | ArrayRef<QualType> Ys, bool Unqualified = false) { |
12936 | assert(Xs.size() == Ys.size()); |
12937 | SmallVector<QualType, 8> Rs(Xs.size()); |
12938 | for (size_t I = 0; I < Rs.size(); ++I) |
12939 | Rs[I] = Ctx.getCommonSugaredType(X: Xs[I], Y: Ys[I], Unqualified); |
12940 | return Rs; |
12941 | } |
12942 | |
12943 | template <class T> |
12944 | static SourceLocation getCommonAttrLoc(const T *X, const T *Y) { |
12945 | return X->getAttributeLoc() == Y->getAttributeLoc() ? X->getAttributeLoc() |
12946 | : SourceLocation(); |
12947 | } |
12948 | |
12949 | static TemplateArgument getCommonTemplateArgument(ASTContext &Ctx, |
12950 | const TemplateArgument &X, |
12951 | const TemplateArgument &Y) { |
12952 | if (X.getKind() != Y.getKind()) |
12953 | return TemplateArgument(); |
12954 | |
12955 | switch (X.getKind()) { |
12956 | case TemplateArgument::ArgKind::Type: |
12957 | if (!Ctx.hasSameType(T1: X.getAsType(), T2: Y.getAsType())) |
12958 | return TemplateArgument(); |
12959 | return TemplateArgument( |
12960 | Ctx.getCommonSugaredType(X: X.getAsType(), Y: Y.getAsType())); |
12961 | case TemplateArgument::ArgKind::NullPtr: |
12962 | if (!Ctx.hasSameType(T1: X.getNullPtrType(), T2: Y.getNullPtrType())) |
12963 | return TemplateArgument(); |
12964 | return TemplateArgument( |
12965 | Ctx.getCommonSugaredType(X: X.getNullPtrType(), Y: Y.getNullPtrType()), |
12966 | /*Unqualified=*/true); |
12967 | case TemplateArgument::ArgKind::Expression: |
12968 | if (!Ctx.hasSameType(T1: X.getAsExpr()->getType(), T2: Y.getAsExpr()->getType())) |
12969 | return TemplateArgument(); |
12970 | // FIXME: Try to keep the common sugar. |
12971 | return X; |
12972 | case TemplateArgument::ArgKind::Template: { |
12973 | TemplateName TX = X.getAsTemplate(), TY = Y.getAsTemplate(); |
12974 | TemplateName CTN = ::getCommonTemplateName(Ctx, X: TX, Y: TY); |
12975 | if (!CTN.getAsVoidPointer()) |
12976 | return TemplateArgument(); |
12977 | return TemplateArgument(CTN); |
12978 | } |
12979 | case TemplateArgument::ArgKind::TemplateExpansion: { |
12980 | TemplateName TX = X.getAsTemplateOrTemplatePattern(), |
12981 | TY = Y.getAsTemplateOrTemplatePattern(); |
12982 | TemplateName CTN = ::getCommonTemplateName(Ctx, X: TX, Y: TY); |
12983 | if (!CTN.getAsVoidPointer()) |
12984 | return TemplateName(); |
12985 | auto NExpX = X.getNumTemplateExpansions(); |
12986 | assert(NExpX == Y.getNumTemplateExpansions()); |
12987 | return TemplateArgument(CTN, NExpX); |
12988 | } |
12989 | default: |
12990 | // FIXME: Handle the other argument kinds. |
12991 | return X; |
12992 | } |
12993 | } |
12994 | |
12995 | static bool getCommonTemplateArguments(ASTContext &Ctx, |
12996 | SmallVectorImpl<TemplateArgument> &R, |
12997 | ArrayRef<TemplateArgument> Xs, |
12998 | ArrayRef<TemplateArgument> Ys) { |
12999 | if (Xs.size() != Ys.size()) |
13000 | return true; |
13001 | R.resize(N: Xs.size()); |
13002 | for (size_t I = 0; I < R.size(); ++I) { |
13003 | R[I] = getCommonTemplateArgument(Ctx, X: Xs[I], Y: Ys[I]); |
13004 | if (R[I].isNull()) |
13005 | return true; |
13006 | } |
13007 | return false; |
13008 | } |
13009 | |
13010 | static auto getCommonTemplateArguments(ASTContext &Ctx, |
13011 | ArrayRef<TemplateArgument> Xs, |
13012 | ArrayRef<TemplateArgument> Ys) { |
13013 | SmallVector<TemplateArgument, 8> R; |
13014 | bool Different = getCommonTemplateArguments(Ctx, R, Xs, Ys); |
13015 | assert(!Different); |
13016 | (void)Different; |
13017 | return R; |
13018 | } |
13019 | |
13020 | template <class T> |
13021 | static ElaboratedTypeKeyword getCommonTypeKeyword(const T *X, const T *Y) { |
13022 | return X->getKeyword() == Y->getKeyword() ? X->getKeyword() |
13023 | : ElaboratedTypeKeyword::None; |
13024 | } |
13025 | |
13026 | template <class T> |
13027 | static NestedNameSpecifier *getCommonNNS(ASTContext &Ctx, const T *X, |
13028 | const T *Y) { |
13029 | // FIXME: Try to keep the common NNS sugar. |
13030 | return X->getQualifier() == Y->getQualifier() |
13031 | ? X->getQualifier() |
13032 | : Ctx.getCanonicalNestedNameSpecifier(NNS: X->getQualifier()); |
13033 | } |
13034 | |
13035 | template <class T> |
13036 | static QualType getCommonElementType(ASTContext &Ctx, const T *X, const T *Y) { |
13037 | return Ctx.getCommonSugaredType(X: X->getElementType(), Y: Y->getElementType()); |
13038 | } |
13039 | |
13040 | template <class T> |
13041 | static QualType getCommonArrayElementType(ASTContext &Ctx, const T *X, |
13042 | Qualifiers &QX, const T *Y, |
13043 | Qualifiers &QY) { |
13044 | QualType EX = X->getElementType(), EY = Y->getElementType(); |
13045 | QualType R = Ctx.getCommonSugaredType(X: EX, Y: EY, |
13046 | /*Unqualified=*/true); |
13047 | Qualifiers RQ = R.getQualifiers(); |
13048 | QX += EX.getQualifiers() - RQ; |
13049 | QY += EY.getQualifiers() - RQ; |
13050 | return R; |
13051 | } |
13052 | |
13053 | template <class T> |
13054 | static QualType getCommonPointeeType(ASTContext &Ctx, const T *X, const T *Y) { |
13055 | return Ctx.getCommonSugaredType(X: X->getPointeeType(), Y: Y->getPointeeType()); |
13056 | } |
13057 | |
13058 | template <class T> static auto *getCommonSizeExpr(ASTContext &Ctx, T *X, T *Y) { |
13059 | assert(Ctx.hasSameExpr(X->getSizeExpr(), Y->getSizeExpr())); |
13060 | return X->getSizeExpr(); |
13061 | } |
13062 | |
13063 | static auto getCommonSizeModifier(const ArrayType *X, const ArrayType *Y) { |
13064 | assert(X->getSizeModifier() == Y->getSizeModifier()); |
13065 | return X->getSizeModifier(); |
13066 | } |
13067 | |
13068 | static auto getCommonIndexTypeCVRQualifiers(const ArrayType *X, |
13069 | const ArrayType *Y) { |
13070 | assert(X->getIndexTypeCVRQualifiers() == Y->getIndexTypeCVRQualifiers()); |
13071 | return X->getIndexTypeCVRQualifiers(); |
13072 | } |
13073 | |
13074 | // Merges two type lists such that the resulting vector will contain |
13075 | // each type (in a canonical sense) only once, in the order they appear |
13076 | // from X to Y. If they occur in both X and Y, the result will contain |
13077 | // the common sugared type between them. |
13078 | static void mergeTypeLists(ASTContext &Ctx, SmallVectorImpl<QualType> &Out, |
13079 | ArrayRef<QualType> X, ArrayRef<QualType> Y) { |
13080 | llvm::DenseMap<QualType, unsigned> Found; |
13081 | for (auto Ts : {X, Y}) { |
13082 | for (QualType T : Ts) { |
13083 | auto Res = Found.try_emplace(Key: Ctx.getCanonicalType(T), Args: Out.size()); |
13084 | if (!Res.second) { |
13085 | QualType &U = Out[Res.first->second]; |
13086 | U = Ctx.getCommonSugaredType(X: U, Y: T); |
13087 | } else { |
13088 | Out.emplace_back(Args&: T); |
13089 | } |
13090 | } |
13091 | } |
13092 | } |
13093 | |
13094 | FunctionProtoType::ExceptionSpecInfo |
13095 | ASTContext::mergeExceptionSpecs(FunctionProtoType::ExceptionSpecInfo ESI1, |
13096 | FunctionProtoType::ExceptionSpecInfo ESI2, |
13097 | SmallVectorImpl<QualType> &ExceptionTypeStorage, |
13098 | bool AcceptDependent) { |
13099 | ExceptionSpecificationType EST1 = ESI1.Type, EST2 = ESI2.Type; |
13100 | |
13101 | // If either of them can throw anything, that is the result. |
13102 | for (auto I : {EST_None, EST_MSAny, EST_NoexceptFalse}) { |
13103 | if (EST1 == I) |
13104 | return ESI1; |
13105 | if (EST2 == I) |
13106 | return ESI2; |
13107 | } |
13108 | |
13109 | // If either of them is non-throwing, the result is the other. |
13110 | for (auto I : |
13111 | {EST_NoThrow, EST_DynamicNone, EST_BasicNoexcept, EST_NoexceptTrue}) { |
13112 | if (EST1 == I) |
13113 | return ESI2; |
13114 | if (EST2 == I) |
13115 | return ESI1; |
13116 | } |
13117 | |
13118 | // If we're left with value-dependent computed noexcept expressions, we're |
13119 | // stuck. Before C++17, we can just drop the exception specification entirely, |
13120 | // since it's not actually part of the canonical type. And this should never |
13121 | // happen in C++17, because it would mean we were computing the composite |
13122 | // pointer type of dependent types, which should never happen. |
13123 | if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) { |
13124 | assert(AcceptDependent && |
13125 | "computing composite pointer type of dependent types" ); |
13126 | return FunctionProtoType::ExceptionSpecInfo(); |
13127 | } |
13128 | |
13129 | // Switch over the possibilities so that people adding new values know to |
13130 | // update this function. |
13131 | switch (EST1) { |
13132 | case EST_None: |
13133 | case EST_DynamicNone: |
13134 | case EST_MSAny: |
13135 | case EST_BasicNoexcept: |
13136 | case EST_DependentNoexcept: |
13137 | case EST_NoexceptFalse: |
13138 | case EST_NoexceptTrue: |
13139 | case EST_NoThrow: |
13140 | llvm_unreachable("These ESTs should be handled above" ); |
13141 | |
13142 | case EST_Dynamic: { |
13143 | // This is the fun case: both exception specifications are dynamic. Form |
13144 | // the union of the two lists. |
13145 | assert(EST2 == EST_Dynamic && "other cases should already be handled" ); |
13146 | mergeTypeLists(Ctx&: *this, Out&: ExceptionTypeStorage, X: ESI1.Exceptions, |
13147 | Y: ESI2.Exceptions); |
13148 | FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic); |
13149 | Result.Exceptions = ExceptionTypeStorage; |
13150 | return Result; |
13151 | } |
13152 | |
13153 | case EST_Unevaluated: |
13154 | case EST_Uninstantiated: |
13155 | case EST_Unparsed: |
13156 | llvm_unreachable("shouldn't see unresolved exception specifications here" ); |
13157 | } |
13158 | |
13159 | llvm_unreachable("invalid ExceptionSpecificationType" ); |
13160 | } |
13161 | |
13162 | static QualType getCommonNonSugarTypeNode(ASTContext &Ctx, const Type *X, |
13163 | Qualifiers &QX, const Type *Y, |
13164 | Qualifiers &QY) { |
13165 | Type::TypeClass TC = X->getTypeClass(); |
13166 | assert(TC == Y->getTypeClass()); |
13167 | switch (TC) { |
13168 | #define UNEXPECTED_TYPE(Class, Kind) \ |
13169 | case Type::Class: \ |
13170 | llvm_unreachable("Unexpected " Kind ": " #Class); |
13171 | |
13172 | #define NON_CANONICAL_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "non-canonical") |
13173 | #define TYPE(Class, Base) |
13174 | #include "clang/AST/TypeNodes.inc" |
13175 | |
13176 | #define SUGAR_FREE_TYPE(Class) UNEXPECTED_TYPE(Class, "sugar-free") |
13177 | SUGAR_FREE_TYPE(Builtin) |
13178 | SUGAR_FREE_TYPE(DeducedTemplateSpecialization) |
13179 | SUGAR_FREE_TYPE(DependentBitInt) |
13180 | SUGAR_FREE_TYPE(Enum) |
13181 | SUGAR_FREE_TYPE(BitInt) |
13182 | SUGAR_FREE_TYPE(ObjCInterface) |
13183 | SUGAR_FREE_TYPE(Record) |
13184 | SUGAR_FREE_TYPE(SubstTemplateTypeParmPack) |
13185 | SUGAR_FREE_TYPE(UnresolvedUsing) |
13186 | #undef SUGAR_FREE_TYPE |
13187 | #define NON_UNIQUE_TYPE(Class) UNEXPECTED_TYPE(Class, "non-unique") |
13188 | NON_UNIQUE_TYPE(TypeOfExpr) |
13189 | NON_UNIQUE_TYPE(VariableArray) |
13190 | #undef NON_UNIQUE_TYPE |
13191 | |
13192 | UNEXPECTED_TYPE(TypeOf, "sugar" ) |
13193 | |
13194 | #undef UNEXPECTED_TYPE |
13195 | |
13196 | case Type::Auto: { |
13197 | const auto *AX = cast<AutoType>(Val: X), *AY = cast<AutoType>(Val: Y); |
13198 | assert(AX->getDeducedType().isNull()); |
13199 | assert(AY->getDeducedType().isNull()); |
13200 | assert(AX->getKeyword() == AY->getKeyword()); |
13201 | assert(AX->isInstantiationDependentType() == |
13202 | AY->isInstantiationDependentType()); |
13203 | auto As = getCommonTemplateArguments(Ctx, Xs: AX->getTypeConstraintArguments(), |
13204 | Ys: AY->getTypeConstraintArguments()); |
13205 | return Ctx.getAutoType(DeducedType: QualType(), Keyword: AX->getKeyword(), |
13206 | IsDependent: AX->isInstantiationDependentType(), |
13207 | IsPack: AX->containsUnexpandedParameterPack(), |
13208 | TypeConstraintConcept: getCommonDeclChecked(X: AX->getTypeConstraintConcept(), |
13209 | Y: AY->getTypeConstraintConcept()), |
13210 | TypeConstraintArgs: As); |
13211 | } |
13212 | case Type::IncompleteArray: { |
13213 | const auto *AX = cast<IncompleteArrayType>(Val: X), |
13214 | *AY = cast<IncompleteArrayType>(Val: Y); |
13215 | return Ctx.getIncompleteArrayType( |
13216 | elementType: getCommonArrayElementType(Ctx, X: AX, QX, Y: AY, QY), |
13217 | ASM: getCommonSizeModifier(X: AX, Y: AY), elementTypeQuals: getCommonIndexTypeCVRQualifiers(X: AX, Y: AY)); |
13218 | } |
13219 | case Type::DependentSizedArray: { |
13220 | const auto *AX = cast<DependentSizedArrayType>(Val: X), |
13221 | *AY = cast<DependentSizedArrayType>(Val: Y); |
13222 | return Ctx.getDependentSizedArrayType( |
13223 | elementType: getCommonArrayElementType(Ctx, X: AX, QX, Y: AY, QY), |
13224 | numElements: getCommonSizeExpr(Ctx, X: AX, Y: AY), ASM: getCommonSizeModifier(X: AX, Y: AY), |
13225 | elementTypeQuals: getCommonIndexTypeCVRQualifiers(X: AX, Y: AY), |
13226 | brackets: AX->getBracketsRange() == AY->getBracketsRange() |
13227 | ? AX->getBracketsRange() |
13228 | : SourceRange()); |
13229 | } |
13230 | case Type::ConstantArray: { |
13231 | const auto *AX = cast<ConstantArrayType>(Val: X), |
13232 | *AY = cast<ConstantArrayType>(Val: Y); |
13233 | assert(AX->getSize() == AY->getSize()); |
13234 | const Expr *SizeExpr = Ctx.hasSameExpr(X: AX->getSizeExpr(), Y: AY->getSizeExpr()) |
13235 | ? AX->getSizeExpr() |
13236 | : nullptr; |
13237 | return Ctx.getConstantArrayType( |
13238 | EltTy: getCommonArrayElementType(Ctx, X: AX, QX, Y: AY, QY), ArySizeIn: AX->getSize(), SizeExpr, |
13239 | ASM: getCommonSizeModifier(X: AX, Y: AY), IndexTypeQuals: getCommonIndexTypeCVRQualifiers(X: AX, Y: AY)); |
13240 | } |
13241 | case Type::ArrayParameter: { |
13242 | const auto *AX = cast<ArrayParameterType>(Val: X), |
13243 | *AY = cast<ArrayParameterType>(Val: Y); |
13244 | assert(AX->getSize() == AY->getSize()); |
13245 | const Expr *SizeExpr = Ctx.hasSameExpr(X: AX->getSizeExpr(), Y: AY->getSizeExpr()) |
13246 | ? AX->getSizeExpr() |
13247 | : nullptr; |
13248 | auto ArrayTy = Ctx.getConstantArrayType( |
13249 | EltTy: getCommonArrayElementType(Ctx, X: AX, QX, Y: AY, QY), ArySizeIn: AX->getSize(), SizeExpr, |
13250 | ASM: getCommonSizeModifier(X: AX, Y: AY), IndexTypeQuals: getCommonIndexTypeCVRQualifiers(X: AX, Y: AY)); |
13251 | return Ctx.getArrayParameterType(Ty: ArrayTy); |
13252 | } |
13253 | case Type::Atomic: { |
13254 | const auto *AX = cast<AtomicType>(Val: X), *AY = cast<AtomicType>(Val: Y); |
13255 | return Ctx.getAtomicType( |
13256 | T: Ctx.getCommonSugaredType(X: AX->getValueType(), Y: AY->getValueType())); |
13257 | } |
13258 | case Type::Complex: { |
13259 | const auto *CX = cast<ComplexType>(Val: X), *CY = cast<ComplexType>(Val: Y); |
13260 | return Ctx.getComplexType(T: getCommonArrayElementType(Ctx, X: CX, QX, Y: CY, QY)); |
13261 | } |
13262 | case Type::Pointer: { |
13263 | const auto *PX = cast<PointerType>(Val: X), *PY = cast<PointerType>(Val: Y); |
13264 | return Ctx.getPointerType(T: getCommonPointeeType(Ctx, X: PX, Y: PY)); |
13265 | } |
13266 | case Type::BlockPointer: { |
13267 | const auto *PX = cast<BlockPointerType>(Val: X), *PY = cast<BlockPointerType>(Val: Y); |
13268 | return Ctx.getBlockPointerType(T: getCommonPointeeType(Ctx, X: PX, Y: PY)); |
13269 | } |
13270 | case Type::ObjCObjectPointer: { |
13271 | const auto *PX = cast<ObjCObjectPointerType>(Val: X), |
13272 | *PY = cast<ObjCObjectPointerType>(Val: Y); |
13273 | return Ctx.getObjCObjectPointerType(ObjectT: getCommonPointeeType(Ctx, X: PX, Y: PY)); |
13274 | } |
13275 | case Type::MemberPointer: { |
13276 | const auto *PX = cast<MemberPointerType>(Val: X), |
13277 | *PY = cast<MemberPointerType>(Val: Y); |
13278 | return Ctx.getMemberPointerType( |
13279 | T: getCommonPointeeType(Ctx, X: PX, Y: PY), |
13280 | Cls: Ctx.getCommonSugaredType(X: QualType(PX->getClass(), 0), |
13281 | Y: QualType(PY->getClass(), 0)) |
13282 | .getTypePtr()); |
13283 | } |
13284 | case Type::LValueReference: { |
13285 | const auto *PX = cast<LValueReferenceType>(Val: X), |
13286 | *PY = cast<LValueReferenceType>(Val: Y); |
13287 | // FIXME: Preserve PointeeTypeAsWritten. |
13288 | return Ctx.getLValueReferenceType(T: getCommonPointeeType(Ctx, X: PX, Y: PY), |
13289 | SpelledAsLValue: PX->isSpelledAsLValue() || |
13290 | PY->isSpelledAsLValue()); |
13291 | } |
13292 | case Type::RValueReference: { |
13293 | const auto *PX = cast<RValueReferenceType>(Val: X), |
13294 | *PY = cast<RValueReferenceType>(Val: Y); |
13295 | // FIXME: Preserve PointeeTypeAsWritten. |
13296 | return Ctx.getRValueReferenceType(T: getCommonPointeeType(Ctx, X: PX, Y: PY)); |
13297 | } |
13298 | case Type::DependentAddressSpace: { |
13299 | const auto *PX = cast<DependentAddressSpaceType>(Val: X), |
13300 | *PY = cast<DependentAddressSpaceType>(Val: Y); |
13301 | assert(Ctx.hasSameExpr(PX->getAddrSpaceExpr(), PY->getAddrSpaceExpr())); |
13302 | return Ctx.getDependentAddressSpaceType(PointeeType: getCommonPointeeType(Ctx, X: PX, Y: PY), |
13303 | AddrSpaceExpr: PX->getAddrSpaceExpr(), |
13304 | AttrLoc: getCommonAttrLoc(X: PX, Y: PY)); |
13305 | } |
13306 | case Type::FunctionNoProto: { |
13307 | const auto *FX = cast<FunctionNoProtoType>(Val: X), |
13308 | *FY = cast<FunctionNoProtoType>(Val: Y); |
13309 | assert(FX->getExtInfo() == FY->getExtInfo()); |
13310 | return Ctx.getFunctionNoProtoType( |
13311 | ResultTy: Ctx.getCommonSugaredType(X: FX->getReturnType(), Y: FY->getReturnType()), |
13312 | Info: FX->getExtInfo()); |
13313 | } |
13314 | case Type::FunctionProto: { |
13315 | const auto *FX = cast<FunctionProtoType>(Val: X), |
13316 | *FY = cast<FunctionProtoType>(Val: Y); |
13317 | FunctionProtoType::ExtProtoInfo EPIX = FX->getExtProtoInfo(), |
13318 | EPIY = FY->getExtProtoInfo(); |
13319 | assert(EPIX.ExtInfo == EPIY.ExtInfo); |
13320 | assert(EPIX.ExtParameterInfos == EPIY.ExtParameterInfos); |
13321 | assert(EPIX.RefQualifier == EPIY.RefQualifier); |
13322 | assert(EPIX.TypeQuals == EPIY.TypeQuals); |
13323 | assert(EPIX.Variadic == EPIY.Variadic); |
13324 | |
13325 | // FIXME: Can we handle an empty EllipsisLoc? |
13326 | // Use emtpy EllipsisLoc if X and Y differ. |
13327 | |
13328 | EPIX.HasTrailingReturn = EPIX.HasTrailingReturn && EPIY.HasTrailingReturn; |
13329 | |
13330 | QualType R = |
13331 | Ctx.getCommonSugaredType(X: FX->getReturnType(), Y: FY->getReturnType()); |
13332 | auto P = getCommonTypes(Ctx, Xs: FX->param_types(), Ys: FY->param_types(), |
13333 | /*Unqualified=*/true); |
13334 | |
13335 | SmallVector<QualType, 8> Exceptions; |
13336 | EPIX.ExceptionSpec = Ctx.mergeExceptionSpecs( |
13337 | ESI1: EPIX.ExceptionSpec, ESI2: EPIY.ExceptionSpec, ExceptionTypeStorage&: Exceptions, AcceptDependent: true); |
13338 | return Ctx.getFunctionType(ResultTy: R, Args: P, EPI: EPIX); |
13339 | } |
13340 | case Type::ObjCObject: { |
13341 | const auto *OX = cast<ObjCObjectType>(Val: X), *OY = cast<ObjCObjectType>(Val: Y); |
13342 | assert( |
13343 | std::equal(OX->getProtocols().begin(), OX->getProtocols().end(), |
13344 | OY->getProtocols().begin(), OY->getProtocols().end(), |
13345 | [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) { |
13346 | return P0->getCanonicalDecl() == P1->getCanonicalDecl(); |
13347 | }) && |
13348 | "protocol lists must be the same" ); |
13349 | auto TAs = getCommonTypes(Ctx, Xs: OX->getTypeArgsAsWritten(), |
13350 | Ys: OY->getTypeArgsAsWritten()); |
13351 | return Ctx.getObjCObjectType( |
13352 | baseType: Ctx.getCommonSugaredType(X: OX->getBaseType(), Y: OY->getBaseType()), typeArgs: TAs, |
13353 | protocols: OX->getProtocols(), |
13354 | isKindOf: OX->isKindOfTypeAsWritten() && OY->isKindOfTypeAsWritten()); |
13355 | } |
13356 | case Type::ConstantMatrix: { |
13357 | const auto *MX = cast<ConstantMatrixType>(Val: X), |
13358 | *MY = cast<ConstantMatrixType>(Val: Y); |
13359 | assert(MX->getNumRows() == MY->getNumRows()); |
13360 | assert(MX->getNumColumns() == MY->getNumColumns()); |
13361 | return Ctx.getConstantMatrixType(ElementTy: getCommonElementType(Ctx, X: MX, Y: MY), |
13362 | NumRows: MX->getNumRows(), NumColumns: MX->getNumColumns()); |
13363 | } |
13364 | case Type::DependentSizedMatrix: { |
13365 | const auto *MX = cast<DependentSizedMatrixType>(Val: X), |
13366 | *MY = cast<DependentSizedMatrixType>(Val: Y); |
13367 | assert(Ctx.hasSameExpr(MX->getRowExpr(), MY->getRowExpr())); |
13368 | assert(Ctx.hasSameExpr(MX->getColumnExpr(), MY->getColumnExpr())); |
13369 | return Ctx.getDependentSizedMatrixType( |
13370 | ElementTy: getCommonElementType(Ctx, X: MX, Y: MY), RowExpr: MX->getRowExpr(), |
13371 | ColumnExpr: MX->getColumnExpr(), AttrLoc: getCommonAttrLoc(X: MX, Y: MY)); |
13372 | } |
13373 | case Type::Vector: { |
13374 | const auto *VX = cast<VectorType>(Val: X), *VY = cast<VectorType>(Val: Y); |
13375 | assert(VX->getNumElements() == VY->getNumElements()); |
13376 | assert(VX->getVectorKind() == VY->getVectorKind()); |
13377 | return Ctx.getVectorType(vecType: getCommonElementType(Ctx, X: VX, Y: VY), |
13378 | NumElts: VX->getNumElements(), VecKind: VX->getVectorKind()); |
13379 | } |
13380 | case Type::ExtVector: { |
13381 | const auto *VX = cast<ExtVectorType>(Val: X), *VY = cast<ExtVectorType>(Val: Y); |
13382 | assert(VX->getNumElements() == VY->getNumElements()); |
13383 | return Ctx.getExtVectorType(vecType: getCommonElementType(Ctx, X: VX, Y: VY), |
13384 | NumElts: VX->getNumElements()); |
13385 | } |
13386 | case Type::DependentSizedExtVector: { |
13387 | const auto *VX = cast<DependentSizedExtVectorType>(Val: X), |
13388 | *VY = cast<DependentSizedExtVectorType>(Val: Y); |
13389 | return Ctx.getDependentSizedExtVectorType(vecType: getCommonElementType(Ctx, X: VX, Y: VY), |
13390 | SizeExpr: getCommonSizeExpr(Ctx, X: VX, Y: VY), |
13391 | AttrLoc: getCommonAttrLoc(X: VX, Y: VY)); |
13392 | } |
13393 | case Type::DependentVector: { |
13394 | const auto *VX = cast<DependentVectorType>(Val: X), |
13395 | *VY = cast<DependentVectorType>(Val: Y); |
13396 | assert(VX->getVectorKind() == VY->getVectorKind()); |
13397 | return Ctx.getDependentVectorType( |
13398 | VecType: getCommonElementType(Ctx, X: VX, Y: VY), SizeExpr: getCommonSizeExpr(Ctx, X: VX, Y: VY), |
13399 | AttrLoc: getCommonAttrLoc(X: VX, Y: VY), VecKind: VX->getVectorKind()); |
13400 | } |
13401 | case Type::InjectedClassName: { |
13402 | const auto *IX = cast<InjectedClassNameType>(Val: X), |
13403 | *IY = cast<InjectedClassNameType>(Val: Y); |
13404 | return Ctx.getInjectedClassNameType( |
13405 | Decl: getCommonDeclChecked(X: IX->getDecl(), Y: IY->getDecl()), |
13406 | TST: Ctx.getCommonSugaredType(X: IX->getInjectedSpecializationType(), |
13407 | Y: IY->getInjectedSpecializationType())); |
13408 | } |
13409 | case Type::TemplateSpecialization: { |
13410 | const auto *TX = cast<TemplateSpecializationType>(Val: X), |
13411 | *TY = cast<TemplateSpecializationType>(Val: Y); |
13412 | auto As = getCommonTemplateArguments(Ctx, Xs: TX->template_arguments(), |
13413 | Ys: TY->template_arguments()); |
13414 | return Ctx.getTemplateSpecializationType( |
13415 | Template: ::getCommonTemplateNameChecked(Ctx, X: TX->getTemplateName(), |
13416 | Y: TY->getTemplateName()), |
13417 | Args: As, Underlying: X->getCanonicalTypeInternal()); |
13418 | } |
13419 | case Type::Decltype: { |
13420 | const auto *DX = cast<DecltypeType>(Val: X); |
13421 | [[maybe_unused]] const auto *DY = cast<DecltypeType>(Val: Y); |
13422 | assert(DX->isDependentType()); |
13423 | assert(DY->isDependentType()); |
13424 | assert(Ctx.hasSameExpr(DX->getUnderlyingExpr(), DY->getUnderlyingExpr())); |
13425 | // As Decltype is not uniqued, building a common type would be wasteful. |
13426 | return QualType(DX, 0); |
13427 | } |
13428 | case Type::PackIndexing: { |
13429 | const auto *DX = cast<PackIndexingType>(Val: X); |
13430 | [[maybe_unused]] const auto *DY = cast<PackIndexingType>(Val: Y); |
13431 | assert(DX->isDependentType()); |
13432 | assert(DY->isDependentType()); |
13433 | assert(Ctx.hasSameExpr(DX->getIndexExpr(), DY->getIndexExpr())); |
13434 | return QualType(DX, 0); |
13435 | } |
13436 | case Type::DependentName: { |
13437 | const auto *NX = cast<DependentNameType>(Val: X), |
13438 | *NY = cast<DependentNameType>(Val: Y); |
13439 | assert(NX->getIdentifier() == NY->getIdentifier()); |
13440 | return Ctx.getDependentNameType( |
13441 | Keyword: getCommonTypeKeyword(X: NX, Y: NY), NNS: getCommonNNS(Ctx, X: NX, Y: NY), |
13442 | Name: NX->getIdentifier(), Canon: NX->getCanonicalTypeInternal()); |
13443 | } |
13444 | case Type::DependentTemplateSpecialization: { |
13445 | const auto *TX = cast<DependentTemplateSpecializationType>(Val: X), |
13446 | *TY = cast<DependentTemplateSpecializationType>(Val: Y); |
13447 | assert(TX->getIdentifier() == TY->getIdentifier()); |
13448 | auto As = getCommonTemplateArguments(Ctx, Xs: TX->template_arguments(), |
13449 | Ys: TY->template_arguments()); |
13450 | return Ctx.getDependentTemplateSpecializationType( |
13451 | Keyword: getCommonTypeKeyword(X: TX, Y: TY), NNS: getCommonNNS(Ctx, X: TX, Y: TY), |
13452 | Name: TX->getIdentifier(), Args: As); |
13453 | } |
13454 | case Type::UnaryTransform: { |
13455 | const auto *TX = cast<UnaryTransformType>(Val: X), |
13456 | *TY = cast<UnaryTransformType>(Val: Y); |
13457 | assert(TX->getUTTKind() == TY->getUTTKind()); |
13458 | return Ctx.getUnaryTransformType( |
13459 | BaseType: Ctx.getCommonSugaredType(X: TX->getBaseType(), Y: TY->getBaseType()), |
13460 | UnderlyingType: Ctx.getCommonSugaredType(X: TX->getUnderlyingType(), |
13461 | Y: TY->getUnderlyingType()), |
13462 | Kind: TX->getUTTKind()); |
13463 | } |
13464 | case Type::PackExpansion: { |
13465 | const auto *PX = cast<PackExpansionType>(Val: X), |
13466 | *PY = cast<PackExpansionType>(Val: Y); |
13467 | assert(PX->getNumExpansions() == PY->getNumExpansions()); |
13468 | return Ctx.getPackExpansionType( |
13469 | Pattern: Ctx.getCommonSugaredType(X: PX->getPattern(), Y: PY->getPattern()), |
13470 | NumExpansions: PX->getNumExpansions(), ExpectPackInType: false); |
13471 | } |
13472 | case Type::Pipe: { |
13473 | const auto *PX = cast<PipeType>(Val: X), *PY = cast<PipeType>(Val: Y); |
13474 | assert(PX->isReadOnly() == PY->isReadOnly()); |
13475 | auto MP = PX->isReadOnly() ? &ASTContext::getReadPipeType |
13476 | : &ASTContext::getWritePipeType; |
13477 | return (Ctx.*MP)(getCommonElementType(Ctx, X: PX, Y: PY)); |
13478 | } |
13479 | case Type::TemplateTypeParm: { |
13480 | const auto *TX = cast<TemplateTypeParmType>(Val: X), |
13481 | *TY = cast<TemplateTypeParmType>(Val: Y); |
13482 | assert(TX->getDepth() == TY->getDepth()); |
13483 | assert(TX->getIndex() == TY->getIndex()); |
13484 | assert(TX->isParameterPack() == TY->isParameterPack()); |
13485 | return Ctx.getTemplateTypeParmType( |
13486 | Depth: TX->getDepth(), Index: TX->getIndex(), ParameterPack: TX->isParameterPack(), |
13487 | TTPDecl: getCommonDecl(X: TX->getDecl(), Y: TY->getDecl())); |
13488 | } |
13489 | } |
13490 | llvm_unreachable("Unknown Type Class" ); |
13491 | } |
13492 | |
13493 | static QualType getCommonSugarTypeNode(ASTContext &Ctx, const Type *X, |
13494 | const Type *Y, |
13495 | SplitQualType Underlying) { |
13496 | Type::TypeClass TC = X->getTypeClass(); |
13497 | if (TC != Y->getTypeClass()) |
13498 | return QualType(); |
13499 | switch (TC) { |
13500 | #define UNEXPECTED_TYPE(Class, Kind) \ |
13501 | case Type::Class: \ |
13502 | llvm_unreachable("Unexpected " Kind ": " #Class); |
13503 | #define TYPE(Class, Base) |
13504 | #define DEPENDENT_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "dependent") |
13505 | #include "clang/AST/TypeNodes.inc" |
13506 | |
13507 | #define CANONICAL_TYPE(Class) UNEXPECTED_TYPE(Class, "canonical") |
13508 | CANONICAL_TYPE(Atomic) |
13509 | CANONICAL_TYPE(BitInt) |
13510 | CANONICAL_TYPE(BlockPointer) |
13511 | CANONICAL_TYPE(Builtin) |
13512 | CANONICAL_TYPE(Complex) |
13513 | CANONICAL_TYPE(ConstantArray) |
13514 | CANONICAL_TYPE(ArrayParameter) |
13515 | CANONICAL_TYPE(ConstantMatrix) |
13516 | CANONICAL_TYPE(Enum) |
13517 | CANONICAL_TYPE(ExtVector) |
13518 | CANONICAL_TYPE(FunctionNoProto) |
13519 | CANONICAL_TYPE(FunctionProto) |
13520 | CANONICAL_TYPE(IncompleteArray) |
13521 | CANONICAL_TYPE(LValueReference) |
13522 | CANONICAL_TYPE(MemberPointer) |
13523 | CANONICAL_TYPE(ObjCInterface) |
13524 | CANONICAL_TYPE(ObjCObject) |
13525 | CANONICAL_TYPE(ObjCObjectPointer) |
13526 | CANONICAL_TYPE(Pipe) |
13527 | CANONICAL_TYPE(Pointer) |
13528 | CANONICAL_TYPE(Record) |
13529 | CANONICAL_TYPE(RValueReference) |
13530 | CANONICAL_TYPE(VariableArray) |
13531 | CANONICAL_TYPE(Vector) |
13532 | #undef CANONICAL_TYPE |
13533 | |
13534 | #undef UNEXPECTED_TYPE |
13535 | |
13536 | case Type::Adjusted: { |
13537 | const auto *AX = cast<AdjustedType>(Val: X), *AY = cast<AdjustedType>(Val: Y); |
13538 | QualType OX = AX->getOriginalType(), OY = AY->getOriginalType(); |
13539 | if (!Ctx.hasSameType(T1: OX, T2: OY)) |
13540 | return QualType(); |
13541 | // FIXME: It's inefficient to have to unify the original types. |
13542 | return Ctx.getAdjustedType(Orig: Ctx.getCommonSugaredType(X: OX, Y: OY), |
13543 | New: Ctx.getQualifiedType(split: Underlying)); |
13544 | } |
13545 | case Type::Decayed: { |
13546 | const auto *DX = cast<DecayedType>(Val: X), *DY = cast<DecayedType>(Val: Y); |
13547 | QualType OX = DX->getOriginalType(), OY = DY->getOriginalType(); |
13548 | if (!Ctx.hasSameType(T1: OX, T2: OY)) |
13549 | return QualType(); |
13550 | // FIXME: It's inefficient to have to unify the original types. |
13551 | return Ctx.getDecayedType(Orig: Ctx.getCommonSugaredType(X: OX, Y: OY), |
13552 | Decayed: Ctx.getQualifiedType(split: Underlying)); |
13553 | } |
13554 | case Type::Attributed: { |
13555 | const auto *AX = cast<AttributedType>(Val: X), *AY = cast<AttributedType>(Val: Y); |
13556 | AttributedType::Kind Kind = AX->getAttrKind(); |
13557 | if (Kind != AY->getAttrKind()) |
13558 | return QualType(); |
13559 | QualType MX = AX->getModifiedType(), MY = AY->getModifiedType(); |
13560 | if (!Ctx.hasSameType(T1: MX, T2: MY)) |
13561 | return QualType(); |
13562 | // FIXME: It's inefficient to have to unify the modified types. |
13563 | return Ctx.getAttributedType(attrKind: Kind, modifiedType: Ctx.getCommonSugaredType(X: MX, Y: MY), |
13564 | equivalentType: Ctx.getQualifiedType(split: Underlying)); |
13565 | } |
13566 | case Type::BTFTagAttributed: { |
13567 | const auto *BX = cast<BTFTagAttributedType>(Val: X); |
13568 | const BTFTypeTagAttr *AX = BX->getAttr(); |
13569 | // The attribute is not uniqued, so just compare the tag. |
13570 | if (AX->getBTFTypeTag() != |
13571 | cast<BTFTagAttributedType>(Val: Y)->getAttr()->getBTFTypeTag()) |
13572 | return QualType(); |
13573 | return Ctx.getBTFTagAttributedType(BTFAttr: AX, Wrapped: Ctx.getQualifiedType(split: Underlying)); |
13574 | } |
13575 | case Type::Auto: { |
13576 | const auto *AX = cast<AutoType>(Val: X), *AY = cast<AutoType>(Val: Y); |
13577 | |
13578 | AutoTypeKeyword KW = AX->getKeyword(); |
13579 | if (KW != AY->getKeyword()) |
13580 | return QualType(); |
13581 | |
13582 | ConceptDecl *CD = ::getCommonDecl(X: AX->getTypeConstraintConcept(), |
13583 | Y: AY->getTypeConstraintConcept()); |
13584 | SmallVector<TemplateArgument, 8> As; |
13585 | if (CD && |
13586 | getCommonTemplateArguments(Ctx, R&: As, Xs: AX->getTypeConstraintArguments(), |
13587 | Ys: AY->getTypeConstraintArguments())) { |
13588 | CD = nullptr; // The arguments differ, so make it unconstrained. |
13589 | As.clear(); |
13590 | } |
13591 | |
13592 | // Both auto types can't be dependent, otherwise they wouldn't have been |
13593 | // sugar. This implies they can't contain unexpanded packs either. |
13594 | return Ctx.getAutoType(DeducedType: Ctx.getQualifiedType(split: Underlying), Keyword: AX->getKeyword(), |
13595 | /*IsDependent=*/false, /*IsPack=*/false, TypeConstraintConcept: CD, TypeConstraintArgs: As); |
13596 | } |
13597 | case Type::PackIndexing: |
13598 | case Type::Decltype: |
13599 | return QualType(); |
13600 | case Type::DeducedTemplateSpecialization: |
13601 | // FIXME: Try to merge these. |
13602 | return QualType(); |
13603 | |
13604 | case Type::Elaborated: { |
13605 | const auto *EX = cast<ElaboratedType>(Val: X), *EY = cast<ElaboratedType>(Val: Y); |
13606 | return Ctx.getElaboratedType( |
13607 | Keyword: ::getCommonTypeKeyword(X: EX, Y: EY), NNS: ::getCommonNNS(Ctx, X: EX, Y: EY), |
13608 | NamedType: Ctx.getQualifiedType(split: Underlying), |
13609 | OwnedTagDecl: ::getCommonDecl(X: EX->getOwnedTagDecl(), Y: EY->getOwnedTagDecl())); |
13610 | } |
13611 | case Type::MacroQualified: { |
13612 | const auto *MX = cast<MacroQualifiedType>(Val: X), |
13613 | *MY = cast<MacroQualifiedType>(Val: Y); |
13614 | const IdentifierInfo *IX = MX->getMacroIdentifier(); |
13615 | if (IX != MY->getMacroIdentifier()) |
13616 | return QualType(); |
13617 | return Ctx.getMacroQualifiedType(UnderlyingTy: Ctx.getQualifiedType(split: Underlying), MacroII: IX); |
13618 | } |
13619 | case Type::SubstTemplateTypeParm: { |
13620 | const auto *SX = cast<SubstTemplateTypeParmType>(Val: X), |
13621 | *SY = cast<SubstTemplateTypeParmType>(Val: Y); |
13622 | Decl *CD = |
13623 | ::getCommonDecl(X: SX->getAssociatedDecl(), Y: SY->getAssociatedDecl()); |
13624 | if (!CD) |
13625 | return QualType(); |
13626 | unsigned Index = SX->getIndex(); |
13627 | if (Index != SY->getIndex()) |
13628 | return QualType(); |
13629 | auto PackIndex = SX->getPackIndex(); |
13630 | if (PackIndex != SY->getPackIndex()) |
13631 | return QualType(); |
13632 | return Ctx.getSubstTemplateTypeParmType(Replacement: Ctx.getQualifiedType(split: Underlying), |
13633 | AssociatedDecl: CD, Index, PackIndex); |
13634 | } |
13635 | case Type::ObjCTypeParam: |
13636 | // FIXME: Try to merge these. |
13637 | return QualType(); |
13638 | case Type::Paren: |
13639 | return Ctx.getParenType(InnerType: Ctx.getQualifiedType(split: Underlying)); |
13640 | |
13641 | case Type::TemplateSpecialization: { |
13642 | const auto *TX = cast<TemplateSpecializationType>(Val: X), |
13643 | *TY = cast<TemplateSpecializationType>(Val: Y); |
13644 | TemplateName CTN = ::getCommonTemplateName(Ctx, X: TX->getTemplateName(), |
13645 | Y: TY->getTemplateName()); |
13646 | if (!CTN.getAsVoidPointer()) |
13647 | return QualType(); |
13648 | SmallVector<TemplateArgument, 8> Args; |
13649 | if (getCommonTemplateArguments(Ctx, R&: Args, Xs: TX->template_arguments(), |
13650 | Ys: TY->template_arguments())) |
13651 | return QualType(); |
13652 | return Ctx.getTemplateSpecializationType(Template: CTN, Args, |
13653 | Underlying: Ctx.getQualifiedType(split: Underlying)); |
13654 | } |
13655 | case Type::Typedef: { |
13656 | const auto *TX = cast<TypedefType>(Val: X), *TY = cast<TypedefType>(Val: Y); |
13657 | const TypedefNameDecl *CD = ::getCommonDecl(X: TX->getDecl(), Y: TY->getDecl()); |
13658 | if (!CD) |
13659 | return QualType(); |
13660 | return Ctx.getTypedefType(Decl: CD, Underlying: Ctx.getQualifiedType(split: Underlying)); |
13661 | } |
13662 | case Type::TypeOf: { |
13663 | // The common sugar between two typeof expressions, where one is |
13664 | // potentially a typeof_unqual and the other is not, we unify to the |
13665 | // qualified type as that retains the most information along with the type. |
13666 | // We only return a typeof_unqual type when both types are unqual types. |
13667 | TypeOfKind Kind = TypeOfKind::Qualified; |
13668 | if (cast<TypeOfType>(Val: X)->getKind() == cast<TypeOfType>(Val: Y)->getKind() && |
13669 | cast<TypeOfType>(Val: X)->getKind() == TypeOfKind::Unqualified) |
13670 | Kind = TypeOfKind::Unqualified; |
13671 | return Ctx.getTypeOfType(tofType: Ctx.getQualifiedType(split: Underlying), Kind); |
13672 | } |
13673 | case Type::TypeOfExpr: |
13674 | return QualType(); |
13675 | |
13676 | case Type::UnaryTransform: { |
13677 | const auto *UX = cast<UnaryTransformType>(Val: X), |
13678 | *UY = cast<UnaryTransformType>(Val: Y); |
13679 | UnaryTransformType::UTTKind KX = UX->getUTTKind(); |
13680 | if (KX != UY->getUTTKind()) |
13681 | return QualType(); |
13682 | QualType BX = UX->getBaseType(), BY = UY->getBaseType(); |
13683 | if (!Ctx.hasSameType(T1: BX, T2: BY)) |
13684 | return QualType(); |
13685 | // FIXME: It's inefficient to have to unify the base types. |
13686 | return Ctx.getUnaryTransformType(BaseType: Ctx.getCommonSugaredType(X: BX, Y: BY), |
13687 | UnderlyingType: Ctx.getQualifiedType(split: Underlying), Kind: KX); |
13688 | } |
13689 | case Type::Using: { |
13690 | const auto *UX = cast<UsingType>(Val: X), *UY = cast<UsingType>(Val: Y); |
13691 | const UsingShadowDecl *CD = |
13692 | ::getCommonDecl(X: UX->getFoundDecl(), Y: UY->getFoundDecl()); |
13693 | if (!CD) |
13694 | return QualType(); |
13695 | return Ctx.getUsingType(Found: CD, Underlying: Ctx.getQualifiedType(split: Underlying)); |
13696 | } |
13697 | case Type::CountAttributed: { |
13698 | const auto *DX = cast<CountAttributedType>(Val: X), |
13699 | *DY = cast<CountAttributedType>(Val: Y); |
13700 | if (DX->isCountInBytes() != DY->isCountInBytes()) |
13701 | return QualType(); |
13702 | if (DX->isOrNull() != DY->isOrNull()) |
13703 | return QualType(); |
13704 | Expr *CEX = DX->getCountExpr(); |
13705 | Expr *CEY = DY->getCountExpr(); |
13706 | llvm::ArrayRef<clang::TypeCoupledDeclRefInfo> CDX = DX->getCoupledDecls(); |
13707 | if (Ctx.hasSameExpr(X: CEX, Y: CEY)) |
13708 | return Ctx.getCountAttributedType(WrappedTy: Ctx.getQualifiedType(split: Underlying), CountExpr: CEX, |
13709 | CountInBytes: DX->isCountInBytes(), OrNull: DX->isOrNull(), |
13710 | DependentDecls: CDX); |
13711 | if (!CEX->isIntegerConstantExpr(Ctx) || !CEY->isIntegerConstantExpr(Ctx)) |
13712 | return QualType(); |
13713 | // Two declarations with the same integer constant may still differ in their |
13714 | // expression pointers, so we need to evaluate them. |
13715 | llvm::APSInt VX = *CEX->getIntegerConstantExpr(Ctx); |
13716 | llvm::APSInt VY = *CEY->getIntegerConstantExpr(Ctx); |
13717 | if (VX != VY) |
13718 | return QualType(); |
13719 | return Ctx.getCountAttributedType(WrappedTy: Ctx.getQualifiedType(split: Underlying), CountExpr: CEX, |
13720 | CountInBytes: DX->isCountInBytes(), OrNull: DX->isOrNull(), |
13721 | DependentDecls: CDX); |
13722 | } |
13723 | } |
13724 | llvm_unreachable("Unhandled Type Class" ); |
13725 | } |
13726 | |
13727 | static auto unwrapSugar(SplitQualType &T, Qualifiers &QTotal) { |
13728 | SmallVector<SplitQualType, 8> R; |
13729 | while (true) { |
13730 | QTotal.addConsistentQualifiers(qs: T.Quals); |
13731 | QualType NT = T.Ty->getLocallyUnqualifiedSingleStepDesugaredType(); |
13732 | if (NT == QualType(T.Ty, 0)) |
13733 | break; |
13734 | R.push_back(Elt: T); |
13735 | T = NT.split(); |
13736 | } |
13737 | return R; |
13738 | } |
13739 | |
13740 | QualType ASTContext::getCommonSugaredType(QualType X, QualType Y, |
13741 | bool Unqualified) { |
13742 | assert(Unqualified ? hasSameUnqualifiedType(X, Y) : hasSameType(X, Y)); |
13743 | if (X == Y) |
13744 | return X; |
13745 | if (!Unqualified) { |
13746 | if (X.isCanonical()) |
13747 | return X; |
13748 | if (Y.isCanonical()) |
13749 | return Y; |
13750 | } |
13751 | |
13752 | SplitQualType SX = X.split(), SY = Y.split(); |
13753 | Qualifiers QX, QY; |
13754 | // Desugar SX and SY, setting the sugar and qualifiers aside into Xs and Ys, |
13755 | // until we reach their underlying "canonical nodes". Note these are not |
13756 | // necessarily canonical types, as they may still have sugared properties. |
13757 | // QX and QY will store the sum of all qualifiers in Xs and Ys respectively. |
13758 | auto Xs = ::unwrapSugar(T&: SX, QTotal&: QX), Ys = ::unwrapSugar(T&: SY, QTotal&: QY); |
13759 | if (SX.Ty != SY.Ty) { |
13760 | // The canonical nodes differ. Build a common canonical node out of the two, |
13761 | // unifying their sugar. This may recurse back here. |
13762 | SX.Ty = |
13763 | ::getCommonNonSugarTypeNode(Ctx&: *this, X: SX.Ty, QX, Y: SY.Ty, QY).getTypePtr(); |
13764 | } else { |
13765 | // The canonical nodes were identical: We may have desugared too much. |
13766 | // Add any common sugar back in. |
13767 | while (!Xs.empty() && !Ys.empty() && Xs.back().Ty == Ys.back().Ty) { |
13768 | QX -= SX.Quals; |
13769 | QY -= SY.Quals; |
13770 | SX = Xs.pop_back_val(); |
13771 | SY = Ys.pop_back_val(); |
13772 | } |
13773 | } |
13774 | if (Unqualified) |
13775 | QX = Qualifiers::removeCommonQualifiers(L&: QX, R&: QY); |
13776 | else |
13777 | assert(QX == QY); |
13778 | |
13779 | // Even though the remaining sugar nodes in Xs and Ys differ, some may be |
13780 | // related. Walk up these nodes, unifying them and adding the result. |
13781 | while (!Xs.empty() && !Ys.empty()) { |
13782 | auto Underlying = SplitQualType( |
13783 | SX.Ty, Qualifiers::removeCommonQualifiers(L&: SX.Quals, R&: SY.Quals)); |
13784 | SX = Xs.pop_back_val(); |
13785 | SY = Ys.pop_back_val(); |
13786 | SX.Ty = ::getCommonSugarTypeNode(Ctx&: *this, X: SX.Ty, Y: SY.Ty, Underlying) |
13787 | .getTypePtrOrNull(); |
13788 | // Stop at the first pair which is unrelated. |
13789 | if (!SX.Ty) { |
13790 | SX.Ty = Underlying.Ty; |
13791 | break; |
13792 | } |
13793 | QX -= Underlying.Quals; |
13794 | }; |
13795 | |
13796 | // Add back the missing accumulated qualifiers, which were stripped off |
13797 | // with the sugar nodes we could not unify. |
13798 | QualType R = getQualifiedType(T: SX.Ty, Qs: QX); |
13799 | assert(Unqualified ? hasSameUnqualifiedType(R, X) : hasSameType(R, X)); |
13800 | return R; |
13801 | } |
13802 | |
13803 | QualType ASTContext::getCorrespondingUnsaturatedType(QualType Ty) const { |
13804 | assert(Ty->isFixedPointType()); |
13805 | |
13806 | if (Ty->isUnsaturatedFixedPointType()) |
13807 | return Ty; |
13808 | |
13809 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
13810 | default: |
13811 | llvm_unreachable("Not a saturated fixed point type!" ); |
13812 | case BuiltinType::SatShortAccum: |
13813 | return ShortAccumTy; |
13814 | case BuiltinType::SatAccum: |
13815 | return AccumTy; |
13816 | case BuiltinType::SatLongAccum: |
13817 | return LongAccumTy; |
13818 | case BuiltinType::SatUShortAccum: |
13819 | return UnsignedShortAccumTy; |
13820 | case BuiltinType::SatUAccum: |
13821 | return UnsignedAccumTy; |
13822 | case BuiltinType::SatULongAccum: |
13823 | return UnsignedLongAccumTy; |
13824 | case BuiltinType::SatShortFract: |
13825 | return ShortFractTy; |
13826 | case BuiltinType::SatFract: |
13827 | return FractTy; |
13828 | case BuiltinType::SatLongFract: |
13829 | return LongFractTy; |
13830 | case BuiltinType::SatUShortFract: |
13831 | return UnsignedShortFractTy; |
13832 | case BuiltinType::SatUFract: |
13833 | return UnsignedFractTy; |
13834 | case BuiltinType::SatULongFract: |
13835 | return UnsignedLongFractTy; |
13836 | } |
13837 | } |
13838 | |
13839 | QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const { |
13840 | assert(Ty->isFixedPointType()); |
13841 | |
13842 | if (Ty->isSaturatedFixedPointType()) return Ty; |
13843 | |
13844 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
13845 | default: |
13846 | llvm_unreachable("Not a fixed point type!" ); |
13847 | case BuiltinType::ShortAccum: |
13848 | return SatShortAccumTy; |
13849 | case BuiltinType::Accum: |
13850 | return SatAccumTy; |
13851 | case BuiltinType::LongAccum: |
13852 | return SatLongAccumTy; |
13853 | case BuiltinType::UShortAccum: |
13854 | return SatUnsignedShortAccumTy; |
13855 | case BuiltinType::UAccum: |
13856 | return SatUnsignedAccumTy; |
13857 | case BuiltinType::ULongAccum: |
13858 | return SatUnsignedLongAccumTy; |
13859 | case BuiltinType::ShortFract: |
13860 | return SatShortFractTy; |
13861 | case BuiltinType::Fract: |
13862 | return SatFractTy; |
13863 | case BuiltinType::LongFract: |
13864 | return SatLongFractTy; |
13865 | case BuiltinType::UShortFract: |
13866 | return SatUnsignedShortFractTy; |
13867 | case BuiltinType::UFract: |
13868 | return SatUnsignedFractTy; |
13869 | case BuiltinType::ULongFract: |
13870 | return SatUnsignedLongFractTy; |
13871 | } |
13872 | } |
13873 | |
13874 | LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const { |
13875 | if (LangOpts.OpenCL) |
13876 | return getTargetInfo().getOpenCLBuiltinAddressSpace(AS); |
13877 | |
13878 | if (LangOpts.CUDA) |
13879 | return getTargetInfo().getCUDABuiltinAddressSpace(AS); |
13880 | |
13881 | return getLangASFromTargetAS(TargetAS: AS); |
13882 | } |
13883 | |
13884 | // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that |
13885 | // doesn't include ASTContext.h |
13886 | template |
13887 | clang::LazyGenerationalUpdatePtr< |
13888 | const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType |
13889 | clang::LazyGenerationalUpdatePtr< |
13890 | const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue( |
13891 | const clang::ASTContext &Ctx, Decl *Value); |
13892 | |
13893 | unsigned char ASTContext::getFixedPointScale(QualType Ty) const { |
13894 | assert(Ty->isFixedPointType()); |
13895 | |
13896 | const TargetInfo &Target = getTargetInfo(); |
13897 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
13898 | default: |
13899 | llvm_unreachable("Not a fixed point type!" ); |
13900 | case BuiltinType::ShortAccum: |
13901 | case BuiltinType::SatShortAccum: |
13902 | return Target.getShortAccumScale(); |
13903 | case BuiltinType::Accum: |
13904 | case BuiltinType::SatAccum: |
13905 | return Target.getAccumScale(); |
13906 | case BuiltinType::LongAccum: |
13907 | case BuiltinType::SatLongAccum: |
13908 | return Target.getLongAccumScale(); |
13909 | case BuiltinType::UShortAccum: |
13910 | case BuiltinType::SatUShortAccum: |
13911 | return Target.getUnsignedShortAccumScale(); |
13912 | case BuiltinType::UAccum: |
13913 | case BuiltinType::SatUAccum: |
13914 | return Target.getUnsignedAccumScale(); |
13915 | case BuiltinType::ULongAccum: |
13916 | case BuiltinType::SatULongAccum: |
13917 | return Target.getUnsignedLongAccumScale(); |
13918 | case BuiltinType::ShortFract: |
13919 | case BuiltinType::SatShortFract: |
13920 | return Target.getShortFractScale(); |
13921 | case BuiltinType::Fract: |
13922 | case BuiltinType::SatFract: |
13923 | return Target.getFractScale(); |
13924 | case BuiltinType::LongFract: |
13925 | case BuiltinType::SatLongFract: |
13926 | return Target.getLongFractScale(); |
13927 | case BuiltinType::UShortFract: |
13928 | case BuiltinType::SatUShortFract: |
13929 | return Target.getUnsignedShortFractScale(); |
13930 | case BuiltinType::UFract: |
13931 | case BuiltinType::SatUFract: |
13932 | return Target.getUnsignedFractScale(); |
13933 | case BuiltinType::ULongFract: |
13934 | case BuiltinType::SatULongFract: |
13935 | return Target.getUnsignedLongFractScale(); |
13936 | } |
13937 | } |
13938 | |
13939 | unsigned char ASTContext::getFixedPointIBits(QualType Ty) const { |
13940 | assert(Ty->isFixedPointType()); |
13941 | |
13942 | const TargetInfo &Target = getTargetInfo(); |
13943 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
13944 | default: |
13945 | llvm_unreachable("Not a fixed point type!" ); |
13946 | case BuiltinType::ShortAccum: |
13947 | case BuiltinType::SatShortAccum: |
13948 | return Target.getShortAccumIBits(); |
13949 | case BuiltinType::Accum: |
13950 | case BuiltinType::SatAccum: |
13951 | return Target.getAccumIBits(); |
13952 | case BuiltinType::LongAccum: |
13953 | case BuiltinType::SatLongAccum: |
13954 | return Target.getLongAccumIBits(); |
13955 | case BuiltinType::UShortAccum: |
13956 | case BuiltinType::SatUShortAccum: |
13957 | return Target.getUnsignedShortAccumIBits(); |
13958 | case BuiltinType::UAccum: |
13959 | case BuiltinType::SatUAccum: |
13960 | return Target.getUnsignedAccumIBits(); |
13961 | case BuiltinType::ULongAccum: |
13962 | case BuiltinType::SatULongAccum: |
13963 | return Target.getUnsignedLongAccumIBits(); |
13964 | case BuiltinType::ShortFract: |
13965 | case BuiltinType::SatShortFract: |
13966 | case BuiltinType::Fract: |
13967 | case BuiltinType::SatFract: |
13968 | case BuiltinType::LongFract: |
13969 | case BuiltinType::SatLongFract: |
13970 | case BuiltinType::UShortFract: |
13971 | case BuiltinType::SatUShortFract: |
13972 | case BuiltinType::UFract: |
13973 | case BuiltinType::SatUFract: |
13974 | case BuiltinType::ULongFract: |
13975 | case BuiltinType::SatULongFract: |
13976 | return 0; |
13977 | } |
13978 | } |
13979 | |
13980 | llvm::FixedPointSemantics |
13981 | ASTContext::getFixedPointSemantics(QualType Ty) const { |
13982 | assert((Ty->isFixedPointType() || Ty->isIntegerType()) && |
13983 | "Can only get the fixed point semantics for a " |
13984 | "fixed point or integer type." ); |
13985 | if (Ty->isIntegerType()) |
13986 | return llvm::FixedPointSemantics::GetIntegerSemantics( |
13987 | Width: getIntWidth(T: Ty), IsSigned: Ty->isSignedIntegerType()); |
13988 | |
13989 | bool isSigned = Ty->isSignedFixedPointType(); |
13990 | return llvm::FixedPointSemantics( |
13991 | static_cast<unsigned>(getTypeSize(T: Ty)), getFixedPointScale(Ty), isSigned, |
13992 | Ty->isSaturatedFixedPointType(), |
13993 | !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding()); |
13994 | } |
13995 | |
13996 | llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const { |
13997 | assert(Ty->isFixedPointType()); |
13998 | return llvm::APFixedPoint::getMax(Sema: getFixedPointSemantics(Ty)); |
13999 | } |
14000 | |
14001 | llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const { |
14002 | assert(Ty->isFixedPointType()); |
14003 | return llvm::APFixedPoint::getMin(Sema: getFixedPointSemantics(Ty)); |
14004 | } |
14005 | |
14006 | QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const { |
14007 | assert(Ty->isUnsignedFixedPointType() && |
14008 | "Expected unsigned fixed point type" ); |
14009 | |
14010 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
14011 | case BuiltinType::UShortAccum: |
14012 | return ShortAccumTy; |
14013 | case BuiltinType::UAccum: |
14014 | return AccumTy; |
14015 | case BuiltinType::ULongAccum: |
14016 | return LongAccumTy; |
14017 | case BuiltinType::SatUShortAccum: |
14018 | return SatShortAccumTy; |
14019 | case BuiltinType::SatUAccum: |
14020 | return SatAccumTy; |
14021 | case BuiltinType::SatULongAccum: |
14022 | return SatLongAccumTy; |
14023 | case BuiltinType::UShortFract: |
14024 | return ShortFractTy; |
14025 | case BuiltinType::UFract: |
14026 | return FractTy; |
14027 | case BuiltinType::ULongFract: |
14028 | return LongFractTy; |
14029 | case BuiltinType::SatUShortFract: |
14030 | return SatShortFractTy; |
14031 | case BuiltinType::SatUFract: |
14032 | return SatFractTy; |
14033 | case BuiltinType::SatULongFract: |
14034 | return SatLongFractTy; |
14035 | default: |
14036 | llvm_unreachable("Unexpected unsigned fixed point type" ); |
14037 | } |
14038 | } |
14039 | |
14040 | // Given a list of FMV features, return a concatenated list of the |
14041 | // corresponding backend features (which may contain duplicates). |
14042 | static std::vector<std::string> getFMVBackendFeaturesFor( |
14043 | const llvm::SmallVectorImpl<StringRef> &FMVFeatStrings) { |
14044 | std::vector<std::string> BackendFeats; |
14045 | for (StringRef F : FMVFeatStrings) |
14046 | if (auto FMVExt = llvm::AArch64::parseFMVExtension(Extension: F)) |
14047 | for (StringRef F : FMVExt->getImpliedFeatures()) |
14048 | BackendFeats.push_back(x: F.str()); |
14049 | return BackendFeats; |
14050 | } |
14051 | |
14052 | ParsedTargetAttr |
14053 | ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const { |
14054 | assert(TD != nullptr); |
14055 | ParsedTargetAttr ParsedAttr = Target->parseTargetAttr(Str: TD->getFeaturesStr()); |
14056 | |
14057 | llvm::erase_if(C&: ParsedAttr.Features, P: [&](const std::string &Feat) { |
14058 | return !Target->isValidFeatureName(Feature: StringRef{Feat}.substr(Start: 1)); |
14059 | }); |
14060 | return ParsedAttr; |
14061 | } |
14062 | |
14063 | void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, |
14064 | const FunctionDecl *FD) const { |
14065 | if (FD) |
14066 | getFunctionFeatureMap(FeatureMap, GD: GlobalDecl().getWithDecl(D: FD)); |
14067 | else |
14068 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), |
14069 | CPU: Target->getTargetOpts().CPU, |
14070 | FeatureVec: Target->getTargetOpts().Features); |
14071 | } |
14072 | |
14073 | // Fills in the supplied string map with the set of target features for the |
14074 | // passed in function. |
14075 | void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, |
14076 | GlobalDecl GD) const { |
14077 | StringRef TargetCPU = Target->getTargetOpts().CPU; |
14078 | const FunctionDecl *FD = GD.getDecl()->getAsFunction(); |
14079 | if (const auto *TD = FD->getAttr<TargetAttr>()) { |
14080 | ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); |
14081 | |
14082 | // Make a copy of the features as passed on the command line into the |
14083 | // beginning of the additional features from the function to override. |
14084 | // AArch64 handles command line option features in parseTargetAttr(). |
14085 | if (!Target->getTriple().isAArch64()) |
14086 | ParsedAttr.Features.insert( |
14087 | position: ParsedAttr.Features.begin(), |
14088 | first: Target->getTargetOpts().FeaturesAsWritten.begin(), |
14089 | last: Target->getTargetOpts().FeaturesAsWritten.end()); |
14090 | |
14091 | if (ParsedAttr.CPU != "" && Target->isValidCPUName(Name: ParsedAttr.CPU)) |
14092 | TargetCPU = ParsedAttr.CPU; |
14093 | |
14094 | // Now populate the feature map, first with the TargetCPU which is either |
14095 | // the default or a new one from the target attribute string. Then we'll use |
14096 | // the passed in features (FeaturesAsWritten) along with the new ones from |
14097 | // the attribute. |
14098 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), CPU: TargetCPU, |
14099 | FeatureVec: ParsedAttr.Features); |
14100 | } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { |
14101 | llvm::SmallVector<StringRef, 32> FeaturesTmp; |
14102 | Target->getCPUSpecificCPUDispatchFeatures( |
14103 | Name: SD->getCPUName(Index: GD.getMultiVersionIndex())->getName(), Features&: FeaturesTmp); |
14104 | std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); |
14105 | Features.insert(position: Features.begin(), |
14106 | first: Target->getTargetOpts().FeaturesAsWritten.begin(), |
14107 | last: Target->getTargetOpts().FeaturesAsWritten.end()); |
14108 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), CPU: TargetCPU, FeatureVec: Features); |
14109 | } else if (const auto *TC = FD->getAttr<TargetClonesAttr>()) { |
14110 | if (Target->getTriple().isAArch64()) { |
14111 | llvm::SmallVector<StringRef, 8> Feats; |
14112 | TC->getFeatures(Out&: Feats, Index: GD.getMultiVersionIndex()); |
14113 | std::vector<std::string> Features = getFMVBackendFeaturesFor(FMVFeatStrings: Feats); |
14114 | Features.insert(position: Features.begin(), |
14115 | first: Target->getTargetOpts().FeaturesAsWritten.begin(), |
14116 | last: Target->getTargetOpts().FeaturesAsWritten.end()); |
14117 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), CPU: TargetCPU, FeatureVec: Features); |
14118 | } else { |
14119 | std::vector<std::string> Features; |
14120 | StringRef VersionStr = TC->getFeatureStr(Index: GD.getMultiVersionIndex()); |
14121 | if (VersionStr.starts_with(Prefix: "arch=" )) |
14122 | TargetCPU = VersionStr.drop_front(N: sizeof("arch=" ) - 1); |
14123 | else if (VersionStr != "default" ) |
14124 | Features.push_back(x: (StringRef{"+" } + VersionStr).str()); |
14125 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), CPU: TargetCPU, FeatureVec: Features); |
14126 | } |
14127 | } else if (const auto *TV = FD->getAttr<TargetVersionAttr>()) { |
14128 | llvm::SmallVector<StringRef, 8> Feats; |
14129 | TV->getFeatures(Out&: Feats); |
14130 | std::vector<std::string> Features = getFMVBackendFeaturesFor(FMVFeatStrings: Feats); |
14131 | Features.insert(position: Features.begin(), |
14132 | first: Target->getTargetOpts().FeaturesAsWritten.begin(), |
14133 | last: Target->getTargetOpts().FeaturesAsWritten.end()); |
14134 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), CPU: TargetCPU, FeatureVec: Features); |
14135 | } else { |
14136 | FeatureMap = Target->getTargetOpts().FeatureMap; |
14137 | } |
14138 | } |
14139 | |
14140 | OMPTraitInfo &ASTContext::getNewOMPTraitInfo() { |
14141 | OMPTraitInfoVector.emplace_back(Args: new OMPTraitInfo()); |
14142 | return *OMPTraitInfoVector.back(); |
14143 | } |
14144 | |
14145 | const StreamingDiagnostic &clang:: |
14146 | operator<<(const StreamingDiagnostic &DB, |
14147 | const ASTContext::SectionInfo &Section) { |
14148 | if (Section.Decl) |
14149 | return DB << Section.Decl; |
14150 | return DB << "a prior #pragma section" ; |
14151 | } |
14152 | |
14153 | bool ASTContext::mayExternalize(const Decl *D) const { |
14154 | bool IsInternalVar = |
14155 | isa<VarDecl>(Val: D) && |
14156 | basicGVALinkageForVariable(Context: *this, VD: cast<VarDecl>(Val: D)) == GVA_Internal; |
14157 | bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() && |
14158 | !D->getAttr<CUDADeviceAttr>()->isImplicit()) || |
14159 | (D->hasAttr<CUDAConstantAttr>() && |
14160 | !D->getAttr<CUDAConstantAttr>()->isImplicit()); |
14161 | // CUDA/HIP: managed variables need to be externalized since it is |
14162 | // a declaration in IR, therefore cannot have internal linkage. Kernels in |
14163 | // anonymous name space needs to be externalized to avoid duplicate symbols. |
14164 | return (IsInternalVar && |
14165 | (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar)) || |
14166 | (D->hasAttr<CUDAGlobalAttr>() && |
14167 | basicGVALinkageForFunction(Context: *this, FD: cast<FunctionDecl>(Val: D)) == |
14168 | GVA_Internal); |
14169 | } |
14170 | |
14171 | bool ASTContext::shouldExternalize(const Decl *D) const { |
14172 | return mayExternalize(D) && |
14173 | (D->hasAttr<HIPManagedAttr>() || D->hasAttr<CUDAGlobalAttr>() || |
14174 | CUDADeviceVarODRUsedByHost.count(V: cast<VarDecl>(Val: D))); |
14175 | } |
14176 | |
14177 | StringRef ASTContext::getCUIDHash() const { |
14178 | if (!CUIDHash.empty()) |
14179 | return CUIDHash; |
14180 | if (LangOpts.CUID.empty()) |
14181 | return StringRef(); |
14182 | CUIDHash = llvm::utohexstr(X: llvm::MD5Hash(Str: LangOpts.CUID), /*LowerCase=*/true); |
14183 | return CUIDHash; |
14184 | } |
14185 | |
14186 | const CXXRecordDecl * |
14187 | ASTContext::baseForVTableAuthentication(const CXXRecordDecl *ThisClass) { |
14188 | assert(ThisClass); |
14189 | assert(ThisClass->isPolymorphic()); |
14190 | const CXXRecordDecl *PrimaryBase = ThisClass; |
14191 | while (1) { |
14192 | assert(PrimaryBase); |
14193 | assert(PrimaryBase->isPolymorphic()); |
14194 | auto &Layout = getASTRecordLayout(D: PrimaryBase); |
14195 | auto Base = Layout.getPrimaryBase(); |
14196 | if (!Base || Base == PrimaryBase || !Base->isPolymorphic()) |
14197 | break; |
14198 | PrimaryBase = Base; |
14199 | } |
14200 | return PrimaryBase; |
14201 | } |
14202 | |
14203 | bool ASTContext::useAbbreviatedThunkName(GlobalDecl VirtualMethodDecl, |
14204 | StringRef MangledName) { |
14205 | auto *Method = cast<CXXMethodDecl>(Val: VirtualMethodDecl.getDecl()); |
14206 | assert(Method->isVirtual()); |
14207 | bool DefaultIncludesPointerAuth = |
14208 | LangOpts.PointerAuthCalls || LangOpts.PointerAuthIntrinsics; |
14209 | |
14210 | if (!DefaultIncludesPointerAuth) |
14211 | return true; |
14212 | |
14213 | auto Existing = ThunksToBeAbbreviated.find(Val: VirtualMethodDecl); |
14214 | if (Existing != ThunksToBeAbbreviated.end()) |
14215 | return Existing->second.contains(key: MangledName.str()); |
14216 | |
14217 | std::unique_ptr<MangleContext> Mangler(createMangleContext()); |
14218 | llvm::StringMap<llvm::SmallVector<std::string, 2>> Thunks; |
14219 | auto VtableContext = getVTableContext(); |
14220 | if (const auto *ThunkInfos = VtableContext->getThunkInfo(GD: VirtualMethodDecl)) { |
14221 | auto *Destructor = dyn_cast<CXXDestructorDecl>(Val: Method); |
14222 | for (const auto &Thunk : *ThunkInfos) { |
14223 | SmallString<256> ElidedName; |
14224 | llvm::raw_svector_ostream ElidedNameStream(ElidedName); |
14225 | if (Destructor) |
14226 | Mangler->mangleCXXDtorThunk(DD: Destructor, Type: VirtualMethodDecl.getDtorType(), |
14227 | Thunk, /* elideOverrideInfo */ ElideOverrideInfo: true, |
14228 | ElidedNameStream); |
14229 | else |
14230 | Mangler->mangleThunk(MD: Method, Thunk, /* elideOverrideInfo */ ElideOverrideInfo: true, |
14231 | ElidedNameStream); |
14232 | SmallString<256> MangledName; |
14233 | llvm::raw_svector_ostream mangledNameStream(MangledName); |
14234 | if (Destructor) |
14235 | Mangler->mangleCXXDtorThunk(DD: Destructor, Type: VirtualMethodDecl.getDtorType(), |
14236 | Thunk, /* elideOverrideInfo */ ElideOverrideInfo: false, |
14237 | mangledNameStream); |
14238 | else |
14239 | Mangler->mangleThunk(MD: Method, Thunk, /* elideOverrideInfo */ ElideOverrideInfo: false, |
14240 | mangledNameStream); |
14241 | |
14242 | if (Thunks.find(Key: ElidedName) == Thunks.end()) |
14243 | Thunks[ElidedName] = {}; |
14244 | Thunks[ElidedName].push_back(Elt: std::string(MangledName)); |
14245 | } |
14246 | } |
14247 | llvm::StringSet<> SimplifiedThunkNames; |
14248 | for (auto &ThunkList : Thunks) { |
14249 | llvm::sort(C&: ThunkList.second); |
14250 | SimplifiedThunkNames.insert(key: ThunkList.second[0]); |
14251 | } |
14252 | bool Result = SimplifiedThunkNames.contains(key: MangledName); |
14253 | ThunksToBeAbbreviated[VirtualMethodDecl] = std::move(SimplifiedThunkNames); |
14254 | return Result; |
14255 | } |
14256 | |