1 | //===- ASTStructuralEquivalence.cpp ---------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implement StructuralEquivalenceContext class and helper functions |
10 | // for layout matching. |
11 | // |
12 | // The structural equivalence check could have been implemented as a parallel |
13 | // BFS on a pair of graphs. That must have been the original approach at the |
14 | // beginning. |
15 | // Let's consider this simple BFS algorithm from the `s` source: |
16 | // ``` |
17 | // void bfs(Graph G, int s) |
18 | // { |
19 | // Queue<Integer> queue = new Queue<Integer>(); |
20 | // marked[s] = true; // Mark the source |
21 | // queue.enqueue(s); // and put it on the queue. |
22 | // while (!q.isEmpty()) { |
23 | // int v = queue.dequeue(); // Remove next vertex from the queue. |
24 | // for (int w : G.adj(v)) |
25 | // if (!marked[w]) // For every unmarked adjacent vertex, |
26 | // { |
27 | // marked[w] = true; |
28 | // queue.enqueue(w); |
29 | // } |
30 | // } |
31 | // } |
32 | // ``` |
33 | // Indeed, it has it's queue, which holds pairs of nodes, one from each graph, |
34 | // this is the `DeclsToCheck` member. `VisitedDecls` plays the role of the |
35 | // marking (`marked`) functionality above, we use it to check whether we've |
36 | // already seen a pair of nodes. |
37 | // |
38 | // We put in the elements into the queue only in the toplevel decl check |
39 | // function: |
40 | // ``` |
41 | // static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
42 | // Decl *D1, Decl *D2); |
43 | // ``` |
44 | // The `while` loop where we iterate over the children is implemented in |
45 | // `Finish()`. And `Finish` is called only from the two **member** functions |
46 | // which check the equivalency of two Decls or two Types. ASTImporter (and |
47 | // other clients) call only these functions. |
48 | // |
49 | // The `static` implementation functions are called from `Finish`, these push |
50 | // the children nodes to the queue via `static bool |
51 | // IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1, |
52 | // Decl *D2)`. So far so good, this is almost like the BFS. However, if we |
53 | // let a static implementation function to call `Finish` via another **member** |
54 | // function that means we end up with two nested while loops each of them |
55 | // working on the same queue. This is wrong and nobody can reason about it's |
56 | // doing. Thus, static implementation functions must not call the **member** |
57 | // functions. |
58 | // |
59 | //===----------------------------------------------------------------------===// |
60 | |
61 | #include "clang/AST/ASTStructuralEquivalence.h" |
62 | #include "clang/AST/ASTContext.h" |
63 | #include "clang/AST/ASTDiagnostic.h" |
64 | #include "clang/AST/Decl.h" |
65 | #include "clang/AST/DeclBase.h" |
66 | #include "clang/AST/DeclCXX.h" |
67 | #include "clang/AST/DeclFriend.h" |
68 | #include "clang/AST/DeclObjC.h" |
69 | #include "clang/AST/DeclOpenMP.h" |
70 | #include "clang/AST/DeclTemplate.h" |
71 | #include "clang/AST/ExprCXX.h" |
72 | #include "clang/AST/ExprConcepts.h" |
73 | #include "clang/AST/ExprObjC.h" |
74 | #include "clang/AST/ExprOpenMP.h" |
75 | #include "clang/AST/NestedNameSpecifier.h" |
76 | #include "clang/AST/StmtObjC.h" |
77 | #include "clang/AST/StmtOpenACC.h" |
78 | #include "clang/AST/StmtOpenMP.h" |
79 | #include "clang/AST/TemplateBase.h" |
80 | #include "clang/AST/TemplateName.h" |
81 | #include "clang/AST/Type.h" |
82 | #include "clang/Basic/ExceptionSpecificationType.h" |
83 | #include "clang/Basic/IdentifierTable.h" |
84 | #include "clang/Basic/LLVM.h" |
85 | #include "clang/Basic/SourceLocation.h" |
86 | #include "llvm/ADT/APInt.h" |
87 | #include "llvm/ADT/APSInt.h" |
88 | #include "llvm/ADT/StringExtras.h" |
89 | #include "llvm/Support/Casting.h" |
90 | #include "llvm/Support/Compiler.h" |
91 | #include "llvm/Support/ErrorHandling.h" |
92 | #include <cassert> |
93 | #include <optional> |
94 | #include <utility> |
95 | |
96 | using namespace clang; |
97 | |
98 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
99 | QualType T1, QualType T2); |
100 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
101 | Decl *D1, Decl *D2); |
102 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
103 | const Stmt *S1, const Stmt *S2); |
104 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
105 | const TemplateArgument &Arg1, |
106 | const TemplateArgument &Arg2); |
107 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
108 | const TemplateArgumentLoc &Arg1, |
109 | const TemplateArgumentLoc &Arg2); |
110 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
111 | NestedNameSpecifier *NNS1, |
112 | NestedNameSpecifier *NNS2); |
113 | static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, |
114 | const IdentifierInfo *Name2); |
115 | |
116 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
117 | const DeclarationName Name1, |
118 | const DeclarationName Name2) { |
119 | if (Name1.getNameKind() != Name2.getNameKind()) |
120 | return false; |
121 | |
122 | switch (Name1.getNameKind()) { |
123 | |
124 | case DeclarationName::Identifier: |
125 | return IsStructurallyEquivalent(Name1: Name1.getAsIdentifierInfo(), |
126 | Name2: Name2.getAsIdentifierInfo()); |
127 | |
128 | case DeclarationName::CXXConstructorName: |
129 | case DeclarationName::CXXDestructorName: |
130 | case DeclarationName::CXXConversionFunctionName: |
131 | return IsStructurallyEquivalent(Context, T1: Name1.getCXXNameType(), |
132 | T2: Name2.getCXXNameType()); |
133 | |
134 | case DeclarationName::CXXDeductionGuideName: { |
135 | if (!IsStructurallyEquivalent( |
136 | Context, Name1: Name1.getCXXDeductionGuideTemplate()->getDeclName(), |
137 | Name2: Name2.getCXXDeductionGuideTemplate()->getDeclName())) |
138 | return false; |
139 | return IsStructurallyEquivalent(Context, |
140 | D1: Name1.getCXXDeductionGuideTemplate(), |
141 | D2: Name2.getCXXDeductionGuideTemplate()); |
142 | } |
143 | |
144 | case DeclarationName::CXXOperatorName: |
145 | return Name1.getCXXOverloadedOperator() == Name2.getCXXOverloadedOperator(); |
146 | |
147 | case DeclarationName::CXXLiteralOperatorName: |
148 | return IsStructurallyEquivalent(Name1: Name1.getCXXLiteralIdentifier(), |
149 | Name2: Name2.getCXXLiteralIdentifier()); |
150 | |
151 | case DeclarationName::CXXUsingDirective: |
152 | return true; // FIXME When do we consider two using directives equal? |
153 | |
154 | case DeclarationName::ObjCZeroArgSelector: |
155 | case DeclarationName::ObjCOneArgSelector: |
156 | case DeclarationName::ObjCMultiArgSelector: |
157 | return true; // FIXME |
158 | } |
159 | |
160 | llvm_unreachable("Unhandled kind of DeclarationName" ); |
161 | return true; |
162 | } |
163 | |
164 | namespace { |
165 | /// Encapsulates Stmt comparison logic. |
166 | class StmtComparer { |
167 | StructuralEquivalenceContext &Context; |
168 | |
169 | // IsStmtEquivalent overloads. Each overload compares a specific statement |
170 | // and only has to compare the data that is specific to the specific statement |
171 | // class. Should only be called from TraverseStmt. |
172 | |
173 | bool IsStmtEquivalent(const AddrLabelExpr *E1, const AddrLabelExpr *E2) { |
174 | return IsStructurallyEquivalent(Context, D1: E1->getLabel(), D2: E2->getLabel()); |
175 | } |
176 | |
177 | bool IsStmtEquivalent(const AtomicExpr *E1, const AtomicExpr *E2) { |
178 | return E1->getOp() == E2->getOp(); |
179 | } |
180 | |
181 | bool IsStmtEquivalent(const BinaryOperator *E1, const BinaryOperator *E2) { |
182 | return E1->getOpcode() == E2->getOpcode(); |
183 | } |
184 | |
185 | bool IsStmtEquivalent(const CallExpr *E1, const CallExpr *E2) { |
186 | // FIXME: IsStructurallyEquivalent requires non-const Decls. |
187 | Decl *Callee1 = const_cast<Decl *>(E1->getCalleeDecl()); |
188 | Decl *Callee2 = const_cast<Decl *>(E2->getCalleeDecl()); |
189 | |
190 | // Compare whether both calls know their callee. |
191 | if (static_cast<bool>(Callee1) != static_cast<bool>(Callee2)) |
192 | return false; |
193 | |
194 | // Both calls have no callee, so nothing to do. |
195 | if (!static_cast<bool>(Callee1)) |
196 | return true; |
197 | |
198 | assert(Callee2); |
199 | return IsStructurallyEquivalent(Context, D1: Callee1, D2: Callee2); |
200 | } |
201 | |
202 | bool IsStmtEquivalent(const CharacterLiteral *E1, |
203 | const CharacterLiteral *E2) { |
204 | return E1->getValue() == E2->getValue() && E1->getKind() == E2->getKind(); |
205 | } |
206 | |
207 | bool IsStmtEquivalent(const ChooseExpr *E1, const ChooseExpr *E2) { |
208 | return true; // Semantics only depend on children. |
209 | } |
210 | |
211 | bool IsStmtEquivalent(const CompoundStmt *E1, const CompoundStmt *E2) { |
212 | // Number of children is actually checked by the generic children comparison |
213 | // code, but a CompoundStmt is one of the few statements where the number of |
214 | // children frequently differs and the number of statements is also always |
215 | // precomputed. Directly comparing the number of children here is thus |
216 | // just an optimization. |
217 | return E1->size() == E2->size(); |
218 | } |
219 | |
220 | bool IsStmtEquivalent(const DeclRefExpr *DRE1, const DeclRefExpr *DRE2) { |
221 | const ValueDecl *Decl1 = DRE1->getDecl(); |
222 | const ValueDecl *Decl2 = DRE2->getDecl(); |
223 | if (!Decl1 || !Decl2) |
224 | return false; |
225 | return IsStructurallyEquivalent(Context, D1: const_cast<ValueDecl *>(Decl1), |
226 | D2: const_cast<ValueDecl *>(Decl2)); |
227 | } |
228 | |
229 | bool IsStmtEquivalent(const DependentScopeDeclRefExpr *DE1, |
230 | const DependentScopeDeclRefExpr *DE2) { |
231 | if (!IsStructurallyEquivalent(Context, Name1: DE1->getDeclName(), |
232 | Name2: DE2->getDeclName())) |
233 | return false; |
234 | return IsStructurallyEquivalent(Context, NNS1: DE1->getQualifier(), |
235 | NNS2: DE2->getQualifier()); |
236 | } |
237 | |
238 | bool IsStmtEquivalent(const Expr *E1, const Expr *E2) { |
239 | return IsStructurallyEquivalent(Context, T1: E1->getType(), T2: E2->getType()); |
240 | } |
241 | |
242 | bool IsStmtEquivalent(const ExpressionTraitExpr *E1, |
243 | const ExpressionTraitExpr *E2) { |
244 | return E1->getTrait() == E2->getTrait() && E1->getValue() == E2->getValue(); |
245 | } |
246 | |
247 | bool IsStmtEquivalent(const FloatingLiteral *E1, const FloatingLiteral *E2) { |
248 | return E1->isExact() == E2->isExact() && E1->getValue() == E2->getValue(); |
249 | } |
250 | |
251 | bool IsStmtEquivalent(const GenericSelectionExpr *E1, |
252 | const GenericSelectionExpr *E2) { |
253 | for (auto Pair : zip_longest(t: E1->getAssocTypeSourceInfos(), |
254 | u: E2->getAssocTypeSourceInfos())) { |
255 | std::optional<TypeSourceInfo *> Child1 = std::get<0>(t&: Pair); |
256 | std::optional<TypeSourceInfo *> Child2 = std::get<1>(t&: Pair); |
257 | // Skip this case if there are a different number of associated types. |
258 | if (!Child1 || !Child2) |
259 | return false; |
260 | |
261 | if (!IsStructurallyEquivalent(Context, T1: (*Child1)->getType(), |
262 | T2: (*Child2)->getType())) |
263 | return false; |
264 | } |
265 | |
266 | return true; |
267 | } |
268 | |
269 | bool IsStmtEquivalent(const ImplicitCastExpr *CastE1, |
270 | const ImplicitCastExpr *CastE2) { |
271 | return IsStructurallyEquivalent(Context, T1: CastE1->getType(), |
272 | T2: CastE2->getType()); |
273 | } |
274 | |
275 | bool IsStmtEquivalent(const IntegerLiteral *E1, const IntegerLiteral *E2) { |
276 | return E1->getValue() == E2->getValue(); |
277 | } |
278 | |
279 | bool IsStmtEquivalent(const MemberExpr *E1, const MemberExpr *E2) { |
280 | return IsStructurallyEquivalent(Context, D1: E1->getFoundDecl(), |
281 | D2: E2->getFoundDecl()); |
282 | } |
283 | |
284 | bool IsStmtEquivalent(const ObjCStringLiteral *E1, |
285 | const ObjCStringLiteral *E2) { |
286 | // Just wraps a StringLiteral child. |
287 | return true; |
288 | } |
289 | |
290 | bool IsStmtEquivalent(const Stmt *S1, const Stmt *S2) { return true; } |
291 | |
292 | bool IsStmtEquivalent(const GotoStmt *S1, const GotoStmt *S2) { |
293 | LabelDecl *L1 = S1->getLabel(); |
294 | LabelDecl *L2 = S2->getLabel(); |
295 | if (!L1 || !L2) |
296 | return L1 == L2; |
297 | |
298 | IdentifierInfo *Name1 = L1->getIdentifier(); |
299 | IdentifierInfo *Name2 = L2->getIdentifier(); |
300 | return ::IsStructurallyEquivalent(Name1, Name2); |
301 | } |
302 | |
303 | bool IsStmtEquivalent(const SourceLocExpr *E1, const SourceLocExpr *E2) { |
304 | return E1->getIdentKind() == E2->getIdentKind(); |
305 | } |
306 | |
307 | bool IsStmtEquivalent(const StmtExpr *E1, const StmtExpr *E2) { |
308 | return E1->getTemplateDepth() == E2->getTemplateDepth(); |
309 | } |
310 | |
311 | bool IsStmtEquivalent(const StringLiteral *E1, const StringLiteral *E2) { |
312 | return E1->getBytes() == E2->getBytes(); |
313 | } |
314 | |
315 | bool IsStmtEquivalent(const SubstNonTypeTemplateParmExpr *E1, |
316 | const SubstNonTypeTemplateParmExpr *E2) { |
317 | if (!IsStructurallyEquivalent(Context, D1: E1->getAssociatedDecl(), |
318 | D2: E2->getAssociatedDecl())) |
319 | return false; |
320 | if (E1->getIndex() != E2->getIndex()) |
321 | return false; |
322 | if (E1->getPackIndex() != E2->getPackIndex()) |
323 | return false; |
324 | return true; |
325 | } |
326 | |
327 | bool IsStmtEquivalent(const SubstNonTypeTemplateParmPackExpr *E1, |
328 | const SubstNonTypeTemplateParmPackExpr *E2) { |
329 | return IsStructurallyEquivalent(Context, Arg1: E1->getArgumentPack(), |
330 | Arg2: E2->getArgumentPack()); |
331 | } |
332 | |
333 | bool IsStmtEquivalent(const TypeTraitExpr *E1, const TypeTraitExpr *E2) { |
334 | if (E1->getTrait() != E2->getTrait()) |
335 | return false; |
336 | |
337 | for (auto Pair : zip_longest(t: E1->getArgs(), u: E2->getArgs())) { |
338 | std::optional<TypeSourceInfo *> Child1 = std::get<0>(t&: Pair); |
339 | std::optional<TypeSourceInfo *> Child2 = std::get<1>(t&: Pair); |
340 | // Different number of args. |
341 | if (!Child1 || !Child2) |
342 | return false; |
343 | |
344 | if (!IsStructurallyEquivalent(Context, T1: (*Child1)->getType(), |
345 | T2: (*Child2)->getType())) |
346 | return false; |
347 | } |
348 | return true; |
349 | } |
350 | |
351 | bool IsStmtEquivalent(const CXXDependentScopeMemberExpr *E1, |
352 | const CXXDependentScopeMemberExpr *E2) { |
353 | if (!IsStructurallyEquivalent(Context, Name1: E1->getMember(), Name2: E2->getMember())) { |
354 | return false; |
355 | } |
356 | return IsStructurallyEquivalent(Context, T1: E1->getBaseType(), |
357 | T2: E2->getBaseType()); |
358 | } |
359 | |
360 | bool IsStmtEquivalent(const UnaryExprOrTypeTraitExpr *E1, |
361 | const UnaryExprOrTypeTraitExpr *E2) { |
362 | if (E1->getKind() != E2->getKind()) |
363 | return false; |
364 | return IsStructurallyEquivalent(Context, T1: E1->getTypeOfArgument(), |
365 | T2: E2->getTypeOfArgument()); |
366 | } |
367 | |
368 | bool IsStmtEquivalent(const UnaryOperator *E1, const UnaryOperator *E2) { |
369 | return E1->getOpcode() == E2->getOpcode(); |
370 | } |
371 | |
372 | bool IsStmtEquivalent(const VAArgExpr *E1, const VAArgExpr *E2) { |
373 | // Semantics only depend on children. |
374 | return true; |
375 | } |
376 | |
377 | bool IsStmtEquivalent(const OverloadExpr *E1, const OverloadExpr *E2) { |
378 | if (!IsStructurallyEquivalent(Context, Name1: E1->getName(), Name2: E2->getName())) |
379 | return false; |
380 | |
381 | if (static_cast<bool>(E1->getQualifier()) != |
382 | static_cast<bool>(E2->getQualifier())) |
383 | return false; |
384 | if (E1->getQualifier() && |
385 | !IsStructurallyEquivalent(Context, NNS1: E1->getQualifier(), |
386 | NNS2: E2->getQualifier())) |
387 | return false; |
388 | |
389 | if (E1->getNumTemplateArgs() != E2->getNumTemplateArgs()) |
390 | return false; |
391 | const TemplateArgumentLoc *Args1 = E1->getTemplateArgs(); |
392 | const TemplateArgumentLoc *Args2 = E2->getTemplateArgs(); |
393 | for (unsigned int ArgI = 0, ArgN = E1->getNumTemplateArgs(); ArgI < ArgN; |
394 | ++ArgI) |
395 | if (!IsStructurallyEquivalent(Context, Arg1: Args1[ArgI], Arg2: Args2[ArgI])) |
396 | return false; |
397 | |
398 | return true; |
399 | } |
400 | |
401 | bool IsStmtEquivalent(const CXXBoolLiteralExpr *E1, const CXXBoolLiteralExpr *E2) { |
402 | return E1->getValue() == E2->getValue(); |
403 | } |
404 | |
405 | /// End point of the traversal chain. |
406 | bool TraverseStmt(const Stmt *S1, const Stmt *S2) { return true; } |
407 | |
408 | // Create traversal methods that traverse the class hierarchy and return |
409 | // the accumulated result of the comparison. Each TraverseStmt overload |
410 | // calls the TraverseStmt overload of the parent class. For example, |
411 | // the TraverseStmt overload for 'BinaryOperator' calls the TraverseStmt |
412 | // overload of 'Expr' which then calls the overload for 'Stmt'. |
413 | #define STMT(CLASS, PARENT) \ |
414 | bool TraverseStmt(const CLASS *S1, const CLASS *S2) { \ |
415 | if (!TraverseStmt(static_cast<const PARENT *>(S1), \ |
416 | static_cast<const PARENT *>(S2))) \ |
417 | return false; \ |
418 | return IsStmtEquivalent(S1, S2); \ |
419 | } |
420 | #include "clang/AST/StmtNodes.inc" |
421 | |
422 | public: |
423 | StmtComparer(StructuralEquivalenceContext &C) : Context(C) {} |
424 | |
425 | /// Determine whether two statements are equivalent. The statements have to |
426 | /// be of the same kind. The children of the statements and their properties |
427 | /// are not compared by this function. |
428 | bool IsEquivalent(const Stmt *S1, const Stmt *S2) { |
429 | if (S1->getStmtClass() != S2->getStmtClass()) |
430 | return false; |
431 | |
432 | // Each TraverseStmt walks the class hierarchy from the leaf class to |
433 | // the root class 'Stmt' (e.g. 'BinaryOperator' -> 'Expr' -> 'Stmt'). Cast |
434 | // the Stmt we have here to its specific subclass so that we call the |
435 | // overload that walks the whole class hierarchy from leaf to root (e.g., |
436 | // cast to 'BinaryOperator' so that 'Expr' and 'Stmt' is traversed). |
437 | switch (S1->getStmtClass()) { |
438 | case Stmt::NoStmtClass: |
439 | llvm_unreachable("Can't traverse NoStmtClass" ); |
440 | #define STMT(CLASS, PARENT) \ |
441 | case Stmt::StmtClass::CLASS##Class: \ |
442 | return TraverseStmt(static_cast<const CLASS *>(S1), \ |
443 | static_cast<const CLASS *>(S2)); |
444 | #define ABSTRACT_STMT(S) |
445 | #include "clang/AST/StmtNodes.inc" |
446 | } |
447 | llvm_unreachable("Invalid statement kind" ); |
448 | } |
449 | }; |
450 | } // namespace |
451 | |
452 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
453 | const UnaryOperator *E1, |
454 | const CXXOperatorCallExpr *E2) { |
455 | return UnaryOperator::getOverloadedOperator(Opc: E1->getOpcode()) == |
456 | E2->getOperator() && |
457 | IsStructurallyEquivalent(Context, S1: E1->getSubExpr(), S2: E2->getArg(Arg: 0)); |
458 | } |
459 | |
460 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
461 | const CXXOperatorCallExpr *E1, |
462 | const UnaryOperator *E2) { |
463 | return E1->getOperator() == |
464 | UnaryOperator::getOverloadedOperator(Opc: E2->getOpcode()) && |
465 | IsStructurallyEquivalent(Context, S1: E1->getArg(Arg: 0), S2: E2->getSubExpr()); |
466 | } |
467 | |
468 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
469 | const BinaryOperator *E1, |
470 | const CXXOperatorCallExpr *E2) { |
471 | return BinaryOperator::getOverloadedOperator(Opc: E1->getOpcode()) == |
472 | E2->getOperator() && |
473 | IsStructurallyEquivalent(Context, S1: E1->getLHS(), S2: E2->getArg(Arg: 0)) && |
474 | IsStructurallyEquivalent(Context, S1: E1->getRHS(), S2: E2->getArg(Arg: 1)); |
475 | } |
476 | |
477 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
478 | const CXXOperatorCallExpr *E1, |
479 | const BinaryOperator *E2) { |
480 | return E1->getOperator() == |
481 | BinaryOperator::getOverloadedOperator(Opc: E2->getOpcode()) && |
482 | IsStructurallyEquivalent(Context, S1: E1->getArg(Arg: 0), S2: E2->getLHS()) && |
483 | IsStructurallyEquivalent(Context, S1: E1->getArg(Arg: 1), S2: E2->getRHS()); |
484 | } |
485 | |
486 | /// Determine structural equivalence of two statements. |
487 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
488 | const Stmt *S1, const Stmt *S2) { |
489 | if (!S1 || !S2) |
490 | return S1 == S2; |
491 | |
492 | // Check for statements with similar syntax but different AST. |
493 | // A UnaryOperator node is more lightweight than a CXXOperatorCallExpr node. |
494 | // The more heavyweight node is only created if the definition-time name |
495 | // lookup had any results. The lookup results are stored CXXOperatorCallExpr |
496 | // only. The lookup results can be different in a "From" and "To" AST even if |
497 | // the compared structure is otherwise equivalent. For this reason we must |
498 | // treat a similar unary/binary operator node and CXXOperatorCall node as |
499 | // equivalent. |
500 | if (const auto *E2CXXOperatorCall = dyn_cast<CXXOperatorCallExpr>(Val: S2)) { |
501 | if (const auto *E1Unary = dyn_cast<UnaryOperator>(Val: S1)) |
502 | return IsStructurallyEquivalent(Context, E1: E1Unary, E2: E2CXXOperatorCall); |
503 | if (const auto *E1Binary = dyn_cast<BinaryOperator>(Val: S1)) |
504 | return IsStructurallyEquivalent(Context, E1: E1Binary, E2: E2CXXOperatorCall); |
505 | } |
506 | if (const auto *E1CXXOperatorCall = dyn_cast<CXXOperatorCallExpr>(Val: S1)) { |
507 | if (const auto *E2Unary = dyn_cast<UnaryOperator>(Val: S2)) |
508 | return IsStructurallyEquivalent(Context, E1: E1CXXOperatorCall, E2: E2Unary); |
509 | if (const auto *E2Binary = dyn_cast<BinaryOperator>(Val: S2)) |
510 | return IsStructurallyEquivalent(Context, E1: E1CXXOperatorCall, E2: E2Binary); |
511 | } |
512 | |
513 | // Compare the statements itself. |
514 | StmtComparer Comparer(Context); |
515 | if (!Comparer.IsEquivalent(S1, S2)) |
516 | return false; |
517 | |
518 | // Iterate over the children of both statements and also compare them. |
519 | for (auto Pair : zip_longest(t: S1->children(), u: S2->children())) { |
520 | std::optional<const Stmt *> Child1 = std::get<0>(t&: Pair); |
521 | std::optional<const Stmt *> Child2 = std::get<1>(t&: Pair); |
522 | // One of the statements has a different amount of children than the other, |
523 | // so the statements can't be equivalent. |
524 | if (!Child1 || !Child2) |
525 | return false; |
526 | if (!IsStructurallyEquivalent(Context, S1: *Child1, S2: *Child2)) |
527 | return false; |
528 | } |
529 | return true; |
530 | } |
531 | |
532 | /// Determine whether two identifiers are equivalent. |
533 | static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, |
534 | const IdentifierInfo *Name2) { |
535 | if (!Name1 || !Name2) |
536 | return Name1 == Name2; |
537 | |
538 | return Name1->getName() == Name2->getName(); |
539 | } |
540 | |
541 | /// Determine whether two nested-name-specifiers are equivalent. |
542 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
543 | NestedNameSpecifier *NNS1, |
544 | NestedNameSpecifier *NNS2) { |
545 | if (NNS1->getKind() != NNS2->getKind()) |
546 | return false; |
547 | |
548 | NestedNameSpecifier *Prefix1 = NNS1->getPrefix(), |
549 | *Prefix2 = NNS2->getPrefix(); |
550 | if ((bool)Prefix1 != (bool)Prefix2) |
551 | return false; |
552 | |
553 | if (Prefix1) |
554 | if (!IsStructurallyEquivalent(Context, NNS1: Prefix1, NNS2: Prefix2)) |
555 | return false; |
556 | |
557 | switch (NNS1->getKind()) { |
558 | case NestedNameSpecifier::Identifier: |
559 | return IsStructurallyEquivalent(Name1: NNS1->getAsIdentifier(), |
560 | Name2: NNS2->getAsIdentifier()); |
561 | case NestedNameSpecifier::Namespace: |
562 | return IsStructurallyEquivalent(Context, D1: NNS1->getAsNamespace(), |
563 | D2: NNS2->getAsNamespace()); |
564 | case NestedNameSpecifier::NamespaceAlias: |
565 | return IsStructurallyEquivalent(Context, D1: NNS1->getAsNamespaceAlias(), |
566 | D2: NNS2->getAsNamespaceAlias()); |
567 | case NestedNameSpecifier::TypeSpec: |
568 | case NestedNameSpecifier::TypeSpecWithTemplate: |
569 | return IsStructurallyEquivalent(Context, T1: QualType(NNS1->getAsType(), 0), |
570 | T2: QualType(NNS2->getAsType(), 0)); |
571 | case NestedNameSpecifier::Global: |
572 | return true; |
573 | case NestedNameSpecifier::Super: |
574 | return IsStructurallyEquivalent(Context, D1: NNS1->getAsRecordDecl(), |
575 | D2: NNS2->getAsRecordDecl()); |
576 | } |
577 | return false; |
578 | } |
579 | |
580 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
581 | const TemplateName &N1, |
582 | const TemplateName &N2) { |
583 | TemplateDecl *TemplateDeclN1 = N1.getAsTemplateDecl(); |
584 | TemplateDecl *TemplateDeclN2 = N2.getAsTemplateDecl(); |
585 | if (TemplateDeclN1 && TemplateDeclN2) { |
586 | if (!IsStructurallyEquivalent(Context, D1: TemplateDeclN1, D2: TemplateDeclN2)) |
587 | return false; |
588 | // If the kind is different we compare only the template decl. |
589 | if (N1.getKind() != N2.getKind()) |
590 | return true; |
591 | } else if (TemplateDeclN1 || TemplateDeclN2) |
592 | return false; |
593 | else if (N1.getKind() != N2.getKind()) |
594 | return false; |
595 | |
596 | // Check for special case incompatibilities. |
597 | switch (N1.getKind()) { |
598 | |
599 | case TemplateName::OverloadedTemplate: { |
600 | OverloadedTemplateStorage *OS1 = N1.getAsOverloadedTemplate(), |
601 | *OS2 = N2.getAsOverloadedTemplate(); |
602 | OverloadedTemplateStorage::iterator I1 = OS1->begin(), I2 = OS2->begin(), |
603 | E1 = OS1->end(), E2 = OS2->end(); |
604 | for (; I1 != E1 && I2 != E2; ++I1, ++I2) |
605 | if (!IsStructurallyEquivalent(Context, D1: *I1, D2: *I2)) |
606 | return false; |
607 | return I1 == E1 && I2 == E2; |
608 | } |
609 | |
610 | case TemplateName::AssumedTemplate: { |
611 | AssumedTemplateStorage *TN1 = N1.getAsAssumedTemplateName(), |
612 | *TN2 = N1.getAsAssumedTemplateName(); |
613 | return TN1->getDeclName() == TN2->getDeclName(); |
614 | } |
615 | |
616 | case TemplateName::DependentTemplate: { |
617 | DependentTemplateName *DN1 = N1.getAsDependentTemplateName(), |
618 | *DN2 = N2.getAsDependentTemplateName(); |
619 | if (!IsStructurallyEquivalent(Context, NNS1: DN1->getQualifier(), |
620 | NNS2: DN2->getQualifier())) |
621 | return false; |
622 | if (DN1->isIdentifier() && DN2->isIdentifier()) |
623 | return IsStructurallyEquivalent(Name1: DN1->getIdentifier(), |
624 | Name2: DN2->getIdentifier()); |
625 | else if (DN1->isOverloadedOperator() && DN2->isOverloadedOperator()) |
626 | return DN1->getOperator() == DN2->getOperator(); |
627 | return false; |
628 | } |
629 | |
630 | case TemplateName::SubstTemplateTemplateParmPack: { |
631 | SubstTemplateTemplateParmPackStorage |
632 | *P1 = N1.getAsSubstTemplateTemplateParmPack(), |
633 | *P2 = N2.getAsSubstTemplateTemplateParmPack(); |
634 | return IsStructurallyEquivalent(Context, Arg1: P1->getArgumentPack(), |
635 | Arg2: P2->getArgumentPack()) && |
636 | IsStructurallyEquivalent(Context, D1: P1->getAssociatedDecl(), |
637 | D2: P2->getAssociatedDecl()) && |
638 | P1->getIndex() == P2->getIndex(); |
639 | } |
640 | |
641 | case TemplateName::Template: |
642 | case TemplateName::QualifiedTemplate: |
643 | case TemplateName::SubstTemplateTemplateParm: |
644 | case TemplateName::UsingTemplate: |
645 | // It is sufficient to check value of getAsTemplateDecl. |
646 | break; |
647 | |
648 | } |
649 | |
650 | return true; |
651 | } |
652 | |
653 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
654 | ArrayRef<TemplateArgument> Args1, |
655 | ArrayRef<TemplateArgument> Args2); |
656 | |
657 | /// Determine whether two template arguments are equivalent. |
658 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
659 | const TemplateArgument &Arg1, |
660 | const TemplateArgument &Arg2) { |
661 | if (Arg1.getKind() != Arg2.getKind()) |
662 | return false; |
663 | |
664 | switch (Arg1.getKind()) { |
665 | case TemplateArgument::Null: |
666 | return true; |
667 | |
668 | case TemplateArgument::Type: |
669 | return IsStructurallyEquivalent(Context, T1: Arg1.getAsType(), T2: Arg2.getAsType()); |
670 | |
671 | case TemplateArgument::Integral: |
672 | if (!IsStructurallyEquivalent(Context, T1: Arg1.getIntegralType(), |
673 | T2: Arg2.getIntegralType())) |
674 | return false; |
675 | |
676 | return llvm::APSInt::isSameValue(I1: Arg1.getAsIntegral(), |
677 | I2: Arg2.getAsIntegral()); |
678 | |
679 | case TemplateArgument::Declaration: |
680 | return IsStructurallyEquivalent(Context, D1: Arg1.getAsDecl(), D2: Arg2.getAsDecl()); |
681 | |
682 | case TemplateArgument::NullPtr: |
683 | return true; // FIXME: Is this correct? |
684 | |
685 | case TemplateArgument::Template: |
686 | return IsStructurallyEquivalent(Context, N1: Arg1.getAsTemplate(), |
687 | N2: Arg2.getAsTemplate()); |
688 | |
689 | case TemplateArgument::TemplateExpansion: |
690 | return IsStructurallyEquivalent(Context, |
691 | N1: Arg1.getAsTemplateOrTemplatePattern(), |
692 | N2: Arg2.getAsTemplateOrTemplatePattern()); |
693 | |
694 | case TemplateArgument::Expression: |
695 | return IsStructurallyEquivalent(Context, S1: Arg1.getAsExpr(), |
696 | S2: Arg2.getAsExpr()); |
697 | |
698 | case TemplateArgument::StructuralValue: |
699 | return Arg1.structurallyEquals(Other: Arg2); |
700 | |
701 | case TemplateArgument::Pack: |
702 | return IsStructurallyEquivalent(Context, Args1: Arg1.pack_elements(), |
703 | Args2: Arg2.pack_elements()); |
704 | } |
705 | |
706 | llvm_unreachable("Invalid template argument kind" ); |
707 | } |
708 | |
709 | /// Determine structural equivalence of two template argument lists. |
710 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
711 | ArrayRef<TemplateArgument> Args1, |
712 | ArrayRef<TemplateArgument> Args2) { |
713 | if (Args1.size() != Args2.size()) |
714 | return false; |
715 | for (unsigned I = 0, N = Args1.size(); I != N; ++I) { |
716 | if (!IsStructurallyEquivalent(Context, Arg1: Args1[I], Arg2: Args2[I])) |
717 | return false; |
718 | } |
719 | return true; |
720 | } |
721 | |
722 | /// Determine whether two template argument locations are equivalent. |
723 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
724 | const TemplateArgumentLoc &Arg1, |
725 | const TemplateArgumentLoc &Arg2) { |
726 | return IsStructurallyEquivalent(Context, Arg1: Arg1.getArgument(), |
727 | Arg2: Arg2.getArgument()); |
728 | } |
729 | |
730 | /// Determine structural equivalence for the common part of array |
731 | /// types. |
732 | static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context, |
733 | const ArrayType *Array1, |
734 | const ArrayType *Array2) { |
735 | if (!IsStructurallyEquivalent(Context, T1: Array1->getElementType(), |
736 | T2: Array2->getElementType())) |
737 | return false; |
738 | if (Array1->getSizeModifier() != Array2->getSizeModifier()) |
739 | return false; |
740 | if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers()) |
741 | return false; |
742 | |
743 | return true; |
744 | } |
745 | |
746 | /// Determine structural equivalence based on the ExtInfo of functions. This |
747 | /// is inspired by ASTContext::mergeFunctionTypes(), we compare calling |
748 | /// conventions bits but must not compare some other bits. |
749 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
750 | FunctionType::ExtInfo EI1, |
751 | FunctionType::ExtInfo EI2) { |
752 | // Compatible functions must have compatible calling conventions. |
753 | if (EI1.getCC() != EI2.getCC()) |
754 | return false; |
755 | |
756 | // Regparm is part of the calling convention. |
757 | if (EI1.getHasRegParm() != EI2.getHasRegParm()) |
758 | return false; |
759 | if (EI1.getRegParm() != EI2.getRegParm()) |
760 | return false; |
761 | |
762 | if (EI1.getProducesResult() != EI2.getProducesResult()) |
763 | return false; |
764 | if (EI1.getNoCallerSavedRegs() != EI2.getNoCallerSavedRegs()) |
765 | return false; |
766 | if (EI1.getNoCfCheck() != EI2.getNoCfCheck()) |
767 | return false; |
768 | |
769 | return true; |
770 | } |
771 | |
772 | /// Check the equivalence of exception specifications. |
773 | static bool IsEquivalentExceptionSpec(StructuralEquivalenceContext &Context, |
774 | const FunctionProtoType *Proto1, |
775 | const FunctionProtoType *Proto2) { |
776 | |
777 | auto Spec1 = Proto1->getExceptionSpecType(); |
778 | auto Spec2 = Proto2->getExceptionSpecType(); |
779 | |
780 | if (isUnresolvedExceptionSpec(ESpecType: Spec1) || isUnresolvedExceptionSpec(ESpecType: Spec2)) |
781 | return true; |
782 | |
783 | if (Spec1 != Spec2) |
784 | return false; |
785 | if (Spec1 == EST_Dynamic) { |
786 | if (Proto1->getNumExceptions() != Proto2->getNumExceptions()) |
787 | return false; |
788 | for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) { |
789 | if (!IsStructurallyEquivalent(Context, T1: Proto1->getExceptionType(i: I), |
790 | T2: Proto2->getExceptionType(i: I))) |
791 | return false; |
792 | } |
793 | } else if (isComputedNoexcept(ESpecType: Spec1)) { |
794 | if (!IsStructurallyEquivalent(Context, S1: Proto1->getNoexceptExpr(), |
795 | S2: Proto2->getNoexceptExpr())) |
796 | return false; |
797 | } |
798 | |
799 | return true; |
800 | } |
801 | |
802 | /// Determine structural equivalence of two types. |
803 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
804 | QualType T1, QualType T2) { |
805 | if (T1.isNull() || T2.isNull()) |
806 | return T1.isNull() && T2.isNull(); |
807 | |
808 | QualType OrigT1 = T1; |
809 | QualType OrigT2 = T2; |
810 | |
811 | if (!Context.StrictTypeSpelling) { |
812 | // We aren't being strict about token-to-token equivalence of types, |
813 | // so map down to the canonical type. |
814 | T1 = Context.FromCtx.getCanonicalType(T: T1); |
815 | T2 = Context.ToCtx.getCanonicalType(T: T2); |
816 | } |
817 | |
818 | if (T1.getQualifiers() != T2.getQualifiers()) |
819 | return false; |
820 | |
821 | Type::TypeClass TC = T1->getTypeClass(); |
822 | |
823 | if (T1->getTypeClass() != T2->getTypeClass()) { |
824 | // Compare function types with prototypes vs. without prototypes as if |
825 | // both did not have prototypes. |
826 | if (T1->getTypeClass() == Type::FunctionProto && |
827 | T2->getTypeClass() == Type::FunctionNoProto) |
828 | TC = Type::FunctionNoProto; |
829 | else if (T1->getTypeClass() == Type::FunctionNoProto && |
830 | T2->getTypeClass() == Type::FunctionProto) |
831 | TC = Type::FunctionNoProto; |
832 | else |
833 | return false; |
834 | } |
835 | |
836 | switch (TC) { |
837 | case Type::Builtin: |
838 | // FIXME: Deal with Char_S/Char_U. |
839 | if (cast<BuiltinType>(Val&: T1)->getKind() != cast<BuiltinType>(Val&: T2)->getKind()) |
840 | return false; |
841 | break; |
842 | |
843 | case Type::Complex: |
844 | if (!IsStructurallyEquivalent(Context, |
845 | T1: cast<ComplexType>(Val&: T1)->getElementType(), |
846 | T2: cast<ComplexType>(Val&: T2)->getElementType())) |
847 | return false; |
848 | break; |
849 | |
850 | case Type::Adjusted: |
851 | case Type::Decayed: |
852 | case Type::ArrayParameter: |
853 | if (!IsStructurallyEquivalent(Context, |
854 | T1: cast<AdjustedType>(Val&: T1)->getOriginalType(), |
855 | T2: cast<AdjustedType>(Val&: T2)->getOriginalType())) |
856 | return false; |
857 | break; |
858 | |
859 | case Type::Pointer: |
860 | if (!IsStructurallyEquivalent(Context, |
861 | T1: cast<PointerType>(Val&: T1)->getPointeeType(), |
862 | T2: cast<PointerType>(Val&: T2)->getPointeeType())) |
863 | return false; |
864 | break; |
865 | |
866 | case Type::BlockPointer: |
867 | if (!IsStructurallyEquivalent(Context, |
868 | T1: cast<BlockPointerType>(Val&: T1)->getPointeeType(), |
869 | T2: cast<BlockPointerType>(Val&: T2)->getPointeeType())) |
870 | return false; |
871 | break; |
872 | |
873 | case Type::LValueReference: |
874 | case Type::RValueReference: { |
875 | const auto *Ref1 = cast<ReferenceType>(Val&: T1); |
876 | const auto *Ref2 = cast<ReferenceType>(Val&: T2); |
877 | if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue()) |
878 | return false; |
879 | if (Ref1->isInnerRef() != Ref2->isInnerRef()) |
880 | return false; |
881 | if (!IsStructurallyEquivalent(Context, T1: Ref1->getPointeeTypeAsWritten(), |
882 | T2: Ref2->getPointeeTypeAsWritten())) |
883 | return false; |
884 | break; |
885 | } |
886 | |
887 | case Type::MemberPointer: { |
888 | const auto *MemPtr1 = cast<MemberPointerType>(Val&: T1); |
889 | const auto *MemPtr2 = cast<MemberPointerType>(Val&: T2); |
890 | if (!IsStructurallyEquivalent(Context, T1: MemPtr1->getPointeeType(), |
891 | T2: MemPtr2->getPointeeType())) |
892 | return false; |
893 | if (!IsStructurallyEquivalent(Context, T1: QualType(MemPtr1->getClass(), 0), |
894 | T2: QualType(MemPtr2->getClass(), 0))) |
895 | return false; |
896 | break; |
897 | } |
898 | |
899 | case Type::ConstantArray: { |
900 | const auto *Array1 = cast<ConstantArrayType>(Val&: T1); |
901 | const auto *Array2 = cast<ConstantArrayType>(Val&: T2); |
902 | if (!llvm::APInt::isSameValue(I1: Array1->getSize(), I2: Array2->getSize())) |
903 | return false; |
904 | |
905 | if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) |
906 | return false; |
907 | break; |
908 | } |
909 | |
910 | case Type::IncompleteArray: |
911 | if (!IsArrayStructurallyEquivalent(Context, Array1: cast<ArrayType>(Val&: T1), |
912 | Array2: cast<ArrayType>(Val&: T2))) |
913 | return false; |
914 | break; |
915 | |
916 | case Type::VariableArray: { |
917 | const auto *Array1 = cast<VariableArrayType>(Val&: T1); |
918 | const auto *Array2 = cast<VariableArrayType>(Val&: T2); |
919 | if (!IsStructurallyEquivalent(Context, S1: Array1->getSizeExpr(), |
920 | S2: Array2->getSizeExpr())) |
921 | return false; |
922 | |
923 | if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) |
924 | return false; |
925 | |
926 | break; |
927 | } |
928 | |
929 | case Type::DependentSizedArray: { |
930 | const auto *Array1 = cast<DependentSizedArrayType>(Val&: T1); |
931 | const auto *Array2 = cast<DependentSizedArrayType>(Val&: T2); |
932 | if (!IsStructurallyEquivalent(Context, S1: Array1->getSizeExpr(), |
933 | S2: Array2->getSizeExpr())) |
934 | return false; |
935 | |
936 | if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) |
937 | return false; |
938 | |
939 | break; |
940 | } |
941 | |
942 | case Type::DependentAddressSpace: { |
943 | const auto *DepAddressSpace1 = cast<DependentAddressSpaceType>(Val&: T1); |
944 | const auto *DepAddressSpace2 = cast<DependentAddressSpaceType>(Val&: T2); |
945 | if (!IsStructurallyEquivalent(Context, S1: DepAddressSpace1->getAddrSpaceExpr(), |
946 | S2: DepAddressSpace2->getAddrSpaceExpr())) |
947 | return false; |
948 | if (!IsStructurallyEquivalent(Context, T1: DepAddressSpace1->getPointeeType(), |
949 | T2: DepAddressSpace2->getPointeeType())) |
950 | return false; |
951 | |
952 | break; |
953 | } |
954 | |
955 | case Type::DependentSizedExtVector: { |
956 | const auto *Vec1 = cast<DependentSizedExtVectorType>(Val&: T1); |
957 | const auto *Vec2 = cast<DependentSizedExtVectorType>(Val&: T2); |
958 | if (!IsStructurallyEquivalent(Context, S1: Vec1->getSizeExpr(), |
959 | S2: Vec2->getSizeExpr())) |
960 | return false; |
961 | if (!IsStructurallyEquivalent(Context, T1: Vec1->getElementType(), |
962 | T2: Vec2->getElementType())) |
963 | return false; |
964 | break; |
965 | } |
966 | |
967 | case Type::DependentVector: { |
968 | const auto *Vec1 = cast<DependentVectorType>(Val&: T1); |
969 | const auto *Vec2 = cast<DependentVectorType>(Val&: T2); |
970 | if (Vec1->getVectorKind() != Vec2->getVectorKind()) |
971 | return false; |
972 | if (!IsStructurallyEquivalent(Context, S1: Vec1->getSizeExpr(), |
973 | S2: Vec2->getSizeExpr())) |
974 | return false; |
975 | if (!IsStructurallyEquivalent(Context, T1: Vec1->getElementType(), |
976 | T2: Vec2->getElementType())) |
977 | return false; |
978 | break; |
979 | } |
980 | |
981 | case Type::Vector: |
982 | case Type::ExtVector: { |
983 | const auto *Vec1 = cast<VectorType>(Val&: T1); |
984 | const auto *Vec2 = cast<VectorType>(Val&: T2); |
985 | if (!IsStructurallyEquivalent(Context, T1: Vec1->getElementType(), |
986 | T2: Vec2->getElementType())) |
987 | return false; |
988 | if (Vec1->getNumElements() != Vec2->getNumElements()) |
989 | return false; |
990 | if (Vec1->getVectorKind() != Vec2->getVectorKind()) |
991 | return false; |
992 | break; |
993 | } |
994 | |
995 | case Type::DependentSizedMatrix: { |
996 | const DependentSizedMatrixType *Mat1 = cast<DependentSizedMatrixType>(Val&: T1); |
997 | const DependentSizedMatrixType *Mat2 = cast<DependentSizedMatrixType>(Val&: T2); |
998 | // The element types, row and column expressions must be structurally |
999 | // equivalent. |
1000 | if (!IsStructurallyEquivalent(Context, S1: Mat1->getRowExpr(), |
1001 | S2: Mat2->getRowExpr()) || |
1002 | !IsStructurallyEquivalent(Context, S1: Mat1->getColumnExpr(), |
1003 | S2: Mat2->getColumnExpr()) || |
1004 | !IsStructurallyEquivalent(Context, T1: Mat1->getElementType(), |
1005 | T2: Mat2->getElementType())) |
1006 | return false; |
1007 | break; |
1008 | } |
1009 | |
1010 | case Type::ConstantMatrix: { |
1011 | const ConstantMatrixType *Mat1 = cast<ConstantMatrixType>(Val&: T1); |
1012 | const ConstantMatrixType *Mat2 = cast<ConstantMatrixType>(Val&: T2); |
1013 | // The element types must be structurally equivalent and the number of rows |
1014 | // and columns must match. |
1015 | if (!IsStructurallyEquivalent(Context, T1: Mat1->getElementType(), |
1016 | T2: Mat2->getElementType()) || |
1017 | Mat1->getNumRows() != Mat2->getNumRows() || |
1018 | Mat1->getNumColumns() != Mat2->getNumColumns()) |
1019 | return false; |
1020 | break; |
1021 | } |
1022 | |
1023 | case Type::FunctionProto: { |
1024 | const auto *Proto1 = cast<FunctionProtoType>(Val&: T1); |
1025 | const auto *Proto2 = cast<FunctionProtoType>(Val&: T2); |
1026 | |
1027 | if (Proto1->getNumParams() != Proto2->getNumParams()) |
1028 | return false; |
1029 | for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) { |
1030 | if (!IsStructurallyEquivalent(Context, T1: Proto1->getParamType(i: I), |
1031 | T2: Proto2->getParamType(i: I))) |
1032 | return false; |
1033 | } |
1034 | if (Proto1->isVariadic() != Proto2->isVariadic()) |
1035 | return false; |
1036 | |
1037 | if (Proto1->getMethodQuals() != Proto2->getMethodQuals()) |
1038 | return false; |
1039 | |
1040 | // Check exceptions, this information is lost in canonical type. |
1041 | const auto *OrigProto1 = |
1042 | cast<FunctionProtoType>(Val: OrigT1.getDesugaredType(Context: Context.FromCtx)); |
1043 | const auto *OrigProto2 = |
1044 | cast<FunctionProtoType>(Val: OrigT2.getDesugaredType(Context: Context.ToCtx)); |
1045 | if (!IsEquivalentExceptionSpec(Context, Proto1: OrigProto1, Proto2: OrigProto2)) |
1046 | return false; |
1047 | |
1048 | // Fall through to check the bits common with FunctionNoProtoType. |
1049 | [[fallthrough]]; |
1050 | } |
1051 | |
1052 | case Type::FunctionNoProto: { |
1053 | const auto *Function1 = cast<FunctionType>(Val&: T1); |
1054 | const auto *Function2 = cast<FunctionType>(Val&: T2); |
1055 | if (!IsStructurallyEquivalent(Context, T1: Function1->getReturnType(), |
1056 | T2: Function2->getReturnType())) |
1057 | return false; |
1058 | if (!IsStructurallyEquivalent(Context, EI1: Function1->getExtInfo(), |
1059 | EI2: Function2->getExtInfo())) |
1060 | return false; |
1061 | break; |
1062 | } |
1063 | |
1064 | case Type::UnresolvedUsing: |
1065 | if (!IsStructurallyEquivalent(Context, |
1066 | D1: cast<UnresolvedUsingType>(Val&: T1)->getDecl(), |
1067 | D2: cast<UnresolvedUsingType>(Val&: T2)->getDecl())) |
1068 | return false; |
1069 | break; |
1070 | |
1071 | case Type::Attributed: |
1072 | if (!IsStructurallyEquivalent(Context, |
1073 | T1: cast<AttributedType>(Val&: T1)->getModifiedType(), |
1074 | T2: cast<AttributedType>(Val&: T2)->getModifiedType())) |
1075 | return false; |
1076 | if (!IsStructurallyEquivalent( |
1077 | Context, T1: cast<AttributedType>(Val&: T1)->getEquivalentType(), |
1078 | T2: cast<AttributedType>(Val&: T2)->getEquivalentType())) |
1079 | return false; |
1080 | break; |
1081 | |
1082 | case Type::CountAttributed: |
1083 | if (!IsStructurallyEquivalent(Context, |
1084 | T1: cast<CountAttributedType>(Val&: T1)->desugar(), |
1085 | T2: cast<CountAttributedType>(Val&: T2)->desugar())) |
1086 | return false; |
1087 | break; |
1088 | |
1089 | case Type::BTFTagAttributed: |
1090 | if (!IsStructurallyEquivalent( |
1091 | Context, T1: cast<BTFTagAttributedType>(Val&: T1)->getWrappedType(), |
1092 | T2: cast<BTFTagAttributedType>(Val&: T2)->getWrappedType())) |
1093 | return false; |
1094 | break; |
1095 | |
1096 | case Type::Paren: |
1097 | if (!IsStructurallyEquivalent(Context, T1: cast<ParenType>(Val&: T1)->getInnerType(), |
1098 | T2: cast<ParenType>(Val&: T2)->getInnerType())) |
1099 | return false; |
1100 | break; |
1101 | |
1102 | case Type::MacroQualified: |
1103 | if (!IsStructurallyEquivalent( |
1104 | Context, T1: cast<MacroQualifiedType>(Val&: T1)->getUnderlyingType(), |
1105 | T2: cast<MacroQualifiedType>(Val&: T2)->getUnderlyingType())) |
1106 | return false; |
1107 | break; |
1108 | |
1109 | case Type::Using: |
1110 | if (!IsStructurallyEquivalent(Context, D1: cast<UsingType>(Val&: T1)->getFoundDecl(), |
1111 | D2: cast<UsingType>(Val&: T2)->getFoundDecl())) |
1112 | return false; |
1113 | if (!IsStructurallyEquivalent(Context, |
1114 | T1: cast<UsingType>(Val&: T1)->getUnderlyingType(), |
1115 | T2: cast<UsingType>(Val&: T2)->getUnderlyingType())) |
1116 | return false; |
1117 | break; |
1118 | |
1119 | case Type::Typedef: |
1120 | if (!IsStructurallyEquivalent(Context, D1: cast<TypedefType>(Val&: T1)->getDecl(), |
1121 | D2: cast<TypedefType>(Val&: T2)->getDecl()) || |
1122 | !IsStructurallyEquivalent(Context, T1: cast<TypedefType>(Val&: T1)->desugar(), |
1123 | T2: cast<TypedefType>(Val&: T2)->desugar())) |
1124 | return false; |
1125 | break; |
1126 | |
1127 | case Type::TypeOfExpr: |
1128 | if (!IsStructurallyEquivalent( |
1129 | Context, S1: cast<TypeOfExprType>(Val&: T1)->getUnderlyingExpr(), |
1130 | S2: cast<TypeOfExprType>(Val&: T2)->getUnderlyingExpr())) |
1131 | return false; |
1132 | break; |
1133 | |
1134 | case Type::TypeOf: |
1135 | if (!IsStructurallyEquivalent(Context, |
1136 | T1: cast<TypeOfType>(Val&: T1)->getUnmodifiedType(), |
1137 | T2: cast<TypeOfType>(Val&: T2)->getUnmodifiedType())) |
1138 | return false; |
1139 | break; |
1140 | |
1141 | case Type::UnaryTransform: |
1142 | if (!IsStructurallyEquivalent( |
1143 | Context, T1: cast<UnaryTransformType>(Val&: T1)->getUnderlyingType(), |
1144 | T2: cast<UnaryTransformType>(Val&: T2)->getUnderlyingType())) |
1145 | return false; |
1146 | break; |
1147 | |
1148 | case Type::Decltype: |
1149 | if (!IsStructurallyEquivalent(Context, |
1150 | S1: cast<DecltypeType>(Val&: T1)->getUnderlyingExpr(), |
1151 | S2: cast<DecltypeType>(Val&: T2)->getUnderlyingExpr())) |
1152 | return false; |
1153 | break; |
1154 | |
1155 | case Type::Auto: { |
1156 | auto *Auto1 = cast<AutoType>(Val&: T1); |
1157 | auto *Auto2 = cast<AutoType>(Val&: T2); |
1158 | if (!IsStructurallyEquivalent(Context, T1: Auto1->getDeducedType(), |
1159 | T2: Auto2->getDeducedType())) |
1160 | return false; |
1161 | if (Auto1->isConstrained() != Auto2->isConstrained()) |
1162 | return false; |
1163 | if (Auto1->isConstrained()) { |
1164 | if (Auto1->getTypeConstraintConcept() != |
1165 | Auto2->getTypeConstraintConcept()) |
1166 | return false; |
1167 | if (!IsStructurallyEquivalent(Context, |
1168 | Args1: Auto1->getTypeConstraintArguments(), |
1169 | Args2: Auto2->getTypeConstraintArguments())) |
1170 | return false; |
1171 | } |
1172 | break; |
1173 | } |
1174 | |
1175 | case Type::DeducedTemplateSpecialization: { |
1176 | const auto *DT1 = cast<DeducedTemplateSpecializationType>(Val&: T1); |
1177 | const auto *DT2 = cast<DeducedTemplateSpecializationType>(Val&: T2); |
1178 | if (!IsStructurallyEquivalent(Context, N1: DT1->getTemplateName(), |
1179 | N2: DT2->getTemplateName())) |
1180 | return false; |
1181 | if (!IsStructurallyEquivalent(Context, T1: DT1->getDeducedType(), |
1182 | T2: DT2->getDeducedType())) |
1183 | return false; |
1184 | break; |
1185 | } |
1186 | |
1187 | case Type::Record: |
1188 | case Type::Enum: |
1189 | if (!IsStructurallyEquivalent(Context, D1: cast<TagType>(Val&: T1)->getDecl(), |
1190 | D2: cast<TagType>(Val&: T2)->getDecl())) |
1191 | return false; |
1192 | break; |
1193 | |
1194 | case Type::TemplateTypeParm: { |
1195 | const auto *Parm1 = cast<TemplateTypeParmType>(Val&: T1); |
1196 | const auto *Parm2 = cast<TemplateTypeParmType>(Val&: T2); |
1197 | if (!Context.IgnoreTemplateParmDepth && |
1198 | Parm1->getDepth() != Parm2->getDepth()) |
1199 | return false; |
1200 | if (Parm1->getIndex() != Parm2->getIndex()) |
1201 | return false; |
1202 | if (Parm1->isParameterPack() != Parm2->isParameterPack()) |
1203 | return false; |
1204 | |
1205 | // Names of template type parameters are never significant. |
1206 | break; |
1207 | } |
1208 | |
1209 | case Type::SubstTemplateTypeParm: { |
1210 | const auto *Subst1 = cast<SubstTemplateTypeParmType>(Val&: T1); |
1211 | const auto *Subst2 = cast<SubstTemplateTypeParmType>(Val&: T2); |
1212 | if (!IsStructurallyEquivalent(Context, T1: Subst1->getReplacementType(), |
1213 | T2: Subst2->getReplacementType())) |
1214 | return false; |
1215 | if (!IsStructurallyEquivalent(Context, D1: Subst1->getAssociatedDecl(), |
1216 | D2: Subst2->getAssociatedDecl())) |
1217 | return false; |
1218 | if (Subst1->getIndex() != Subst2->getIndex()) |
1219 | return false; |
1220 | if (Subst1->getPackIndex() != Subst2->getPackIndex()) |
1221 | return false; |
1222 | break; |
1223 | } |
1224 | |
1225 | case Type::SubstTemplateTypeParmPack: { |
1226 | const auto *Subst1 = cast<SubstTemplateTypeParmPackType>(Val&: T1); |
1227 | const auto *Subst2 = cast<SubstTemplateTypeParmPackType>(Val&: T2); |
1228 | if (!IsStructurallyEquivalent(Context, D1: Subst1->getAssociatedDecl(), |
1229 | D2: Subst2->getAssociatedDecl())) |
1230 | return false; |
1231 | if (Subst1->getIndex() != Subst2->getIndex()) |
1232 | return false; |
1233 | if (!IsStructurallyEquivalent(Context, Arg1: Subst1->getArgumentPack(), |
1234 | Arg2: Subst2->getArgumentPack())) |
1235 | return false; |
1236 | break; |
1237 | } |
1238 | |
1239 | case Type::TemplateSpecialization: { |
1240 | const auto *Spec1 = cast<TemplateSpecializationType>(Val&: T1); |
1241 | const auto *Spec2 = cast<TemplateSpecializationType>(Val&: T2); |
1242 | if (!IsStructurallyEquivalent(Context, N1: Spec1->getTemplateName(), |
1243 | N2: Spec2->getTemplateName())) |
1244 | return false; |
1245 | if (!IsStructurallyEquivalent(Context, Args1: Spec1->template_arguments(), |
1246 | Args2: Spec2->template_arguments())) |
1247 | return false; |
1248 | break; |
1249 | } |
1250 | |
1251 | case Type::Elaborated: { |
1252 | const auto *Elab1 = cast<ElaboratedType>(Val&: T1); |
1253 | const auto *Elab2 = cast<ElaboratedType>(Val&: T2); |
1254 | // CHECKME: what if a keyword is ElaboratedTypeKeyword::None or |
1255 | // ElaboratedTypeKeyword::Typename |
1256 | // ? |
1257 | if (Elab1->getKeyword() != Elab2->getKeyword()) |
1258 | return false; |
1259 | if (!IsStructurallyEquivalent(Context, NNS1: Elab1->getQualifier(), |
1260 | NNS2: Elab2->getQualifier())) |
1261 | return false; |
1262 | if (!IsStructurallyEquivalent(Context, T1: Elab1->getNamedType(), |
1263 | T2: Elab2->getNamedType())) |
1264 | return false; |
1265 | break; |
1266 | } |
1267 | |
1268 | case Type::InjectedClassName: { |
1269 | const auto *Inj1 = cast<InjectedClassNameType>(Val&: T1); |
1270 | const auto *Inj2 = cast<InjectedClassNameType>(Val&: T2); |
1271 | if (!IsStructurallyEquivalent(Context, |
1272 | T1: Inj1->getInjectedSpecializationType(), |
1273 | T2: Inj2->getInjectedSpecializationType())) |
1274 | return false; |
1275 | break; |
1276 | } |
1277 | |
1278 | case Type::DependentName: { |
1279 | const auto *Typename1 = cast<DependentNameType>(Val&: T1); |
1280 | const auto *Typename2 = cast<DependentNameType>(Val&: T2); |
1281 | if (!IsStructurallyEquivalent(Context, NNS1: Typename1->getQualifier(), |
1282 | NNS2: Typename2->getQualifier())) |
1283 | return false; |
1284 | if (!IsStructurallyEquivalent(Name1: Typename1->getIdentifier(), |
1285 | Name2: Typename2->getIdentifier())) |
1286 | return false; |
1287 | |
1288 | break; |
1289 | } |
1290 | |
1291 | case Type::DependentTemplateSpecialization: { |
1292 | const auto *Spec1 = cast<DependentTemplateSpecializationType>(Val&: T1); |
1293 | const auto *Spec2 = cast<DependentTemplateSpecializationType>(Val&: T2); |
1294 | if (!IsStructurallyEquivalent(Context, NNS1: Spec1->getQualifier(), |
1295 | NNS2: Spec2->getQualifier())) |
1296 | return false; |
1297 | if (!IsStructurallyEquivalent(Name1: Spec1->getIdentifier(), |
1298 | Name2: Spec2->getIdentifier())) |
1299 | return false; |
1300 | if (!IsStructurallyEquivalent(Context, Args1: Spec1->template_arguments(), |
1301 | Args2: Spec2->template_arguments())) |
1302 | return false; |
1303 | break; |
1304 | } |
1305 | |
1306 | case Type::PackExpansion: |
1307 | if (!IsStructurallyEquivalent(Context, |
1308 | T1: cast<PackExpansionType>(Val&: T1)->getPattern(), |
1309 | T2: cast<PackExpansionType>(Val&: T2)->getPattern())) |
1310 | return false; |
1311 | break; |
1312 | |
1313 | case Type::PackIndexing: |
1314 | if (!IsStructurallyEquivalent(Context, |
1315 | T1: cast<PackIndexingType>(Val&: T1)->getPattern(), |
1316 | T2: cast<PackIndexingType>(Val&: T2)->getPattern())) |
1317 | if (!IsStructurallyEquivalent(Context, |
1318 | S1: cast<PackIndexingType>(Val&: T1)->getIndexExpr(), |
1319 | S2: cast<PackIndexingType>(Val&: T2)->getIndexExpr())) |
1320 | return false; |
1321 | break; |
1322 | |
1323 | case Type::ObjCInterface: { |
1324 | const auto *Iface1 = cast<ObjCInterfaceType>(Val&: T1); |
1325 | const auto *Iface2 = cast<ObjCInterfaceType>(Val&: T2); |
1326 | if (!IsStructurallyEquivalent(Context, D1: Iface1->getDecl(), |
1327 | D2: Iface2->getDecl())) |
1328 | return false; |
1329 | break; |
1330 | } |
1331 | |
1332 | case Type::ObjCTypeParam: { |
1333 | const auto *Obj1 = cast<ObjCTypeParamType>(Val&: T1); |
1334 | const auto *Obj2 = cast<ObjCTypeParamType>(Val&: T2); |
1335 | if (!IsStructurallyEquivalent(Context, D1: Obj1->getDecl(), D2: Obj2->getDecl())) |
1336 | return false; |
1337 | |
1338 | if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) |
1339 | return false; |
1340 | for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { |
1341 | if (!IsStructurallyEquivalent(Context, D1: Obj1->getProtocol(I), |
1342 | D2: Obj2->getProtocol(I))) |
1343 | return false; |
1344 | } |
1345 | break; |
1346 | } |
1347 | |
1348 | case Type::ObjCObject: { |
1349 | const auto *Obj1 = cast<ObjCObjectType>(Val&: T1); |
1350 | const auto *Obj2 = cast<ObjCObjectType>(Val&: T2); |
1351 | if (!IsStructurallyEquivalent(Context, T1: Obj1->getBaseType(), |
1352 | T2: Obj2->getBaseType())) |
1353 | return false; |
1354 | if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) |
1355 | return false; |
1356 | for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { |
1357 | if (!IsStructurallyEquivalent(Context, D1: Obj1->getProtocol(I), |
1358 | D2: Obj2->getProtocol(I))) |
1359 | return false; |
1360 | } |
1361 | break; |
1362 | } |
1363 | |
1364 | case Type::ObjCObjectPointer: { |
1365 | const auto *Ptr1 = cast<ObjCObjectPointerType>(Val&: T1); |
1366 | const auto *Ptr2 = cast<ObjCObjectPointerType>(Val&: T2); |
1367 | if (!IsStructurallyEquivalent(Context, T1: Ptr1->getPointeeType(), |
1368 | T2: Ptr2->getPointeeType())) |
1369 | return false; |
1370 | break; |
1371 | } |
1372 | |
1373 | case Type::Atomic: |
1374 | if (!IsStructurallyEquivalent(Context, T1: cast<AtomicType>(Val&: T1)->getValueType(), |
1375 | T2: cast<AtomicType>(Val&: T2)->getValueType())) |
1376 | return false; |
1377 | break; |
1378 | |
1379 | case Type::Pipe: |
1380 | if (!IsStructurallyEquivalent(Context, T1: cast<PipeType>(Val&: T1)->getElementType(), |
1381 | T2: cast<PipeType>(Val&: T2)->getElementType())) |
1382 | return false; |
1383 | break; |
1384 | case Type::BitInt: { |
1385 | const auto *Int1 = cast<BitIntType>(Val&: T1); |
1386 | const auto *Int2 = cast<BitIntType>(Val&: T2); |
1387 | |
1388 | if (Int1->isUnsigned() != Int2->isUnsigned() || |
1389 | Int1->getNumBits() != Int2->getNumBits()) |
1390 | return false; |
1391 | break; |
1392 | } |
1393 | case Type::DependentBitInt: { |
1394 | const auto *Int1 = cast<DependentBitIntType>(Val&: T1); |
1395 | const auto *Int2 = cast<DependentBitIntType>(Val&: T2); |
1396 | |
1397 | if (Int1->isUnsigned() != Int2->isUnsigned() || |
1398 | !IsStructurallyEquivalent(Context, S1: Int1->getNumBitsExpr(), |
1399 | S2: Int2->getNumBitsExpr())) |
1400 | return false; |
1401 | break; |
1402 | } |
1403 | } // end switch |
1404 | |
1405 | return true; |
1406 | } |
1407 | |
1408 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
1409 | VarDecl *D1, VarDecl *D2) { |
1410 | IdentifierInfo *Name1 = D1->getIdentifier(); |
1411 | IdentifierInfo *Name2 = D2->getIdentifier(); |
1412 | if (!::IsStructurallyEquivalent(Name1, Name2)) |
1413 | return false; |
1414 | |
1415 | if (!IsStructurallyEquivalent(Context, T1: D1->getType(), T2: D2->getType())) |
1416 | return false; |
1417 | |
1418 | // Compare storage class and initializer only if none or both are a |
1419 | // definition. Like a forward-declaration matches a class definition, variable |
1420 | // declarations that are not definitions should match with the definitions. |
1421 | if (D1->isThisDeclarationADefinition() != D2->isThisDeclarationADefinition()) |
1422 | return true; |
1423 | |
1424 | if (D1->getStorageClass() != D2->getStorageClass()) |
1425 | return false; |
1426 | |
1427 | return IsStructurallyEquivalent(Context, S1: D1->getInit(), S2: D2->getInit()); |
1428 | } |
1429 | |
1430 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
1431 | FieldDecl *Field1, FieldDecl *Field2, |
1432 | QualType Owner2Type) { |
1433 | const auto *Owner2 = cast<Decl>(Val: Field2->getDeclContext()); |
1434 | |
1435 | // For anonymous structs/unions, match up the anonymous struct/union type |
1436 | // declarations directly, so that we don't go off searching for anonymous |
1437 | // types |
1438 | if (Field1->isAnonymousStructOrUnion() && |
1439 | Field2->isAnonymousStructOrUnion()) { |
1440 | RecordDecl *D1 = Field1->getType()->castAs<RecordType>()->getDecl(); |
1441 | RecordDecl *D2 = Field2->getType()->castAs<RecordType>()->getDecl(); |
1442 | return IsStructurallyEquivalent(Context, D1, D2); |
1443 | } |
1444 | |
1445 | // Check for equivalent field names. |
1446 | IdentifierInfo *Name1 = Field1->getIdentifier(); |
1447 | IdentifierInfo *Name2 = Field2->getIdentifier(); |
1448 | if (!::IsStructurallyEquivalent(Name1, Name2)) { |
1449 | if (Context.Complain) { |
1450 | Context.Diag2( |
1451 | Loc: Owner2->getLocation(), |
1452 | DiagID: Context.getApplicableDiagnostic(ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
1453 | << Owner2Type; |
1454 | Context.Diag2(Loc: Field2->getLocation(), DiagID: diag::note_odr_field_name) |
1455 | << Field2->getDeclName(); |
1456 | Context.Diag1(Loc: Field1->getLocation(), DiagID: diag::note_odr_field_name) |
1457 | << Field1->getDeclName(); |
1458 | } |
1459 | return false; |
1460 | } |
1461 | |
1462 | if (!IsStructurallyEquivalent(Context, T1: Field1->getType(), |
1463 | T2: Field2->getType())) { |
1464 | if (Context.Complain) { |
1465 | Context.Diag2( |
1466 | Loc: Owner2->getLocation(), |
1467 | DiagID: Context.getApplicableDiagnostic(ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
1468 | << Owner2Type; |
1469 | Context.Diag2(Loc: Field2->getLocation(), DiagID: diag::note_odr_field) |
1470 | << Field2->getDeclName() << Field2->getType(); |
1471 | Context.Diag1(Loc: Field1->getLocation(), DiagID: diag::note_odr_field) |
1472 | << Field1->getDeclName() << Field1->getType(); |
1473 | } |
1474 | return false; |
1475 | } |
1476 | |
1477 | if (Field1->isBitField()) |
1478 | return IsStructurallyEquivalent(Context, S1: Field1->getBitWidth(), |
1479 | S2: Field2->getBitWidth()); |
1480 | |
1481 | return true; |
1482 | } |
1483 | |
1484 | /// Determine structural equivalence of two fields. |
1485 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
1486 | FieldDecl *Field1, FieldDecl *Field2) { |
1487 | const auto *Owner2 = cast<RecordDecl>(Val: Field2->getDeclContext()); |
1488 | return IsStructurallyEquivalent(Context, Field1, Field2, |
1489 | Owner2Type: Context.ToCtx.getTypeDeclType(Decl: Owner2)); |
1490 | } |
1491 | |
1492 | /// Determine structural equivalence of two methods. |
1493 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
1494 | CXXMethodDecl *Method1, |
1495 | CXXMethodDecl *Method2) { |
1496 | bool PropertiesEqual = |
1497 | Method1->getDeclKind() == Method2->getDeclKind() && |
1498 | Method1->getRefQualifier() == Method2->getRefQualifier() && |
1499 | Method1->getAccess() == Method2->getAccess() && |
1500 | Method1->getOverloadedOperator() == Method2->getOverloadedOperator() && |
1501 | Method1->isStatic() == Method2->isStatic() && |
1502 | Method1->isImplicitObjectMemberFunction() == |
1503 | Method2->isImplicitObjectMemberFunction() && |
1504 | Method1->isConst() == Method2->isConst() && |
1505 | Method1->isVolatile() == Method2->isVolatile() && |
1506 | Method1->isVirtual() == Method2->isVirtual() && |
1507 | Method1->isPureVirtual() == Method2->isPureVirtual() && |
1508 | Method1->isDefaulted() == Method2->isDefaulted() && |
1509 | Method1->isDeleted() == Method2->isDeleted(); |
1510 | if (!PropertiesEqual) |
1511 | return false; |
1512 | // FIXME: Check for 'final'. |
1513 | |
1514 | if (auto *Constructor1 = dyn_cast<CXXConstructorDecl>(Val: Method1)) { |
1515 | auto *Constructor2 = cast<CXXConstructorDecl>(Val: Method2); |
1516 | if (!Constructor1->getExplicitSpecifier().isEquivalent( |
1517 | Other: Constructor2->getExplicitSpecifier())) |
1518 | return false; |
1519 | } |
1520 | |
1521 | if (auto *Conversion1 = dyn_cast<CXXConversionDecl>(Val: Method1)) { |
1522 | auto *Conversion2 = cast<CXXConversionDecl>(Val: Method2); |
1523 | if (!Conversion1->getExplicitSpecifier().isEquivalent( |
1524 | Other: Conversion2->getExplicitSpecifier())) |
1525 | return false; |
1526 | if (!IsStructurallyEquivalent(Context, T1: Conversion1->getConversionType(), |
1527 | T2: Conversion2->getConversionType())) |
1528 | return false; |
1529 | } |
1530 | |
1531 | const IdentifierInfo *Name1 = Method1->getIdentifier(); |
1532 | const IdentifierInfo *Name2 = Method2->getIdentifier(); |
1533 | if (!::IsStructurallyEquivalent(Name1, Name2)) { |
1534 | return false; |
1535 | // TODO: Names do not match, add warning like at check for FieldDecl. |
1536 | } |
1537 | |
1538 | // Check the prototypes. |
1539 | if (!::IsStructurallyEquivalent(Context, |
1540 | T1: Method1->getType(), T2: Method2->getType())) |
1541 | return false; |
1542 | |
1543 | return true; |
1544 | } |
1545 | |
1546 | /// Determine structural equivalence of two lambda classes. |
1547 | static bool |
1548 | IsStructurallyEquivalentLambdas(StructuralEquivalenceContext &Context, |
1549 | CXXRecordDecl *D1, CXXRecordDecl *D2) { |
1550 | assert(D1->isLambda() && D2->isLambda() && |
1551 | "Must be called on lambda classes" ); |
1552 | if (!IsStructurallyEquivalent(Context, Method1: D1->getLambdaCallOperator(), |
1553 | Method2: D2->getLambdaCallOperator())) |
1554 | return false; |
1555 | |
1556 | return true; |
1557 | } |
1558 | |
1559 | /// Determine if context of a class is equivalent. |
1560 | static bool |
1561 | IsRecordContextStructurallyEquivalent(StructuralEquivalenceContext &Context, |
1562 | RecordDecl *D1, RecordDecl *D2) { |
1563 | // The context should be completely equal, including anonymous and inline |
1564 | // namespaces. |
1565 | // We compare objects as part of full translation units, not subtrees of |
1566 | // translation units. |
1567 | DeclContext *DC1 = D1->getDeclContext()->getNonTransparentContext(); |
1568 | DeclContext *DC2 = D2->getDeclContext()->getNonTransparentContext(); |
1569 | while (true) { |
1570 | // Special case: We allow a struct defined in a function to be equivalent |
1571 | // with a similar struct defined outside of a function. |
1572 | if ((DC1->isFunctionOrMethod() && DC2->isTranslationUnit()) || |
1573 | (DC2->isFunctionOrMethod() && DC1->isTranslationUnit())) |
1574 | return true; |
1575 | |
1576 | if (DC1->getDeclKind() != DC2->getDeclKind()) |
1577 | return false; |
1578 | if (DC1->isTranslationUnit()) |
1579 | break; |
1580 | if (DC1->isInlineNamespace() != DC2->isInlineNamespace()) |
1581 | return false; |
1582 | if (const auto *ND1 = dyn_cast<NamedDecl>(Val: DC1)) { |
1583 | const auto *ND2 = cast<NamedDecl>(Val: DC2); |
1584 | if (!DC1->isInlineNamespace() && |
1585 | !IsStructurallyEquivalent(Name1: ND1->getIdentifier(), Name2: ND2->getIdentifier())) |
1586 | return false; |
1587 | } |
1588 | |
1589 | if (auto *D1Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: DC1)) { |
1590 | auto *D2Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: DC2); |
1591 | if (!IsStructurallyEquivalent(Context, D1: D1Spec, D2: D2Spec)) |
1592 | return false; |
1593 | } |
1594 | |
1595 | DC1 = DC1->getParent()->getNonTransparentContext(); |
1596 | DC2 = DC2->getParent()->getNonTransparentContext(); |
1597 | } |
1598 | |
1599 | return true; |
1600 | } |
1601 | |
1602 | static bool NameIsStructurallyEquivalent(const TagDecl &D1, const TagDecl &D2) { |
1603 | auto GetName = [](const TagDecl &D) -> const IdentifierInfo * { |
1604 | if (const IdentifierInfo *Name = D.getIdentifier()) |
1605 | return Name; |
1606 | if (const TypedefNameDecl *TypedefName = D.getTypedefNameForAnonDecl()) |
1607 | return TypedefName->getIdentifier(); |
1608 | return nullptr; |
1609 | }; |
1610 | return IsStructurallyEquivalent(Name1: GetName(D1), Name2: GetName(D2)); |
1611 | } |
1612 | |
1613 | /// Determine structural equivalence of two records. |
1614 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
1615 | RecordDecl *D1, RecordDecl *D2) { |
1616 | if (!NameIsStructurallyEquivalent(D1: *D1, D2: *D2)) { |
1617 | return false; |
1618 | } |
1619 | |
1620 | if (D1->isUnion() != D2->isUnion()) { |
1621 | if (Context.Complain) { |
1622 | Context.Diag2(Loc: D2->getLocation(), DiagID: Context.getApplicableDiagnostic( |
1623 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
1624 | << Context.ToCtx.getTypeDeclType(Decl: D2); |
1625 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_tag_kind_here) |
1626 | << D1->getDeclName() << (unsigned)D1->getTagKind(); |
1627 | } |
1628 | return false; |
1629 | } |
1630 | |
1631 | if (!D1->getDeclName() && !D2->getDeclName()) { |
1632 | // If both anonymous structs/unions are in a record context, make sure |
1633 | // they occur in the same location in the context records. |
1634 | if (std::optional<unsigned> Index1 = |
1635 | StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(Anon: D1)) { |
1636 | if (std::optional<unsigned> Index2 = |
1637 | StructuralEquivalenceContext::findUntaggedStructOrUnionIndex( |
1638 | Anon: D2)) { |
1639 | if (*Index1 != *Index2) |
1640 | return false; |
1641 | } |
1642 | } |
1643 | } |
1644 | |
1645 | // If the records occur in different context (namespace), these should be |
1646 | // different. This is specially important if the definition of one or both |
1647 | // records is missing. |
1648 | if (!IsRecordContextStructurallyEquivalent(Context, D1, D2)) |
1649 | return false; |
1650 | |
1651 | // If both declarations are class template specializations, we know |
1652 | // the ODR applies, so check the template and template arguments. |
1653 | const auto *Spec1 = dyn_cast<ClassTemplateSpecializationDecl>(Val: D1); |
1654 | const auto *Spec2 = dyn_cast<ClassTemplateSpecializationDecl>(Val: D2); |
1655 | if (Spec1 && Spec2) { |
1656 | // Check that the specialized templates are the same. |
1657 | if (!IsStructurallyEquivalent(Context, D1: Spec1->getSpecializedTemplate(), |
1658 | D2: Spec2->getSpecializedTemplate())) |
1659 | return false; |
1660 | |
1661 | // Check that the template arguments are the same. |
1662 | if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size()) |
1663 | return false; |
1664 | |
1665 | for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I) |
1666 | if (!IsStructurallyEquivalent(Context, Arg1: Spec1->getTemplateArgs().get(Idx: I), |
1667 | Arg2: Spec2->getTemplateArgs().get(Idx: I))) |
1668 | return false; |
1669 | } |
1670 | // If one is a class template specialization and the other is not, these |
1671 | // structures are different. |
1672 | else if (Spec1 || Spec2) |
1673 | return false; |
1674 | |
1675 | // Compare the definitions of these two records. If either or both are |
1676 | // incomplete (i.e. it is a forward decl), we assume that they are |
1677 | // equivalent. |
1678 | D1 = D1->getDefinition(); |
1679 | D2 = D2->getDefinition(); |
1680 | if (!D1 || !D2) |
1681 | return true; |
1682 | |
1683 | // If any of the records has external storage and we do a minimal check (or |
1684 | // AST import) we assume they are equivalent. (If we didn't have this |
1685 | // assumption then `RecordDecl::LoadFieldsFromExternalStorage` could trigger |
1686 | // another AST import which in turn would call the structural equivalency |
1687 | // check again and finally we'd have an improper result.) |
1688 | if (Context.EqKind == StructuralEquivalenceKind::Minimal) |
1689 | if (D1->hasExternalLexicalStorage() || D2->hasExternalLexicalStorage()) |
1690 | return true; |
1691 | |
1692 | // If one definition is currently being defined, we do not compare for |
1693 | // equality and we assume that the decls are equal. |
1694 | if (D1->isBeingDefined() || D2->isBeingDefined()) |
1695 | return true; |
1696 | |
1697 | if (auto *D1CXX = dyn_cast<CXXRecordDecl>(Val: D1)) { |
1698 | if (auto *D2CXX = dyn_cast<CXXRecordDecl>(Val: D2)) { |
1699 | if (D1CXX->hasExternalLexicalStorage() && |
1700 | !D1CXX->isCompleteDefinition()) { |
1701 | D1CXX->getASTContext().getExternalSource()->CompleteType(Tag: D1CXX); |
1702 | } |
1703 | |
1704 | if (D1CXX->isLambda() != D2CXX->isLambda()) |
1705 | return false; |
1706 | if (D1CXX->isLambda()) { |
1707 | if (!IsStructurallyEquivalentLambdas(Context, D1: D1CXX, D2: D2CXX)) |
1708 | return false; |
1709 | } |
1710 | |
1711 | if (D1CXX->getNumBases() != D2CXX->getNumBases()) { |
1712 | if (Context.Complain) { |
1713 | Context.Diag2(Loc: D2->getLocation(), |
1714 | DiagID: Context.getApplicableDiagnostic( |
1715 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
1716 | << Context.ToCtx.getTypeDeclType(Decl: D2); |
1717 | Context.Diag2(Loc: D2->getLocation(), DiagID: diag::note_odr_number_of_bases) |
1718 | << D2CXX->getNumBases(); |
1719 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_number_of_bases) |
1720 | << D1CXX->getNumBases(); |
1721 | } |
1722 | return false; |
1723 | } |
1724 | |
1725 | // Check the base classes. |
1726 | for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(), |
1727 | BaseEnd1 = D1CXX->bases_end(), |
1728 | Base2 = D2CXX->bases_begin(); |
1729 | Base1 != BaseEnd1; ++Base1, ++Base2) { |
1730 | if (!IsStructurallyEquivalent(Context, T1: Base1->getType(), |
1731 | T2: Base2->getType())) { |
1732 | if (Context.Complain) { |
1733 | Context.Diag2(Loc: D2->getLocation(), |
1734 | DiagID: Context.getApplicableDiagnostic( |
1735 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
1736 | << Context.ToCtx.getTypeDeclType(Decl: D2); |
1737 | Context.Diag2(Loc: Base2->getBeginLoc(), DiagID: diag::note_odr_base) |
1738 | << Base2->getType() << Base2->getSourceRange(); |
1739 | Context.Diag1(Loc: Base1->getBeginLoc(), DiagID: diag::note_odr_base) |
1740 | << Base1->getType() << Base1->getSourceRange(); |
1741 | } |
1742 | return false; |
1743 | } |
1744 | |
1745 | // Check virtual vs. non-virtual inheritance mismatch. |
1746 | if (Base1->isVirtual() != Base2->isVirtual()) { |
1747 | if (Context.Complain) { |
1748 | Context.Diag2(Loc: D2->getLocation(), |
1749 | DiagID: Context.getApplicableDiagnostic( |
1750 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
1751 | << Context.ToCtx.getTypeDeclType(Decl: D2); |
1752 | Context.Diag2(Loc: Base2->getBeginLoc(), DiagID: diag::note_odr_virtual_base) |
1753 | << Base2->isVirtual() << Base2->getSourceRange(); |
1754 | Context.Diag1(Loc: Base1->getBeginLoc(), DiagID: diag::note_odr_base) |
1755 | << Base1->isVirtual() << Base1->getSourceRange(); |
1756 | } |
1757 | return false; |
1758 | } |
1759 | } |
1760 | |
1761 | // Check the friends for consistency. |
1762 | CXXRecordDecl::friend_iterator Friend2 = D2CXX->friend_begin(), |
1763 | Friend2End = D2CXX->friend_end(); |
1764 | for (CXXRecordDecl::friend_iterator Friend1 = D1CXX->friend_begin(), |
1765 | Friend1End = D1CXX->friend_end(); |
1766 | Friend1 != Friend1End; ++Friend1, ++Friend2) { |
1767 | if (Friend2 == Friend2End) { |
1768 | if (Context.Complain) { |
1769 | Context.Diag2(Loc: D2->getLocation(), |
1770 | DiagID: Context.getApplicableDiagnostic( |
1771 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
1772 | << Context.ToCtx.getTypeDeclType(Decl: D2CXX); |
1773 | Context.Diag1(Loc: (*Friend1)->getFriendLoc(), DiagID: diag::note_odr_friend); |
1774 | Context.Diag2(Loc: D2->getLocation(), DiagID: diag::note_odr_missing_friend); |
1775 | } |
1776 | return false; |
1777 | } |
1778 | |
1779 | if (!IsStructurallyEquivalent(Context, D1: *Friend1, D2: *Friend2)) { |
1780 | if (Context.Complain) { |
1781 | Context.Diag2(Loc: D2->getLocation(), |
1782 | DiagID: Context.getApplicableDiagnostic( |
1783 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
1784 | << Context.ToCtx.getTypeDeclType(Decl: D2CXX); |
1785 | Context.Diag1(Loc: (*Friend1)->getFriendLoc(), DiagID: diag::note_odr_friend); |
1786 | Context.Diag2(Loc: (*Friend2)->getFriendLoc(), DiagID: diag::note_odr_friend); |
1787 | } |
1788 | return false; |
1789 | } |
1790 | } |
1791 | |
1792 | if (Friend2 != Friend2End) { |
1793 | if (Context.Complain) { |
1794 | Context.Diag2(Loc: D2->getLocation(), |
1795 | DiagID: Context.getApplicableDiagnostic( |
1796 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
1797 | << Context.ToCtx.getTypeDeclType(Decl: D2); |
1798 | Context.Diag2(Loc: (*Friend2)->getFriendLoc(), DiagID: diag::note_odr_friend); |
1799 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_missing_friend); |
1800 | } |
1801 | return false; |
1802 | } |
1803 | } else if (D1CXX->getNumBases() > 0) { |
1804 | if (Context.Complain) { |
1805 | Context.Diag2(Loc: D2->getLocation(), |
1806 | DiagID: Context.getApplicableDiagnostic( |
1807 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
1808 | << Context.ToCtx.getTypeDeclType(Decl: D2); |
1809 | const CXXBaseSpecifier *Base1 = D1CXX->bases_begin(); |
1810 | Context.Diag1(Loc: Base1->getBeginLoc(), DiagID: diag::note_odr_base) |
1811 | << Base1->getType() << Base1->getSourceRange(); |
1812 | Context.Diag2(Loc: D2->getLocation(), DiagID: diag::note_odr_missing_base); |
1813 | } |
1814 | return false; |
1815 | } |
1816 | } |
1817 | |
1818 | // Check the fields for consistency. |
1819 | QualType D2Type = Context.ToCtx.getTypeDeclType(Decl: D2); |
1820 | RecordDecl::field_iterator Field2 = D2->field_begin(), |
1821 | Field2End = D2->field_end(); |
1822 | for (RecordDecl::field_iterator Field1 = D1->field_begin(), |
1823 | Field1End = D1->field_end(); |
1824 | Field1 != Field1End; ++Field1, ++Field2) { |
1825 | if (Field2 == Field2End) { |
1826 | if (Context.Complain) { |
1827 | Context.Diag2(Loc: D2->getLocation(), |
1828 | DiagID: Context.getApplicableDiagnostic( |
1829 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
1830 | << Context.ToCtx.getTypeDeclType(Decl: D2); |
1831 | Context.Diag1(Loc: Field1->getLocation(), DiagID: diag::note_odr_field) |
1832 | << Field1->getDeclName() << Field1->getType(); |
1833 | Context.Diag2(Loc: D2->getLocation(), DiagID: diag::note_odr_missing_field); |
1834 | } |
1835 | return false; |
1836 | } |
1837 | |
1838 | if (!IsStructurallyEquivalent(Context, Field1: *Field1, Field2: *Field2, Owner2Type: D2Type)) |
1839 | return false; |
1840 | } |
1841 | |
1842 | if (Field2 != Field2End) { |
1843 | if (Context.Complain) { |
1844 | Context.Diag2(Loc: D2->getLocation(), DiagID: Context.getApplicableDiagnostic( |
1845 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
1846 | << Context.ToCtx.getTypeDeclType(Decl: D2); |
1847 | Context.Diag2(Loc: Field2->getLocation(), DiagID: diag::note_odr_field) |
1848 | << Field2->getDeclName() << Field2->getType(); |
1849 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_missing_field); |
1850 | } |
1851 | return false; |
1852 | } |
1853 | |
1854 | return true; |
1855 | } |
1856 | |
1857 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
1858 | EnumConstantDecl *D1, |
1859 | EnumConstantDecl *D2) { |
1860 | const llvm::APSInt &FromVal = D1->getInitVal(); |
1861 | const llvm::APSInt &ToVal = D2->getInitVal(); |
1862 | if (FromVal.isSigned() != ToVal.isSigned()) |
1863 | return false; |
1864 | if (FromVal.getBitWidth() != ToVal.getBitWidth()) |
1865 | return false; |
1866 | if (FromVal != ToVal) |
1867 | return false; |
1868 | |
1869 | if (!IsStructurallyEquivalent(Name1: D1->getIdentifier(), Name2: D2->getIdentifier())) |
1870 | return false; |
1871 | |
1872 | // Init expressions are the most expensive check, so do them last. |
1873 | return IsStructurallyEquivalent(Context, S1: D1->getInitExpr(), |
1874 | S2: D2->getInitExpr()); |
1875 | } |
1876 | |
1877 | /// Determine structural equivalence of two enums. |
1878 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
1879 | EnumDecl *D1, EnumDecl *D2) { |
1880 | if (!NameIsStructurallyEquivalent(D1: *D1, D2: *D2)) { |
1881 | return false; |
1882 | } |
1883 | |
1884 | // Compare the definitions of these two enums. If either or both are |
1885 | // incomplete (i.e. forward declared), we assume that they are equivalent. |
1886 | D1 = D1->getDefinition(); |
1887 | D2 = D2->getDefinition(); |
1888 | if (!D1 || !D2) |
1889 | return true; |
1890 | |
1891 | EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(), |
1892 | EC2End = D2->enumerator_end(); |
1893 | for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(), |
1894 | EC1End = D1->enumerator_end(); |
1895 | EC1 != EC1End; ++EC1, ++EC2) { |
1896 | if (EC2 == EC2End) { |
1897 | if (Context.Complain) { |
1898 | Context.Diag2(Loc: D2->getLocation(), |
1899 | DiagID: Context.getApplicableDiagnostic( |
1900 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
1901 | << Context.ToCtx.getTypeDeclType(Decl: D2); |
1902 | Context.Diag1(Loc: EC1->getLocation(), DiagID: diag::note_odr_enumerator) |
1903 | << EC1->getDeclName() << toString(I: EC1->getInitVal(), Radix: 10); |
1904 | Context.Diag2(Loc: D2->getLocation(), DiagID: diag::note_odr_missing_enumerator); |
1905 | } |
1906 | return false; |
1907 | } |
1908 | |
1909 | llvm::APSInt Val1 = EC1->getInitVal(); |
1910 | llvm::APSInt Val2 = EC2->getInitVal(); |
1911 | if (!llvm::APSInt::isSameValue(I1: Val1, I2: Val2) || |
1912 | !IsStructurallyEquivalent(Name1: EC1->getIdentifier(), Name2: EC2->getIdentifier())) { |
1913 | if (Context.Complain) { |
1914 | Context.Diag2(Loc: D2->getLocation(), |
1915 | DiagID: Context.getApplicableDiagnostic( |
1916 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
1917 | << Context.ToCtx.getTypeDeclType(Decl: D2); |
1918 | Context.Diag2(Loc: EC2->getLocation(), DiagID: diag::note_odr_enumerator) |
1919 | << EC2->getDeclName() << toString(I: EC2->getInitVal(), Radix: 10); |
1920 | Context.Diag1(Loc: EC1->getLocation(), DiagID: diag::note_odr_enumerator) |
1921 | << EC1->getDeclName() << toString(I: EC1->getInitVal(), Radix: 10); |
1922 | } |
1923 | return false; |
1924 | } |
1925 | } |
1926 | |
1927 | if (EC2 != EC2End) { |
1928 | if (Context.Complain) { |
1929 | Context.Diag2(Loc: D2->getLocation(), DiagID: Context.getApplicableDiagnostic( |
1930 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
1931 | << Context.ToCtx.getTypeDeclType(Decl: D2); |
1932 | Context.Diag2(Loc: EC2->getLocation(), DiagID: diag::note_odr_enumerator) |
1933 | << EC2->getDeclName() << toString(I: EC2->getInitVal(), Radix: 10); |
1934 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_missing_enumerator); |
1935 | } |
1936 | return false; |
1937 | } |
1938 | |
1939 | return true; |
1940 | } |
1941 | |
1942 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
1943 | TemplateParameterList *Params1, |
1944 | TemplateParameterList *Params2) { |
1945 | if (Params1->size() != Params2->size()) { |
1946 | if (Context.Complain) { |
1947 | Context.Diag2(Loc: Params2->getTemplateLoc(), |
1948 | DiagID: Context.getApplicableDiagnostic( |
1949 | ErrorDiagnostic: diag::err_odr_different_num_template_parameters)) |
1950 | << Params1->size() << Params2->size(); |
1951 | Context.Diag1(Loc: Params1->getTemplateLoc(), |
1952 | DiagID: diag::note_odr_template_parameter_list); |
1953 | } |
1954 | return false; |
1955 | } |
1956 | |
1957 | for (unsigned I = 0, N = Params1->size(); I != N; ++I) { |
1958 | if (Params1->getParam(Idx: I)->getKind() != Params2->getParam(Idx: I)->getKind()) { |
1959 | if (Context.Complain) { |
1960 | Context.Diag2(Loc: Params2->getParam(Idx: I)->getLocation(), |
1961 | DiagID: Context.getApplicableDiagnostic( |
1962 | ErrorDiagnostic: diag::err_odr_different_template_parameter_kind)); |
1963 | Context.Diag1(Loc: Params1->getParam(Idx: I)->getLocation(), |
1964 | DiagID: diag::note_odr_template_parameter_here); |
1965 | } |
1966 | return false; |
1967 | } |
1968 | |
1969 | if (!IsStructurallyEquivalent(Context, D1: Params1->getParam(Idx: I), |
1970 | D2: Params2->getParam(Idx: I))) |
1971 | return false; |
1972 | } |
1973 | |
1974 | return true; |
1975 | } |
1976 | |
1977 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
1978 | TemplateTypeParmDecl *D1, |
1979 | TemplateTypeParmDecl *D2) { |
1980 | if (D1->isParameterPack() != D2->isParameterPack()) { |
1981 | if (Context.Complain) { |
1982 | Context.Diag2(Loc: D2->getLocation(), |
1983 | DiagID: Context.getApplicableDiagnostic( |
1984 | ErrorDiagnostic: diag::err_odr_parameter_pack_non_pack)) |
1985 | << D2->isParameterPack(); |
1986 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_parameter_pack_non_pack) |
1987 | << D1->isParameterPack(); |
1988 | } |
1989 | return false; |
1990 | } |
1991 | |
1992 | return true; |
1993 | } |
1994 | |
1995 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
1996 | NonTypeTemplateParmDecl *D1, |
1997 | NonTypeTemplateParmDecl *D2) { |
1998 | if (D1->isParameterPack() != D2->isParameterPack()) { |
1999 | if (Context.Complain) { |
2000 | Context.Diag2(Loc: D2->getLocation(), |
2001 | DiagID: Context.getApplicableDiagnostic( |
2002 | ErrorDiagnostic: diag::err_odr_parameter_pack_non_pack)) |
2003 | << D2->isParameterPack(); |
2004 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_parameter_pack_non_pack) |
2005 | << D1->isParameterPack(); |
2006 | } |
2007 | return false; |
2008 | } |
2009 | if (!Context.IgnoreTemplateParmDepth && D1->getDepth() != D2->getDepth()) |
2010 | return false; |
2011 | if (D1->getIndex() != D2->getIndex()) |
2012 | return false; |
2013 | // Check types. |
2014 | if (!IsStructurallyEquivalent(Context, T1: D1->getType(), T2: D2->getType())) { |
2015 | if (Context.Complain) { |
2016 | Context.Diag2(Loc: D2->getLocation(), |
2017 | DiagID: Context.getApplicableDiagnostic( |
2018 | ErrorDiagnostic: diag::err_odr_non_type_parameter_type_inconsistent)) |
2019 | << D2->getType() << D1->getType(); |
2020 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_value_here) |
2021 | << D1->getType(); |
2022 | } |
2023 | return false; |
2024 | } |
2025 | |
2026 | return true; |
2027 | } |
2028 | |
2029 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
2030 | TemplateTemplateParmDecl *D1, |
2031 | TemplateTemplateParmDecl *D2) { |
2032 | if (D1->isParameterPack() != D2->isParameterPack()) { |
2033 | if (Context.Complain) { |
2034 | Context.Diag2(Loc: D2->getLocation(), |
2035 | DiagID: Context.getApplicableDiagnostic( |
2036 | ErrorDiagnostic: diag::err_odr_parameter_pack_non_pack)) |
2037 | << D2->isParameterPack(); |
2038 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_parameter_pack_non_pack) |
2039 | << D1->isParameterPack(); |
2040 | } |
2041 | return false; |
2042 | } |
2043 | |
2044 | // Check template parameter lists. |
2045 | return IsStructurallyEquivalent(Context, Params1: D1->getTemplateParameters(), |
2046 | Params2: D2->getTemplateParameters()); |
2047 | } |
2048 | |
2049 | static bool IsTemplateDeclCommonStructurallyEquivalent( |
2050 | StructuralEquivalenceContext &Ctx, TemplateDecl *D1, TemplateDecl *D2) { |
2051 | if (!IsStructurallyEquivalent(Name1: D1->getIdentifier(), Name2: D2->getIdentifier())) |
2052 | return false; |
2053 | if (!D1->getIdentifier()) // Special name |
2054 | if (D1->getNameAsString() != D2->getNameAsString()) |
2055 | return false; |
2056 | return IsStructurallyEquivalent(Context&: Ctx, Params1: D1->getTemplateParameters(), |
2057 | Params2: D2->getTemplateParameters()); |
2058 | } |
2059 | |
2060 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
2061 | ClassTemplateDecl *D1, |
2062 | ClassTemplateDecl *D2) { |
2063 | // Check template parameters. |
2064 | if (!IsTemplateDeclCommonStructurallyEquivalent(Ctx&: Context, D1, D2)) |
2065 | return false; |
2066 | |
2067 | // Check the templated declaration. |
2068 | return IsStructurallyEquivalent(Context, D1: D1->getTemplatedDecl(), |
2069 | D2: D2->getTemplatedDecl()); |
2070 | } |
2071 | |
2072 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
2073 | FunctionTemplateDecl *D1, |
2074 | FunctionTemplateDecl *D2) { |
2075 | // Check template parameters. |
2076 | if (!IsTemplateDeclCommonStructurallyEquivalent(Ctx&: Context, D1, D2)) |
2077 | return false; |
2078 | |
2079 | // Check the templated declaration. |
2080 | return IsStructurallyEquivalent(Context, T1: D1->getTemplatedDecl()->getType(), |
2081 | T2: D2->getTemplatedDecl()->getType()); |
2082 | } |
2083 | |
2084 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
2085 | TypeAliasTemplateDecl *D1, |
2086 | TypeAliasTemplateDecl *D2) { |
2087 | // Check template parameters. |
2088 | if (!IsTemplateDeclCommonStructurallyEquivalent(Ctx&: Context, D1, D2)) |
2089 | return false; |
2090 | |
2091 | // Check the templated declaration. |
2092 | return IsStructurallyEquivalent(Context, D1: D1->getTemplatedDecl(), |
2093 | D2: D2->getTemplatedDecl()); |
2094 | } |
2095 | |
2096 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
2097 | ConceptDecl *D1, |
2098 | ConceptDecl *D2) { |
2099 | // Check template parameters. |
2100 | if (!IsTemplateDeclCommonStructurallyEquivalent(Ctx&: Context, D1, D2)) |
2101 | return false; |
2102 | |
2103 | // Check the constraint expression. |
2104 | return IsStructurallyEquivalent(Context, S1: D1->getConstraintExpr(), |
2105 | S2: D2->getConstraintExpr()); |
2106 | } |
2107 | |
2108 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
2109 | FriendDecl *D1, FriendDecl *D2) { |
2110 | if ((D1->getFriendType() && D2->getFriendDecl()) || |
2111 | (D1->getFriendDecl() && D2->getFriendType())) { |
2112 | return false; |
2113 | } |
2114 | if (D1->getFriendType() && D2->getFriendType()) |
2115 | return IsStructurallyEquivalent(Context, |
2116 | T1: D1->getFriendType()->getType(), |
2117 | T2: D2->getFriendType()->getType()); |
2118 | if (D1->getFriendDecl() && D2->getFriendDecl()) |
2119 | return IsStructurallyEquivalent(Context, D1: D1->getFriendDecl(), |
2120 | D2: D2->getFriendDecl()); |
2121 | return false; |
2122 | } |
2123 | |
2124 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
2125 | TypedefNameDecl *D1, TypedefNameDecl *D2) { |
2126 | if (!IsStructurallyEquivalent(Name1: D1->getIdentifier(), Name2: D2->getIdentifier())) |
2127 | return false; |
2128 | |
2129 | return IsStructurallyEquivalent(Context, T1: D1->getUnderlyingType(), |
2130 | T2: D2->getUnderlyingType()); |
2131 | } |
2132 | |
2133 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
2134 | FunctionDecl *D1, FunctionDecl *D2) { |
2135 | if (!IsStructurallyEquivalent(Name1: D1->getIdentifier(), Name2: D2->getIdentifier())) |
2136 | return false; |
2137 | |
2138 | if (D1->isOverloadedOperator()) { |
2139 | if (!D2->isOverloadedOperator()) |
2140 | return false; |
2141 | if (D1->getOverloadedOperator() != D2->getOverloadedOperator()) |
2142 | return false; |
2143 | } |
2144 | |
2145 | // FIXME: Consider checking for function attributes as well. |
2146 | if (!IsStructurallyEquivalent(Context, T1: D1->getType(), T2: D2->getType())) |
2147 | return false; |
2148 | |
2149 | return true; |
2150 | } |
2151 | |
2152 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
2153 | ObjCIvarDecl *D1, ObjCIvarDecl *D2, |
2154 | QualType Owner2Type) { |
2155 | if (D1->getAccessControl() != D2->getAccessControl()) |
2156 | return false; |
2157 | |
2158 | return IsStructurallyEquivalent(Context, Field1: cast<FieldDecl>(Val: D1), |
2159 | Field2: cast<FieldDecl>(Val: D2), Owner2Type); |
2160 | } |
2161 | |
2162 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
2163 | ObjCIvarDecl *D1, ObjCIvarDecl *D2) { |
2164 | QualType Owner2Type = |
2165 | Context.ToCtx.getObjCInterfaceType(Decl: D2->getContainingInterface()); |
2166 | return IsStructurallyEquivalent(Context, D1, D2, Owner2Type); |
2167 | } |
2168 | |
2169 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
2170 | ObjCMethodDecl *Method1, |
2171 | ObjCMethodDecl *Method2) { |
2172 | bool PropertiesEqual = |
2173 | Method1->isInstanceMethod() == Method2->isInstanceMethod() && |
2174 | Method1->isVariadic() == Method2->isVariadic() && |
2175 | Method1->isDirectMethod() == Method2->isDirectMethod(); |
2176 | if (!PropertiesEqual) |
2177 | return false; |
2178 | |
2179 | // Compare selector slot names. |
2180 | Selector Selector1 = Method1->getSelector(), |
2181 | Selector2 = Method2->getSelector(); |
2182 | unsigned NumArgs = Selector1.getNumArgs(); |
2183 | if (NumArgs != Selector2.getNumArgs()) |
2184 | return false; |
2185 | // Compare all selector slots. For selectors with arguments it means all arg |
2186 | // slots. And if there are no arguments, compare the first-and-only slot. |
2187 | unsigned SlotsToCheck = NumArgs > 0 ? NumArgs : 1; |
2188 | for (unsigned I = 0; I < SlotsToCheck; ++I) { |
2189 | if (!IsStructurallyEquivalent(Name1: Selector1.getIdentifierInfoForSlot(argIndex: I), |
2190 | Name2: Selector2.getIdentifierInfoForSlot(argIndex: I))) |
2191 | return false; |
2192 | } |
2193 | |
2194 | // Compare types. |
2195 | if (!IsStructurallyEquivalent(Context, T1: Method1->getReturnType(), |
2196 | T2: Method2->getReturnType())) |
2197 | return false; |
2198 | assert( |
2199 | Method1->param_size() == Method2->param_size() && |
2200 | "Same number of arguments should be already enforced in Selector checks" ); |
2201 | for (ObjCMethodDecl::param_type_iterator |
2202 | ParamT1 = Method1->param_type_begin(), |
2203 | ParamT1End = Method1->param_type_end(), |
2204 | ParamT2 = Method2->param_type_begin(), |
2205 | ParamT2End = Method2->param_type_end(); |
2206 | (ParamT1 != ParamT1End) && (ParamT2 != ParamT2End); |
2207 | ++ParamT1, ++ParamT2) { |
2208 | if (!IsStructurallyEquivalent(Context, T1: *ParamT1, T2: *ParamT2)) |
2209 | return false; |
2210 | } |
2211 | |
2212 | return true; |
2213 | } |
2214 | |
2215 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
2216 | ObjCCategoryDecl *D1, |
2217 | ObjCCategoryDecl *D2) { |
2218 | if (!IsStructurallyEquivalent(Name1: D1->getIdentifier(), Name2: D2->getIdentifier())) |
2219 | return false; |
2220 | |
2221 | const ObjCInterfaceDecl *Intf1 = D1->getClassInterface(), |
2222 | *Intf2 = D2->getClassInterface(); |
2223 | if ((!Intf1 || !Intf2) && (Intf1 != Intf2)) |
2224 | return false; |
2225 | |
2226 | if (Intf1 && |
2227 | !IsStructurallyEquivalent(Name1: Intf1->getIdentifier(), Name2: Intf2->getIdentifier())) |
2228 | return false; |
2229 | |
2230 | // Compare protocols. |
2231 | ObjCCategoryDecl::protocol_iterator Protocol2 = D2->protocol_begin(), |
2232 | Protocol2End = D2->protocol_end(); |
2233 | for (ObjCCategoryDecl::protocol_iterator Protocol1 = D1->protocol_begin(), |
2234 | Protocol1End = D1->protocol_end(); |
2235 | Protocol1 != Protocol1End; ++Protocol1, ++Protocol2) { |
2236 | if (Protocol2 == Protocol2End) |
2237 | return false; |
2238 | if (!IsStructurallyEquivalent(Name1: (*Protocol1)->getIdentifier(), |
2239 | Name2: (*Protocol2)->getIdentifier())) |
2240 | return false; |
2241 | } |
2242 | if (Protocol2 != Protocol2End) |
2243 | return false; |
2244 | |
2245 | // Compare ivars. |
2246 | QualType D2Type = |
2247 | Intf2 ? Context.ToCtx.getObjCInterfaceType(Decl: Intf2) : QualType(); |
2248 | ObjCCategoryDecl::ivar_iterator Ivar2 = D2->ivar_begin(), |
2249 | Ivar2End = D2->ivar_end(); |
2250 | for (ObjCCategoryDecl::ivar_iterator Ivar1 = D1->ivar_begin(), |
2251 | Ivar1End = D1->ivar_end(); |
2252 | Ivar1 != Ivar1End; ++Ivar1, ++Ivar2) { |
2253 | if (Ivar2 == Ivar2End) |
2254 | return false; |
2255 | if (!IsStructurallyEquivalent(Context, D1: *Ivar1, D2: *Ivar2, Owner2Type: D2Type)) |
2256 | return false; |
2257 | } |
2258 | if (Ivar2 != Ivar2End) |
2259 | return false; |
2260 | |
2261 | // Compare methods. |
2262 | ObjCCategoryDecl::method_iterator Method2 = D2->meth_begin(), |
2263 | Method2End = D2->meth_end(); |
2264 | for (ObjCCategoryDecl::method_iterator Method1 = D1->meth_begin(), |
2265 | Method1End = D1->meth_end(); |
2266 | Method1 != Method1End; ++Method1, ++Method2) { |
2267 | if (Method2 == Method2End) |
2268 | return false; |
2269 | if (!IsStructurallyEquivalent(Context, Method1: *Method1, Method2: *Method2)) |
2270 | return false; |
2271 | } |
2272 | if (Method2 != Method2End) |
2273 | return false; |
2274 | |
2275 | return true; |
2276 | } |
2277 | |
2278 | /// Determine structural equivalence of two declarations. |
2279 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
2280 | Decl *D1, Decl *D2) { |
2281 | // FIXME: Check for known structural equivalences via a callback of some sort. |
2282 | |
2283 | D1 = D1->getCanonicalDecl(); |
2284 | D2 = D2->getCanonicalDecl(); |
2285 | std::pair<Decl *, Decl *> P{D1, D2}; |
2286 | |
2287 | // Check whether we already know that these two declarations are not |
2288 | // structurally equivalent. |
2289 | if (Context.NonEquivalentDecls.count(V: P)) |
2290 | return false; |
2291 | |
2292 | // Check if a check for these declarations is already pending. |
2293 | // If yes D1 and D2 will be checked later (from DeclsToCheck), |
2294 | // or these are already checked (and equivalent). |
2295 | bool Inserted = Context.VisitedDecls.insert(V: P).second; |
2296 | if (!Inserted) |
2297 | return true; |
2298 | |
2299 | Context.DeclsToCheck.push(x: P); |
2300 | |
2301 | return true; |
2302 | } |
2303 | |
2304 | DiagnosticBuilder StructuralEquivalenceContext::Diag1(SourceLocation Loc, |
2305 | unsigned DiagID) { |
2306 | assert(Complain && "Not allowed to complain" ); |
2307 | if (LastDiagFromC2) |
2308 | FromCtx.getDiagnostics().notePriorDiagnosticFrom(Other: ToCtx.getDiagnostics()); |
2309 | LastDiagFromC2 = false; |
2310 | return FromCtx.getDiagnostics().Report(Loc, DiagID); |
2311 | } |
2312 | |
2313 | DiagnosticBuilder StructuralEquivalenceContext::Diag2(SourceLocation Loc, |
2314 | unsigned DiagID) { |
2315 | assert(Complain && "Not allowed to complain" ); |
2316 | if (!LastDiagFromC2) |
2317 | ToCtx.getDiagnostics().notePriorDiagnosticFrom(Other: FromCtx.getDiagnostics()); |
2318 | LastDiagFromC2 = true; |
2319 | return ToCtx.getDiagnostics().Report(Loc, DiagID); |
2320 | } |
2321 | |
2322 | std::optional<unsigned> |
2323 | StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(RecordDecl *Anon) { |
2324 | ASTContext &Context = Anon->getASTContext(); |
2325 | QualType AnonTy = Context.getRecordType(Decl: Anon); |
2326 | |
2327 | const auto *Owner = dyn_cast<RecordDecl>(Val: Anon->getDeclContext()); |
2328 | if (!Owner) |
2329 | return std::nullopt; |
2330 | |
2331 | unsigned Index = 0; |
2332 | for (const auto *D : Owner->noload_decls()) { |
2333 | const auto *F = dyn_cast<FieldDecl>(Val: D); |
2334 | if (!F) |
2335 | continue; |
2336 | |
2337 | if (F->isAnonymousStructOrUnion()) { |
2338 | if (Context.hasSameType(T1: F->getType(), T2: AnonTy)) |
2339 | break; |
2340 | ++Index; |
2341 | continue; |
2342 | } |
2343 | |
2344 | // If the field looks like this: |
2345 | // struct { ... } A; |
2346 | QualType FieldType = F->getType(); |
2347 | // In case of nested structs. |
2348 | while (const auto *ElabType = dyn_cast<ElaboratedType>(Val&: FieldType)) |
2349 | FieldType = ElabType->getNamedType(); |
2350 | |
2351 | if (const auto *RecType = dyn_cast<RecordType>(Val&: FieldType)) { |
2352 | const RecordDecl *RecDecl = RecType->getDecl(); |
2353 | if (RecDecl->getDeclContext() == Owner && !RecDecl->getIdentifier()) { |
2354 | if (Context.hasSameType(T1: FieldType, T2: AnonTy)) |
2355 | break; |
2356 | ++Index; |
2357 | continue; |
2358 | } |
2359 | } |
2360 | } |
2361 | |
2362 | return Index; |
2363 | } |
2364 | |
2365 | unsigned StructuralEquivalenceContext::getApplicableDiagnostic( |
2366 | unsigned ErrorDiagnostic) { |
2367 | if (ErrorOnTagTypeMismatch) |
2368 | return ErrorDiagnostic; |
2369 | |
2370 | switch (ErrorDiagnostic) { |
2371 | case diag::err_odr_variable_type_inconsistent: |
2372 | return diag::warn_odr_variable_type_inconsistent; |
2373 | case diag::err_odr_variable_multiple_def: |
2374 | return diag::warn_odr_variable_multiple_def; |
2375 | case diag::err_odr_function_type_inconsistent: |
2376 | return diag::warn_odr_function_type_inconsistent; |
2377 | case diag::err_odr_tag_type_inconsistent: |
2378 | return diag::warn_odr_tag_type_inconsistent; |
2379 | case diag::err_odr_field_type_inconsistent: |
2380 | return diag::warn_odr_field_type_inconsistent; |
2381 | case diag::err_odr_ivar_type_inconsistent: |
2382 | return diag::warn_odr_ivar_type_inconsistent; |
2383 | case diag::err_odr_objc_superclass_inconsistent: |
2384 | return diag::warn_odr_objc_superclass_inconsistent; |
2385 | case diag::err_odr_objc_method_result_type_inconsistent: |
2386 | return diag::warn_odr_objc_method_result_type_inconsistent; |
2387 | case diag::err_odr_objc_method_num_params_inconsistent: |
2388 | return diag::warn_odr_objc_method_num_params_inconsistent; |
2389 | case diag::err_odr_objc_method_param_type_inconsistent: |
2390 | return diag::warn_odr_objc_method_param_type_inconsistent; |
2391 | case diag::err_odr_objc_method_variadic_inconsistent: |
2392 | return diag::warn_odr_objc_method_variadic_inconsistent; |
2393 | case diag::err_odr_objc_property_type_inconsistent: |
2394 | return diag::warn_odr_objc_property_type_inconsistent; |
2395 | case diag::err_odr_objc_property_impl_kind_inconsistent: |
2396 | return diag::warn_odr_objc_property_impl_kind_inconsistent; |
2397 | case diag::err_odr_objc_synthesize_ivar_inconsistent: |
2398 | return diag::warn_odr_objc_synthesize_ivar_inconsistent; |
2399 | case diag::err_odr_different_num_template_parameters: |
2400 | return diag::warn_odr_different_num_template_parameters; |
2401 | case diag::err_odr_different_template_parameter_kind: |
2402 | return diag::warn_odr_different_template_parameter_kind; |
2403 | case diag::err_odr_parameter_pack_non_pack: |
2404 | return diag::warn_odr_parameter_pack_non_pack; |
2405 | case diag::err_odr_non_type_parameter_type_inconsistent: |
2406 | return diag::warn_odr_non_type_parameter_type_inconsistent; |
2407 | } |
2408 | llvm_unreachable("Diagnostic kind not handled in preceding switch" ); |
2409 | } |
2410 | |
2411 | bool StructuralEquivalenceContext::IsEquivalent(Decl *D1, Decl *D2) { |
2412 | |
2413 | // Ensure that the implementation functions (all static functions in this TU) |
2414 | // never call the public ASTStructuralEquivalence::IsEquivalent() functions, |
2415 | // because that will wreak havoc the internal state (DeclsToCheck and |
2416 | // VisitedDecls members) and can cause faulty behaviour. |
2417 | // In other words: Do not start a graph search from a new node with the |
2418 | // internal data of another search in progress. |
2419 | // FIXME: Better encapsulation and separation of internal and public |
2420 | // functionality. |
2421 | assert(DeclsToCheck.empty()); |
2422 | assert(VisitedDecls.empty()); |
2423 | |
2424 | if (!::IsStructurallyEquivalent(Context&: *this, D1, D2)) |
2425 | return false; |
2426 | |
2427 | return !Finish(); |
2428 | } |
2429 | |
2430 | bool StructuralEquivalenceContext::IsEquivalent(QualType T1, QualType T2) { |
2431 | assert(DeclsToCheck.empty()); |
2432 | assert(VisitedDecls.empty()); |
2433 | if (!::IsStructurallyEquivalent(Context&: *this, T1, T2)) |
2434 | return false; |
2435 | |
2436 | return !Finish(); |
2437 | } |
2438 | |
2439 | bool StructuralEquivalenceContext::IsEquivalent(Stmt *S1, Stmt *S2) { |
2440 | assert(DeclsToCheck.empty()); |
2441 | assert(VisitedDecls.empty()); |
2442 | if (!::IsStructurallyEquivalent(Context&: *this, S1, S2)) |
2443 | return false; |
2444 | |
2445 | return !Finish(); |
2446 | } |
2447 | |
2448 | bool StructuralEquivalenceContext::CheckCommonEquivalence(Decl *D1, Decl *D2) { |
2449 | // Check for equivalent described template. |
2450 | TemplateDecl *Template1 = D1->getDescribedTemplate(); |
2451 | TemplateDecl *Template2 = D2->getDescribedTemplate(); |
2452 | if ((Template1 != nullptr) != (Template2 != nullptr)) |
2453 | return false; |
2454 | if (Template1 && !IsStructurallyEquivalent(Context&: *this, D1: Template1, D2: Template2)) |
2455 | return false; |
2456 | |
2457 | // FIXME: Move check for identifier names into this function. |
2458 | |
2459 | return true; |
2460 | } |
2461 | |
2462 | bool StructuralEquivalenceContext::CheckKindSpecificEquivalence( |
2463 | Decl *D1, Decl *D2) { |
2464 | |
2465 | // Kind mismatch. |
2466 | if (D1->getKind() != D2->getKind()) |
2467 | return false; |
2468 | |
2469 | // Cast the Decls to their actual subclass so that the right overload of |
2470 | // IsStructurallyEquivalent is called. |
2471 | switch (D1->getKind()) { |
2472 | #define ABSTRACT_DECL(DECL) |
2473 | #define DECL(DERIVED, BASE) \ |
2474 | case Decl::Kind::DERIVED: \ |
2475 | return ::IsStructurallyEquivalent(*this, static_cast<DERIVED##Decl *>(D1), \ |
2476 | static_cast<DERIVED##Decl *>(D2)); |
2477 | #include "clang/AST/DeclNodes.inc" |
2478 | } |
2479 | return true; |
2480 | } |
2481 | |
2482 | bool StructuralEquivalenceContext::Finish() { |
2483 | while (!DeclsToCheck.empty()) { |
2484 | // Check the next declaration. |
2485 | std::pair<Decl *, Decl *> P = DeclsToCheck.front(); |
2486 | DeclsToCheck.pop(); |
2487 | |
2488 | Decl *D1 = P.first; |
2489 | Decl *D2 = P.second; |
2490 | |
2491 | bool Equivalent = |
2492 | CheckCommonEquivalence(D1, D2) && CheckKindSpecificEquivalence(D1, D2); |
2493 | |
2494 | if (!Equivalent) { |
2495 | // Note that these two declarations are not equivalent (and we already |
2496 | // know about it). |
2497 | NonEquivalentDecls.insert(V: P); |
2498 | |
2499 | return true; |
2500 | } |
2501 | } |
2502 | |
2503 | return false; |
2504 | } |
2505 | |