1 | //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the C++ related Decl classes. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/DeclCXX.h" |
14 | #include "clang/AST/ASTContext.h" |
15 | #include "clang/AST/ASTLambda.h" |
16 | #include "clang/AST/ASTMutationListener.h" |
17 | #include "clang/AST/ASTUnresolvedSet.h" |
18 | #include "clang/AST/Attr.h" |
19 | #include "clang/AST/CXXInheritance.h" |
20 | #include "clang/AST/DeclBase.h" |
21 | #include "clang/AST/DeclTemplate.h" |
22 | #include "clang/AST/DeclarationName.h" |
23 | #include "clang/AST/Expr.h" |
24 | #include "clang/AST/ExprCXX.h" |
25 | #include "clang/AST/LambdaCapture.h" |
26 | #include "clang/AST/NestedNameSpecifier.h" |
27 | #include "clang/AST/ODRHash.h" |
28 | #include "clang/AST/Type.h" |
29 | #include "clang/AST/TypeLoc.h" |
30 | #include "clang/AST/UnresolvedSet.h" |
31 | #include "clang/Basic/Diagnostic.h" |
32 | #include "clang/Basic/IdentifierTable.h" |
33 | #include "clang/Basic/LLVM.h" |
34 | #include "clang/Basic/LangOptions.h" |
35 | #include "clang/Basic/OperatorKinds.h" |
36 | #include "clang/Basic/PartialDiagnostic.h" |
37 | #include "clang/Basic/SourceLocation.h" |
38 | #include "clang/Basic/Specifiers.h" |
39 | #include "clang/Basic/TargetInfo.h" |
40 | #include "llvm/ADT/SmallPtrSet.h" |
41 | #include "llvm/ADT/SmallVector.h" |
42 | #include "llvm/ADT/iterator_range.h" |
43 | #include "llvm/Support/Casting.h" |
44 | #include "llvm/Support/ErrorHandling.h" |
45 | #include "llvm/Support/Format.h" |
46 | #include "llvm/Support/raw_ostream.h" |
47 | #include <algorithm> |
48 | #include <cassert> |
49 | #include <cstddef> |
50 | #include <cstdint> |
51 | |
52 | using namespace clang; |
53 | |
54 | //===----------------------------------------------------------------------===// |
55 | // Decl Allocation/Deallocation Method Implementations |
56 | //===----------------------------------------------------------------------===// |
57 | |
58 | void AccessSpecDecl::anchor() {} |
59 | |
60 | AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, |
61 | GlobalDeclID ID) { |
62 | return new (C, ID) AccessSpecDecl(EmptyShell()); |
63 | } |
64 | |
65 | void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const { |
66 | ExternalASTSource *Source = C.getExternalSource(); |
67 | assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set" ); |
68 | assert(Source && "getFromExternalSource with no external source" ); |
69 | |
70 | for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I) |
71 | I.setDecl( |
72 | cast<NamedDecl>(Val: Source->GetExternalDecl(ID: GlobalDeclID(I.getDeclID())))); |
73 | Impl.Decls.setLazy(false); |
74 | } |
75 | |
76 | CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) |
77 | : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0), |
78 | Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), |
79 | Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true), |
80 | HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false), |
81 | HasPrivateFields(false), HasProtectedFields(false), |
82 | HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false), |
83 | HasOnlyCMembers(true), HasInitMethod(false), HasInClassInitializer(false), |
84 | HasUninitializedReferenceMember(false), HasUninitializedFields(false), |
85 | HasInheritedConstructor(false), HasInheritedDefaultConstructor(false), |
86 | HasInheritedAssignment(false), |
87 | NeedOverloadResolutionForCopyConstructor(false), |
88 | NeedOverloadResolutionForMoveConstructor(false), |
89 | NeedOverloadResolutionForCopyAssignment(false), |
90 | NeedOverloadResolutionForMoveAssignment(false), |
91 | NeedOverloadResolutionForDestructor(false), |
92 | DefaultedCopyConstructorIsDeleted(false), |
93 | DefaultedMoveConstructorIsDeleted(false), |
94 | DefaultedCopyAssignmentIsDeleted(false), |
95 | DefaultedMoveAssignmentIsDeleted(false), |
96 | DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All), |
97 | HasTrivialSpecialMembersForCall(SMF_All), |
98 | DeclaredNonTrivialSpecialMembers(0), |
99 | DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true), |
100 | HasConstexprNonCopyMoveConstructor(false), |
101 | HasDefaultedDefaultConstructor(false), |
102 | DefaultedDefaultConstructorIsConstexpr(true), |
103 | HasConstexprDefaultConstructor(false), |
104 | DefaultedDestructorIsConstexpr(true), |
105 | HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true), |
106 | UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0), |
107 | ImplicitCopyConstructorCanHaveConstParamForVBase(true), |
108 | ImplicitCopyConstructorCanHaveConstParamForNonVBase(true), |
109 | ImplicitCopyAssignmentHasConstParam(true), |
110 | HasDeclaredCopyConstructorWithConstParam(false), |
111 | HasDeclaredCopyAssignmentWithConstParam(false), |
112 | IsAnyDestructorNoReturn(false), IsLambda(false), |
113 | IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false), |
114 | HasODRHash(false), Definition(D) {} |
115 | |
116 | CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const { |
117 | return Bases.get(Source: Definition->getASTContext().getExternalSource()); |
118 | } |
119 | |
120 | CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const { |
121 | return VBases.get(Source: Definition->getASTContext().getExternalSource()); |
122 | } |
123 | |
124 | CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, |
125 | DeclContext *DC, SourceLocation StartLoc, |
126 | SourceLocation IdLoc, IdentifierInfo *Id, |
127 | CXXRecordDecl *PrevDecl) |
128 | : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl), |
129 | DefinitionData(PrevDecl ? PrevDecl->DefinitionData |
130 | : nullptr) {} |
131 | |
132 | CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK, |
133 | DeclContext *DC, SourceLocation StartLoc, |
134 | SourceLocation IdLoc, IdentifierInfo *Id, |
135 | CXXRecordDecl *PrevDecl, |
136 | bool DelayTypeCreation) { |
137 | auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id, |
138 | PrevDecl); |
139 | R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); |
140 | |
141 | // FIXME: DelayTypeCreation seems like such a hack |
142 | if (!DelayTypeCreation) |
143 | C.getTypeDeclType(Decl: R, PrevDecl); |
144 | return R; |
145 | } |
146 | |
147 | CXXRecordDecl * |
148 | CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC, |
149 | TypeSourceInfo *Info, SourceLocation Loc, |
150 | unsigned DependencyKind, bool IsGeneric, |
151 | LambdaCaptureDefault CaptureDefault) { |
152 | auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TagTypeKind::Class, C, DC, Loc, |
153 | Loc, nullptr, nullptr); |
154 | R->setBeingDefined(true); |
155 | R->DefinitionData = new (C) struct LambdaDefinitionData( |
156 | R, Info, DependencyKind, IsGeneric, CaptureDefault); |
157 | R->setMayHaveOutOfDateDef(false); |
158 | R->setImplicit(true); |
159 | |
160 | C.getTypeDeclType(Decl: R, /*PrevDecl=*/nullptr); |
161 | return R; |
162 | } |
163 | |
164 | CXXRecordDecl *CXXRecordDecl::CreateDeserialized(const ASTContext &C, |
165 | GlobalDeclID ID) { |
166 | auto *R = new (C, ID) |
167 | CXXRecordDecl(CXXRecord, TagTypeKind::Struct, C, nullptr, |
168 | SourceLocation(), SourceLocation(), nullptr, nullptr); |
169 | R->setMayHaveOutOfDateDef(false); |
170 | return R; |
171 | } |
172 | |
173 | /// Determine whether a class has a repeated base class. This is intended for |
174 | /// use when determining if a class is standard-layout, so makes no attempt to |
175 | /// handle virtual bases. |
176 | static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) { |
177 | llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes; |
178 | SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD}; |
179 | while (!WorkList.empty()) { |
180 | const CXXRecordDecl *RD = WorkList.pop_back_val(); |
181 | if (RD->getTypeForDecl()->isDependentType()) |
182 | continue; |
183 | for (const CXXBaseSpecifier &BaseSpec : RD->bases()) { |
184 | if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) { |
185 | if (!SeenBaseTypes.insert(Ptr: B).second) |
186 | return true; |
187 | WorkList.push_back(Elt: B); |
188 | } |
189 | } |
190 | } |
191 | return false; |
192 | } |
193 | |
194 | void |
195 | CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, |
196 | unsigned NumBases) { |
197 | ASTContext &C = getASTContext(); |
198 | |
199 | if (!data().Bases.isOffset() && data().NumBases > 0) |
200 | C.Deallocate(Ptr: data().getBases()); |
201 | |
202 | if (NumBases) { |
203 | if (!C.getLangOpts().CPlusPlus17) { |
204 | // C++ [dcl.init.aggr]p1: |
205 | // An aggregate is [...] a class with [...] no base classes [...]. |
206 | data().Aggregate = false; |
207 | } |
208 | |
209 | // C++ [class]p4: |
210 | // A POD-struct is an aggregate class... |
211 | data().PlainOldData = false; |
212 | } |
213 | |
214 | // The set of seen virtual base types. |
215 | llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes; |
216 | |
217 | // The virtual bases of this class. |
218 | SmallVector<const CXXBaseSpecifier *, 8> VBases; |
219 | |
220 | data().Bases = new(C) CXXBaseSpecifier [NumBases]; |
221 | data().NumBases = NumBases; |
222 | for (unsigned i = 0; i < NumBases; ++i) { |
223 | data().getBases()[i] = *Bases[i]; |
224 | // Keep track of inherited vbases for this base class. |
225 | const CXXBaseSpecifier *Base = Bases[i]; |
226 | QualType BaseType = Base->getType(); |
227 | // Skip dependent types; we can't do any checking on them now. |
228 | if (BaseType->isDependentType()) |
229 | continue; |
230 | auto *BaseClassDecl = |
231 | cast<CXXRecordDecl>(Val: BaseType->castAs<RecordType>()->getDecl()); |
232 | |
233 | // C++2a [class]p7: |
234 | // A standard-layout class is a class that: |
235 | // [...] |
236 | // -- has all non-static data members and bit-fields in the class and |
237 | // its base classes first declared in the same class |
238 | if (BaseClassDecl->data().HasBasesWithFields || |
239 | !BaseClassDecl->field_empty()) { |
240 | if (data().HasBasesWithFields) |
241 | // Two bases have members or bit-fields: not standard-layout. |
242 | data().IsStandardLayout = false; |
243 | data().HasBasesWithFields = true; |
244 | } |
245 | |
246 | // C++11 [class]p7: |
247 | // A standard-layout class is a class that: |
248 | // -- [...] has [...] at most one base class with non-static data |
249 | // members |
250 | if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers || |
251 | BaseClassDecl->hasDirectFields()) { |
252 | if (data().HasBasesWithNonStaticDataMembers) |
253 | data().IsCXX11StandardLayout = false; |
254 | data().HasBasesWithNonStaticDataMembers = true; |
255 | } |
256 | |
257 | if (!BaseClassDecl->isEmpty()) { |
258 | // C++14 [meta.unary.prop]p4: |
259 | // T is a class type [...] with [...] no base class B for which |
260 | // is_empty<B>::value is false. |
261 | data().Empty = false; |
262 | } |
263 | |
264 | // C++1z [dcl.init.agg]p1: |
265 | // An aggregate is a class with [...] no private or protected base classes |
266 | if (Base->getAccessSpecifier() != AS_public) { |
267 | data().Aggregate = false; |
268 | |
269 | // C++20 [temp.param]p7: |
270 | // A structural type is [...] a literal class type with [...] all base |
271 | // classes [...] public |
272 | data().StructuralIfLiteral = false; |
273 | } |
274 | |
275 | // C++ [class.virtual]p1: |
276 | // A class that declares or inherits a virtual function is called a |
277 | // polymorphic class. |
278 | if (BaseClassDecl->isPolymorphic()) { |
279 | data().Polymorphic = true; |
280 | |
281 | // An aggregate is a class with [...] no virtual functions. |
282 | data().Aggregate = false; |
283 | } |
284 | |
285 | // C++0x [class]p7: |
286 | // A standard-layout class is a class that: [...] |
287 | // -- has no non-standard-layout base classes |
288 | if (!BaseClassDecl->isStandardLayout()) |
289 | data().IsStandardLayout = false; |
290 | if (!BaseClassDecl->isCXX11StandardLayout()) |
291 | data().IsCXX11StandardLayout = false; |
292 | |
293 | // Record if this base is the first non-literal field or base. |
294 | if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(Ctx: C)) |
295 | data().HasNonLiteralTypeFieldsOrBases = true; |
296 | |
297 | // Now go through all virtual bases of this base and add them. |
298 | for (const auto &VBase : BaseClassDecl->vbases()) { |
299 | // Add this base if it's not already in the list. |
300 | if (SeenVBaseTypes.insert(Ptr: C.getCanonicalType(T: VBase.getType())).second) { |
301 | VBases.push_back(Elt: &VBase); |
302 | |
303 | // C++11 [class.copy]p8: |
304 | // The implicitly-declared copy constructor for a class X will have |
305 | // the form 'X::X(const X&)' if each [...] virtual base class B of X |
306 | // has a copy constructor whose first parameter is of type |
307 | // 'const B&' or 'const volatile B&' [...] |
308 | if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl()) |
309 | if (!VBaseDecl->hasCopyConstructorWithConstParam()) |
310 | data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; |
311 | |
312 | // C++1z [dcl.init.agg]p1: |
313 | // An aggregate is a class with [...] no virtual base classes |
314 | data().Aggregate = false; |
315 | } |
316 | } |
317 | |
318 | if (Base->isVirtual()) { |
319 | // Add this base if it's not already in the list. |
320 | if (SeenVBaseTypes.insert(Ptr: C.getCanonicalType(T: BaseType)).second) |
321 | VBases.push_back(Elt: Base); |
322 | |
323 | // C++14 [meta.unary.prop] is_empty: |
324 | // T is a class type, but not a union type, with ... no virtual base |
325 | // classes |
326 | data().Empty = false; |
327 | |
328 | // C++1z [dcl.init.agg]p1: |
329 | // An aggregate is a class with [...] no virtual base classes |
330 | data().Aggregate = false; |
331 | |
332 | // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: |
333 | // A [default constructor, copy/move constructor, or copy/move assignment |
334 | // operator for a class X] is trivial [...] if: |
335 | // -- class X has [...] no virtual base classes |
336 | data().HasTrivialSpecialMembers &= SMF_Destructor; |
337 | data().HasTrivialSpecialMembersForCall &= SMF_Destructor; |
338 | |
339 | // C++0x [class]p7: |
340 | // A standard-layout class is a class that: [...] |
341 | // -- has [...] no virtual base classes |
342 | data().IsStandardLayout = false; |
343 | data().IsCXX11StandardLayout = false; |
344 | |
345 | // C++20 [dcl.constexpr]p3: |
346 | // In the definition of a constexpr function [...] |
347 | // -- if the function is a constructor or destructor, |
348 | // its class shall not have any virtual base classes |
349 | data().DefaultedDefaultConstructorIsConstexpr = false; |
350 | data().DefaultedDestructorIsConstexpr = false; |
351 | |
352 | // C++1z [class.copy]p8: |
353 | // The implicitly-declared copy constructor for a class X will have |
354 | // the form 'X::X(const X&)' if each potentially constructed subobject |
355 | // has a copy constructor whose first parameter is of type |
356 | // 'const B&' or 'const volatile B&' [...] |
357 | if (!BaseClassDecl->hasCopyConstructorWithConstParam()) |
358 | data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; |
359 | } else { |
360 | // C++ [class.ctor]p5: |
361 | // A default constructor is trivial [...] if: |
362 | // -- all the direct base classes of its class have trivial default |
363 | // constructors. |
364 | if (!BaseClassDecl->hasTrivialDefaultConstructor()) |
365 | data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; |
366 | |
367 | // C++0x [class.copy]p13: |
368 | // A copy/move constructor for class X is trivial if [...] |
369 | // [...] |
370 | // -- the constructor selected to copy/move each direct base class |
371 | // subobject is trivial, and |
372 | if (!BaseClassDecl->hasTrivialCopyConstructor()) |
373 | data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; |
374 | |
375 | if (!BaseClassDecl->hasTrivialCopyConstructorForCall()) |
376 | data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; |
377 | |
378 | // If the base class doesn't have a simple move constructor, we'll eagerly |
379 | // declare it and perform overload resolution to determine which function |
380 | // it actually calls. If it does have a simple move constructor, this |
381 | // check is correct. |
382 | if (!BaseClassDecl->hasTrivialMoveConstructor()) |
383 | data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; |
384 | |
385 | if (!BaseClassDecl->hasTrivialMoveConstructorForCall()) |
386 | data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; |
387 | |
388 | // C++0x [class.copy]p27: |
389 | // A copy/move assignment operator for class X is trivial if [...] |
390 | // [...] |
391 | // -- the assignment operator selected to copy/move each direct base |
392 | // class subobject is trivial, and |
393 | if (!BaseClassDecl->hasTrivialCopyAssignment()) |
394 | data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; |
395 | // If the base class doesn't have a simple move assignment, we'll eagerly |
396 | // declare it and perform overload resolution to determine which function |
397 | // it actually calls. If it does have a simple move assignment, this |
398 | // check is correct. |
399 | if (!BaseClassDecl->hasTrivialMoveAssignment()) |
400 | data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; |
401 | |
402 | // C++11 [class.ctor]p6: |
403 | // If that user-written default constructor would satisfy the |
404 | // requirements of a constexpr constructor/function(C++23), the |
405 | // implicitly-defined default constructor is constexpr. |
406 | if (!BaseClassDecl->hasConstexprDefaultConstructor()) |
407 | data().DefaultedDefaultConstructorIsConstexpr = |
408 | C.getLangOpts().CPlusPlus23; |
409 | |
410 | // C++1z [class.copy]p8: |
411 | // The implicitly-declared copy constructor for a class X will have |
412 | // the form 'X::X(const X&)' if each potentially constructed subobject |
413 | // has a copy constructor whose first parameter is of type |
414 | // 'const B&' or 'const volatile B&' [...] |
415 | if (!BaseClassDecl->hasCopyConstructorWithConstParam()) |
416 | data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; |
417 | } |
418 | |
419 | // C++ [class.ctor]p3: |
420 | // A destructor is trivial if all the direct base classes of its class |
421 | // have trivial destructors. |
422 | if (!BaseClassDecl->hasTrivialDestructor()) |
423 | data().HasTrivialSpecialMembers &= ~SMF_Destructor; |
424 | |
425 | if (!BaseClassDecl->hasTrivialDestructorForCall()) |
426 | data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; |
427 | |
428 | if (!BaseClassDecl->hasIrrelevantDestructor()) |
429 | data().HasIrrelevantDestructor = false; |
430 | |
431 | if (BaseClassDecl->isAnyDestructorNoReturn()) |
432 | data().IsAnyDestructorNoReturn = true; |
433 | |
434 | // C++11 [class.copy]p18: |
435 | // The implicitly-declared copy assignment operator for a class X will |
436 | // have the form 'X& X::operator=(const X&)' if each direct base class B |
437 | // of X has a copy assignment operator whose parameter is of type 'const |
438 | // B&', 'const volatile B&', or 'B' [...] |
439 | if (!BaseClassDecl->hasCopyAssignmentWithConstParam()) |
440 | data().ImplicitCopyAssignmentHasConstParam = false; |
441 | |
442 | // A class has an Objective-C object member if... or any of its bases |
443 | // has an Objective-C object member. |
444 | if (BaseClassDecl->hasObjectMember()) |
445 | setHasObjectMember(true); |
446 | |
447 | if (BaseClassDecl->hasVolatileMember()) |
448 | setHasVolatileMember(true); |
449 | |
450 | if (BaseClassDecl->getArgPassingRestrictions() == |
451 | RecordArgPassingKind::CanNeverPassInRegs) |
452 | setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs); |
453 | |
454 | // Keep track of the presence of mutable fields. |
455 | if (BaseClassDecl->hasMutableFields()) |
456 | data().HasMutableFields = true; |
457 | |
458 | if (BaseClassDecl->hasUninitializedReferenceMember()) |
459 | data().HasUninitializedReferenceMember = true; |
460 | |
461 | if (!BaseClassDecl->allowConstDefaultInit()) |
462 | data().HasUninitializedFields = true; |
463 | |
464 | addedClassSubobject(Base: BaseClassDecl); |
465 | } |
466 | |
467 | // C++2a [class]p7: |
468 | // A class S is a standard-layout class if it: |
469 | // -- has at most one base class subobject of any given type |
470 | // |
471 | // Note that we only need to check this for classes with more than one base |
472 | // class. If there's only one base class, and it's standard layout, then |
473 | // we know there are no repeated base classes. |
474 | if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(StartRD: this)) |
475 | data().IsStandardLayout = false; |
476 | |
477 | if (VBases.empty()) { |
478 | data().IsParsingBaseSpecifiers = false; |
479 | return; |
480 | } |
481 | |
482 | // Create base specifier for any direct or indirect virtual bases. |
483 | data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; |
484 | data().NumVBases = VBases.size(); |
485 | for (int I = 0, E = VBases.size(); I != E; ++I) { |
486 | QualType Type = VBases[I]->getType(); |
487 | if (!Type->isDependentType()) |
488 | addedClassSubobject(Base: Type->getAsCXXRecordDecl()); |
489 | data().getVBases()[I] = *VBases[I]; |
490 | } |
491 | |
492 | data().IsParsingBaseSpecifiers = false; |
493 | } |
494 | |
495 | unsigned CXXRecordDecl::getODRHash() const { |
496 | assert(hasDefinition() && "ODRHash only for records with definitions" ); |
497 | |
498 | // Previously calculated hash is stored in DefinitionData. |
499 | if (DefinitionData->HasODRHash) |
500 | return DefinitionData->ODRHash; |
501 | |
502 | // Only calculate hash on first call of getODRHash per record. |
503 | ODRHash Hash; |
504 | Hash.AddCXXRecordDecl(Record: getDefinition()); |
505 | DefinitionData->HasODRHash = true; |
506 | DefinitionData->ODRHash = Hash.CalculateHash(); |
507 | |
508 | return DefinitionData->ODRHash; |
509 | } |
510 | |
511 | void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) { |
512 | // C++11 [class.copy]p11: |
513 | // A defaulted copy/move constructor for a class X is defined as |
514 | // deleted if X has: |
515 | // -- a direct or virtual base class B that cannot be copied/moved [...] |
516 | // -- a non-static data member of class type M (or array thereof) |
517 | // that cannot be copied or moved [...] |
518 | if (!Subobj->hasSimpleCopyConstructor()) |
519 | data().NeedOverloadResolutionForCopyConstructor = true; |
520 | if (!Subobj->hasSimpleMoveConstructor()) |
521 | data().NeedOverloadResolutionForMoveConstructor = true; |
522 | |
523 | // C++11 [class.copy]p23: |
524 | // A defaulted copy/move assignment operator for a class X is defined as |
525 | // deleted if X has: |
526 | // -- a direct or virtual base class B that cannot be copied/moved [...] |
527 | // -- a non-static data member of class type M (or array thereof) |
528 | // that cannot be copied or moved [...] |
529 | if (!Subobj->hasSimpleCopyAssignment()) |
530 | data().NeedOverloadResolutionForCopyAssignment = true; |
531 | if (!Subobj->hasSimpleMoveAssignment()) |
532 | data().NeedOverloadResolutionForMoveAssignment = true; |
533 | |
534 | // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5: |
535 | // A defaulted [ctor or dtor] for a class X is defined as |
536 | // deleted if X has: |
537 | // -- any direct or virtual base class [...] has a type with a destructor |
538 | // that is deleted or inaccessible from the defaulted [ctor or dtor]. |
539 | // -- any non-static data member has a type with a destructor |
540 | // that is deleted or inaccessible from the defaulted [ctor or dtor]. |
541 | if (!Subobj->hasSimpleDestructor()) { |
542 | data().NeedOverloadResolutionForCopyConstructor = true; |
543 | data().NeedOverloadResolutionForMoveConstructor = true; |
544 | data().NeedOverloadResolutionForDestructor = true; |
545 | } |
546 | |
547 | // C++2a [dcl.constexpr]p4: |
548 | // The definition of a constexpr destructor [shall] satisfy the |
549 | // following requirement: |
550 | // -- for every subobject of class type or (possibly multi-dimensional) |
551 | // array thereof, that class type shall have a constexpr destructor |
552 | if (!Subobj->hasConstexprDestructor()) |
553 | data().DefaultedDestructorIsConstexpr = |
554 | getASTContext().getLangOpts().CPlusPlus23; |
555 | |
556 | // C++20 [temp.param]p7: |
557 | // A structural type is [...] a literal class type [for which] the types |
558 | // of all base classes and non-static data members are structural types or |
559 | // (possibly multi-dimensional) array thereof |
560 | if (!Subobj->data().StructuralIfLiteral) |
561 | data().StructuralIfLiteral = false; |
562 | } |
563 | |
564 | const CXXRecordDecl *CXXRecordDecl::getStandardLayoutBaseWithFields() const { |
565 | assert( |
566 | isStandardLayout() && |
567 | "getStandardLayoutBaseWithFields called on a non-standard-layout type" ); |
568 | #ifdef EXPENSIVE_CHECKS |
569 | { |
570 | unsigned NumberOfBasesWithFields = 0; |
571 | if (!field_empty()) |
572 | ++NumberOfBasesWithFields; |
573 | llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; |
574 | forallBases([&](const CXXRecordDecl *Base) -> bool { |
575 | if (!Base->field_empty()) |
576 | ++NumberOfBasesWithFields; |
577 | assert( |
578 | UniqueBases.insert(Base->getCanonicalDecl()).second && |
579 | "Standard layout struct has multiple base classes of the same type" ); |
580 | return true; |
581 | }); |
582 | assert(NumberOfBasesWithFields <= 1 && |
583 | "Standard layout struct has fields declared in more than one class" ); |
584 | } |
585 | #endif |
586 | if (!field_empty()) |
587 | return this; |
588 | const CXXRecordDecl *Result = this; |
589 | forallBases(BaseMatches: [&](const CXXRecordDecl *Base) -> bool { |
590 | if (!Base->field_empty()) { |
591 | // This is the base where the fields are declared; return early |
592 | Result = Base; |
593 | return false; |
594 | } |
595 | return true; |
596 | }); |
597 | return Result; |
598 | } |
599 | |
600 | bool CXXRecordDecl::hasConstexprDestructor() const { |
601 | auto *Dtor = getDestructor(); |
602 | return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr(); |
603 | } |
604 | |
605 | bool CXXRecordDecl::hasAnyDependentBases() const { |
606 | if (!isDependentContext()) |
607 | return false; |
608 | |
609 | return !forallBases(BaseMatches: [](const CXXRecordDecl *) { return true; }); |
610 | } |
611 | |
612 | bool CXXRecordDecl::isTriviallyCopyable() const { |
613 | // C++0x [class]p5: |
614 | // A trivially copyable class is a class that: |
615 | // -- has no non-trivial copy constructors, |
616 | if (hasNonTrivialCopyConstructor()) return false; |
617 | // -- has no non-trivial move constructors, |
618 | if (hasNonTrivialMoveConstructor()) return false; |
619 | // -- has no non-trivial copy assignment operators, |
620 | if (hasNonTrivialCopyAssignment()) return false; |
621 | // -- has no non-trivial move assignment operators, and |
622 | if (hasNonTrivialMoveAssignment()) return false; |
623 | // -- has a trivial destructor. |
624 | if (!hasTrivialDestructor()) return false; |
625 | |
626 | return true; |
627 | } |
628 | |
629 | bool CXXRecordDecl::isTriviallyCopyConstructible() const { |
630 | |
631 | // A trivially copy constructible class is a class that: |
632 | // -- has no non-trivial copy constructors, |
633 | if (hasNonTrivialCopyConstructor()) |
634 | return false; |
635 | // -- has a trivial destructor. |
636 | if (!hasTrivialDestructor()) |
637 | return false; |
638 | |
639 | return true; |
640 | } |
641 | |
642 | void CXXRecordDecl::markedVirtualFunctionPure() { |
643 | // C++ [class.abstract]p2: |
644 | // A class is abstract if it has at least one pure virtual function. |
645 | data().Abstract = true; |
646 | } |
647 | |
648 | bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType( |
649 | ASTContext &Ctx, const CXXRecordDecl *XFirst) { |
650 | if (!getNumBases()) |
651 | return false; |
652 | |
653 | llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases; |
654 | llvm::SmallPtrSet<const CXXRecordDecl*, 8> M; |
655 | SmallVector<const CXXRecordDecl*, 8> WorkList; |
656 | |
657 | // Visit a type that we have determined is an element of M(S). |
658 | auto Visit = [&](const CXXRecordDecl *RD) -> bool { |
659 | RD = RD->getCanonicalDecl(); |
660 | |
661 | // C++2a [class]p8: |
662 | // A class S is a standard-layout class if it [...] has no element of the |
663 | // set M(S) of types as a base class. |
664 | // |
665 | // If we find a subobject of an empty type, it might also be a base class, |
666 | // so we'll need to walk the base classes to check. |
667 | if (!RD->data().HasBasesWithFields) { |
668 | // Walk the bases the first time, stopping if we find the type. Build a |
669 | // set of them so we don't need to walk them again. |
670 | if (Bases.empty()) { |
671 | bool RDIsBase = !forallBases(BaseMatches: [&](const CXXRecordDecl *Base) -> bool { |
672 | Base = Base->getCanonicalDecl(); |
673 | if (RD == Base) |
674 | return false; |
675 | Bases.insert(Ptr: Base); |
676 | return true; |
677 | }); |
678 | if (RDIsBase) |
679 | return true; |
680 | } else { |
681 | if (Bases.count(Ptr: RD)) |
682 | return true; |
683 | } |
684 | } |
685 | |
686 | if (M.insert(Ptr: RD).second) |
687 | WorkList.push_back(Elt: RD); |
688 | return false; |
689 | }; |
690 | |
691 | if (Visit(XFirst)) |
692 | return true; |
693 | |
694 | while (!WorkList.empty()) { |
695 | const CXXRecordDecl *X = WorkList.pop_back_val(); |
696 | |
697 | // FIXME: We don't check the bases of X. That matches the standard, but |
698 | // that sure looks like a wording bug. |
699 | |
700 | // -- If X is a non-union class type with a non-static data member |
701 | // [recurse to each field] that is either of zero size or is the |
702 | // first non-static data member of X |
703 | // -- If X is a union type, [recurse to union members] |
704 | bool IsFirstField = true; |
705 | for (auto *FD : X->fields()) { |
706 | // FIXME: Should we really care about the type of the first non-static |
707 | // data member of a non-union if there are preceding unnamed bit-fields? |
708 | if (FD->isUnnamedBitField()) |
709 | continue; |
710 | |
711 | if (!IsFirstField && !FD->isZeroSize(Ctx)) |
712 | continue; |
713 | |
714 | if (FD->isInvalidDecl()) |
715 | continue; |
716 | |
717 | // -- If X is n array type, [visit the element type] |
718 | QualType T = Ctx.getBaseElementType(QT: FD->getType()); |
719 | if (auto *RD = T->getAsCXXRecordDecl()) |
720 | if (Visit(RD)) |
721 | return true; |
722 | |
723 | if (!X->isUnion()) |
724 | IsFirstField = false; |
725 | } |
726 | } |
727 | |
728 | return false; |
729 | } |
730 | |
731 | bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const { |
732 | assert(isLambda() && "not a lambda" ); |
733 | |
734 | // C++2a [expr.prim.lambda.capture]p11: |
735 | // The closure type associated with a lambda-expression has no default |
736 | // constructor if the lambda-expression has a lambda-capture and a |
737 | // defaulted default constructor otherwise. It has a deleted copy |
738 | // assignment operator if the lambda-expression has a lambda-capture and |
739 | // defaulted copy and move assignment operators otherwise. |
740 | // |
741 | // C++17 [expr.prim.lambda]p21: |
742 | // The closure type associated with a lambda-expression has no default |
743 | // constructor and a deleted copy assignment operator. |
744 | if (!isCapturelessLambda()) |
745 | return false; |
746 | return getASTContext().getLangOpts().CPlusPlus20; |
747 | } |
748 | |
749 | void CXXRecordDecl::addedMember(Decl *D) { |
750 | if (!D->isImplicit() && !isa<FieldDecl>(Val: D) && !isa<IndirectFieldDecl>(Val: D) && |
751 | (!isa<TagDecl>(Val: D) || |
752 | cast<TagDecl>(Val: D)->getTagKind() == TagTypeKind::Class || |
753 | cast<TagDecl>(Val: D)->getTagKind() == TagTypeKind::Interface)) |
754 | data().HasOnlyCMembers = false; |
755 | |
756 | // Ignore friends and invalid declarations. |
757 | if (D->getFriendObjectKind() || D->isInvalidDecl()) |
758 | return; |
759 | |
760 | auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: D); |
761 | if (FunTmpl) |
762 | D = FunTmpl->getTemplatedDecl(); |
763 | |
764 | // FIXME: Pass NamedDecl* to addedMember? |
765 | Decl *DUnderlying = D; |
766 | if (auto *ND = dyn_cast<NamedDecl>(Val: DUnderlying)) { |
767 | DUnderlying = ND->getUnderlyingDecl(); |
768 | if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(Val: DUnderlying)) |
769 | DUnderlying = UnderlyingFunTmpl->getTemplatedDecl(); |
770 | } |
771 | |
772 | if (const auto *Method = dyn_cast<CXXMethodDecl>(Val: D)) { |
773 | if (Method->isVirtual()) { |
774 | // C++ [dcl.init.aggr]p1: |
775 | // An aggregate is an array or a class with [...] no virtual functions. |
776 | data().Aggregate = false; |
777 | |
778 | // C++ [class]p4: |
779 | // A POD-struct is an aggregate class... |
780 | data().PlainOldData = false; |
781 | |
782 | // C++14 [meta.unary.prop]p4: |
783 | // T is a class type [...] with [...] no virtual member functions... |
784 | data().Empty = false; |
785 | |
786 | // C++ [class.virtual]p1: |
787 | // A class that declares or inherits a virtual function is called a |
788 | // polymorphic class. |
789 | data().Polymorphic = true; |
790 | |
791 | // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: |
792 | // A [default constructor, copy/move constructor, or copy/move |
793 | // assignment operator for a class X] is trivial [...] if: |
794 | // -- class X has no virtual functions [...] |
795 | data().HasTrivialSpecialMembers &= SMF_Destructor; |
796 | data().HasTrivialSpecialMembersForCall &= SMF_Destructor; |
797 | |
798 | // C++0x [class]p7: |
799 | // A standard-layout class is a class that: [...] |
800 | // -- has no virtual functions |
801 | data().IsStandardLayout = false; |
802 | data().IsCXX11StandardLayout = false; |
803 | } |
804 | } |
805 | |
806 | // Notify the listener if an implicit member was added after the definition |
807 | // was completed. |
808 | if (!isBeingDefined() && D->isImplicit()) |
809 | if (ASTMutationListener *L = getASTMutationListener()) |
810 | L->AddedCXXImplicitMember(RD: data().Definition, D); |
811 | |
812 | // The kind of special member this declaration is, if any. |
813 | unsigned SMKind = 0; |
814 | |
815 | // Handle constructors. |
816 | if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(Val: D)) { |
817 | if (Constructor->isInheritingConstructor()) { |
818 | // Ignore constructor shadow declarations. They are lazily created and |
819 | // so shouldn't affect any properties of the class. |
820 | } else { |
821 | if (!Constructor->isImplicit()) { |
822 | // Note that we have a user-declared constructor. |
823 | data().UserDeclaredConstructor = true; |
824 | |
825 | const TargetInfo &TI = getASTContext().getTargetInfo(); |
826 | if ((!Constructor->isDeleted() && !Constructor->isDefaulted()) || |
827 | !TI.areDefaultedSMFStillPOD(getLangOpts())) { |
828 | // C++ [class]p4: |
829 | // A POD-struct is an aggregate class [...] |
830 | // Since the POD bit is meant to be C++03 POD-ness, clear it even if |
831 | // the type is technically an aggregate in C++0x since it wouldn't be |
832 | // in 03. |
833 | data().PlainOldData = false; |
834 | } |
835 | } |
836 | |
837 | if (Constructor->isDefaultConstructor()) { |
838 | SMKind |= SMF_DefaultConstructor; |
839 | |
840 | if (Constructor->isUserProvided()) |
841 | data().UserProvidedDefaultConstructor = true; |
842 | if (Constructor->isConstexpr()) |
843 | data().HasConstexprDefaultConstructor = true; |
844 | if (Constructor->isDefaulted()) |
845 | data().HasDefaultedDefaultConstructor = true; |
846 | } |
847 | |
848 | if (!FunTmpl) { |
849 | unsigned Quals; |
850 | if (Constructor->isCopyConstructor(TypeQuals&: Quals)) { |
851 | SMKind |= SMF_CopyConstructor; |
852 | |
853 | if (Quals & Qualifiers::Const) |
854 | data().HasDeclaredCopyConstructorWithConstParam = true; |
855 | } else if (Constructor->isMoveConstructor()) |
856 | SMKind |= SMF_MoveConstructor; |
857 | } |
858 | |
859 | // C++11 [dcl.init.aggr]p1: DR1518 |
860 | // An aggregate is an array or a class with no user-provided [or] |
861 | // explicit [...] constructors |
862 | // C++20 [dcl.init.aggr]p1: |
863 | // An aggregate is an array or a class with no user-declared [...] |
864 | // constructors |
865 | if (getASTContext().getLangOpts().CPlusPlus20 |
866 | ? !Constructor->isImplicit() |
867 | : (Constructor->isUserProvided() || Constructor->isExplicit())) |
868 | data().Aggregate = false; |
869 | } |
870 | } |
871 | |
872 | // Handle constructors, including those inherited from base classes. |
873 | if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(Val: DUnderlying)) { |
874 | // Record if we see any constexpr constructors which are neither copy |
875 | // nor move constructors. |
876 | // C++1z [basic.types]p10: |
877 | // [...] has at least one constexpr constructor or constructor template |
878 | // (possibly inherited from a base class) that is not a copy or move |
879 | // constructor [...] |
880 | if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) |
881 | data().HasConstexprNonCopyMoveConstructor = true; |
882 | if (!isa<CXXConstructorDecl>(Val: D) && Constructor->isDefaultConstructor()) |
883 | data().HasInheritedDefaultConstructor = true; |
884 | } |
885 | |
886 | // Handle member functions. |
887 | if (const auto *Method = dyn_cast<CXXMethodDecl>(Val: D)) { |
888 | if (isa<CXXDestructorDecl>(Val: D)) |
889 | SMKind |= SMF_Destructor; |
890 | |
891 | if (Method->isCopyAssignmentOperator()) { |
892 | SMKind |= SMF_CopyAssignment; |
893 | |
894 | const auto *ParamTy = |
895 | Method->getNonObjectParameter(I: 0)->getType()->getAs<ReferenceType>(); |
896 | if (!ParamTy || ParamTy->getPointeeType().isConstQualified()) |
897 | data().HasDeclaredCopyAssignmentWithConstParam = true; |
898 | } |
899 | |
900 | if (Method->isMoveAssignmentOperator()) |
901 | SMKind |= SMF_MoveAssignment; |
902 | |
903 | // Keep the list of conversion functions up-to-date. |
904 | if (auto *Conversion = dyn_cast<CXXConversionDecl>(Val: D)) { |
905 | // FIXME: We use the 'unsafe' accessor for the access specifier here, |
906 | // because Sema may not have set it yet. That's really just a misdesign |
907 | // in Sema. However, LLDB *will* have set the access specifier correctly, |
908 | // and adds declarations after the class is technically completed, |
909 | // so completeDefinition()'s overriding of the access specifiers doesn't |
910 | // work. |
911 | AccessSpecifier AS = Conversion->getAccessUnsafe(); |
912 | |
913 | if (Conversion->getPrimaryTemplate()) { |
914 | // We don't record specializations. |
915 | } else { |
916 | ASTContext &Ctx = getASTContext(); |
917 | ASTUnresolvedSet &Conversions = data().Conversions.get(C&: Ctx); |
918 | NamedDecl *Primary = |
919 | FunTmpl ? cast<NamedDecl>(Val: FunTmpl) : cast<NamedDecl>(Val: Conversion); |
920 | if (Primary->getPreviousDecl()) |
921 | Conversions.replace(Old: cast<NamedDecl>(Val: Primary->getPreviousDecl()), |
922 | New: Primary, AS); |
923 | else |
924 | Conversions.addDecl(C&: Ctx, D: Primary, AS); |
925 | } |
926 | } |
927 | |
928 | if (SMKind) { |
929 | // If this is the first declaration of a special member, we no longer have |
930 | // an implicit trivial special member. |
931 | data().HasTrivialSpecialMembers &= |
932 | data().DeclaredSpecialMembers | ~SMKind; |
933 | data().HasTrivialSpecialMembersForCall &= |
934 | data().DeclaredSpecialMembers | ~SMKind; |
935 | |
936 | // Note when we have declared a declared special member, and suppress the |
937 | // implicit declaration of this special member. |
938 | data().DeclaredSpecialMembers |= SMKind; |
939 | if (!Method->isImplicit()) { |
940 | data().UserDeclaredSpecialMembers |= SMKind; |
941 | |
942 | const TargetInfo &TI = getASTContext().getTargetInfo(); |
943 | if ((!Method->isDeleted() && !Method->isDefaulted() && |
944 | SMKind != SMF_MoveAssignment) || |
945 | !TI.areDefaultedSMFStillPOD(getLangOpts())) { |
946 | // C++03 [class]p4: |
947 | // A POD-struct is an aggregate class that has [...] no user-defined |
948 | // copy assignment operator and no user-defined destructor. |
949 | // |
950 | // Since the POD bit is meant to be C++03 POD-ness, and in C++03, |
951 | // aggregates could not have any constructors, clear it even for an |
952 | // explicitly defaulted or deleted constructor. |
953 | // type is technically an aggregate in C++0x since it wouldn't be in |
954 | // 03. |
955 | // |
956 | // Also, a user-declared move assignment operator makes a class |
957 | // non-POD. This is an extension in C++03. |
958 | data().PlainOldData = false; |
959 | } |
960 | } |
961 | // When instantiating a class, we delay updating the destructor and |
962 | // triviality properties of the class until selecting a destructor and |
963 | // computing the eligibility of its special member functions. This is |
964 | // because there might be function constraints that we need to evaluate |
965 | // and compare later in the instantiation. |
966 | if (!Method->isIneligibleOrNotSelected()) { |
967 | addedEligibleSpecialMemberFunction(MD: Method, SMKind); |
968 | } |
969 | } |
970 | |
971 | return; |
972 | } |
973 | |
974 | // Handle non-static data members. |
975 | if (const auto *Field = dyn_cast<FieldDecl>(Val: D)) { |
976 | ASTContext &Context = getASTContext(); |
977 | |
978 | // C++2a [class]p7: |
979 | // A standard-layout class is a class that: |
980 | // [...] |
981 | // -- has all non-static data members and bit-fields in the class and |
982 | // its base classes first declared in the same class |
983 | if (data().HasBasesWithFields) |
984 | data().IsStandardLayout = false; |
985 | |
986 | // C++ [class.bit]p2: |
987 | // A declaration for a bit-field that omits the identifier declares an |
988 | // unnamed bit-field. Unnamed bit-fields are not members and cannot be |
989 | // initialized. |
990 | if (Field->isUnnamedBitField()) { |
991 | // C++ [meta.unary.prop]p4: [LWG2358] |
992 | // T is a class type [...] with [...] no unnamed bit-fields of non-zero |
993 | // length |
994 | if (data().Empty && !Field->isZeroLengthBitField(Ctx: Context) && |
995 | Context.getLangOpts().getClangABICompat() > |
996 | LangOptions::ClangABI::Ver6) |
997 | data().Empty = false; |
998 | return; |
999 | } |
1000 | |
1001 | // C++11 [class]p7: |
1002 | // A standard-layout class is a class that: |
1003 | // -- either has no non-static data members in the most derived class |
1004 | // [...] or has no base classes with non-static data members |
1005 | if (data().HasBasesWithNonStaticDataMembers) |
1006 | data().IsCXX11StandardLayout = false; |
1007 | |
1008 | // C++ [dcl.init.aggr]p1: |
1009 | // An aggregate is an array or a class (clause 9) with [...] no |
1010 | // private or protected non-static data members (clause 11). |
1011 | // |
1012 | // A POD must be an aggregate. |
1013 | if (D->getAccess() == AS_private || D->getAccess() == AS_protected) { |
1014 | data().Aggregate = false; |
1015 | data().PlainOldData = false; |
1016 | |
1017 | // C++20 [temp.param]p7: |
1018 | // A structural type is [...] a literal class type [for which] all |
1019 | // non-static data members are public |
1020 | data().StructuralIfLiteral = false; |
1021 | } |
1022 | |
1023 | // Track whether this is the first field. We use this when checking |
1024 | // whether the class is standard-layout below. |
1025 | bool IsFirstField = !data().HasPrivateFields && |
1026 | !data().HasProtectedFields && !data().HasPublicFields; |
1027 | |
1028 | // C++0x [class]p7: |
1029 | // A standard-layout class is a class that: |
1030 | // [...] |
1031 | // -- has the same access control for all non-static data members, |
1032 | switch (D->getAccess()) { |
1033 | case AS_private: data().HasPrivateFields = true; break; |
1034 | case AS_protected: data().HasProtectedFields = true; break; |
1035 | case AS_public: data().HasPublicFields = true; break; |
1036 | case AS_none: llvm_unreachable("Invalid access specifier" ); |
1037 | }; |
1038 | if ((data().HasPrivateFields + data().HasProtectedFields + |
1039 | data().HasPublicFields) > 1) { |
1040 | data().IsStandardLayout = false; |
1041 | data().IsCXX11StandardLayout = false; |
1042 | } |
1043 | |
1044 | // Keep track of the presence of mutable fields. |
1045 | if (Field->isMutable()) { |
1046 | data().HasMutableFields = true; |
1047 | |
1048 | // C++20 [temp.param]p7: |
1049 | // A structural type is [...] a literal class type [for which] all |
1050 | // non-static data members are public |
1051 | data().StructuralIfLiteral = false; |
1052 | } |
1053 | |
1054 | // C++11 [class.union]p8, DR1460: |
1055 | // If X is a union, a non-static data member of X that is not an anonymous |
1056 | // union is a variant member of X. |
1057 | if (isUnion() && !Field->isAnonymousStructOrUnion()) |
1058 | data().HasVariantMembers = true; |
1059 | |
1060 | // C++0x [class]p9: |
1061 | // A POD struct is a class that is both a trivial class and a |
1062 | // standard-layout class, and has no non-static data members of type |
1063 | // non-POD struct, non-POD union (or array of such types). |
1064 | // |
1065 | // Automatic Reference Counting: the presence of a member of Objective-C pointer type |
1066 | // that does not explicitly have no lifetime makes the class a non-POD. |
1067 | QualType T = Context.getBaseElementType(QT: Field->getType()); |
1068 | if (T->isObjCRetainableType() || T.isObjCGCStrong()) { |
1069 | if (T.hasNonTrivialObjCLifetime()) { |
1070 | // Objective-C Automatic Reference Counting: |
1071 | // If a class has a non-static data member of Objective-C pointer |
1072 | // type (or array thereof), it is a non-POD type and its |
1073 | // default constructor (if any), copy constructor, move constructor, |
1074 | // copy assignment operator, move assignment operator, and destructor are |
1075 | // non-trivial. |
1076 | setHasObjectMember(true); |
1077 | struct DefinitionData &Data = data(); |
1078 | Data.PlainOldData = false; |
1079 | Data.HasTrivialSpecialMembers = 0; |
1080 | |
1081 | // __strong or __weak fields do not make special functions non-trivial |
1082 | // for the purpose of calls. |
1083 | Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime(); |
1084 | if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak) |
1085 | data().HasTrivialSpecialMembersForCall = 0; |
1086 | |
1087 | // Structs with __weak fields should never be passed directly. |
1088 | if (LT == Qualifiers::OCL_Weak) |
1089 | setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs); |
1090 | |
1091 | Data.HasIrrelevantDestructor = false; |
1092 | |
1093 | if (isUnion()) { |
1094 | data().DefaultedCopyConstructorIsDeleted = true; |
1095 | data().DefaultedMoveConstructorIsDeleted = true; |
1096 | data().DefaultedCopyAssignmentIsDeleted = true; |
1097 | data().DefaultedMoveAssignmentIsDeleted = true; |
1098 | data().DefaultedDestructorIsDeleted = true; |
1099 | data().NeedOverloadResolutionForCopyConstructor = true; |
1100 | data().NeedOverloadResolutionForMoveConstructor = true; |
1101 | data().NeedOverloadResolutionForCopyAssignment = true; |
1102 | data().NeedOverloadResolutionForMoveAssignment = true; |
1103 | data().NeedOverloadResolutionForDestructor = true; |
1104 | } |
1105 | } else if (!Context.getLangOpts().ObjCAutoRefCount) { |
1106 | setHasObjectMember(true); |
1107 | } |
1108 | } else if (!T.isCXX98PODType(Context)) |
1109 | data().PlainOldData = false; |
1110 | |
1111 | if (T->isReferenceType()) { |
1112 | if (!Field->hasInClassInitializer()) |
1113 | data().HasUninitializedReferenceMember = true; |
1114 | |
1115 | // C++0x [class]p7: |
1116 | // A standard-layout class is a class that: |
1117 | // -- has no non-static data members of type [...] reference, |
1118 | data().IsStandardLayout = false; |
1119 | data().IsCXX11StandardLayout = false; |
1120 | |
1121 | // C++1z [class.copy.ctor]p10: |
1122 | // A defaulted copy constructor for a class X is defined as deleted if X has: |
1123 | // -- a non-static data member of rvalue reference type |
1124 | if (T->isRValueReferenceType()) |
1125 | data().DefaultedCopyConstructorIsDeleted = true; |
1126 | } |
1127 | |
1128 | if (!Field->hasInClassInitializer() && !Field->isMutable()) { |
1129 | if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) { |
1130 | if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit()) |
1131 | data().HasUninitializedFields = true; |
1132 | } else { |
1133 | data().HasUninitializedFields = true; |
1134 | } |
1135 | } |
1136 | |
1137 | // Record if this field is the first non-literal or volatile field or base. |
1138 | if (!T->isLiteralType(Ctx: Context) || T.isVolatileQualified()) |
1139 | data().HasNonLiteralTypeFieldsOrBases = true; |
1140 | |
1141 | if (Field->hasInClassInitializer() || |
1142 | (Field->isAnonymousStructOrUnion() && |
1143 | Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) { |
1144 | data().HasInClassInitializer = true; |
1145 | |
1146 | // C++11 [class]p5: |
1147 | // A default constructor is trivial if [...] no non-static data member |
1148 | // of its class has a brace-or-equal-initializer. |
1149 | data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; |
1150 | |
1151 | // C++11 [dcl.init.aggr]p1: |
1152 | // An aggregate is a [...] class with [...] no |
1153 | // brace-or-equal-initializers for non-static data members. |
1154 | // |
1155 | // This rule was removed in C++14. |
1156 | if (!getASTContext().getLangOpts().CPlusPlus14) |
1157 | data().Aggregate = false; |
1158 | |
1159 | // C++11 [class]p10: |
1160 | // A POD struct is [...] a trivial class. |
1161 | data().PlainOldData = false; |
1162 | } |
1163 | |
1164 | // C++11 [class.copy]p23: |
1165 | // A defaulted copy/move assignment operator for a class X is defined |
1166 | // as deleted if X has: |
1167 | // -- a non-static data member of reference type |
1168 | if (T->isReferenceType()) { |
1169 | data().DefaultedCopyAssignmentIsDeleted = true; |
1170 | data().DefaultedMoveAssignmentIsDeleted = true; |
1171 | } |
1172 | |
1173 | // Bitfields of length 0 are also zero-sized, but we already bailed out for |
1174 | // those because they are always unnamed. |
1175 | bool IsZeroSize = Field->isZeroSize(Ctx: Context); |
1176 | |
1177 | if (const auto *RecordTy = T->getAs<RecordType>()) { |
1178 | auto *FieldRec = cast<CXXRecordDecl>(Val: RecordTy->getDecl()); |
1179 | if (FieldRec->getDefinition()) { |
1180 | addedClassSubobject(Subobj: FieldRec); |
1181 | |
1182 | // We may need to perform overload resolution to determine whether a |
1183 | // field can be moved if it's const or volatile qualified. |
1184 | if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) { |
1185 | // We need to care about 'const' for the copy constructor because an |
1186 | // implicit copy constructor might be declared with a non-const |
1187 | // parameter. |
1188 | data().NeedOverloadResolutionForCopyConstructor = true; |
1189 | data().NeedOverloadResolutionForMoveConstructor = true; |
1190 | data().NeedOverloadResolutionForCopyAssignment = true; |
1191 | data().NeedOverloadResolutionForMoveAssignment = true; |
1192 | } |
1193 | |
1194 | // C++11 [class.ctor]p5, C++11 [class.copy]p11: |
1195 | // A defaulted [special member] for a class X is defined as |
1196 | // deleted if: |
1197 | // -- X is a union-like class that has a variant member with a |
1198 | // non-trivial [corresponding special member] |
1199 | if (isUnion()) { |
1200 | if (FieldRec->hasNonTrivialCopyConstructor()) |
1201 | data().DefaultedCopyConstructorIsDeleted = true; |
1202 | if (FieldRec->hasNonTrivialMoveConstructor()) |
1203 | data().DefaultedMoveConstructorIsDeleted = true; |
1204 | if (FieldRec->hasNonTrivialCopyAssignment()) |
1205 | data().DefaultedCopyAssignmentIsDeleted = true; |
1206 | if (FieldRec->hasNonTrivialMoveAssignment()) |
1207 | data().DefaultedMoveAssignmentIsDeleted = true; |
1208 | if (FieldRec->hasNonTrivialDestructor()) |
1209 | data().DefaultedDestructorIsDeleted = true; |
1210 | } |
1211 | |
1212 | // For an anonymous union member, our overload resolution will perform |
1213 | // overload resolution for its members. |
1214 | if (Field->isAnonymousStructOrUnion()) { |
1215 | data().NeedOverloadResolutionForCopyConstructor |= |
1216 | FieldRec->data().NeedOverloadResolutionForCopyConstructor; |
1217 | data().NeedOverloadResolutionForMoveConstructor |= |
1218 | FieldRec->data().NeedOverloadResolutionForMoveConstructor; |
1219 | data().NeedOverloadResolutionForCopyAssignment |= |
1220 | FieldRec->data().NeedOverloadResolutionForCopyAssignment; |
1221 | data().NeedOverloadResolutionForMoveAssignment |= |
1222 | FieldRec->data().NeedOverloadResolutionForMoveAssignment; |
1223 | data().NeedOverloadResolutionForDestructor |= |
1224 | FieldRec->data().NeedOverloadResolutionForDestructor; |
1225 | } |
1226 | |
1227 | // C++0x [class.ctor]p5: |
1228 | // A default constructor is trivial [...] if: |
1229 | // -- for all the non-static data members of its class that are of |
1230 | // class type (or array thereof), each such class has a trivial |
1231 | // default constructor. |
1232 | if (!FieldRec->hasTrivialDefaultConstructor()) |
1233 | data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; |
1234 | |
1235 | // C++0x [class.copy]p13: |
1236 | // A copy/move constructor for class X is trivial if [...] |
1237 | // [...] |
1238 | // -- for each non-static data member of X that is of class type (or |
1239 | // an array thereof), the constructor selected to copy/move that |
1240 | // member is trivial; |
1241 | if (!FieldRec->hasTrivialCopyConstructor()) |
1242 | data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; |
1243 | |
1244 | if (!FieldRec->hasTrivialCopyConstructorForCall()) |
1245 | data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; |
1246 | |
1247 | // If the field doesn't have a simple move constructor, we'll eagerly |
1248 | // declare the move constructor for this class and we'll decide whether |
1249 | // it's trivial then. |
1250 | if (!FieldRec->hasTrivialMoveConstructor()) |
1251 | data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; |
1252 | |
1253 | if (!FieldRec->hasTrivialMoveConstructorForCall()) |
1254 | data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; |
1255 | |
1256 | // C++0x [class.copy]p27: |
1257 | // A copy/move assignment operator for class X is trivial if [...] |
1258 | // [...] |
1259 | // -- for each non-static data member of X that is of class type (or |
1260 | // an array thereof), the assignment operator selected to |
1261 | // copy/move that member is trivial; |
1262 | if (!FieldRec->hasTrivialCopyAssignment()) |
1263 | data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; |
1264 | // If the field doesn't have a simple move assignment, we'll eagerly |
1265 | // declare the move assignment for this class and we'll decide whether |
1266 | // it's trivial then. |
1267 | if (!FieldRec->hasTrivialMoveAssignment()) |
1268 | data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; |
1269 | |
1270 | if (!FieldRec->hasTrivialDestructor()) |
1271 | data().HasTrivialSpecialMembers &= ~SMF_Destructor; |
1272 | if (!FieldRec->hasTrivialDestructorForCall()) |
1273 | data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; |
1274 | if (!FieldRec->hasIrrelevantDestructor()) |
1275 | data().HasIrrelevantDestructor = false; |
1276 | if (FieldRec->isAnyDestructorNoReturn()) |
1277 | data().IsAnyDestructorNoReturn = true; |
1278 | if (FieldRec->hasObjectMember()) |
1279 | setHasObjectMember(true); |
1280 | if (FieldRec->hasVolatileMember()) |
1281 | setHasVolatileMember(true); |
1282 | if (FieldRec->getArgPassingRestrictions() == |
1283 | RecordArgPassingKind::CanNeverPassInRegs) |
1284 | setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs); |
1285 | |
1286 | // C++0x [class]p7: |
1287 | // A standard-layout class is a class that: |
1288 | // -- has no non-static data members of type non-standard-layout |
1289 | // class (or array of such types) [...] |
1290 | if (!FieldRec->isStandardLayout()) |
1291 | data().IsStandardLayout = false; |
1292 | if (!FieldRec->isCXX11StandardLayout()) |
1293 | data().IsCXX11StandardLayout = false; |
1294 | |
1295 | // C++2a [class]p7: |
1296 | // A standard-layout class is a class that: |
1297 | // [...] |
1298 | // -- has no element of the set M(S) of types as a base class. |
1299 | if (data().IsStandardLayout && |
1300 | (isUnion() || IsFirstField || IsZeroSize) && |
1301 | hasSubobjectAtOffsetZeroOfEmptyBaseType(Ctx&: Context, XFirst: FieldRec)) |
1302 | data().IsStandardLayout = false; |
1303 | |
1304 | // C++11 [class]p7: |
1305 | // A standard-layout class is a class that: |
1306 | // -- has no base classes of the same type as the first non-static |
1307 | // data member |
1308 | if (data().IsCXX11StandardLayout && IsFirstField) { |
1309 | // FIXME: We should check all base classes here, not just direct |
1310 | // base classes. |
1311 | for (const auto &BI : bases()) { |
1312 | if (Context.hasSameUnqualifiedType(T1: BI.getType(), T2: T)) { |
1313 | data().IsCXX11StandardLayout = false; |
1314 | break; |
1315 | } |
1316 | } |
1317 | } |
1318 | |
1319 | // Keep track of the presence of mutable fields. |
1320 | if (FieldRec->hasMutableFields()) |
1321 | data().HasMutableFields = true; |
1322 | |
1323 | if (Field->isMutable()) { |
1324 | // Our copy constructor/assignment might call something other than |
1325 | // the subobject's copy constructor/assignment if it's mutable and of |
1326 | // class type. |
1327 | data().NeedOverloadResolutionForCopyConstructor = true; |
1328 | data().NeedOverloadResolutionForCopyAssignment = true; |
1329 | } |
1330 | |
1331 | // C++11 [class.copy]p13: |
1332 | // If the implicitly-defined constructor would satisfy the |
1333 | // requirements of a constexpr constructor, the implicitly-defined |
1334 | // constructor is constexpr. |
1335 | // C++11 [dcl.constexpr]p4: |
1336 | // -- every constructor involved in initializing non-static data |
1337 | // members [...] shall be a constexpr constructor |
1338 | if (!Field->hasInClassInitializer() && |
1339 | !FieldRec->hasConstexprDefaultConstructor() && !isUnion()) |
1340 | // The standard requires any in-class initializer to be a constant |
1341 | // expression. We consider this to be a defect. |
1342 | data().DefaultedDefaultConstructorIsConstexpr = |
1343 | Context.getLangOpts().CPlusPlus23; |
1344 | |
1345 | // C++11 [class.copy]p8: |
1346 | // The implicitly-declared copy constructor for a class X will have |
1347 | // the form 'X::X(const X&)' if each potentially constructed subobject |
1348 | // of a class type M (or array thereof) has a copy constructor whose |
1349 | // first parameter is of type 'const M&' or 'const volatile M&'. |
1350 | if (!FieldRec->hasCopyConstructorWithConstParam()) |
1351 | data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; |
1352 | |
1353 | // C++11 [class.copy]p18: |
1354 | // The implicitly-declared copy assignment oeprator for a class X will |
1355 | // have the form 'X& X::operator=(const X&)' if [...] for all the |
1356 | // non-static data members of X that are of a class type M (or array |
1357 | // thereof), each such class type has a copy assignment operator whose |
1358 | // parameter is of type 'const M&', 'const volatile M&' or 'M'. |
1359 | if (!FieldRec->hasCopyAssignmentWithConstParam()) |
1360 | data().ImplicitCopyAssignmentHasConstParam = false; |
1361 | |
1362 | if (FieldRec->hasUninitializedReferenceMember() && |
1363 | !Field->hasInClassInitializer()) |
1364 | data().HasUninitializedReferenceMember = true; |
1365 | |
1366 | // C++11 [class.union]p8, DR1460: |
1367 | // a non-static data member of an anonymous union that is a member of |
1368 | // X is also a variant member of X. |
1369 | if (FieldRec->hasVariantMembers() && |
1370 | Field->isAnonymousStructOrUnion()) |
1371 | data().HasVariantMembers = true; |
1372 | } |
1373 | } else { |
1374 | // Base element type of field is a non-class type. |
1375 | if (!T->isLiteralType(Ctx: Context) || |
1376 | (!Field->hasInClassInitializer() && !isUnion() && |
1377 | !Context.getLangOpts().CPlusPlus20)) |
1378 | data().DefaultedDefaultConstructorIsConstexpr = false; |
1379 | |
1380 | // C++11 [class.copy]p23: |
1381 | // A defaulted copy/move assignment operator for a class X is defined |
1382 | // as deleted if X has: |
1383 | // -- a non-static data member of const non-class type (or array |
1384 | // thereof) |
1385 | if (T.isConstQualified()) { |
1386 | data().DefaultedCopyAssignmentIsDeleted = true; |
1387 | data().DefaultedMoveAssignmentIsDeleted = true; |
1388 | } |
1389 | |
1390 | // C++20 [temp.param]p7: |
1391 | // A structural type is [...] a literal class type [for which] the |
1392 | // types of all non-static data members are structural types or |
1393 | // (possibly multidimensional) array thereof |
1394 | // We deal with class types elsewhere. |
1395 | if (!T->isStructuralType()) |
1396 | data().StructuralIfLiteral = false; |
1397 | } |
1398 | |
1399 | // C++14 [meta.unary.prop]p4: |
1400 | // T is a class type [...] with [...] no non-static data members other |
1401 | // than subobjects of zero size |
1402 | if (data().Empty && !IsZeroSize) |
1403 | data().Empty = false; |
1404 | } |
1405 | |
1406 | // Handle using declarations of conversion functions. |
1407 | if (auto *Shadow = dyn_cast<UsingShadowDecl>(Val: D)) { |
1408 | if (Shadow->getDeclName().getNameKind() |
1409 | == DeclarationName::CXXConversionFunctionName) { |
1410 | ASTContext &Ctx = getASTContext(); |
1411 | data().Conversions.get(C&: Ctx).addDecl(C&: Ctx, D: Shadow, AS: Shadow->getAccess()); |
1412 | } |
1413 | } |
1414 | |
1415 | if (const auto *Using = dyn_cast<UsingDecl>(Val: D)) { |
1416 | if (Using->getDeclName().getNameKind() == |
1417 | DeclarationName::CXXConstructorName) { |
1418 | data().HasInheritedConstructor = true; |
1419 | // C++1z [dcl.init.aggr]p1: |
1420 | // An aggregate is [...] a class [...] with no inherited constructors |
1421 | data().Aggregate = false; |
1422 | } |
1423 | |
1424 | if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal) |
1425 | data().HasInheritedAssignment = true; |
1426 | } |
1427 | } |
1428 | |
1429 | bool CXXRecordDecl::isLiteral() const { |
1430 | const LangOptions &LangOpts = getLangOpts(); |
1431 | if (!(LangOpts.CPlusPlus20 ? hasConstexprDestructor() |
1432 | : hasTrivialDestructor())) |
1433 | return false; |
1434 | |
1435 | if (hasNonLiteralTypeFieldsOrBases()) { |
1436 | // CWG2598 |
1437 | // is an aggregate union type that has either no variant |
1438 | // members or at least one variant member of non-volatile literal type, |
1439 | if (!isUnion()) |
1440 | return false; |
1441 | bool HasAtLeastOneLiteralMember = |
1442 | fields().empty() || any_of(Range: fields(), P: [this](const FieldDecl *D) { |
1443 | return !D->getType().isVolatileQualified() && |
1444 | D->getType()->isLiteralType(Ctx: getASTContext()); |
1445 | }); |
1446 | if (!HasAtLeastOneLiteralMember) |
1447 | return false; |
1448 | } |
1449 | |
1450 | return isAggregate() || (isLambda() && LangOpts.CPlusPlus17) || |
1451 | hasConstexprNonCopyMoveConstructor() || hasTrivialDefaultConstructor(); |
1452 | } |
1453 | |
1454 | void CXXRecordDecl::addedSelectedDestructor(CXXDestructorDecl *DD) { |
1455 | DD->setIneligibleOrNotSelected(false); |
1456 | addedEligibleSpecialMemberFunction(MD: DD, SMKind: SMF_Destructor); |
1457 | } |
1458 | |
1459 | void CXXRecordDecl::addedEligibleSpecialMemberFunction(const CXXMethodDecl *MD, |
1460 | unsigned SMKind) { |
1461 | // FIXME: We shouldn't change DeclaredNonTrivialSpecialMembers if `MD` is |
1462 | // a function template, but this needs CWG attention before we break ABI. |
1463 | // See https://github.com/llvm/llvm-project/issues/59206 |
1464 | |
1465 | if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
1466 | if (DD->isUserProvided()) |
1467 | data().HasIrrelevantDestructor = false; |
1468 | // If the destructor is explicitly defaulted and not trivial or not public |
1469 | // or if the destructor is deleted, we clear HasIrrelevantDestructor in |
1470 | // finishedDefaultedOrDeletedMember. |
1471 | |
1472 | // C++11 [class.dtor]p5: |
1473 | // A destructor is trivial if [...] the destructor is not virtual. |
1474 | if (DD->isVirtual()) { |
1475 | data().HasTrivialSpecialMembers &= ~SMF_Destructor; |
1476 | data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; |
1477 | } |
1478 | |
1479 | if (DD->isNoReturn()) |
1480 | data().IsAnyDestructorNoReturn = true; |
1481 | } |
1482 | |
1483 | if (!MD->isImplicit() && !MD->isUserProvided()) { |
1484 | // This method is user-declared but not user-provided. We can't work |
1485 | // out whether it's trivial yet (not until we get to the end of the |
1486 | // class). We'll handle this method in |
1487 | // finishedDefaultedOrDeletedMember. |
1488 | } else if (MD->isTrivial()) { |
1489 | data().HasTrivialSpecialMembers |= SMKind; |
1490 | data().HasTrivialSpecialMembersForCall |= SMKind; |
1491 | } else if (MD->isTrivialForCall()) { |
1492 | data().HasTrivialSpecialMembersForCall |= SMKind; |
1493 | data().DeclaredNonTrivialSpecialMembers |= SMKind; |
1494 | } else { |
1495 | data().DeclaredNonTrivialSpecialMembers |= SMKind; |
1496 | // If this is a user-provided function, do not set |
1497 | // DeclaredNonTrivialSpecialMembersForCall here since we don't know |
1498 | // yet whether the method would be considered non-trivial for the |
1499 | // purpose of calls (attribute "trivial_abi" can be dropped from the |
1500 | // class later, which can change the special method's triviality). |
1501 | if (!MD->isUserProvided()) |
1502 | data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; |
1503 | } |
1504 | } |
1505 | |
1506 | void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) { |
1507 | assert(!D->isImplicit() && !D->isUserProvided()); |
1508 | |
1509 | // The kind of special member this declaration is, if any. |
1510 | unsigned SMKind = 0; |
1511 | |
1512 | if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(Val: D)) { |
1513 | if (Constructor->isDefaultConstructor()) { |
1514 | SMKind |= SMF_DefaultConstructor; |
1515 | if (Constructor->isConstexpr()) |
1516 | data().HasConstexprDefaultConstructor = true; |
1517 | } |
1518 | if (Constructor->isCopyConstructor()) |
1519 | SMKind |= SMF_CopyConstructor; |
1520 | else if (Constructor->isMoveConstructor()) |
1521 | SMKind |= SMF_MoveConstructor; |
1522 | else if (Constructor->isConstexpr()) |
1523 | // We may now know that the constructor is constexpr. |
1524 | data().HasConstexprNonCopyMoveConstructor = true; |
1525 | } else if (isa<CXXDestructorDecl>(Val: D)) { |
1526 | SMKind |= SMF_Destructor; |
1527 | if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted()) |
1528 | data().HasIrrelevantDestructor = false; |
1529 | } else if (D->isCopyAssignmentOperator()) |
1530 | SMKind |= SMF_CopyAssignment; |
1531 | else if (D->isMoveAssignmentOperator()) |
1532 | SMKind |= SMF_MoveAssignment; |
1533 | |
1534 | // Update which trivial / non-trivial special members we have. |
1535 | // addedMember will have skipped this step for this member. |
1536 | if (!D->isIneligibleOrNotSelected()) { |
1537 | if (D->isTrivial()) |
1538 | data().HasTrivialSpecialMembers |= SMKind; |
1539 | else |
1540 | data().DeclaredNonTrivialSpecialMembers |= SMKind; |
1541 | } |
1542 | } |
1543 | |
1544 | void CXXRecordDecl::LambdaDefinitionData::AddCaptureList(ASTContext &Ctx, |
1545 | Capture *CaptureList) { |
1546 | Captures.push_back(NewVal: CaptureList); |
1547 | if (Captures.size() == 2) { |
1548 | // The TinyPtrVector member now needs destruction. |
1549 | Ctx.addDestruction(Ptr: &Captures); |
1550 | } |
1551 | } |
1552 | |
1553 | void CXXRecordDecl::setCaptures(ASTContext &Context, |
1554 | ArrayRef<LambdaCapture> Captures) { |
1555 | CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData(); |
1556 | |
1557 | // Copy captures. |
1558 | Data.NumCaptures = Captures.size(); |
1559 | Data.NumExplicitCaptures = 0; |
1560 | auto *ToCapture = (LambdaCapture *)Context.Allocate(Size: sizeof(LambdaCapture) * |
1561 | Captures.size()); |
1562 | Data.AddCaptureList(Ctx&: Context, CaptureList: ToCapture); |
1563 | for (const LambdaCapture &C : Captures) { |
1564 | if (C.isExplicit()) |
1565 | ++Data.NumExplicitCaptures; |
1566 | |
1567 | new (ToCapture) LambdaCapture(C); |
1568 | ToCapture++; |
1569 | } |
1570 | |
1571 | if (!lambdaIsDefaultConstructibleAndAssignable()) |
1572 | Data.DefaultedCopyAssignmentIsDeleted = true; |
1573 | } |
1574 | |
1575 | void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) { |
1576 | unsigned SMKind = 0; |
1577 | |
1578 | if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(Val: D)) { |
1579 | if (Constructor->isCopyConstructor()) |
1580 | SMKind = SMF_CopyConstructor; |
1581 | else if (Constructor->isMoveConstructor()) |
1582 | SMKind = SMF_MoveConstructor; |
1583 | } else if (isa<CXXDestructorDecl>(Val: D)) |
1584 | SMKind = SMF_Destructor; |
1585 | |
1586 | if (D->isTrivialForCall()) |
1587 | data().HasTrivialSpecialMembersForCall |= SMKind; |
1588 | else |
1589 | data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; |
1590 | } |
1591 | |
1592 | bool CXXRecordDecl::isCLike() const { |
1593 | if (getTagKind() == TagTypeKind::Class || |
1594 | getTagKind() == TagTypeKind::Interface || |
1595 | !TemplateOrInstantiation.isNull()) |
1596 | return false; |
1597 | if (!hasDefinition()) |
1598 | return true; |
1599 | |
1600 | return isPOD() && data().HasOnlyCMembers; |
1601 | } |
1602 | |
1603 | bool CXXRecordDecl::isGenericLambda() const { |
1604 | if (!isLambda()) return false; |
1605 | return getLambdaData().IsGenericLambda; |
1606 | } |
1607 | |
1608 | #ifndef NDEBUG |
1609 | static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) { |
1610 | return llvm::all_of(R, [&](NamedDecl *D) { |
1611 | return D->isInvalidDecl() || declaresSameEntity(D, R.front()); |
1612 | }); |
1613 | } |
1614 | #endif |
1615 | |
1616 | static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) { |
1617 | if (!RD.isLambda()) return nullptr; |
1618 | DeclarationName Name = |
1619 | RD.getASTContext().DeclarationNames.getCXXOperatorName(Op: OO_Call); |
1620 | DeclContext::lookup_result Calls = RD.lookup(Name); |
1621 | |
1622 | assert(!Calls.empty() && "Missing lambda call operator!" ); |
1623 | assert(allLookupResultsAreTheSame(Calls) && |
1624 | "More than one lambda call operator!" ); |
1625 | return Calls.front(); |
1626 | } |
1627 | |
1628 | FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const { |
1629 | NamedDecl *CallOp = getLambdaCallOperatorHelper(RD: *this); |
1630 | return dyn_cast_or_null<FunctionTemplateDecl>(Val: CallOp); |
1631 | } |
1632 | |
1633 | CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const { |
1634 | NamedDecl *CallOp = getLambdaCallOperatorHelper(RD: *this); |
1635 | |
1636 | if (CallOp == nullptr) |
1637 | return nullptr; |
1638 | |
1639 | if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(Val: CallOp)) |
1640 | return cast<CXXMethodDecl>(Val: CallOpTmpl->getTemplatedDecl()); |
1641 | |
1642 | return cast<CXXMethodDecl>(Val: CallOp); |
1643 | } |
1644 | |
1645 | CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const { |
1646 | CXXMethodDecl *CallOp = getLambdaCallOperator(); |
1647 | CallingConv CC = CallOp->getType()->castAs<FunctionType>()->getCallConv(); |
1648 | return getLambdaStaticInvoker(CC); |
1649 | } |
1650 | |
1651 | static DeclContext::lookup_result |
1652 | getLambdaStaticInvokers(const CXXRecordDecl &RD) { |
1653 | assert(RD.isLambda() && "Must be a lambda" ); |
1654 | DeclarationName Name = |
1655 | &RD.getASTContext().Idents.get(Name: getLambdaStaticInvokerName()); |
1656 | return RD.lookup(Name); |
1657 | } |
1658 | |
1659 | static CXXMethodDecl *getInvokerAsMethod(NamedDecl *ND) { |
1660 | if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(Val: ND)) |
1661 | return cast<CXXMethodDecl>(Val: InvokerTemplate->getTemplatedDecl()); |
1662 | return cast<CXXMethodDecl>(Val: ND); |
1663 | } |
1664 | |
1665 | CXXMethodDecl *CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC) const { |
1666 | if (!isLambda()) |
1667 | return nullptr; |
1668 | DeclContext::lookup_result Invoker = getLambdaStaticInvokers(RD: *this); |
1669 | |
1670 | for (NamedDecl *ND : Invoker) { |
1671 | const auto *FTy = |
1672 | cast<ValueDecl>(Val: ND->getAsFunction())->getType()->castAs<FunctionType>(); |
1673 | if (FTy->getCallConv() == CC) |
1674 | return getInvokerAsMethod(ND); |
1675 | } |
1676 | |
1677 | return nullptr; |
1678 | } |
1679 | |
1680 | void CXXRecordDecl::getCaptureFields( |
1681 | llvm::DenseMap<const ValueDecl *, FieldDecl *> &Captures, |
1682 | FieldDecl *&ThisCapture) const { |
1683 | Captures.clear(); |
1684 | ThisCapture = nullptr; |
1685 | |
1686 | LambdaDefinitionData &Lambda = getLambdaData(); |
1687 | for (const LambdaCapture *List : Lambda.Captures) { |
1688 | RecordDecl::field_iterator Field = field_begin(); |
1689 | for (const LambdaCapture *C = List, *CEnd = C + Lambda.NumCaptures; |
1690 | C != CEnd; ++C, ++Field) { |
1691 | if (C->capturesThis()) |
1692 | ThisCapture = *Field; |
1693 | else if (C->capturesVariable()) |
1694 | Captures[C->getCapturedVar()] = *Field; |
1695 | } |
1696 | assert(Field == field_end()); |
1697 | } |
1698 | } |
1699 | |
1700 | TemplateParameterList * |
1701 | CXXRecordDecl::getGenericLambdaTemplateParameterList() const { |
1702 | if (!isGenericLambda()) return nullptr; |
1703 | CXXMethodDecl *CallOp = getLambdaCallOperator(); |
1704 | if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate()) |
1705 | return Tmpl->getTemplateParameters(); |
1706 | return nullptr; |
1707 | } |
1708 | |
1709 | ArrayRef<NamedDecl *> |
1710 | CXXRecordDecl::getLambdaExplicitTemplateParameters() const { |
1711 | TemplateParameterList *List = getGenericLambdaTemplateParameterList(); |
1712 | if (!List) |
1713 | return {}; |
1714 | |
1715 | assert(std::is_partitioned(List->begin(), List->end(), |
1716 | [](const NamedDecl *D) { return !D->isImplicit(); }) |
1717 | && "Explicit template params should be ordered before implicit ones" ); |
1718 | |
1719 | const auto ExplicitEnd = llvm::partition_point( |
1720 | Range&: *List, P: [](const NamedDecl *D) { return !D->isImplicit(); }); |
1721 | return llvm::ArrayRef(List->begin(), ExplicitEnd); |
1722 | } |
1723 | |
1724 | Decl *CXXRecordDecl::getLambdaContextDecl() const { |
1725 | assert(isLambda() && "Not a lambda closure type!" ); |
1726 | ExternalASTSource *Source = getParentASTContext().getExternalSource(); |
1727 | return getLambdaData().ContextDecl.get(Source); |
1728 | } |
1729 | |
1730 | void CXXRecordDecl::setLambdaNumbering(LambdaNumbering Numbering) { |
1731 | assert(isLambda() && "Not a lambda closure type!" ); |
1732 | getLambdaData().ManglingNumber = Numbering.ManglingNumber; |
1733 | if (Numbering.DeviceManglingNumber) |
1734 | getASTContext().DeviceLambdaManglingNumbers[this] = |
1735 | Numbering.DeviceManglingNumber; |
1736 | getLambdaData().IndexInContext = Numbering.IndexInContext; |
1737 | getLambdaData().ContextDecl = Numbering.ContextDecl; |
1738 | getLambdaData().HasKnownInternalLinkage = Numbering.HasKnownInternalLinkage; |
1739 | } |
1740 | |
1741 | unsigned CXXRecordDecl::getDeviceLambdaManglingNumber() const { |
1742 | assert(isLambda() && "Not a lambda closure type!" ); |
1743 | return getASTContext().DeviceLambdaManglingNumbers.lookup(Val: this); |
1744 | } |
1745 | |
1746 | static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { |
1747 | QualType T = |
1748 | cast<CXXConversionDecl>(Val: Conv->getUnderlyingDecl()->getAsFunction()) |
1749 | ->getConversionType(); |
1750 | return Context.getCanonicalType(T); |
1751 | } |
1752 | |
1753 | /// Collect the visible conversions of a base class. |
1754 | /// |
1755 | /// \param Record a base class of the class we're considering |
1756 | /// \param InVirtual whether this base class is a virtual base (or a base |
1757 | /// of a virtual base) |
1758 | /// \param Access the access along the inheritance path to this base |
1759 | /// \param ParentHiddenTypes the conversions provided by the inheritors |
1760 | /// of this base |
1761 | /// \param Output the set to which to add conversions from non-virtual bases |
1762 | /// \param VOutput the set to which to add conversions from virtual bases |
1763 | /// \param HiddenVBaseCs the set of conversions which were hidden in a |
1764 | /// virtual base along some inheritance path |
1765 | static void CollectVisibleConversions( |
1766 | ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual, |
1767 | AccessSpecifier Access, |
1768 | const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes, |
1769 | ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput, |
1770 | llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) { |
1771 | // The set of types which have conversions in this class or its |
1772 | // subclasses. As an optimization, we don't copy the derived set |
1773 | // unless it might change. |
1774 | const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes; |
1775 | llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer; |
1776 | |
1777 | // Collect the direct conversions and figure out which conversions |
1778 | // will be hidden in the subclasses. |
1779 | CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); |
1780 | CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); |
1781 | if (ConvI != ConvE) { |
1782 | HiddenTypesBuffer = ParentHiddenTypes; |
1783 | HiddenTypes = &HiddenTypesBuffer; |
1784 | |
1785 | for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) { |
1786 | CanQualType ConvType(GetConversionType(Context, Conv: I.getDecl())); |
1787 | bool Hidden = ParentHiddenTypes.count(Ptr: ConvType); |
1788 | if (!Hidden) |
1789 | HiddenTypesBuffer.insert(Ptr: ConvType); |
1790 | |
1791 | // If this conversion is hidden and we're in a virtual base, |
1792 | // remember that it's hidden along some inheritance path. |
1793 | if (Hidden && InVirtual) |
1794 | HiddenVBaseCs.insert(Ptr: cast<NamedDecl>(Val: I.getDecl()->getCanonicalDecl())); |
1795 | |
1796 | // If this conversion isn't hidden, add it to the appropriate output. |
1797 | else if (!Hidden) { |
1798 | AccessSpecifier IAccess |
1799 | = CXXRecordDecl::MergeAccess(PathAccess: Access, DeclAccess: I.getAccess()); |
1800 | |
1801 | if (InVirtual) |
1802 | VOutput.addDecl(D: I.getDecl(), AS: IAccess); |
1803 | else |
1804 | Output.addDecl(C&: Context, D: I.getDecl(), AS: IAccess); |
1805 | } |
1806 | } |
1807 | } |
1808 | |
1809 | // Collect information recursively from any base classes. |
1810 | for (const auto &I : Record->bases()) { |
1811 | const auto *RT = I.getType()->getAs<RecordType>(); |
1812 | if (!RT) continue; |
1813 | |
1814 | AccessSpecifier BaseAccess |
1815 | = CXXRecordDecl::MergeAccess(PathAccess: Access, DeclAccess: I.getAccessSpecifier()); |
1816 | bool BaseInVirtual = InVirtual || I.isVirtual(); |
1817 | |
1818 | auto *Base = cast<CXXRecordDecl>(Val: RT->getDecl()); |
1819 | CollectVisibleConversions(Context, Record: Base, InVirtual: BaseInVirtual, Access: BaseAccess, |
1820 | ParentHiddenTypes: *HiddenTypes, Output, VOutput, HiddenVBaseCs); |
1821 | } |
1822 | } |
1823 | |
1824 | /// Collect the visible conversions of a class. |
1825 | /// |
1826 | /// This would be extremely straightforward if it weren't for virtual |
1827 | /// bases. It might be worth special-casing that, really. |
1828 | static void CollectVisibleConversions(ASTContext &Context, |
1829 | const CXXRecordDecl *Record, |
1830 | ASTUnresolvedSet &Output) { |
1831 | // The collection of all conversions in virtual bases that we've |
1832 | // found. These will be added to the output as long as they don't |
1833 | // appear in the hidden-conversions set. |
1834 | UnresolvedSet<8> VBaseCs; |
1835 | |
1836 | // The set of conversions in virtual bases that we've determined to |
1837 | // be hidden. |
1838 | llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs; |
1839 | |
1840 | // The set of types hidden by classes derived from this one. |
1841 | llvm::SmallPtrSet<CanQualType, 8> HiddenTypes; |
1842 | |
1843 | // Go ahead and collect the direct conversions and add them to the |
1844 | // hidden-types set. |
1845 | CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); |
1846 | CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); |
1847 | Output.append(C&: Context, I: ConvI, E: ConvE); |
1848 | for (; ConvI != ConvE; ++ConvI) |
1849 | HiddenTypes.insert(Ptr: GetConversionType(Context, Conv: ConvI.getDecl())); |
1850 | |
1851 | // Recursively collect conversions from base classes. |
1852 | for (const auto &I : Record->bases()) { |
1853 | const auto *RT = I.getType()->getAs<RecordType>(); |
1854 | if (!RT) continue; |
1855 | |
1856 | CollectVisibleConversions(Context, Record: cast<CXXRecordDecl>(Val: RT->getDecl()), |
1857 | InVirtual: I.isVirtual(), Access: I.getAccessSpecifier(), |
1858 | ParentHiddenTypes: HiddenTypes, Output, VOutput&: VBaseCs, HiddenVBaseCs); |
1859 | } |
1860 | |
1861 | // Add any unhidden conversions provided by virtual bases. |
1862 | for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); |
1863 | I != E; ++I) { |
1864 | if (!HiddenVBaseCs.count(Ptr: cast<NamedDecl>(Val: I.getDecl()->getCanonicalDecl()))) |
1865 | Output.addDecl(C&: Context, D: I.getDecl(), AS: I.getAccess()); |
1866 | } |
1867 | } |
1868 | |
1869 | /// getVisibleConversionFunctions - get all conversion functions visible |
1870 | /// in current class; including conversion function templates. |
1871 | llvm::iterator_range<CXXRecordDecl::conversion_iterator> |
1872 | CXXRecordDecl::getVisibleConversionFunctions() const { |
1873 | ASTContext &Ctx = getASTContext(); |
1874 | |
1875 | ASTUnresolvedSet *Set; |
1876 | if (bases_begin() == bases_end()) { |
1877 | // If root class, all conversions are visible. |
1878 | Set = &data().Conversions.get(C&: Ctx); |
1879 | } else { |
1880 | Set = &data().VisibleConversions.get(C&: Ctx); |
1881 | // If visible conversion list is not evaluated, evaluate it. |
1882 | if (!data().ComputedVisibleConversions) { |
1883 | CollectVisibleConversions(Context&: Ctx, Record: this, Output&: *Set); |
1884 | data().ComputedVisibleConversions = true; |
1885 | } |
1886 | } |
1887 | return llvm::make_range(x: Set->begin(), y: Set->end()); |
1888 | } |
1889 | |
1890 | void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { |
1891 | // This operation is O(N) but extremely rare. Sema only uses it to |
1892 | // remove UsingShadowDecls in a class that were followed by a direct |
1893 | // declaration, e.g.: |
1894 | // class A : B { |
1895 | // using B::operator int; |
1896 | // operator int(); |
1897 | // }; |
1898 | // This is uncommon by itself and even more uncommon in conjunction |
1899 | // with sufficiently large numbers of directly-declared conversions |
1900 | // that asymptotic behavior matters. |
1901 | |
1902 | ASTUnresolvedSet &Convs = data().Conversions.get(C&: getASTContext()); |
1903 | for (unsigned I = 0, E = Convs.size(); I != E; ++I) { |
1904 | if (Convs[I].getDecl() == ConvDecl) { |
1905 | Convs.erase(I); |
1906 | assert(!llvm::is_contained(Convs, ConvDecl) && |
1907 | "conversion was found multiple times in unresolved set" ); |
1908 | return; |
1909 | } |
1910 | } |
1911 | |
1912 | llvm_unreachable("conversion not found in set!" ); |
1913 | } |
1914 | |
1915 | CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { |
1916 | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) |
1917 | return cast<CXXRecordDecl>(Val: MSInfo->getInstantiatedFrom()); |
1918 | |
1919 | return nullptr; |
1920 | } |
1921 | |
1922 | MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { |
1923 | return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>(); |
1924 | } |
1925 | |
1926 | void |
1927 | CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, |
1928 | TemplateSpecializationKind TSK) { |
1929 | assert(TemplateOrInstantiation.isNull() && |
1930 | "Previous template or instantiation?" ); |
1931 | assert(!isa<ClassTemplatePartialSpecializationDecl>(this)); |
1932 | TemplateOrInstantiation |
1933 | = new (getASTContext()) MemberSpecializationInfo(RD, TSK); |
1934 | } |
1935 | |
1936 | ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const { |
1937 | return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>(); |
1938 | } |
1939 | |
1940 | void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) { |
1941 | TemplateOrInstantiation = Template; |
1942 | } |
1943 | |
1944 | TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ |
1945 | if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: this)) |
1946 | return Spec->getSpecializationKind(); |
1947 | |
1948 | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) |
1949 | return MSInfo->getTemplateSpecializationKind(); |
1950 | |
1951 | return TSK_Undeclared; |
1952 | } |
1953 | |
1954 | void |
1955 | CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { |
1956 | if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: this)) { |
1957 | Spec->setSpecializationKind(TSK); |
1958 | return; |
1959 | } |
1960 | |
1961 | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { |
1962 | MSInfo->setTemplateSpecializationKind(TSK); |
1963 | return; |
1964 | } |
1965 | |
1966 | llvm_unreachable("Not a class template or member class specialization" ); |
1967 | } |
1968 | |
1969 | const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const { |
1970 | auto GetDefinitionOrSelf = |
1971 | [](const CXXRecordDecl *D) -> const CXXRecordDecl * { |
1972 | if (auto *Def = D->getDefinition()) |
1973 | return Def; |
1974 | return D; |
1975 | }; |
1976 | |
1977 | // If it's a class template specialization, find the template or partial |
1978 | // specialization from which it was instantiated. |
1979 | if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(Val: this)) { |
1980 | auto From = TD->getInstantiatedFrom(); |
1981 | if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) { |
1982 | while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) { |
1983 | if (NewCTD->isMemberSpecialization()) |
1984 | break; |
1985 | CTD = NewCTD; |
1986 | } |
1987 | return GetDefinitionOrSelf(CTD->getTemplatedDecl()); |
1988 | } |
1989 | if (auto *CTPSD = |
1990 | From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { |
1991 | while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) { |
1992 | if (NewCTPSD->isMemberSpecialization()) |
1993 | break; |
1994 | CTPSD = NewCTPSD; |
1995 | } |
1996 | return GetDefinitionOrSelf(CTPSD); |
1997 | } |
1998 | } |
1999 | |
2000 | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { |
2001 | if (isTemplateInstantiation(Kind: MSInfo->getTemplateSpecializationKind())) { |
2002 | const CXXRecordDecl *RD = this; |
2003 | while (auto *NewRD = RD->getInstantiatedFromMemberClass()) |
2004 | RD = NewRD; |
2005 | return GetDefinitionOrSelf(RD); |
2006 | } |
2007 | } |
2008 | |
2009 | assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) && |
2010 | "couldn't find pattern for class template instantiation" ); |
2011 | return nullptr; |
2012 | } |
2013 | |
2014 | CXXDestructorDecl *CXXRecordDecl::getDestructor() const { |
2015 | ASTContext &Context = getASTContext(); |
2016 | QualType ClassType = Context.getTypeDeclType(Decl: this); |
2017 | |
2018 | DeclarationName Name |
2019 | = Context.DeclarationNames.getCXXDestructorName( |
2020 | Ty: Context.getCanonicalType(T: ClassType)); |
2021 | |
2022 | DeclContext::lookup_result R = lookup(Name); |
2023 | |
2024 | // If a destructor was marked as not selected, we skip it. We don't always |
2025 | // have a selected destructor: dependent types, unnamed structs. |
2026 | for (auto *Decl : R) { |
2027 | auto* DD = dyn_cast<CXXDestructorDecl>(Val: Decl); |
2028 | if (DD && !DD->isIneligibleOrNotSelected()) |
2029 | return DD; |
2030 | } |
2031 | return nullptr; |
2032 | } |
2033 | |
2034 | static bool isDeclContextInNamespace(const DeclContext *DC) { |
2035 | while (!DC->isTranslationUnit()) { |
2036 | if (DC->isNamespace()) |
2037 | return true; |
2038 | DC = DC->getParent(); |
2039 | } |
2040 | return false; |
2041 | } |
2042 | |
2043 | bool CXXRecordDecl::isInterfaceLike() const { |
2044 | assert(hasDefinition() && "checking for interface-like without a definition" ); |
2045 | // All __interfaces are inheritently interface-like. |
2046 | if (isInterface()) |
2047 | return true; |
2048 | |
2049 | // Interface-like types cannot have a user declared constructor, destructor, |
2050 | // friends, VBases, conversion functions, or fields. Additionally, lambdas |
2051 | // cannot be interface types. |
2052 | if (isLambda() || hasUserDeclaredConstructor() || |
2053 | hasUserDeclaredDestructor() || !field_empty() || hasFriends() || |
2054 | getNumVBases() > 0 || conversion_end() - conversion_begin() > 0) |
2055 | return false; |
2056 | |
2057 | // No interface-like type can have a method with a definition. |
2058 | for (const auto *const Method : methods()) |
2059 | if (Method->isDefined() && !Method->isImplicit()) |
2060 | return false; |
2061 | |
2062 | // Check "Special" types. |
2063 | const auto *Uuid = getAttr<UuidAttr>(); |
2064 | // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an |
2065 | // extern C++ block directly in the TU. These are only valid if in one |
2066 | // of these two situations. |
2067 | if (Uuid && isStruct() && !getDeclContext()->isExternCContext() && |
2068 | !isDeclContextInNamespace(DC: getDeclContext()) && |
2069 | ((getName() == "IUnknown" && |
2070 | Uuid->getGuid() == "00000000-0000-0000-C000-000000000046" ) || |
2071 | (getName() == "IDispatch" && |
2072 | Uuid->getGuid() == "00020400-0000-0000-C000-000000000046" ))) { |
2073 | if (getNumBases() > 0) |
2074 | return false; |
2075 | return true; |
2076 | } |
2077 | |
2078 | // FIXME: Any access specifiers is supposed to make this no longer interface |
2079 | // like. |
2080 | |
2081 | // If this isn't a 'special' type, it must have a single interface-like base. |
2082 | if (getNumBases() != 1) |
2083 | return false; |
2084 | |
2085 | const auto BaseSpec = *bases_begin(); |
2086 | if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public) |
2087 | return false; |
2088 | const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl(); |
2089 | if (Base->isInterface() || !Base->isInterfaceLike()) |
2090 | return false; |
2091 | return true; |
2092 | } |
2093 | |
2094 | void CXXRecordDecl::completeDefinition() { |
2095 | completeDefinition(FinalOverriders: nullptr); |
2096 | } |
2097 | |
2098 | static bool hasPureVirtualFinalOverrider( |
2099 | const CXXRecordDecl &RD, const CXXFinalOverriderMap *FinalOverriders) { |
2100 | if (!FinalOverriders) { |
2101 | CXXFinalOverriderMap MyFinalOverriders; |
2102 | RD.getFinalOverriders(FinaOverriders&: MyFinalOverriders); |
2103 | return hasPureVirtualFinalOverrider(RD, FinalOverriders: &MyFinalOverriders); |
2104 | } |
2105 | |
2106 | for (const CXXFinalOverriderMap::value_type & |
2107 | OverridingMethodsEntry : *FinalOverriders) { |
2108 | for (const auto &[_, SubobjOverrides] : OverridingMethodsEntry.second) { |
2109 | assert(SubobjOverrides.size() > 0 && |
2110 | "All virtual functions have overriding virtual functions" ); |
2111 | |
2112 | if (SubobjOverrides.front().Method->isPureVirtual()) |
2113 | return true; |
2114 | } |
2115 | } |
2116 | return false; |
2117 | } |
2118 | |
2119 | void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) { |
2120 | RecordDecl::completeDefinition(); |
2121 | |
2122 | // If the class may be abstract (but hasn't been marked as such), check for |
2123 | // any pure final overriders. |
2124 | // |
2125 | // C++ [class.abstract]p4: |
2126 | // A class is abstract if it contains or inherits at least one |
2127 | // pure virtual function for which the final overrider is pure |
2128 | // virtual. |
2129 | if (mayBeAbstract() && hasPureVirtualFinalOverrider(RD: *this, FinalOverriders)) |
2130 | markAbstract(); |
2131 | |
2132 | // Set access bits correctly on the directly-declared conversions. |
2133 | for (conversion_iterator I = conversion_begin(), E = conversion_end(); |
2134 | I != E; ++I) |
2135 | I.setAccess((*I)->getAccess()); |
2136 | } |
2137 | |
2138 | bool CXXRecordDecl::mayBeAbstract() const { |
2139 | if (data().Abstract || isInvalidDecl() || !data().Polymorphic || |
2140 | isDependentContext()) |
2141 | return false; |
2142 | |
2143 | for (const auto &B : bases()) { |
2144 | const auto *BaseDecl = |
2145 | cast<CXXRecordDecl>(Val: B.getType()->castAs<RecordType>()->getDecl()); |
2146 | if (BaseDecl->isAbstract()) |
2147 | return true; |
2148 | } |
2149 | |
2150 | return false; |
2151 | } |
2152 | |
2153 | bool CXXRecordDecl::isEffectivelyFinal() const { |
2154 | auto *Def = getDefinition(); |
2155 | if (!Def) |
2156 | return false; |
2157 | if (Def->hasAttr<FinalAttr>()) |
2158 | return true; |
2159 | if (const auto *Dtor = Def->getDestructor()) |
2160 | if (Dtor->hasAttr<FinalAttr>()) |
2161 | return true; |
2162 | return false; |
2163 | } |
2164 | |
2165 | void CXXDeductionGuideDecl::anchor() {} |
2166 | |
2167 | bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const { |
2168 | if ((getKind() != Other.getKind() || |
2169 | getKind() == ExplicitSpecKind::Unresolved)) { |
2170 | if (getKind() == ExplicitSpecKind::Unresolved && |
2171 | Other.getKind() == ExplicitSpecKind::Unresolved) { |
2172 | ODRHash SelfHash, OtherHash; |
2173 | SelfHash.AddStmt(S: getExpr()); |
2174 | OtherHash.AddStmt(S: Other.getExpr()); |
2175 | return SelfHash.CalculateHash() == OtherHash.CalculateHash(); |
2176 | } else |
2177 | return false; |
2178 | } |
2179 | return true; |
2180 | } |
2181 | |
2182 | ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) { |
2183 | switch (Function->getDeclKind()) { |
2184 | case Decl::Kind::CXXConstructor: |
2185 | return cast<CXXConstructorDecl>(Val: Function)->getExplicitSpecifier(); |
2186 | case Decl::Kind::CXXConversion: |
2187 | return cast<CXXConversionDecl>(Val: Function)->getExplicitSpecifier(); |
2188 | case Decl::Kind::CXXDeductionGuide: |
2189 | return cast<CXXDeductionGuideDecl>(Val: Function)->getExplicitSpecifier(); |
2190 | default: |
2191 | return {}; |
2192 | } |
2193 | } |
2194 | |
2195 | CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create( |
2196 | ASTContext &C, DeclContext *DC, SourceLocation StartLoc, |
2197 | ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T, |
2198 | TypeSourceInfo *TInfo, SourceLocation EndLocation, CXXConstructorDecl *Ctor, |
2199 | DeductionCandidate Kind) { |
2200 | return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T, |
2201 | TInfo, EndLocation, Ctor, Kind); |
2202 | } |
2203 | |
2204 | CXXDeductionGuideDecl * |
2205 | CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
2206 | return new (C, ID) CXXDeductionGuideDecl( |
2207 | C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(), |
2208 | QualType(), nullptr, SourceLocation(), nullptr, |
2209 | DeductionCandidate::Normal); |
2210 | } |
2211 | |
2212 | RequiresExprBodyDecl *RequiresExprBodyDecl::Create( |
2213 | ASTContext &C, DeclContext *DC, SourceLocation StartLoc) { |
2214 | return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc); |
2215 | } |
2216 | |
2217 | RequiresExprBodyDecl * |
2218 | RequiresExprBodyDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
2219 | return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation()); |
2220 | } |
2221 | |
2222 | void CXXMethodDecl::anchor() {} |
2223 | |
2224 | bool CXXMethodDecl::isStatic() const { |
2225 | const CXXMethodDecl *MD = getCanonicalDecl(); |
2226 | |
2227 | if (MD->getStorageClass() == SC_Static) |
2228 | return true; |
2229 | |
2230 | OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator(); |
2231 | return isStaticOverloadedOperator(OOK); |
2232 | } |
2233 | |
2234 | static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD, |
2235 | const CXXMethodDecl *BaseMD) { |
2236 | for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) { |
2237 | if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl()) |
2238 | return true; |
2239 | if (recursivelyOverrides(DerivedMD: MD, BaseMD)) |
2240 | return true; |
2241 | } |
2242 | return false; |
2243 | } |
2244 | |
2245 | CXXMethodDecl * |
2246 | CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD, |
2247 | bool MayBeBase) { |
2248 | if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl()) |
2249 | return this; |
2250 | |
2251 | // Lookup doesn't work for destructors, so handle them separately. |
2252 | if (isa<CXXDestructorDecl>(Val: this)) { |
2253 | CXXMethodDecl *MD = RD->getDestructor(); |
2254 | if (MD) { |
2255 | if (recursivelyOverrides(DerivedMD: MD, BaseMD: this)) |
2256 | return MD; |
2257 | if (MayBeBase && recursivelyOverrides(DerivedMD: this, BaseMD: MD)) |
2258 | return MD; |
2259 | } |
2260 | return nullptr; |
2261 | } |
2262 | |
2263 | for (auto *ND : RD->lookup(Name: getDeclName())) { |
2264 | auto *MD = dyn_cast<CXXMethodDecl>(Val: ND); |
2265 | if (!MD) |
2266 | continue; |
2267 | if (recursivelyOverrides(DerivedMD: MD, BaseMD: this)) |
2268 | return MD; |
2269 | if (MayBeBase && recursivelyOverrides(DerivedMD: this, BaseMD: MD)) |
2270 | return MD; |
2271 | } |
2272 | |
2273 | return nullptr; |
2274 | } |
2275 | |
2276 | CXXMethodDecl * |
2277 | CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD, |
2278 | bool MayBeBase) { |
2279 | if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase)) |
2280 | return MD; |
2281 | |
2282 | llvm::SmallVector<CXXMethodDecl*, 4> FinalOverriders; |
2283 | auto AddFinalOverrider = [&](CXXMethodDecl *D) { |
2284 | // If this function is overridden by a candidate final overrider, it is not |
2285 | // a final overrider. |
2286 | for (CXXMethodDecl *OtherD : FinalOverriders) { |
2287 | if (declaresSameEntity(D1: D, D2: OtherD) || recursivelyOverrides(DerivedMD: OtherD, BaseMD: D)) |
2288 | return; |
2289 | } |
2290 | |
2291 | // Other candidate final overriders might be overridden by this function. |
2292 | llvm::erase_if(C&: FinalOverriders, P: [&](CXXMethodDecl *OtherD) { |
2293 | return recursivelyOverrides(DerivedMD: D, BaseMD: OtherD); |
2294 | }); |
2295 | |
2296 | FinalOverriders.push_back(Elt: D); |
2297 | }; |
2298 | |
2299 | for (const auto &I : RD->bases()) { |
2300 | const RecordType *RT = I.getType()->getAs<RecordType>(); |
2301 | if (!RT) |
2302 | continue; |
2303 | const auto *Base = cast<CXXRecordDecl>(Val: RT->getDecl()); |
2304 | if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(RD: Base)) |
2305 | AddFinalOverrider(D); |
2306 | } |
2307 | |
2308 | return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr; |
2309 | } |
2310 | |
2311 | CXXMethodDecl * |
2312 | CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, |
2313 | const DeclarationNameInfo &NameInfo, QualType T, |
2314 | TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin, |
2315 | bool isInline, ConstexprSpecKind ConstexprKind, |
2316 | SourceLocation EndLocation, |
2317 | Expr *TrailingRequiresClause) { |
2318 | return new (C, RD) CXXMethodDecl( |
2319 | CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin, |
2320 | isInline, ConstexprKind, EndLocation, TrailingRequiresClause); |
2321 | } |
2322 | |
2323 | CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, |
2324 | GlobalDeclID ID) { |
2325 | return new (C, ID) CXXMethodDecl( |
2326 | CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(), |
2327 | QualType(), nullptr, SC_None, false, false, |
2328 | ConstexprSpecKind::Unspecified, SourceLocation(), nullptr); |
2329 | } |
2330 | |
2331 | CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base, |
2332 | bool IsAppleKext) { |
2333 | assert(isVirtual() && "this method is expected to be virtual" ); |
2334 | |
2335 | // When building with -fapple-kext, all calls must go through the vtable since |
2336 | // the kernel linker can do runtime patching of vtables. |
2337 | if (IsAppleKext) |
2338 | return nullptr; |
2339 | |
2340 | // If the member function is marked 'final', we know that it can't be |
2341 | // overridden and can therefore devirtualize it unless it's pure virtual. |
2342 | if (hasAttr<FinalAttr>()) |
2343 | return isPureVirtual() ? nullptr : this; |
2344 | |
2345 | // If Base is unknown, we cannot devirtualize. |
2346 | if (!Base) |
2347 | return nullptr; |
2348 | |
2349 | // If the base expression (after skipping derived-to-base conversions) is a |
2350 | // class prvalue, then we can devirtualize. |
2351 | Base = Base->getBestDynamicClassTypeExpr(); |
2352 | if (Base->isPRValue() && Base->getType()->isRecordType()) |
2353 | return this; |
2354 | |
2355 | // If we don't even know what we would call, we can't devirtualize. |
2356 | const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); |
2357 | if (!BestDynamicDecl) |
2358 | return nullptr; |
2359 | |
2360 | // There may be a method corresponding to MD in a derived class. |
2361 | CXXMethodDecl *DevirtualizedMethod = |
2362 | getCorrespondingMethodInClass(RD: BestDynamicDecl); |
2363 | |
2364 | // If there final overrider in the dynamic type is ambiguous, we can't |
2365 | // devirtualize this call. |
2366 | if (!DevirtualizedMethod) |
2367 | return nullptr; |
2368 | |
2369 | // If that method is pure virtual, we can't devirtualize. If this code is |
2370 | // reached, the result would be UB, not a direct call to the derived class |
2371 | // function, and we can't assume the derived class function is defined. |
2372 | if (DevirtualizedMethod->isPureVirtual()) |
2373 | return nullptr; |
2374 | |
2375 | // If that method is marked final, we can devirtualize it. |
2376 | if (DevirtualizedMethod->hasAttr<FinalAttr>()) |
2377 | return DevirtualizedMethod; |
2378 | |
2379 | // Similarly, if the class itself or its destructor is marked 'final', |
2380 | // the class can't be derived from and we can therefore devirtualize the |
2381 | // member function call. |
2382 | if (BestDynamicDecl->isEffectivelyFinal()) |
2383 | return DevirtualizedMethod; |
2384 | |
2385 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: Base)) { |
2386 | if (const auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl())) |
2387 | if (VD->getType()->isRecordType()) |
2388 | // This is a record decl. We know the type and can devirtualize it. |
2389 | return DevirtualizedMethod; |
2390 | |
2391 | return nullptr; |
2392 | } |
2393 | |
2394 | // We can devirtualize calls on an object accessed by a class member access |
2395 | // expression, since by C++11 [basic.life]p6 we know that it can't refer to |
2396 | // a derived class object constructed in the same location. |
2397 | if (const auto *ME = dyn_cast<MemberExpr>(Val: Base)) { |
2398 | const ValueDecl *VD = ME->getMemberDecl(); |
2399 | return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr; |
2400 | } |
2401 | |
2402 | // Likewise for calls on an object accessed by a (non-reference) pointer to |
2403 | // member access. |
2404 | if (auto *BO = dyn_cast<BinaryOperator>(Val: Base)) { |
2405 | if (BO->isPtrMemOp()) { |
2406 | auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>(); |
2407 | if (MPT->getPointeeType()->isRecordType()) |
2408 | return DevirtualizedMethod; |
2409 | } |
2410 | } |
2411 | |
2412 | // We can't devirtualize the call. |
2413 | return nullptr; |
2414 | } |
2415 | |
2416 | bool CXXMethodDecl::isUsualDeallocationFunction( |
2417 | SmallVectorImpl<const FunctionDecl *> &PreventedBy) const { |
2418 | assert(PreventedBy.empty() && "PreventedBy is expected to be empty" ); |
2419 | if (getOverloadedOperator() != OO_Delete && |
2420 | getOverloadedOperator() != OO_Array_Delete) |
2421 | return false; |
2422 | |
2423 | // C++ [basic.stc.dynamic.deallocation]p2: |
2424 | // A template instance is never a usual deallocation function, |
2425 | // regardless of its signature. |
2426 | if (getPrimaryTemplate()) |
2427 | return false; |
2428 | |
2429 | // C++ [basic.stc.dynamic.deallocation]p2: |
2430 | // If a class T has a member deallocation function named operator delete |
2431 | // with exactly one parameter, then that function is a usual (non-placement) |
2432 | // deallocation function. [...] |
2433 | if (getNumParams() == 1) |
2434 | return true; |
2435 | unsigned UsualParams = 1; |
2436 | |
2437 | // C++ P0722: |
2438 | // A destroying operator delete is a usual deallocation function if |
2439 | // removing the std::destroying_delete_t parameter and changing the |
2440 | // first parameter type from T* to void* results in the signature of |
2441 | // a usual deallocation function. |
2442 | if (isDestroyingOperatorDelete()) |
2443 | ++UsualParams; |
2444 | |
2445 | // C++ <=14 [basic.stc.dynamic.deallocation]p2: |
2446 | // [...] If class T does not declare such an operator delete but does |
2447 | // declare a member deallocation function named operator delete with |
2448 | // exactly two parameters, the second of which has type std::size_t (18.1), |
2449 | // then this function is a usual deallocation function. |
2450 | // |
2451 | // C++17 says a usual deallocation function is one with the signature |
2452 | // (void* [, size_t] [, std::align_val_t] [, ...]) |
2453 | // and all such functions are usual deallocation functions. It's not clear |
2454 | // that allowing varargs functions was intentional. |
2455 | ASTContext &Context = getASTContext(); |
2456 | if (UsualParams < getNumParams() && |
2457 | Context.hasSameUnqualifiedType(T1: getParamDecl(i: UsualParams)->getType(), |
2458 | T2: Context.getSizeType())) |
2459 | ++UsualParams; |
2460 | |
2461 | if (UsualParams < getNumParams() && |
2462 | getParamDecl(i: UsualParams)->getType()->isAlignValT()) |
2463 | ++UsualParams; |
2464 | |
2465 | if (UsualParams != getNumParams()) |
2466 | return false; |
2467 | |
2468 | // In C++17 onwards, all potential usual deallocation functions are actual |
2469 | // usual deallocation functions. Honor this behavior when post-C++14 |
2470 | // deallocation functions are offered as extensions too. |
2471 | // FIXME(EricWF): Destroying Delete should be a language option. How do we |
2472 | // handle when destroying delete is used prior to C++17? |
2473 | if (Context.getLangOpts().CPlusPlus17 || |
2474 | Context.getLangOpts().AlignedAllocation || |
2475 | isDestroyingOperatorDelete()) |
2476 | return true; |
2477 | |
2478 | // This function is a usual deallocation function if there are no |
2479 | // single-parameter deallocation functions of the same kind. |
2480 | DeclContext::lookup_result R = getDeclContext()->lookup(Name: getDeclName()); |
2481 | bool Result = true; |
2482 | for (const auto *D : R) { |
2483 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
2484 | if (FD->getNumParams() == 1) { |
2485 | PreventedBy.push_back(Elt: FD); |
2486 | Result = false; |
2487 | } |
2488 | } |
2489 | } |
2490 | return Result; |
2491 | } |
2492 | |
2493 | bool CXXMethodDecl::isExplicitObjectMemberFunction() const { |
2494 | // C++2b [dcl.fct]p6: |
2495 | // An explicit object member function is a non-static member |
2496 | // function with an explicit object parameter |
2497 | return !isStatic() && hasCXXExplicitFunctionObjectParameter(); |
2498 | } |
2499 | |
2500 | bool CXXMethodDecl::isImplicitObjectMemberFunction() const { |
2501 | return !isStatic() && !hasCXXExplicitFunctionObjectParameter(); |
2502 | } |
2503 | |
2504 | bool CXXMethodDecl::isCopyAssignmentOperator() const { |
2505 | // C++0x [class.copy]p17: |
2506 | // A user-declared copy assignment operator X::operator= is a non-static |
2507 | // non-template member function of class X with exactly one parameter of |
2508 | // type X, X&, const X&, volatile X& or const volatile X&. |
2509 | if (/*operator=*/getOverloadedOperator() != OO_Equal || |
2510 | /*non-static*/ isStatic() || |
2511 | |
2512 | /*non-template*/ getPrimaryTemplate() || getDescribedFunctionTemplate() || |
2513 | getNumExplicitParams() != 1) |
2514 | return false; |
2515 | |
2516 | QualType ParamType = getNonObjectParameter(I: 0)->getType(); |
2517 | if (const auto *Ref = ParamType->getAs<LValueReferenceType>()) |
2518 | ParamType = Ref->getPointeeType(); |
2519 | |
2520 | ASTContext &Context = getASTContext(); |
2521 | QualType ClassType |
2522 | = Context.getCanonicalType(T: Context.getTypeDeclType(Decl: getParent())); |
2523 | return Context.hasSameUnqualifiedType(T1: ClassType, T2: ParamType); |
2524 | } |
2525 | |
2526 | bool CXXMethodDecl::isMoveAssignmentOperator() const { |
2527 | // C++0x [class.copy]p19: |
2528 | // A user-declared move assignment operator X::operator= is a non-static |
2529 | // non-template member function of class X with exactly one parameter of type |
2530 | // X&&, const X&&, volatile X&&, or const volatile X&&. |
2531 | if (getOverloadedOperator() != OO_Equal || isStatic() || |
2532 | getPrimaryTemplate() || getDescribedFunctionTemplate() || |
2533 | getNumExplicitParams() != 1) |
2534 | return false; |
2535 | |
2536 | QualType ParamType = getNonObjectParameter(I: 0)->getType(); |
2537 | if (!ParamType->isRValueReferenceType()) |
2538 | return false; |
2539 | ParamType = ParamType->getPointeeType(); |
2540 | |
2541 | ASTContext &Context = getASTContext(); |
2542 | QualType ClassType |
2543 | = Context.getCanonicalType(T: Context.getTypeDeclType(Decl: getParent())); |
2544 | return Context.hasSameUnqualifiedType(T1: ClassType, T2: ParamType); |
2545 | } |
2546 | |
2547 | void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { |
2548 | assert(MD->isCanonicalDecl() && "Method is not canonical!" ); |
2549 | assert(!MD->getParent()->isDependentContext() && |
2550 | "Can't add an overridden method to a class template!" ); |
2551 | assert(MD->isVirtual() && "Method is not virtual!" ); |
2552 | |
2553 | getASTContext().addOverriddenMethod(Method: this, Overridden: MD); |
2554 | } |
2555 | |
2556 | CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { |
2557 | if (isa<CXXConstructorDecl>(Val: this)) return nullptr; |
2558 | return getASTContext().overridden_methods_begin(Method: this); |
2559 | } |
2560 | |
2561 | CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { |
2562 | if (isa<CXXConstructorDecl>(Val: this)) return nullptr; |
2563 | return getASTContext().overridden_methods_end(Method: this); |
2564 | } |
2565 | |
2566 | unsigned CXXMethodDecl::size_overridden_methods() const { |
2567 | if (isa<CXXConstructorDecl>(Val: this)) return 0; |
2568 | return getASTContext().overridden_methods_size(Method: this); |
2569 | } |
2570 | |
2571 | CXXMethodDecl::overridden_method_range |
2572 | CXXMethodDecl::overridden_methods() const { |
2573 | if (isa<CXXConstructorDecl>(Val: this)) |
2574 | return overridden_method_range(nullptr, nullptr); |
2575 | return getASTContext().overridden_methods(Method: this); |
2576 | } |
2577 | |
2578 | static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT, |
2579 | const CXXRecordDecl *Decl) { |
2580 | QualType ClassTy = C.getTypeDeclType(Decl); |
2581 | return C.getQualifiedType(T: ClassTy, Qs: FPT->getMethodQuals()); |
2582 | } |
2583 | |
2584 | QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT, |
2585 | const CXXRecordDecl *Decl) { |
2586 | ASTContext &C = Decl->getASTContext(); |
2587 | QualType ObjectTy = ::getThisObjectType(C, FPT, Decl); |
2588 | |
2589 | // Unlike 'const' and 'volatile', a '__restrict' qualifier must be |
2590 | // attached to the pointer type, not the pointee. |
2591 | bool Restrict = FPT->getMethodQuals().hasRestrict(); |
2592 | if (Restrict) |
2593 | ObjectTy.removeLocalRestrict(); |
2594 | |
2595 | ObjectTy = C.getLangOpts().HLSL ? C.getLValueReferenceType(T: ObjectTy) |
2596 | : C.getPointerType(T: ObjectTy); |
2597 | |
2598 | if (Restrict) |
2599 | ObjectTy.addRestrict(); |
2600 | return ObjectTy; |
2601 | } |
2602 | |
2603 | QualType CXXMethodDecl::getThisType() const { |
2604 | // C++ 9.3.2p1: The type of this in a member function of a class X is X*. |
2605 | // If the member function is declared const, the type of this is const X*, |
2606 | // if the member function is declared volatile, the type of this is |
2607 | // volatile X*, and if the member function is declared const volatile, |
2608 | // the type of this is const volatile X*. |
2609 | assert(isInstance() && "No 'this' for static methods!" ); |
2610 | return CXXMethodDecl::getThisType(FPT: getType()->castAs<FunctionProtoType>(), |
2611 | Decl: getParent()); |
2612 | } |
2613 | |
2614 | QualType CXXMethodDecl::getFunctionObjectParameterReferenceType() const { |
2615 | if (isExplicitObjectMemberFunction()) |
2616 | return parameters()[0]->getType(); |
2617 | |
2618 | ASTContext &C = getParentASTContext(); |
2619 | const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>(); |
2620 | QualType Type = ::getThisObjectType(C, FPT, Decl: getParent()); |
2621 | RefQualifierKind RK = FPT->getRefQualifier(); |
2622 | if (RK == RefQualifierKind::RQ_RValue) |
2623 | return C.getRValueReferenceType(T: Type); |
2624 | return C.getLValueReferenceType(T: Type); |
2625 | } |
2626 | |
2627 | bool CXXMethodDecl::hasInlineBody() const { |
2628 | // If this function is a template instantiation, look at the template from |
2629 | // which it was instantiated. |
2630 | const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); |
2631 | if (!CheckFn) |
2632 | CheckFn = this; |
2633 | |
2634 | const FunctionDecl *fn; |
2635 | return CheckFn->isDefined(Definition&: fn) && !fn->isOutOfLine() && |
2636 | (fn->doesThisDeclarationHaveABody() || fn->willHaveBody()); |
2637 | } |
2638 | |
2639 | bool CXXMethodDecl::isLambdaStaticInvoker() const { |
2640 | const CXXRecordDecl *P = getParent(); |
2641 | return P->isLambda() && getDeclName().isIdentifier() && |
2642 | getName() == getLambdaStaticInvokerName(); |
2643 | } |
2644 | |
2645 | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, |
2646 | TypeSourceInfo *TInfo, bool IsVirtual, |
2647 | SourceLocation L, Expr *Init, |
2648 | SourceLocation R, |
2649 | SourceLocation EllipsisLoc) |
2650 | : Initializee(TInfo), Init(Init), MemberOrEllipsisLocation(EllipsisLoc), |
2651 | LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), |
2652 | IsWritten(false), SourceOrder(0) {} |
2653 | |
2654 | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, |
2655 | SourceLocation MemberLoc, |
2656 | SourceLocation L, Expr *Init, |
2657 | SourceLocation R) |
2658 | : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc), |
2659 | LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), |
2660 | IsWritten(false), SourceOrder(0) {} |
2661 | |
2662 | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, |
2663 | IndirectFieldDecl *Member, |
2664 | SourceLocation MemberLoc, |
2665 | SourceLocation L, Expr *Init, |
2666 | SourceLocation R) |
2667 | : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc), |
2668 | LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), |
2669 | IsWritten(false), SourceOrder(0) {} |
2670 | |
2671 | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, |
2672 | TypeSourceInfo *TInfo, |
2673 | SourceLocation L, Expr *Init, |
2674 | SourceLocation R) |
2675 | : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R), |
2676 | IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {} |
2677 | |
2678 | int64_t CXXCtorInitializer::getID(const ASTContext &Context) const { |
2679 | return Context.getAllocator() |
2680 | .identifyKnownAlignedObject<CXXCtorInitializer>(Ptr: this); |
2681 | } |
2682 | |
2683 | TypeLoc CXXCtorInitializer::getBaseClassLoc() const { |
2684 | if (isBaseInitializer()) |
2685 | return Initializee.get<TypeSourceInfo*>()->getTypeLoc(); |
2686 | else |
2687 | return {}; |
2688 | } |
2689 | |
2690 | const Type *CXXCtorInitializer::getBaseClass() const { |
2691 | if (isBaseInitializer()) |
2692 | return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr(); |
2693 | else |
2694 | return nullptr; |
2695 | } |
2696 | |
2697 | SourceLocation CXXCtorInitializer::getSourceLocation() const { |
2698 | if (isInClassMemberInitializer()) |
2699 | return getAnyMember()->getLocation(); |
2700 | |
2701 | if (isAnyMemberInitializer()) |
2702 | return getMemberLocation(); |
2703 | |
2704 | if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>()) |
2705 | return TSInfo->getTypeLoc().getBeginLoc(); |
2706 | |
2707 | return {}; |
2708 | } |
2709 | |
2710 | SourceRange CXXCtorInitializer::getSourceRange() const { |
2711 | if (isInClassMemberInitializer()) { |
2712 | FieldDecl *D = getAnyMember(); |
2713 | if (Expr *I = D->getInClassInitializer()) |
2714 | return I->getSourceRange(); |
2715 | return {}; |
2716 | } |
2717 | |
2718 | return SourceRange(getSourceLocation(), getRParenLoc()); |
2719 | } |
2720 | |
2721 | CXXConstructorDecl::CXXConstructorDecl( |
2722 | ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, |
2723 | const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, |
2724 | ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline, |
2725 | bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, |
2726 | InheritedConstructor Inherited, Expr *TrailingRequiresClause) |
2727 | : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo, |
2728 | SC_None, UsesFPIntrin, isInline, ConstexprKind, |
2729 | SourceLocation(), TrailingRequiresClause) { |
2730 | setNumCtorInitializers(0); |
2731 | setInheritingConstructor(static_cast<bool>(Inherited)); |
2732 | setImplicit(isImplicitlyDeclared); |
2733 | CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0; |
2734 | if (Inherited) |
2735 | *getTrailingObjects<InheritedConstructor>() = Inherited; |
2736 | setExplicitSpecifier(ES); |
2737 | } |
2738 | |
2739 | void CXXConstructorDecl::anchor() {} |
2740 | |
2741 | CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C, |
2742 | GlobalDeclID ID, |
2743 | uint64_t AllocKind) { |
2744 | bool hasTrailingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit); |
2745 | bool isInheritingConstructor = |
2746 | static_cast<bool>(AllocKind & TAKInheritsConstructor); |
2747 | unsigned = |
2748 | additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( |
2749 | Counts: isInheritingConstructor, Counts: hasTrailingExplicit); |
2750 | auto *Result = new (C, ID, Extra) CXXConstructorDecl( |
2751 | C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, |
2752 | ExplicitSpecifier(), false, false, false, ConstexprSpecKind::Unspecified, |
2753 | InheritedConstructor(), nullptr); |
2754 | Result->setInheritingConstructor(isInheritingConstructor); |
2755 | Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier = |
2756 | hasTrailingExplicit; |
2757 | Result->setExplicitSpecifier(ExplicitSpecifier()); |
2758 | return Result; |
2759 | } |
2760 | |
2761 | CXXConstructorDecl *CXXConstructorDecl::Create( |
2762 | ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, |
2763 | const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, |
2764 | ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline, |
2765 | bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, |
2766 | InheritedConstructor Inherited, Expr *TrailingRequiresClause) { |
2767 | assert(NameInfo.getName().getNameKind() |
2768 | == DeclarationName::CXXConstructorName && |
2769 | "Name must refer to a constructor" ); |
2770 | unsigned = |
2771 | additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( |
2772 | Counts: Inherited ? 1 : 0, Counts: ES.getExpr() ? 1 : 0); |
2773 | return new (C, RD, Extra) CXXConstructorDecl( |
2774 | C, RD, StartLoc, NameInfo, T, TInfo, ES, UsesFPIntrin, isInline, |
2775 | isImplicitlyDeclared, ConstexprKind, Inherited, TrailingRequiresClause); |
2776 | } |
2777 | |
2778 | CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const { |
2779 | return CtorInitializers.get(Source: getASTContext().getExternalSource()); |
2780 | } |
2781 | |
2782 | CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const { |
2783 | assert(isDelegatingConstructor() && "Not a delegating constructor!" ); |
2784 | Expr *E = (*init_begin())->getInit()->IgnoreImplicit(); |
2785 | if (const auto *Construct = dyn_cast<CXXConstructExpr>(Val: E)) |
2786 | return Construct->getConstructor(); |
2787 | |
2788 | return nullptr; |
2789 | } |
2790 | |
2791 | bool CXXConstructorDecl::isDefaultConstructor() const { |
2792 | // C++ [class.default.ctor]p1: |
2793 | // A default constructor for a class X is a constructor of class X for |
2794 | // which each parameter that is not a function parameter pack has a default |
2795 | // argument (including the case of a constructor with no parameters) |
2796 | return getMinRequiredArguments() == 0; |
2797 | } |
2798 | |
2799 | bool |
2800 | CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { |
2801 | return isCopyOrMoveConstructor(TypeQuals) && |
2802 | getParamDecl(i: 0)->getType()->isLValueReferenceType(); |
2803 | } |
2804 | |
2805 | bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const { |
2806 | return isCopyOrMoveConstructor(TypeQuals) && |
2807 | getParamDecl(i: 0)->getType()->isRValueReferenceType(); |
2808 | } |
2809 | |
2810 | /// Determine whether this is a copy or move constructor. |
2811 | bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const { |
2812 | // C++ [class.copy]p2: |
2813 | // A non-template constructor for class X is a copy constructor |
2814 | // if its first parameter is of type X&, const X&, volatile X& or |
2815 | // const volatile X&, and either there are no other parameters |
2816 | // or else all other parameters have default arguments (8.3.6). |
2817 | // C++0x [class.copy]p3: |
2818 | // A non-template constructor for class X is a move constructor if its |
2819 | // first parameter is of type X&&, const X&&, volatile X&&, or |
2820 | // const volatile X&&, and either there are no other parameters or else |
2821 | // all other parameters have default arguments. |
2822 | if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr || |
2823 | getDescribedFunctionTemplate() != nullptr) |
2824 | return false; |
2825 | |
2826 | const ParmVarDecl *Param = getParamDecl(i: 0); |
2827 | |
2828 | // Do we have a reference type? |
2829 | const auto *ParamRefType = Param->getType()->getAs<ReferenceType>(); |
2830 | if (!ParamRefType) |
2831 | return false; |
2832 | |
2833 | // Is it a reference to our class type? |
2834 | ASTContext &Context = getASTContext(); |
2835 | |
2836 | CanQualType PointeeType |
2837 | = Context.getCanonicalType(T: ParamRefType->getPointeeType()); |
2838 | CanQualType ClassTy |
2839 | = Context.getCanonicalType(T: Context.getTagDeclType(Decl: getParent())); |
2840 | if (PointeeType.getUnqualifiedType() != ClassTy) |
2841 | return false; |
2842 | |
2843 | // FIXME: other qualifiers? |
2844 | |
2845 | // We have a copy or move constructor. |
2846 | TypeQuals = PointeeType.getCVRQualifiers(); |
2847 | return true; |
2848 | } |
2849 | |
2850 | bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { |
2851 | // C++ [class.conv.ctor]p1: |
2852 | // A constructor declared without the function-specifier explicit |
2853 | // that can be called with a single parameter specifies a |
2854 | // conversion from the type of its first parameter to the type of |
2855 | // its class. Such a constructor is called a converting |
2856 | // constructor. |
2857 | if (isExplicit() && !AllowExplicit) |
2858 | return false; |
2859 | |
2860 | // FIXME: This has nothing to do with the definition of converting |
2861 | // constructor, but is convenient for how we use this function in overload |
2862 | // resolution. |
2863 | return getNumParams() == 0 |
2864 | ? getType()->castAs<FunctionProtoType>()->isVariadic() |
2865 | : getMinRequiredArguments() <= 1; |
2866 | } |
2867 | |
2868 | bool CXXConstructorDecl::isSpecializationCopyingObject() const { |
2869 | if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr) |
2870 | return false; |
2871 | |
2872 | const ParmVarDecl *Param = getParamDecl(i: 0); |
2873 | |
2874 | ASTContext &Context = getASTContext(); |
2875 | CanQualType ParamType = Context.getCanonicalType(T: Param->getType()); |
2876 | |
2877 | // Is it the same as our class type? |
2878 | CanQualType ClassTy |
2879 | = Context.getCanonicalType(T: Context.getTagDeclType(Decl: getParent())); |
2880 | if (ParamType.getUnqualifiedType() != ClassTy) |
2881 | return false; |
2882 | |
2883 | return true; |
2884 | } |
2885 | |
2886 | void CXXDestructorDecl::anchor() {} |
2887 | |
2888 | CXXDestructorDecl *CXXDestructorDecl::CreateDeserialized(ASTContext &C, |
2889 | GlobalDeclID ID) { |
2890 | return new (C, ID) CXXDestructorDecl( |
2891 | C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, |
2892 | false, false, false, ConstexprSpecKind::Unspecified, nullptr); |
2893 | } |
2894 | |
2895 | CXXDestructorDecl *CXXDestructorDecl::Create( |
2896 | ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, |
2897 | const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, |
2898 | bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared, |
2899 | ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause) { |
2900 | assert(NameInfo.getName().getNameKind() |
2901 | == DeclarationName::CXXDestructorName && |
2902 | "Name must refer to a destructor" ); |
2903 | return new (C, RD) CXXDestructorDecl( |
2904 | C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, |
2905 | isImplicitlyDeclared, ConstexprKind, TrailingRequiresClause); |
2906 | } |
2907 | |
2908 | void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) { |
2909 | auto *First = cast<CXXDestructorDecl>(Val: getFirstDecl()); |
2910 | if (OD && !First->OperatorDelete) { |
2911 | First->OperatorDelete = OD; |
2912 | First->OperatorDeleteThisArg = ThisArg; |
2913 | if (auto *L = getASTMutationListener()) |
2914 | L->ResolvedOperatorDelete(DD: First, Delete: OD, ThisArg); |
2915 | } |
2916 | } |
2917 | |
2918 | void CXXConversionDecl::anchor() {} |
2919 | |
2920 | CXXConversionDecl *CXXConversionDecl::CreateDeserialized(ASTContext &C, |
2921 | GlobalDeclID ID) { |
2922 | return new (C, ID) CXXConversionDecl( |
2923 | C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, |
2924 | false, false, ExplicitSpecifier(), ConstexprSpecKind::Unspecified, |
2925 | SourceLocation(), nullptr); |
2926 | } |
2927 | |
2928 | CXXConversionDecl *CXXConversionDecl::Create( |
2929 | ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, |
2930 | const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, |
2931 | bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES, |
2932 | ConstexprSpecKind ConstexprKind, SourceLocation EndLocation, |
2933 | Expr *TrailingRequiresClause) { |
2934 | assert(NameInfo.getName().getNameKind() |
2935 | == DeclarationName::CXXConversionFunctionName && |
2936 | "Name must refer to a conversion function" ); |
2937 | return new (C, RD) CXXConversionDecl( |
2938 | C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, ES, |
2939 | ConstexprKind, EndLocation, TrailingRequiresClause); |
2940 | } |
2941 | |
2942 | bool CXXConversionDecl::isLambdaToBlockPointerConversion() const { |
2943 | return isImplicit() && getParent()->isLambda() && |
2944 | getConversionType()->isBlockPointerType(); |
2945 | } |
2946 | |
2947 | LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc, |
2948 | SourceLocation LangLoc, |
2949 | LinkageSpecLanguageIDs lang, bool HasBraces) |
2950 | : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec), |
2951 | ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) { |
2952 | setLanguage(lang); |
2953 | LinkageSpecDeclBits.HasBraces = HasBraces; |
2954 | } |
2955 | |
2956 | void LinkageSpecDecl::anchor() {} |
2957 | |
2958 | LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, DeclContext *DC, |
2959 | SourceLocation ExternLoc, |
2960 | SourceLocation LangLoc, |
2961 | LinkageSpecLanguageIDs Lang, |
2962 | bool HasBraces) { |
2963 | return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces); |
2964 | } |
2965 | |
2966 | LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, |
2967 | GlobalDeclID ID) { |
2968 | return new (C, ID) |
2969 | LinkageSpecDecl(nullptr, SourceLocation(), SourceLocation(), |
2970 | LinkageSpecLanguageIDs::C, false); |
2971 | } |
2972 | |
2973 | void UsingDirectiveDecl::anchor() {} |
2974 | |
2975 | UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, |
2976 | SourceLocation L, |
2977 | SourceLocation NamespaceLoc, |
2978 | NestedNameSpecifierLoc QualifierLoc, |
2979 | SourceLocation IdentLoc, |
2980 | NamedDecl *Used, |
2981 | DeclContext *CommonAncestor) { |
2982 | if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Val: Used)) |
2983 | Used = NS->getFirstDecl(); |
2984 | return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc, |
2985 | IdentLoc, Used, CommonAncestor); |
2986 | } |
2987 | |
2988 | UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C, |
2989 | GlobalDeclID ID) { |
2990 | return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(), |
2991 | SourceLocation(), |
2992 | NestedNameSpecifierLoc(), |
2993 | SourceLocation(), nullptr, nullptr); |
2994 | } |
2995 | |
2996 | NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { |
2997 | if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(Val: NominatedNamespace)) |
2998 | return NA->getNamespace(); |
2999 | return cast_or_null<NamespaceDecl>(Val: NominatedNamespace); |
3000 | } |
3001 | |
3002 | NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline, |
3003 | SourceLocation StartLoc, SourceLocation IdLoc, |
3004 | IdentifierInfo *Id, NamespaceDecl *PrevDecl, |
3005 | bool Nested) |
3006 | : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace), |
3007 | redeclarable_base(C), LocStart(StartLoc) { |
3008 | setInline(Inline); |
3009 | setNested(Nested); |
3010 | setPreviousDecl(PrevDecl); |
3011 | } |
3012 | |
3013 | NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC, |
3014 | bool Inline, SourceLocation StartLoc, |
3015 | SourceLocation IdLoc, IdentifierInfo *Id, |
3016 | NamespaceDecl *PrevDecl, bool Nested) { |
3017 | return new (C, DC) |
3018 | NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, PrevDecl, Nested); |
3019 | } |
3020 | |
3021 | NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, |
3022 | GlobalDeclID ID) { |
3023 | return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(), |
3024 | SourceLocation(), nullptr, nullptr, false); |
3025 | } |
3026 | |
3027 | NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() { |
3028 | return getNextRedeclaration(); |
3029 | } |
3030 | |
3031 | NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() { |
3032 | return getPreviousDecl(); |
3033 | } |
3034 | |
3035 | NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() { |
3036 | return getMostRecentDecl(); |
3037 | } |
3038 | |
3039 | void NamespaceAliasDecl::anchor() {} |
3040 | |
3041 | NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() { |
3042 | return getNextRedeclaration(); |
3043 | } |
3044 | |
3045 | NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() { |
3046 | return getPreviousDecl(); |
3047 | } |
3048 | |
3049 | NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() { |
3050 | return getMostRecentDecl(); |
3051 | } |
3052 | |
3053 | NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, |
3054 | SourceLocation UsingLoc, |
3055 | SourceLocation AliasLoc, |
3056 | IdentifierInfo *Alias, |
3057 | NestedNameSpecifierLoc QualifierLoc, |
3058 | SourceLocation IdentLoc, |
3059 | NamedDecl *Namespace) { |
3060 | // FIXME: Preserve the aliased namespace as written. |
3061 | if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Val: Namespace)) |
3062 | Namespace = NS->getFirstDecl(); |
3063 | return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias, |
3064 | QualifierLoc, IdentLoc, Namespace); |
3065 | } |
3066 | |
3067 | NamespaceAliasDecl *NamespaceAliasDecl::CreateDeserialized(ASTContext &C, |
3068 | GlobalDeclID ID) { |
3069 | return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(), |
3070 | SourceLocation(), nullptr, |
3071 | NestedNameSpecifierLoc(), |
3072 | SourceLocation(), nullptr); |
3073 | } |
3074 | |
3075 | void LifetimeExtendedTemporaryDecl::anchor() {} |
3076 | |
3077 | /// Retrieve the storage duration for the materialized temporary. |
3078 | StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const { |
3079 | const ValueDecl *ExtendingDecl = getExtendingDecl(); |
3080 | if (!ExtendingDecl) |
3081 | return SD_FullExpression; |
3082 | // FIXME: This is not necessarily correct for a temporary materialized |
3083 | // within a default initializer. |
3084 | if (isa<FieldDecl>(Val: ExtendingDecl)) |
3085 | return SD_Automatic; |
3086 | // FIXME: This only works because storage class specifiers are not allowed |
3087 | // on decomposition declarations. |
3088 | if (isa<BindingDecl>(Val: ExtendingDecl)) |
3089 | return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic |
3090 | : SD_Static; |
3091 | return cast<VarDecl>(Val: ExtendingDecl)->getStorageDuration(); |
3092 | } |
3093 | |
3094 | APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const { |
3095 | assert(getStorageDuration() == SD_Static && |
3096 | "don't need to cache the computed value for this temporary" ); |
3097 | if (MayCreate && !Value) { |
3098 | Value = (new (getASTContext()) APValue); |
3099 | getASTContext().addDestruction(Ptr: Value); |
3100 | } |
3101 | assert(Value && "may not be null" ); |
3102 | return Value; |
3103 | } |
3104 | |
3105 | void UsingShadowDecl::anchor() {} |
3106 | |
3107 | UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, |
3108 | SourceLocation Loc, DeclarationName Name, |
3109 | BaseUsingDecl *Introducer, NamedDecl *Target) |
3110 | : NamedDecl(K, DC, Loc, Name), redeclarable_base(C), |
3111 | UsingOrNextShadow(Introducer) { |
3112 | if (Target) { |
3113 | assert(!isa<UsingShadowDecl>(Target)); |
3114 | setTargetDecl(Target); |
3115 | } |
3116 | setImplicit(); |
3117 | } |
3118 | |
3119 | UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty) |
3120 | : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()), |
3121 | redeclarable_base(C) {} |
3122 | |
3123 | UsingShadowDecl *UsingShadowDecl::CreateDeserialized(ASTContext &C, |
3124 | GlobalDeclID ID) { |
3125 | return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell()); |
3126 | } |
3127 | |
3128 | BaseUsingDecl *UsingShadowDecl::getIntroducer() const { |
3129 | const UsingShadowDecl *Shadow = this; |
3130 | while (const auto *NextShadow = |
3131 | dyn_cast<UsingShadowDecl>(Val: Shadow->UsingOrNextShadow)) |
3132 | Shadow = NextShadow; |
3133 | return cast<BaseUsingDecl>(Val: Shadow->UsingOrNextShadow); |
3134 | } |
3135 | |
3136 | void ConstructorUsingShadowDecl::anchor() {} |
3137 | |
3138 | ConstructorUsingShadowDecl * |
3139 | ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC, |
3140 | SourceLocation Loc, UsingDecl *Using, |
3141 | NamedDecl *Target, bool IsVirtual) { |
3142 | return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target, |
3143 | IsVirtual); |
3144 | } |
3145 | |
3146 | ConstructorUsingShadowDecl * |
3147 | ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
3148 | return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell()); |
3149 | } |
3150 | |
3151 | CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const { |
3152 | return getIntroducer()->getQualifier()->getAsRecordDecl(); |
3153 | } |
3154 | |
3155 | void BaseUsingDecl::anchor() {} |
3156 | |
3157 | void BaseUsingDecl::addShadowDecl(UsingShadowDecl *S) { |
3158 | assert(!llvm::is_contained(shadows(), S) && "declaration already in set" ); |
3159 | assert(S->getIntroducer() == this); |
3160 | |
3161 | if (FirstUsingShadow.getPointer()) |
3162 | S->UsingOrNextShadow = FirstUsingShadow.getPointer(); |
3163 | FirstUsingShadow.setPointer(S); |
3164 | } |
3165 | |
3166 | void BaseUsingDecl::removeShadowDecl(UsingShadowDecl *S) { |
3167 | assert(llvm::is_contained(shadows(), S) && "declaration not in set" ); |
3168 | assert(S->getIntroducer() == this); |
3169 | |
3170 | // Remove S from the shadow decl chain. This is O(n) but hopefully rare. |
3171 | |
3172 | if (FirstUsingShadow.getPointer() == S) { |
3173 | FirstUsingShadow.setPointer( |
3174 | dyn_cast<UsingShadowDecl>(Val: S->UsingOrNextShadow)); |
3175 | S->UsingOrNextShadow = this; |
3176 | return; |
3177 | } |
3178 | |
3179 | UsingShadowDecl *Prev = FirstUsingShadow.getPointer(); |
3180 | while (Prev->UsingOrNextShadow != S) |
3181 | Prev = cast<UsingShadowDecl>(Val: Prev->UsingOrNextShadow); |
3182 | Prev->UsingOrNextShadow = S->UsingOrNextShadow; |
3183 | S->UsingOrNextShadow = this; |
3184 | } |
3185 | |
3186 | void UsingDecl::anchor() {} |
3187 | |
3188 | UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL, |
3189 | NestedNameSpecifierLoc QualifierLoc, |
3190 | const DeclarationNameInfo &NameInfo, |
3191 | bool HasTypename) { |
3192 | return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename); |
3193 | } |
3194 | |
3195 | UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
3196 | return new (C, ID) UsingDecl(nullptr, SourceLocation(), |
3197 | NestedNameSpecifierLoc(), DeclarationNameInfo(), |
3198 | false); |
3199 | } |
3200 | |
3201 | SourceRange UsingDecl::getSourceRange() const { |
3202 | SourceLocation Begin = isAccessDeclaration() |
3203 | ? getQualifierLoc().getBeginLoc() : UsingLocation; |
3204 | return SourceRange(Begin, getNameInfo().getEndLoc()); |
3205 | } |
3206 | |
3207 | void UsingEnumDecl::anchor() {} |
3208 | |
3209 | UsingEnumDecl *UsingEnumDecl::Create(ASTContext &C, DeclContext *DC, |
3210 | SourceLocation UL, |
3211 | SourceLocation EL, |
3212 | SourceLocation NL, |
3213 | TypeSourceInfo *EnumType) { |
3214 | assert(isa<EnumDecl>(EnumType->getType()->getAsTagDecl())); |
3215 | return new (C, DC) |
3216 | UsingEnumDecl(DC, EnumType->getType()->getAsTagDecl()->getDeclName(), UL, EL, NL, EnumType); |
3217 | } |
3218 | |
3219 | UsingEnumDecl *UsingEnumDecl::CreateDeserialized(ASTContext &C, |
3220 | GlobalDeclID ID) { |
3221 | return new (C, ID) |
3222 | UsingEnumDecl(nullptr, DeclarationName(), SourceLocation(), |
3223 | SourceLocation(), SourceLocation(), nullptr); |
3224 | } |
3225 | |
3226 | SourceRange UsingEnumDecl::getSourceRange() const { |
3227 | return SourceRange(UsingLocation, EnumType->getTypeLoc().getEndLoc()); |
3228 | } |
3229 | |
3230 | void UsingPackDecl::anchor() {} |
3231 | |
3232 | UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC, |
3233 | NamedDecl *InstantiatedFrom, |
3234 | ArrayRef<NamedDecl *> UsingDecls) { |
3235 | size_t = additionalSizeToAlloc<NamedDecl *>(Counts: UsingDecls.size()); |
3236 | return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls); |
3237 | } |
3238 | |
3239 | UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID, |
3240 | unsigned NumExpansions) { |
3241 | size_t = additionalSizeToAlloc<NamedDecl *>(Counts: NumExpansions); |
3242 | auto *Result = |
3243 | new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, std::nullopt); |
3244 | Result->NumExpansions = NumExpansions; |
3245 | auto *Trail = Result->getTrailingObjects<NamedDecl *>(); |
3246 | for (unsigned I = 0; I != NumExpansions; ++I) |
3247 | new (Trail + I) NamedDecl*(nullptr); |
3248 | return Result; |
3249 | } |
3250 | |
3251 | void UnresolvedUsingValueDecl::anchor() {} |
3252 | |
3253 | UnresolvedUsingValueDecl * |
3254 | UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, |
3255 | SourceLocation UsingLoc, |
3256 | NestedNameSpecifierLoc QualifierLoc, |
3257 | const DeclarationNameInfo &NameInfo, |
3258 | SourceLocation EllipsisLoc) { |
3259 | return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, |
3260 | QualifierLoc, NameInfo, |
3261 | EllipsisLoc); |
3262 | } |
3263 | |
3264 | UnresolvedUsingValueDecl * |
3265 | UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
3266 | return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(), |
3267 | SourceLocation(), |
3268 | NestedNameSpecifierLoc(), |
3269 | DeclarationNameInfo(), |
3270 | SourceLocation()); |
3271 | } |
3272 | |
3273 | SourceRange UnresolvedUsingValueDecl::getSourceRange() const { |
3274 | SourceLocation Begin = isAccessDeclaration() |
3275 | ? getQualifierLoc().getBeginLoc() : UsingLocation; |
3276 | return SourceRange(Begin, getNameInfo().getEndLoc()); |
3277 | } |
3278 | |
3279 | void UnresolvedUsingTypenameDecl::anchor() {} |
3280 | |
3281 | UnresolvedUsingTypenameDecl * |
3282 | UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, |
3283 | SourceLocation UsingLoc, |
3284 | SourceLocation TypenameLoc, |
3285 | NestedNameSpecifierLoc QualifierLoc, |
3286 | SourceLocation TargetNameLoc, |
3287 | DeclarationName TargetName, |
3288 | SourceLocation EllipsisLoc) { |
3289 | return new (C, DC) UnresolvedUsingTypenameDecl( |
3290 | DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc, |
3291 | TargetName.getAsIdentifierInfo(), EllipsisLoc); |
3292 | } |
3293 | |
3294 | UnresolvedUsingTypenameDecl * |
3295 | UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, |
3296 | GlobalDeclID ID) { |
3297 | return new (C, ID) UnresolvedUsingTypenameDecl( |
3298 | nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(), |
3299 | SourceLocation(), nullptr, SourceLocation()); |
3300 | } |
3301 | |
3302 | UnresolvedUsingIfExistsDecl * |
3303 | UnresolvedUsingIfExistsDecl::Create(ASTContext &Ctx, DeclContext *DC, |
3304 | SourceLocation Loc, DeclarationName Name) { |
3305 | return new (Ctx, DC) UnresolvedUsingIfExistsDecl(DC, Loc, Name); |
3306 | } |
3307 | |
3308 | UnresolvedUsingIfExistsDecl * |
3309 | UnresolvedUsingIfExistsDecl::CreateDeserialized(ASTContext &Ctx, |
3310 | GlobalDeclID ID) { |
3311 | return new (Ctx, ID) |
3312 | UnresolvedUsingIfExistsDecl(nullptr, SourceLocation(), DeclarationName()); |
3313 | } |
3314 | |
3315 | UnresolvedUsingIfExistsDecl::UnresolvedUsingIfExistsDecl(DeclContext *DC, |
3316 | SourceLocation Loc, |
3317 | DeclarationName Name) |
3318 | : NamedDecl(Decl::UnresolvedUsingIfExists, DC, Loc, Name) {} |
3319 | |
3320 | void UnresolvedUsingIfExistsDecl::anchor() {} |
3321 | |
3322 | void StaticAssertDecl::anchor() {} |
3323 | |
3324 | StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, |
3325 | SourceLocation StaticAssertLoc, |
3326 | Expr *AssertExpr, Expr *Message, |
3327 | SourceLocation RParenLoc, |
3328 | bool Failed) { |
3329 | return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message, |
3330 | RParenLoc, Failed); |
3331 | } |
3332 | |
3333 | StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C, |
3334 | GlobalDeclID ID) { |
3335 | return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr, |
3336 | nullptr, SourceLocation(), false); |
3337 | } |
3338 | |
3339 | VarDecl *ValueDecl::getPotentiallyDecomposedVarDecl() { |
3340 | assert((isa<VarDecl, BindingDecl>(this)) && |
3341 | "expected a VarDecl or a BindingDecl" ); |
3342 | if (auto *Var = llvm::dyn_cast<VarDecl>(Val: this)) |
3343 | return Var; |
3344 | if (auto *BD = llvm::dyn_cast<BindingDecl>(Val: this)) |
3345 | return llvm::dyn_cast<VarDecl>(Val: BD->getDecomposedDecl()); |
3346 | return nullptr; |
3347 | } |
3348 | |
3349 | void BindingDecl::anchor() {} |
3350 | |
3351 | BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC, |
3352 | SourceLocation IdLoc, IdentifierInfo *Id) { |
3353 | return new (C, DC) BindingDecl(DC, IdLoc, Id); |
3354 | } |
3355 | |
3356 | BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
3357 | return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr); |
3358 | } |
3359 | |
3360 | VarDecl *BindingDecl::getHoldingVar() const { |
3361 | Expr *B = getBinding(); |
3362 | if (!B) |
3363 | return nullptr; |
3364 | auto *DRE = dyn_cast<DeclRefExpr>(Val: B->IgnoreImplicit()); |
3365 | if (!DRE) |
3366 | return nullptr; |
3367 | |
3368 | auto *VD = cast<VarDecl>(Val: DRE->getDecl()); |
3369 | assert(VD->isImplicit() && "holding var for binding decl not implicit" ); |
3370 | return VD; |
3371 | } |
3372 | |
3373 | void DecompositionDecl::anchor() {} |
3374 | |
3375 | DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC, |
3376 | SourceLocation StartLoc, |
3377 | SourceLocation LSquareLoc, |
3378 | QualType T, TypeSourceInfo *TInfo, |
3379 | StorageClass SC, |
3380 | ArrayRef<BindingDecl *> Bindings) { |
3381 | size_t = additionalSizeToAlloc<BindingDecl *>(Counts: Bindings.size()); |
3382 | return new (C, DC, Extra) |
3383 | DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings); |
3384 | } |
3385 | |
3386 | DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C, |
3387 | GlobalDeclID ID, |
3388 | unsigned NumBindings) { |
3389 | size_t = additionalSizeToAlloc<BindingDecl *>(Counts: NumBindings); |
3390 | auto *Result = new (C, ID, Extra) |
3391 | DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(), |
3392 | QualType(), nullptr, StorageClass(), std::nullopt); |
3393 | // Set up and clean out the bindings array. |
3394 | Result->NumBindings = NumBindings; |
3395 | auto *Trail = Result->getTrailingObjects<BindingDecl *>(); |
3396 | for (unsigned I = 0; I != NumBindings; ++I) |
3397 | new (Trail + I) BindingDecl*(nullptr); |
3398 | return Result; |
3399 | } |
3400 | |
3401 | void DecompositionDecl::printName(llvm::raw_ostream &OS, |
3402 | const PrintingPolicy &Policy) const { |
3403 | OS << '['; |
3404 | bool Comma = false; |
3405 | for (const auto *B : bindings()) { |
3406 | if (Comma) |
3407 | OS << ", " ; |
3408 | B->printName(OS, Policy); |
3409 | Comma = true; |
3410 | } |
3411 | OS << ']'; |
3412 | } |
3413 | |
3414 | void MSPropertyDecl::anchor() {} |
3415 | |
3416 | MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC, |
3417 | SourceLocation L, DeclarationName N, |
3418 | QualType T, TypeSourceInfo *TInfo, |
3419 | SourceLocation StartL, |
3420 | IdentifierInfo *Getter, |
3421 | IdentifierInfo *Setter) { |
3422 | return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter); |
3423 | } |
3424 | |
3425 | MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C, |
3426 | GlobalDeclID ID) { |
3427 | return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(), |
3428 | DeclarationName(), QualType(), nullptr, |
3429 | SourceLocation(), nullptr, nullptr); |
3430 | } |
3431 | |
3432 | void MSGuidDecl::anchor() {} |
3433 | |
3434 | MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P) |
3435 | : ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T), |
3436 | PartVal(P) {} |
3437 | |
3438 | MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) { |
3439 | DeclContext *DC = C.getTranslationUnitDecl(); |
3440 | return new (C, DC) MSGuidDecl(DC, T, P); |
3441 | } |
3442 | |
3443 | MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
3444 | return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts()); |
3445 | } |
3446 | |
3447 | void MSGuidDecl::printName(llvm::raw_ostream &OS, |
3448 | const PrintingPolicy &) const { |
3449 | OS << llvm::format(Fmt: "GUID{%08" PRIx32 "-%04" PRIx16 "-%04" PRIx16 "-" , |
3450 | Vals: PartVal.Part1, Vals: PartVal.Part2, Vals: PartVal.Part3); |
3451 | unsigned I = 0; |
3452 | for (uint8_t Byte : PartVal.Part4And5) { |
3453 | OS << llvm::format(Fmt: "%02" PRIx8, Vals: Byte); |
3454 | if (++I == 2) |
3455 | OS << '-'; |
3456 | } |
3457 | OS << '}'; |
3458 | } |
3459 | |
3460 | /// Determine if T is a valid 'struct _GUID' of the shape that we expect. |
3461 | static bool isValidStructGUID(ASTContext &Ctx, QualType T) { |
3462 | // FIXME: We only need to check this once, not once each time we compute a |
3463 | // GUID APValue. |
3464 | using MatcherRef = llvm::function_ref<bool(QualType)>; |
3465 | |
3466 | auto IsInt = [&Ctx](unsigned N) { |
3467 | return [&Ctx, N](QualType T) { |
3468 | return T->isUnsignedIntegerOrEnumerationType() && |
3469 | Ctx.getIntWidth(T) == N; |
3470 | }; |
3471 | }; |
3472 | |
3473 | auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) { |
3474 | return [&Ctx, Elem, N](QualType T) { |
3475 | const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T); |
3476 | return CAT && CAT->getSize() == N && Elem(CAT->getElementType()); |
3477 | }; |
3478 | }; |
3479 | |
3480 | auto IsStruct = [](std::initializer_list<MatcherRef> Fields) { |
3481 | return [Fields](QualType T) { |
3482 | const RecordDecl *RD = T->getAsRecordDecl(); |
3483 | if (!RD || RD->isUnion()) |
3484 | return false; |
3485 | RD = RD->getDefinition(); |
3486 | if (!RD) |
3487 | return false; |
3488 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) |
3489 | if (CXXRD->getNumBases()) |
3490 | return false; |
3491 | auto MatcherIt = Fields.begin(); |
3492 | for (const FieldDecl *FD : RD->fields()) { |
3493 | if (FD->isUnnamedBitField()) |
3494 | continue; |
3495 | if (FD->isBitField() || MatcherIt == Fields.end() || |
3496 | !(*MatcherIt)(FD->getType())) |
3497 | return false; |
3498 | ++MatcherIt; |
3499 | } |
3500 | return MatcherIt == Fields.end(); |
3501 | }; |
3502 | }; |
3503 | |
3504 | // We expect an {i32, i16, i16, [8 x i8]}. |
3505 | return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T); |
3506 | } |
3507 | |
3508 | APValue &MSGuidDecl::getAsAPValue() const { |
3509 | if (APVal.isAbsent() && isValidStructGUID(Ctx&: getASTContext(), T: getType())) { |
3510 | using llvm::APInt; |
3511 | using llvm::APSInt; |
3512 | APVal = APValue(APValue::UninitStruct(), 0, 4); |
3513 | APVal.getStructField(i: 0) = APValue(APSInt(APInt(32, PartVal.Part1), true)); |
3514 | APVal.getStructField(i: 1) = APValue(APSInt(APInt(16, PartVal.Part2), true)); |
3515 | APVal.getStructField(i: 2) = APValue(APSInt(APInt(16, PartVal.Part3), true)); |
3516 | APValue &Arr = APVal.getStructField(i: 3) = |
3517 | APValue(APValue::UninitArray(), 8, 8); |
3518 | for (unsigned I = 0; I != 8; ++I) { |
3519 | Arr.getArrayInitializedElt(I) = |
3520 | APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true)); |
3521 | } |
3522 | // Register this APValue to be destroyed if necessary. (Note that the |
3523 | // MSGuidDecl destructor is never run.) |
3524 | getASTContext().addDestruction(Ptr: &APVal); |
3525 | } |
3526 | |
3527 | return APVal; |
3528 | } |
3529 | |
3530 | void UnnamedGlobalConstantDecl::anchor() {} |
3531 | |
3532 | UnnamedGlobalConstantDecl::UnnamedGlobalConstantDecl(const ASTContext &C, |
3533 | DeclContext *DC, |
3534 | QualType Ty, |
3535 | const APValue &Val) |
3536 | : ValueDecl(Decl::UnnamedGlobalConstant, DC, SourceLocation(), |
3537 | DeclarationName(), Ty), |
3538 | Value(Val) { |
3539 | // Cleanup the embedded APValue if required (note that our destructor is never |
3540 | // run) |
3541 | if (Value.needsCleanup()) |
3542 | C.addDestruction(Ptr: &Value); |
3543 | } |
3544 | |
3545 | UnnamedGlobalConstantDecl * |
3546 | UnnamedGlobalConstantDecl::Create(const ASTContext &C, QualType T, |
3547 | const APValue &Value) { |
3548 | DeclContext *DC = C.getTranslationUnitDecl(); |
3549 | return new (C, DC) UnnamedGlobalConstantDecl(C, DC, T, Value); |
3550 | } |
3551 | |
3552 | UnnamedGlobalConstantDecl * |
3553 | UnnamedGlobalConstantDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
3554 | return new (C, ID) |
3555 | UnnamedGlobalConstantDecl(C, nullptr, QualType(), APValue()); |
3556 | } |
3557 | |
3558 | void UnnamedGlobalConstantDecl::printName(llvm::raw_ostream &OS, |
3559 | const PrintingPolicy &) const { |
3560 | OS << "unnamed-global-constant" ; |
3561 | } |
3562 | |
3563 | static const char *getAccessName(AccessSpecifier AS) { |
3564 | switch (AS) { |
3565 | case AS_none: |
3566 | llvm_unreachable("Invalid access specifier!" ); |
3567 | case AS_public: |
3568 | return "public" ; |
3569 | case AS_private: |
3570 | return "private" ; |
3571 | case AS_protected: |
3572 | return "protected" ; |
3573 | } |
3574 | llvm_unreachable("Invalid access specifier!" ); |
3575 | } |
3576 | |
3577 | const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB, |
3578 | AccessSpecifier AS) { |
3579 | return DB << getAccessName(AS); |
3580 | } |
3581 | |