1 | //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the Expr constant evaluator. |
10 | // |
11 | // Constant expression evaluation produces four main results: |
12 | // |
13 | // * A success/failure flag indicating whether constant folding was successful. |
14 | // This is the 'bool' return value used by most of the code in this file. A |
15 | // 'false' return value indicates that constant folding has failed, and any |
16 | // appropriate diagnostic has already been produced. |
17 | // |
18 | // * An evaluated result, valid only if constant folding has not failed. |
19 | // |
20 | // * A flag indicating if evaluation encountered (unevaluated) side-effects. |
21 | // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1), |
22 | // where it is possible to determine the evaluated result regardless. |
23 | // |
24 | // * A set of notes indicating why the evaluation was not a constant expression |
25 | // (under the C++11 / C++1y rules only, at the moment), or, if folding failed |
26 | // too, why the expression could not be folded. |
27 | // |
28 | // If we are checking for a potential constant expression, failure to constant |
29 | // fold a potential constant sub-expression will be indicated by a 'false' |
30 | // return value (the expression could not be folded) and no diagnostic (the |
31 | // expression is not necessarily non-constant). |
32 | // |
33 | //===----------------------------------------------------------------------===// |
34 | |
35 | #include "ExprConstShared.h" |
36 | #include "Interp/Context.h" |
37 | #include "Interp/Frame.h" |
38 | #include "Interp/State.h" |
39 | #include "clang/AST/APValue.h" |
40 | #include "clang/AST/ASTContext.h" |
41 | #include "clang/AST/ASTDiagnostic.h" |
42 | #include "clang/AST/ASTLambda.h" |
43 | #include "clang/AST/Attr.h" |
44 | #include "clang/AST/CXXInheritance.h" |
45 | #include "clang/AST/CharUnits.h" |
46 | #include "clang/AST/CurrentSourceLocExprScope.h" |
47 | #include "clang/AST/Expr.h" |
48 | #include "clang/AST/OSLog.h" |
49 | #include "clang/AST/OptionalDiagnostic.h" |
50 | #include "clang/AST/RecordLayout.h" |
51 | #include "clang/AST/StmtVisitor.h" |
52 | #include "clang/AST/TypeLoc.h" |
53 | #include "clang/Basic/Builtins.h" |
54 | #include "clang/Basic/DiagnosticSema.h" |
55 | #include "clang/Basic/TargetInfo.h" |
56 | #include "llvm/ADT/APFixedPoint.h" |
57 | #include "llvm/ADT/SmallBitVector.h" |
58 | #include "llvm/ADT/StringExtras.h" |
59 | #include "llvm/Support/Debug.h" |
60 | #include "llvm/Support/SaveAndRestore.h" |
61 | #include "llvm/Support/SipHash.h" |
62 | #include "llvm/Support/TimeProfiler.h" |
63 | #include "llvm/Support/raw_ostream.h" |
64 | #include <cstring> |
65 | #include <functional> |
66 | #include <optional> |
67 | |
68 | #define DEBUG_TYPE "exprconstant" |
69 | |
70 | using namespace clang; |
71 | using llvm::APFixedPoint; |
72 | using llvm::APInt; |
73 | using llvm::APSInt; |
74 | using llvm::APFloat; |
75 | using llvm::FixedPointSemantics; |
76 | |
77 | namespace { |
78 | struct LValue; |
79 | class CallStackFrame; |
80 | class EvalInfo; |
81 | |
82 | using SourceLocExprScopeGuard = |
83 | CurrentSourceLocExprScope::SourceLocExprScopeGuard; |
84 | |
85 | static QualType getType(APValue::LValueBase B) { |
86 | return B.getType(); |
87 | } |
88 | |
89 | /// Get an LValue path entry, which is known to not be an array index, as a |
90 | /// field declaration. |
91 | static const FieldDecl *getAsField(APValue::LValuePathEntry E) { |
92 | return dyn_cast_or_null<FieldDecl>(Val: E.getAsBaseOrMember().getPointer()); |
93 | } |
94 | /// Get an LValue path entry, which is known to not be an array index, as a |
95 | /// base class declaration. |
96 | static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) { |
97 | return dyn_cast_or_null<CXXRecordDecl>(Val: E.getAsBaseOrMember().getPointer()); |
98 | } |
99 | /// Determine whether this LValue path entry for a base class names a virtual |
100 | /// base class. |
101 | static bool isVirtualBaseClass(APValue::LValuePathEntry E) { |
102 | return E.getAsBaseOrMember().getInt(); |
103 | } |
104 | |
105 | /// Given an expression, determine the type used to store the result of |
106 | /// evaluating that expression. |
107 | static QualType getStorageType(const ASTContext &Ctx, const Expr *E) { |
108 | if (E->isPRValue()) |
109 | return E->getType(); |
110 | return Ctx.getLValueReferenceType(T: E->getType()); |
111 | } |
112 | |
113 | /// Given a CallExpr, try to get the alloc_size attribute. May return null. |
114 | static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) { |
115 | if (const FunctionDecl *DirectCallee = CE->getDirectCallee()) |
116 | return DirectCallee->getAttr<AllocSizeAttr>(); |
117 | if (const Decl *IndirectCallee = CE->getCalleeDecl()) |
118 | return IndirectCallee->getAttr<AllocSizeAttr>(); |
119 | return nullptr; |
120 | } |
121 | |
122 | /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr. |
123 | /// This will look through a single cast. |
124 | /// |
125 | /// Returns null if we couldn't unwrap a function with alloc_size. |
126 | static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) { |
127 | if (!E->getType()->isPointerType()) |
128 | return nullptr; |
129 | |
130 | E = E->IgnoreParens(); |
131 | // If we're doing a variable assignment from e.g. malloc(N), there will |
132 | // probably be a cast of some kind. In exotic cases, we might also see a |
133 | // top-level ExprWithCleanups. Ignore them either way. |
134 | if (const auto *FE = dyn_cast<FullExpr>(Val: E)) |
135 | E = FE->getSubExpr()->IgnoreParens(); |
136 | |
137 | if (const auto *Cast = dyn_cast<CastExpr>(Val: E)) |
138 | E = Cast->getSubExpr()->IgnoreParens(); |
139 | |
140 | if (const auto *CE = dyn_cast<CallExpr>(Val: E)) |
141 | return getAllocSizeAttr(CE) ? CE : nullptr; |
142 | return nullptr; |
143 | } |
144 | |
145 | /// Determines whether or not the given Base contains a call to a function |
146 | /// with the alloc_size attribute. |
147 | static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) { |
148 | const auto *E = Base.dyn_cast<const Expr *>(); |
149 | return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E); |
150 | } |
151 | |
152 | /// Determines whether the given kind of constant expression is only ever |
153 | /// used for name mangling. If so, it's permitted to reference things that we |
154 | /// can't generate code for (in particular, dllimported functions). |
155 | static bool isForManglingOnly(ConstantExprKind Kind) { |
156 | switch (Kind) { |
157 | case ConstantExprKind::Normal: |
158 | case ConstantExprKind::ClassTemplateArgument: |
159 | case ConstantExprKind::ImmediateInvocation: |
160 | // Note that non-type template arguments of class type are emitted as |
161 | // template parameter objects. |
162 | return false; |
163 | |
164 | case ConstantExprKind::NonClassTemplateArgument: |
165 | return true; |
166 | } |
167 | llvm_unreachable("unknown ConstantExprKind" ); |
168 | } |
169 | |
170 | static bool isTemplateArgument(ConstantExprKind Kind) { |
171 | switch (Kind) { |
172 | case ConstantExprKind::Normal: |
173 | case ConstantExprKind::ImmediateInvocation: |
174 | return false; |
175 | |
176 | case ConstantExprKind::ClassTemplateArgument: |
177 | case ConstantExprKind::NonClassTemplateArgument: |
178 | return true; |
179 | } |
180 | llvm_unreachable("unknown ConstantExprKind" ); |
181 | } |
182 | |
183 | /// The bound to claim that an array of unknown bound has. |
184 | /// The value in MostDerivedArraySize is undefined in this case. So, set it |
185 | /// to an arbitrary value that's likely to loudly break things if it's used. |
186 | static const uint64_t AssumedSizeForUnsizedArray = |
187 | std::numeric_limits<uint64_t>::max() / 2; |
188 | |
189 | /// Determines if an LValue with the given LValueBase will have an unsized |
190 | /// array in its designator. |
191 | /// Find the path length and type of the most-derived subobject in the given |
192 | /// path, and find the size of the containing array, if any. |
193 | static unsigned |
194 | findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base, |
195 | ArrayRef<APValue::LValuePathEntry> Path, |
196 | uint64_t &ArraySize, QualType &Type, bool &IsArray, |
197 | bool &FirstEntryIsUnsizedArray) { |
198 | // This only accepts LValueBases from APValues, and APValues don't support |
199 | // arrays that lack size info. |
200 | assert(!isBaseAnAllocSizeCall(Base) && |
201 | "Unsized arrays shouldn't appear here" ); |
202 | unsigned MostDerivedLength = 0; |
203 | Type = getType(B: Base); |
204 | |
205 | for (unsigned I = 0, N = Path.size(); I != N; ++I) { |
206 | if (Type->isArrayType()) { |
207 | const ArrayType *AT = Ctx.getAsArrayType(T: Type); |
208 | Type = AT->getElementType(); |
209 | MostDerivedLength = I + 1; |
210 | IsArray = true; |
211 | |
212 | if (auto *CAT = dyn_cast<ConstantArrayType>(Val: AT)) { |
213 | ArraySize = CAT->getZExtSize(); |
214 | } else { |
215 | assert(I == 0 && "unexpected unsized array designator" ); |
216 | FirstEntryIsUnsizedArray = true; |
217 | ArraySize = AssumedSizeForUnsizedArray; |
218 | } |
219 | } else if (Type->isAnyComplexType()) { |
220 | const ComplexType *CT = Type->castAs<ComplexType>(); |
221 | Type = CT->getElementType(); |
222 | ArraySize = 2; |
223 | MostDerivedLength = I + 1; |
224 | IsArray = true; |
225 | } else if (const FieldDecl *FD = getAsField(E: Path[I])) { |
226 | Type = FD->getType(); |
227 | ArraySize = 0; |
228 | MostDerivedLength = I + 1; |
229 | IsArray = false; |
230 | } else { |
231 | // Path[I] describes a base class. |
232 | ArraySize = 0; |
233 | IsArray = false; |
234 | } |
235 | } |
236 | return MostDerivedLength; |
237 | } |
238 | |
239 | /// A path from a glvalue to a subobject of that glvalue. |
240 | struct SubobjectDesignator { |
241 | /// True if the subobject was named in a manner not supported by C++11. Such |
242 | /// lvalues can still be folded, but they are not core constant expressions |
243 | /// and we cannot perform lvalue-to-rvalue conversions on them. |
244 | LLVM_PREFERRED_TYPE(bool) |
245 | unsigned Invalid : 1; |
246 | |
247 | /// Is this a pointer one past the end of an object? |
248 | LLVM_PREFERRED_TYPE(bool) |
249 | unsigned IsOnePastTheEnd : 1; |
250 | |
251 | /// Indicator of whether the first entry is an unsized array. |
252 | LLVM_PREFERRED_TYPE(bool) |
253 | unsigned FirstEntryIsAnUnsizedArray : 1; |
254 | |
255 | /// Indicator of whether the most-derived object is an array element. |
256 | LLVM_PREFERRED_TYPE(bool) |
257 | unsigned MostDerivedIsArrayElement : 1; |
258 | |
259 | /// The length of the path to the most-derived object of which this is a |
260 | /// subobject. |
261 | unsigned MostDerivedPathLength : 28; |
262 | |
263 | /// The size of the array of which the most-derived object is an element. |
264 | /// This will always be 0 if the most-derived object is not an array |
265 | /// element. 0 is not an indicator of whether or not the most-derived object |
266 | /// is an array, however, because 0-length arrays are allowed. |
267 | /// |
268 | /// If the current array is an unsized array, the value of this is |
269 | /// undefined. |
270 | uint64_t MostDerivedArraySize; |
271 | |
272 | /// The type of the most derived object referred to by this address. |
273 | QualType MostDerivedType; |
274 | |
275 | typedef APValue::LValuePathEntry PathEntry; |
276 | |
277 | /// The entries on the path from the glvalue to the designated subobject. |
278 | SmallVector<PathEntry, 8> Entries; |
279 | |
280 | SubobjectDesignator() : Invalid(true) {} |
281 | |
282 | explicit SubobjectDesignator(QualType T) |
283 | : Invalid(false), IsOnePastTheEnd(false), |
284 | FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), |
285 | MostDerivedPathLength(0), MostDerivedArraySize(0), |
286 | MostDerivedType(T) {} |
287 | |
288 | SubobjectDesignator(ASTContext &Ctx, const APValue &V) |
289 | : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false), |
290 | FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), |
291 | MostDerivedPathLength(0), MostDerivedArraySize(0) { |
292 | assert(V.isLValue() && "Non-LValue used to make an LValue designator?" ); |
293 | if (!Invalid) { |
294 | IsOnePastTheEnd = V.isLValueOnePastTheEnd(); |
295 | ArrayRef<PathEntry> VEntries = V.getLValuePath(); |
296 | Entries.insert(I: Entries.end(), From: VEntries.begin(), To: VEntries.end()); |
297 | if (V.getLValueBase()) { |
298 | bool IsArray = false; |
299 | bool FirstIsUnsizedArray = false; |
300 | MostDerivedPathLength = findMostDerivedSubobject( |
301 | Ctx, Base: V.getLValueBase(), Path: V.getLValuePath(), ArraySize&: MostDerivedArraySize, |
302 | Type&: MostDerivedType, IsArray, FirstEntryIsUnsizedArray&: FirstIsUnsizedArray); |
303 | MostDerivedIsArrayElement = IsArray; |
304 | FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; |
305 | } |
306 | } |
307 | } |
308 | |
309 | void truncate(ASTContext &Ctx, APValue::LValueBase Base, |
310 | unsigned NewLength) { |
311 | if (Invalid) |
312 | return; |
313 | |
314 | assert(Base && "cannot truncate path for null pointer" ); |
315 | assert(NewLength <= Entries.size() && "not a truncation" ); |
316 | |
317 | if (NewLength == Entries.size()) |
318 | return; |
319 | Entries.resize(N: NewLength); |
320 | |
321 | bool IsArray = false; |
322 | bool FirstIsUnsizedArray = false; |
323 | MostDerivedPathLength = findMostDerivedSubobject( |
324 | Ctx, Base, Path: Entries, ArraySize&: MostDerivedArraySize, Type&: MostDerivedType, IsArray, |
325 | FirstEntryIsUnsizedArray&: FirstIsUnsizedArray); |
326 | MostDerivedIsArrayElement = IsArray; |
327 | FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; |
328 | } |
329 | |
330 | void setInvalid() { |
331 | Invalid = true; |
332 | Entries.clear(); |
333 | } |
334 | |
335 | /// Determine whether the most derived subobject is an array without a |
336 | /// known bound. |
337 | bool isMostDerivedAnUnsizedArray() const { |
338 | assert(!Invalid && "Calling this makes no sense on invalid designators" ); |
339 | return Entries.size() == 1 && FirstEntryIsAnUnsizedArray; |
340 | } |
341 | |
342 | /// Determine what the most derived array's size is. Results in an assertion |
343 | /// failure if the most derived array lacks a size. |
344 | uint64_t getMostDerivedArraySize() const { |
345 | assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size" ); |
346 | return MostDerivedArraySize; |
347 | } |
348 | |
349 | /// Determine whether this is a one-past-the-end pointer. |
350 | bool isOnePastTheEnd() const { |
351 | assert(!Invalid); |
352 | if (IsOnePastTheEnd) |
353 | return true; |
354 | if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement && |
355 | Entries[MostDerivedPathLength - 1].getAsArrayIndex() == |
356 | MostDerivedArraySize) |
357 | return true; |
358 | return false; |
359 | } |
360 | |
361 | /// Get the range of valid index adjustments in the form |
362 | /// {maximum value that can be subtracted from this pointer, |
363 | /// maximum value that can be added to this pointer} |
364 | std::pair<uint64_t, uint64_t> validIndexAdjustments() { |
365 | if (Invalid || isMostDerivedAnUnsizedArray()) |
366 | return {0, 0}; |
367 | |
368 | // [expr.add]p4: For the purposes of these operators, a pointer to a |
369 | // nonarray object behaves the same as a pointer to the first element of |
370 | // an array of length one with the type of the object as its element type. |
371 | bool IsArray = MostDerivedPathLength == Entries.size() && |
372 | MostDerivedIsArrayElement; |
373 | uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() |
374 | : (uint64_t)IsOnePastTheEnd; |
375 | uint64_t ArraySize = |
376 | IsArray ? getMostDerivedArraySize() : (uint64_t)1; |
377 | return {ArrayIndex, ArraySize - ArrayIndex}; |
378 | } |
379 | |
380 | /// Check that this refers to a valid subobject. |
381 | bool isValidSubobject() const { |
382 | if (Invalid) |
383 | return false; |
384 | return !isOnePastTheEnd(); |
385 | } |
386 | /// Check that this refers to a valid subobject, and if not, produce a |
387 | /// relevant diagnostic and set the designator as invalid. |
388 | bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK); |
389 | |
390 | /// Get the type of the designated object. |
391 | QualType getType(ASTContext &Ctx) const { |
392 | assert(!Invalid && "invalid designator has no subobject type" ); |
393 | return MostDerivedPathLength == Entries.size() |
394 | ? MostDerivedType |
395 | : Ctx.getRecordType(Decl: getAsBaseClass(E: Entries.back())); |
396 | } |
397 | |
398 | /// Update this designator to refer to the first element within this array. |
399 | void addArrayUnchecked(const ConstantArrayType *CAT) { |
400 | Entries.push_back(Elt: PathEntry::ArrayIndex(Index: 0)); |
401 | |
402 | // This is a most-derived object. |
403 | MostDerivedType = CAT->getElementType(); |
404 | MostDerivedIsArrayElement = true; |
405 | MostDerivedArraySize = CAT->getZExtSize(); |
406 | MostDerivedPathLength = Entries.size(); |
407 | } |
408 | /// Update this designator to refer to the first element within the array of |
409 | /// elements of type T. This is an array of unknown size. |
410 | void addUnsizedArrayUnchecked(QualType ElemTy) { |
411 | Entries.push_back(Elt: PathEntry::ArrayIndex(Index: 0)); |
412 | |
413 | MostDerivedType = ElemTy; |
414 | MostDerivedIsArrayElement = true; |
415 | // The value in MostDerivedArraySize is undefined in this case. So, set it |
416 | // to an arbitrary value that's likely to loudly break things if it's |
417 | // used. |
418 | MostDerivedArraySize = AssumedSizeForUnsizedArray; |
419 | MostDerivedPathLength = Entries.size(); |
420 | } |
421 | /// Update this designator to refer to the given base or member of this |
422 | /// object. |
423 | void addDeclUnchecked(const Decl *D, bool Virtual = false) { |
424 | Entries.push_back(Elt: APValue::BaseOrMemberType(D, Virtual)); |
425 | |
426 | // If this isn't a base class, it's a new most-derived object. |
427 | if (const FieldDecl *FD = dyn_cast<FieldDecl>(Val: D)) { |
428 | MostDerivedType = FD->getType(); |
429 | MostDerivedIsArrayElement = false; |
430 | MostDerivedArraySize = 0; |
431 | MostDerivedPathLength = Entries.size(); |
432 | } |
433 | } |
434 | /// Update this designator to refer to the given complex component. |
435 | void addComplexUnchecked(QualType EltTy, bool Imag) { |
436 | Entries.push_back(Elt: PathEntry::ArrayIndex(Index: Imag)); |
437 | |
438 | // This is technically a most-derived object, though in practice this |
439 | // is unlikely to matter. |
440 | MostDerivedType = EltTy; |
441 | MostDerivedIsArrayElement = true; |
442 | MostDerivedArraySize = 2; |
443 | MostDerivedPathLength = Entries.size(); |
444 | } |
445 | void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E); |
446 | void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, |
447 | const APSInt &N); |
448 | /// Add N to the address of this subobject. |
449 | void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) { |
450 | if (Invalid || !N) return; |
451 | uint64_t TruncatedN = N.extOrTrunc(width: 64).getZExtValue(); |
452 | if (isMostDerivedAnUnsizedArray()) { |
453 | diagnoseUnsizedArrayPointerArithmetic(Info, E); |
454 | // Can't verify -- trust that the user is doing the right thing (or if |
455 | // not, trust that the caller will catch the bad behavior). |
456 | // FIXME: Should we reject if this overflows, at least? |
457 | Entries.back() = PathEntry::ArrayIndex( |
458 | Index: Entries.back().getAsArrayIndex() + TruncatedN); |
459 | return; |
460 | } |
461 | |
462 | // [expr.add]p4: For the purposes of these operators, a pointer to a |
463 | // nonarray object behaves the same as a pointer to the first element of |
464 | // an array of length one with the type of the object as its element type. |
465 | bool IsArray = MostDerivedPathLength == Entries.size() && |
466 | MostDerivedIsArrayElement; |
467 | uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() |
468 | : (uint64_t)IsOnePastTheEnd; |
469 | uint64_t ArraySize = |
470 | IsArray ? getMostDerivedArraySize() : (uint64_t)1; |
471 | |
472 | if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) { |
473 | // Calculate the actual index in a wide enough type, so we can include |
474 | // it in the note. |
475 | N = N.extend(width: std::max<unsigned>(a: N.getBitWidth() + 1, b: 65)); |
476 | (llvm::APInt&)N += ArrayIndex; |
477 | assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index" ); |
478 | diagnosePointerArithmetic(Info, E, N); |
479 | setInvalid(); |
480 | return; |
481 | } |
482 | |
483 | ArrayIndex += TruncatedN; |
484 | assert(ArrayIndex <= ArraySize && |
485 | "bounds check succeeded for out-of-bounds index" ); |
486 | |
487 | if (IsArray) |
488 | Entries.back() = PathEntry::ArrayIndex(Index: ArrayIndex); |
489 | else |
490 | IsOnePastTheEnd = (ArrayIndex != 0); |
491 | } |
492 | }; |
493 | |
494 | /// A scope at the end of which an object can need to be destroyed. |
495 | enum class ScopeKind { |
496 | Block, |
497 | FullExpression, |
498 | Call |
499 | }; |
500 | |
501 | /// A reference to a particular call and its arguments. |
502 | struct CallRef { |
503 | CallRef() : OrigCallee(), CallIndex(0), Version() {} |
504 | CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version) |
505 | : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {} |
506 | |
507 | explicit operator bool() const { return OrigCallee; } |
508 | |
509 | /// Get the parameter that the caller initialized, corresponding to the |
510 | /// given parameter in the callee. |
511 | const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const { |
512 | return OrigCallee ? OrigCallee->getParamDecl(i: PVD->getFunctionScopeIndex()) |
513 | : PVD; |
514 | } |
515 | |
516 | /// The callee at the point where the arguments were evaluated. This might |
517 | /// be different from the actual callee (a different redeclaration, or a |
518 | /// virtual override), but this function's parameters are the ones that |
519 | /// appear in the parameter map. |
520 | const FunctionDecl *OrigCallee; |
521 | /// The call index of the frame that holds the argument values. |
522 | unsigned CallIndex; |
523 | /// The version of the parameters corresponding to this call. |
524 | unsigned Version; |
525 | }; |
526 | |
527 | /// A stack frame in the constexpr call stack. |
528 | class CallStackFrame : public interp::Frame { |
529 | public: |
530 | EvalInfo &Info; |
531 | |
532 | /// Parent - The caller of this stack frame. |
533 | CallStackFrame *Caller; |
534 | |
535 | /// Callee - The function which was called. |
536 | const FunctionDecl *Callee; |
537 | |
538 | /// This - The binding for the this pointer in this call, if any. |
539 | const LValue *This; |
540 | |
541 | /// CallExpr - The syntactical structure of member function calls |
542 | const Expr *CallExpr; |
543 | |
544 | /// Information on how to find the arguments to this call. Our arguments |
545 | /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a |
546 | /// key and this value as the version. |
547 | CallRef Arguments; |
548 | |
549 | /// Source location information about the default argument or default |
550 | /// initializer expression we're evaluating, if any. |
551 | CurrentSourceLocExprScope CurSourceLocExprScope; |
552 | |
553 | // Note that we intentionally use std::map here so that references to |
554 | // values are stable. |
555 | typedef std::pair<const void *, unsigned> MapKeyTy; |
556 | typedef std::map<MapKeyTy, APValue> MapTy; |
557 | /// Temporaries - Temporary lvalues materialized within this stack frame. |
558 | MapTy Temporaries; |
559 | |
560 | /// CallRange - The source range of the call expression for this call. |
561 | SourceRange CallRange; |
562 | |
563 | /// Index - The call index of this call. |
564 | unsigned Index; |
565 | |
566 | /// The stack of integers for tracking version numbers for temporaries. |
567 | SmallVector<unsigned, 2> TempVersionStack = {1}; |
568 | unsigned CurTempVersion = TempVersionStack.back(); |
569 | |
570 | unsigned getTempVersion() const { return TempVersionStack.back(); } |
571 | |
572 | void pushTempVersion() { |
573 | TempVersionStack.push_back(Elt: ++CurTempVersion); |
574 | } |
575 | |
576 | void popTempVersion() { |
577 | TempVersionStack.pop_back(); |
578 | } |
579 | |
580 | CallRef createCall(const FunctionDecl *Callee) { |
581 | return {Callee, Index, ++CurTempVersion}; |
582 | } |
583 | |
584 | // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact |
585 | // on the overall stack usage of deeply-recursing constexpr evaluations. |
586 | // (We should cache this map rather than recomputing it repeatedly.) |
587 | // But let's try this and see how it goes; we can look into caching the map |
588 | // as a later change. |
589 | |
590 | /// LambdaCaptureFields - Mapping from captured variables/this to |
591 | /// corresponding data members in the closure class. |
592 | llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; |
593 | FieldDecl *LambdaThisCaptureField = nullptr; |
594 | |
595 | CallStackFrame(EvalInfo &Info, SourceRange CallRange, |
596 | const FunctionDecl *Callee, const LValue *This, |
597 | const Expr *CallExpr, CallRef Arguments); |
598 | ~CallStackFrame(); |
599 | |
600 | // Return the temporary for Key whose version number is Version. |
601 | APValue *getTemporary(const void *Key, unsigned Version) { |
602 | MapKeyTy KV(Key, Version); |
603 | auto LB = Temporaries.lower_bound(x: KV); |
604 | if (LB != Temporaries.end() && LB->first == KV) |
605 | return &LB->second; |
606 | return nullptr; |
607 | } |
608 | |
609 | // Return the current temporary for Key in the map. |
610 | APValue *getCurrentTemporary(const void *Key) { |
611 | auto UB = Temporaries.upper_bound(x: MapKeyTy(Key, UINT_MAX)); |
612 | if (UB != Temporaries.begin() && std::prev(x: UB)->first.first == Key) |
613 | return &std::prev(x: UB)->second; |
614 | return nullptr; |
615 | } |
616 | |
617 | // Return the version number of the current temporary for Key. |
618 | unsigned getCurrentTemporaryVersion(const void *Key) const { |
619 | auto UB = Temporaries.upper_bound(x: MapKeyTy(Key, UINT_MAX)); |
620 | if (UB != Temporaries.begin() && std::prev(x: UB)->first.first == Key) |
621 | return std::prev(x: UB)->first.second; |
622 | return 0; |
623 | } |
624 | |
625 | /// Allocate storage for an object of type T in this stack frame. |
626 | /// Populates LV with a handle to the created object. Key identifies |
627 | /// the temporary within the stack frame, and must not be reused without |
628 | /// bumping the temporary version number. |
629 | template<typename KeyT> |
630 | APValue &createTemporary(const KeyT *Key, QualType T, |
631 | ScopeKind Scope, LValue &LV); |
632 | |
633 | /// Allocate storage for a parameter of a function call made in this frame. |
634 | APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV); |
635 | |
636 | void describe(llvm::raw_ostream &OS) const override; |
637 | |
638 | Frame *getCaller() const override { return Caller; } |
639 | SourceRange getCallRange() const override { return CallRange; } |
640 | const FunctionDecl *getCallee() const override { return Callee; } |
641 | |
642 | bool isStdFunction() const { |
643 | for (const DeclContext *DC = Callee; DC; DC = DC->getParent()) |
644 | if (DC->isStdNamespace()) |
645 | return true; |
646 | return false; |
647 | } |
648 | |
649 | /// Whether we're in a context where [[msvc::constexpr]] evaluation is |
650 | /// permitted. See MSConstexprDocs for description of permitted contexts. |
651 | bool CanEvalMSConstexpr = false; |
652 | |
653 | private: |
654 | APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T, |
655 | ScopeKind Scope); |
656 | }; |
657 | |
658 | /// Temporarily override 'this'. |
659 | class ThisOverrideRAII { |
660 | public: |
661 | ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable) |
662 | : Frame(Frame), OldThis(Frame.This) { |
663 | if (Enable) |
664 | Frame.This = NewThis; |
665 | } |
666 | ~ThisOverrideRAII() { |
667 | Frame.This = OldThis; |
668 | } |
669 | private: |
670 | CallStackFrame &Frame; |
671 | const LValue *OldThis; |
672 | }; |
673 | |
674 | // A shorthand time trace scope struct, prints source range, for example |
675 | // {"name":"EvaluateAsRValue","args":{"detail":"<test.cc:8:21, col:25>"}}} |
676 | class ExprTimeTraceScope { |
677 | public: |
678 | ExprTimeTraceScope(const Expr *E, const ASTContext &Ctx, StringRef Name) |
679 | : TimeScope(Name, [E, &Ctx] { |
680 | return E->getSourceRange().printToString(SM: Ctx.getSourceManager()); |
681 | }) {} |
682 | |
683 | private: |
684 | llvm::TimeTraceScope TimeScope; |
685 | }; |
686 | |
687 | /// RAII object used to change the current ability of |
688 | /// [[msvc::constexpr]] evaulation. |
689 | struct { |
690 | CallStackFrame &; |
691 | bool ; |
692 | explicit (CallStackFrame &Frame, bool Value) |
693 | : Frame(Frame), OldValue(Frame.CanEvalMSConstexpr) { |
694 | Frame.CanEvalMSConstexpr = Value; |
695 | } |
696 | |
697 | () { Frame.CanEvalMSConstexpr = OldValue; } |
698 | }; |
699 | } |
700 | |
701 | static bool HandleDestruction(EvalInfo &Info, const Expr *E, |
702 | const LValue &This, QualType ThisType); |
703 | static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, |
704 | APValue::LValueBase LVBase, APValue &Value, |
705 | QualType T); |
706 | |
707 | namespace { |
708 | /// A cleanup, and a flag indicating whether it is lifetime-extended. |
709 | class Cleanup { |
710 | llvm::PointerIntPair<APValue*, 2, ScopeKind> Value; |
711 | APValue::LValueBase Base; |
712 | QualType T; |
713 | |
714 | public: |
715 | Cleanup(APValue *Val, APValue::LValueBase Base, QualType T, |
716 | ScopeKind Scope) |
717 | : Value(Val, Scope), Base(Base), T(T) {} |
718 | |
719 | /// Determine whether this cleanup should be performed at the end of the |
720 | /// given kind of scope. |
721 | bool isDestroyedAtEndOf(ScopeKind K) const { |
722 | return (int)Value.getInt() >= (int)K; |
723 | } |
724 | bool endLifetime(EvalInfo &Info, bool RunDestructors) { |
725 | if (RunDestructors) { |
726 | SourceLocation Loc; |
727 | if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) |
728 | Loc = VD->getLocation(); |
729 | else if (const Expr *E = Base.dyn_cast<const Expr*>()) |
730 | Loc = E->getExprLoc(); |
731 | return HandleDestruction(Info, Loc, LVBase: Base, Value&: *Value.getPointer(), T); |
732 | } |
733 | *Value.getPointer() = APValue(); |
734 | return true; |
735 | } |
736 | |
737 | bool hasSideEffect() { |
738 | return T.isDestructedType(); |
739 | } |
740 | }; |
741 | |
742 | /// A reference to an object whose construction we are currently evaluating. |
743 | struct ObjectUnderConstruction { |
744 | APValue::LValueBase Base; |
745 | ArrayRef<APValue::LValuePathEntry> Path; |
746 | friend bool operator==(const ObjectUnderConstruction &LHS, |
747 | const ObjectUnderConstruction &RHS) { |
748 | return LHS.Base == RHS.Base && LHS.Path == RHS.Path; |
749 | } |
750 | friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) { |
751 | return llvm::hash_combine(args: Obj.Base, args: Obj.Path); |
752 | } |
753 | }; |
754 | enum class ConstructionPhase { |
755 | None, |
756 | Bases, |
757 | AfterBases, |
758 | AfterFields, |
759 | Destroying, |
760 | DestroyingBases |
761 | }; |
762 | } |
763 | |
764 | namespace llvm { |
765 | template<> struct DenseMapInfo<ObjectUnderConstruction> { |
766 | using Base = DenseMapInfo<APValue::LValueBase>; |
767 | static ObjectUnderConstruction getEmptyKey() { |
768 | return {.Base: Base::getEmptyKey(), .Path: {}}; } |
769 | static ObjectUnderConstruction getTombstoneKey() { |
770 | return {.Base: Base::getTombstoneKey(), .Path: {}}; |
771 | } |
772 | static unsigned getHashValue(const ObjectUnderConstruction &Object) { |
773 | return hash_value(Obj: Object); |
774 | } |
775 | static bool isEqual(const ObjectUnderConstruction &LHS, |
776 | const ObjectUnderConstruction &RHS) { |
777 | return LHS == RHS; |
778 | } |
779 | }; |
780 | } |
781 | |
782 | namespace { |
783 | /// A dynamically-allocated heap object. |
784 | struct DynAlloc { |
785 | /// The value of this heap-allocated object. |
786 | APValue Value; |
787 | /// The allocating expression; used for diagnostics. Either a CXXNewExpr |
788 | /// or a CallExpr (the latter is for direct calls to operator new inside |
789 | /// std::allocator<T>::allocate). |
790 | const Expr *AllocExpr = nullptr; |
791 | |
792 | enum Kind { |
793 | New, |
794 | ArrayNew, |
795 | StdAllocator |
796 | }; |
797 | |
798 | /// Get the kind of the allocation. This must match between allocation |
799 | /// and deallocation. |
800 | Kind getKind() const { |
801 | if (auto *NE = dyn_cast<CXXNewExpr>(Val: AllocExpr)) |
802 | return NE->isArray() ? ArrayNew : New; |
803 | assert(isa<CallExpr>(AllocExpr)); |
804 | return StdAllocator; |
805 | } |
806 | }; |
807 | |
808 | struct DynAllocOrder { |
809 | bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const { |
810 | return L.getIndex() < R.getIndex(); |
811 | } |
812 | }; |
813 | |
814 | /// EvalInfo - This is a private struct used by the evaluator to capture |
815 | /// information about a subexpression as it is folded. It retains information |
816 | /// about the AST context, but also maintains information about the folded |
817 | /// expression. |
818 | /// |
819 | /// If an expression could be evaluated, it is still possible it is not a C |
820 | /// "integer constant expression" or constant expression. If not, this struct |
821 | /// captures information about how and why not. |
822 | /// |
823 | /// One bit of information passed *into* the request for constant folding |
824 | /// indicates whether the subexpression is "evaluated" or not according to C |
825 | /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can |
826 | /// evaluate the expression regardless of what the RHS is, but C only allows |
827 | /// certain things in certain situations. |
828 | class EvalInfo : public interp::State { |
829 | public: |
830 | ASTContext &Ctx; |
831 | |
832 | /// EvalStatus - Contains information about the evaluation. |
833 | Expr::EvalStatus &EvalStatus; |
834 | |
835 | /// CurrentCall - The top of the constexpr call stack. |
836 | CallStackFrame *CurrentCall; |
837 | |
838 | /// CallStackDepth - The number of calls in the call stack right now. |
839 | unsigned CallStackDepth; |
840 | |
841 | /// NextCallIndex - The next call index to assign. |
842 | unsigned NextCallIndex; |
843 | |
844 | /// StepsLeft - The remaining number of evaluation steps we're permitted |
845 | /// to perform. This is essentially a limit for the number of statements |
846 | /// we will evaluate. |
847 | unsigned StepsLeft; |
848 | |
849 | /// Enable the experimental new constant interpreter. If an expression is |
850 | /// not supported by the interpreter, an error is triggered. |
851 | bool EnableNewConstInterp; |
852 | |
853 | /// BottomFrame - The frame in which evaluation started. This must be |
854 | /// initialized after CurrentCall and CallStackDepth. |
855 | CallStackFrame BottomFrame; |
856 | |
857 | /// A stack of values whose lifetimes end at the end of some surrounding |
858 | /// evaluation frame. |
859 | llvm::SmallVector<Cleanup, 16> CleanupStack; |
860 | |
861 | /// EvaluatingDecl - This is the declaration whose initializer is being |
862 | /// evaluated, if any. |
863 | APValue::LValueBase EvaluatingDecl; |
864 | |
865 | enum class EvaluatingDeclKind { |
866 | None, |
867 | /// We're evaluating the construction of EvaluatingDecl. |
868 | Ctor, |
869 | /// We're evaluating the destruction of EvaluatingDecl. |
870 | Dtor, |
871 | }; |
872 | EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None; |
873 | |
874 | /// EvaluatingDeclValue - This is the value being constructed for the |
875 | /// declaration whose initializer is being evaluated, if any. |
876 | APValue *EvaluatingDeclValue; |
877 | |
878 | /// Set of objects that are currently being constructed. |
879 | llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase> |
880 | ObjectsUnderConstruction; |
881 | |
882 | /// Current heap allocations, along with the location where each was |
883 | /// allocated. We use std::map here because we need stable addresses |
884 | /// for the stored APValues. |
885 | std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs; |
886 | |
887 | /// The number of heap allocations performed so far in this evaluation. |
888 | unsigned NumHeapAllocs = 0; |
889 | |
890 | struct EvaluatingConstructorRAII { |
891 | EvalInfo &EI; |
892 | ObjectUnderConstruction Object; |
893 | bool DidInsert; |
894 | EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object, |
895 | bool HasBases) |
896 | : EI(EI), Object(Object) { |
897 | DidInsert = |
898 | EI.ObjectsUnderConstruction |
899 | .insert(KV: {Object, HasBases ? ConstructionPhase::Bases |
900 | : ConstructionPhase::AfterBases}) |
901 | .second; |
902 | } |
903 | void finishedConstructingBases() { |
904 | EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases; |
905 | } |
906 | void finishedConstructingFields() { |
907 | EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields; |
908 | } |
909 | ~EvaluatingConstructorRAII() { |
910 | if (DidInsert) EI.ObjectsUnderConstruction.erase(Val: Object); |
911 | } |
912 | }; |
913 | |
914 | struct EvaluatingDestructorRAII { |
915 | EvalInfo &EI; |
916 | ObjectUnderConstruction Object; |
917 | bool DidInsert; |
918 | EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object) |
919 | : EI(EI), Object(Object) { |
920 | DidInsert = EI.ObjectsUnderConstruction |
921 | .insert(KV: {Object, ConstructionPhase::Destroying}) |
922 | .second; |
923 | } |
924 | void startedDestroyingBases() { |
925 | EI.ObjectsUnderConstruction[Object] = |
926 | ConstructionPhase::DestroyingBases; |
927 | } |
928 | ~EvaluatingDestructorRAII() { |
929 | if (DidInsert) |
930 | EI.ObjectsUnderConstruction.erase(Val: Object); |
931 | } |
932 | }; |
933 | |
934 | ConstructionPhase |
935 | isEvaluatingCtorDtor(APValue::LValueBase Base, |
936 | ArrayRef<APValue::LValuePathEntry> Path) { |
937 | return ObjectsUnderConstruction.lookup(Val: {.Base: Base, .Path: Path}); |
938 | } |
939 | |
940 | /// If we're currently speculatively evaluating, the outermost call stack |
941 | /// depth at which we can mutate state, otherwise 0. |
942 | unsigned SpeculativeEvaluationDepth = 0; |
943 | |
944 | /// The current array initialization index, if we're performing array |
945 | /// initialization. |
946 | uint64_t ArrayInitIndex = -1; |
947 | |
948 | /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further |
949 | /// notes attached to it will also be stored, otherwise they will not be. |
950 | bool HasActiveDiagnostic; |
951 | |
952 | /// Have we emitted a diagnostic explaining why we couldn't constant |
953 | /// fold (not just why it's not strictly a constant expression)? |
954 | bool HasFoldFailureDiagnostic; |
955 | |
956 | /// Whether we're checking that an expression is a potential constant |
957 | /// expression. If so, do not fail on constructs that could become constant |
958 | /// later on (such as a use of an undefined global). |
959 | bool CheckingPotentialConstantExpression = false; |
960 | |
961 | /// Whether we're checking for an expression that has undefined behavior. |
962 | /// If so, we will produce warnings if we encounter an operation that is |
963 | /// always undefined. |
964 | /// |
965 | /// Note that we still need to evaluate the expression normally when this |
966 | /// is set; this is used when evaluating ICEs in C. |
967 | bool CheckingForUndefinedBehavior = false; |
968 | |
969 | enum EvaluationMode { |
970 | /// Evaluate as a constant expression. Stop if we find that the expression |
971 | /// is not a constant expression. |
972 | EM_ConstantExpression, |
973 | |
974 | /// Evaluate as a constant expression. Stop if we find that the expression |
975 | /// is not a constant expression. Some expressions can be retried in the |
976 | /// optimizer if we don't constant fold them here, but in an unevaluated |
977 | /// context we try to fold them immediately since the optimizer never |
978 | /// gets a chance to look at it. |
979 | EM_ConstantExpressionUnevaluated, |
980 | |
981 | /// Fold the expression to a constant. Stop if we hit a side-effect that |
982 | /// we can't model. |
983 | EM_ConstantFold, |
984 | |
985 | /// Evaluate in any way we know how. Don't worry about side-effects that |
986 | /// can't be modeled. |
987 | EM_IgnoreSideEffects, |
988 | } EvalMode; |
989 | |
990 | /// Are we checking whether the expression is a potential constant |
991 | /// expression? |
992 | bool checkingPotentialConstantExpression() const override { |
993 | return CheckingPotentialConstantExpression; |
994 | } |
995 | |
996 | /// Are we checking an expression for overflow? |
997 | // FIXME: We should check for any kind of undefined or suspicious behavior |
998 | // in such constructs, not just overflow. |
999 | bool checkingForUndefinedBehavior() const override { |
1000 | return CheckingForUndefinedBehavior; |
1001 | } |
1002 | |
1003 | EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode) |
1004 | : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr), |
1005 | CallStackDepth(0), NextCallIndex(1), |
1006 | StepsLeft(C.getLangOpts().ConstexprStepLimit), |
1007 | EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp), |
1008 | BottomFrame(*this, SourceLocation(), /*Callee=*/nullptr, |
1009 | /*This=*/nullptr, |
1010 | /*CallExpr=*/nullptr, CallRef()), |
1011 | EvaluatingDecl((const ValueDecl *)nullptr), |
1012 | EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false), |
1013 | HasFoldFailureDiagnostic(false), EvalMode(Mode) {} |
1014 | |
1015 | ~EvalInfo() { |
1016 | discardCleanups(); |
1017 | } |
1018 | |
1019 | ASTContext &getCtx() const override { return Ctx; } |
1020 | |
1021 | void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value, |
1022 | EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) { |
1023 | EvaluatingDecl = Base; |
1024 | IsEvaluatingDecl = EDK; |
1025 | EvaluatingDeclValue = &Value; |
1026 | } |
1027 | |
1028 | bool CheckCallLimit(SourceLocation Loc) { |
1029 | // Don't perform any constexpr calls (other than the call we're checking) |
1030 | // when checking a potential constant expression. |
1031 | if (checkingPotentialConstantExpression() && CallStackDepth > 1) |
1032 | return false; |
1033 | if (NextCallIndex == 0) { |
1034 | // NextCallIndex has wrapped around. |
1035 | FFDiag(Loc, DiagId: diag::note_constexpr_call_limit_exceeded); |
1036 | return false; |
1037 | } |
1038 | if (CallStackDepth <= getLangOpts().ConstexprCallDepth) |
1039 | return true; |
1040 | FFDiag(Loc, DiagId: diag::note_constexpr_depth_limit_exceeded) |
1041 | << getLangOpts().ConstexprCallDepth; |
1042 | return false; |
1043 | } |
1044 | |
1045 | bool CheckArraySize(SourceLocation Loc, unsigned BitWidth, |
1046 | uint64_t ElemCount, bool Diag) { |
1047 | // FIXME: GH63562 |
1048 | // APValue stores array extents as unsigned, |
1049 | // so anything that is greater that unsigned would overflow when |
1050 | // constructing the array, we catch this here. |
1051 | if (BitWidth > ConstantArrayType::getMaxSizeBits(Context: Ctx) || |
1052 | ElemCount > uint64_t(std::numeric_limits<unsigned>::max())) { |
1053 | if (Diag) |
1054 | FFDiag(Loc, DiagId: diag::note_constexpr_new_too_large) << ElemCount; |
1055 | return false; |
1056 | } |
1057 | |
1058 | // FIXME: GH63562 |
1059 | // Arrays allocate an APValue per element. |
1060 | // We use the number of constexpr steps as a proxy for the maximum size |
1061 | // of arrays to avoid exhausting the system resources, as initialization |
1062 | // of each element is likely to take some number of steps anyway. |
1063 | uint64_t Limit = Ctx.getLangOpts().ConstexprStepLimit; |
1064 | if (ElemCount > Limit) { |
1065 | if (Diag) |
1066 | FFDiag(Loc, DiagId: diag::note_constexpr_new_exceeds_limits) |
1067 | << ElemCount << Limit; |
1068 | return false; |
1069 | } |
1070 | return true; |
1071 | } |
1072 | |
1073 | std::pair<CallStackFrame *, unsigned> |
1074 | getCallFrameAndDepth(unsigned CallIndex) { |
1075 | assert(CallIndex && "no call index in getCallFrameAndDepth" ); |
1076 | // We will eventually hit BottomFrame, which has Index 1, so Frame can't |
1077 | // be null in this loop. |
1078 | unsigned Depth = CallStackDepth; |
1079 | CallStackFrame *Frame = CurrentCall; |
1080 | while (Frame->Index > CallIndex) { |
1081 | Frame = Frame->Caller; |
1082 | --Depth; |
1083 | } |
1084 | if (Frame->Index == CallIndex) |
1085 | return {Frame, Depth}; |
1086 | return {nullptr, 0}; |
1087 | } |
1088 | |
1089 | bool nextStep(const Stmt *S) { |
1090 | if (!StepsLeft) { |
1091 | FFDiag(Loc: S->getBeginLoc(), DiagId: diag::note_constexpr_step_limit_exceeded); |
1092 | return false; |
1093 | } |
1094 | --StepsLeft; |
1095 | return true; |
1096 | } |
1097 | |
1098 | APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV); |
1099 | |
1100 | std::optional<DynAlloc *> lookupDynamicAlloc(DynamicAllocLValue DA) { |
1101 | std::optional<DynAlloc *> Result; |
1102 | auto It = HeapAllocs.find(x: DA); |
1103 | if (It != HeapAllocs.end()) |
1104 | Result = &It->second; |
1105 | return Result; |
1106 | } |
1107 | |
1108 | /// Get the allocated storage for the given parameter of the given call. |
1109 | APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) { |
1110 | CallStackFrame *Frame = getCallFrameAndDepth(CallIndex: Call.CallIndex).first; |
1111 | return Frame ? Frame->getTemporary(Key: Call.getOrigParam(PVD), Version: Call.Version) |
1112 | : nullptr; |
1113 | } |
1114 | |
1115 | /// Information about a stack frame for std::allocator<T>::[de]allocate. |
1116 | struct StdAllocatorCaller { |
1117 | unsigned FrameIndex; |
1118 | QualType ElemType; |
1119 | explicit operator bool() const { return FrameIndex != 0; }; |
1120 | }; |
1121 | |
1122 | StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const { |
1123 | for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame; |
1124 | Call = Call->Caller) { |
1125 | const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Val: Call->Callee); |
1126 | if (!MD) |
1127 | continue; |
1128 | const IdentifierInfo *FnII = MD->getIdentifier(); |
1129 | if (!FnII || !FnII->isStr(Str: FnName)) |
1130 | continue; |
1131 | |
1132 | const auto *CTSD = |
1133 | dyn_cast<ClassTemplateSpecializationDecl>(Val: MD->getParent()); |
1134 | if (!CTSD) |
1135 | continue; |
1136 | |
1137 | const IdentifierInfo *ClassII = CTSD->getIdentifier(); |
1138 | const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); |
1139 | if (CTSD->isInStdNamespace() && ClassII && |
1140 | ClassII->isStr(Str: "allocator" ) && TAL.size() >= 1 && |
1141 | TAL[0].getKind() == TemplateArgument::Type) |
1142 | return {.FrameIndex: Call->Index, .ElemType: TAL[0].getAsType()}; |
1143 | } |
1144 | |
1145 | return {}; |
1146 | } |
1147 | |
1148 | void performLifetimeExtension() { |
1149 | // Disable the cleanups for lifetime-extended temporaries. |
1150 | llvm::erase_if(C&: CleanupStack, P: [](Cleanup &C) { |
1151 | return !C.isDestroyedAtEndOf(K: ScopeKind::FullExpression); |
1152 | }); |
1153 | } |
1154 | |
1155 | /// Throw away any remaining cleanups at the end of evaluation. If any |
1156 | /// cleanups would have had a side-effect, note that as an unmodeled |
1157 | /// side-effect and return false. Otherwise, return true. |
1158 | bool discardCleanups() { |
1159 | for (Cleanup &C : CleanupStack) { |
1160 | if (C.hasSideEffect() && !noteSideEffect()) { |
1161 | CleanupStack.clear(); |
1162 | return false; |
1163 | } |
1164 | } |
1165 | CleanupStack.clear(); |
1166 | return true; |
1167 | } |
1168 | |
1169 | private: |
1170 | interp::Frame *getCurrentFrame() override { return CurrentCall; } |
1171 | const interp::Frame *getBottomFrame() const override { return &BottomFrame; } |
1172 | |
1173 | bool hasActiveDiagnostic() override { return HasActiveDiagnostic; } |
1174 | void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; } |
1175 | |
1176 | void setFoldFailureDiagnostic(bool Flag) override { |
1177 | HasFoldFailureDiagnostic = Flag; |
1178 | } |
1179 | |
1180 | Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; } |
1181 | |
1182 | // If we have a prior diagnostic, it will be noting that the expression |
1183 | // isn't a constant expression. This diagnostic is more important, |
1184 | // unless we require this evaluation to produce a constant expression. |
1185 | // |
1186 | // FIXME: We might want to show both diagnostics to the user in |
1187 | // EM_ConstantFold mode. |
1188 | bool hasPriorDiagnostic() override { |
1189 | if (!EvalStatus.Diag->empty()) { |
1190 | switch (EvalMode) { |
1191 | case EM_ConstantFold: |
1192 | case EM_IgnoreSideEffects: |
1193 | if (!HasFoldFailureDiagnostic) |
1194 | break; |
1195 | // We've already failed to fold something. Keep that diagnostic. |
1196 | [[fallthrough]]; |
1197 | case EM_ConstantExpression: |
1198 | case EM_ConstantExpressionUnevaluated: |
1199 | setActiveDiagnostic(false); |
1200 | return true; |
1201 | } |
1202 | } |
1203 | return false; |
1204 | } |
1205 | |
1206 | unsigned getCallStackDepth() override { return CallStackDepth; } |
1207 | |
1208 | public: |
1209 | /// Should we continue evaluation after encountering a side-effect that we |
1210 | /// couldn't model? |
1211 | bool keepEvaluatingAfterSideEffect() { |
1212 | switch (EvalMode) { |
1213 | case EM_IgnoreSideEffects: |
1214 | return true; |
1215 | |
1216 | case EM_ConstantExpression: |
1217 | case EM_ConstantExpressionUnevaluated: |
1218 | case EM_ConstantFold: |
1219 | // By default, assume any side effect might be valid in some other |
1220 | // evaluation of this expression from a different context. |
1221 | return checkingPotentialConstantExpression() || |
1222 | checkingForUndefinedBehavior(); |
1223 | } |
1224 | llvm_unreachable("Missed EvalMode case" ); |
1225 | } |
1226 | |
1227 | /// Note that we have had a side-effect, and determine whether we should |
1228 | /// keep evaluating. |
1229 | bool noteSideEffect() { |
1230 | EvalStatus.HasSideEffects = true; |
1231 | return keepEvaluatingAfterSideEffect(); |
1232 | } |
1233 | |
1234 | /// Should we continue evaluation after encountering undefined behavior? |
1235 | bool keepEvaluatingAfterUndefinedBehavior() { |
1236 | switch (EvalMode) { |
1237 | case EM_IgnoreSideEffects: |
1238 | case EM_ConstantFold: |
1239 | return true; |
1240 | |
1241 | case EM_ConstantExpression: |
1242 | case EM_ConstantExpressionUnevaluated: |
1243 | return checkingForUndefinedBehavior(); |
1244 | } |
1245 | llvm_unreachable("Missed EvalMode case" ); |
1246 | } |
1247 | |
1248 | /// Note that we hit something that was technically undefined behavior, but |
1249 | /// that we can evaluate past it (such as signed overflow or floating-point |
1250 | /// division by zero.) |
1251 | bool noteUndefinedBehavior() override { |
1252 | EvalStatus.HasUndefinedBehavior = true; |
1253 | return keepEvaluatingAfterUndefinedBehavior(); |
1254 | } |
1255 | |
1256 | /// Should we continue evaluation as much as possible after encountering a |
1257 | /// construct which can't be reduced to a value? |
1258 | bool keepEvaluatingAfterFailure() const override { |
1259 | if (!StepsLeft) |
1260 | return false; |
1261 | |
1262 | switch (EvalMode) { |
1263 | case EM_ConstantExpression: |
1264 | case EM_ConstantExpressionUnevaluated: |
1265 | case EM_ConstantFold: |
1266 | case EM_IgnoreSideEffects: |
1267 | return checkingPotentialConstantExpression() || |
1268 | checkingForUndefinedBehavior(); |
1269 | } |
1270 | llvm_unreachable("Missed EvalMode case" ); |
1271 | } |
1272 | |
1273 | /// Notes that we failed to evaluate an expression that other expressions |
1274 | /// directly depend on, and determine if we should keep evaluating. This |
1275 | /// should only be called if we actually intend to keep evaluating. |
1276 | /// |
1277 | /// Call noteSideEffect() instead if we may be able to ignore the value that |
1278 | /// we failed to evaluate, e.g. if we failed to evaluate Foo() in: |
1279 | /// |
1280 | /// (Foo(), 1) // use noteSideEffect |
1281 | /// (Foo() || true) // use noteSideEffect |
1282 | /// Foo() + 1 // use noteFailure |
1283 | [[nodiscard]] bool noteFailure() { |
1284 | // Failure when evaluating some expression often means there is some |
1285 | // subexpression whose evaluation was skipped. Therefore, (because we |
1286 | // don't track whether we skipped an expression when unwinding after an |
1287 | // evaluation failure) every evaluation failure that bubbles up from a |
1288 | // subexpression implies that a side-effect has potentially happened. We |
1289 | // skip setting the HasSideEffects flag to true until we decide to |
1290 | // continue evaluating after that point, which happens here. |
1291 | bool KeepGoing = keepEvaluatingAfterFailure(); |
1292 | EvalStatus.HasSideEffects |= KeepGoing; |
1293 | return KeepGoing; |
1294 | } |
1295 | |
1296 | class ArrayInitLoopIndex { |
1297 | EvalInfo &Info; |
1298 | uint64_t OuterIndex; |
1299 | |
1300 | public: |
1301 | ArrayInitLoopIndex(EvalInfo &Info) |
1302 | : Info(Info), OuterIndex(Info.ArrayInitIndex) { |
1303 | Info.ArrayInitIndex = 0; |
1304 | } |
1305 | ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; } |
1306 | |
1307 | operator uint64_t&() { return Info.ArrayInitIndex; } |
1308 | }; |
1309 | }; |
1310 | |
1311 | /// Object used to treat all foldable expressions as constant expressions. |
1312 | struct FoldConstant { |
1313 | EvalInfo &Info; |
1314 | bool Enabled; |
1315 | bool HadNoPriorDiags; |
1316 | EvalInfo::EvaluationMode OldMode; |
1317 | |
1318 | explicit FoldConstant(EvalInfo &Info, bool Enabled) |
1319 | : Info(Info), |
1320 | Enabled(Enabled), |
1321 | HadNoPriorDiags(Info.EvalStatus.Diag && |
1322 | Info.EvalStatus.Diag->empty() && |
1323 | !Info.EvalStatus.HasSideEffects), |
1324 | OldMode(Info.EvalMode) { |
1325 | if (Enabled) |
1326 | Info.EvalMode = EvalInfo::EM_ConstantFold; |
1327 | } |
1328 | void keepDiagnostics() { Enabled = false; } |
1329 | ~FoldConstant() { |
1330 | if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() && |
1331 | !Info.EvalStatus.HasSideEffects) |
1332 | Info.EvalStatus.Diag->clear(); |
1333 | Info.EvalMode = OldMode; |
1334 | } |
1335 | }; |
1336 | |
1337 | /// RAII object used to set the current evaluation mode to ignore |
1338 | /// side-effects. |
1339 | struct IgnoreSideEffectsRAII { |
1340 | EvalInfo &Info; |
1341 | EvalInfo::EvaluationMode OldMode; |
1342 | explicit IgnoreSideEffectsRAII(EvalInfo &Info) |
1343 | : Info(Info), OldMode(Info.EvalMode) { |
1344 | Info.EvalMode = EvalInfo::EM_IgnoreSideEffects; |
1345 | } |
1346 | |
1347 | ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; } |
1348 | }; |
1349 | |
1350 | /// RAII object used to optionally suppress diagnostics and side-effects from |
1351 | /// a speculative evaluation. |
1352 | class SpeculativeEvaluationRAII { |
1353 | EvalInfo *Info = nullptr; |
1354 | Expr::EvalStatus OldStatus; |
1355 | unsigned OldSpeculativeEvaluationDepth = 0; |
1356 | |
1357 | void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) { |
1358 | Info = Other.Info; |
1359 | OldStatus = Other.OldStatus; |
1360 | OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth; |
1361 | Other.Info = nullptr; |
1362 | } |
1363 | |
1364 | void maybeRestoreState() { |
1365 | if (!Info) |
1366 | return; |
1367 | |
1368 | Info->EvalStatus = OldStatus; |
1369 | Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth; |
1370 | } |
1371 | |
1372 | public: |
1373 | SpeculativeEvaluationRAII() = default; |
1374 | |
1375 | SpeculativeEvaluationRAII( |
1376 | EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr) |
1377 | : Info(&Info), OldStatus(Info.EvalStatus), |
1378 | OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) { |
1379 | Info.EvalStatus.Diag = NewDiag; |
1380 | Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1; |
1381 | } |
1382 | |
1383 | SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete; |
1384 | SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) { |
1385 | moveFromAndCancel(Other: std::move(Other)); |
1386 | } |
1387 | |
1388 | SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) { |
1389 | maybeRestoreState(); |
1390 | moveFromAndCancel(Other: std::move(Other)); |
1391 | return *this; |
1392 | } |
1393 | |
1394 | ~SpeculativeEvaluationRAII() { maybeRestoreState(); } |
1395 | }; |
1396 | |
1397 | /// RAII object wrapping a full-expression or block scope, and handling |
1398 | /// the ending of the lifetime of temporaries created within it. |
1399 | template<ScopeKind Kind> |
1400 | class ScopeRAII { |
1401 | EvalInfo &Info; |
1402 | unsigned OldStackSize; |
1403 | public: |
1404 | ScopeRAII(EvalInfo &Info) |
1405 | : Info(Info), OldStackSize(Info.CleanupStack.size()) { |
1406 | // Push a new temporary version. This is needed to distinguish between |
1407 | // temporaries created in different iterations of a loop. |
1408 | Info.CurrentCall->pushTempVersion(); |
1409 | } |
1410 | bool destroy(bool RunDestructors = true) { |
1411 | bool OK = cleanup(Info, RunDestructors, OldStackSize); |
1412 | OldStackSize = -1U; |
1413 | return OK; |
1414 | } |
1415 | ~ScopeRAII() { |
1416 | if (OldStackSize != -1U) |
1417 | destroy(RunDestructors: false); |
1418 | // Body moved to a static method to encourage the compiler to inline away |
1419 | // instances of this class. |
1420 | Info.CurrentCall->popTempVersion(); |
1421 | } |
1422 | private: |
1423 | static bool cleanup(EvalInfo &Info, bool RunDestructors, |
1424 | unsigned OldStackSize) { |
1425 | assert(OldStackSize <= Info.CleanupStack.size() && |
1426 | "running cleanups out of order?" ); |
1427 | |
1428 | // Run all cleanups for a block scope, and non-lifetime-extended cleanups |
1429 | // for a full-expression scope. |
1430 | bool Success = true; |
1431 | for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) { |
1432 | if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(K: Kind)) { |
1433 | if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) { |
1434 | Success = false; |
1435 | break; |
1436 | } |
1437 | } |
1438 | } |
1439 | |
1440 | // Compact any retained cleanups. |
1441 | auto NewEnd = Info.CleanupStack.begin() + OldStackSize; |
1442 | if (Kind != ScopeKind::Block) |
1443 | NewEnd = |
1444 | std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) { |
1445 | return C.isDestroyedAtEndOf(K: Kind); |
1446 | }); |
1447 | Info.CleanupStack.erase(CS: NewEnd, CE: Info.CleanupStack.end()); |
1448 | return Success; |
1449 | } |
1450 | }; |
1451 | typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII; |
1452 | typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII; |
1453 | typedef ScopeRAII<ScopeKind::Call> CallScopeRAII; |
1454 | } |
1455 | |
1456 | bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E, |
1457 | CheckSubobjectKind CSK) { |
1458 | if (Invalid) |
1459 | return false; |
1460 | if (isOnePastTheEnd()) { |
1461 | Info.CCEDiag(E, DiagId: diag::note_constexpr_past_end_subobject) |
1462 | << CSK; |
1463 | setInvalid(); |
1464 | return false; |
1465 | } |
1466 | // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there |
1467 | // must actually be at least one array element; even a VLA cannot have a |
1468 | // bound of zero. And if our index is nonzero, we already had a CCEDiag. |
1469 | return true; |
1470 | } |
1471 | |
1472 | void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, |
1473 | const Expr *E) { |
1474 | Info.CCEDiag(E, DiagId: diag::note_constexpr_unsized_array_indexed); |
1475 | // Do not set the designator as invalid: we can represent this situation, |
1476 | // and correct handling of __builtin_object_size requires us to do so. |
1477 | } |
1478 | |
1479 | void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info, |
1480 | const Expr *E, |
1481 | const APSInt &N) { |
1482 | // If we're complaining, we must be able to statically determine the size of |
1483 | // the most derived array. |
1484 | if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement) |
1485 | Info.CCEDiag(E, DiagId: diag::note_constexpr_array_index) |
1486 | << N << /*array*/ 0 |
1487 | << static_cast<unsigned>(getMostDerivedArraySize()); |
1488 | else |
1489 | Info.CCEDiag(E, DiagId: diag::note_constexpr_array_index) |
1490 | << N << /*non-array*/ 1; |
1491 | setInvalid(); |
1492 | } |
1493 | |
1494 | CallStackFrame::CallStackFrame(EvalInfo &Info, SourceRange CallRange, |
1495 | const FunctionDecl *Callee, const LValue *This, |
1496 | const Expr *CallExpr, CallRef Call) |
1497 | : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This), |
1498 | CallExpr(CallExpr), Arguments(Call), CallRange(CallRange), |
1499 | Index(Info.NextCallIndex++) { |
1500 | Info.CurrentCall = this; |
1501 | ++Info.CallStackDepth; |
1502 | } |
1503 | |
1504 | CallStackFrame::~CallStackFrame() { |
1505 | assert(Info.CurrentCall == this && "calls retired out of order" ); |
1506 | --Info.CallStackDepth; |
1507 | Info.CurrentCall = Caller; |
1508 | } |
1509 | |
1510 | static bool isRead(AccessKinds AK) { |
1511 | return AK == AK_Read || AK == AK_ReadObjectRepresentation; |
1512 | } |
1513 | |
1514 | static bool isModification(AccessKinds AK) { |
1515 | switch (AK) { |
1516 | case AK_Read: |
1517 | case AK_ReadObjectRepresentation: |
1518 | case AK_MemberCall: |
1519 | case AK_DynamicCast: |
1520 | case AK_TypeId: |
1521 | return false; |
1522 | case AK_Assign: |
1523 | case AK_Increment: |
1524 | case AK_Decrement: |
1525 | case AK_Construct: |
1526 | case AK_Destroy: |
1527 | return true; |
1528 | } |
1529 | llvm_unreachable("unknown access kind" ); |
1530 | } |
1531 | |
1532 | static bool isAnyAccess(AccessKinds AK) { |
1533 | return isRead(AK) || isModification(AK); |
1534 | } |
1535 | |
1536 | /// Is this an access per the C++ definition? |
1537 | static bool isFormalAccess(AccessKinds AK) { |
1538 | return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy; |
1539 | } |
1540 | |
1541 | /// Is this kind of axcess valid on an indeterminate object value? |
1542 | static bool isValidIndeterminateAccess(AccessKinds AK) { |
1543 | switch (AK) { |
1544 | case AK_Read: |
1545 | case AK_Increment: |
1546 | case AK_Decrement: |
1547 | // These need the object's value. |
1548 | return false; |
1549 | |
1550 | case AK_ReadObjectRepresentation: |
1551 | case AK_Assign: |
1552 | case AK_Construct: |
1553 | case AK_Destroy: |
1554 | // Construction and destruction don't need the value. |
1555 | return true; |
1556 | |
1557 | case AK_MemberCall: |
1558 | case AK_DynamicCast: |
1559 | case AK_TypeId: |
1560 | // These aren't really meaningful on scalars. |
1561 | return true; |
1562 | } |
1563 | llvm_unreachable("unknown access kind" ); |
1564 | } |
1565 | |
1566 | namespace { |
1567 | struct ComplexValue { |
1568 | private: |
1569 | bool IsInt; |
1570 | |
1571 | public: |
1572 | APSInt IntReal, IntImag; |
1573 | APFloat FloatReal, FloatImag; |
1574 | |
1575 | ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {} |
1576 | |
1577 | void makeComplexFloat() { IsInt = false; } |
1578 | bool isComplexFloat() const { return !IsInt; } |
1579 | APFloat &getComplexFloatReal() { return FloatReal; } |
1580 | APFloat &getComplexFloatImag() { return FloatImag; } |
1581 | |
1582 | void makeComplexInt() { IsInt = true; } |
1583 | bool isComplexInt() const { return IsInt; } |
1584 | APSInt &getComplexIntReal() { return IntReal; } |
1585 | APSInt &getComplexIntImag() { return IntImag; } |
1586 | |
1587 | void moveInto(APValue &v) const { |
1588 | if (isComplexFloat()) |
1589 | v = APValue(FloatReal, FloatImag); |
1590 | else |
1591 | v = APValue(IntReal, IntImag); |
1592 | } |
1593 | void setFrom(const APValue &v) { |
1594 | assert(v.isComplexFloat() || v.isComplexInt()); |
1595 | if (v.isComplexFloat()) { |
1596 | makeComplexFloat(); |
1597 | FloatReal = v.getComplexFloatReal(); |
1598 | FloatImag = v.getComplexFloatImag(); |
1599 | } else { |
1600 | makeComplexInt(); |
1601 | IntReal = v.getComplexIntReal(); |
1602 | IntImag = v.getComplexIntImag(); |
1603 | } |
1604 | } |
1605 | }; |
1606 | |
1607 | struct LValue { |
1608 | APValue::LValueBase Base; |
1609 | CharUnits Offset; |
1610 | SubobjectDesignator Designator; |
1611 | bool IsNullPtr : 1; |
1612 | bool InvalidBase : 1; |
1613 | |
1614 | const APValue::LValueBase getLValueBase() const { return Base; } |
1615 | CharUnits &getLValueOffset() { return Offset; } |
1616 | const CharUnits &getLValueOffset() const { return Offset; } |
1617 | SubobjectDesignator &getLValueDesignator() { return Designator; } |
1618 | const SubobjectDesignator &getLValueDesignator() const { return Designator;} |
1619 | bool isNullPointer() const { return IsNullPtr;} |
1620 | |
1621 | unsigned getLValueCallIndex() const { return Base.getCallIndex(); } |
1622 | unsigned getLValueVersion() const { return Base.getVersion(); } |
1623 | |
1624 | void moveInto(APValue &V) const { |
1625 | if (Designator.Invalid) |
1626 | V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr); |
1627 | else { |
1628 | assert(!InvalidBase && "APValues can't handle invalid LValue bases" ); |
1629 | V = APValue(Base, Offset, Designator.Entries, |
1630 | Designator.IsOnePastTheEnd, IsNullPtr); |
1631 | } |
1632 | } |
1633 | void setFrom(ASTContext &Ctx, const APValue &V) { |
1634 | assert(V.isLValue() && "Setting LValue from a non-LValue?" ); |
1635 | Base = V.getLValueBase(); |
1636 | Offset = V.getLValueOffset(); |
1637 | InvalidBase = false; |
1638 | Designator = SubobjectDesignator(Ctx, V); |
1639 | IsNullPtr = V.isNullPointer(); |
1640 | } |
1641 | |
1642 | void set(APValue::LValueBase B, bool BInvalid = false) { |
1643 | #ifndef NDEBUG |
1644 | // We only allow a few types of invalid bases. Enforce that here. |
1645 | if (BInvalid) { |
1646 | const auto *E = B.get<const Expr *>(); |
1647 | assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && |
1648 | "Unexpected type of invalid base" ); |
1649 | } |
1650 | #endif |
1651 | |
1652 | Base = B; |
1653 | Offset = CharUnits::fromQuantity(Quantity: 0); |
1654 | InvalidBase = BInvalid; |
1655 | Designator = SubobjectDesignator(getType(B)); |
1656 | IsNullPtr = false; |
1657 | } |
1658 | |
1659 | void setNull(ASTContext &Ctx, QualType PointerTy) { |
1660 | Base = (const ValueDecl *)nullptr; |
1661 | Offset = |
1662 | CharUnits::fromQuantity(Quantity: Ctx.getTargetNullPointerValue(QT: PointerTy)); |
1663 | InvalidBase = false; |
1664 | Designator = SubobjectDesignator(PointerTy->getPointeeType()); |
1665 | IsNullPtr = true; |
1666 | } |
1667 | |
1668 | void setInvalid(APValue::LValueBase B, unsigned I = 0) { |
1669 | set(B, BInvalid: true); |
1670 | } |
1671 | |
1672 | std::string toString(ASTContext &Ctx, QualType T) const { |
1673 | APValue Printable; |
1674 | moveInto(V&: Printable); |
1675 | return Printable.getAsString(Ctx, Ty: T); |
1676 | } |
1677 | |
1678 | private: |
1679 | // Check that this LValue is not based on a null pointer. If it is, produce |
1680 | // a diagnostic and mark the designator as invalid. |
1681 | template <typename GenDiagType> |
1682 | bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) { |
1683 | if (Designator.Invalid) |
1684 | return false; |
1685 | if (IsNullPtr) { |
1686 | GenDiag(); |
1687 | Designator.setInvalid(); |
1688 | return false; |
1689 | } |
1690 | return true; |
1691 | } |
1692 | |
1693 | public: |
1694 | bool checkNullPointer(EvalInfo &Info, const Expr *E, |
1695 | CheckSubobjectKind CSK) { |
1696 | return checkNullPointerDiagnosingWith(GenDiag: [&Info, E, CSK] { |
1697 | Info.CCEDiag(E, DiagId: diag::note_constexpr_null_subobject) << CSK; |
1698 | }); |
1699 | } |
1700 | |
1701 | bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E, |
1702 | AccessKinds AK) { |
1703 | return checkNullPointerDiagnosingWith(GenDiag: [&Info, E, AK] { |
1704 | Info.FFDiag(E, DiagId: diag::note_constexpr_access_null) << AK; |
1705 | }); |
1706 | } |
1707 | |
1708 | // Check this LValue refers to an object. If not, set the designator to be |
1709 | // invalid and emit a diagnostic. |
1710 | bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) { |
1711 | return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) && |
1712 | Designator.checkSubobject(Info, E, CSK); |
1713 | } |
1714 | |
1715 | void addDecl(EvalInfo &Info, const Expr *E, |
1716 | const Decl *D, bool Virtual = false) { |
1717 | if (checkSubobject(Info, E, CSK: isa<FieldDecl>(Val: D) ? CSK_Field : CSK_Base)) |
1718 | Designator.addDeclUnchecked(D, Virtual); |
1719 | } |
1720 | void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) { |
1721 | if (!Designator.Entries.empty()) { |
1722 | Info.CCEDiag(E, DiagId: diag::note_constexpr_unsupported_unsized_array); |
1723 | Designator.setInvalid(); |
1724 | return; |
1725 | } |
1726 | if (checkSubobject(Info, E, CSK: CSK_ArrayToPointer)) { |
1727 | assert(getType(Base)->isPointerType() || getType(Base)->isArrayType()); |
1728 | Designator.FirstEntryIsAnUnsizedArray = true; |
1729 | Designator.addUnsizedArrayUnchecked(ElemTy); |
1730 | } |
1731 | } |
1732 | void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) { |
1733 | if (checkSubobject(Info, E, CSK: CSK_ArrayToPointer)) |
1734 | Designator.addArrayUnchecked(CAT); |
1735 | } |
1736 | void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) { |
1737 | if (checkSubobject(Info, E, CSK: Imag ? CSK_Imag : CSK_Real)) |
1738 | Designator.addComplexUnchecked(EltTy, Imag); |
1739 | } |
1740 | void clearIsNullPointer() { |
1741 | IsNullPtr = false; |
1742 | } |
1743 | void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E, |
1744 | const APSInt &Index, CharUnits ElementSize) { |
1745 | // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB, |
1746 | // but we're not required to diagnose it and it's valid in C++.) |
1747 | if (!Index) |
1748 | return; |
1749 | |
1750 | // Compute the new offset in the appropriate width, wrapping at 64 bits. |
1751 | // FIXME: When compiling for a 32-bit target, we should use 32-bit |
1752 | // offsets. |
1753 | uint64_t Offset64 = Offset.getQuantity(); |
1754 | uint64_t ElemSize64 = ElementSize.getQuantity(); |
1755 | uint64_t Index64 = Index.extOrTrunc(width: 64).getZExtValue(); |
1756 | Offset = CharUnits::fromQuantity(Quantity: Offset64 + ElemSize64 * Index64); |
1757 | |
1758 | if (checkNullPointer(Info, E, CSK: CSK_ArrayIndex)) |
1759 | Designator.adjustIndex(Info, E, N: Index); |
1760 | clearIsNullPointer(); |
1761 | } |
1762 | void adjustOffset(CharUnits N) { |
1763 | Offset += N; |
1764 | if (N.getQuantity()) |
1765 | clearIsNullPointer(); |
1766 | } |
1767 | }; |
1768 | |
1769 | struct MemberPtr { |
1770 | MemberPtr() {} |
1771 | explicit MemberPtr(const ValueDecl *Decl) |
1772 | : DeclAndIsDerivedMember(Decl, false) {} |
1773 | |
1774 | /// The member or (direct or indirect) field referred to by this member |
1775 | /// pointer, or 0 if this is a null member pointer. |
1776 | const ValueDecl *getDecl() const { |
1777 | return DeclAndIsDerivedMember.getPointer(); |
1778 | } |
1779 | /// Is this actually a member of some type derived from the relevant class? |
1780 | bool isDerivedMember() const { |
1781 | return DeclAndIsDerivedMember.getInt(); |
1782 | } |
1783 | /// Get the class which the declaration actually lives in. |
1784 | const CXXRecordDecl *getContainingRecord() const { |
1785 | return cast<CXXRecordDecl>( |
1786 | Val: DeclAndIsDerivedMember.getPointer()->getDeclContext()); |
1787 | } |
1788 | |
1789 | void moveInto(APValue &V) const { |
1790 | V = APValue(getDecl(), isDerivedMember(), Path); |
1791 | } |
1792 | void setFrom(const APValue &V) { |
1793 | assert(V.isMemberPointer()); |
1794 | DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl()); |
1795 | DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember()); |
1796 | Path.clear(); |
1797 | ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath(); |
1798 | Path.insert(I: Path.end(), From: P.begin(), To: P.end()); |
1799 | } |
1800 | |
1801 | /// DeclAndIsDerivedMember - The member declaration, and a flag indicating |
1802 | /// whether the member is a member of some class derived from the class type |
1803 | /// of the member pointer. |
1804 | llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember; |
1805 | /// Path - The path of base/derived classes from the member declaration's |
1806 | /// class (exclusive) to the class type of the member pointer (inclusive). |
1807 | SmallVector<const CXXRecordDecl*, 4> Path; |
1808 | |
1809 | /// Perform a cast towards the class of the Decl (either up or down the |
1810 | /// hierarchy). |
1811 | bool castBack(const CXXRecordDecl *Class) { |
1812 | assert(!Path.empty()); |
1813 | const CXXRecordDecl *Expected; |
1814 | if (Path.size() >= 2) |
1815 | Expected = Path[Path.size() - 2]; |
1816 | else |
1817 | Expected = getContainingRecord(); |
1818 | if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) { |
1819 | // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*), |
1820 | // if B does not contain the original member and is not a base or |
1821 | // derived class of the class containing the original member, the result |
1822 | // of the cast is undefined. |
1823 | // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to |
1824 | // (D::*). We consider that to be a language defect. |
1825 | return false; |
1826 | } |
1827 | Path.pop_back(); |
1828 | return true; |
1829 | } |
1830 | /// Perform a base-to-derived member pointer cast. |
1831 | bool castToDerived(const CXXRecordDecl *Derived) { |
1832 | if (!getDecl()) |
1833 | return true; |
1834 | if (!isDerivedMember()) { |
1835 | Path.push_back(Elt: Derived); |
1836 | return true; |
1837 | } |
1838 | if (!castBack(Class: Derived)) |
1839 | return false; |
1840 | if (Path.empty()) |
1841 | DeclAndIsDerivedMember.setInt(false); |
1842 | return true; |
1843 | } |
1844 | /// Perform a derived-to-base member pointer cast. |
1845 | bool castToBase(const CXXRecordDecl *Base) { |
1846 | if (!getDecl()) |
1847 | return true; |
1848 | if (Path.empty()) |
1849 | DeclAndIsDerivedMember.setInt(true); |
1850 | if (isDerivedMember()) { |
1851 | Path.push_back(Elt: Base); |
1852 | return true; |
1853 | } |
1854 | return castBack(Class: Base); |
1855 | } |
1856 | }; |
1857 | |
1858 | /// Compare two member pointers, which are assumed to be of the same type. |
1859 | static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) { |
1860 | if (!LHS.getDecl() || !RHS.getDecl()) |
1861 | return !LHS.getDecl() && !RHS.getDecl(); |
1862 | if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl()) |
1863 | return false; |
1864 | return LHS.Path == RHS.Path; |
1865 | } |
1866 | } |
1867 | |
1868 | static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E); |
1869 | static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, |
1870 | const LValue &This, const Expr *E, |
1871 | bool AllowNonLiteralTypes = false); |
1872 | static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, |
1873 | bool InvalidBaseOK = false); |
1874 | static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info, |
1875 | bool InvalidBaseOK = false); |
1876 | static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, |
1877 | EvalInfo &Info); |
1878 | static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info); |
1879 | static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); |
1880 | static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, |
1881 | EvalInfo &Info); |
1882 | static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); |
1883 | static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info); |
1884 | static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, |
1885 | EvalInfo &Info); |
1886 | static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result); |
1887 | static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result, |
1888 | EvalInfo &Info, |
1889 | std::string *StringResult = nullptr); |
1890 | |
1891 | /// Evaluate an integer or fixed point expression into an APResult. |
1892 | static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, |
1893 | EvalInfo &Info); |
1894 | |
1895 | /// Evaluate only a fixed point expression into an APResult. |
1896 | static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, |
1897 | EvalInfo &Info); |
1898 | |
1899 | //===----------------------------------------------------------------------===// |
1900 | // Misc utilities |
1901 | //===----------------------------------------------------------------------===// |
1902 | |
1903 | /// Negate an APSInt in place, converting it to a signed form if necessary, and |
1904 | /// preserving its value (by extending by up to one bit as needed). |
1905 | static void negateAsSigned(APSInt &Int) { |
1906 | if (Int.isUnsigned() || Int.isMinSignedValue()) { |
1907 | Int = Int.extend(width: Int.getBitWidth() + 1); |
1908 | Int.setIsSigned(true); |
1909 | } |
1910 | Int = -Int; |
1911 | } |
1912 | |
1913 | template<typename KeyT> |
1914 | APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T, |
1915 | ScopeKind Scope, LValue &LV) { |
1916 | unsigned Version = getTempVersion(); |
1917 | APValue::LValueBase Base(Key, Index, Version); |
1918 | LV.set(B: Base); |
1919 | return createLocal(Base, Key, T, Scope); |
1920 | } |
1921 | |
1922 | /// Allocate storage for a parameter of a function call made in this frame. |
1923 | APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD, |
1924 | LValue &LV) { |
1925 | assert(Args.CallIndex == Index && "creating parameter in wrong frame" ); |
1926 | APValue::LValueBase Base(PVD, Index, Args.Version); |
1927 | LV.set(B: Base); |
1928 | // We always destroy parameters at the end of the call, even if we'd allow |
1929 | // them to live to the end of the full-expression at runtime, in order to |
1930 | // give portable results and match other compilers. |
1931 | return createLocal(Base, Key: PVD, T: PVD->getType(), Scope: ScopeKind::Call); |
1932 | } |
1933 | |
1934 | APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key, |
1935 | QualType T, ScopeKind Scope) { |
1936 | assert(Base.getCallIndex() == Index && "lvalue for wrong frame" ); |
1937 | unsigned Version = Base.getVersion(); |
1938 | APValue &Result = Temporaries[MapKeyTy(Key, Version)]; |
1939 | assert(Result.isAbsent() && "local created multiple times" ); |
1940 | |
1941 | // If we're creating a local immediately in the operand of a speculative |
1942 | // evaluation, don't register a cleanup to be run outside the speculative |
1943 | // evaluation context, since we won't actually be able to initialize this |
1944 | // object. |
1945 | if (Index <= Info.SpeculativeEvaluationDepth) { |
1946 | if (T.isDestructedType()) |
1947 | Info.noteSideEffect(); |
1948 | } else { |
1949 | Info.CleanupStack.push_back(Elt: Cleanup(&Result, Base, T, Scope)); |
1950 | } |
1951 | return Result; |
1952 | } |
1953 | |
1954 | APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) { |
1955 | if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) { |
1956 | FFDiag(E, DiagId: diag::note_constexpr_heap_alloc_limit_exceeded); |
1957 | return nullptr; |
1958 | } |
1959 | |
1960 | DynamicAllocLValue DA(NumHeapAllocs++); |
1961 | LV.set(B: APValue::LValueBase::getDynamicAlloc(LV: DA, Type: T)); |
1962 | auto Result = HeapAllocs.emplace(args: std::piecewise_construct, |
1963 | args: std::forward_as_tuple(args&: DA), args: std::tuple<>()); |
1964 | assert(Result.second && "reused a heap alloc index?" ); |
1965 | Result.first->second.AllocExpr = E; |
1966 | return &Result.first->second.Value; |
1967 | } |
1968 | |
1969 | /// Produce a string describing the given constexpr call. |
1970 | void CallStackFrame::describe(raw_ostream &Out) const { |
1971 | unsigned ArgIndex = 0; |
1972 | bool IsMemberCall = |
1973 | isa<CXXMethodDecl>(Val: Callee) && !isa<CXXConstructorDecl>(Val: Callee) && |
1974 | cast<CXXMethodDecl>(Val: Callee)->isImplicitObjectMemberFunction(); |
1975 | |
1976 | if (!IsMemberCall) |
1977 | Callee->getNameForDiagnostic(OS&: Out, Policy: Info.Ctx.getPrintingPolicy(), |
1978 | /*Qualified=*/false); |
1979 | |
1980 | if (This && IsMemberCall) { |
1981 | if (const auto *MCE = dyn_cast_if_present<CXXMemberCallExpr>(Val: CallExpr)) { |
1982 | const Expr *Object = MCE->getImplicitObjectArgument(); |
1983 | Object->printPretty(OS&: Out, /*Helper=*/nullptr, Policy: Info.Ctx.getPrintingPolicy(), |
1984 | /*Indentation=*/0); |
1985 | if (Object->getType()->isPointerType()) |
1986 | Out << "->" ; |
1987 | else |
1988 | Out << "." ; |
1989 | } else if (const auto *OCE = |
1990 | dyn_cast_if_present<CXXOperatorCallExpr>(Val: CallExpr)) { |
1991 | OCE->getArg(Arg: 0)->printPretty(OS&: Out, /*Helper=*/nullptr, |
1992 | Policy: Info.Ctx.getPrintingPolicy(), |
1993 | /*Indentation=*/0); |
1994 | Out << "." ; |
1995 | } else { |
1996 | APValue Val; |
1997 | This->moveInto(V&: Val); |
1998 | Val.printPretty( |
1999 | OS&: Out, Ctx: Info.Ctx, |
2000 | Ty: Info.Ctx.getLValueReferenceType(T: This->Designator.MostDerivedType)); |
2001 | Out << "." ; |
2002 | } |
2003 | Callee->getNameForDiagnostic(OS&: Out, Policy: Info.Ctx.getPrintingPolicy(), |
2004 | /*Qualified=*/false); |
2005 | IsMemberCall = false; |
2006 | } |
2007 | |
2008 | Out << '('; |
2009 | |
2010 | for (FunctionDecl::param_const_iterator I = Callee->param_begin(), |
2011 | E = Callee->param_end(); I != E; ++I, ++ArgIndex) { |
2012 | if (ArgIndex > (unsigned)IsMemberCall) |
2013 | Out << ", " ; |
2014 | |
2015 | const ParmVarDecl *Param = *I; |
2016 | APValue *V = Info.getParamSlot(Call: Arguments, PVD: Param); |
2017 | if (V) |
2018 | V->printPretty(OS&: Out, Ctx: Info.Ctx, Ty: Param->getType()); |
2019 | else |
2020 | Out << "<...>" ; |
2021 | |
2022 | if (ArgIndex == 0 && IsMemberCall) |
2023 | Out << "->" << *Callee << '('; |
2024 | } |
2025 | |
2026 | Out << ')'; |
2027 | } |
2028 | |
2029 | /// Evaluate an expression to see if it had side-effects, and discard its |
2030 | /// result. |
2031 | /// \return \c true if the caller should keep evaluating. |
2032 | static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) { |
2033 | assert(!E->isValueDependent()); |
2034 | APValue Scratch; |
2035 | if (!Evaluate(Result&: Scratch, Info, E)) |
2036 | // We don't need the value, but we might have skipped a side effect here. |
2037 | return Info.noteSideEffect(); |
2038 | return true; |
2039 | } |
2040 | |
2041 | /// Should this call expression be treated as a no-op? |
2042 | static bool IsNoOpCall(const CallExpr *E) { |
2043 | unsigned Builtin = E->getBuiltinCallee(); |
2044 | return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || |
2045 | Builtin == Builtin::BI__builtin___NSStringMakeConstantString || |
2046 | Builtin == Builtin::BI__builtin_ptrauth_sign_constant || |
2047 | Builtin == Builtin::BI__builtin_function_start); |
2048 | } |
2049 | |
2050 | static bool IsGlobalLValue(APValue::LValueBase B) { |
2051 | // C++11 [expr.const]p3 An address constant expression is a prvalue core |
2052 | // constant expression of pointer type that evaluates to... |
2053 | |
2054 | // ... a null pointer value, or a prvalue core constant expression of type |
2055 | // std::nullptr_t. |
2056 | if (!B) |
2057 | return true; |
2058 | |
2059 | if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { |
2060 | // ... the address of an object with static storage duration, |
2061 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) |
2062 | return VD->hasGlobalStorage(); |
2063 | if (isa<TemplateParamObjectDecl>(Val: D)) |
2064 | return true; |
2065 | // ... the address of a function, |
2066 | // ... the address of a GUID [MS extension], |
2067 | // ... the address of an unnamed global constant |
2068 | return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(Val: D); |
2069 | } |
2070 | |
2071 | if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>()) |
2072 | return true; |
2073 | |
2074 | const Expr *E = B.get<const Expr*>(); |
2075 | switch (E->getStmtClass()) { |
2076 | default: |
2077 | return false; |
2078 | case Expr::CompoundLiteralExprClass: { |
2079 | const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(Val: E); |
2080 | return CLE->isFileScope() && CLE->isLValue(); |
2081 | } |
2082 | case Expr::MaterializeTemporaryExprClass: |
2083 | // A materialized temporary might have been lifetime-extended to static |
2084 | // storage duration. |
2085 | return cast<MaterializeTemporaryExpr>(Val: E)->getStorageDuration() == SD_Static; |
2086 | // A string literal has static storage duration. |
2087 | case Expr::StringLiteralClass: |
2088 | case Expr::PredefinedExprClass: |
2089 | case Expr::ObjCStringLiteralClass: |
2090 | case Expr::ObjCEncodeExprClass: |
2091 | return true; |
2092 | case Expr::ObjCBoxedExprClass: |
2093 | return cast<ObjCBoxedExpr>(Val: E)->isExpressibleAsConstantInitializer(); |
2094 | case Expr::CallExprClass: |
2095 | return IsNoOpCall(E: cast<CallExpr>(Val: E)); |
2096 | // For GCC compatibility, &&label has static storage duration. |
2097 | case Expr::AddrLabelExprClass: |
2098 | return true; |
2099 | // A Block literal expression may be used as the initialization value for |
2100 | // Block variables at global or local static scope. |
2101 | case Expr::BlockExprClass: |
2102 | return !cast<BlockExpr>(Val: E)->getBlockDecl()->hasCaptures(); |
2103 | // The APValue generated from a __builtin_source_location will be emitted as a |
2104 | // literal. |
2105 | case Expr::SourceLocExprClass: |
2106 | return true; |
2107 | case Expr::ImplicitValueInitExprClass: |
2108 | // FIXME: |
2109 | // We can never form an lvalue with an implicit value initialization as its |
2110 | // base through expression evaluation, so these only appear in one case: the |
2111 | // implicit variable declaration we invent when checking whether a constexpr |
2112 | // constructor can produce a constant expression. We must assume that such |
2113 | // an expression might be a global lvalue. |
2114 | return true; |
2115 | } |
2116 | } |
2117 | |
2118 | static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) { |
2119 | return LVal.Base.dyn_cast<const ValueDecl*>(); |
2120 | } |
2121 | |
2122 | static bool IsLiteralLValue(const LValue &Value) { |
2123 | if (Value.getLValueCallIndex()) |
2124 | return false; |
2125 | const Expr *E = Value.Base.dyn_cast<const Expr*>(); |
2126 | return E && !isa<MaterializeTemporaryExpr>(Val: E); |
2127 | } |
2128 | |
2129 | static bool IsWeakLValue(const LValue &Value) { |
2130 | const ValueDecl *Decl = GetLValueBaseDecl(LVal: Value); |
2131 | return Decl && Decl->isWeak(); |
2132 | } |
2133 | |
2134 | static bool isZeroSized(const LValue &Value) { |
2135 | const ValueDecl *Decl = GetLValueBaseDecl(LVal: Value); |
2136 | if (isa_and_nonnull<VarDecl>(Val: Decl)) { |
2137 | QualType Ty = Decl->getType(); |
2138 | if (Ty->isArrayType()) |
2139 | return Ty->isIncompleteType() || |
2140 | Decl->getASTContext().getTypeSize(T: Ty) == 0; |
2141 | } |
2142 | return false; |
2143 | } |
2144 | |
2145 | static bool HasSameBase(const LValue &A, const LValue &B) { |
2146 | if (!A.getLValueBase()) |
2147 | return !B.getLValueBase(); |
2148 | if (!B.getLValueBase()) |
2149 | return false; |
2150 | |
2151 | if (A.getLValueBase().getOpaqueValue() != |
2152 | B.getLValueBase().getOpaqueValue()) |
2153 | return false; |
2154 | |
2155 | return A.getLValueCallIndex() == B.getLValueCallIndex() && |
2156 | A.getLValueVersion() == B.getLValueVersion(); |
2157 | } |
2158 | |
2159 | static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) { |
2160 | assert(Base && "no location for a null lvalue" ); |
2161 | const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); |
2162 | |
2163 | // For a parameter, find the corresponding call stack frame (if it still |
2164 | // exists), and point at the parameter of the function definition we actually |
2165 | // invoked. |
2166 | if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(Val: VD)) { |
2167 | unsigned Idx = PVD->getFunctionScopeIndex(); |
2168 | for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) { |
2169 | if (F->Arguments.CallIndex == Base.getCallIndex() && |
2170 | F->Arguments.Version == Base.getVersion() && F->Callee && |
2171 | Idx < F->Callee->getNumParams()) { |
2172 | VD = F->Callee->getParamDecl(i: Idx); |
2173 | break; |
2174 | } |
2175 | } |
2176 | } |
2177 | |
2178 | if (VD) |
2179 | Info.Note(Loc: VD->getLocation(), DiagId: diag::note_declared_at); |
2180 | else if (const Expr *E = Base.dyn_cast<const Expr*>()) |
2181 | Info.Note(Loc: E->getExprLoc(), DiagId: diag::note_constexpr_temporary_here); |
2182 | else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { |
2183 | // FIXME: Produce a note for dangling pointers too. |
2184 | if (std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA)) |
2185 | Info.Note(Loc: (*Alloc)->AllocExpr->getExprLoc(), |
2186 | DiagId: diag::note_constexpr_dynamic_alloc_here); |
2187 | } |
2188 | |
2189 | // We have no information to show for a typeid(T) object. |
2190 | } |
2191 | |
2192 | enum class CheckEvaluationResultKind { |
2193 | ConstantExpression, |
2194 | FullyInitialized, |
2195 | }; |
2196 | |
2197 | /// Materialized temporaries that we've already checked to determine if they're |
2198 | /// initializsed by a constant expression. |
2199 | using CheckedTemporaries = |
2200 | llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>; |
2201 | |
2202 | static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, |
2203 | EvalInfo &Info, SourceLocation DiagLoc, |
2204 | QualType Type, const APValue &Value, |
2205 | ConstantExprKind Kind, |
2206 | const FieldDecl *SubobjectDecl, |
2207 | CheckedTemporaries &CheckedTemps); |
2208 | |
2209 | /// Check that this reference or pointer core constant expression is a valid |
2210 | /// value for an address or reference constant expression. Return true if we |
2211 | /// can fold this expression, whether or not it's a constant expression. |
2212 | static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc, |
2213 | QualType Type, const LValue &LVal, |
2214 | ConstantExprKind Kind, |
2215 | CheckedTemporaries &CheckedTemps) { |
2216 | bool IsReferenceType = Type->isReferenceType(); |
2217 | |
2218 | APValue::LValueBase Base = LVal.getLValueBase(); |
2219 | const SubobjectDesignator &Designator = LVal.getLValueDesignator(); |
2220 | |
2221 | const Expr *BaseE = Base.dyn_cast<const Expr *>(); |
2222 | const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>(); |
2223 | |
2224 | // Additional restrictions apply in a template argument. We only enforce the |
2225 | // C++20 restrictions here; additional syntactic and semantic restrictions |
2226 | // are applied elsewhere. |
2227 | if (isTemplateArgument(Kind)) { |
2228 | int InvalidBaseKind = -1; |
2229 | StringRef Ident; |
2230 | if (Base.is<TypeInfoLValue>()) |
2231 | InvalidBaseKind = 0; |
2232 | else if (isa_and_nonnull<StringLiteral>(Val: BaseE)) |
2233 | InvalidBaseKind = 1; |
2234 | else if (isa_and_nonnull<MaterializeTemporaryExpr>(Val: BaseE) || |
2235 | isa_and_nonnull<LifetimeExtendedTemporaryDecl>(Val: BaseVD)) |
2236 | InvalidBaseKind = 2; |
2237 | else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(Val: BaseE)) { |
2238 | InvalidBaseKind = 3; |
2239 | Ident = PE->getIdentKindName(); |
2240 | } |
2241 | |
2242 | if (InvalidBaseKind != -1) { |
2243 | Info.FFDiag(Loc, DiagId: diag::note_constexpr_invalid_template_arg) |
2244 | << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind |
2245 | << Ident; |
2246 | return false; |
2247 | } |
2248 | } |
2249 | |
2250 | if (auto *FD = dyn_cast_or_null<FunctionDecl>(Val: BaseVD); |
2251 | FD && FD->isImmediateFunction()) { |
2252 | Info.FFDiag(Loc, DiagId: diag::note_consteval_address_accessible) |
2253 | << !Type->isAnyPointerType(); |
2254 | Info.Note(Loc: FD->getLocation(), DiagId: diag::note_declared_at); |
2255 | return false; |
2256 | } |
2257 | |
2258 | // Check that the object is a global. Note that the fake 'this' object we |
2259 | // manufacture when checking potential constant expressions is conservatively |
2260 | // assumed to be global here. |
2261 | if (!IsGlobalLValue(B: Base)) { |
2262 | if (Info.getLangOpts().CPlusPlus11) { |
2263 | Info.FFDiag(Loc, DiagId: diag::note_constexpr_non_global, ExtraNotes: 1) |
2264 | << IsReferenceType << !Designator.Entries.empty() << !!BaseVD |
2265 | << BaseVD; |
2266 | auto *VarD = dyn_cast_or_null<VarDecl>(Val: BaseVD); |
2267 | if (VarD && VarD->isConstexpr()) { |
2268 | // Non-static local constexpr variables have unintuitive semantics: |
2269 | // constexpr int a = 1; |
2270 | // constexpr const int *p = &a; |
2271 | // ... is invalid because the address of 'a' is not constant. Suggest |
2272 | // adding a 'static' in this case. |
2273 | Info.Note(Loc: VarD->getLocation(), DiagId: diag::note_constexpr_not_static) |
2274 | << VarD |
2275 | << FixItHint::CreateInsertion(InsertionLoc: VarD->getBeginLoc(), Code: "static " ); |
2276 | } else { |
2277 | NoteLValueLocation(Info, Base); |
2278 | } |
2279 | } else { |
2280 | Info.FFDiag(Loc); |
2281 | } |
2282 | // Don't allow references to temporaries to escape. |
2283 | return false; |
2284 | } |
2285 | assert((Info.checkingPotentialConstantExpression() || |
2286 | LVal.getLValueCallIndex() == 0) && |
2287 | "have call index for global lvalue" ); |
2288 | |
2289 | if (Base.is<DynamicAllocLValue>()) { |
2290 | Info.FFDiag(Loc, DiagId: diag::note_constexpr_dynamic_alloc) |
2291 | << IsReferenceType << !Designator.Entries.empty(); |
2292 | NoteLValueLocation(Info, Base); |
2293 | return false; |
2294 | } |
2295 | |
2296 | if (BaseVD) { |
2297 | if (const VarDecl *Var = dyn_cast<const VarDecl>(Val: BaseVD)) { |
2298 | // Check if this is a thread-local variable. |
2299 | if (Var->getTLSKind()) |
2300 | // FIXME: Diagnostic! |
2301 | return false; |
2302 | |
2303 | // A dllimport variable never acts like a constant, unless we're |
2304 | // evaluating a value for use only in name mangling. |
2305 | if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>()) |
2306 | // FIXME: Diagnostic! |
2307 | return false; |
2308 | |
2309 | // In CUDA/HIP device compilation, only device side variables have |
2310 | // constant addresses. |
2311 | if (Info.getCtx().getLangOpts().CUDA && |
2312 | Info.getCtx().getLangOpts().CUDAIsDevice && |
2313 | Info.getCtx().CUDAConstantEvalCtx.NoWrongSidedVars) { |
2314 | if ((!Var->hasAttr<CUDADeviceAttr>() && |
2315 | !Var->hasAttr<CUDAConstantAttr>() && |
2316 | !Var->getType()->isCUDADeviceBuiltinSurfaceType() && |
2317 | !Var->getType()->isCUDADeviceBuiltinTextureType()) || |
2318 | Var->hasAttr<HIPManagedAttr>()) |
2319 | return false; |
2320 | } |
2321 | } |
2322 | if (const auto *FD = dyn_cast<const FunctionDecl>(Val: BaseVD)) { |
2323 | // __declspec(dllimport) must be handled very carefully: |
2324 | // We must never initialize an expression with the thunk in C++. |
2325 | // Doing otherwise would allow the same id-expression to yield |
2326 | // different addresses for the same function in different translation |
2327 | // units. However, this means that we must dynamically initialize the |
2328 | // expression with the contents of the import address table at runtime. |
2329 | // |
2330 | // The C language has no notion of ODR; furthermore, it has no notion of |
2331 | // dynamic initialization. This means that we are permitted to |
2332 | // perform initialization with the address of the thunk. |
2333 | if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) && |
2334 | FD->hasAttr<DLLImportAttr>()) |
2335 | // FIXME: Diagnostic! |
2336 | return false; |
2337 | } |
2338 | } else if (const auto *MTE = |
2339 | dyn_cast_or_null<MaterializeTemporaryExpr>(Val: BaseE)) { |
2340 | if (CheckedTemps.insert(Ptr: MTE).second) { |
2341 | QualType TempType = getType(B: Base); |
2342 | if (TempType.isDestructedType()) { |
2343 | Info.FFDiag(Loc: MTE->getExprLoc(), |
2344 | DiagId: diag::note_constexpr_unsupported_temporary_nontrivial_dtor) |
2345 | << TempType; |
2346 | return false; |
2347 | } |
2348 | |
2349 | APValue *V = MTE->getOrCreateValue(MayCreate: false); |
2350 | assert(V && "evasluation result refers to uninitialised temporary" ); |
2351 | if (!CheckEvaluationResult(CERK: CheckEvaluationResultKind::ConstantExpression, |
2352 | Info, DiagLoc: MTE->getExprLoc(), Type: TempType, Value: *V, Kind, |
2353 | /*SubobjectDecl=*/nullptr, CheckedTemps)) |
2354 | return false; |
2355 | } |
2356 | } |
2357 | |
2358 | // Allow address constant expressions to be past-the-end pointers. This is |
2359 | // an extension: the standard requires them to point to an object. |
2360 | if (!IsReferenceType) |
2361 | return true; |
2362 | |
2363 | // A reference constant expression must refer to an object. |
2364 | if (!Base) { |
2365 | // FIXME: diagnostic |
2366 | Info.CCEDiag(Loc); |
2367 | return true; |
2368 | } |
2369 | |
2370 | // Does this refer one past the end of some object? |
2371 | if (!Designator.Invalid && Designator.isOnePastTheEnd()) { |
2372 | Info.FFDiag(Loc, DiagId: diag::note_constexpr_past_end, ExtraNotes: 1) |
2373 | << !Designator.Entries.empty() << !!BaseVD << BaseVD; |
2374 | NoteLValueLocation(Info, Base); |
2375 | } |
2376 | |
2377 | return true; |
2378 | } |
2379 | |
2380 | /// Member pointers are constant expressions unless they point to a |
2381 | /// non-virtual dllimport member function. |
2382 | static bool CheckMemberPointerConstantExpression(EvalInfo &Info, |
2383 | SourceLocation Loc, |
2384 | QualType Type, |
2385 | const APValue &Value, |
2386 | ConstantExprKind Kind) { |
2387 | const ValueDecl *Member = Value.getMemberPointerDecl(); |
2388 | const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Val: Member); |
2389 | if (!FD) |
2390 | return true; |
2391 | if (FD->isImmediateFunction()) { |
2392 | Info.FFDiag(Loc, DiagId: diag::note_consteval_address_accessible) << /*pointer*/ 0; |
2393 | Info.Note(Loc: FD->getLocation(), DiagId: diag::note_declared_at); |
2394 | return false; |
2395 | } |
2396 | return isForManglingOnly(Kind) || FD->isVirtual() || |
2397 | !FD->hasAttr<DLLImportAttr>(); |
2398 | } |
2399 | |
2400 | /// Check that this core constant expression is of literal type, and if not, |
2401 | /// produce an appropriate diagnostic. |
2402 | static bool CheckLiteralType(EvalInfo &Info, const Expr *E, |
2403 | const LValue *This = nullptr) { |
2404 | if (!E->isPRValue() || E->getType()->isLiteralType(Ctx: Info.Ctx)) |
2405 | return true; |
2406 | |
2407 | // C++1y: A constant initializer for an object o [...] may also invoke |
2408 | // constexpr constructors for o and its subobjects even if those objects |
2409 | // are of non-literal class types. |
2410 | // |
2411 | // C++11 missed this detail for aggregates, so classes like this: |
2412 | // struct foo_t { union { int i; volatile int j; } u; }; |
2413 | // are not (obviously) initializable like so: |
2414 | // __attribute__((__require_constant_initialization__)) |
2415 | // static const foo_t x = {{0}}; |
2416 | // because "i" is a subobject with non-literal initialization (due to the |
2417 | // volatile member of the union). See: |
2418 | // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677 |
2419 | // Therefore, we use the C++1y behavior. |
2420 | if (This && Info.EvaluatingDecl == This->getLValueBase()) |
2421 | return true; |
2422 | |
2423 | // Prvalue constant expressions must be of literal types. |
2424 | if (Info.getLangOpts().CPlusPlus11) |
2425 | Info.FFDiag(E, DiagId: diag::note_constexpr_nonliteral) |
2426 | << E->getType(); |
2427 | else |
2428 | Info.FFDiag(E, DiagId: diag::note_invalid_subexpr_in_const_expr); |
2429 | return false; |
2430 | } |
2431 | |
2432 | static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, |
2433 | EvalInfo &Info, SourceLocation DiagLoc, |
2434 | QualType Type, const APValue &Value, |
2435 | ConstantExprKind Kind, |
2436 | const FieldDecl *SubobjectDecl, |
2437 | CheckedTemporaries &CheckedTemps) { |
2438 | if (!Value.hasValue()) { |
2439 | if (SubobjectDecl) { |
2440 | Info.FFDiag(Loc: DiagLoc, DiagId: diag::note_constexpr_uninitialized) |
2441 | << /*(name)*/ 1 << SubobjectDecl; |
2442 | Info.Note(Loc: SubobjectDecl->getLocation(), |
2443 | DiagId: diag::note_constexpr_subobject_declared_here); |
2444 | } else { |
2445 | Info.FFDiag(Loc: DiagLoc, DiagId: diag::note_constexpr_uninitialized) |
2446 | << /*of type*/ 0 << Type; |
2447 | } |
2448 | return false; |
2449 | } |
2450 | |
2451 | // We allow _Atomic(T) to be initialized from anything that T can be |
2452 | // initialized from. |
2453 | if (const AtomicType *AT = Type->getAs<AtomicType>()) |
2454 | Type = AT->getValueType(); |
2455 | |
2456 | // Core issue 1454: For a literal constant expression of array or class type, |
2457 | // each subobject of its value shall have been initialized by a constant |
2458 | // expression. |
2459 | if (Value.isArray()) { |
2460 | QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType(); |
2461 | for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) { |
2462 | if (!CheckEvaluationResult(CERK, Info, DiagLoc, Type: EltTy, |
2463 | Value: Value.getArrayInitializedElt(I), Kind, |
2464 | SubobjectDecl, CheckedTemps)) |
2465 | return false; |
2466 | } |
2467 | if (!Value.hasArrayFiller()) |
2468 | return true; |
2469 | return CheckEvaluationResult(CERK, Info, DiagLoc, Type: EltTy, |
2470 | Value: Value.getArrayFiller(), Kind, SubobjectDecl, |
2471 | CheckedTemps); |
2472 | } |
2473 | if (Value.isUnion() && Value.getUnionField()) { |
2474 | return CheckEvaluationResult( |
2475 | CERK, Info, DiagLoc, Type: Value.getUnionField()->getType(), |
2476 | Value: Value.getUnionValue(), Kind, SubobjectDecl: Value.getUnionField(), CheckedTemps); |
2477 | } |
2478 | if (Value.isStruct()) { |
2479 | RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); |
2480 | if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
2481 | unsigned BaseIndex = 0; |
2482 | for (const CXXBaseSpecifier &BS : CD->bases()) { |
2483 | const APValue &BaseValue = Value.getStructBase(i: BaseIndex); |
2484 | if (!BaseValue.hasValue()) { |
2485 | SourceLocation TypeBeginLoc = BS.getBaseTypeLoc(); |
2486 | Info.FFDiag(Loc: TypeBeginLoc, DiagId: diag::note_constexpr_uninitialized_base) |
2487 | << BS.getType() << SourceRange(TypeBeginLoc, BS.getEndLoc()); |
2488 | return false; |
2489 | } |
2490 | if (!CheckEvaluationResult(CERK, Info, DiagLoc, Type: BS.getType(), Value: BaseValue, |
2491 | Kind, /*SubobjectDecl=*/nullptr, |
2492 | CheckedTemps)) |
2493 | return false; |
2494 | ++BaseIndex; |
2495 | } |
2496 | } |
2497 | for (const auto *I : RD->fields()) { |
2498 | if (I->isUnnamedBitField()) |
2499 | continue; |
2500 | |
2501 | if (!CheckEvaluationResult(CERK, Info, DiagLoc, Type: I->getType(), |
2502 | Value: Value.getStructField(i: I->getFieldIndex()), Kind, |
2503 | SubobjectDecl: I, CheckedTemps)) |
2504 | return false; |
2505 | } |
2506 | } |
2507 | |
2508 | if (Value.isLValue() && |
2509 | CERK == CheckEvaluationResultKind::ConstantExpression) { |
2510 | LValue LVal; |
2511 | LVal.setFrom(Ctx&: Info.Ctx, V: Value); |
2512 | return CheckLValueConstantExpression(Info, Loc: DiagLoc, Type, LVal, Kind, |
2513 | CheckedTemps); |
2514 | } |
2515 | |
2516 | if (Value.isMemberPointer() && |
2517 | CERK == CheckEvaluationResultKind::ConstantExpression) |
2518 | return CheckMemberPointerConstantExpression(Info, Loc: DiagLoc, Type, Value, Kind); |
2519 | |
2520 | // Everything else is fine. |
2521 | return true; |
2522 | } |
2523 | |
2524 | /// Check that this core constant expression value is a valid value for a |
2525 | /// constant expression. If not, report an appropriate diagnostic. Does not |
2526 | /// check that the expression is of literal type. |
2527 | static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, |
2528 | QualType Type, const APValue &Value, |
2529 | ConstantExprKind Kind) { |
2530 | // Nothing to check for a constant expression of type 'cv void'. |
2531 | if (Type->isVoidType()) |
2532 | return true; |
2533 | |
2534 | CheckedTemporaries CheckedTemps; |
2535 | return CheckEvaluationResult(CERK: CheckEvaluationResultKind::ConstantExpression, |
2536 | Info, DiagLoc, Type, Value, Kind, |
2537 | /*SubobjectDecl=*/nullptr, CheckedTemps); |
2538 | } |
2539 | |
2540 | /// Check that this evaluated value is fully-initialized and can be loaded by |
2541 | /// an lvalue-to-rvalue conversion. |
2542 | static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc, |
2543 | QualType Type, const APValue &Value) { |
2544 | CheckedTemporaries CheckedTemps; |
2545 | return CheckEvaluationResult( |
2546 | CERK: CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value, |
2547 | Kind: ConstantExprKind::Normal, /*SubobjectDecl=*/nullptr, CheckedTemps); |
2548 | } |
2549 | |
2550 | /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless |
2551 | /// "the allocated storage is deallocated within the evaluation". |
2552 | static bool CheckMemoryLeaks(EvalInfo &Info) { |
2553 | if (!Info.HeapAllocs.empty()) { |
2554 | // We can still fold to a constant despite a compile-time memory leak, |
2555 | // so long as the heap allocation isn't referenced in the result (we check |
2556 | // that in CheckConstantExpression). |
2557 | Info.CCEDiag(E: Info.HeapAllocs.begin()->second.AllocExpr, |
2558 | DiagId: diag::note_constexpr_memory_leak) |
2559 | << unsigned(Info.HeapAllocs.size() - 1); |
2560 | } |
2561 | return true; |
2562 | } |
2563 | |
2564 | static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) { |
2565 | // A null base expression indicates a null pointer. These are always |
2566 | // evaluatable, and they are false unless the offset is zero. |
2567 | if (!Value.getLValueBase()) { |
2568 | // TODO: Should a non-null pointer with an offset of zero evaluate to true? |
2569 | Result = !Value.getLValueOffset().isZero(); |
2570 | return true; |
2571 | } |
2572 | |
2573 | // We have a non-null base. These are generally known to be true, but if it's |
2574 | // a weak declaration it can be null at runtime. |
2575 | Result = true; |
2576 | const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>(); |
2577 | return !Decl || !Decl->isWeak(); |
2578 | } |
2579 | |
2580 | static bool HandleConversionToBool(const APValue &Val, bool &Result) { |
2581 | // TODO: This function should produce notes if it fails. |
2582 | switch (Val.getKind()) { |
2583 | case APValue::None: |
2584 | case APValue::Indeterminate: |
2585 | return false; |
2586 | case APValue::Int: |
2587 | Result = Val.getInt().getBoolValue(); |
2588 | return true; |
2589 | case APValue::FixedPoint: |
2590 | Result = Val.getFixedPoint().getBoolValue(); |
2591 | return true; |
2592 | case APValue::Float: |
2593 | Result = !Val.getFloat().isZero(); |
2594 | return true; |
2595 | case APValue::ComplexInt: |
2596 | Result = Val.getComplexIntReal().getBoolValue() || |
2597 | Val.getComplexIntImag().getBoolValue(); |
2598 | return true; |
2599 | case APValue::ComplexFloat: |
2600 | Result = !Val.getComplexFloatReal().isZero() || |
2601 | !Val.getComplexFloatImag().isZero(); |
2602 | return true; |
2603 | case APValue::LValue: |
2604 | return EvalPointerValueAsBool(Value: Val, Result); |
2605 | case APValue::MemberPointer: |
2606 | if (Val.getMemberPointerDecl() && Val.getMemberPointerDecl()->isWeak()) { |
2607 | return false; |
2608 | } |
2609 | Result = Val.getMemberPointerDecl(); |
2610 | return true; |
2611 | case APValue::Vector: |
2612 | case APValue::Array: |
2613 | case APValue::Struct: |
2614 | case APValue::Union: |
2615 | case APValue::AddrLabelDiff: |
2616 | return false; |
2617 | } |
2618 | |
2619 | llvm_unreachable("unknown APValue kind" ); |
2620 | } |
2621 | |
2622 | static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result, |
2623 | EvalInfo &Info) { |
2624 | assert(!E->isValueDependent()); |
2625 | assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition" ); |
2626 | APValue Val; |
2627 | if (!Evaluate(Result&: Val, Info, E)) |
2628 | return false; |
2629 | return HandleConversionToBool(Val, Result); |
2630 | } |
2631 | |
2632 | template<typename T> |
2633 | static bool HandleOverflow(EvalInfo &Info, const Expr *E, |
2634 | const T &SrcValue, QualType DestType) { |
2635 | Info.CCEDiag(E, DiagId: diag::note_constexpr_overflow) |
2636 | << SrcValue << DestType; |
2637 | return Info.noteUndefinedBehavior(); |
2638 | } |
2639 | |
2640 | static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E, |
2641 | QualType SrcType, const APFloat &Value, |
2642 | QualType DestType, APSInt &Result) { |
2643 | unsigned DestWidth = Info.Ctx.getIntWidth(T: DestType); |
2644 | // Determine whether we are converting to unsigned or signed. |
2645 | bool DestSigned = DestType->isSignedIntegerOrEnumerationType(); |
2646 | |
2647 | Result = APSInt(DestWidth, !DestSigned); |
2648 | bool ignored; |
2649 | if (Value.convertToInteger(Result, RM: llvm::APFloat::rmTowardZero, IsExact: &ignored) |
2650 | & APFloat::opInvalidOp) |
2651 | return HandleOverflow(Info, E, SrcValue: Value, DestType); |
2652 | return true; |
2653 | } |
2654 | |
2655 | /// Get rounding mode to use in evaluation of the specified expression. |
2656 | /// |
2657 | /// If rounding mode is unknown at compile time, still try to evaluate the |
2658 | /// expression. If the result is exact, it does not depend on rounding mode. |
2659 | /// So return "tonearest" mode instead of "dynamic". |
2660 | static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E) { |
2661 | llvm::RoundingMode RM = |
2662 | E->getFPFeaturesInEffect(LO: Info.Ctx.getLangOpts()).getRoundingMode(); |
2663 | if (RM == llvm::RoundingMode::Dynamic) |
2664 | RM = llvm::RoundingMode::NearestTiesToEven; |
2665 | return RM; |
2666 | } |
2667 | |
2668 | /// Check if the given evaluation result is allowed for constant evaluation. |
2669 | static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E, |
2670 | APFloat::opStatus St) { |
2671 | // In a constant context, assume that any dynamic rounding mode or FP |
2672 | // exception state matches the default floating-point environment. |
2673 | if (Info.InConstantContext) |
2674 | return true; |
2675 | |
2676 | FPOptions FPO = E->getFPFeaturesInEffect(LO: Info.Ctx.getLangOpts()); |
2677 | if ((St & APFloat::opInexact) && |
2678 | FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) { |
2679 | // Inexact result means that it depends on rounding mode. If the requested |
2680 | // mode is dynamic, the evaluation cannot be made in compile time. |
2681 | Info.FFDiag(E, DiagId: diag::note_constexpr_dynamic_rounding); |
2682 | return false; |
2683 | } |
2684 | |
2685 | if ((St != APFloat::opOK) && |
2686 | (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic || |
2687 | FPO.getExceptionMode() != LangOptions::FPE_Ignore || |
2688 | FPO.getAllowFEnvAccess())) { |
2689 | Info.FFDiag(E, DiagId: diag::note_constexpr_float_arithmetic_strict); |
2690 | return false; |
2691 | } |
2692 | |
2693 | if ((St & APFloat::opStatus::opInvalidOp) && |
2694 | FPO.getExceptionMode() != LangOptions::FPE_Ignore) { |
2695 | // There is no usefully definable result. |
2696 | Info.FFDiag(E); |
2697 | return false; |
2698 | } |
2699 | |
2700 | // FIXME: if: |
2701 | // - evaluation triggered other FP exception, and |
2702 | // - exception mode is not "ignore", and |
2703 | // - the expression being evaluated is not a part of global variable |
2704 | // initializer, |
2705 | // the evaluation probably need to be rejected. |
2706 | return true; |
2707 | } |
2708 | |
2709 | static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E, |
2710 | QualType SrcType, QualType DestType, |
2711 | APFloat &Result) { |
2712 | assert((isa<CastExpr>(E) || isa<CompoundAssignOperator>(E) || |
2713 | isa<ConvertVectorExpr>(E)) && |
2714 | "HandleFloatToFloatCast has been checked with only CastExpr, " |
2715 | "CompoundAssignOperator and ConvertVectorExpr. Please either validate " |
2716 | "the new expression or address the root cause of this usage." ); |
2717 | llvm::RoundingMode RM = getActiveRoundingMode(Info, E); |
2718 | APFloat::opStatus St; |
2719 | APFloat Value = Result; |
2720 | bool ignored; |
2721 | St = Result.convert(ToSemantics: Info.Ctx.getFloatTypeSemantics(T: DestType), RM, losesInfo: &ignored); |
2722 | return checkFloatingPointResult(Info, E, St); |
2723 | } |
2724 | |
2725 | static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E, |
2726 | QualType DestType, QualType SrcType, |
2727 | const APSInt &Value) { |
2728 | unsigned DestWidth = Info.Ctx.getIntWidth(T: DestType); |
2729 | // Figure out if this is a truncate, extend or noop cast. |
2730 | // If the input is signed, do a sign extend, noop, or truncate. |
2731 | APSInt Result = Value.extOrTrunc(width: DestWidth); |
2732 | Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType()); |
2733 | if (DestType->isBooleanType()) |
2734 | Result = Value.getBoolValue(); |
2735 | return Result; |
2736 | } |
2737 | |
2738 | static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E, |
2739 | const FPOptions FPO, |
2740 | QualType SrcType, const APSInt &Value, |
2741 | QualType DestType, APFloat &Result) { |
2742 | Result = APFloat(Info.Ctx.getFloatTypeSemantics(T: DestType), 1); |
2743 | llvm::RoundingMode RM = getActiveRoundingMode(Info, E); |
2744 | APFloat::opStatus St = Result.convertFromAPInt(Input: Value, IsSigned: Value.isSigned(), RM); |
2745 | return checkFloatingPointResult(Info, E, St); |
2746 | } |
2747 | |
2748 | static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E, |
2749 | APValue &Value, const FieldDecl *FD) { |
2750 | assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield" ); |
2751 | |
2752 | if (!Value.isInt()) { |
2753 | // Trying to store a pointer-cast-to-integer into a bitfield. |
2754 | // FIXME: In this case, we should provide the diagnostic for casting |
2755 | // a pointer to an integer. |
2756 | assert(Value.isLValue() && "integral value neither int nor lvalue?" ); |
2757 | Info.FFDiag(E); |
2758 | return false; |
2759 | } |
2760 | |
2761 | APSInt &Int = Value.getInt(); |
2762 | unsigned OldBitWidth = Int.getBitWidth(); |
2763 | unsigned NewBitWidth = FD->getBitWidthValue(Ctx: Info.Ctx); |
2764 | if (NewBitWidth < OldBitWidth) |
2765 | Int = Int.trunc(width: NewBitWidth).extend(width: OldBitWidth); |
2766 | return true; |
2767 | } |
2768 | |
2769 | /// Perform the given integer operation, which is known to need at most BitWidth |
2770 | /// bits, and check for overflow in the original type (if that type was not an |
2771 | /// unsigned type). |
2772 | template<typename Operation> |
2773 | static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E, |
2774 | const APSInt &LHS, const APSInt &RHS, |
2775 | unsigned BitWidth, Operation Op, |
2776 | APSInt &Result) { |
2777 | if (LHS.isUnsigned()) { |
2778 | Result = Op(LHS, RHS); |
2779 | return true; |
2780 | } |
2781 | |
2782 | APSInt Value(Op(LHS.extend(width: BitWidth), RHS.extend(width: BitWidth)), false); |
2783 | Result = Value.trunc(width: LHS.getBitWidth()); |
2784 | if (Result.extend(width: BitWidth) != Value) { |
2785 | if (Info.checkingForUndefinedBehavior()) |
2786 | Info.Ctx.getDiagnostics().Report(Loc: E->getExprLoc(), |
2787 | DiagID: diag::warn_integer_constant_overflow) |
2788 | << toString(I: Result, Radix: 10, Signed: Result.isSigned(), /*formatAsCLiteral=*/false, |
2789 | /*UpperCase=*/true, /*InsertSeparators=*/true) |
2790 | << E->getType() << E->getSourceRange(); |
2791 | return HandleOverflow(Info, E, SrcValue: Value, DestType: E->getType()); |
2792 | } |
2793 | return true; |
2794 | } |
2795 | |
2796 | /// Perform the given binary integer operation. |
2797 | static bool handleIntIntBinOp(EvalInfo &Info, const BinaryOperator *E, |
2798 | const APSInt &LHS, BinaryOperatorKind Opcode, |
2799 | APSInt RHS, APSInt &Result) { |
2800 | bool HandleOverflowResult = true; |
2801 | switch (Opcode) { |
2802 | default: |
2803 | Info.FFDiag(E); |
2804 | return false; |
2805 | case BO_Mul: |
2806 | return CheckedIntArithmetic(Info, E, LHS, RHS, BitWidth: LHS.getBitWidth() * 2, |
2807 | Op: std::multiplies<APSInt>(), Result); |
2808 | case BO_Add: |
2809 | return CheckedIntArithmetic(Info, E, LHS, RHS, BitWidth: LHS.getBitWidth() + 1, |
2810 | Op: std::plus<APSInt>(), Result); |
2811 | case BO_Sub: |
2812 | return CheckedIntArithmetic(Info, E, LHS, RHS, BitWidth: LHS.getBitWidth() + 1, |
2813 | Op: std::minus<APSInt>(), Result); |
2814 | case BO_And: Result = LHS & RHS; return true; |
2815 | case BO_Xor: Result = LHS ^ RHS; return true; |
2816 | case BO_Or: Result = LHS | RHS; return true; |
2817 | case BO_Div: |
2818 | case BO_Rem: |
2819 | if (RHS == 0) { |
2820 | Info.FFDiag(E, DiagId: diag::note_expr_divide_by_zero) |
2821 | << E->getRHS()->getSourceRange(); |
2822 | return false; |
2823 | } |
2824 | // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports |
2825 | // this operation and gives the two's complement result. |
2826 | if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() && |
2827 | LHS.isMinSignedValue()) |
2828 | HandleOverflowResult = HandleOverflow( |
2829 | Info, E, SrcValue: -LHS.extend(width: LHS.getBitWidth() + 1), DestType: E->getType()); |
2830 | Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS); |
2831 | return HandleOverflowResult; |
2832 | case BO_Shl: { |
2833 | if (Info.getLangOpts().OpenCL) |
2834 | // OpenCL 6.3j: shift values are effectively % word size of LHS. |
2835 | RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), |
2836 | static_cast<uint64_t>(LHS.getBitWidth() - 1)), |
2837 | RHS.isUnsigned()); |
2838 | else if (RHS.isSigned() && RHS.isNegative()) { |
2839 | // During constant-folding, a negative shift is an opposite shift. Such |
2840 | // a shift is not a constant expression. |
2841 | Info.CCEDiag(E, DiagId: diag::note_constexpr_negative_shift) << RHS; |
2842 | if (!Info.noteUndefinedBehavior()) |
2843 | return false; |
2844 | RHS = -RHS; |
2845 | goto shift_right; |
2846 | } |
2847 | shift_left: |
2848 | // C++11 [expr.shift]p1: Shift width must be less than the bit width of |
2849 | // the shifted type. |
2850 | unsigned SA = (unsigned) RHS.getLimitedValue(Limit: LHS.getBitWidth()-1); |
2851 | if (SA != RHS) { |
2852 | Info.CCEDiag(E, DiagId: diag::note_constexpr_large_shift) |
2853 | << RHS << E->getType() << LHS.getBitWidth(); |
2854 | if (!Info.noteUndefinedBehavior()) |
2855 | return false; |
2856 | } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) { |
2857 | // C++11 [expr.shift]p2: A signed left shift must have a non-negative |
2858 | // operand, and must not overflow the corresponding unsigned type. |
2859 | // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to |
2860 | // E1 x 2^E2 module 2^N. |
2861 | if (LHS.isNegative()) { |
2862 | Info.CCEDiag(E, DiagId: diag::note_constexpr_lshift_of_negative) << LHS; |
2863 | if (!Info.noteUndefinedBehavior()) |
2864 | return false; |
2865 | } else if (LHS.countl_zero() < SA) { |
2866 | Info.CCEDiag(E, DiagId: diag::note_constexpr_lshift_discards); |
2867 | if (!Info.noteUndefinedBehavior()) |
2868 | return false; |
2869 | } |
2870 | } |
2871 | Result = LHS << SA; |
2872 | return true; |
2873 | } |
2874 | case BO_Shr: { |
2875 | if (Info.getLangOpts().OpenCL) |
2876 | // OpenCL 6.3j: shift values are effectively % word size of LHS. |
2877 | RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), |
2878 | static_cast<uint64_t>(LHS.getBitWidth() - 1)), |
2879 | RHS.isUnsigned()); |
2880 | else if (RHS.isSigned() && RHS.isNegative()) { |
2881 | // During constant-folding, a negative shift is an opposite shift. Such a |
2882 | // shift is not a constant expression. |
2883 | Info.CCEDiag(E, DiagId: diag::note_constexpr_negative_shift) << RHS; |
2884 | if (!Info.noteUndefinedBehavior()) |
2885 | return false; |
2886 | RHS = -RHS; |
2887 | goto shift_left; |
2888 | } |
2889 | shift_right: |
2890 | // C++11 [expr.shift]p1: Shift width must be less than the bit width of the |
2891 | // shifted type. |
2892 | unsigned SA = (unsigned) RHS.getLimitedValue(Limit: LHS.getBitWidth()-1); |
2893 | if (SA != RHS) { |
2894 | Info.CCEDiag(E, DiagId: diag::note_constexpr_large_shift) |
2895 | << RHS << E->getType() << LHS.getBitWidth(); |
2896 | if (!Info.noteUndefinedBehavior()) |
2897 | return false; |
2898 | } |
2899 | |
2900 | Result = LHS >> SA; |
2901 | return true; |
2902 | } |
2903 | |
2904 | case BO_LT: Result = LHS < RHS; return true; |
2905 | case BO_GT: Result = LHS > RHS; return true; |
2906 | case BO_LE: Result = LHS <= RHS; return true; |
2907 | case BO_GE: Result = LHS >= RHS; return true; |
2908 | case BO_EQ: Result = LHS == RHS; return true; |
2909 | case BO_NE: Result = LHS != RHS; return true; |
2910 | case BO_Cmp: |
2911 | llvm_unreachable("BO_Cmp should be handled elsewhere" ); |
2912 | } |
2913 | } |
2914 | |
2915 | /// Perform the given binary floating-point operation, in-place, on LHS. |
2916 | static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E, |
2917 | APFloat &LHS, BinaryOperatorKind Opcode, |
2918 | const APFloat &RHS) { |
2919 | llvm::RoundingMode RM = getActiveRoundingMode(Info, E); |
2920 | APFloat::opStatus St; |
2921 | switch (Opcode) { |
2922 | default: |
2923 | Info.FFDiag(E); |
2924 | return false; |
2925 | case BO_Mul: |
2926 | St = LHS.multiply(RHS, RM); |
2927 | break; |
2928 | case BO_Add: |
2929 | St = LHS.add(RHS, RM); |
2930 | break; |
2931 | case BO_Sub: |
2932 | St = LHS.subtract(RHS, RM); |
2933 | break; |
2934 | case BO_Div: |
2935 | // [expr.mul]p4: |
2936 | // If the second operand of / or % is zero the behavior is undefined. |
2937 | if (RHS.isZero()) |
2938 | Info.CCEDiag(E, DiagId: diag::note_expr_divide_by_zero); |
2939 | St = LHS.divide(RHS, RM); |
2940 | break; |
2941 | } |
2942 | |
2943 | // [expr.pre]p4: |
2944 | // If during the evaluation of an expression, the result is not |
2945 | // mathematically defined [...], the behavior is undefined. |
2946 | // FIXME: C++ rules require us to not conform to IEEE 754 here. |
2947 | if (LHS.isNaN()) { |
2948 | Info.CCEDiag(E, DiagId: diag::note_constexpr_float_arithmetic) << LHS.isNaN(); |
2949 | return Info.noteUndefinedBehavior(); |
2950 | } |
2951 | |
2952 | return checkFloatingPointResult(Info, E, St); |
2953 | } |
2954 | |
2955 | static bool handleLogicalOpForVector(const APInt &LHSValue, |
2956 | BinaryOperatorKind Opcode, |
2957 | const APInt &RHSValue, APInt &Result) { |
2958 | bool LHS = (LHSValue != 0); |
2959 | bool RHS = (RHSValue != 0); |
2960 | |
2961 | if (Opcode == BO_LAnd) |
2962 | Result = LHS && RHS; |
2963 | else |
2964 | Result = LHS || RHS; |
2965 | return true; |
2966 | } |
2967 | static bool handleLogicalOpForVector(const APFloat &LHSValue, |
2968 | BinaryOperatorKind Opcode, |
2969 | const APFloat &RHSValue, APInt &Result) { |
2970 | bool LHS = !LHSValue.isZero(); |
2971 | bool RHS = !RHSValue.isZero(); |
2972 | |
2973 | if (Opcode == BO_LAnd) |
2974 | Result = LHS && RHS; |
2975 | else |
2976 | Result = LHS || RHS; |
2977 | return true; |
2978 | } |
2979 | |
2980 | static bool handleLogicalOpForVector(const APValue &LHSValue, |
2981 | BinaryOperatorKind Opcode, |
2982 | const APValue &RHSValue, APInt &Result) { |
2983 | // The result is always an int type, however operands match the first. |
2984 | if (LHSValue.getKind() == APValue::Int) |
2985 | return handleLogicalOpForVector(LHSValue: LHSValue.getInt(), Opcode, |
2986 | RHSValue: RHSValue.getInt(), Result); |
2987 | assert(LHSValue.getKind() == APValue::Float && "Should be no other options" ); |
2988 | return handleLogicalOpForVector(LHSValue: LHSValue.getFloat(), Opcode, |
2989 | RHSValue: RHSValue.getFloat(), Result); |
2990 | } |
2991 | |
2992 | template <typename APTy> |
2993 | static bool |
2994 | handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode, |
2995 | const APTy &RHSValue, APInt &Result) { |
2996 | switch (Opcode) { |
2997 | default: |
2998 | llvm_unreachable("unsupported binary operator" ); |
2999 | case BO_EQ: |
3000 | Result = (LHSValue == RHSValue); |
3001 | break; |
3002 | case BO_NE: |
3003 | Result = (LHSValue != RHSValue); |
3004 | break; |
3005 | case BO_LT: |
3006 | Result = (LHSValue < RHSValue); |
3007 | break; |
3008 | case BO_GT: |
3009 | Result = (LHSValue > RHSValue); |
3010 | break; |
3011 | case BO_LE: |
3012 | Result = (LHSValue <= RHSValue); |
3013 | break; |
3014 | case BO_GE: |
3015 | Result = (LHSValue >= RHSValue); |
3016 | break; |
3017 | } |
3018 | |
3019 | // The boolean operations on these vector types use an instruction that |
3020 | // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1 |
3021 | // to -1 to make sure that we produce the correct value. |
3022 | Result.negate(); |
3023 | |
3024 | return true; |
3025 | } |
3026 | |
3027 | static bool handleCompareOpForVector(const APValue &LHSValue, |
3028 | BinaryOperatorKind Opcode, |
3029 | const APValue &RHSValue, APInt &Result) { |
3030 | // The result is always an int type, however operands match the first. |
3031 | if (LHSValue.getKind() == APValue::Int) |
3032 | return handleCompareOpForVectorHelper(LHSValue: LHSValue.getInt(), Opcode, |
3033 | RHSValue: RHSValue.getInt(), Result); |
3034 | assert(LHSValue.getKind() == APValue::Float && "Should be no other options" ); |
3035 | return handleCompareOpForVectorHelper(LHSValue: LHSValue.getFloat(), Opcode, |
3036 | RHSValue: RHSValue.getFloat(), Result); |
3037 | } |
3038 | |
3039 | // Perform binary operations for vector types, in place on the LHS. |
3040 | static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E, |
3041 | BinaryOperatorKind Opcode, |
3042 | APValue &LHSValue, |
3043 | const APValue &RHSValue) { |
3044 | assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI && |
3045 | "Operation not supported on vector types" ); |
3046 | |
3047 | const auto *VT = E->getType()->castAs<VectorType>(); |
3048 | unsigned NumElements = VT->getNumElements(); |
3049 | QualType EltTy = VT->getElementType(); |
3050 | |
3051 | // In the cases (typically C as I've observed) where we aren't evaluating |
3052 | // constexpr but are checking for cases where the LHS isn't yet evaluatable, |
3053 | // just give up. |
3054 | if (!LHSValue.isVector()) { |
3055 | assert(LHSValue.isLValue() && |
3056 | "A vector result that isn't a vector OR uncalculated LValue" ); |
3057 | Info.FFDiag(E); |
3058 | return false; |
3059 | } |
3060 | |
3061 | assert(LHSValue.getVectorLength() == NumElements && |
3062 | RHSValue.getVectorLength() == NumElements && "Different vector sizes" ); |
3063 | |
3064 | SmallVector<APValue, 4> ResultElements; |
3065 | |
3066 | for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) { |
3067 | APValue LHSElt = LHSValue.getVectorElt(I: EltNum); |
3068 | APValue RHSElt = RHSValue.getVectorElt(I: EltNum); |
3069 | |
3070 | if (EltTy->isIntegerType()) { |
3071 | APSInt EltResult{Info.Ctx.getIntWidth(T: EltTy), |
3072 | EltTy->isUnsignedIntegerType()}; |
3073 | bool Success = true; |
3074 | |
3075 | if (BinaryOperator::isLogicalOp(Opc: Opcode)) |
3076 | Success = handleLogicalOpForVector(LHSValue: LHSElt, Opcode, RHSValue: RHSElt, Result&: EltResult); |
3077 | else if (BinaryOperator::isComparisonOp(Opc: Opcode)) |
3078 | Success = handleCompareOpForVector(LHSValue: LHSElt, Opcode, RHSValue: RHSElt, Result&: EltResult); |
3079 | else |
3080 | Success = handleIntIntBinOp(Info, E, LHS: LHSElt.getInt(), Opcode, |
3081 | RHS: RHSElt.getInt(), Result&: EltResult); |
3082 | |
3083 | if (!Success) { |
3084 | Info.FFDiag(E); |
3085 | return false; |
3086 | } |
3087 | ResultElements.emplace_back(Args&: EltResult); |
3088 | |
3089 | } else if (EltTy->isFloatingType()) { |
3090 | assert(LHSElt.getKind() == APValue::Float && |
3091 | RHSElt.getKind() == APValue::Float && |
3092 | "Mismatched LHS/RHS/Result Type" ); |
3093 | APFloat LHSFloat = LHSElt.getFloat(); |
3094 | |
3095 | if (!handleFloatFloatBinOp(Info, E, LHS&: LHSFloat, Opcode, |
3096 | RHS: RHSElt.getFloat())) { |
3097 | Info.FFDiag(E); |
3098 | return false; |
3099 | } |
3100 | |
3101 | ResultElements.emplace_back(Args&: LHSFloat); |
3102 | } |
3103 | } |
3104 | |
3105 | LHSValue = APValue(ResultElements.data(), ResultElements.size()); |
3106 | return true; |
3107 | } |
3108 | |
3109 | /// Cast an lvalue referring to a base subobject to a derived class, by |
3110 | /// truncating the lvalue's path to the given length. |
3111 | static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result, |
3112 | const RecordDecl *TruncatedType, |
3113 | unsigned TruncatedElements) { |
3114 | SubobjectDesignator &D = Result.Designator; |
3115 | |
3116 | // Check we actually point to a derived class object. |
3117 | if (TruncatedElements == D.Entries.size()) |
3118 | return true; |
3119 | assert(TruncatedElements >= D.MostDerivedPathLength && |
3120 | "not casting to a derived class" ); |
3121 | if (!Result.checkSubobject(Info, E, CSK: CSK_Derived)) |
3122 | return false; |
3123 | |
3124 | // Truncate the path to the subobject, and remove any derived-to-base offsets. |
3125 | const RecordDecl *RD = TruncatedType; |
3126 | for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) { |
3127 | if (RD->isInvalidDecl()) return false; |
3128 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD); |
3129 | const CXXRecordDecl *Base = getAsBaseClass(E: D.Entries[I]); |
3130 | if (isVirtualBaseClass(E: D.Entries[I])) |
3131 | Result.Offset -= Layout.getVBaseClassOffset(VBase: Base); |
3132 | else |
3133 | Result.Offset -= Layout.getBaseClassOffset(Base); |
3134 | RD = Base; |
3135 | } |
3136 | D.Entries.resize(N: TruncatedElements); |
3137 | return true; |
3138 | } |
3139 | |
3140 | static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj, |
3141 | const CXXRecordDecl *Derived, |
3142 | const CXXRecordDecl *Base, |
3143 | const ASTRecordLayout *RL = nullptr) { |
3144 | if (!RL) { |
3145 | if (Derived->isInvalidDecl()) return false; |
3146 | RL = &Info.Ctx.getASTRecordLayout(D: Derived); |
3147 | } |
3148 | |
3149 | Obj.getLValueOffset() += RL->getBaseClassOffset(Base); |
3150 | Obj.addDecl(Info, E, D: Base, /*Virtual*/ false); |
3151 | return true; |
3152 | } |
3153 | |
3154 | static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj, |
3155 | const CXXRecordDecl *DerivedDecl, |
3156 | const CXXBaseSpecifier *Base) { |
3157 | const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); |
3158 | |
3159 | if (!Base->isVirtual()) |
3160 | return HandleLValueDirectBase(Info, E, Obj, Derived: DerivedDecl, Base: BaseDecl); |
3161 | |
3162 | SubobjectDesignator &D = Obj.Designator; |
3163 | if (D.Invalid) |
3164 | return false; |
3165 | |
3166 | // Extract most-derived object and corresponding type. |
3167 | DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl(); |
3168 | if (!CastToDerivedClass(Info, E, Result&: Obj, TruncatedType: DerivedDecl, TruncatedElements: D.MostDerivedPathLength)) |
3169 | return false; |
3170 | |
3171 | // Find the virtual base class. |
3172 | if (DerivedDecl->isInvalidDecl()) return false; |
3173 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: DerivedDecl); |
3174 | Obj.getLValueOffset() += Layout.getVBaseClassOffset(VBase: BaseDecl); |
3175 | Obj.addDecl(Info, E, D: BaseDecl, /*Virtual*/ true); |
3176 | return true; |
3177 | } |
3178 | |
3179 | static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E, |
3180 | QualType Type, LValue &Result) { |
3181 | for (CastExpr::path_const_iterator PathI = E->path_begin(), |
3182 | PathE = E->path_end(); |
3183 | PathI != PathE; ++PathI) { |
3184 | if (!HandleLValueBase(Info, E, Obj&: Result, DerivedDecl: Type->getAsCXXRecordDecl(), |
3185 | Base: *PathI)) |
3186 | return false; |
3187 | Type = (*PathI)->getType(); |
3188 | } |
3189 | return true; |
3190 | } |
3191 | |
3192 | /// Cast an lvalue referring to a derived class to a known base subobject. |
3193 | static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result, |
3194 | const CXXRecordDecl *DerivedRD, |
3195 | const CXXRecordDecl *BaseRD) { |
3196 | CXXBasePaths Paths(/*FindAmbiguities=*/false, |
3197 | /*RecordPaths=*/true, /*DetectVirtual=*/false); |
3198 | if (!DerivedRD->isDerivedFrom(Base: BaseRD, Paths)) |
3199 | llvm_unreachable("Class must be derived from the passed in base class!" ); |
3200 | |
3201 | for (CXXBasePathElement &Elem : Paths.front()) |
3202 | if (!HandleLValueBase(Info, E, Obj&: Result, DerivedDecl: Elem.Class, Base: Elem.Base)) |
3203 | return false; |
3204 | return true; |
3205 | } |
3206 | |
3207 | /// Update LVal to refer to the given field, which must be a member of the type |
3208 | /// currently described by LVal. |
3209 | static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal, |
3210 | const FieldDecl *FD, |
3211 | const ASTRecordLayout *RL = nullptr) { |
3212 | if (!RL) { |
3213 | if (FD->getParent()->isInvalidDecl()) return false; |
3214 | RL = &Info.Ctx.getASTRecordLayout(D: FD->getParent()); |
3215 | } |
3216 | |
3217 | unsigned I = FD->getFieldIndex(); |
3218 | LVal.adjustOffset(N: Info.Ctx.toCharUnitsFromBits(BitSize: RL->getFieldOffset(FieldNo: I))); |
3219 | LVal.addDecl(Info, E, D: FD); |
3220 | return true; |
3221 | } |
3222 | |
3223 | /// Update LVal to refer to the given indirect field. |
3224 | static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E, |
3225 | LValue &LVal, |
3226 | const IndirectFieldDecl *IFD) { |
3227 | for (const auto *C : IFD->chain()) |
3228 | if (!HandleLValueMember(Info, E, LVal, FD: cast<FieldDecl>(Val: C))) |
3229 | return false; |
3230 | return true; |
3231 | } |
3232 | |
3233 | enum class SizeOfType { |
3234 | SizeOf, |
3235 | DataSizeOf, |
3236 | }; |
3237 | |
3238 | /// Get the size of the given type in char units. |
3239 | static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, QualType Type, |
3240 | CharUnits &Size, SizeOfType SOT = SizeOfType::SizeOf) { |
3241 | // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc |
3242 | // extension. |
3243 | if (Type->isVoidType() || Type->isFunctionType()) { |
3244 | Size = CharUnits::One(); |
3245 | return true; |
3246 | } |
3247 | |
3248 | if (Type->isDependentType()) { |
3249 | Info.FFDiag(Loc); |
3250 | return false; |
3251 | } |
3252 | |
3253 | if (!Type->isConstantSizeType()) { |
3254 | // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. |
3255 | // FIXME: Better diagnostic. |
3256 | Info.FFDiag(Loc); |
3257 | return false; |
3258 | } |
3259 | |
3260 | if (SOT == SizeOfType::SizeOf) |
3261 | Size = Info.Ctx.getTypeSizeInChars(T: Type); |
3262 | else |
3263 | Size = Info.Ctx.getTypeInfoDataSizeInChars(T: Type).Width; |
3264 | return true; |
3265 | } |
3266 | |
3267 | /// Update a pointer value to model pointer arithmetic. |
3268 | /// \param Info - Information about the ongoing evaluation. |
3269 | /// \param E - The expression being evaluated, for diagnostic purposes. |
3270 | /// \param LVal - The pointer value to be updated. |
3271 | /// \param EltTy - The pointee type represented by LVal. |
3272 | /// \param Adjustment - The adjustment, in objects of type EltTy, to add. |
3273 | static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, |
3274 | LValue &LVal, QualType EltTy, |
3275 | APSInt Adjustment) { |
3276 | CharUnits SizeOfPointee; |
3277 | if (!HandleSizeof(Info, Loc: E->getExprLoc(), Type: EltTy, Size&: SizeOfPointee)) |
3278 | return false; |
3279 | |
3280 | LVal.adjustOffsetAndIndex(Info, E, Index: Adjustment, ElementSize: SizeOfPointee); |
3281 | return true; |
3282 | } |
3283 | |
3284 | static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, |
3285 | LValue &LVal, QualType EltTy, |
3286 | int64_t Adjustment) { |
3287 | return HandleLValueArrayAdjustment(Info, E, LVal, EltTy, |
3288 | Adjustment: APSInt::get(X: Adjustment)); |
3289 | } |
3290 | |
3291 | /// Update an lvalue to refer to a component of a complex number. |
3292 | /// \param Info - Information about the ongoing evaluation. |
3293 | /// \param LVal - The lvalue to be updated. |
3294 | /// \param EltTy - The complex number's component type. |
3295 | /// \param Imag - False for the real component, true for the imaginary. |
3296 | static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E, |
3297 | LValue &LVal, QualType EltTy, |
3298 | bool Imag) { |
3299 | if (Imag) { |
3300 | CharUnits SizeOfComponent; |
3301 | if (!HandleSizeof(Info, Loc: E->getExprLoc(), Type: EltTy, Size&: SizeOfComponent)) |
3302 | return false; |
3303 | LVal.Offset += SizeOfComponent; |
3304 | } |
3305 | LVal.addComplex(Info, E, EltTy, Imag); |
3306 | return true; |
3307 | } |
3308 | |
3309 | /// Try to evaluate the initializer for a variable declaration. |
3310 | /// |
3311 | /// \param Info Information about the ongoing evaluation. |
3312 | /// \param E An expression to be used when printing diagnostics. |
3313 | /// \param VD The variable whose initializer should be obtained. |
3314 | /// \param Version The version of the variable within the frame. |
3315 | /// \param Frame The frame in which the variable was created. Must be null |
3316 | /// if this variable is not local to the evaluation. |
3317 | /// \param Result Filled in with a pointer to the value of the variable. |
3318 | static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E, |
3319 | const VarDecl *VD, CallStackFrame *Frame, |
3320 | unsigned Version, APValue *&Result) { |
3321 | APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version); |
3322 | |
3323 | // If this is a local variable, dig out its value. |
3324 | if (Frame) { |
3325 | Result = Frame->getTemporary(Key: VD, Version); |
3326 | if (Result) |
3327 | return true; |
3328 | |
3329 | if (!isa<ParmVarDecl>(Val: VD)) { |
3330 | // Assume variables referenced within a lambda's call operator that were |
3331 | // not declared within the call operator are captures and during checking |
3332 | // of a potential constant expression, assume they are unknown constant |
3333 | // expressions. |
3334 | assert(isLambdaCallOperator(Frame->Callee) && |
3335 | (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && |
3336 | "missing value for local variable" ); |
3337 | if (Info.checkingPotentialConstantExpression()) |
3338 | return false; |
3339 | // FIXME: This diagnostic is bogus; we do support captures. Is this code |
3340 | // still reachable at all? |
3341 | Info.FFDiag(Loc: E->getBeginLoc(), |
3342 | DiagId: diag::note_unimplemented_constexpr_lambda_feature_ast) |
3343 | << "captures not currently allowed" ; |
3344 | return false; |
3345 | } |
3346 | } |
3347 | |
3348 | // If we're currently evaluating the initializer of this declaration, use that |
3349 | // in-flight value. |
3350 | if (Info.EvaluatingDecl == Base) { |
3351 | Result = Info.EvaluatingDeclValue; |
3352 | return true; |
3353 | } |
3354 | |
3355 | if (isa<ParmVarDecl>(Val: VD)) { |
3356 | // Assume parameters of a potential constant expression are usable in |
3357 | // constant expressions. |
3358 | if (!Info.checkingPotentialConstantExpression() || |
3359 | !Info.CurrentCall->Callee || |
3360 | !Info.CurrentCall->Callee->Equals(DC: VD->getDeclContext())) { |
3361 | if (Info.getLangOpts().CPlusPlus11) { |
3362 | Info.FFDiag(E, DiagId: diag::note_constexpr_function_param_value_unknown) |
3363 | << VD; |
3364 | NoteLValueLocation(Info, Base); |
3365 | } else { |
3366 | Info.FFDiag(E); |
3367 | } |
3368 | } |
3369 | return false; |
3370 | } |
3371 | |
3372 | if (E->isValueDependent()) |
3373 | return false; |
3374 | |
3375 | // Dig out the initializer, and use the declaration which it's attached to. |
3376 | // FIXME: We should eventually check whether the variable has a reachable |
3377 | // initializing declaration. |
3378 | const Expr *Init = VD->getAnyInitializer(D&: VD); |
3379 | if (!Init) { |
3380 | // Don't diagnose during potential constant expression checking; an |
3381 | // initializer might be added later. |
3382 | if (!Info.checkingPotentialConstantExpression()) { |
3383 | Info.FFDiag(E, DiagId: diag::note_constexpr_var_init_unknown, ExtraNotes: 1) |
3384 | << VD; |
3385 | NoteLValueLocation(Info, Base); |
3386 | } |
3387 | return false; |
3388 | } |
3389 | |
3390 | if (Init->isValueDependent()) { |
3391 | // The DeclRefExpr is not value-dependent, but the variable it refers to |
3392 | // has a value-dependent initializer. This should only happen in |
3393 | // constant-folding cases, where the variable is not actually of a suitable |
3394 | // type for use in a constant expression (otherwise the DeclRefExpr would |
3395 | // have been value-dependent too), so diagnose that. |
3396 | assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx)); |
3397 | if (!Info.checkingPotentialConstantExpression()) { |
3398 | Info.FFDiag(E, DiagId: Info.getLangOpts().CPlusPlus11 |
3399 | ? diag::note_constexpr_ltor_non_constexpr |
3400 | : diag::note_constexpr_ltor_non_integral, ExtraNotes: 1) |
3401 | << VD << VD->getType(); |
3402 | NoteLValueLocation(Info, Base); |
3403 | } |
3404 | return false; |
3405 | } |
3406 | |
3407 | // Check that we can fold the initializer. In C++, we will have already done |
3408 | // this in the cases where it matters for conformance. |
3409 | if (!VD->evaluateValue()) { |
3410 | Info.FFDiag(E, DiagId: diag::note_constexpr_var_init_non_constant, ExtraNotes: 1) << VD; |
3411 | NoteLValueLocation(Info, Base); |
3412 | return false; |
3413 | } |
3414 | |
3415 | // Check that the variable is actually usable in constant expressions. For a |
3416 | // const integral variable or a reference, we might have a non-constant |
3417 | // initializer that we can nonetheless evaluate the initializer for. Such |
3418 | // variables are not usable in constant expressions. In C++98, the |
3419 | // initializer also syntactically needs to be an ICE. |
3420 | // |
3421 | // FIXME: We don't diagnose cases that aren't potentially usable in constant |
3422 | // expressions here; doing so would regress diagnostics for things like |
3423 | // reading from a volatile constexpr variable. |
3424 | if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() && |
3425 | VD->mightBeUsableInConstantExpressions(C: Info.Ctx)) || |
3426 | ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) && |
3427 | !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Context: Info.Ctx))) { |
3428 | Info.CCEDiag(E, DiagId: diag::note_constexpr_var_init_non_constant, ExtraNotes: 1) << VD; |
3429 | NoteLValueLocation(Info, Base); |
3430 | } |
3431 | |
3432 | // Never use the initializer of a weak variable, not even for constant |
3433 | // folding. We can't be sure that this is the definition that will be used. |
3434 | if (VD->isWeak()) { |
3435 | Info.FFDiag(E, DiagId: diag::note_constexpr_var_init_weak) << VD; |
3436 | NoteLValueLocation(Info, Base); |
3437 | return false; |
3438 | } |
3439 | |
3440 | Result = VD->getEvaluatedValue(); |
3441 | return true; |
3442 | } |
3443 | |
3444 | /// Get the base index of the given base class within an APValue representing |
3445 | /// the given derived class. |
3446 | static unsigned getBaseIndex(const CXXRecordDecl *Derived, |
3447 | const CXXRecordDecl *Base) { |
3448 | Base = Base->getCanonicalDecl(); |
3449 | unsigned Index = 0; |
3450 | for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(), |
3451 | E = Derived->bases_end(); I != E; ++I, ++Index) { |
3452 | if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base) |
3453 | return Index; |
3454 | } |
3455 | |
3456 | llvm_unreachable("base class missing from derived class's bases list" ); |
3457 | } |
3458 | |
3459 | /// Extract the value of a character from a string literal. |
3460 | static APSInt (EvalInfo &Info, const Expr *Lit, |
3461 | uint64_t Index) { |
3462 | assert(!isa<SourceLocExpr>(Lit) && |
3463 | "SourceLocExpr should have already been converted to a StringLiteral" ); |
3464 | |
3465 | // FIXME: Support MakeStringConstant |
3466 | if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Val: Lit)) { |
3467 | std::string Str; |
3468 | Info.Ctx.getObjCEncodingForType(T: ObjCEnc->getEncodedType(), S&: Str); |
3469 | assert(Index <= Str.size() && "Index too large" ); |
3470 | return APSInt::getUnsigned(X: Str.c_str()[Index]); |
3471 | } |
3472 | |
3473 | if (auto PE = dyn_cast<PredefinedExpr>(Val: Lit)) |
3474 | Lit = PE->getFunctionName(); |
3475 | const StringLiteral *S = cast<StringLiteral>(Val: Lit); |
3476 | const ConstantArrayType *CAT = |
3477 | Info.Ctx.getAsConstantArrayType(T: S->getType()); |
3478 | assert(CAT && "string literal isn't an array" ); |
3479 | QualType CharType = CAT->getElementType(); |
3480 | assert(CharType->isIntegerType() && "unexpected character type" ); |
3481 | APSInt Value(Info.Ctx.getTypeSize(T: CharType), |
3482 | CharType->isUnsignedIntegerType()); |
3483 | if (Index < S->getLength()) |
3484 | Value = S->getCodeUnit(i: Index); |
3485 | return Value; |
3486 | } |
3487 | |
3488 | // Expand a string literal into an array of characters. |
3489 | // |
3490 | // FIXME: This is inefficient; we should probably introduce something similar |
3491 | // to the LLVM ConstantDataArray to make this cheaper. |
3492 | static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S, |
3493 | APValue &Result, |
3494 | QualType AllocType = QualType()) { |
3495 | const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( |
3496 | T: AllocType.isNull() ? S->getType() : AllocType); |
3497 | assert(CAT && "string literal isn't an array" ); |
3498 | QualType CharType = CAT->getElementType(); |
3499 | assert(CharType->isIntegerType() && "unexpected character type" ); |
3500 | |
3501 | unsigned Elts = CAT->getZExtSize(); |
3502 | Result = APValue(APValue::UninitArray(), |
3503 | std::min(a: S->getLength(), b: Elts), Elts); |
3504 | APSInt Value(Info.Ctx.getTypeSize(T: CharType), |
3505 | CharType->isUnsignedIntegerType()); |
3506 | if (Result.hasArrayFiller()) |
3507 | Result.getArrayFiller() = APValue(Value); |
3508 | for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) { |
3509 | Value = S->getCodeUnit(i: I); |
3510 | Result.getArrayInitializedElt(I) = APValue(Value); |
3511 | } |
3512 | } |
3513 | |
3514 | // Expand an array so that it has more than Index filled elements. |
3515 | static void expandArray(APValue &Array, unsigned Index) { |
3516 | unsigned Size = Array.getArraySize(); |
3517 | assert(Index < Size); |
3518 | |
3519 | // Always at least double the number of elements for which we store a value. |
3520 | unsigned OldElts = Array.getArrayInitializedElts(); |
3521 | unsigned NewElts = std::max(a: Index+1, b: OldElts * 2); |
3522 | NewElts = std::min(a: Size, b: std::max(a: NewElts, b: 8u)); |
3523 | |
3524 | // Copy the data across. |
3525 | APValue NewValue(APValue::UninitArray(), NewElts, Size); |
3526 | for (unsigned I = 0; I != OldElts; ++I) |
3527 | NewValue.getArrayInitializedElt(I).swap(RHS&: Array.getArrayInitializedElt(I)); |
3528 | for (unsigned I = OldElts; I != NewElts; ++I) |
3529 | NewValue.getArrayInitializedElt(I) = Array.getArrayFiller(); |
3530 | if (NewValue.hasArrayFiller()) |
3531 | NewValue.getArrayFiller() = Array.getArrayFiller(); |
3532 | Array.swap(RHS&: NewValue); |
3533 | } |
3534 | |
3535 | /// Determine whether a type would actually be read by an lvalue-to-rvalue |
3536 | /// conversion. If it's of class type, we may assume that the copy operation |
3537 | /// is trivial. Note that this is never true for a union type with fields |
3538 | /// (because the copy always "reads" the active member) and always true for |
3539 | /// a non-class type. |
3540 | static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD); |
3541 | static bool isReadByLvalueToRvalueConversion(QualType T) { |
3542 | CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
3543 | return !RD || isReadByLvalueToRvalueConversion(RD); |
3544 | } |
3545 | static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) { |
3546 | // FIXME: A trivial copy of a union copies the object representation, even if |
3547 | // the union is empty. |
3548 | if (RD->isUnion()) |
3549 | return !RD->field_empty(); |
3550 | if (RD->isEmpty()) |
3551 | return false; |
3552 | |
3553 | for (auto *Field : RD->fields()) |
3554 | if (!Field->isUnnamedBitField() && |
3555 | isReadByLvalueToRvalueConversion(T: Field->getType())) |
3556 | return true; |
3557 | |
3558 | for (auto &BaseSpec : RD->bases()) |
3559 | if (isReadByLvalueToRvalueConversion(T: BaseSpec.getType())) |
3560 | return true; |
3561 | |
3562 | return false; |
3563 | } |
3564 | |
3565 | /// Diagnose an attempt to read from any unreadable field within the specified |
3566 | /// type, which might be a class type. |
3567 | static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK, |
3568 | QualType T) { |
3569 | CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
3570 | if (!RD) |
3571 | return false; |
3572 | |
3573 | if (!RD->hasMutableFields()) |
3574 | return false; |
3575 | |
3576 | for (auto *Field : RD->fields()) { |
3577 | // If we're actually going to read this field in some way, then it can't |
3578 | // be mutable. If we're in a union, then assigning to a mutable field |
3579 | // (even an empty one) can change the active member, so that's not OK. |
3580 | // FIXME: Add core issue number for the union case. |
3581 | if (Field->isMutable() && |
3582 | (RD->isUnion() || isReadByLvalueToRvalueConversion(T: Field->getType()))) { |
3583 | Info.FFDiag(E, DiagId: diag::note_constexpr_access_mutable, ExtraNotes: 1) << AK << Field; |
3584 | Info.Note(Loc: Field->getLocation(), DiagId: diag::note_declared_at); |
3585 | return true; |
3586 | } |
3587 | |
3588 | if (diagnoseMutableFields(Info, E, AK, T: Field->getType())) |
3589 | return true; |
3590 | } |
3591 | |
3592 | for (auto &BaseSpec : RD->bases()) |
3593 | if (diagnoseMutableFields(Info, E, AK, T: BaseSpec.getType())) |
3594 | return true; |
3595 | |
3596 | // All mutable fields were empty, and thus not actually read. |
3597 | return false; |
3598 | } |
3599 | |
3600 | static bool lifetimeStartedInEvaluation(EvalInfo &Info, |
3601 | APValue::LValueBase Base, |
3602 | bool MutableSubobject = false) { |
3603 | // A temporary or transient heap allocation we created. |
3604 | if (Base.getCallIndex() || Base.is<DynamicAllocLValue>()) |
3605 | return true; |
3606 | |
3607 | switch (Info.IsEvaluatingDecl) { |
3608 | case EvalInfo::EvaluatingDeclKind::None: |
3609 | return false; |
3610 | |
3611 | case EvalInfo::EvaluatingDeclKind::Ctor: |
3612 | // The variable whose initializer we're evaluating. |
3613 | if (Info.EvaluatingDecl == Base) |
3614 | return true; |
3615 | |
3616 | // A temporary lifetime-extended by the variable whose initializer we're |
3617 | // evaluating. |
3618 | if (auto *BaseE = Base.dyn_cast<const Expr *>()) |
3619 | if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(Val: BaseE)) |
3620 | return Info.EvaluatingDecl == BaseMTE->getExtendingDecl(); |
3621 | return false; |
3622 | |
3623 | case EvalInfo::EvaluatingDeclKind::Dtor: |
3624 | // C++2a [expr.const]p6: |
3625 | // [during constant destruction] the lifetime of a and its non-mutable |
3626 | // subobjects (but not its mutable subobjects) [are] considered to start |
3627 | // within e. |
3628 | if (MutableSubobject || Base != Info.EvaluatingDecl) |
3629 | return false; |
3630 | // FIXME: We can meaningfully extend this to cover non-const objects, but |
3631 | // we will need special handling: we should be able to access only |
3632 | // subobjects of such objects that are themselves declared const. |
3633 | QualType T = getType(B: Base); |
3634 | return T.isConstQualified() || T->isReferenceType(); |
3635 | } |
3636 | |
3637 | llvm_unreachable("unknown evaluating decl kind" ); |
3638 | } |
3639 | |
3640 | static bool CheckArraySize(EvalInfo &Info, const ConstantArrayType *CAT, |
3641 | SourceLocation CallLoc = {}) { |
3642 | return Info.CheckArraySize( |
3643 | Loc: CAT->getSizeExpr() ? CAT->getSizeExpr()->getBeginLoc() : CallLoc, |
3644 | BitWidth: CAT->getNumAddressingBits(Context: Info.Ctx), ElemCount: CAT->getZExtSize(), |
3645 | /*Diag=*/true); |
3646 | } |
3647 | |
3648 | namespace { |
3649 | /// A handle to a complete object (an object that is not a subobject of |
3650 | /// another object). |
3651 | struct CompleteObject { |
3652 | /// The identity of the object. |
3653 | APValue::LValueBase Base; |
3654 | /// The value of the complete object. |
3655 | APValue *Value; |
3656 | /// The type of the complete object. |
3657 | QualType Type; |
3658 | |
3659 | CompleteObject() : Value(nullptr) {} |
3660 | CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type) |
3661 | : Base(Base), Value(Value), Type(Type) {} |
3662 | |
3663 | bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const { |
3664 | // If this isn't a "real" access (eg, if it's just accessing the type |
3665 | // info), allow it. We assume the type doesn't change dynamically for |
3666 | // subobjects of constexpr objects (even though we'd hit UB here if it |
3667 | // did). FIXME: Is this right? |
3668 | if (!isAnyAccess(AK)) |
3669 | return true; |
3670 | |
3671 | // In C++14 onwards, it is permitted to read a mutable member whose |
3672 | // lifetime began within the evaluation. |
3673 | // FIXME: Should we also allow this in C++11? |
3674 | if (!Info.getLangOpts().CPlusPlus14) |
3675 | return false; |
3676 | return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true); |
3677 | } |
3678 | |
3679 | explicit operator bool() const { return !Type.isNull(); } |
3680 | }; |
3681 | } // end anonymous namespace |
3682 | |
3683 | static QualType getSubobjectType(QualType ObjType, QualType SubobjType, |
3684 | bool IsMutable = false) { |
3685 | // C++ [basic.type.qualifier]p1: |
3686 | // - A const object is an object of type const T or a non-mutable subobject |
3687 | // of a const object. |
3688 | if (ObjType.isConstQualified() && !IsMutable) |
3689 | SubobjType.addConst(); |
3690 | // - A volatile object is an object of type const T or a subobject of a |
3691 | // volatile object. |
3692 | if (ObjType.isVolatileQualified()) |
3693 | SubobjType.addVolatile(); |
3694 | return SubobjType; |
3695 | } |
3696 | |
3697 | /// Find the designated sub-object of an rvalue. |
3698 | template<typename SubobjectHandler> |
3699 | typename SubobjectHandler::result_type |
3700 | findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj, |
3701 | const SubobjectDesignator &Sub, SubobjectHandler &handler) { |
3702 | if (Sub.Invalid) |
3703 | // A diagnostic will have already been produced. |
3704 | return handler.failed(); |
3705 | if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) { |
3706 | if (Info.getLangOpts().CPlusPlus11) |
3707 | Info.FFDiag(E, DiagId: Sub.isOnePastTheEnd() |
3708 | ? diag::note_constexpr_access_past_end |
3709 | : diag::note_constexpr_access_unsized_array) |
3710 | << handler.AccessKind; |
3711 | else |
3712 | Info.FFDiag(E); |
3713 | return handler.failed(); |
3714 | } |
3715 | |
3716 | APValue *O = Obj.Value; |
3717 | QualType ObjType = Obj.Type; |
3718 | const FieldDecl *LastField = nullptr; |
3719 | const FieldDecl *VolatileField = nullptr; |
3720 | |
3721 | // Walk the designator's path to find the subobject. |
3722 | for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) { |
3723 | // Reading an indeterminate value is undefined, but assigning over one is OK. |
3724 | if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) || |
3725 | (O->isIndeterminate() && |
3726 | !isValidIndeterminateAccess(handler.AccessKind))) { |
3727 | if (!Info.checkingPotentialConstantExpression()) |
3728 | Info.FFDiag(E, DiagId: diag::note_constexpr_access_uninit) |
3729 | << handler.AccessKind << O->isIndeterminate() |
3730 | << E->getSourceRange(); |
3731 | return handler.failed(); |
3732 | } |
3733 | |
3734 | // C++ [class.ctor]p5, C++ [class.dtor]p5: |
3735 | // const and volatile semantics are not applied on an object under |
3736 | // {con,de}struction. |
3737 | if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) && |
3738 | ObjType->isRecordType() && |
3739 | Info.isEvaluatingCtorDtor( |
3740 | Base: Obj.Base, |
3741 | Path: llvm::ArrayRef(Sub.Entries.begin(), Sub.Entries.begin() + I)) != |
3742 | ConstructionPhase::None) { |
3743 | ObjType = Info.Ctx.getCanonicalType(T: ObjType); |
3744 | ObjType.removeLocalConst(); |
3745 | ObjType.removeLocalVolatile(); |
3746 | } |
3747 | |
3748 | // If this is our last pass, check that the final object type is OK. |
3749 | if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) { |
3750 | // Accesses to volatile objects are prohibited. |
3751 | if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) { |
3752 | if (Info.getLangOpts().CPlusPlus) { |
3753 | int DiagKind; |
3754 | SourceLocation Loc; |
3755 | const NamedDecl *Decl = nullptr; |
3756 | if (VolatileField) { |
3757 | DiagKind = 2; |
3758 | Loc = VolatileField->getLocation(); |
3759 | Decl = VolatileField; |
3760 | } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) { |
3761 | DiagKind = 1; |
3762 | Loc = VD->getLocation(); |
3763 | Decl = VD; |
3764 | } else { |
3765 | DiagKind = 0; |
3766 | if (auto *E = Obj.Base.dyn_cast<const Expr *>()) |
3767 | Loc = E->getExprLoc(); |
3768 | } |
3769 | Info.FFDiag(E, DiagId: diag::note_constexpr_access_volatile_obj, ExtraNotes: 1) |
3770 | << handler.AccessKind << DiagKind << Decl; |
3771 | Info.Note(Loc, DiagId: diag::note_constexpr_volatile_here) << DiagKind; |
3772 | } else { |
3773 | Info.FFDiag(E, DiagId: diag::note_invalid_subexpr_in_const_expr); |
3774 | } |
3775 | return handler.failed(); |
3776 | } |
3777 | |
3778 | // If we are reading an object of class type, there may still be more |
3779 | // things we need to check: if there are any mutable subobjects, we |
3780 | // cannot perform this read. (This only happens when performing a trivial |
3781 | // copy or assignment.) |
3782 | if (ObjType->isRecordType() && |
3783 | !Obj.mayAccessMutableMembers(Info, AK: handler.AccessKind) && |
3784 | diagnoseMutableFields(Info, E, handler.AccessKind, ObjType)) |
3785 | return handler.failed(); |
3786 | } |
3787 | |
3788 | if (I == N) { |
3789 | if (!handler.found(*O, ObjType)) |
3790 | return false; |
3791 | |
3792 | // If we modified a bit-field, truncate it to the right width. |
3793 | if (isModification(handler.AccessKind) && |
3794 | LastField && LastField->isBitField() && |
3795 | !truncateBitfieldValue(Info, E, Value&: *O, FD: LastField)) |
3796 | return false; |
3797 | |
3798 | return true; |
3799 | } |
3800 | |
3801 | LastField = nullptr; |
3802 | if (ObjType->isArrayType()) { |
3803 | // Next subobject is an array element. |
3804 | const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T: ObjType); |
3805 | assert(CAT && "vla in literal type?" ); |
3806 | uint64_t Index = Sub.Entries[I].getAsArrayIndex(); |
3807 | if (CAT->getSize().ule(RHS: Index)) { |
3808 | // Note, it should not be possible to form a pointer with a valid |
3809 | // designator which points more than one past the end of the array. |
3810 | if (Info.getLangOpts().CPlusPlus11) |
3811 | Info.FFDiag(E, DiagId: diag::note_constexpr_access_past_end) |
3812 | << handler.AccessKind; |
3813 | else |
3814 | Info.FFDiag(E); |
3815 | return handler.failed(); |
3816 | } |
3817 | |
3818 | ObjType = CAT->getElementType(); |
3819 | |
3820 | if (O->getArrayInitializedElts() > Index) |
3821 | O = &O->getArrayInitializedElt(I: Index); |
3822 | else if (!isRead(handler.AccessKind)) { |
3823 | if (!CheckArraySize(Info, CAT, CallLoc: E->getExprLoc())) |
3824 | return handler.failed(); |
3825 | |
3826 | expandArray(Array&: *O, Index); |
3827 | O = &O->getArrayInitializedElt(I: Index); |
3828 | } else |
3829 | O = &O->getArrayFiller(); |
3830 | } else if (ObjType->isAnyComplexType()) { |
3831 | // Next subobject is a complex number. |
3832 | uint64_t Index = Sub.Entries[I].getAsArrayIndex(); |
3833 | if (Index > 1) { |
3834 | if (Info.getLangOpts().CPlusPlus11) |
3835 | Info.FFDiag(E, DiagId: diag::note_constexpr_access_past_end) |
3836 | << handler.AccessKind; |
3837 | else |
3838 | Info.FFDiag(E); |
3839 | return handler.failed(); |
3840 | } |
3841 | |
3842 | ObjType = getSubobjectType( |
3843 | ObjType, SubobjType: ObjType->castAs<ComplexType>()->getElementType()); |
3844 | |
3845 | assert(I == N - 1 && "extracting subobject of scalar?" ); |
3846 | if (O->isComplexInt()) { |
3847 | return handler.found(Index ? O->getComplexIntImag() |
3848 | : O->getComplexIntReal(), ObjType); |
3849 | } else { |
3850 | assert(O->isComplexFloat()); |
3851 | return handler.found(Index ? O->getComplexFloatImag() |
3852 | : O->getComplexFloatReal(), ObjType); |
3853 | } |
3854 | } else if (const FieldDecl *Field = getAsField(E: Sub.Entries[I])) { |
3855 | if (Field->isMutable() && |
3856 | !Obj.mayAccessMutableMembers(Info, AK: handler.AccessKind)) { |
3857 | Info.FFDiag(E, DiagId: diag::note_constexpr_access_mutable, ExtraNotes: 1) |
3858 | << handler.AccessKind << Field; |
3859 | Info.Note(Loc: Field->getLocation(), DiagId: diag::note_declared_at); |
3860 | return handler.failed(); |
3861 | } |
3862 | |
3863 | // Next subobject is a class, struct or union field. |
3864 | RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); |
3865 | if (RD->isUnion()) { |
3866 | const FieldDecl *UnionField = O->getUnionField(); |
3867 | if (!UnionField || |
3868 | UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) { |
3869 | if (I == N - 1 && handler.AccessKind == AK_Construct) { |
3870 | // Placement new onto an inactive union member makes it active. |
3871 | O->setUnion(Field, Value: APValue()); |
3872 | } else { |
3873 | // FIXME: If O->getUnionValue() is absent, report that there's no |
3874 | // active union member rather than reporting the prior active union |
3875 | // member. We'll need to fix nullptr_t to not use APValue() as its |
3876 | // representation first. |
3877 | Info.FFDiag(E, DiagId: diag::note_constexpr_access_inactive_union_member) |
3878 | << handler.AccessKind << Field << !UnionField << UnionField; |
3879 | return handler.failed(); |
3880 | } |
3881 | } |
3882 | O = &O->getUnionValue(); |
3883 | } else |
3884 | O = &O->getStructField(i: Field->getFieldIndex()); |
3885 | |
3886 | ObjType = getSubobjectType(ObjType, SubobjType: Field->getType(), IsMutable: Field->isMutable()); |
3887 | LastField = Field; |
3888 | if (Field->getType().isVolatileQualified()) |
3889 | VolatileField = Field; |
3890 | } else { |
3891 | // Next subobject is a base class. |
3892 | const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); |
3893 | const CXXRecordDecl *Base = getAsBaseClass(E: Sub.Entries[I]); |
3894 | O = &O->getStructBase(i: getBaseIndex(Derived, Base)); |
3895 | |
3896 | ObjType = getSubobjectType(ObjType, SubobjType: Info.Ctx.getRecordType(Decl: Base)); |
3897 | } |
3898 | } |
3899 | } |
3900 | |
3901 | namespace { |
3902 | struct ExtractSubobjectHandler { |
3903 | EvalInfo &Info; |
3904 | const Expr *E; |
3905 | APValue &Result; |
3906 | const AccessKinds AccessKind; |
3907 | |
3908 | typedef bool result_type; |
3909 | bool failed() { return false; } |
3910 | bool found(APValue &Subobj, QualType SubobjType) { |
3911 | Result = Subobj; |
3912 | if (AccessKind == AK_ReadObjectRepresentation) |
3913 | return true; |
3914 | return CheckFullyInitialized(Info, DiagLoc: E->getExprLoc(), Type: SubobjType, Value: Result); |
3915 | } |
3916 | bool found(APSInt &Value, QualType SubobjType) { |
3917 | Result = APValue(Value); |
3918 | return true; |
3919 | } |
3920 | bool found(APFloat &Value, QualType SubobjType) { |
3921 | Result = APValue(Value); |
3922 | return true; |
3923 | } |
3924 | }; |
3925 | } // end anonymous namespace |
3926 | |
3927 | /// Extract the designated sub-object of an rvalue. |
3928 | static bool (EvalInfo &Info, const Expr *E, |
3929 | const CompleteObject &Obj, |
3930 | const SubobjectDesignator &Sub, APValue &Result, |
3931 | AccessKinds AK = AK_Read) { |
3932 | assert(AK == AK_Read || AK == AK_ReadObjectRepresentation); |
3933 | ExtractSubobjectHandler Handler = {.Info: Info, .E: E, .Result: Result, .AccessKind: AK}; |
3934 | return findSubobject(Info, E, Obj, Sub, handler&: Handler); |
3935 | } |
3936 | |
3937 | namespace { |
3938 | struct ModifySubobjectHandler { |
3939 | EvalInfo &Info; |
3940 | APValue &NewVal; |
3941 | const Expr *E; |
3942 | |
3943 | typedef bool result_type; |
3944 | static const AccessKinds AccessKind = AK_Assign; |
3945 | |
3946 | bool checkConst(QualType QT) { |
3947 | // Assigning to a const object has undefined behavior. |
3948 | if (QT.isConstQualified()) { |
3949 | Info.FFDiag(E, DiagId: diag::note_constexpr_modify_const_type) << QT; |
3950 | return false; |
3951 | } |
3952 | return true; |
3953 | } |
3954 | |
3955 | bool failed() { return false; } |
3956 | bool found(APValue &Subobj, QualType SubobjType) { |
3957 | if (!checkConst(QT: SubobjType)) |
3958 | return false; |
3959 | // We've been given ownership of NewVal, so just swap it in. |
3960 | Subobj.swap(RHS&: NewVal); |
3961 | return true; |
3962 | } |
3963 | bool found(APSInt &Value, QualType SubobjType) { |
3964 | if (!checkConst(QT: SubobjType)) |
3965 | return false; |
3966 | if (!NewVal.isInt()) { |
3967 | // Maybe trying to write a cast pointer value into a complex? |
3968 | Info.FFDiag(E); |
3969 | return false; |
3970 | } |
3971 | Value = NewVal.getInt(); |
3972 | return true; |
3973 | } |
3974 | bool found(APFloat &Value, QualType SubobjType) { |
3975 | if (!checkConst(QT: SubobjType)) |
3976 | return false; |
3977 | Value = NewVal.getFloat(); |
3978 | return true; |
3979 | } |
3980 | }; |
3981 | } // end anonymous namespace |
3982 | |
3983 | const AccessKinds ModifySubobjectHandler::AccessKind; |
3984 | |
3985 | /// Update the designated sub-object of an rvalue to the given value. |
3986 | static bool modifySubobject(EvalInfo &Info, const Expr *E, |
3987 | const CompleteObject &Obj, |
3988 | const SubobjectDesignator &Sub, |
3989 | APValue &NewVal) { |
3990 | ModifySubobjectHandler Handler = { .Info: Info, .NewVal: NewVal, .E: E }; |
3991 | return findSubobject(Info, E, Obj, Sub, handler&: Handler); |
3992 | } |
3993 | |
3994 | /// Find the position where two subobject designators diverge, or equivalently |
3995 | /// the length of the common initial subsequence. |
3996 | static unsigned FindDesignatorMismatch(QualType ObjType, |
3997 | const SubobjectDesignator &A, |
3998 | const SubobjectDesignator &B, |
3999 | bool &WasArrayIndex) { |
4000 | unsigned I = 0, N = std::min(a: A.Entries.size(), b: B.Entries.size()); |
4001 | for (/**/; I != N; ++I) { |
4002 | if (!ObjType.isNull() && |
4003 | (ObjType->isArrayType() || ObjType->isAnyComplexType())) { |
4004 | // Next subobject is an array element. |
4005 | if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) { |
4006 | WasArrayIndex = true; |
4007 | return I; |
4008 | } |
4009 | if (ObjType->isAnyComplexType()) |
4010 | ObjType = ObjType->castAs<ComplexType>()->getElementType(); |
4011 | else |
4012 | ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType(); |
4013 | } else { |
4014 | if (A.Entries[I].getAsBaseOrMember() != |
4015 | B.Entries[I].getAsBaseOrMember()) { |
4016 | WasArrayIndex = false; |
4017 | return I; |
4018 | } |
4019 | if (const FieldDecl *FD = getAsField(E: A.Entries[I])) |
4020 | // Next subobject is a field. |
4021 | ObjType = FD->getType(); |
4022 | else |
4023 | // Next subobject is a base class. |
4024 | ObjType = QualType(); |
4025 | } |
4026 | } |
4027 | WasArrayIndex = false; |
4028 | return I; |
4029 | } |
4030 | |
4031 | /// Determine whether the given subobject designators refer to elements of the |
4032 | /// same array object. |
4033 | static bool AreElementsOfSameArray(QualType ObjType, |
4034 | const SubobjectDesignator &A, |
4035 | const SubobjectDesignator &B) { |
4036 | if (A.Entries.size() != B.Entries.size()) |
4037 | return false; |
4038 | |
4039 | bool IsArray = A.MostDerivedIsArrayElement; |
4040 | if (IsArray && A.MostDerivedPathLength != A.Entries.size()) |
4041 | // A is a subobject of the array element. |
4042 | return false; |
4043 | |
4044 | // If A (and B) designates an array element, the last entry will be the array |
4045 | // index. That doesn't have to match. Otherwise, we're in the 'implicit array |
4046 | // of length 1' case, and the entire path must match. |
4047 | bool WasArrayIndex; |
4048 | unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex); |
4049 | return CommonLength >= A.Entries.size() - IsArray; |
4050 | } |
4051 | |
4052 | /// Find the complete object to which an LValue refers. |
4053 | static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, |
4054 | AccessKinds AK, const LValue &LVal, |
4055 | QualType LValType) { |
4056 | if (LVal.InvalidBase) { |
4057 | Info.FFDiag(E); |
4058 | return CompleteObject(); |
4059 | } |
4060 | |
4061 | if (!LVal.Base) { |
4062 | Info.FFDiag(E, DiagId: diag::note_constexpr_access_null) << AK; |
4063 | return CompleteObject(); |
4064 | } |
4065 | |
4066 | CallStackFrame *Frame = nullptr; |
4067 | unsigned Depth = 0; |
4068 | if (LVal.getLValueCallIndex()) { |
4069 | std::tie(args&: Frame, args&: Depth) = |
4070 | Info.getCallFrameAndDepth(CallIndex: LVal.getLValueCallIndex()); |
4071 | if (!Frame) { |
4072 | Info.FFDiag(E, DiagId: diag::note_constexpr_lifetime_ended, ExtraNotes: 1) |
4073 | << AK << LVal.Base.is<const ValueDecl*>(); |
4074 | NoteLValueLocation(Info, Base: LVal.Base); |
4075 | return CompleteObject(); |
4076 | } |
4077 | } |
4078 | |
4079 | bool IsAccess = isAnyAccess(AK); |
4080 | |
4081 | // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type |
4082 | // is not a constant expression (even if the object is non-volatile). We also |
4083 | // apply this rule to C++98, in order to conform to the expected 'volatile' |
4084 | // semantics. |
4085 | if (isFormalAccess(AK) && LValType.isVolatileQualified()) { |
4086 | if (Info.getLangOpts().CPlusPlus) |
4087 | Info.FFDiag(E, DiagId: diag::note_constexpr_access_volatile_type) |
4088 | << AK << LValType; |
4089 | else |
4090 | Info.FFDiag(E); |
4091 | return CompleteObject(); |
4092 | } |
4093 | |
4094 | // Compute value storage location and type of base object. |
4095 | APValue *BaseVal = nullptr; |
4096 | QualType BaseType = getType(B: LVal.Base); |
4097 | |
4098 | if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl && |
4099 | lifetimeStartedInEvaluation(Info, Base: LVal.Base)) { |
4100 | // This is the object whose initializer we're evaluating, so its lifetime |
4101 | // started in the current evaluation. |
4102 | BaseVal = Info.EvaluatingDeclValue; |
4103 | } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) { |
4104 | // Allow reading from a GUID declaration. |
4105 | if (auto *GD = dyn_cast<MSGuidDecl>(Val: D)) { |
4106 | if (isModification(AK)) { |
4107 | // All the remaining cases do not permit modification of the object. |
4108 | Info.FFDiag(E, DiagId: diag::note_constexpr_modify_global); |
4109 | return CompleteObject(); |
4110 | } |
4111 | APValue &V = GD->getAsAPValue(); |
4112 | if (V.isAbsent()) { |
4113 | Info.FFDiag(E, DiagId: diag::note_constexpr_unsupported_layout) |
4114 | << GD->getType(); |
4115 | return CompleteObject(); |
4116 | } |
4117 | return CompleteObject(LVal.Base, &V, GD->getType()); |
4118 | } |
4119 | |
4120 | // Allow reading the APValue from an UnnamedGlobalConstantDecl. |
4121 | if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(Val: D)) { |
4122 | if (isModification(AK)) { |
4123 | Info.FFDiag(E, DiagId: diag::note_constexpr_modify_global); |
4124 | return CompleteObject(); |
4125 | } |
4126 | return CompleteObject(LVal.Base, const_cast<APValue *>(&GCD->getValue()), |
4127 | GCD->getType()); |
4128 | } |
4129 | |
4130 | // Allow reading from template parameter objects. |
4131 | if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(Val: D)) { |
4132 | if (isModification(AK)) { |
4133 | Info.FFDiag(E, DiagId: diag::note_constexpr_modify_global); |
4134 | return CompleteObject(); |
4135 | } |
4136 | return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()), |
4137 | TPO->getType()); |
4138 | } |
4139 | |
4140 | // In C++98, const, non-volatile integers initialized with ICEs are ICEs. |
4141 | // In C++11, constexpr, non-volatile variables initialized with constant |
4142 | // expressions are constant expressions too. Inside constexpr functions, |
4143 | // parameters are constant expressions even if they're non-const. |
4144 | // In C++1y, objects local to a constant expression (those with a Frame) are |
4145 | // both readable and writable inside constant expressions. |
4146 | // In C, such things can also be folded, although they are not ICEs. |
4147 | const VarDecl *VD = dyn_cast<VarDecl>(Val: D); |
4148 | if (VD) { |
4149 | if (const VarDecl *VDef = VD->getDefinition(C&: Info.Ctx)) |
4150 | VD = VDef; |
4151 | } |
4152 | if (!VD || VD->isInvalidDecl()) { |
4153 | Info.FFDiag(E); |
4154 | return CompleteObject(); |
4155 | } |
4156 | |
4157 | bool IsConstant = BaseType.isConstant(Ctx: Info.Ctx); |
4158 | bool ConstexprVar = false; |
4159 | if (const auto *VD = dyn_cast_if_present<VarDecl>( |
4160 | Val: Info.EvaluatingDecl.dyn_cast<const ValueDecl *>())) |
4161 | ConstexprVar = VD->isConstexpr(); |
4162 | |
4163 | // Unless we're looking at a local variable or argument in a constexpr call, |
4164 | // the variable we're reading must be const. |
4165 | if (!Frame) { |
4166 | if (IsAccess && isa<ParmVarDecl>(Val: VD)) { |
4167 | // Access of a parameter that's not associated with a frame isn't going |
4168 | // to work out, but we can leave it to evaluateVarDeclInit to provide a |
4169 | // suitable diagnostic. |
4170 | } else if (Info.getLangOpts().CPlusPlus14 && |
4171 | lifetimeStartedInEvaluation(Info, Base: LVal.Base)) { |
4172 | // OK, we can read and modify an object if we're in the process of |
4173 | // evaluating its initializer, because its lifetime began in this |
4174 | // evaluation. |
4175 | } else if (isModification(AK)) { |
4176 | // All the remaining cases do not permit modification of the object. |
4177 | Info.FFDiag(E, DiagId: diag::note_constexpr_modify_global); |
4178 | return CompleteObject(); |
4179 | } else if (VD->isConstexpr()) { |
4180 | // OK, we can read this variable. |
4181 | } else if (Info.getLangOpts().C23 && ConstexprVar) { |
4182 | Info.FFDiag(E); |
4183 | return CompleteObject(); |
4184 | } else if (BaseType->isIntegralOrEnumerationType()) { |
4185 | if (!IsConstant) { |
4186 | if (!IsAccess) |
4187 | return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); |
4188 | if (Info.getLangOpts().CPlusPlus) { |
4189 | Info.FFDiag(E, DiagId: diag::note_constexpr_ltor_non_const_int, ExtraNotes: 1) << VD; |
4190 | Info.Note(Loc: VD->getLocation(), DiagId: diag::note_declared_at); |
4191 | } else { |
4192 | Info.FFDiag(E); |
4193 | } |
4194 | return CompleteObject(); |
4195 | } |
4196 | } else if (!IsAccess) { |
4197 | return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); |
4198 | } else if (IsConstant && Info.checkingPotentialConstantExpression() && |
4199 | BaseType->isLiteralType(Ctx: Info.Ctx) && !VD->hasDefinition()) { |
4200 | // This variable might end up being constexpr. Don't diagnose it yet. |
4201 | } else if (IsConstant) { |
4202 | // Keep evaluating to see what we can do. In particular, we support |
4203 | // folding of const floating-point types, in order to make static const |
4204 | // data members of such types (supported as an extension) more useful. |
4205 | if (Info.getLangOpts().CPlusPlus) { |
4206 | Info.CCEDiag(E, DiagId: Info.getLangOpts().CPlusPlus11 |
4207 | ? diag::note_constexpr_ltor_non_constexpr |
4208 | : diag::note_constexpr_ltor_non_integral, ExtraNotes: 1) |
4209 | << VD << BaseType; |
4210 | Info.Note(Loc: VD->getLocation(), DiagId: diag::note_declared_at); |
4211 | } else { |
4212 | Info.CCEDiag(E); |
4213 | } |
4214 | } else { |
4215 | // Never allow reading a non-const value. |
4216 | if (Info.getLangOpts().CPlusPlus) { |
4217 | Info.FFDiag(E, DiagId: Info.getLangOpts().CPlusPlus11 |
4218 | ? diag::note_constexpr_ltor_non_constexpr |
4219 | : diag::note_constexpr_ltor_non_integral, ExtraNotes: 1) |
4220 | << VD << BaseType; |
4221 | Info.Note(Loc: VD->getLocation(), DiagId: diag::note_declared_at); |
4222 | } else { |
4223 | Info.FFDiag(E); |
4224 | } |
4225 | return CompleteObject(); |
4226 | } |
4227 | } |
4228 | |
4229 | if (!evaluateVarDeclInit(Info, E, VD, Frame, Version: LVal.getLValueVersion(), Result&: BaseVal)) |
4230 | return CompleteObject(); |
4231 | } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) { |
4232 | std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA); |
4233 | if (!Alloc) { |
4234 | Info.FFDiag(E, DiagId: diag::note_constexpr_access_deleted_object) << AK; |
4235 | return CompleteObject(); |
4236 | } |
4237 | return CompleteObject(LVal.Base, &(*Alloc)->Value, |
4238 | LVal.Base.getDynamicAllocType()); |
4239 | } else { |
4240 | const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); |
4241 | |
4242 | if (!Frame) { |
4243 | if (const MaterializeTemporaryExpr *MTE = |
4244 | dyn_cast_or_null<MaterializeTemporaryExpr>(Val: Base)) { |
4245 | assert(MTE->getStorageDuration() == SD_Static && |
4246 | "should have a frame for a non-global materialized temporary" ); |
4247 | |
4248 | // C++20 [expr.const]p4: [DR2126] |
4249 | // An object or reference is usable in constant expressions if it is |
4250 | // - a temporary object of non-volatile const-qualified literal type |
4251 | // whose lifetime is extended to that of a variable that is usable |
4252 | // in constant expressions |
4253 | // |
4254 | // C++20 [expr.const]p5: |
4255 | // an lvalue-to-rvalue conversion [is not allowed unless it applies to] |
4256 | // - a non-volatile glvalue that refers to an object that is usable |
4257 | // in constant expressions, or |
4258 | // - a non-volatile glvalue of literal type that refers to a |
4259 | // non-volatile object whose lifetime began within the evaluation |
4260 | // of E; |
4261 | // |
4262 | // C++11 misses the 'began within the evaluation of e' check and |
4263 | // instead allows all temporaries, including things like: |
4264 | // int &&r = 1; |
4265 | // int x = ++r; |
4266 | // constexpr int k = r; |
4267 | // Therefore we use the C++14-onwards rules in C++11 too. |
4268 | // |
4269 | // Note that temporaries whose lifetimes began while evaluating a |
4270 | // variable's constructor are not usable while evaluating the |
4271 | // corresponding destructor, not even if they're of const-qualified |
4272 | // types. |
4273 | if (!MTE->isUsableInConstantExpressions(Context: Info.Ctx) && |
4274 | !lifetimeStartedInEvaluation(Info, Base: LVal.Base)) { |
4275 | if (!IsAccess) |
4276 | return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); |
4277 | Info.FFDiag(E, DiagId: diag::note_constexpr_access_static_temporary, ExtraNotes: 1) << AK; |
4278 | Info.Note(Loc: MTE->getExprLoc(), DiagId: diag::note_constexpr_temporary_here); |
4279 | return CompleteObject(); |
4280 | } |
4281 | |
4282 | BaseVal = MTE->getOrCreateValue(MayCreate: false); |
4283 | assert(BaseVal && "got reference to unevaluated temporary" ); |
4284 | } else { |
4285 | if (!IsAccess) |
4286 | return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); |
4287 | APValue Val; |
4288 | LVal.moveInto(V&: Val); |
4289 | Info.FFDiag(E, DiagId: diag::note_constexpr_access_unreadable_object) |
4290 | << AK |
4291 | << Val.getAsString(Ctx: Info.Ctx, |
4292 | Ty: Info.Ctx.getLValueReferenceType(T: LValType)); |
4293 | NoteLValueLocation(Info, Base: LVal.Base); |
4294 | return CompleteObject(); |
4295 | } |
4296 | } else { |
4297 | BaseVal = Frame->getTemporary(Key: Base, Version: LVal.Base.getVersion()); |
4298 | assert(BaseVal && "missing value for temporary" ); |
4299 | } |
4300 | } |
4301 | |
4302 | // In C++14, we can't safely access any mutable state when we might be |
4303 | // evaluating after an unmodeled side effect. Parameters are modeled as state |
4304 | // in the caller, but aren't visible once the call returns, so they can be |
4305 | // modified in a speculatively-evaluated call. |
4306 | // |
4307 | // FIXME: Not all local state is mutable. Allow local constant subobjects |
4308 | // to be read here (but take care with 'mutable' fields). |
4309 | unsigned VisibleDepth = Depth; |
4310 | if (llvm::isa_and_nonnull<ParmVarDecl>( |
4311 | Val: LVal.Base.dyn_cast<const ValueDecl *>())) |
4312 | ++VisibleDepth; |
4313 | if ((Frame && Info.getLangOpts().CPlusPlus14 && |
4314 | Info.EvalStatus.HasSideEffects) || |
4315 | (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth)) |
4316 | return CompleteObject(); |
4317 | |
4318 | return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType); |
4319 | } |
4320 | |
4321 | /// Perform an lvalue-to-rvalue conversion on the given glvalue. This |
4322 | /// can also be used for 'lvalue-to-lvalue' conversions for looking up the |
4323 | /// glvalue referred to by an entity of reference type. |
4324 | /// |
4325 | /// \param Info - Information about the ongoing evaluation. |
4326 | /// \param Conv - The expression for which we are performing the conversion. |
4327 | /// Used for diagnostics. |
4328 | /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the |
4329 | /// case of a non-class type). |
4330 | /// \param LVal - The glvalue on which we are attempting to perform this action. |
4331 | /// \param RVal - The produced value will be placed here. |
4332 | /// \param WantObjectRepresentation - If true, we're looking for the object |
4333 | /// representation rather than the value, and in particular, |
4334 | /// there is no requirement that the result be fully initialized. |
4335 | static bool |
4336 | handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type, |
4337 | const LValue &LVal, APValue &RVal, |
4338 | bool WantObjectRepresentation = false) { |
4339 | if (LVal.Designator.Invalid) |
4340 | return false; |
4341 | |
4342 | // Check for special cases where there is no existing APValue to look at. |
4343 | const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); |
4344 | |
4345 | AccessKinds AK = |
4346 | WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read; |
4347 | |
4348 | if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) { |
4349 | if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Val: Base)) { |
4350 | // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the |
4351 | // initializer until now for such expressions. Such an expression can't be |
4352 | // an ICE in C, so this only matters for fold. |
4353 | if (Type.isVolatileQualified()) { |
4354 | Info.FFDiag(E: Conv); |
4355 | return false; |
4356 | } |
4357 | |
4358 | APValue Lit; |
4359 | if (!Evaluate(Result&: Lit, Info, E: CLE->getInitializer())) |
4360 | return false; |
4361 | |
4362 | // According to GCC info page: |
4363 | // |
4364 | // 6.28 Compound Literals |
4365 | // |
4366 | // As an optimization, G++ sometimes gives array compound literals longer |
4367 | // lifetimes: when the array either appears outside a function or has a |
4368 | // const-qualified type. If foo and its initializer had elements of type |
4369 | // char *const rather than char *, or if foo were a global variable, the |
4370 | // array would have static storage duration. But it is probably safest |
4371 | // just to avoid the use of array compound literals in C++ code. |
4372 | // |
4373 | // Obey that rule by checking constness for converted array types. |
4374 | |
4375 | QualType CLETy = CLE->getType(); |
4376 | if (CLETy->isArrayType() && !Type->isArrayType()) { |
4377 | if (!CLETy.isConstant(Ctx: Info.Ctx)) { |
4378 | Info.FFDiag(E: Conv); |
4379 | Info.Note(Loc: CLE->getExprLoc(), DiagId: diag::note_declared_at); |
4380 | return false; |
4381 | } |
4382 | } |
4383 | |
4384 | CompleteObject LitObj(LVal.Base, &Lit, Base->getType()); |
4385 | return extractSubobject(Info, E: Conv, Obj: LitObj, Sub: LVal.Designator, Result&: RVal, AK); |
4386 | } else if (isa<StringLiteral>(Val: Base) || isa<PredefinedExpr>(Val: Base)) { |
4387 | // Special-case character extraction so we don't have to construct an |
4388 | // APValue for the whole string. |
4389 | assert(LVal.Designator.Entries.size() <= 1 && |
4390 | "Can only read characters from string literals" ); |
4391 | if (LVal.Designator.Entries.empty()) { |
4392 | // Fail for now for LValue to RValue conversion of an array. |
4393 | // (This shouldn't show up in C/C++, but it could be triggered by a |
4394 | // weird EvaluateAsRValue call from a tool.) |
4395 | Info.FFDiag(E: Conv); |
4396 | return false; |
4397 | } |
4398 | if (LVal.Designator.isOnePastTheEnd()) { |
4399 | if (Info.getLangOpts().CPlusPlus11) |
4400 | Info.FFDiag(E: Conv, DiagId: diag::note_constexpr_access_past_end) << AK; |
4401 | else |
4402 | Info.FFDiag(E: Conv); |
4403 | return false; |
4404 | } |
4405 | uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex(); |
4406 | RVal = APValue(extractStringLiteralCharacter(Info, Lit: Base, Index: CharIndex)); |
4407 | return true; |
4408 | } |
4409 | } |
4410 | |
4411 | CompleteObject Obj = findCompleteObject(Info, E: Conv, AK, LVal, LValType: Type); |
4412 | return Obj && extractSubobject(Info, E: Conv, Obj, Sub: LVal.Designator, Result&: RVal, AK); |
4413 | } |
4414 | |
4415 | /// Perform an assignment of Val to LVal. Takes ownership of Val. |
4416 | static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal, |
4417 | QualType LValType, APValue &Val) { |
4418 | if (LVal.Designator.Invalid) |
4419 | return false; |
4420 | |
4421 | if (!Info.getLangOpts().CPlusPlus14) { |
4422 | Info.FFDiag(E); |
4423 | return false; |
4424 | } |
4425 | |
4426 | CompleteObject Obj = findCompleteObject(Info, E, AK: AK_Assign, LVal, LValType); |
4427 | return Obj && modifySubobject(Info, E, Obj, Sub: LVal.Designator, NewVal&: Val); |
4428 | } |
4429 | |
4430 | namespace { |
4431 | struct CompoundAssignSubobjectHandler { |
4432 | EvalInfo &Info; |
4433 | const CompoundAssignOperator *E; |
4434 | QualType PromotedLHSType; |
4435 | BinaryOperatorKind Opcode; |
4436 | const APValue &RHS; |
4437 | |
4438 | static const AccessKinds AccessKind = AK_Assign; |
4439 | |
4440 | typedef bool result_type; |
4441 | |
4442 | bool checkConst(QualType QT) { |
4443 | // Assigning to a const object has undefined behavior. |
4444 | if (QT.isConstQualified()) { |
4445 | Info.FFDiag(E, DiagId: diag::note_constexpr_modify_const_type) << QT; |
4446 | return false; |
4447 | } |
4448 | return true; |
4449 | } |
4450 | |
4451 | bool failed() { return false; } |
4452 | bool found(APValue &Subobj, QualType SubobjType) { |
4453 | switch (Subobj.getKind()) { |
4454 | case APValue::Int: |
4455 | return found(Value&: Subobj.getInt(), SubobjType); |
4456 | case APValue::Float: |
4457 | return found(Value&: Subobj.getFloat(), SubobjType); |
4458 | case APValue::ComplexInt: |
4459 | case APValue::ComplexFloat: |
4460 | // FIXME: Implement complex compound assignment. |
4461 | Info.FFDiag(E); |
4462 | return false; |
4463 | case APValue::LValue: |
4464 | return foundPointer(Subobj, SubobjType); |
4465 | case APValue::Vector: |
4466 | return foundVector(Value&: Subobj, SubobjType); |
4467 | case APValue::Indeterminate: |
4468 | Info.FFDiag(E, DiagId: diag::note_constexpr_access_uninit) |
4469 | << /*read of=*/0 << /*uninitialized object=*/1 |
4470 | << E->getLHS()->getSourceRange(); |
4471 | return false; |
4472 | default: |
4473 | // FIXME: can this happen? |
4474 | Info.FFDiag(E); |
4475 | return false; |
4476 | } |
4477 | } |
4478 | |
4479 | bool foundVector(APValue &Value, QualType SubobjType) { |
4480 | if (!checkConst(QT: SubobjType)) |
4481 | return false; |
4482 | |
4483 | if (!SubobjType->isVectorType()) { |
4484 | Info.FFDiag(E); |
4485 | return false; |
4486 | } |
4487 | return handleVectorVectorBinOp(Info, E, Opcode, LHSValue&: Value, RHSValue: RHS); |
4488 | } |
4489 | |
4490 | bool found(APSInt &Value, QualType SubobjType) { |
4491 | if (!checkConst(QT: SubobjType)) |
4492 | return false; |
4493 | |
4494 | if (!SubobjType->isIntegerType()) { |
4495 | // We don't support compound assignment on integer-cast-to-pointer |
4496 | // values. |
4497 | Info.FFDiag(E); |
4498 | return false; |
4499 | } |
4500 | |
4501 | if (RHS.isInt()) { |
4502 | APSInt LHS = |
4503 | HandleIntToIntCast(Info, E, DestType: PromotedLHSType, SrcType: SubobjType, Value); |
4504 | if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS: RHS.getInt(), Result&: LHS)) |
4505 | return false; |
4506 | Value = HandleIntToIntCast(Info, E, DestType: SubobjType, SrcType: PromotedLHSType, Value: LHS); |
4507 | return true; |
4508 | } else if (RHS.isFloat()) { |
4509 | const FPOptions FPO = E->getFPFeaturesInEffect( |
4510 | LO: Info.Ctx.getLangOpts()); |
4511 | APFloat FValue(0.0); |
4512 | return HandleIntToFloatCast(Info, E, FPO, SrcType: SubobjType, Value, |
4513 | DestType: PromotedLHSType, Result&: FValue) && |
4514 | handleFloatFloatBinOp(Info, E, LHS&: FValue, Opcode, RHS: RHS.getFloat()) && |
4515 | HandleFloatToIntCast(Info, E, SrcType: PromotedLHSType, Value: FValue, DestType: SubobjType, |
4516 | Result&: Value); |
4517 | } |
4518 | |
4519 | Info.FFDiag(E); |
4520 | return false; |
4521 | } |
4522 | bool found(APFloat &Value, QualType SubobjType) { |
4523 | return checkConst(QT: SubobjType) && |
4524 | HandleFloatToFloatCast(Info, E, SrcType: SubobjType, DestType: PromotedLHSType, |
4525 | Result&: Value) && |
4526 | handleFloatFloatBinOp(Info, E, LHS&: Value, Opcode, RHS: RHS.getFloat()) && |
4527 | HandleFloatToFloatCast(Info, E, SrcType: PromotedLHSType, DestType: SubobjType, Result&: Value); |
4528 | } |
4529 | bool foundPointer(APValue &Subobj, QualType SubobjType) { |
4530 | if (!checkConst(QT: SubobjType)) |
4531 | return false; |
4532 | |
4533 | QualType PointeeType; |
4534 | if (const PointerType *PT = SubobjType->getAs<PointerType>()) |
4535 | PointeeType = PT->getPointeeType(); |
4536 | |
4537 | if (PointeeType.isNull() || !RHS.isInt() || |
4538 | (Opcode != BO_Add && Opcode != BO_Sub)) { |
4539 | Info.FFDiag(E); |
4540 | return false; |
4541 | } |
4542 | |
4543 | APSInt Offset = RHS.getInt(); |
4544 | if (Opcode == BO_Sub) |
4545 | negateAsSigned(Int&: Offset); |
4546 | |
4547 | LValue LVal; |
4548 | LVal.setFrom(Ctx&: Info.Ctx, V: Subobj); |
4549 | if (!HandleLValueArrayAdjustment(Info, E, LVal, EltTy: PointeeType, Adjustment: Offset)) |
4550 | return false; |
4551 | LVal.moveInto(V&: Subobj); |
4552 | return true; |
4553 | } |
4554 | }; |
4555 | } // end anonymous namespace |
4556 | |
4557 | const AccessKinds CompoundAssignSubobjectHandler::AccessKind; |
4558 | |
4559 | /// Perform a compound assignment of LVal <op>= RVal. |
4560 | static bool handleCompoundAssignment(EvalInfo &Info, |
4561 | const CompoundAssignOperator *E, |
4562 | const LValue &LVal, QualType LValType, |
4563 | QualType PromotedLValType, |
4564 | BinaryOperatorKind Opcode, |
4565 | const APValue &RVal) { |
4566 | if (LVal.Designator.Invalid) |
4567 | return false; |
4568 | |
4569 | if (!Info.getLangOpts().CPlusPlus14) { |
4570 | Info.FFDiag(E); |
4571 | return false; |
4572 | } |
4573 | |
4574 | CompleteObject Obj = findCompleteObject(Info, E, AK: AK_Assign, LVal, LValType); |
4575 | CompoundAssignSubobjectHandler Handler = { .Info: Info, .E: E, .PromotedLHSType: PromotedLValType, .Opcode: Opcode, |
4576 | .RHS: RVal }; |
4577 | return Obj && findSubobject(Info, E, Obj, Sub: LVal.Designator, handler&: Handler); |
4578 | } |
4579 | |
4580 | namespace { |
4581 | struct IncDecSubobjectHandler { |
4582 | EvalInfo &Info; |
4583 | const UnaryOperator *E; |
4584 | AccessKinds AccessKind; |
4585 | APValue *Old; |
4586 | |
4587 | typedef bool result_type; |
4588 | |
4589 | bool checkConst(QualType QT) { |
4590 | // Assigning to a const object has undefined behavior. |
4591 | if (QT.isConstQualified()) { |
4592 | Info.FFDiag(E, DiagId: diag::note_constexpr_modify_const_type) << QT; |
4593 | return false; |
4594 | } |
4595 | return true; |
4596 | } |
4597 | |
4598 | bool failed() { return false; } |
4599 | bool found(APValue &Subobj, QualType SubobjType) { |
4600 | // Stash the old value. Also clear Old, so we don't clobber it later |
4601 | // if we're post-incrementing a complex. |
4602 | if (Old) { |
4603 | *Old = Subobj; |
4604 | Old = nullptr; |
4605 | } |
4606 | |
4607 | switch (Subobj.getKind()) { |
4608 | case APValue::Int: |
4609 | return found(Value&: Subobj.getInt(), SubobjType); |
4610 | case APValue::Float: |
4611 | return found(Value&: Subobj.getFloat(), SubobjType); |
4612 | case APValue::ComplexInt: |
4613 | return found(Value&: Subobj.getComplexIntReal(), |
4614 | SubobjType: SubobjType->castAs<ComplexType>()->getElementType() |
4615 | .withCVRQualifiers(CVR: SubobjType.getCVRQualifiers())); |
4616 | case APValue::ComplexFloat: |
4617 | return found(Value&: Subobj.getComplexFloatReal(), |
4618 | SubobjType: SubobjType->castAs<ComplexType>()->getElementType() |
4619 | .withCVRQualifiers(CVR: SubobjType.getCVRQualifiers())); |
4620 | case APValue::LValue: |
4621 | return foundPointer(Subobj, SubobjType); |
4622 | default: |
4623 | // FIXME: can this happen? |
4624 | Info.FFDiag(E); |
4625 | return false; |
4626 | } |
4627 | } |
4628 | bool found(APSInt &Value, QualType SubobjType) { |
4629 | if (!checkConst(QT: SubobjType)) |
4630 | return false; |
4631 | |
4632 | if (!SubobjType->isIntegerType()) { |
4633 | // We don't support increment / decrement on integer-cast-to-pointer |
4634 | // values. |
4635 | Info.FFDiag(E); |
4636 | return false; |
4637 | } |
4638 | |
4639 | if (Old) *Old = APValue(Value); |
4640 | |
4641 | // bool arithmetic promotes to int, and the conversion back to bool |
4642 | // doesn't reduce mod 2^n, so special-case it. |
4643 | if (SubobjType->isBooleanType()) { |
4644 | if (AccessKind == AK_Increment) |
4645 | Value = 1; |
4646 | else |
4647 | Value = !Value; |
4648 | return true; |
4649 | } |
4650 | |
4651 | bool WasNegative = Value.isNegative(); |
4652 | if (AccessKind == AK_Increment) { |
4653 | ++Value; |
4654 | |
4655 | if (!WasNegative && Value.isNegative() && E->canOverflow()) { |
4656 | APSInt ActualValue(Value, /*IsUnsigned*/true); |
4657 | return HandleOverflow(Info, E, SrcValue: ActualValue, DestType: SubobjType); |
4658 | } |
4659 | } else { |
4660 | --Value; |
4661 | |
4662 | if (WasNegative && !Value.isNegative() && E->canOverflow()) { |
4663 | unsigned BitWidth = Value.getBitWidth(); |
4664 | APSInt ActualValue(Value.sext(width: BitWidth + 1), /*IsUnsigned*/false); |
4665 | ActualValue.setBit(BitWidth); |
4666 | return HandleOverflow(Info, E, SrcValue: ActualValue, DestType: SubobjType); |
4667 | } |
4668 | } |
4669 | return true; |
4670 | } |
4671 | bool found(APFloat &Value, QualType SubobjType) { |
4672 | if (!checkConst(QT: SubobjType)) |
4673 | return false; |
4674 | |
4675 | if (Old) *Old = APValue(Value); |
4676 | |
4677 | APFloat One(Value.getSemantics(), 1); |
4678 | llvm::RoundingMode RM = getActiveRoundingMode(Info, E); |
4679 | APFloat::opStatus St; |
4680 | if (AccessKind == AK_Increment) |
4681 | St = Value.add(RHS: One, RM); |
4682 | else |
4683 | St = Value.subtract(RHS: One, RM); |
4684 | return checkFloatingPointResult(Info, E, St); |
4685 | } |
4686 | bool foundPointer(APValue &Subobj, QualType SubobjType) { |
4687 | if (!checkConst(QT: SubobjType)) |
4688 | return false; |
4689 | |
4690 | QualType PointeeType; |
4691 | if (const PointerType *PT = SubobjType->getAs<PointerType>()) |
4692 | PointeeType = PT->getPointeeType(); |
4693 | else { |
4694 | Info.FFDiag(E); |
4695 | return false; |
4696 | } |
4697 | |
4698 | LValue LVal; |
4699 | LVal.setFrom(Ctx&: Info.Ctx, V: Subobj); |
4700 | if (!HandleLValueArrayAdjustment(Info, E, LVal, EltTy: PointeeType, |
4701 | Adjustment: AccessKind == AK_Increment ? 1 : -1)) |
4702 | return false; |
4703 | LVal.moveInto(V&: Subobj); |
4704 | return true; |
4705 | } |
4706 | }; |
4707 | } // end anonymous namespace |
4708 | |
4709 | /// Perform an increment or decrement on LVal. |
4710 | static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal, |
4711 | QualType LValType, bool IsIncrement, APValue *Old) { |
4712 | if (LVal.Designator.Invalid) |
4713 | return false; |
4714 | |
4715 | if (!Info.getLangOpts().CPlusPlus14) { |
4716 | Info.FFDiag(E); |
4717 | return false; |
4718 | } |
4719 | |
4720 | AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement; |
4721 | CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType); |
4722 | IncDecSubobjectHandler Handler = {.Info: Info, .E: cast<UnaryOperator>(Val: E), .AccessKind: AK, .Old: Old}; |
4723 | return Obj && findSubobject(Info, E, Obj, Sub: LVal.Designator, handler&: Handler); |
4724 | } |
4725 | |
4726 | /// Build an lvalue for the object argument of a member function call. |
4727 | static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object, |
4728 | LValue &This) { |
4729 | if (Object->getType()->isPointerType() && Object->isPRValue()) |
4730 | return EvaluatePointer(E: Object, Result&: This, Info); |
4731 | |
4732 | if (Object->isGLValue()) |
4733 | return EvaluateLValue(E: Object, Result&: This, Info); |
4734 | |
4735 | if (Object->getType()->isLiteralType(Ctx: Info.Ctx)) |
4736 | return EvaluateTemporary(E: Object, Result&: This, Info); |
4737 | |
4738 | if (Object->getType()->isRecordType() && Object->isPRValue()) |
4739 | return EvaluateTemporary(E: Object, Result&: This, Info); |
4740 | |
4741 | Info.FFDiag(E: Object, DiagId: diag::note_constexpr_nonliteral) << Object->getType(); |
4742 | return false; |
4743 | } |
4744 | |
4745 | /// HandleMemberPointerAccess - Evaluate a member access operation and build an |
4746 | /// lvalue referring to the result. |
4747 | /// |
4748 | /// \param Info - Information about the ongoing evaluation. |
4749 | /// \param LV - An lvalue referring to the base of the member pointer. |
4750 | /// \param RHS - The member pointer expression. |
4751 | /// \param IncludeMember - Specifies whether the member itself is included in |
4752 | /// the resulting LValue subobject designator. This is not possible when |
4753 | /// creating a bound member function. |
4754 | /// \return The field or method declaration to which the member pointer refers, |
4755 | /// or 0 if evaluation fails. |
4756 | static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, |
4757 | QualType LVType, |
4758 | LValue &LV, |
4759 | const Expr *RHS, |
4760 | bool IncludeMember = true) { |
4761 | MemberPtr MemPtr; |
4762 | if (!EvaluateMemberPointer(E: RHS, Result&: MemPtr, Info)) |
4763 | return nullptr; |
4764 | |
4765 | // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to |
4766 | // member value, the behavior is undefined. |
4767 | if (!MemPtr.getDecl()) { |
4768 | // FIXME: Specific diagnostic. |
4769 | Info.FFDiag(E: RHS); |
4770 | return nullptr; |
4771 | } |
4772 | |
4773 | if (MemPtr.isDerivedMember()) { |
4774 | // This is a member of some derived class. Truncate LV appropriately. |
4775 | // The end of the derived-to-base path for the base object must match the |
4776 | // derived-to-base path for the member pointer. |
4777 | if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() > |
4778 | LV.Designator.Entries.size()) { |
4779 | Info.FFDiag(E: RHS); |
4780 | return nullptr; |
4781 | } |
4782 | unsigned PathLengthToMember = |
4783 | LV.Designator.Entries.size() - MemPtr.Path.size(); |
4784 | for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) { |
4785 | const CXXRecordDecl *LVDecl = getAsBaseClass( |
4786 | E: LV.Designator.Entries[PathLengthToMember + I]); |
4787 | const CXXRecordDecl *MPDecl = MemPtr.Path[I]; |
4788 | if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) { |
4789 | Info.FFDiag(E: RHS); |
4790 | return nullptr; |
4791 | } |
4792 | } |
4793 | |
4794 | // Truncate the lvalue to the appropriate derived class. |
4795 | if (!CastToDerivedClass(Info, E: RHS, Result&: LV, TruncatedType: MemPtr.getContainingRecord(), |
4796 | TruncatedElements: PathLengthToMember)) |
4797 | return nullptr; |
4798 | } else if (!MemPtr.Path.empty()) { |
4799 | // Extend the LValue path with the member pointer's path. |
4800 | LV.Designator.Entries.reserve(N: LV.Designator.Entries.size() + |
4801 | MemPtr.Path.size() + IncludeMember); |
4802 | |
4803 | // Walk down to the appropriate base class. |
4804 | if (const PointerType *PT = LVType->getAs<PointerType>()) |
4805 | LVType = PT->getPointeeType(); |
4806 | const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl(); |
4807 | assert(RD && "member pointer access on non-class-type expression" ); |
4808 | // The first class in the path is that of the lvalue. |
4809 | for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) { |
4810 | const CXXRecordDecl *Base = MemPtr.Path[N - I - 1]; |
4811 | if (!HandleLValueDirectBase(Info, E: RHS, Obj&: LV, Derived: RD, Base)) |
4812 | return nullptr; |
4813 | RD = Base; |
4814 | } |
4815 | // Finally cast to the class containing the member. |
4816 | if (!HandleLValueDirectBase(Info, E: RHS, Obj&: LV, Derived: RD, |
4817 | Base: MemPtr.getContainingRecord())) |
4818 | return nullptr; |
4819 | } |
4820 | |
4821 | // Add the member. Note that we cannot build bound member functions here. |
4822 | if (IncludeMember) { |
4823 | if (const FieldDecl *FD = dyn_cast<FieldDecl>(Val: MemPtr.getDecl())) { |
4824 | if (!HandleLValueMember(Info, E: RHS, LVal&: LV, FD)) |
4825 | return nullptr; |
4826 | } else if (const IndirectFieldDecl *IFD = |
4827 | dyn_cast<IndirectFieldDecl>(Val: MemPtr.getDecl())) { |
4828 | if (!HandleLValueIndirectMember(Info, E: RHS, LVal&: LV, IFD)) |
4829 | return nullptr; |
4830 | } else { |
4831 | llvm_unreachable("can't construct reference to bound member function" ); |
4832 | } |
4833 | } |
4834 | |
4835 | return MemPtr.getDecl(); |
4836 | } |
4837 | |
4838 | static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, |
4839 | const BinaryOperator *BO, |
4840 | LValue &LV, |
4841 | bool IncludeMember = true) { |
4842 | assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI); |
4843 | |
4844 | if (!EvaluateObjectArgument(Info, Object: BO->getLHS(), This&: LV)) { |
4845 | if (Info.noteFailure()) { |
4846 | MemberPtr MemPtr; |
4847 | EvaluateMemberPointer(E: BO->getRHS(), Result&: MemPtr, Info); |
4848 | } |
4849 | return nullptr; |
4850 | } |
4851 | |
4852 | return HandleMemberPointerAccess(Info, LVType: BO->getLHS()->getType(), LV, |
4853 | RHS: BO->getRHS(), IncludeMember); |
4854 | } |
4855 | |
4856 | /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on |
4857 | /// the provided lvalue, which currently refers to the base object. |
4858 | static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E, |
4859 | LValue &Result) { |
4860 | SubobjectDesignator &D = Result.Designator; |
4861 | if (D.Invalid || !Result.checkNullPointer(Info, E, CSK: CSK_Derived)) |
4862 | return false; |
4863 | |
4864 | QualType TargetQT = E->getType(); |
4865 | if (const PointerType *PT = TargetQT->getAs<PointerType>()) |
4866 | TargetQT = PT->getPointeeType(); |
4867 | |
4868 | // Check this cast lands within the final derived-to-base subobject path. |
4869 | if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) { |
4870 | Info.CCEDiag(E, DiagId: diag::note_constexpr_invalid_downcast) |
4871 | << D.MostDerivedType << TargetQT; |
4872 | return false; |
4873 | } |
4874 | |
4875 | // Check the type of the final cast. We don't need to check the path, |
4876 | // since a cast can only be formed if the path is unique. |
4877 | unsigned NewEntriesSize = D.Entries.size() - E->path_size(); |
4878 | const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl(); |
4879 | const CXXRecordDecl *FinalType; |
4880 | if (NewEntriesSize == D.MostDerivedPathLength) |
4881 | FinalType = D.MostDerivedType->getAsCXXRecordDecl(); |
4882 | else |
4883 | FinalType = getAsBaseClass(E: D.Entries[NewEntriesSize - 1]); |
4884 | if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) { |
4885 | Info.CCEDiag(E, DiagId: diag::note_constexpr_invalid_downcast) |
4886 | << D.MostDerivedType << TargetQT; |
4887 | return false; |
4888 | } |
4889 | |
4890 | // Truncate the lvalue to the appropriate derived class. |
4891 | return CastToDerivedClass(Info, E, Result, TruncatedType: TargetType, TruncatedElements: NewEntriesSize); |
4892 | } |
4893 | |
4894 | /// Get the value to use for a default-initialized object of type T. |
4895 | /// Return false if it encounters something invalid. |
4896 | static bool handleDefaultInitValue(QualType T, APValue &Result) { |
4897 | bool Success = true; |
4898 | |
4899 | // If there is already a value present don't overwrite it. |
4900 | if (!Result.isAbsent()) |
4901 | return true; |
4902 | |
4903 | if (auto *RD = T->getAsCXXRecordDecl()) { |
4904 | if (RD->isInvalidDecl()) { |
4905 | Result = APValue(); |
4906 | return false; |
4907 | } |
4908 | if (RD->isUnion()) { |
4909 | Result = APValue((const FieldDecl *)nullptr); |
4910 | return true; |
4911 | } |
4912 | Result = APValue(APValue::UninitStruct(), RD->getNumBases(), |
4913 | std::distance(first: RD->field_begin(), last: RD->field_end())); |
4914 | |
4915 | unsigned Index = 0; |
4916 | for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), |
4917 | End = RD->bases_end(); |
4918 | I != End; ++I, ++Index) |
4919 | Success &= |
4920 | handleDefaultInitValue(T: I->getType(), Result&: Result.getStructBase(i: Index)); |
4921 | |
4922 | for (const auto *I : RD->fields()) { |
4923 | if (I->isUnnamedBitField()) |
4924 | continue; |
4925 | Success &= handleDefaultInitValue( |
4926 | T: I->getType(), Result&: Result.getStructField(i: I->getFieldIndex())); |
4927 | } |
4928 | return Success; |
4929 | } |
4930 | |
4931 | if (auto *AT = |
4932 | dyn_cast_or_null<ConstantArrayType>(Val: T->getAsArrayTypeUnsafe())) { |
4933 | Result = APValue(APValue::UninitArray(), 0, AT->getZExtSize()); |
4934 | if (Result.hasArrayFiller()) |
4935 | Success &= |
4936 | handleDefaultInitValue(T: AT->getElementType(), Result&: Result.getArrayFiller()); |
4937 | |
4938 | return Success; |
4939 | } |
4940 | |
4941 | Result = APValue::IndeterminateValue(); |
4942 | return true; |
4943 | } |
4944 | |
4945 | namespace { |
4946 | enum EvalStmtResult { |
4947 | /// Evaluation failed. |
4948 | ESR_Failed, |
4949 | /// Hit a 'return' statement. |
4950 | ESR_Returned, |
4951 | /// Evaluation succeeded. |
4952 | ESR_Succeeded, |
4953 | /// Hit a 'continue' statement. |
4954 | ESR_Continue, |
4955 | /// Hit a 'break' statement. |
4956 | ESR_Break, |
4957 | /// Still scanning for 'case' or 'default' statement. |
4958 | ESR_CaseNotFound |
4959 | }; |
4960 | } |
4961 | |
4962 | static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) { |
4963 | if (VD->isInvalidDecl()) |
4964 | return false; |
4965 | // We don't need to evaluate the initializer for a static local. |
4966 | if (!VD->hasLocalStorage()) |
4967 | return true; |
4968 | |
4969 | LValue Result; |
4970 | APValue &Val = Info.CurrentCall->createTemporary(Key: VD, T: VD->getType(), |
4971 | Scope: ScopeKind::Block, LV&: Result); |
4972 | |
4973 | const Expr *InitE = VD->getInit(); |
4974 | if (!InitE) { |
4975 | if (VD->getType()->isDependentType()) |
4976 | return Info.noteSideEffect(); |
4977 | return handleDefaultInitValue(T: VD->getType(), Result&: Val); |
4978 | } |
4979 | if (InitE->isValueDependent()) |
4980 | return false; |
4981 | |
4982 | if (!EvaluateInPlace(Result&: Val, Info, This: Result, E: InitE)) { |
4983 | // Wipe out any partially-computed value, to allow tracking that this |
4984 | // evaluation failed. |
4985 | Val = APValue(); |
4986 | return false; |
4987 | } |
4988 | |
4989 | return true; |
4990 | } |
4991 | |
4992 | static bool EvaluateDecl(EvalInfo &Info, const Decl *D) { |
4993 | bool OK = true; |
4994 | |
4995 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) |
4996 | OK &= EvaluateVarDecl(Info, VD); |
4997 | |
4998 | if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(Val: D)) |
4999 | for (auto *BD : DD->bindings()) |
5000 | if (auto *VD = BD->getHoldingVar()) |
5001 | OK &= EvaluateDecl(Info, D: VD); |
5002 | |
5003 | return OK; |
5004 | } |
5005 | |
5006 | static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) { |
5007 | assert(E->isValueDependent()); |
5008 | if (Info.noteSideEffect()) |
5009 | return true; |
5010 | assert(E->containsErrors() && "valid value-dependent expression should never " |
5011 | "reach invalid code path." ); |
5012 | return false; |
5013 | } |
5014 | |
5015 | /// Evaluate a condition (either a variable declaration or an expression). |
5016 | static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl, |
5017 | const Expr *Cond, bool &Result) { |
5018 | if (Cond->isValueDependent()) |
5019 | return false; |
5020 | FullExpressionRAII Scope(Info); |
5021 | if (CondDecl && !EvaluateDecl(Info, D: CondDecl)) |
5022 | return false; |
5023 | if (!EvaluateAsBooleanCondition(E: Cond, Result, Info)) |
5024 | return false; |
5025 | return Scope.destroy(); |
5026 | } |
5027 | |
5028 | namespace { |
5029 | /// A location where the result (returned value) of evaluating a |
5030 | /// statement should be stored. |
5031 | struct StmtResult { |
5032 | /// The APValue that should be filled in with the returned value. |
5033 | APValue &Value; |
5034 | /// The location containing the result, if any (used to support RVO). |
5035 | const LValue *Slot; |
5036 | }; |
5037 | |
5038 | struct TempVersionRAII { |
5039 | CallStackFrame &Frame; |
5040 | |
5041 | TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) { |
5042 | Frame.pushTempVersion(); |
5043 | } |
5044 | |
5045 | ~TempVersionRAII() { |
5046 | Frame.popTempVersion(); |
5047 | } |
5048 | }; |
5049 | |
5050 | } |
5051 | |
5052 | static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, |
5053 | const Stmt *S, |
5054 | const SwitchCase *SC = nullptr); |
5055 | |
5056 | /// Evaluate the body of a loop, and translate the result as appropriate. |
5057 | static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info, |
5058 | const Stmt *Body, |
5059 | const SwitchCase *Case = nullptr) { |
5060 | BlockScopeRAII Scope(Info); |
5061 | |
5062 | EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Body, SC: Case); |
5063 | if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) |
5064 | ESR = ESR_Failed; |
5065 | |
5066 | switch (ESR) { |
5067 | case ESR_Break: |
5068 | return ESR_Succeeded; |
5069 | case ESR_Succeeded: |
5070 | case ESR_Continue: |
5071 | return ESR_Continue; |
5072 | case ESR_Failed: |
5073 | case ESR_Returned: |
5074 | case ESR_CaseNotFound: |
5075 | return ESR; |
5076 | } |
5077 | llvm_unreachable("Invalid EvalStmtResult!" ); |
5078 | } |
5079 | |
5080 | /// Evaluate a switch statement. |
5081 | static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info, |
5082 | const SwitchStmt *SS) { |
5083 | BlockScopeRAII Scope(Info); |
5084 | |
5085 | // Evaluate the switch condition. |
5086 | APSInt Value; |
5087 | { |
5088 | if (const Stmt *Init = SS->getInit()) { |
5089 | EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Init); |
5090 | if (ESR != ESR_Succeeded) { |
5091 | if (ESR != ESR_Failed && !Scope.destroy()) |
5092 | ESR = ESR_Failed; |
5093 | return ESR; |
5094 | } |
5095 | } |
5096 | |
5097 | FullExpressionRAII CondScope(Info); |
5098 | if (SS->getConditionVariable() && |
5099 | !EvaluateDecl(Info, D: SS->getConditionVariable())) |
5100 | return ESR_Failed; |
5101 | if (SS->getCond()->isValueDependent()) { |
5102 | // We don't know what the value is, and which branch should jump to. |
5103 | EvaluateDependentExpr(E: SS->getCond(), Info); |
5104 | return ESR_Failed; |
5105 | } |
5106 | if (!EvaluateInteger(E: SS->getCond(), Result&: Value, Info)) |
5107 | return ESR_Failed; |
5108 | |
5109 | if (!CondScope.destroy()) |
5110 | return ESR_Failed; |
5111 | } |
5112 | |
5113 | // Find the switch case corresponding to the value of the condition. |
5114 | // FIXME: Cache this lookup. |
5115 | const SwitchCase *Found = nullptr; |
5116 | for (const SwitchCase *SC = SS->getSwitchCaseList(); SC; |
5117 | SC = SC->getNextSwitchCase()) { |
5118 | if (isa<DefaultStmt>(Val: SC)) { |
5119 | Found = SC; |
5120 | continue; |
5121 | } |
5122 | |
5123 | const CaseStmt *CS = cast<CaseStmt>(Val: SC); |
5124 | APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Ctx: Info.Ctx); |
5125 | APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Ctx: Info.Ctx) |
5126 | : LHS; |
5127 | if (LHS <= Value && Value <= RHS) { |
5128 | Found = SC; |
5129 | break; |
5130 | } |
5131 | } |
5132 | |
5133 | if (!Found) |
5134 | return Scope.destroy() ? ESR_Succeeded : ESR_Failed; |
5135 | |
5136 | // Search the switch body for the switch case and evaluate it from there. |
5137 | EvalStmtResult ESR = EvaluateStmt(Result, Info, S: SS->getBody(), SC: Found); |
5138 | if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) |
5139 | return ESR_Failed; |
5140 | |
5141 | switch (ESR) { |
5142 | case ESR_Break: |
5143 | return ESR_Succeeded; |
5144 | case ESR_Succeeded: |
5145 | case ESR_Continue: |
5146 | case ESR_Failed: |
5147 | case ESR_Returned: |
5148 | return ESR; |
5149 | case ESR_CaseNotFound: |
5150 | // This can only happen if the switch case is nested within a statement |
5151 | // expression. We have no intention of supporting that. |
5152 | Info.FFDiag(Loc: Found->getBeginLoc(), |
5153 | DiagId: diag::note_constexpr_stmt_expr_unsupported); |
5154 | return ESR_Failed; |
5155 | } |
5156 | llvm_unreachable("Invalid EvalStmtResult!" ); |
5157 | } |
5158 | |
5159 | static bool CheckLocalVariableDeclaration(EvalInfo &Info, const VarDecl *VD) { |
5160 | // An expression E is a core constant expression unless the evaluation of E |
5161 | // would evaluate one of the following: [C++23] - a control flow that passes |
5162 | // through a declaration of a variable with static or thread storage duration |
5163 | // unless that variable is usable in constant expressions. |
5164 | if (VD->isLocalVarDecl() && VD->isStaticLocal() && |
5165 | !VD->isUsableInConstantExpressions(C: Info.Ctx)) { |
5166 | Info.CCEDiag(Loc: VD->getLocation(), DiagId: diag::note_constexpr_static_local) |
5167 | << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD; |
5168 | return false; |
5169 | } |
5170 | return true; |
5171 | } |
5172 | |
5173 | // Evaluate a statement. |
5174 | static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, |
5175 | const Stmt *S, const SwitchCase *Case) { |
5176 | if (!Info.nextStep(S)) |
5177 | return ESR_Failed; |
5178 | |
5179 | // If we're hunting down a 'case' or 'default' label, recurse through |
5180 | // substatements until we hit the label. |
5181 | if (Case) { |
5182 | switch (S->getStmtClass()) { |
5183 | case Stmt::CompoundStmtClass: |
5184 | // FIXME: Precompute which substatement of a compound statement we |
5185 | // would jump to, and go straight there rather than performing a |
5186 | // linear scan each time. |
5187 | case Stmt::LabelStmtClass: |
5188 | case Stmt::AttributedStmtClass: |
5189 | case Stmt::DoStmtClass: |
5190 | break; |
5191 | |
5192 | case Stmt::CaseStmtClass: |
5193 | case Stmt::DefaultStmtClass: |
5194 | if (Case == S) |
5195 | Case = nullptr; |
5196 | break; |
5197 | |
5198 | case Stmt::IfStmtClass: { |
5199 | // FIXME: Precompute which side of an 'if' we would jump to, and go |
5200 | // straight there rather than scanning both sides. |
5201 | const IfStmt *IS = cast<IfStmt>(Val: S); |
5202 | |
5203 | // Wrap the evaluation in a block scope, in case it's a DeclStmt |
5204 | // preceded by our switch label. |
5205 | BlockScopeRAII Scope(Info); |
5206 | |
5207 | // Step into the init statement in case it brings an (uninitialized) |
5208 | // variable into scope. |
5209 | if (const Stmt *Init = IS->getInit()) { |
5210 | EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Init, Case); |
5211 | if (ESR != ESR_CaseNotFound) { |
5212 | assert(ESR != ESR_Succeeded); |
5213 | return ESR; |
5214 | } |
5215 | } |
5216 | |
5217 | // Condition variable must be initialized if it exists. |
5218 | // FIXME: We can skip evaluating the body if there's a condition |
5219 | // variable, as there can't be any case labels within it. |
5220 | // (The same is true for 'for' statements.) |
5221 | |
5222 | EvalStmtResult ESR = EvaluateStmt(Result, Info, S: IS->getThen(), Case); |
5223 | if (ESR == ESR_Failed) |
5224 | return ESR; |
5225 | if (ESR != ESR_CaseNotFound) |
5226 | return Scope.destroy() ? ESR : ESR_Failed; |
5227 | if (!IS->getElse()) |
5228 | return ESR_CaseNotFound; |
5229 | |
5230 | ESR = EvaluateStmt(Result, Info, S: IS->getElse(), Case); |
5231 | if (ESR == ESR_Failed) |
5232 | return ESR; |
5233 | if (ESR != ESR_CaseNotFound) |
5234 | return Scope.destroy() ? ESR : ESR_Failed; |
5235 | return ESR_CaseNotFound; |
5236 | } |
5237 | |
5238 | case Stmt::WhileStmtClass: { |
5239 | EvalStmtResult ESR = |
5240 | EvaluateLoopBody(Result, Info, Body: cast<WhileStmt>(Val: S)->getBody(), Case); |
5241 | if (ESR != ESR_Continue) |
5242 | return ESR; |
5243 | break; |
5244 | } |
5245 | |
5246 | case Stmt::ForStmtClass: { |
5247 | const ForStmt *FS = cast<ForStmt>(Val: S); |
5248 | BlockScopeRAII Scope(Info); |
5249 | |
5250 | // Step into the init statement in case it brings an (uninitialized) |
5251 | // variable into scope. |
5252 | if (const Stmt *Init = FS->getInit()) { |
5253 | EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Init, Case); |
5254 | if (ESR != ESR_CaseNotFound) { |
5255 | assert(ESR != ESR_Succeeded); |
5256 | return ESR; |
5257 | } |
5258 | } |
5259 | |
5260 | EvalStmtResult ESR = |
5261 | EvaluateLoopBody(Result, Info, Body: FS->getBody(), Case); |
5262 | if (ESR != ESR_Continue) |
5263 | return ESR; |
5264 | if (const auto *Inc = FS->getInc()) { |
5265 | if (Inc->isValueDependent()) { |
5266 | if (!EvaluateDependentExpr(E: Inc, Info)) |
5267 | return ESR_Failed; |
5268 | } else { |
5269 | FullExpressionRAII IncScope(Info); |
5270 | if (!EvaluateIgnoredValue(Info, E: Inc) || !IncScope.destroy()) |
5271 | return ESR_Failed; |
5272 | } |
5273 | } |
5274 | break; |
5275 | } |
5276 | |
5277 | case Stmt::DeclStmtClass: { |
5278 | // Start the lifetime of any uninitialized variables we encounter. They |
5279 | // might be used by the selected branch of the switch. |
5280 | const DeclStmt *DS = cast<DeclStmt>(Val: S); |
5281 | for (const auto *D : DS->decls()) { |
5282 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
5283 | if (!CheckLocalVariableDeclaration(Info, VD)) |
5284 | return ESR_Failed; |
5285 | if (VD->hasLocalStorage() && !VD->getInit()) |
5286 | if (!EvaluateVarDecl(Info, VD)) |
5287 | return ESR_Failed; |
5288 | // FIXME: If the variable has initialization that can't be jumped |
5289 | // over, bail out of any immediately-surrounding compound-statement |
5290 | // too. There can't be any case labels here. |
5291 | } |
5292 | } |
5293 | return ESR_CaseNotFound; |
5294 | } |
5295 | |
5296 | default: |
5297 | return ESR_CaseNotFound; |
5298 | } |
5299 | } |
5300 | |
5301 | switch (S->getStmtClass()) { |
5302 | default: |
5303 | if (const Expr *E = dyn_cast<Expr>(Val: S)) { |
5304 | if (E->isValueDependent()) { |
5305 | if (!EvaluateDependentExpr(E, Info)) |
5306 | return ESR_Failed; |
5307 | } else { |
5308 | // Don't bother evaluating beyond an expression-statement which couldn't |
5309 | // be evaluated. |
5310 | // FIXME: Do we need the FullExpressionRAII object here? |
5311 | // VisitExprWithCleanups should create one when necessary. |
5312 | FullExpressionRAII Scope(Info); |
5313 | if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy()) |
5314 | return ESR_Failed; |
5315 | } |
5316 | return ESR_Succeeded; |
5317 | } |
5318 | |
5319 | Info.FFDiag(Loc: S->getBeginLoc()) << S->getSourceRange(); |
5320 | return ESR_Failed; |
5321 | |
5322 | case Stmt::NullStmtClass: |
5323 | return ESR_Succeeded; |
5324 | |
5325 | case Stmt::DeclStmtClass: { |
5326 | const DeclStmt *DS = cast<DeclStmt>(Val: S); |
5327 | for (const auto *D : DS->decls()) { |
5328 | const VarDecl *VD = dyn_cast_or_null<VarDecl>(Val: D); |
5329 | if (VD && !CheckLocalVariableDeclaration(Info, VD)) |
5330 | return ESR_Failed; |
5331 | // Each declaration initialization is its own full-expression. |
5332 | FullExpressionRAII Scope(Info); |
5333 | if (!EvaluateDecl(Info, D) && !Info.noteFailure()) |
5334 | return ESR_Failed; |
5335 | if (!Scope.destroy()) |
5336 | return ESR_Failed; |
5337 | } |
5338 | return ESR_Succeeded; |
5339 | } |
5340 | |
5341 | case Stmt::ReturnStmtClass: { |
5342 | const Expr *RetExpr = cast<ReturnStmt>(Val: S)->getRetValue(); |
5343 | FullExpressionRAII Scope(Info); |
5344 | if (RetExpr && RetExpr->isValueDependent()) { |
5345 | EvaluateDependentExpr(E: RetExpr, Info); |
5346 | // We know we returned, but we don't know what the value is. |
5347 | return ESR_Failed; |
5348 | } |
5349 | if (RetExpr && |
5350 | !(Result.Slot |
5351 | ? EvaluateInPlace(Result&: Result.Value, Info, This: *Result.Slot, E: RetExpr) |
5352 | : Evaluate(Result&: Result.Value, Info, E: RetExpr))) |
5353 | return ESR_Failed; |
5354 | return Scope.destroy() ? ESR_Returned : ESR_Failed; |
5355 | } |
5356 | |
5357 | case Stmt::CompoundStmtClass: { |
5358 | BlockScopeRAII Scope(Info); |
5359 | |
5360 | const CompoundStmt *CS = cast<CompoundStmt>(Val: S); |
5361 | for (const auto *BI : CS->body()) { |
5362 | EvalStmtResult ESR = EvaluateStmt(Result, Info, S: BI, Case); |
5363 | if (ESR == ESR_Succeeded) |
5364 | Case = nullptr; |
5365 | else if (ESR != ESR_CaseNotFound) { |
5366 | if (ESR != ESR_Failed && !Scope.destroy()) |
5367 | return ESR_Failed; |
5368 | return ESR; |
5369 | } |
5370 | } |
5371 | if (Case) |
5372 | return ESR_CaseNotFound; |
5373 | return Scope.destroy() ? ESR_Succeeded : ESR_Failed; |
5374 | } |
5375 | |
5376 | case Stmt::IfStmtClass: { |
5377 | const IfStmt *IS = cast<IfStmt>(Val: S); |
5378 | |
5379 | // Evaluate the condition, as either a var decl or as an expression. |
5380 | BlockScopeRAII Scope(Info); |
5381 | if (const Stmt *Init = IS->getInit()) { |
5382 | EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Init); |
5383 | if (ESR != ESR_Succeeded) { |
5384 | if (ESR != ESR_Failed && !Scope.destroy()) |
5385 | return ESR_Failed; |
5386 | return ESR; |
5387 | } |
5388 | } |
5389 | bool Cond; |
5390 | if (IS->isConsteval()) { |
5391 | Cond = IS->isNonNegatedConsteval(); |
5392 | // If we are not in a constant context, if consteval should not evaluate |
5393 | // to true. |
5394 | if (!Info.InConstantContext) |
5395 | Cond = !Cond; |
5396 | } else if (!EvaluateCond(Info, CondDecl: IS->getConditionVariable(), Cond: IS->getCond(), |
5397 | Result&: Cond)) |
5398 | return ESR_Failed; |
5399 | |
5400 | if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) { |
5401 | EvalStmtResult ESR = EvaluateStmt(Result, Info, S: SubStmt); |
5402 | if (ESR != ESR_Succeeded) { |
5403 | if (ESR != ESR_Failed && !Scope.destroy()) |
5404 | return ESR_Failed; |
5405 | return ESR; |
5406 | } |
5407 | } |
5408 | return Scope.destroy() ? ESR_Succeeded : ESR_Failed; |
5409 | } |
5410 | |
5411 | case Stmt::WhileStmtClass: { |
5412 | const WhileStmt *WS = cast<WhileStmt>(Val: S); |
5413 | while (true) { |
5414 | BlockScopeRAII Scope(Info); |
5415 | bool Continue; |
5416 | if (!EvaluateCond(Info, CondDecl: WS->getConditionVariable(), Cond: WS->getCond(), |
5417 | Result&: Continue)) |
5418 | return ESR_Failed; |
5419 | if (!Continue) |
5420 | break; |
5421 | |
5422 | EvalStmtResult ESR = EvaluateLoopBody(Result, Info, Body: WS->getBody()); |
5423 | if (ESR != ESR_Continue) { |
5424 | if (ESR != ESR_Failed && !Scope.destroy()) |
5425 | return ESR_Failed; |
5426 | return ESR; |
5427 | } |
5428 | if (!Scope.destroy()) |
5429 | return ESR_Failed; |
5430 | } |
5431 | return ESR_Succeeded; |
5432 | } |
5433 | |
5434 | case Stmt::DoStmtClass: { |
5435 | const DoStmt *DS = cast<DoStmt>(Val: S); |
5436 | bool Continue; |
5437 | do { |
5438 | EvalStmtResult ESR = EvaluateLoopBody(Result, Info, Body: DS->getBody(), Case); |
5439 | if (ESR != ESR_Continue) |
5440 | return ESR; |
5441 | Case = nullptr; |
5442 | |
5443 | if (DS->getCond()->isValueDependent()) { |
5444 | EvaluateDependentExpr(E: DS->getCond(), Info); |
5445 | // Bailout as we don't know whether to keep going or terminate the loop. |
5446 | return ESR_Failed; |
5447 | } |
5448 | FullExpressionRAII CondScope(Info); |
5449 | if (!EvaluateAsBooleanCondition(E: DS->getCond(), Result&: Continue, Info) || |
5450 | !CondScope.destroy()) |
5451 | return ESR_Failed; |
5452 | } while (Continue); |
5453 | return ESR_Succeeded; |
5454 | } |
5455 | |
5456 | case Stmt::ForStmtClass: { |
5457 | const ForStmt *FS = cast<ForStmt>(Val: S); |
5458 | BlockScopeRAII ForScope(Info); |
5459 | if (FS->getInit()) { |
5460 | EvalStmtResult ESR = EvaluateStmt(Result, Info, S: FS->getInit()); |
5461 | if (ESR != ESR_Succeeded) { |
5462 | if (ESR != ESR_Failed && !ForScope.destroy()) |
5463 | return ESR_Failed; |
5464 | return ESR; |
5465 | } |
5466 | } |
5467 | while (true) { |
5468 | BlockScopeRAII IterScope(Info); |
5469 | bool Continue = true; |
5470 | if (FS->getCond() && !EvaluateCond(Info, CondDecl: FS->getConditionVariable(), |
5471 | Cond: FS->getCond(), Result&: Continue)) |
5472 | return ESR_Failed; |
5473 | if (!Continue) |
5474 | break; |
5475 | |
5476 | EvalStmtResult ESR = EvaluateLoopBody(Result, Info, Body: FS->getBody()); |
5477 | if (ESR != ESR_Continue) { |
5478 | if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy())) |
5479 | return ESR_Failed; |
5480 | return ESR; |
5481 | } |
5482 | |
5483 | if (const auto *Inc = FS->getInc()) { |
5484 | if (Inc->isValueDependent()) { |
5485 | if (!EvaluateDependentExpr(E: Inc, Info)) |
5486 | return ESR_Failed; |
5487 | } else { |
5488 | FullExpressionRAII IncScope(Info); |
5489 | if (!EvaluateIgnoredValue(Info, E: Inc) || !IncScope.destroy()) |
5490 | return ESR_Failed; |
5491 | } |
5492 | } |
5493 | |
5494 | if (!IterScope.destroy()) |
5495 | return ESR_Failed; |
5496 | } |
5497 | return ForScope.destroy() ? ESR_Succeeded : ESR_Failed; |
5498 | } |
5499 | |
5500 | case Stmt::CXXForRangeStmtClass: { |
5501 | const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(Val: S); |
5502 | BlockScopeRAII Scope(Info); |
5503 | |
5504 | // Evaluate the init-statement if present. |
5505 | if (FS->getInit()) { |
5506 | EvalStmtResult ESR = EvaluateStmt(Result, Info, S: FS->getInit()); |
5507 | if (ESR != ESR_Succeeded) { |
5508 | if (ESR != ESR_Failed && !Scope.destroy()) |
5509 | return ESR_Failed; |
5510 | return ESR; |
5511 | } |
5512 | } |
5513 | |
5514 | // Initialize the __range variable. |
5515 | EvalStmtResult ESR = EvaluateStmt(Result, Info, S: FS->getRangeStmt()); |
5516 | if (ESR != ESR_Succeeded) { |
5517 | if (ESR != ESR_Failed && !Scope.destroy()) |
5518 | return ESR_Failed; |
5519 | return ESR; |
5520 | } |
5521 | |
5522 | // In error-recovery cases it's possible to get here even if we failed to |
5523 | // synthesize the __begin and __end variables. |
5524 | if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond()) |
5525 | return ESR_Failed; |
5526 | |
5527 | // Create the __begin and __end iterators. |
5528 | ESR = EvaluateStmt(Result, Info, S: FS->getBeginStmt()); |
5529 | if (ESR != ESR_Succeeded) { |
5530 | if (ESR != ESR_Failed && !Scope.destroy()) |
5531 | return ESR_Failed; |
5532 | return ESR; |
5533 | } |
5534 | ESR = EvaluateStmt(Result, Info, S: FS->getEndStmt()); |
5535 | if (ESR != ESR_Succeeded) { |
5536 | if (ESR != ESR_Failed && !Scope.destroy()) |
5537 | return ESR_Failed; |
5538 | return ESR; |
5539 | } |
5540 | |
5541 | while (true) { |
5542 | // Condition: __begin != __end. |
5543 | { |
5544 | if (FS->getCond()->isValueDependent()) { |
5545 | EvaluateDependentExpr(E: FS->getCond(), Info); |
5546 | // We don't know whether to keep going or terminate the loop. |
5547 | return ESR_Failed; |
5548 | } |
5549 | bool Continue = true; |
5550 | FullExpressionRAII CondExpr(Info); |
5551 | if (!EvaluateAsBooleanCondition(E: FS->getCond(), Result&: Continue, Info)) |
5552 | return ESR_Failed; |
5553 | if (!Continue) |
5554 | break; |
5555 | } |
5556 | |
5557 | // User's variable declaration, initialized by *__begin. |
5558 | BlockScopeRAII InnerScope(Info); |
5559 | ESR = EvaluateStmt(Result, Info, S: FS->getLoopVarStmt()); |
5560 | if (ESR != ESR_Succeeded) { |
5561 | if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) |
5562 | return ESR_Failed; |
5563 | return ESR; |
5564 | } |
5565 | |
5566 | // Loop body. |
5567 | ESR = EvaluateLoopBody(Result, Info, Body: FS->getBody()); |
5568 | if (ESR != ESR_Continue) { |
5569 | if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) |
5570 | return ESR_Failed; |
5571 | return ESR; |
5572 | } |
5573 | if (FS->getInc()->isValueDependent()) { |
5574 | if (!EvaluateDependentExpr(E: FS->getInc(), Info)) |
5575 | return ESR_Failed; |
5576 | } else { |
5577 | // Increment: ++__begin |
5578 | if (!EvaluateIgnoredValue(Info, E: FS->getInc())) |
5579 | return ESR_Failed; |
5580 | } |
5581 | |
5582 | if (!InnerScope.destroy()) |
5583 | return ESR_Failed; |
5584 | } |
5585 | |
5586 | return Scope.destroy() ? ESR_Succeeded : ESR_Failed; |
5587 | } |
5588 | |
5589 | case Stmt::SwitchStmtClass: |
5590 | return EvaluateSwitch(Result, Info, SS: cast<SwitchStmt>(Val: S)); |
5591 | |
5592 | case Stmt::ContinueStmtClass: |
5593 | return ESR_Continue; |
5594 | |
5595 | case Stmt::BreakStmtClass: |
5596 | return ESR_Break; |
5597 | |
5598 | case Stmt::LabelStmtClass: |
5599 | return EvaluateStmt(Result, Info, S: cast<LabelStmt>(Val: S)->getSubStmt(), Case); |
5600 | |
5601 | case Stmt::AttributedStmtClass: { |
5602 | const auto *AS = cast<AttributedStmt>(Val: S); |
5603 | const auto *SS = AS->getSubStmt(); |
5604 | MSConstexprContextRAII ConstexprContext( |
5605 | *Info.CurrentCall, hasSpecificAttr<MSConstexprAttr>(container: AS->getAttrs()) && |
5606 | isa<ReturnStmt>(Val: SS)); |
5607 | |
5608 | auto LO = Info.getCtx().getLangOpts(); |
5609 | if (LO.CXXAssumptions && !LO.MSVCCompat) { |
5610 | for (auto *Attr : AS->getAttrs()) { |
5611 | auto *AA = dyn_cast<CXXAssumeAttr>(Val: Attr); |
5612 | if (!AA) |
5613 | continue; |
5614 | |
5615 | auto *Assumption = AA->getAssumption(); |
5616 | if (Assumption->isValueDependent()) |
5617 | return ESR_Failed; |
5618 | |
5619 | if (Assumption->HasSideEffects(Ctx: Info.getCtx())) |
5620 | continue; |
5621 | |
5622 | bool Value; |
5623 | if (!EvaluateAsBooleanCondition(E: Assumption, Result&: Value, Info)) |
5624 | return ESR_Failed; |
5625 | if (!Value) { |
5626 | Info.CCEDiag(Loc: Assumption->getExprLoc(), |
5627 | DiagId: diag::note_constexpr_assumption_failed); |
5628 | return ESR_Failed; |
5629 | } |
5630 | } |
5631 | } |
5632 | |
5633 | return EvaluateStmt(Result, Info, S: SS, Case); |
5634 | } |
5635 | |
5636 | case Stmt::CaseStmtClass: |
5637 | case Stmt::DefaultStmtClass: |
5638 | return EvaluateStmt(Result, Info, S: cast<SwitchCase>(Val: S)->getSubStmt(), Case); |
5639 | case Stmt::CXXTryStmtClass: |
5640 | // Evaluate try blocks by evaluating all sub statements. |
5641 | return EvaluateStmt(Result, Info, S: cast<CXXTryStmt>(Val: S)->getTryBlock(), Case); |
5642 | } |
5643 | } |
5644 | |
5645 | /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial |
5646 | /// default constructor. If so, we'll fold it whether or not it's marked as |
5647 | /// constexpr. If it is marked as constexpr, we will never implicitly define it, |
5648 | /// so we need special handling. |
5649 | static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc, |
5650 | const CXXConstructorDecl *CD, |
5651 | bool IsValueInitialization) { |
5652 | if (!CD->isTrivial() || !CD->isDefaultConstructor()) |
5653 | return false; |
5654 | |
5655 | // Value-initialization does not call a trivial default constructor, so such a |
5656 | // call is a core constant expression whether or not the constructor is |
5657 | // constexpr. |
5658 | if (!CD->isConstexpr() && !IsValueInitialization) { |
5659 | if (Info.getLangOpts().CPlusPlus11) { |
5660 | // FIXME: If DiagDecl is an implicitly-declared special member function, |
5661 | // we should be much more explicit about why it's not constexpr. |
5662 | Info.CCEDiag(Loc, DiagId: diag::note_constexpr_invalid_function, ExtraNotes: 1) |
5663 | << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD; |
5664 | Info.Note(Loc: CD->getLocation(), DiagId: diag::note_declared_at); |
5665 | } else { |
5666 | Info.CCEDiag(Loc, DiagId: diag::note_invalid_subexpr_in_const_expr); |
5667 | } |
5668 | } |
5669 | return true; |
5670 | } |
5671 | |
5672 | /// CheckConstexprFunction - Check that a function can be called in a constant |
5673 | /// expression. |
5674 | static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc, |
5675 | const FunctionDecl *Declaration, |
5676 | const FunctionDecl *Definition, |
5677 | const Stmt *Body) { |
5678 | // Potential constant expressions can contain calls to declared, but not yet |
5679 | // defined, constexpr functions. |
5680 | if (Info.checkingPotentialConstantExpression() && !Definition && |
5681 | Declaration->isConstexpr()) |
5682 | return false; |
5683 | |
5684 | // Bail out if the function declaration itself is invalid. We will |
5685 | // have produced a relevant diagnostic while parsing it, so just |
5686 | // note the problematic sub-expression. |
5687 | if (Declaration->isInvalidDecl()) { |
5688 | Info.FFDiag(Loc: CallLoc, DiagId: diag::note_invalid_subexpr_in_const_expr); |
5689 | return false; |
5690 | } |
5691 | |
5692 | // DR1872: An instantiated virtual constexpr function can't be called in a |
5693 | // constant expression (prior to C++20). We can still constant-fold such a |
5694 | // call. |
5695 | if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Val: Declaration) && |
5696 | cast<CXXMethodDecl>(Val: Declaration)->isVirtual()) |
5697 | Info.CCEDiag(Loc: CallLoc, DiagId: diag::note_constexpr_virtual_call); |
5698 | |
5699 | if (Definition && Definition->isInvalidDecl()) { |
5700 | Info.FFDiag(Loc: CallLoc, DiagId: diag::note_invalid_subexpr_in_const_expr); |
5701 | return false; |
5702 | } |
5703 | |
5704 | // Can we evaluate this function call? |
5705 | if (Definition && Body && |
5706 | (Definition->isConstexpr() || (Info.CurrentCall->CanEvalMSConstexpr && |
5707 | Definition->hasAttr<MSConstexprAttr>()))) |
5708 | return true; |
5709 | |
5710 | if (Info.getLangOpts().CPlusPlus11) { |
5711 | const FunctionDecl *DiagDecl = Definition ? Definition : Declaration; |
5712 | |
5713 | // If this function is not constexpr because it is an inherited |
5714 | // non-constexpr constructor, diagnose that directly. |
5715 | auto *CD = dyn_cast<CXXConstructorDecl>(Val: DiagDecl); |
5716 | if (CD && CD->isInheritingConstructor()) { |
5717 | auto *Inherited = CD->getInheritedConstructor().getConstructor(); |
5718 | if (!Inherited->isConstexpr()) |
5719 | DiagDecl = CD = Inherited; |
5720 | } |
5721 | |
5722 | // FIXME: If DiagDecl is an implicitly-declared special member function |
5723 | // or an inheriting constructor, we should be much more explicit about why |
5724 | // it's not constexpr. |
5725 | if (CD && CD->isInheritingConstructor()) |
5726 | Info.FFDiag(Loc: CallLoc, DiagId: diag::note_constexpr_invalid_inhctor, ExtraNotes: 1) |
5727 | << CD->getInheritedConstructor().getConstructor()->getParent(); |
5728 | else |
5729 | Info.FFDiag(Loc: CallLoc, DiagId: diag::note_constexpr_invalid_function, ExtraNotes: 1) |
5730 | << DiagDecl->isConstexpr() << (bool)CD << DiagDecl; |
5731 | Info.Note(Loc: DiagDecl->getLocation(), DiagId: diag::note_declared_at); |
5732 | } else { |
5733 | Info.FFDiag(Loc: CallLoc, DiagId: diag::note_invalid_subexpr_in_const_expr); |
5734 | } |
5735 | return false; |
5736 | } |
5737 | |
5738 | namespace { |
5739 | struct CheckDynamicTypeHandler { |
5740 | AccessKinds AccessKind; |
5741 | typedef bool result_type; |
5742 | bool failed() { return false; } |
5743 | bool found(APValue &Subobj, QualType SubobjType) { return true; } |
5744 | bool found(APSInt &Value, QualType SubobjType) { return true; } |
5745 | bool found(APFloat &Value, QualType SubobjType) { return true; } |
5746 | }; |
5747 | } // end anonymous namespace |
5748 | |
5749 | /// Check that we can access the notional vptr of an object / determine its |
5750 | /// dynamic type. |
5751 | static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This, |
5752 | AccessKinds AK, bool Polymorphic) { |
5753 | if (This.Designator.Invalid) |
5754 | return false; |
5755 | |
5756 | CompleteObject Obj = findCompleteObject(Info, E, AK, LVal: This, LValType: QualType()); |
5757 | |
5758 | if (!Obj) |
5759 | return false; |
5760 | |
5761 | if (!Obj.Value) { |
5762 | // The object is not usable in constant expressions, so we can't inspect |
5763 | // its value to see if it's in-lifetime or what the active union members |
5764 | // are. We can still check for a one-past-the-end lvalue. |
5765 | if (This.Designator.isOnePastTheEnd() || |
5766 | This.Designator.isMostDerivedAnUnsizedArray()) { |
5767 | Info.FFDiag(E, DiagId: This.Designator.isOnePastTheEnd() |
5768 | ? diag::note_constexpr_access_past_end |
5769 | : diag::note_constexpr_access_unsized_array) |
5770 | << AK; |
5771 | return false; |
5772 | } else if (Polymorphic) { |
5773 | // Conservatively refuse to perform a polymorphic operation if we would |
5774 | // not be able to read a notional 'vptr' value. |
5775 | APValue Val; |
5776 | This.moveInto(V&: Val); |
5777 | QualType StarThisType = |
5778 | Info.Ctx.getLValueReferenceType(T: This.Designator.getType(Ctx&: Info.Ctx)); |
5779 | Info.FFDiag(E, DiagId: diag::note_constexpr_polymorphic_unknown_dynamic_type) |
5780 | << AK << Val.getAsString(Ctx: Info.Ctx, Ty: StarThisType); |
5781 | return false; |
5782 | } |
5783 | return true; |
5784 | } |
5785 | |
5786 | CheckDynamicTypeHandler Handler{.AccessKind: AK}; |
5787 | return Obj && findSubobject(Info, E, Obj, Sub: This.Designator, handler&: Handler); |
5788 | } |
5789 | |
5790 | /// Check that the pointee of the 'this' pointer in a member function call is |
5791 | /// either within its lifetime or in its period of construction or destruction. |
5792 | static bool |
5793 | checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E, |
5794 | const LValue &This, |
5795 | const CXXMethodDecl *NamedMember) { |
5796 | return checkDynamicType( |
5797 | Info, E, This, |
5798 | AK: isa<CXXDestructorDecl>(Val: NamedMember) ? AK_Destroy : AK_MemberCall, Polymorphic: false); |
5799 | } |
5800 | |
5801 | struct DynamicType { |
5802 | /// The dynamic class type of the object. |
5803 | const CXXRecordDecl *Type; |
5804 | /// The corresponding path length in the lvalue. |
5805 | unsigned PathLength; |
5806 | }; |
5807 | |
5808 | static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator, |
5809 | unsigned PathLength) { |
5810 | assert(PathLength >= Designator.MostDerivedPathLength && PathLength <= |
5811 | Designator.Entries.size() && "invalid path length" ); |
5812 | return (PathLength == Designator.MostDerivedPathLength) |
5813 | ? Designator.MostDerivedType->getAsCXXRecordDecl() |
5814 | : getAsBaseClass(E: Designator.Entries[PathLength - 1]); |
5815 | } |
5816 | |
5817 | /// Determine the dynamic type of an object. |
5818 | static std::optional<DynamicType> ComputeDynamicType(EvalInfo &Info, |
5819 | const Expr *E, |
5820 | LValue &This, |
5821 | AccessKinds AK) { |
5822 | // If we don't have an lvalue denoting an object of class type, there is no |
5823 | // meaningful dynamic type. (We consider objects of non-class type to have no |
5824 | // dynamic type.) |
5825 | if (!checkDynamicType(Info, E, This, AK, Polymorphic: true)) |
5826 | return std::nullopt; |
5827 | |
5828 | // Refuse to compute a dynamic type in the presence of virtual bases. This |
5829 | // shouldn't happen other than in constant-folding situations, since literal |
5830 | // types can't have virtual bases. |
5831 | // |
5832 | // Note that consumers of DynamicType assume that the type has no virtual |
5833 | // bases, and will need modifications if this restriction is relaxed. |
5834 | const CXXRecordDecl *Class = |
5835 | This.Designator.MostDerivedType->getAsCXXRecordDecl(); |
5836 | if (!Class || Class->getNumVBases()) { |
5837 | Info.FFDiag(E); |
5838 | return std::nullopt; |
5839 | } |
5840 | |
5841 | // FIXME: For very deep class hierarchies, it might be beneficial to use a |
5842 | // binary search here instead. But the overwhelmingly common case is that |
5843 | // we're not in the middle of a constructor, so it probably doesn't matter |
5844 | // in practice. |
5845 | ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries; |
5846 | for (unsigned PathLength = This.Designator.MostDerivedPathLength; |
5847 | PathLength <= Path.size(); ++PathLength) { |
5848 | switch (Info.isEvaluatingCtorDtor(Base: This.getLValueBase(), |
5849 | Path: Path.slice(N: 0, M: PathLength))) { |
5850 | case ConstructionPhase::Bases: |
5851 | case ConstructionPhase::DestroyingBases: |
5852 | // We're constructing or destroying a base class. This is not the dynamic |
5853 | // type. |
5854 | break; |
5855 | |
5856 | case ConstructionPhase::None: |
5857 | case ConstructionPhase::AfterBases: |
5858 | case ConstructionPhase::AfterFields: |
5859 | case ConstructionPhase::Destroying: |
5860 | // We've finished constructing the base classes and not yet started |
5861 | // destroying them again, so this is the dynamic type. |
5862 | return DynamicType{.Type: getBaseClassType(Designator&: This.Designator, PathLength), |
5863 | .PathLength: PathLength}; |
5864 | } |
5865 | } |
5866 | |
5867 | // CWG issue 1517: we're constructing a base class of the object described by |
5868 | // 'This', so that object has not yet begun its period of construction and |
5869 | // any polymorphic operation on it results in undefined behavior. |
5870 | Info.FFDiag(E); |
5871 | return std::nullopt; |
5872 | } |
5873 | |
5874 | /// Perform virtual dispatch. |
5875 | static const CXXMethodDecl *HandleVirtualDispatch( |
5876 | EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found, |
5877 | llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) { |
5878 | std::optional<DynamicType> DynType = ComputeDynamicType( |
5879 | Info, E, This, |
5880 | AK: isa<CXXDestructorDecl>(Val: Found) ? AK_Destroy : AK_MemberCall); |
5881 | if (!DynType) |
5882 | return nullptr; |
5883 | |
5884 | // Find the final overrider. It must be declared in one of the classes on the |
5885 | // path from the dynamic type to the static type. |
5886 | // FIXME: If we ever allow literal types to have virtual base classes, that |
5887 | // won't be true. |
5888 | const CXXMethodDecl *Callee = Found; |
5889 | unsigned PathLength = DynType->PathLength; |
5890 | for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) { |
5891 | const CXXRecordDecl *Class = getBaseClassType(Designator&: This.Designator, PathLength); |
5892 | const CXXMethodDecl *Overrider = |
5893 | Found->getCorrespondingMethodDeclaredInClass(RD: Class, MayBeBase: false); |
5894 | if (Overrider) { |
5895 | Callee = Overrider; |
5896 | break; |
5897 | } |
5898 | } |
5899 | |
5900 | // C++2a [class.abstract]p6: |
5901 | // the effect of making a virtual call to a pure virtual function [...] is |
5902 | // undefined |
5903 | if (Callee->isPureVirtual()) { |
5904 | Info.FFDiag(E, DiagId: diag::note_constexpr_pure_virtual_call, ExtraNotes: 1) << Callee; |
5905 | Info.Note(Loc: Callee->getLocation(), DiagId: diag::note_declared_at); |
5906 | return nullptr; |
5907 | } |
5908 | |
5909 | // If necessary, walk the rest of the path to determine the sequence of |
5910 | // covariant adjustment steps to apply. |
5911 | if (!Info.Ctx.hasSameUnqualifiedType(T1: Callee->getReturnType(), |
5912 | T2: Found->getReturnType())) { |
5913 | CovariantAdjustmentPath.push_back(Elt: Callee->getReturnType()); |
5914 | for (unsigned CovariantPathLength = PathLength + 1; |
5915 | CovariantPathLength != This.Designator.Entries.size(); |
5916 | ++CovariantPathLength) { |
5917 | const CXXRecordDecl *NextClass = |
5918 | getBaseClassType(Designator&: This.Designator, PathLength: CovariantPathLength); |
5919 | const CXXMethodDecl *Next = |
5920 | Found->getCorrespondingMethodDeclaredInClass(RD: NextClass, MayBeBase: false); |
5921 | if (Next && !Info.Ctx.hasSameUnqualifiedType( |
5922 | T1: Next->getReturnType(), T2: CovariantAdjustmentPath.back())) |
5923 | CovariantAdjustmentPath.push_back(Elt: Next->getReturnType()); |
5924 | } |
5925 | if (!Info.Ctx.hasSameUnqualifiedType(T1: Found->getReturnType(), |
5926 | T2: CovariantAdjustmentPath.back())) |
5927 | CovariantAdjustmentPath.push_back(Elt: Found->getReturnType()); |
5928 | } |
5929 | |
5930 | // Perform 'this' adjustment. |
5931 | if (!CastToDerivedClass(Info, E, Result&: This, TruncatedType: Callee->getParent(), TruncatedElements: PathLength)) |
5932 | return nullptr; |
5933 | |
5934 | return Callee; |
5935 | } |
5936 | |
5937 | /// Perform the adjustment from a value returned by a virtual function to |
5938 | /// a value of the statically expected type, which may be a pointer or |
5939 | /// reference to a base class of the returned type. |
5940 | static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E, |
5941 | APValue &Result, |
5942 | ArrayRef<QualType> Path) { |
5943 | assert(Result.isLValue() && |
5944 | "unexpected kind of APValue for covariant return" ); |
5945 | if (Result.isNullPointer()) |
5946 | return true; |
5947 | |
5948 | LValue LVal; |
5949 | LVal.setFrom(Ctx&: Info.Ctx, V: Result); |
5950 | |
5951 | const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl(); |
5952 | for (unsigned I = 1; I != Path.size(); ++I) { |
5953 | const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl(); |
5954 | assert(OldClass && NewClass && "unexpected kind of covariant return" ); |
5955 | if (OldClass != NewClass && |
5956 | !CastToBaseClass(Info, E, Result&: LVal, DerivedRD: OldClass, BaseRD: NewClass)) |
5957 | return false; |
5958 | OldClass = NewClass; |
5959 | } |
5960 | |
5961 | LVal.moveInto(V&: Result); |
5962 | return true; |
5963 | } |
5964 | |
5965 | /// Determine whether \p Base, which is known to be a direct base class of |
5966 | /// \p Derived, is a public base class. |
5967 | static bool isBaseClassPublic(const CXXRecordDecl *Derived, |
5968 | const CXXRecordDecl *Base) { |
5969 | for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) { |
5970 | auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl(); |
5971 | if (BaseClass && declaresSameEntity(D1: BaseClass, D2: Base)) |
5972 | return BaseSpec.getAccessSpecifier() == AS_public; |
5973 | } |
5974 | llvm_unreachable("Base is not a direct base of Derived" ); |
5975 | } |
5976 | |
5977 | /// Apply the given dynamic cast operation on the provided lvalue. |
5978 | /// |
5979 | /// This implements the hard case of dynamic_cast, requiring a "runtime check" |
5980 | /// to find a suitable target subobject. |
5981 | static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E, |
5982 | LValue &Ptr) { |
5983 | // We can't do anything with a non-symbolic pointer value. |
5984 | SubobjectDesignator &D = Ptr.Designator; |
5985 | if (D.Invalid) |
5986 | return false; |
5987 | |
5988 | // C++ [expr.dynamic.cast]p6: |
5989 | // If v is a null pointer value, the result is a null pointer value. |
5990 | if (Ptr.isNullPointer() && !E->isGLValue()) |
5991 | return true; |
5992 | |
5993 | // For all the other cases, we need the pointer to point to an object within |
5994 | // its lifetime / period of construction / destruction, and we need to know |
5995 | // its dynamic type. |
5996 | std::optional<DynamicType> DynType = |
5997 | ComputeDynamicType(Info, E, This&: Ptr, AK: AK_DynamicCast); |
5998 | if (!DynType) |
5999 | return false; |
6000 | |
6001 | // C++ [expr.dynamic.cast]p7: |
6002 | // If T is "pointer to cv void", then the result is a pointer to the most |
6003 | // derived object |
6004 | if (E->getType()->isVoidPointerType()) |
6005 | return CastToDerivedClass(Info, E, Result&: Ptr, TruncatedType: DynType->Type, TruncatedElements: DynType->PathLength); |
6006 | |
6007 | const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl(); |
6008 | assert(C && "dynamic_cast target is not void pointer nor class" ); |
6009 | CanQualType CQT = Info.Ctx.getCanonicalType(T: Info.Ctx.getRecordType(Decl: C)); |
6010 | |
6011 | auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) { |
6012 | // C++ [expr.dynamic.cast]p9: |
6013 | if (!E->isGLValue()) { |
6014 | // The value of a failed cast to pointer type is the null pointer value |
6015 | // of the required result type. |
6016 | Ptr.setNull(Ctx&: Info.Ctx, PointerTy: E->getType()); |
6017 | return true; |
6018 | } |
6019 | |
6020 | // A failed cast to reference type throws [...] std::bad_cast. |
6021 | unsigned DiagKind; |
6022 | if (!Paths && (declaresSameEntity(D1: DynType->Type, D2: C) || |
6023 | DynType->Type->isDerivedFrom(Base: C))) |
6024 | DiagKind = 0; |
6025 | else if (!Paths || Paths->begin() == Paths->end()) |
6026 | DiagKind = 1; |
6027 | else if (Paths->isAmbiguous(BaseType: CQT)) |
6028 | DiagKind = 2; |
6029 | else { |
6030 | assert(Paths->front().Access != AS_public && "why did the cast fail?" ); |
6031 | DiagKind = 3; |
6032 | } |
6033 | Info.FFDiag(E, DiagId: diag::note_constexpr_dynamic_cast_to_reference_failed) |
6034 | << DiagKind << Ptr.Designator.getType(Ctx&: Info.Ctx) |
6035 | << Info.Ctx.getRecordType(Decl: DynType->Type) |
6036 | << E->getType().getUnqualifiedType(); |
6037 | return false; |
6038 | }; |
6039 | |
6040 | // Runtime check, phase 1: |
6041 | // Walk from the base subobject towards the derived object looking for the |
6042 | // target type. |
6043 | for (int PathLength = Ptr.Designator.Entries.size(); |
6044 | PathLength >= (int)DynType->PathLength; --PathLength) { |
6045 | const CXXRecordDecl *Class = getBaseClassType(Designator&: Ptr.Designator, PathLength); |
6046 | if (declaresSameEntity(D1: Class, D2: C)) |
6047 | return CastToDerivedClass(Info, E, Result&: Ptr, TruncatedType: Class, TruncatedElements: PathLength); |
6048 | // We can only walk across public inheritance edges. |
6049 | if (PathLength > (int)DynType->PathLength && |
6050 | !isBaseClassPublic(Derived: getBaseClassType(Designator&: Ptr.Designator, PathLength: PathLength - 1), |
6051 | Base: Class)) |
6052 | return RuntimeCheckFailed(nullptr); |
6053 | } |
6054 | |
6055 | // Runtime check, phase 2: |
6056 | // Search the dynamic type for an unambiguous public base of type C. |
6057 | CXXBasePaths Paths(/*FindAmbiguities=*/true, |
6058 | /*RecordPaths=*/true, /*DetectVirtual=*/false); |
6059 | if (DynType->Type->isDerivedFrom(Base: C, Paths) && !Paths.isAmbiguous(BaseType: CQT) && |
6060 | Paths.front().Access == AS_public) { |
6061 | // Downcast to the dynamic type... |
6062 | if (!CastToDerivedClass(Info, E, Result&: Ptr, TruncatedType: DynType->Type, TruncatedElements: DynType->PathLength)) |
6063 | return false; |
6064 | // ... then upcast to the chosen base class subobject. |
6065 | for (CXXBasePathElement &Elem : Paths.front()) |
6066 | if (!HandleLValueBase(Info, E, Obj&: Ptr, DerivedDecl: Elem.Class, Base: Elem.Base)) |
6067 | return false; |
6068 | return true; |
6069 | } |
6070 | |
6071 | // Otherwise, the runtime check fails. |
6072 | return RuntimeCheckFailed(&Paths); |
6073 | } |
6074 | |
6075 | namespace { |
6076 | struct StartLifetimeOfUnionMemberHandler { |
6077 | EvalInfo &Info; |
6078 | const Expr *LHSExpr; |
6079 | const FieldDecl *Field; |
6080 | bool DuringInit; |
6081 | bool Failed = false; |
6082 | static const AccessKinds AccessKind = AK_Assign; |
6083 | |
6084 | typedef bool result_type; |
6085 | bool failed() { return Failed; } |
6086 | bool found(APValue &Subobj, QualType SubobjType) { |
6087 | // We are supposed to perform no initialization but begin the lifetime of |
6088 | // the object. We interpret that as meaning to do what default |
6089 | // initialization of the object would do if all constructors involved were |
6090 | // trivial: |
6091 | // * All base, non-variant member, and array element subobjects' lifetimes |
6092 | // begin |
6093 | // * No variant members' lifetimes begin |
6094 | // * All scalar subobjects whose lifetimes begin have indeterminate values |
6095 | assert(SubobjType->isUnionType()); |
6096 | if (declaresSameEntity(D1: Subobj.getUnionField(), D2: Field)) { |
6097 | // This union member is already active. If it's also in-lifetime, there's |
6098 | // nothing to do. |
6099 | if (Subobj.getUnionValue().hasValue()) |
6100 | return true; |
6101 | } else if (DuringInit) { |
6102 | // We're currently in the process of initializing a different union |
6103 | // member. If we carried on, that initialization would attempt to |
6104 | // store to an inactive union member, resulting in undefined behavior. |
6105 | Info.FFDiag(E: LHSExpr, |
6106 | DiagId: diag::note_constexpr_union_member_change_during_init); |
6107 | return false; |
6108 | } |
6109 | APValue Result; |
6110 | Failed = !handleDefaultInitValue(T: Field->getType(), Result); |
6111 | Subobj.setUnion(Field, Value: Result); |
6112 | return true; |
6113 | } |
6114 | bool found(APSInt &Value, QualType SubobjType) { |
6115 | llvm_unreachable("wrong value kind for union object" ); |
6116 | } |
6117 | bool found(APFloat &Value, QualType SubobjType) { |
6118 | llvm_unreachable("wrong value kind for union object" ); |
6119 | } |
6120 | }; |
6121 | } // end anonymous namespace |
6122 | |
6123 | const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind; |
6124 | |
6125 | /// Handle a builtin simple-assignment or a call to a trivial assignment |
6126 | /// operator whose left-hand side might involve a union member access. If it |
6127 | /// does, implicitly start the lifetime of any accessed union elements per |
6128 | /// C++20 [class.union]5. |
6129 | static bool MaybeHandleUnionActiveMemberChange(EvalInfo &Info, |
6130 | const Expr *LHSExpr, |
6131 | const LValue &LHS) { |
6132 | if (LHS.InvalidBase || LHS.Designator.Invalid) |
6133 | return false; |
6134 | |
6135 | llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths; |
6136 | // C++ [class.union]p5: |
6137 | // define the set S(E) of subexpressions of E as follows: |
6138 | unsigned PathLength = LHS.Designator.Entries.size(); |
6139 | for (const Expr *E = LHSExpr; E != nullptr;) { |
6140 | // -- If E is of the form A.B, S(E) contains the elements of S(A)... |
6141 | if (auto *ME = dyn_cast<MemberExpr>(Val: E)) { |
6142 | auto *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl()); |
6143 | // Note that we can't implicitly start the lifetime of a reference, |
6144 | // so we don't need to proceed any further if we reach one. |
6145 | if (!FD || FD->getType()->isReferenceType()) |
6146 | break; |
6147 | |
6148 | // ... and also contains A.B if B names a union member ... |
6149 | if (FD->getParent()->isUnion()) { |
6150 | // ... of a non-class, non-array type, or of a class type with a |
6151 | // trivial default constructor that is not deleted, or an array of |
6152 | // such types. |
6153 | auto *RD = |
6154 | FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
6155 | if (!RD || RD->hasTrivialDefaultConstructor()) |
6156 | UnionPathLengths.push_back(Elt: {PathLength - 1, FD}); |
6157 | } |
6158 | |
6159 | E = ME->getBase(); |
6160 | --PathLength; |
6161 | assert(declaresSameEntity(FD, |
6162 | LHS.Designator.Entries[PathLength] |
6163 | .getAsBaseOrMember().getPointer())); |
6164 | |
6165 | // -- If E is of the form A[B] and is interpreted as a built-in array |
6166 | // subscripting operator, S(E) is [S(the array operand, if any)]. |
6167 | } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Val: E)) { |
6168 | // Step over an ArrayToPointerDecay implicit cast. |
6169 | auto *Base = ASE->getBase()->IgnoreImplicit(); |
6170 | if (!Base->getType()->isArrayType()) |
6171 | break; |
6172 | |
6173 | E = Base; |
6174 | --PathLength; |
6175 | |
6176 | } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
6177 | // Step over a derived-to-base conversion. |
6178 | E = ICE->getSubExpr(); |
6179 | if (ICE->getCastKind() == CK_NoOp) |
6180 | continue; |
6181 | if (ICE->getCastKind() != CK_DerivedToBase && |
6182 | ICE->getCastKind() != CK_UncheckedDerivedToBase) |
6183 | break; |
6184 | // Walk path backwards as we walk up from the base to the derived class. |
6185 | for (const CXXBaseSpecifier *Elt : llvm::reverse(C: ICE->path())) { |
6186 | if (Elt->isVirtual()) { |
6187 | // A class with virtual base classes never has a trivial default |
6188 | // constructor, so S(E) is empty in this case. |
6189 | E = nullptr; |
6190 | break; |
6191 | } |
6192 | |
6193 | --PathLength; |
6194 | assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(), |
6195 | LHS.Designator.Entries[PathLength] |
6196 | .getAsBaseOrMember().getPointer())); |
6197 | } |
6198 | |
6199 | // -- Otherwise, S(E) is empty. |
6200 | } else { |
6201 | break; |
6202 | } |
6203 | } |
6204 | |
6205 | // Common case: no unions' lifetimes are started. |
6206 | if (UnionPathLengths.empty()) |
6207 | return true; |
6208 | |
6209 | // if modification of X [would access an inactive union member], an object |
6210 | // of the type of X is implicitly created |
6211 | CompleteObject Obj = |
6212 | findCompleteObject(Info, E: LHSExpr, AK: AK_Assign, LVal: LHS, LValType: LHSExpr->getType()); |
6213 | if (!Obj) |
6214 | return false; |
6215 | for (std::pair<unsigned, const FieldDecl *> LengthAndField : |
6216 | llvm::reverse(C&: UnionPathLengths)) { |
6217 | // Form a designator for the union object. |
6218 | SubobjectDesignator D = LHS.Designator; |
6219 | D.truncate(Ctx&: Info.Ctx, Base: LHS.Base, NewLength: LengthAndField.first); |
6220 | |
6221 | bool DuringInit = Info.isEvaluatingCtorDtor(Base: LHS.Base, Path: D.Entries) == |
6222 | ConstructionPhase::AfterBases; |
6223 | StartLifetimeOfUnionMemberHandler StartLifetime{ |
6224 | .Info: Info, .LHSExpr: LHSExpr, .Field: LengthAndField.second, .DuringInit: DuringInit}; |
6225 | if (!findSubobject(Info, E: LHSExpr, Obj, Sub: D, handler&: StartLifetime)) |
6226 | return false; |
6227 | } |
6228 | |
6229 | return true; |
6230 | } |
6231 | |
6232 | static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg, |
6233 | CallRef Call, EvalInfo &Info, |
6234 | bool NonNull = false) { |
6235 | LValue LV; |
6236 | // Create the parameter slot and register its destruction. For a vararg |
6237 | // argument, create a temporary. |
6238 | // FIXME: For calling conventions that destroy parameters in the callee, |
6239 | // should we consider performing destruction when the function returns |
6240 | // instead? |
6241 | APValue &V = PVD ? Info.CurrentCall->createParam(Args: Call, PVD, LV) |
6242 | : Info.CurrentCall->createTemporary(Key: Arg, T: Arg->getType(), |
6243 | Scope: ScopeKind::Call, LV); |
6244 | if (!EvaluateInPlace(Result&: V, Info, This: LV, E: Arg)) |
6245 | return false; |
6246 | |
6247 | // Passing a null pointer to an __attribute__((nonnull)) parameter results in |
6248 | // undefined behavior, so is non-constant. |
6249 | if (NonNull && V.isLValue() && V.isNullPointer()) { |
6250 | Info.CCEDiag(E: Arg, DiagId: diag::note_non_null_attribute_failed); |
6251 | return false; |
6252 | } |
6253 | |
6254 | return true; |
6255 | } |
6256 | |
6257 | /// Evaluate the arguments to a function call. |
6258 | static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call, |
6259 | EvalInfo &Info, const FunctionDecl *Callee, |
6260 | bool RightToLeft = false) { |
6261 | bool Success = true; |
6262 | llvm::SmallBitVector ForbiddenNullArgs; |
6263 | if (Callee->hasAttr<NonNullAttr>()) { |
6264 | ForbiddenNullArgs.resize(N: Args.size()); |
6265 | for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) { |
6266 | if (!Attr->args_size()) { |
6267 | ForbiddenNullArgs.set(); |
6268 | break; |
6269 | } else |
6270 | for (auto Idx : Attr->args()) { |
6271 | unsigned ASTIdx = Idx.getASTIndex(); |
6272 | if (ASTIdx >= Args.size()) |
6273 | continue; |
6274 | ForbiddenNullArgs[ASTIdx] = true; |
6275 | } |
6276 | } |
6277 | } |
6278 | for (unsigned I = 0; I < Args.size(); I++) { |
6279 | unsigned Idx = RightToLeft ? Args.size() - I - 1 : I; |
6280 | const ParmVarDecl *PVD = |
6281 | Idx < Callee->getNumParams() ? Callee->getParamDecl(i: Idx) : nullptr; |
6282 | bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx]; |
6283 | if (!EvaluateCallArg(PVD, Arg: Args[Idx], Call, Info, NonNull)) { |
6284 | // If we're checking for a potential constant expression, evaluate all |
6285 | // initializers even if some of them fail. |
6286 | if (!Info.noteFailure()) |
6287 | return false; |
6288 | Success = false; |
6289 | } |
6290 | } |
6291 | return Success; |
6292 | } |
6293 | |
6294 | /// Perform a trivial copy from Param, which is the parameter of a copy or move |
6295 | /// constructor or assignment operator. |
6296 | static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param, |
6297 | const Expr *E, APValue &Result, |
6298 | bool CopyObjectRepresentation) { |
6299 | // Find the reference argument. |
6300 | CallStackFrame *Frame = Info.CurrentCall; |
6301 | APValue *RefValue = Info.getParamSlot(Call: Frame->Arguments, PVD: Param); |
6302 | if (!RefValue) { |
6303 | Info.FFDiag(E); |
6304 | return false; |
6305 | } |
6306 | |
6307 | // Copy out the contents of the RHS object. |
6308 | LValue RefLValue; |
6309 | RefLValue.setFrom(Ctx&: Info.Ctx, V: *RefValue); |
6310 | return handleLValueToRValueConversion( |
6311 | Info, Conv: E, Type: Param->getType().getNonReferenceType(), LVal: RefLValue, RVal&: Result, |
6312 | WantObjectRepresentation: CopyObjectRepresentation); |
6313 | } |
6314 | |
6315 | /// Evaluate a function call. |
6316 | static bool HandleFunctionCall(SourceLocation CallLoc, |
6317 | const FunctionDecl *Callee, const LValue *This, |
6318 | const Expr *E, ArrayRef<const Expr *> Args, |
6319 | CallRef Call, const Stmt *Body, EvalInfo &Info, |
6320 | APValue &Result, const LValue *ResultSlot) { |
6321 | if (!Info.CheckCallLimit(Loc: CallLoc)) |
6322 | return false; |
6323 | |
6324 | CallStackFrame Frame(Info, E->getSourceRange(), Callee, This, E, Call); |
6325 | |
6326 | // For a trivial copy or move assignment, perform an APValue copy. This is |
6327 | // essential for unions, where the operations performed by the assignment |
6328 | // operator cannot be represented as statements. |
6329 | // |
6330 | // Skip this for non-union classes with no fields; in that case, the defaulted |
6331 | // copy/move does not actually read the object. |
6332 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: Callee); |
6333 | if (MD && MD->isDefaulted() && |
6334 | (MD->getParent()->isUnion() || |
6335 | (MD->isTrivial() && |
6336 | isReadByLvalueToRvalueConversion(RD: MD->getParent())))) { |
6337 | assert(This && |
6338 | (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())); |
6339 | APValue RHSValue; |
6340 | if (!handleTrivialCopy(Info, Param: MD->getParamDecl(i: 0), E: Args[0], Result&: RHSValue, |
6341 | CopyObjectRepresentation: MD->getParent()->isUnion())) |
6342 | return false; |
6343 | if (!handleAssignment(Info, E: Args[0], LVal: *This, LValType: MD->getThisType(), |
6344 | Val&: RHSValue)) |
6345 | return false; |
6346 | This->moveInto(V&: Result); |
6347 | return true; |
6348 | } else if (MD && isLambdaCallOperator(MD)) { |
6349 | // We're in a lambda; determine the lambda capture field maps unless we're |
6350 | // just constexpr checking a lambda's call operator. constexpr checking is |
6351 | // done before the captures have been added to the closure object (unless |
6352 | // we're inferring constexpr-ness), so we don't have access to them in this |
6353 | // case. But since we don't need the captures to constexpr check, we can |
6354 | // just ignore them. |
6355 | if (!Info.checkingPotentialConstantExpression()) |
6356 | MD->getParent()->getCaptureFields(Captures&: Frame.LambdaCaptureFields, |
6357 | ThisCapture&: Frame.LambdaThisCaptureField); |
6358 | } |
6359 | |
6360 | StmtResult Ret = {.Value: Result, .Slot: ResultSlot}; |
6361 | EvalStmtResult ESR = EvaluateStmt(Result&: Ret, Info, S: Body); |
6362 | if (ESR == ESR_Succeeded) { |
6363 | if (Callee->getReturnType()->isVoidType()) |
6364 | return true; |
6365 | Info.FFDiag(Loc: Callee->getEndLoc(), DiagId: diag::note_constexpr_no_return); |
6366 | } |
6367 | return ESR == ESR_Returned; |
6368 | } |
6369 | |
6370 | /// Evaluate a constructor call. |
6371 | static bool HandleConstructorCall(const Expr *E, const LValue &This, |
6372 | CallRef Call, |
6373 | const CXXConstructorDecl *Definition, |
6374 | EvalInfo &Info, APValue &Result) { |
6375 | SourceLocation CallLoc = E->getExprLoc(); |
6376 | if (!Info.CheckCallLimit(Loc: CallLoc)) |
6377 | return false; |
6378 | |
6379 | const CXXRecordDecl *RD = Definition->getParent(); |
6380 | if (RD->getNumVBases()) { |
6381 | Info.FFDiag(Loc: CallLoc, DiagId: diag::note_constexpr_virtual_base) << RD; |
6382 | return false; |
6383 | } |
6384 | |
6385 | EvalInfo::EvaluatingConstructorRAII EvalObj( |
6386 | Info, |
6387 | ObjectUnderConstruction{.Base: This.getLValueBase(), .Path: This.Designator.Entries}, |
6388 | RD->getNumBases()); |
6389 | CallStackFrame Frame(Info, E->getSourceRange(), Definition, &This, E, Call); |
6390 | |
6391 | // FIXME: Creating an APValue just to hold a nonexistent return value is |
6392 | // wasteful. |
6393 | APValue RetVal; |
6394 | StmtResult Ret = {.Value: RetVal, .Slot: nullptr}; |
6395 | |
6396 | // If it's a delegating constructor, delegate. |
6397 | if (Definition->isDelegatingConstructor()) { |
6398 | CXXConstructorDecl::init_const_iterator I = Definition->init_begin(); |
6399 | if ((*I)->getInit()->isValueDependent()) { |
6400 | if (!EvaluateDependentExpr(E: (*I)->getInit(), Info)) |
6401 | return false; |
6402 | } else { |
6403 | FullExpressionRAII InitScope(Info); |
6404 | if (!EvaluateInPlace(Result, Info, This, E: (*I)->getInit()) || |
6405 | !InitScope.destroy()) |
6406 | return false; |
6407 | } |
6408 | return EvaluateStmt(Result&: Ret, Info, S: Definition->getBody()) != ESR_Failed; |
6409 | } |
6410 | |
6411 | // For a trivial copy or move constructor, perform an APValue copy. This is |
6412 | // essential for unions (or classes with anonymous union members), where the |
6413 | // operations performed by the constructor cannot be represented by |
6414 | // ctor-initializers. |
6415 | // |
6416 | // Skip this for empty non-union classes; we should not perform an |
6417 | // lvalue-to-rvalue conversion on them because their copy constructor does not |
6418 | // actually read them. |
6419 | if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() && |
6420 | (Definition->getParent()->isUnion() || |
6421 | (Definition->isTrivial() && |
6422 | isReadByLvalueToRvalueConversion(RD: Definition->getParent())))) { |
6423 | return handleTrivialCopy(Info, Param: Definition->getParamDecl(i: 0), E, Result, |
6424 | CopyObjectRepresentation: Definition->getParent()->isUnion()); |
6425 | } |
6426 | |
6427 | // Reserve space for the struct members. |
6428 | if (!Result.hasValue()) { |
6429 | if (!RD->isUnion()) |
6430 | Result = APValue(APValue::UninitStruct(), RD->getNumBases(), |
6431 | std::distance(first: RD->field_begin(), last: RD->field_end())); |
6432 | else |
6433 | // A union starts with no active member. |
6434 | Result = APValue((const FieldDecl*)nullptr); |
6435 | } |
6436 | |
6437 | if (RD->isInvalidDecl()) return false; |
6438 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD); |
6439 | |
6440 | // A scope for temporaries lifetime-extended by reference members. |
6441 | BlockScopeRAII LifetimeExtendedScope(Info); |
6442 | |
6443 | bool Success = true; |
6444 | unsigned BasesSeen = 0; |
6445 | #ifndef NDEBUG |
6446 | CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin(); |
6447 | #endif |
6448 | CXXRecordDecl::field_iterator FieldIt = RD->field_begin(); |
6449 | auto SkipToField = [&](FieldDecl *FD, bool Indirect) { |
6450 | // We might be initializing the same field again if this is an indirect |
6451 | // field initialization. |
6452 | if (FieldIt == RD->field_end() || |
6453 | FieldIt->getFieldIndex() > FD->getFieldIndex()) { |
6454 | assert(Indirect && "fields out of order?" ); |
6455 | return; |
6456 | } |
6457 | |
6458 | // Default-initialize any fields with no explicit initializer. |
6459 | for (; !declaresSameEntity(D1: *FieldIt, D2: FD); ++FieldIt) { |
6460 | assert(FieldIt != RD->field_end() && "missing field?" ); |
6461 | if (!FieldIt->isUnnamedBitField()) |
6462 | Success &= handleDefaultInitValue( |
6463 | T: FieldIt->getType(), |
6464 | Result&: Result.getStructField(i: FieldIt->getFieldIndex())); |
6465 | } |
6466 | ++FieldIt; |
6467 | }; |
6468 | for (const auto *I : Definition->inits()) { |
6469 | LValue Subobject = This; |
6470 | LValue SubobjectParent = This; |
6471 | APValue *Value = &Result; |
6472 | |
6473 | // Determine the subobject to initialize. |
6474 | FieldDecl *FD = nullptr; |
6475 | if (I->isBaseInitializer()) { |
6476 | QualType BaseType(I->getBaseClass(), 0); |
6477 | #ifndef NDEBUG |
6478 | // Non-virtual base classes are initialized in the order in the class |
6479 | // definition. We have already checked for virtual base classes. |
6480 | assert(!BaseIt->isVirtual() && "virtual base for literal type" ); |
6481 | assert(Info.Ctx.hasSameUnqualifiedType(BaseIt->getType(), BaseType) && |
6482 | "base class initializers not in expected order" ); |
6483 | ++BaseIt; |
6484 | #endif |
6485 | if (!HandleLValueDirectBase(Info, E: I->getInit(), Obj&: Subobject, Derived: RD, |
6486 | Base: BaseType->getAsCXXRecordDecl(), RL: &Layout)) |
6487 | return false; |
6488 | Value = &Result.getStructBase(i: BasesSeen++); |
6489 | } else if ((FD = I->getMember())) { |
6490 | if (!HandleLValueMember(Info, E: I->getInit(), LVal&: Subobject, FD, RL: &Layout)) |
6491 | return false; |
6492 | if (RD->isUnion()) { |
6493 | Result = APValue(FD); |
6494 | Value = &Result.getUnionValue(); |
6495 | } else { |
6496 | SkipToField(FD, false); |
6497 | Value = &Result.getStructField(i: FD->getFieldIndex()); |
6498 | } |
6499 | } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) { |
6500 | // Walk the indirect field decl's chain to find the object to initialize, |
6501 | // and make sure we've initialized every step along it. |
6502 | auto IndirectFieldChain = IFD->chain(); |
6503 | for (auto *C : IndirectFieldChain) { |
6504 | FD = cast<FieldDecl>(Val: C); |
6505 | CXXRecordDecl *CD = cast<CXXRecordDecl>(Val: FD->getParent()); |
6506 | // Switch the union field if it differs. This happens if we had |
6507 | // preceding zero-initialization, and we're now initializing a union |
6508 | // subobject other than the first. |
6509 | // FIXME: In this case, the values of the other subobjects are |
6510 | // specified, since zero-initialization sets all padding bits to zero. |
6511 | if (!Value->hasValue() || |
6512 | (Value->isUnion() && Value->getUnionField() != FD)) { |
6513 | if (CD->isUnion()) |
6514 | *Value = APValue(FD); |
6515 | else |
6516 | // FIXME: This immediately starts the lifetime of all members of |
6517 | // an anonymous struct. It would be preferable to strictly start |
6518 | // member lifetime in initialization order. |
6519 | Success &= |
6520 | handleDefaultInitValue(T: Info.Ctx.getRecordType(Decl: CD), Result&: *Value); |
6521 | } |
6522 | // Store Subobject as its parent before updating it for the last element |
6523 | // in the chain. |
6524 | if (C == IndirectFieldChain.back()) |
6525 | SubobjectParent = Subobject; |
6526 | if (!HandleLValueMember(Info, E: I->getInit(), LVal&: Subobject, FD)) |
6527 | return false; |
6528 | if (CD->isUnion()) |
6529 | Value = &Value->getUnionValue(); |
6530 | else { |
6531 | if (C == IndirectFieldChain.front() && !RD->isUnion()) |
6532 | SkipToField(FD, true); |
6533 | Value = &Value->getStructField(i: FD->getFieldIndex()); |
6534 | } |
6535 | } |
6536 | } else { |
6537 | llvm_unreachable("unknown base initializer kind" ); |
6538 | } |
6539 | |
6540 | // Need to override This for implicit field initializers as in this case |
6541 | // This refers to innermost anonymous struct/union containing initializer, |
6542 | // not to currently constructed class. |
6543 | const Expr *Init = I->getInit(); |
6544 | if (Init->isValueDependent()) { |
6545 | if (!EvaluateDependentExpr(E: Init, Info)) |
6546 | return false; |
6547 | } else { |
6548 | ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent, |
6549 | isa<CXXDefaultInitExpr>(Val: Init)); |
6550 | FullExpressionRAII InitScope(Info); |
6551 | if (!EvaluateInPlace(Result&: *Value, Info, This: Subobject, E: Init) || |
6552 | (FD && FD->isBitField() && |
6553 | !truncateBitfieldValue(Info, E: Init, Value&: *Value, FD))) { |
6554 | // If we're checking for a potential constant expression, evaluate all |
6555 | // initializers even if some of them fail. |
6556 | if (!Info.noteFailure()) |
6557 | return false; |
6558 | Success = false; |
6559 | } |
6560 | } |
6561 | |
6562 | // This is the point at which the dynamic type of the object becomes this |
6563 | // class type. |
6564 | if (I->isBaseInitializer() && BasesSeen == RD->getNumBases()) |
6565 | EvalObj.finishedConstructingBases(); |
6566 | } |
6567 | |
6568 | // Default-initialize any remaining fields. |
6569 | if (!RD->isUnion()) { |
6570 | for (; FieldIt != RD->field_end(); ++FieldIt) { |
6571 | if (!FieldIt->isUnnamedBitField()) |
6572 | Success &= handleDefaultInitValue( |
6573 | T: FieldIt->getType(), |
6574 | Result&: Result.getStructField(i: FieldIt->getFieldIndex())); |
6575 | } |
6576 | } |
6577 | |
6578 | EvalObj.finishedConstructingFields(); |
6579 | |
6580 | return Success && |
6581 | EvaluateStmt(Result&: Ret, Info, S: Definition->getBody()) != ESR_Failed && |
6582 | LifetimeExtendedScope.destroy(); |
6583 | } |
6584 | |
6585 | static bool HandleConstructorCall(const Expr *E, const LValue &This, |
6586 | ArrayRef<const Expr*> Args, |
6587 | const CXXConstructorDecl *Definition, |
6588 | EvalInfo &Info, APValue &Result) { |
6589 | CallScopeRAII CallScope(Info); |
6590 | CallRef Call = Info.CurrentCall->createCall(Callee: Definition); |
6591 | if (!EvaluateArgs(Args, Call, Info, Callee: Definition)) |
6592 | return false; |
6593 | |
6594 | return HandleConstructorCall(E, This, Call, Definition, Info, Result) && |
6595 | CallScope.destroy(); |
6596 | } |
6597 | |
6598 | static bool HandleDestructionImpl(EvalInfo &Info, SourceRange CallRange, |
6599 | const LValue &This, APValue &Value, |
6600 | QualType T) { |
6601 | // Objects can only be destroyed while they're within their lifetimes. |
6602 | // FIXME: We have no representation for whether an object of type nullptr_t |
6603 | // is in its lifetime; it usually doesn't matter. Perhaps we should model it |
6604 | // as indeterminate instead? |
6605 | if (Value.isAbsent() && !T->isNullPtrType()) { |
6606 | APValue Printable; |
6607 | This.moveInto(V&: Printable); |
6608 | Info.FFDiag(Loc: CallRange.getBegin(), |
6609 | DiagId: diag::note_constexpr_destroy_out_of_lifetime) |
6610 | << Printable.getAsString(Ctx: Info.Ctx, Ty: Info.Ctx.getLValueReferenceType(T)); |
6611 | return false; |
6612 | } |
6613 | |
6614 | // Invent an expression for location purposes. |
6615 | // FIXME: We shouldn't need to do this. |
6616 | OpaqueValueExpr LocE(CallRange.getBegin(), Info.Ctx.IntTy, VK_PRValue); |
6617 | |
6618 | // For arrays, destroy elements right-to-left. |
6619 | if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) { |
6620 | uint64_t Size = CAT->getZExtSize(); |
6621 | QualType ElemT = CAT->getElementType(); |
6622 | |
6623 | if (!CheckArraySize(Info, CAT, CallLoc: CallRange.getBegin())) |
6624 | return false; |
6625 | |
6626 | LValue ElemLV = This; |
6627 | ElemLV.addArray(Info, E: &LocE, CAT); |
6628 | if (!HandleLValueArrayAdjustment(Info, E: &LocE, LVal&: ElemLV, EltTy: ElemT, Adjustment: Size)) |
6629 | return false; |
6630 | |
6631 | // Ensure that we have actual array elements available to destroy; the |
6632 | // destructors might mutate the value, so we can't run them on the array |
6633 | // filler. |
6634 | if (Size && Size > Value.getArrayInitializedElts()) |
6635 | expandArray(Array&: Value, Index: Value.getArraySize() - 1); |
6636 | |
6637 | for (; Size != 0; --Size) { |
6638 | APValue &Elem = Value.getArrayInitializedElt(I: Size - 1); |
6639 | if (!HandleLValueArrayAdjustment(Info, E: &LocE, LVal&: ElemLV, EltTy: ElemT, Adjustment: -1) || |
6640 | !HandleDestructionImpl(Info, CallRange, This: ElemLV, Value&: Elem, T: ElemT)) |
6641 | return false; |
6642 | } |
6643 | |
6644 | // End the lifetime of this array now. |
6645 | Value = APValue(); |
6646 | return true; |
6647 | } |
6648 | |
6649 | const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
6650 | if (!RD) { |
6651 | if (T.isDestructedType()) { |
6652 | Info.FFDiag(Loc: CallRange.getBegin(), |
6653 | DiagId: diag::note_constexpr_unsupported_destruction) |
6654 | << T; |
6655 | return false; |
6656 | } |
6657 | |
6658 | Value = APValue(); |
6659 | return true; |
6660 | } |
6661 | |
6662 | if (RD->getNumVBases()) { |
6663 | Info.FFDiag(Loc: CallRange.getBegin(), DiagId: diag::note_constexpr_virtual_base) << RD; |
6664 | return false; |
6665 | } |
6666 | |
6667 | const CXXDestructorDecl *DD = RD->getDestructor(); |
6668 | if (!DD && !RD->hasTrivialDestructor()) { |
6669 | Info.FFDiag(Loc: CallRange.getBegin()); |
6670 | return false; |
6671 | } |
6672 | |
6673 | if (!DD || DD->isTrivial() || |
6674 | (RD->isAnonymousStructOrUnion() && RD->isUnion())) { |
6675 | // A trivial destructor just ends the lifetime of the object. Check for |
6676 | // this case before checking for a body, because we might not bother |
6677 | // building a body for a trivial destructor. Note that it doesn't matter |
6678 | // whether the destructor is constexpr in this case; all trivial |
6679 | // destructors are constexpr. |
6680 | // |
6681 | // If an anonymous union would be destroyed, some enclosing destructor must |
6682 | // have been explicitly defined, and the anonymous union destruction should |
6683 | // have no effect. |
6684 | Value = APValue(); |
6685 | return true; |
6686 | } |
6687 | |
6688 | if (!Info.CheckCallLimit(Loc: CallRange.getBegin())) |
6689 | return false; |
6690 | |
6691 | const FunctionDecl *Definition = nullptr; |
6692 | const Stmt *Body = DD->getBody(Definition); |
6693 | |
6694 | if (!CheckConstexprFunction(Info, CallLoc: CallRange.getBegin(), Declaration: DD, Definition, Body)) |
6695 | return false; |
6696 | |
6697 | CallStackFrame Frame(Info, CallRange, Definition, &This, /*CallExpr=*/nullptr, |
6698 | CallRef()); |
6699 | |
6700 | // We're now in the period of destruction of this object. |
6701 | unsigned BasesLeft = RD->getNumBases(); |
6702 | EvalInfo::EvaluatingDestructorRAII EvalObj( |
6703 | Info, |
6704 | ObjectUnderConstruction{.Base: This.getLValueBase(), .Path: This.Designator.Entries}); |
6705 | if (!EvalObj.DidInsert) { |
6706 | // C++2a [class.dtor]p19: |
6707 | // the behavior is undefined if the destructor is invoked for an object |
6708 | // whose lifetime has ended |
6709 | // (Note that formally the lifetime ends when the period of destruction |
6710 | // begins, even though certain uses of the object remain valid until the |
6711 | // period of destruction ends.) |
6712 | Info.FFDiag(Loc: CallRange.getBegin(), DiagId: diag::note_constexpr_double_destroy); |
6713 | return false; |
6714 | } |
6715 | |
6716 | // FIXME: Creating an APValue just to hold a nonexistent return value is |
6717 | // wasteful. |
6718 | APValue RetVal; |
6719 | StmtResult Ret = {.Value: RetVal, .Slot: nullptr}; |
6720 | if (EvaluateStmt(Result&: Ret, Info, S: Definition->getBody()) == ESR_Failed) |
6721 | return false; |
6722 | |
6723 | // A union destructor does not implicitly destroy its members. |
6724 | if (RD->isUnion()) |
6725 | return true; |
6726 | |
6727 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD); |
6728 | |
6729 | // We don't have a good way to iterate fields in reverse, so collect all the |
6730 | // fields first and then walk them backwards. |
6731 | SmallVector<FieldDecl*, 16> Fields(RD->fields()); |
6732 | for (const FieldDecl *FD : llvm::reverse(C&: Fields)) { |
6733 | if (FD->isUnnamedBitField()) |
6734 | continue; |
6735 | |
6736 | LValue Subobject = This; |
6737 | if (!HandleLValueMember(Info, E: &LocE, LVal&: Subobject, FD, RL: &Layout)) |
6738 | return false; |
6739 | |
6740 | APValue *SubobjectValue = &Value.getStructField(i: FD->getFieldIndex()); |
6741 | if (!HandleDestructionImpl(Info, CallRange, This: Subobject, Value&: *SubobjectValue, |
6742 | T: FD->getType())) |
6743 | return false; |
6744 | } |
6745 | |
6746 | if (BasesLeft != 0) |
6747 | EvalObj.startedDestroyingBases(); |
6748 | |
6749 | // Destroy base classes in reverse order. |
6750 | for (const CXXBaseSpecifier &Base : llvm::reverse(C: RD->bases())) { |
6751 | --BasesLeft; |
6752 | |
6753 | QualType BaseType = Base.getType(); |
6754 | LValue Subobject = This; |
6755 | if (!HandleLValueDirectBase(Info, E: &LocE, Obj&: Subobject, Derived: RD, |
6756 | Base: BaseType->getAsCXXRecordDecl(), RL: &Layout)) |
6757 | return false; |
6758 | |
6759 | APValue *SubobjectValue = &Value.getStructBase(i: BasesLeft); |
6760 | if (!HandleDestructionImpl(Info, CallRange, This: Subobject, Value&: *SubobjectValue, |
6761 | T: BaseType)) |
6762 | return false; |
6763 | } |
6764 | assert(BasesLeft == 0 && "NumBases was wrong?" ); |
6765 | |
6766 | // The period of destruction ends now. The object is gone. |
6767 | Value = APValue(); |
6768 | return true; |
6769 | } |
6770 | |
6771 | namespace { |
6772 | struct DestroyObjectHandler { |
6773 | EvalInfo &Info; |
6774 | const Expr *E; |
6775 | const LValue &This; |
6776 | const AccessKinds AccessKind; |
6777 | |
6778 | typedef bool result_type; |
6779 | bool failed() { return false; } |
6780 | bool found(APValue &Subobj, QualType SubobjType) { |
6781 | return HandleDestructionImpl(Info, CallRange: E->getSourceRange(), This, Value&: Subobj, |
6782 | T: SubobjType); |
6783 | } |
6784 | bool found(APSInt &Value, QualType SubobjType) { |
6785 | Info.FFDiag(E, DiagId: diag::note_constexpr_destroy_complex_elem); |
6786 | return false; |
6787 | } |
6788 | bool found(APFloat &Value, QualType SubobjType) { |
6789 | Info.FFDiag(E, DiagId: diag::note_constexpr_destroy_complex_elem); |
6790 | return false; |
6791 | } |
6792 | }; |
6793 | } |
6794 | |
6795 | /// Perform a destructor or pseudo-destructor call on the given object, which |
6796 | /// might in general not be a complete object. |
6797 | static bool HandleDestruction(EvalInfo &Info, const Expr *E, |
6798 | const LValue &This, QualType ThisType) { |
6799 | CompleteObject Obj = findCompleteObject(Info, E, AK: AK_Destroy, LVal: This, LValType: ThisType); |
6800 | DestroyObjectHandler Handler = {.Info: Info, .E: E, .This: This, .AccessKind: AK_Destroy}; |
6801 | return Obj && findSubobject(Info, E, Obj, Sub: This.Designator, handler&: Handler); |
6802 | } |
6803 | |
6804 | /// Destroy and end the lifetime of the given complete object. |
6805 | static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, |
6806 | APValue::LValueBase LVBase, APValue &Value, |
6807 | QualType T) { |
6808 | // If we've had an unmodeled side-effect, we can't rely on mutable state |
6809 | // (such as the object we're about to destroy) being correct. |
6810 | if (Info.EvalStatus.HasSideEffects) |
6811 | return false; |
6812 | |
6813 | LValue LV; |
6814 | LV.set(B: {LVBase}); |
6815 | return HandleDestructionImpl(Info, CallRange: Loc, This: LV, Value, T); |
6816 | } |
6817 | |
6818 | /// Perform a call to 'operator new' or to `__builtin_operator_new'. |
6819 | static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E, |
6820 | LValue &Result) { |
6821 | if (Info.checkingPotentialConstantExpression() || |
6822 | Info.SpeculativeEvaluationDepth) |
6823 | return false; |
6824 | |
6825 | // This is permitted only within a call to std::allocator<T>::allocate. |
6826 | auto Caller = Info.getStdAllocatorCaller(FnName: "allocate" ); |
6827 | if (!Caller) { |
6828 | Info.FFDiag(Loc: E->getExprLoc(), DiagId: Info.getLangOpts().CPlusPlus20 |
6829 | ? diag::note_constexpr_new_untyped |
6830 | : diag::note_constexpr_new); |
6831 | return false; |
6832 | } |
6833 | |
6834 | QualType ElemType = Caller.ElemType; |
6835 | if (ElemType->isIncompleteType() || ElemType->isFunctionType()) { |
6836 | Info.FFDiag(Loc: E->getExprLoc(), |
6837 | DiagId: diag::note_constexpr_new_not_complete_object_type) |
6838 | << (ElemType->isIncompleteType() ? 0 : 1) << ElemType; |
6839 | return false; |
6840 | } |
6841 | |
6842 | APSInt ByteSize; |
6843 | if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: ByteSize, Info)) |
6844 | return false; |
6845 | bool IsNothrow = false; |
6846 | for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) { |
6847 | EvaluateIgnoredValue(Info, E: E->getArg(Arg: I)); |
6848 | IsNothrow |= E->getType()->isNothrowT(); |
6849 | } |
6850 | |
6851 | CharUnits ElemSize; |
6852 | if (!HandleSizeof(Info, Loc: E->getExprLoc(), Type: ElemType, Size&: ElemSize)) |
6853 | return false; |
6854 | APInt Size, Remainder; |
6855 | APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity()); |
6856 | APInt::udivrem(LHS: ByteSize, RHS: ElemSizeAP, Quotient&: Size, Remainder); |
6857 | if (Remainder != 0) { |
6858 | // This likely indicates a bug in the implementation of 'std::allocator'. |
6859 | Info.FFDiag(Loc: E->getExprLoc(), DiagId: diag::note_constexpr_operator_new_bad_size) |
6860 | << ByteSize << APSInt(ElemSizeAP, true) << ElemType; |
6861 | return false; |
6862 | } |
6863 | |
6864 | if (!Info.CheckArraySize(Loc: E->getBeginLoc(), BitWidth: ByteSize.getActiveBits(), |
6865 | ElemCount: Size.getZExtValue(), /*Diag=*/!IsNothrow)) { |
6866 | if (IsNothrow) { |
6867 | Result.setNull(Ctx&: Info.Ctx, PointerTy: E->getType()); |
6868 | return true; |
6869 | } |
6870 | return false; |
6871 | } |
6872 | |
6873 | QualType AllocType = Info.Ctx.getConstantArrayType( |
6874 | EltTy: ElemType, ArySize: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
6875 | APValue *Val = Info.createHeapAlloc(E, T: AllocType, LV&: Result); |
6876 | *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue()); |
6877 | Result.addArray(Info, E, CAT: cast<ConstantArrayType>(Val&: AllocType)); |
6878 | return true; |
6879 | } |
6880 | |
6881 | static bool hasVirtualDestructor(QualType T) { |
6882 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
6883 | if (CXXDestructorDecl *DD = RD->getDestructor()) |
6884 | return DD->isVirtual(); |
6885 | return false; |
6886 | } |
6887 | |
6888 | static const FunctionDecl *getVirtualOperatorDelete(QualType T) { |
6889 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
6890 | if (CXXDestructorDecl *DD = RD->getDestructor()) |
6891 | return DD->isVirtual() ? DD->getOperatorDelete() : nullptr; |
6892 | return nullptr; |
6893 | } |
6894 | |
6895 | /// Check that the given object is a suitable pointer to a heap allocation that |
6896 | /// still exists and is of the right kind for the purpose of a deletion. |
6897 | /// |
6898 | /// On success, returns the heap allocation to deallocate. On failure, produces |
6899 | /// a diagnostic and returns std::nullopt. |
6900 | static std::optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E, |
6901 | const LValue &Pointer, |
6902 | DynAlloc::Kind DeallocKind) { |
6903 | auto PointerAsString = [&] { |
6904 | return Pointer.toString(Ctx&: Info.Ctx, T: Info.Ctx.VoidPtrTy); |
6905 | }; |
6906 | |
6907 | DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>(); |
6908 | if (!DA) { |
6909 | Info.FFDiag(E, DiagId: diag::note_constexpr_delete_not_heap_alloc) |
6910 | << PointerAsString(); |
6911 | if (Pointer.Base) |
6912 | NoteLValueLocation(Info, Base: Pointer.Base); |
6913 | return std::nullopt; |
6914 | } |
6915 | |
6916 | std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA); |
6917 | if (!Alloc) { |
6918 | Info.FFDiag(E, DiagId: diag::note_constexpr_double_delete); |
6919 | return std::nullopt; |
6920 | } |
6921 | |
6922 | if (DeallocKind != (*Alloc)->getKind()) { |
6923 | QualType AllocType = Pointer.Base.getDynamicAllocType(); |
6924 | Info.FFDiag(E, DiagId: diag::note_constexpr_new_delete_mismatch) |
6925 | << DeallocKind << (*Alloc)->getKind() << AllocType; |
6926 | NoteLValueLocation(Info, Base: Pointer.Base); |
6927 | return std::nullopt; |
6928 | } |
6929 | |
6930 | bool Subobject = false; |
6931 | if (DeallocKind == DynAlloc::New) { |
6932 | Subobject = Pointer.Designator.MostDerivedPathLength != 0 || |
6933 | Pointer.Designator.isOnePastTheEnd(); |
6934 | } else { |
6935 | Subobject = Pointer.Designator.Entries.size() != 1 || |
6936 | Pointer.Designator.Entries[0].getAsArrayIndex() != 0; |
6937 | } |
6938 | if (Subobject) { |
6939 | Info.FFDiag(E, DiagId: diag::note_constexpr_delete_subobject) |
6940 | << PointerAsString() << Pointer.Designator.isOnePastTheEnd(); |
6941 | return std::nullopt; |
6942 | } |
6943 | |
6944 | return Alloc; |
6945 | } |
6946 | |
6947 | // Perform a call to 'operator delete' or '__builtin_operator_delete'. |
6948 | bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) { |
6949 | if (Info.checkingPotentialConstantExpression() || |
6950 | Info.SpeculativeEvaluationDepth) |
6951 | return false; |
6952 | |
6953 | // This is permitted only within a call to std::allocator<T>::deallocate. |
6954 | if (!Info.getStdAllocatorCaller(FnName: "deallocate" )) { |
6955 | Info.FFDiag(Loc: E->getExprLoc()); |
6956 | return true; |
6957 | } |
6958 | |
6959 | LValue Pointer; |
6960 | if (!EvaluatePointer(E: E->getArg(Arg: 0), Result&: Pointer, Info)) |
6961 | return false; |
6962 | for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) |
6963 | EvaluateIgnoredValue(Info, E: E->getArg(Arg: I)); |
6964 | |
6965 | if (Pointer.Designator.Invalid) |
6966 | return false; |
6967 | |
6968 | // Deleting a null pointer would have no effect, but it's not permitted by |
6969 | // std::allocator<T>::deallocate's contract. |
6970 | if (Pointer.isNullPointer()) { |
6971 | Info.CCEDiag(Loc: E->getExprLoc(), DiagId: diag::note_constexpr_deallocate_null); |
6972 | return true; |
6973 | } |
6974 | |
6975 | if (!CheckDeleteKind(Info, E, Pointer, DeallocKind: DynAlloc::StdAllocator)) |
6976 | return false; |
6977 | |
6978 | Info.HeapAllocs.erase(x: Pointer.Base.get<DynamicAllocLValue>()); |
6979 | return true; |
6980 | } |
6981 | |
6982 | //===----------------------------------------------------------------------===// |
6983 | // Generic Evaluation |
6984 | //===----------------------------------------------------------------------===// |
6985 | namespace { |
6986 | |
6987 | class BitCastBuffer { |
6988 | // FIXME: We're going to need bit-level granularity when we support |
6989 | // bit-fields. |
6990 | // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but |
6991 | // we don't support a host or target where that is the case. Still, we should |
6992 | // use a more generic type in case we ever do. |
6993 | SmallVector<std::optional<unsigned char>, 32> Bytes; |
6994 | |
6995 | static_assert(std::numeric_limits<unsigned char>::digits >= 8, |
6996 | "Need at least 8 bit unsigned char" ); |
6997 | |
6998 | bool TargetIsLittleEndian; |
6999 | |
7000 | public: |
7001 | BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian) |
7002 | : Bytes(Width.getQuantity()), |
7003 | TargetIsLittleEndian(TargetIsLittleEndian) {} |
7004 | |
7005 | [[nodiscard]] bool readObject(CharUnits Offset, CharUnits Width, |
7006 | SmallVectorImpl<unsigned char> &Output) const { |
7007 | for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) { |
7008 | // If a byte of an integer is uninitialized, then the whole integer is |
7009 | // uninitialized. |
7010 | if (!Bytes[I.getQuantity()]) |
7011 | return false; |
7012 | Output.push_back(Elt: *Bytes[I.getQuantity()]); |
7013 | } |
7014 | if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) |
7015 | std::reverse(first: Output.begin(), last: Output.end()); |
7016 | return true; |
7017 | } |
7018 | |
7019 | void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) { |
7020 | if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) |
7021 | std::reverse(first: Input.begin(), last: Input.end()); |
7022 | |
7023 | size_t Index = 0; |
7024 | for (unsigned char Byte : Input) { |
7025 | assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?" ); |
7026 | Bytes[Offset.getQuantity() + Index] = Byte; |
7027 | ++Index; |
7028 | } |
7029 | } |
7030 | |
7031 | size_t size() { return Bytes.size(); } |
7032 | }; |
7033 | |
7034 | /// Traverse an APValue to produce an BitCastBuffer, emulating how the current |
7035 | /// target would represent the value at runtime. |
7036 | class APValueToBufferConverter { |
7037 | EvalInfo &Info; |
7038 | BitCastBuffer Buffer; |
7039 | const CastExpr *BCE; |
7040 | |
7041 | APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth, |
7042 | const CastExpr *BCE) |
7043 | : Info(Info), |
7044 | Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()), |
7045 | BCE(BCE) {} |
7046 | |
7047 | bool visit(const APValue &Val, QualType Ty) { |
7048 | return visit(Val, Ty, Offset: CharUnits::fromQuantity(Quantity: 0)); |
7049 | } |
7050 | |
7051 | // Write out Val with type Ty into Buffer starting at Offset. |
7052 | bool visit(const APValue &Val, QualType Ty, CharUnits Offset) { |
7053 | assert((size_t)Offset.getQuantity() <= Buffer.size()); |
7054 | |
7055 | // As a special case, nullptr_t has an indeterminate value. |
7056 | if (Ty->isNullPtrType()) |
7057 | return true; |
7058 | |
7059 | // Dig through Src to find the byte at SrcOffset. |
7060 | switch (Val.getKind()) { |
7061 | case APValue::Indeterminate: |
7062 | case APValue::None: |
7063 | return true; |
7064 | |
7065 | case APValue::Int: |
7066 | return visitInt(Val: Val.getInt(), Ty, Offset); |
7067 | case APValue::Float: |
7068 | return visitFloat(Val: Val.getFloat(), Ty, Offset); |
7069 | case APValue::Array: |
7070 | return visitArray(Val, Ty, Offset); |
7071 | case APValue::Struct: |
7072 | return visitRecord(Val, Ty, Offset); |
7073 | case APValue::Vector: |
7074 | return visitVector(Val, Ty, Offset); |
7075 | |
7076 | case APValue::ComplexInt: |
7077 | case APValue::ComplexFloat: |
7078 | case APValue::FixedPoint: |
7079 | // FIXME: We should support these. |
7080 | |
7081 | case APValue::Union: |
7082 | case APValue::MemberPointer: |
7083 | case APValue::AddrLabelDiff: { |
7084 | Info.FFDiag(Loc: BCE->getBeginLoc(), |
7085 | DiagId: diag::note_constexpr_bit_cast_unsupported_type) |
7086 | << Ty; |
7087 | return false; |
7088 | } |
7089 | |
7090 | case APValue::LValue: |
7091 | llvm_unreachable("LValue subobject in bit_cast?" ); |
7092 | } |
7093 | llvm_unreachable("Unhandled APValue::ValueKind" ); |
7094 | } |
7095 | |
7096 | bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) { |
7097 | const RecordDecl *RD = Ty->getAsRecordDecl(); |
7098 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD); |
7099 | |
7100 | // Visit the base classes. |
7101 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
7102 | for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { |
7103 | const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; |
7104 | CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); |
7105 | |
7106 | if (!visitRecord(Val: Val.getStructBase(i: I), Ty: BS.getType(), |
7107 | Offset: Layout.getBaseClassOffset(Base: BaseDecl) + Offset)) |
7108 | return false; |
7109 | } |
7110 | } |
7111 | |
7112 | // Visit the fields. |
7113 | unsigned FieldIdx = 0; |
7114 | for (FieldDecl *FD : RD->fields()) { |
7115 | if (FD->isBitField()) { |
7116 | Info.FFDiag(Loc: BCE->getBeginLoc(), |
7117 | DiagId: diag::note_constexpr_bit_cast_unsupported_bitfield); |
7118 | return false; |
7119 | } |
7120 | |
7121 | uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldNo: FieldIdx); |
7122 | |
7123 | assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 && |
7124 | "only bit-fields can have sub-char alignment" ); |
7125 | CharUnits FieldOffset = |
7126 | Info.Ctx.toCharUnitsFromBits(BitSize: FieldOffsetBits) + Offset; |
7127 | QualType FieldTy = FD->getType(); |
7128 | if (!visit(Val: Val.getStructField(i: FieldIdx), Ty: FieldTy, Offset: FieldOffset)) |
7129 | return false; |
7130 | ++FieldIdx; |
7131 | } |
7132 | |
7133 | return true; |
7134 | } |
7135 | |
7136 | bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) { |
7137 | const auto *CAT = |
7138 | dyn_cast_or_null<ConstantArrayType>(Val: Ty->getAsArrayTypeUnsafe()); |
7139 | if (!CAT) |
7140 | return false; |
7141 | |
7142 | CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(T: CAT->getElementType()); |
7143 | unsigned NumInitializedElts = Val.getArrayInitializedElts(); |
7144 | unsigned ArraySize = Val.getArraySize(); |
7145 | // First, initialize the initialized elements. |
7146 | for (unsigned I = 0; I != NumInitializedElts; ++I) { |
7147 | const APValue &SubObj = Val.getArrayInitializedElt(I); |
7148 | if (!visit(Val: SubObj, Ty: CAT->getElementType(), Offset: Offset + I * ElemWidth)) |
7149 | return false; |
7150 | } |
7151 | |
7152 | // Next, initialize the rest of the array using the filler. |
7153 | if (Val.hasArrayFiller()) { |
7154 | const APValue &Filler = Val.getArrayFiller(); |
7155 | for (unsigned I = NumInitializedElts; I != ArraySize; ++I) { |
7156 | if (!visit(Val: Filler, Ty: CAT->getElementType(), Offset: Offset + I * ElemWidth)) |
7157 | return false; |
7158 | } |
7159 | } |
7160 | |
7161 | return true; |
7162 | } |
7163 | |
7164 | bool visitVector(const APValue &Val, QualType Ty, CharUnits Offset) { |
7165 | const VectorType *VTy = Ty->castAs<VectorType>(); |
7166 | QualType EltTy = VTy->getElementType(); |
7167 | unsigned NElts = VTy->getNumElements(); |
7168 | unsigned EltSize = |
7169 | VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(T: EltTy); |
7170 | |
7171 | if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) { |
7172 | // The vector's size in bits is not a multiple of the target's byte size, |
7173 | // so its layout is unspecified. For now, we'll simply treat these cases |
7174 | // as unsupported (this should only be possible with OpenCL bool vectors |
7175 | // whose element count isn't a multiple of the byte size). |
7176 | Info.FFDiag(Loc: BCE->getBeginLoc(), |
7177 | DiagId: diag::note_constexpr_bit_cast_invalid_vector) |
7178 | << Ty.getCanonicalType() << EltSize << NElts |
7179 | << Info.Ctx.getCharWidth(); |
7180 | return false; |
7181 | } |
7182 | |
7183 | if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(T: EltTy) == |
7184 | &APFloat::x87DoubleExtended()) { |
7185 | // The layout for x86_fp80 vectors seems to be handled very inconsistently |
7186 | // by both clang and LLVM, so for now we won't allow bit_casts involving |
7187 | // it in a constexpr context. |
7188 | Info.FFDiag(Loc: BCE->getBeginLoc(), |
7189 | DiagId: diag::note_constexpr_bit_cast_unsupported_type) |
7190 | << EltTy; |
7191 | return false; |
7192 | } |
7193 | |
7194 | if (VTy->isExtVectorBoolType()) { |
7195 | // Special handling for OpenCL bool vectors: |
7196 | // Since these vectors are stored as packed bits, but we can't write |
7197 | // individual bits to the BitCastBuffer, we'll buffer all of the elements |
7198 | // together into an appropriately sized APInt and write them all out at |
7199 | // once. Because we don't accept vectors where NElts * EltSize isn't a |
7200 | // multiple of the char size, there will be no padding space, so we don't |
7201 | // have to worry about writing data which should have been left |
7202 | // uninitialized. |
7203 | bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); |
7204 | |
7205 | llvm::APInt Res = llvm::APInt::getZero(numBits: NElts); |
7206 | for (unsigned I = 0; I < NElts; ++I) { |
7207 | const llvm::APSInt &EltAsInt = Val.getVectorElt(I).getInt(); |
7208 | assert(EltAsInt.isUnsigned() && EltAsInt.getBitWidth() == 1 && |
7209 | "bool vector element must be 1-bit unsigned integer!" ); |
7210 | |
7211 | Res.insertBits(SubBits: EltAsInt, bitPosition: BigEndian ? (NElts - I - 1) : I); |
7212 | } |
7213 | |
7214 | SmallVector<uint8_t, 8> Bytes(NElts / 8); |
7215 | llvm::StoreIntToMemory(IntVal: Res, Dst: &*Bytes.begin(), StoreBytes: NElts / 8); |
7216 | Buffer.writeObject(Offset, Input&: Bytes); |
7217 | } else { |
7218 | // Iterate over each of the elements and write them out to the buffer at |
7219 | // the appropriate offset. |
7220 | CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(T: EltTy); |
7221 | for (unsigned I = 0; I < NElts; ++I) { |
7222 | if (!visit(Val: Val.getVectorElt(I), Ty: EltTy, Offset: Offset + I * EltSizeChars)) |
7223 | return false; |
7224 | } |
7225 | } |
7226 | |
7227 | return true; |
7228 | } |
7229 | |
7230 | bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) { |
7231 | APSInt AdjustedVal = Val; |
7232 | unsigned Width = AdjustedVal.getBitWidth(); |
7233 | if (Ty->isBooleanType()) { |
7234 | Width = Info.Ctx.getTypeSize(T: Ty); |
7235 | AdjustedVal = AdjustedVal.extend(width: Width); |
7236 | } |
7237 | |
7238 | SmallVector<uint8_t, 8> Bytes(Width / 8); |
7239 | llvm::StoreIntToMemory(IntVal: AdjustedVal, Dst: &*Bytes.begin(), StoreBytes: Width / 8); |
7240 | Buffer.writeObject(Offset, Input&: Bytes); |
7241 | return true; |
7242 | } |
7243 | |
7244 | bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) { |
7245 | APSInt AsInt(Val.bitcastToAPInt()); |
7246 | return visitInt(Val: AsInt, Ty, Offset); |
7247 | } |
7248 | |
7249 | public: |
7250 | static std::optional<BitCastBuffer> |
7251 | convert(EvalInfo &Info, const APValue &Src, const CastExpr *BCE) { |
7252 | CharUnits DstSize = Info.Ctx.getTypeSizeInChars(T: BCE->getType()); |
7253 | APValueToBufferConverter Converter(Info, DstSize, BCE); |
7254 | if (!Converter.visit(Val: Src, Ty: BCE->getSubExpr()->getType())) |
7255 | return std::nullopt; |
7256 | return Converter.Buffer; |
7257 | } |
7258 | }; |
7259 | |
7260 | /// Write an BitCastBuffer into an APValue. |
7261 | class BufferToAPValueConverter { |
7262 | EvalInfo &Info; |
7263 | const BitCastBuffer &Buffer; |
7264 | const CastExpr *BCE; |
7265 | |
7266 | BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer, |
7267 | const CastExpr *BCE) |
7268 | : Info(Info), Buffer(Buffer), BCE(BCE) {} |
7269 | |
7270 | // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast |
7271 | // with an invalid type, so anything left is a deficiency on our part (FIXME). |
7272 | // Ideally this will be unreachable. |
7273 | std::nullopt_t unsupportedType(QualType Ty) { |
7274 | Info.FFDiag(Loc: BCE->getBeginLoc(), |
7275 | DiagId: diag::note_constexpr_bit_cast_unsupported_type) |
7276 | << Ty; |
7277 | return std::nullopt; |
7278 | } |
7279 | |
7280 | std::nullopt_t unrepresentableValue(QualType Ty, const APSInt &Val) { |
7281 | Info.FFDiag(Loc: BCE->getBeginLoc(), |
7282 | DiagId: diag::note_constexpr_bit_cast_unrepresentable_value) |
7283 | << Ty << toString(I: Val, /*Radix=*/10); |
7284 | return std::nullopt; |
7285 | } |
7286 | |
7287 | std::optional<APValue> visit(const BuiltinType *T, CharUnits Offset, |
7288 | const EnumType *EnumSugar = nullptr) { |
7289 | if (T->isNullPtrType()) { |
7290 | uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QT: QualType(T, 0)); |
7291 | return APValue((Expr *)nullptr, |
7292 | /*Offset=*/CharUnits::fromQuantity(Quantity: NullValue), |
7293 | APValue::NoLValuePath{}, /*IsNullPtr=*/true); |
7294 | } |
7295 | |
7296 | CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T); |
7297 | |
7298 | // Work around floating point types that contain unused padding bytes. This |
7299 | // is really just `long double` on x86, which is the only fundamental type |
7300 | // with padding bytes. |
7301 | if (T->isRealFloatingType()) { |
7302 | const llvm::fltSemantics &Semantics = |
7303 | Info.Ctx.getFloatTypeSemantics(T: QualType(T, 0)); |
7304 | unsigned NumBits = llvm::APFloatBase::getSizeInBits(Sem: Semantics); |
7305 | assert(NumBits % 8 == 0); |
7306 | CharUnits NumBytes = CharUnits::fromQuantity(Quantity: NumBits / 8); |
7307 | if (NumBytes != SizeOf) |
7308 | SizeOf = NumBytes; |
7309 | } |
7310 | |
7311 | SmallVector<uint8_t, 8> Bytes; |
7312 | if (!Buffer.readObject(Offset, Width: SizeOf, Output&: Bytes)) { |
7313 | // If this is std::byte or unsigned char, then its okay to store an |
7314 | // indeterminate value. |
7315 | bool IsStdByte = EnumSugar && EnumSugar->isStdByteType(); |
7316 | bool IsUChar = |
7317 | !EnumSugar && (T->isSpecificBuiltinType(K: BuiltinType::UChar) || |
7318 | T->isSpecificBuiltinType(K: BuiltinType::Char_U)); |
7319 | if (!IsStdByte && !IsUChar) { |
7320 | QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0); |
7321 | Info.FFDiag(Loc: BCE->getExprLoc(), |
7322 | DiagId: diag::note_constexpr_bit_cast_indet_dest) |
7323 | << DisplayType << Info.Ctx.getLangOpts().CharIsSigned; |
7324 | return std::nullopt; |
7325 | } |
7326 | |
7327 | return APValue::IndeterminateValue(); |
7328 | } |
7329 | |
7330 | APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true); |
7331 | llvm::LoadIntFromMemory(IntVal&: Val, Src: &*Bytes.begin(), LoadBytes: Bytes.size()); |
7332 | |
7333 | if (T->isIntegralOrEnumerationType()) { |
7334 | Val.setIsSigned(T->isSignedIntegerOrEnumerationType()); |
7335 | |
7336 | unsigned IntWidth = Info.Ctx.getIntWidth(T: QualType(T, 0)); |
7337 | if (IntWidth != Val.getBitWidth()) { |
7338 | APSInt Truncated = Val.trunc(width: IntWidth); |
7339 | if (Truncated.extend(width: Val.getBitWidth()) != Val) |
7340 | return unrepresentableValue(Ty: QualType(T, 0), Val); |
7341 | Val = Truncated; |
7342 | } |
7343 | |
7344 | return APValue(Val); |
7345 | } |
7346 | |
7347 | if (T->isRealFloatingType()) { |
7348 | const llvm::fltSemantics &Semantics = |
7349 | Info.Ctx.getFloatTypeSemantics(T: QualType(T, 0)); |
7350 | return APValue(APFloat(Semantics, Val)); |
7351 | } |
7352 | |
7353 | return unsupportedType(Ty: QualType(T, 0)); |
7354 | } |
7355 | |
7356 | std::optional<APValue> visit(const RecordType *RTy, CharUnits Offset) { |
7357 | const RecordDecl *RD = RTy->getAsRecordDecl(); |
7358 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD); |
7359 | |
7360 | unsigned NumBases = 0; |
7361 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) |
7362 | NumBases = CXXRD->getNumBases(); |
7363 | |
7364 | APValue ResultVal(APValue::UninitStruct(), NumBases, |
7365 | std::distance(first: RD->field_begin(), last: RD->field_end())); |
7366 | |
7367 | // Visit the base classes. |
7368 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
7369 | for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { |
7370 | const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; |
7371 | CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); |
7372 | |
7373 | std::optional<APValue> SubObj = visitType( |
7374 | Ty: BS.getType(), Offset: Layout.getBaseClassOffset(Base: BaseDecl) + Offset); |
7375 | if (!SubObj) |
7376 | return std::nullopt; |
7377 | ResultVal.getStructBase(i: I) = *SubObj; |
7378 | } |
7379 | } |
7380 | |
7381 | // Visit the fields. |
7382 | unsigned FieldIdx = 0; |
7383 | for (FieldDecl *FD : RD->fields()) { |
7384 | // FIXME: We don't currently support bit-fields. A lot of the logic for |
7385 | // this is in CodeGen, so we need to factor it around. |
7386 | if (FD->isBitField()) { |
7387 | Info.FFDiag(Loc: BCE->getBeginLoc(), |
7388 | DiagId: diag::note_constexpr_bit_cast_unsupported_bitfield); |
7389 | return std::nullopt; |
7390 | } |
7391 | |
7392 | uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldNo: FieldIdx); |
7393 | assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0); |
7394 | |
7395 | CharUnits FieldOffset = |
7396 | CharUnits::fromQuantity(Quantity: FieldOffsetBits / Info.Ctx.getCharWidth()) + |
7397 | Offset; |
7398 | QualType FieldTy = FD->getType(); |
7399 | std::optional<APValue> SubObj = visitType(Ty: FieldTy, Offset: FieldOffset); |
7400 | if (!SubObj) |
7401 | return std::nullopt; |
7402 | ResultVal.getStructField(i: FieldIdx) = *SubObj; |
7403 | ++FieldIdx; |
7404 | } |
7405 | |
7406 | return ResultVal; |
7407 | } |
7408 | |
7409 | std::optional<APValue> visit(const EnumType *Ty, CharUnits Offset) { |
7410 | QualType RepresentationType = Ty->getDecl()->getIntegerType(); |
7411 | assert(!RepresentationType.isNull() && |
7412 | "enum forward decl should be caught by Sema" ); |
7413 | const auto *AsBuiltin = |
7414 | RepresentationType.getCanonicalType()->castAs<BuiltinType>(); |
7415 | // Recurse into the underlying type. Treat std::byte transparently as |
7416 | // unsigned char. |
7417 | return visit(T: AsBuiltin, Offset, /*EnumTy=*/EnumSugar: Ty); |
7418 | } |
7419 | |
7420 | std::optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) { |
7421 | size_t Size = Ty->getLimitedSize(); |
7422 | CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(T: Ty->getElementType()); |
7423 | |
7424 | APValue ArrayValue(APValue::UninitArray(), Size, Size); |
7425 | for (size_t I = 0; I != Size; ++I) { |
7426 | std::optional<APValue> ElementValue = |
7427 | visitType(Ty: Ty->getElementType(), Offset: Offset + I * ElementWidth); |
7428 | if (!ElementValue) |
7429 | return std::nullopt; |
7430 | ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue); |
7431 | } |
7432 | |
7433 | return ArrayValue; |
7434 | } |
7435 | |
7436 | std::optional<APValue> visit(const VectorType *VTy, CharUnits Offset) { |
7437 | QualType EltTy = VTy->getElementType(); |
7438 | unsigned NElts = VTy->getNumElements(); |
7439 | unsigned EltSize = |
7440 | VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(T: EltTy); |
7441 | |
7442 | if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) { |
7443 | // The vector's size in bits is not a multiple of the target's byte size, |
7444 | // so its layout is unspecified. For now, we'll simply treat these cases |
7445 | // as unsupported (this should only be possible with OpenCL bool vectors |
7446 | // whose element count isn't a multiple of the byte size). |
7447 | Info.FFDiag(Loc: BCE->getBeginLoc(), |
7448 | DiagId: diag::note_constexpr_bit_cast_invalid_vector) |
7449 | << QualType(VTy, 0) << EltSize << NElts << Info.Ctx.getCharWidth(); |
7450 | return std::nullopt; |
7451 | } |
7452 | |
7453 | if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(T: EltTy) == |
7454 | &APFloat::x87DoubleExtended()) { |
7455 | // The layout for x86_fp80 vectors seems to be handled very inconsistently |
7456 | // by both clang and LLVM, so for now we won't allow bit_casts involving |
7457 | // it in a constexpr context. |
7458 | Info.FFDiag(Loc: BCE->getBeginLoc(), |
7459 | DiagId: diag::note_constexpr_bit_cast_unsupported_type) |
7460 | << EltTy; |
7461 | return std::nullopt; |
7462 | } |
7463 | |
7464 | SmallVector<APValue, 4> Elts; |
7465 | Elts.reserve(N: NElts); |
7466 | if (VTy->isExtVectorBoolType()) { |
7467 | // Special handling for OpenCL bool vectors: |
7468 | // Since these vectors are stored as packed bits, but we can't read |
7469 | // individual bits from the BitCastBuffer, we'll buffer all of the |
7470 | // elements together into an appropriately sized APInt and write them all |
7471 | // out at once. Because we don't accept vectors where NElts * EltSize |
7472 | // isn't a multiple of the char size, there will be no padding space, so |
7473 | // we don't have to worry about reading any padding data which didn't |
7474 | // actually need to be accessed. |
7475 | bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); |
7476 | |
7477 | SmallVector<uint8_t, 8> Bytes; |
7478 | Bytes.reserve(N: NElts / 8); |
7479 | if (!Buffer.readObject(Offset, Width: CharUnits::fromQuantity(Quantity: NElts / 8), Output&: Bytes)) |
7480 | return std::nullopt; |
7481 | |
7482 | APSInt SValInt(NElts, true); |
7483 | llvm::LoadIntFromMemory(IntVal&: SValInt, Src: &*Bytes.begin(), LoadBytes: Bytes.size()); |
7484 | |
7485 | for (unsigned I = 0; I < NElts; ++I) { |
7486 | llvm::APInt Elt = |
7487 | SValInt.extractBits(numBits: 1, bitPosition: (BigEndian ? NElts - I - 1 : I) * EltSize); |
7488 | Elts.emplace_back( |
7489 | Args: APSInt(std::move(Elt), !EltTy->isSignedIntegerType())); |
7490 | } |
7491 | } else { |
7492 | // Iterate over each of the elements and read them from the buffer at |
7493 | // the appropriate offset. |
7494 | CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(T: EltTy); |
7495 | for (unsigned I = 0; I < NElts; ++I) { |
7496 | std::optional<APValue> EltValue = |
7497 | visitType(Ty: EltTy, Offset: Offset + I * EltSizeChars); |
7498 | if (!EltValue) |
7499 | return std::nullopt; |
7500 | Elts.push_back(Elt: std::move(*EltValue)); |
7501 | } |
7502 | } |
7503 | |
7504 | return APValue(Elts.data(), Elts.size()); |
7505 | } |
7506 | |
7507 | std::optional<APValue> visit(const Type *Ty, CharUnits Offset) { |
7508 | return unsupportedType(Ty: QualType(Ty, 0)); |
7509 | } |
7510 | |
7511 | std::optional<APValue> visitType(QualType Ty, CharUnits Offset) { |
7512 | QualType Can = Ty.getCanonicalType(); |
7513 | |
7514 | switch (Can->getTypeClass()) { |
7515 | #define TYPE(Class, Base) \ |
7516 | case Type::Class: \ |
7517 | return visit(cast<Class##Type>(Can.getTypePtr()), Offset); |
7518 | #define ABSTRACT_TYPE(Class, Base) |
7519 | #define NON_CANONICAL_TYPE(Class, Base) \ |
7520 | case Type::Class: \ |
7521 | llvm_unreachable("non-canonical type should be impossible!"); |
7522 | #define DEPENDENT_TYPE(Class, Base) \ |
7523 | case Type::Class: \ |
7524 | llvm_unreachable( \ |
7525 | "dependent types aren't supported in the constant evaluator!"); |
7526 | #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \ |
7527 | case Type::Class: \ |
7528 | llvm_unreachable("either dependent or not canonical!"); |
7529 | #include "clang/AST/TypeNodes.inc" |
7530 | } |
7531 | llvm_unreachable("Unhandled Type::TypeClass" ); |
7532 | } |
7533 | |
7534 | public: |
7535 | // Pull out a full value of type DstType. |
7536 | static std::optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer, |
7537 | const CastExpr *BCE) { |
7538 | BufferToAPValueConverter Converter(Info, Buffer, BCE); |
7539 | return Converter.visitType(Ty: BCE->getType(), Offset: CharUnits::fromQuantity(Quantity: 0)); |
7540 | } |
7541 | }; |
7542 | |
7543 | static bool checkBitCastConstexprEligibilityType(SourceLocation Loc, |
7544 | QualType Ty, EvalInfo *Info, |
7545 | const ASTContext &Ctx, |
7546 | bool CheckingDest) { |
7547 | Ty = Ty.getCanonicalType(); |
7548 | |
7549 | auto diag = [&](int Reason) { |
7550 | if (Info) |
7551 | Info->FFDiag(Loc, DiagId: diag::note_constexpr_bit_cast_invalid_type) |
7552 | << CheckingDest << (Reason == 4) << Reason; |
7553 | return false; |
7554 | }; |
7555 | auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) { |
7556 | if (Info) |
7557 | Info->Note(Loc: NoteLoc, DiagId: diag::note_constexpr_bit_cast_invalid_subtype) |
7558 | << NoteTy << Construct << Ty; |
7559 | return false; |
7560 | }; |
7561 | |
7562 | if (Ty->isUnionType()) |
7563 | return diag(0); |
7564 | if (Ty->isPointerType()) |
7565 | return diag(1); |
7566 | if (Ty->isMemberPointerType()) |
7567 | return diag(2); |
7568 | if (Ty.isVolatileQualified()) |
7569 | return diag(3); |
7570 | |
7571 | if (RecordDecl *Record = Ty->getAsRecordDecl()) { |
7572 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: Record)) { |
7573 | for (CXXBaseSpecifier &BS : CXXRD->bases()) |
7574 | if (!checkBitCastConstexprEligibilityType(Loc, Ty: BS.getType(), Info, Ctx, |
7575 | CheckingDest)) |
7576 | return note(1, BS.getType(), BS.getBeginLoc()); |
7577 | } |
7578 | for (FieldDecl *FD : Record->fields()) { |
7579 | if (FD->getType()->isReferenceType()) |
7580 | return diag(4); |
7581 | if (!checkBitCastConstexprEligibilityType(Loc, Ty: FD->getType(), Info, Ctx, |
7582 | CheckingDest)) |
7583 | return note(0, FD->getType(), FD->getBeginLoc()); |
7584 | } |
7585 | } |
7586 | |
7587 | if (Ty->isArrayType() && |
7588 | !checkBitCastConstexprEligibilityType(Loc, Ty: Ctx.getBaseElementType(QT: Ty), |
7589 | Info, Ctx, CheckingDest)) |
7590 | return false; |
7591 | |
7592 | return true; |
7593 | } |
7594 | |
7595 | static bool checkBitCastConstexprEligibility(EvalInfo *Info, |
7596 | const ASTContext &Ctx, |
7597 | const CastExpr *BCE) { |
7598 | bool DestOK = checkBitCastConstexprEligibilityType( |
7599 | Loc: BCE->getBeginLoc(), Ty: BCE->getType(), Info, Ctx, CheckingDest: true); |
7600 | bool SourceOK = DestOK && checkBitCastConstexprEligibilityType( |
7601 | Loc: BCE->getBeginLoc(), |
7602 | Ty: BCE->getSubExpr()->getType(), Info, Ctx, CheckingDest: false); |
7603 | return SourceOK; |
7604 | } |
7605 | |
7606 | static bool handleRValueToRValueBitCast(EvalInfo &Info, APValue &DestValue, |
7607 | const APValue &SourceRValue, |
7608 | const CastExpr *BCE) { |
7609 | assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && |
7610 | "no host or target supports non 8-bit chars" ); |
7611 | |
7612 | if (!checkBitCastConstexprEligibility(Info: &Info, Ctx: Info.Ctx, BCE)) |
7613 | return false; |
7614 | |
7615 | // Read out SourceValue into a char buffer. |
7616 | std::optional<BitCastBuffer> Buffer = |
7617 | APValueToBufferConverter::convert(Info, Src: SourceRValue, BCE); |
7618 | if (!Buffer) |
7619 | return false; |
7620 | |
7621 | // Write out the buffer into a new APValue. |
7622 | std::optional<APValue> MaybeDestValue = |
7623 | BufferToAPValueConverter::convert(Info, Buffer&: *Buffer, BCE); |
7624 | if (!MaybeDestValue) |
7625 | return false; |
7626 | |
7627 | DestValue = std::move(*MaybeDestValue); |
7628 | return true; |
7629 | } |
7630 | |
7631 | static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue, |
7632 | APValue &SourceValue, |
7633 | const CastExpr *BCE) { |
7634 | assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && |
7635 | "no host or target supports non 8-bit chars" ); |
7636 | assert(SourceValue.isLValue() && |
7637 | "LValueToRValueBitcast requires an lvalue operand!" ); |
7638 | |
7639 | LValue SourceLValue; |
7640 | APValue SourceRValue; |
7641 | SourceLValue.setFrom(Ctx&: Info.Ctx, V: SourceValue); |
7642 | if (!handleLValueToRValueConversion( |
7643 | Info, Conv: BCE, Type: BCE->getSubExpr()->getType().withConst(), LVal: SourceLValue, |
7644 | RVal&: SourceRValue, /*WantObjectRepresentation=*/true)) |
7645 | return false; |
7646 | |
7647 | return handleRValueToRValueBitCast(Info, DestValue, SourceRValue, BCE); |
7648 | } |
7649 | |
7650 | template <class Derived> |
7651 | class ExprEvaluatorBase |
7652 | : public ConstStmtVisitor<Derived, bool> { |
7653 | private: |
7654 | Derived &getDerived() { return static_cast<Derived&>(*this); } |
7655 | bool DerivedSuccess(const APValue &V, const Expr *E) { |
7656 | return getDerived().Success(V, E); |
7657 | } |
7658 | bool DerivedZeroInitialization(const Expr *E) { |
7659 | return getDerived().ZeroInitialization(E); |
7660 | } |
7661 | |
7662 | // Check whether a conditional operator with a non-constant condition is a |
7663 | // potential constant expression. If neither arm is a potential constant |
7664 | // expression, then the conditional operator is not either. |
7665 | template<typename ConditionalOperator> |
7666 | void CheckPotentialConstantConditional(const ConditionalOperator *E) { |
7667 | assert(Info.checkingPotentialConstantExpression()); |
7668 | |
7669 | // Speculatively evaluate both arms. |
7670 | SmallVector<PartialDiagnosticAt, 8> Diag; |
7671 | { |
7672 | SpeculativeEvaluationRAII Speculate(Info, &Diag); |
7673 | StmtVisitorTy::Visit(E->getFalseExpr()); |
7674 | if (Diag.empty()) |
7675 | return; |
7676 | } |
7677 | |
7678 | { |
7679 | SpeculativeEvaluationRAII Speculate(Info, &Diag); |
7680 | Diag.clear(); |
7681 | StmtVisitorTy::Visit(E->getTrueExpr()); |
7682 | if (Diag.empty()) |
7683 | return; |
7684 | } |
7685 | |
7686 | Error(E, diag::note_constexpr_conditional_never_const); |
7687 | } |
7688 | |
7689 | |
7690 | template<typename ConditionalOperator> |
7691 | bool HandleConditionalOperator(const ConditionalOperator *E) { |
7692 | bool BoolResult; |
7693 | if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) { |
7694 | if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) { |
7695 | CheckPotentialConstantConditional(E); |
7696 | return false; |
7697 | } |
7698 | if (Info.noteFailure()) { |
7699 | StmtVisitorTy::Visit(E->getTrueExpr()); |
7700 | StmtVisitorTy::Visit(E->getFalseExpr()); |
7701 | } |
7702 | return false; |
7703 | } |
7704 | |
7705 | Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); |
7706 | return StmtVisitorTy::Visit(EvalExpr); |
7707 | } |
7708 | |
7709 | protected: |
7710 | EvalInfo &Info; |
7711 | typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy; |
7712 | typedef ExprEvaluatorBase ExprEvaluatorBaseTy; |
7713 | |
7714 | OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { |
7715 | return Info.CCEDiag(E, DiagId: D); |
7716 | } |
7717 | |
7718 | bool ZeroInitialization(const Expr *E) { return Error(E); } |
7719 | |
7720 | bool IsConstantEvaluatedBuiltinCall(const CallExpr *E) { |
7721 | unsigned BuiltinOp = E->getBuiltinCallee(); |
7722 | return BuiltinOp != 0 && |
7723 | Info.Ctx.BuiltinInfo.isConstantEvaluated(ID: BuiltinOp); |
7724 | } |
7725 | |
7726 | public: |
7727 | ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} |
7728 | |
7729 | EvalInfo &getEvalInfo() { return Info; } |
7730 | |
7731 | /// Report an evaluation error. This should only be called when an error is |
7732 | /// first discovered. When propagating an error, just return false. |
7733 | bool Error(const Expr *E, diag::kind D) { |
7734 | Info.FFDiag(E, DiagId: D) << E->getSourceRange(); |
7735 | return false; |
7736 | } |
7737 | bool Error(const Expr *E) { |
7738 | return Error(E, diag::note_invalid_subexpr_in_const_expr); |
7739 | } |
7740 | |
7741 | bool VisitStmt(const Stmt *) { |
7742 | llvm_unreachable("Expression evaluator should not be called on stmts" ); |
7743 | } |
7744 | bool VisitExpr(const Expr *E) { |
7745 | return Error(E); |
7746 | } |
7747 | |
7748 | bool VisitEmbedExpr(const EmbedExpr *E) { |
7749 | const auto It = E->begin(); |
7750 | return StmtVisitorTy::Visit(*It); |
7751 | } |
7752 | |
7753 | bool VisitPredefinedExpr(const PredefinedExpr *E) { |
7754 | return StmtVisitorTy::Visit(E->getFunctionName()); |
7755 | } |
7756 | bool VisitConstantExpr(const ConstantExpr *E) { |
7757 | if (E->hasAPValueResult()) |
7758 | return DerivedSuccess(V: E->getAPValueResult(), E); |
7759 | |
7760 | return StmtVisitorTy::Visit(E->getSubExpr()); |
7761 | } |
7762 | |
7763 | bool VisitParenExpr(const ParenExpr *E) |
7764 | { return StmtVisitorTy::Visit(E->getSubExpr()); } |
7765 | bool VisitUnaryExtension(const UnaryOperator *E) |
7766 | { return StmtVisitorTy::Visit(E->getSubExpr()); } |
7767 | bool VisitUnaryPlus(const UnaryOperator *E) |
7768 | { return StmtVisitorTy::Visit(E->getSubExpr()); } |
7769 | bool VisitChooseExpr(const ChooseExpr *E) |
7770 | { return StmtVisitorTy::Visit(E->getChosenSubExpr()); } |
7771 | bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) |
7772 | { return StmtVisitorTy::Visit(E->getResultExpr()); } |
7773 | bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E) |
7774 | { return StmtVisitorTy::Visit(E->getReplacement()); } |
7775 | bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { |
7776 | TempVersionRAII RAII(*Info.CurrentCall); |
7777 | SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); |
7778 | return StmtVisitorTy::Visit(E->getExpr()); |
7779 | } |
7780 | bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { |
7781 | TempVersionRAII RAII(*Info.CurrentCall); |
7782 | // The initializer may not have been parsed yet, or might be erroneous. |
7783 | if (!E->getExpr()) |
7784 | return Error(E); |
7785 | SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); |
7786 | return StmtVisitorTy::Visit(E->getExpr()); |
7787 | } |
7788 | |
7789 | bool VisitExprWithCleanups(const ExprWithCleanups *E) { |
7790 | FullExpressionRAII Scope(Info); |
7791 | return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy(); |
7792 | } |
7793 | |
7794 | // Temporaries are registered when created, so we don't care about |
7795 | // CXXBindTemporaryExpr. |
7796 | bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { |
7797 | return StmtVisitorTy::Visit(E->getSubExpr()); |
7798 | } |
7799 | |
7800 | bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) { |
7801 | CCEDiag(E, D: diag::note_constexpr_invalid_cast) << 0; |
7802 | return static_cast<Derived*>(this)->VisitCastExpr(E); |
7803 | } |
7804 | bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) { |
7805 | if (!Info.Ctx.getLangOpts().CPlusPlus20) |
7806 | CCEDiag(E, D: diag::note_constexpr_invalid_cast) << 1; |
7807 | return static_cast<Derived*>(this)->VisitCastExpr(E); |
7808 | } |
7809 | bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) { |
7810 | return static_cast<Derived*>(this)->VisitCastExpr(E); |
7811 | } |
7812 | |
7813 | bool VisitBinaryOperator(const BinaryOperator *E) { |
7814 | switch (E->getOpcode()) { |
7815 | default: |
7816 | return Error(E); |
7817 | |
7818 | case BO_Comma: |
7819 | VisitIgnoredValue(E: E->getLHS()); |
7820 | return StmtVisitorTy::Visit(E->getRHS()); |
7821 | |
7822 | case BO_PtrMemD: |
7823 | case BO_PtrMemI: { |
7824 | LValue Obj; |
7825 | if (!HandleMemberPointerAccess(Info, BO: E, LV&: Obj)) |
7826 | return false; |
7827 | APValue Result; |
7828 | if (!handleLValueToRValueConversion(Info, Conv: E, Type: E->getType(), LVal: Obj, RVal&: Result)) |
7829 | return false; |
7830 | return DerivedSuccess(V: Result, E); |
7831 | } |
7832 | } |
7833 | } |
7834 | |
7835 | bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) { |
7836 | return StmtVisitorTy::Visit(E->getSemanticForm()); |
7837 | } |
7838 | |
7839 | bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) { |
7840 | // Evaluate and cache the common expression. We treat it as a temporary, |
7841 | // even though it's not quite the same thing. |
7842 | LValue CommonLV; |
7843 | if (!Evaluate(Result&: Info.CurrentCall->createTemporary( |
7844 | Key: E->getOpaqueValue(), |
7845 | T: getStorageType(Ctx: Info.Ctx, E: E->getOpaqueValue()), |
7846 | Scope: ScopeKind::FullExpression, LV&: CommonLV), |
7847 | Info, E: E->getCommon())) |
7848 | return false; |
7849 | |
7850 | return HandleConditionalOperator(E); |
7851 | } |
7852 | |
7853 | bool VisitConditionalOperator(const ConditionalOperator *E) { |
7854 | bool IsBcpCall = false; |
7855 | // If the condition (ignoring parens) is a __builtin_constant_p call, |
7856 | // the result is a constant expression if it can be folded without |
7857 | // side-effects. This is an important GNU extension. See GCC PR38377 |
7858 | // for discussion. |
7859 | if (const CallExpr *CallCE = |
7860 | dyn_cast<CallExpr>(Val: E->getCond()->IgnoreParenCasts())) |
7861 | if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) |
7862 | IsBcpCall = true; |
7863 | |
7864 | // Always assume __builtin_constant_p(...) ? ... : ... is a potential |
7865 | // constant expression; we can't check whether it's potentially foldable. |
7866 | // FIXME: We should instead treat __builtin_constant_p as non-constant if |
7867 | // it would return 'false' in this mode. |
7868 | if (Info.checkingPotentialConstantExpression() && IsBcpCall) |
7869 | return false; |
7870 | |
7871 | FoldConstant Fold(Info, IsBcpCall); |
7872 | if (!HandleConditionalOperator(E)) { |
7873 | Fold.keepDiagnostics(); |
7874 | return false; |
7875 | } |
7876 | |
7877 | return true; |
7878 | } |
7879 | |
7880 | bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) { |
7881 | if (APValue *Value = Info.CurrentCall->getCurrentTemporary(Key: E); |
7882 | Value && !Value->isAbsent()) |
7883 | return DerivedSuccess(V: *Value, E); |
7884 | |
7885 | const Expr *Source = E->getSourceExpr(); |
7886 | if (!Source) |
7887 | return Error(E); |
7888 | if (Source == E) { |
7889 | assert(0 && "OpaqueValueExpr recursively refers to itself" ); |
7890 | return Error(E); |
7891 | } |
7892 | return StmtVisitorTy::Visit(Source); |
7893 | } |
7894 | |
7895 | bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) { |
7896 | for (const Expr *SemE : E->semantics()) { |
7897 | if (auto *OVE = dyn_cast<OpaqueValueExpr>(Val: SemE)) { |
7898 | // FIXME: We can't handle the case where an OpaqueValueExpr is also the |
7899 | // result expression: there could be two different LValues that would |
7900 | // refer to the same object in that case, and we can't model that. |
7901 | if (SemE == E->getResultExpr()) |
7902 | return Error(E); |
7903 | |
7904 | // Unique OVEs get evaluated if and when we encounter them when |
7905 | // emitting the rest of the semantic form, rather than eagerly. |
7906 | if (OVE->isUnique()) |
7907 | continue; |
7908 | |
7909 | LValue LV; |
7910 | if (!Evaluate(Result&: Info.CurrentCall->createTemporary( |
7911 | Key: OVE, T: getStorageType(Ctx: Info.Ctx, E: OVE), |
7912 | Scope: ScopeKind::FullExpression, LV), |
7913 | Info, E: OVE->getSourceExpr())) |
7914 | return false; |
7915 | } else if (SemE == E->getResultExpr()) { |
7916 | if (!StmtVisitorTy::Visit(SemE)) |
7917 | return false; |
7918 | } else { |
7919 | if (!EvaluateIgnoredValue(Info, E: SemE)) |
7920 | return false; |
7921 | } |
7922 | } |
7923 | return true; |
7924 | } |
7925 | |
7926 | bool VisitCallExpr(const CallExpr *E) { |
7927 | APValue Result; |
7928 | if (!handleCallExpr(E, Result, ResultSlot: nullptr)) |
7929 | return false; |
7930 | return DerivedSuccess(V: Result, E); |
7931 | } |
7932 | |
7933 | bool handleCallExpr(const CallExpr *E, APValue &Result, |
7934 | const LValue *ResultSlot) { |
7935 | CallScopeRAII CallScope(Info); |
7936 | |
7937 | const Expr *Callee = E->getCallee()->IgnoreParens(); |
7938 | QualType CalleeType = Callee->getType(); |
7939 | |
7940 | const FunctionDecl *FD = nullptr; |
7941 | LValue *This = nullptr, ThisVal; |
7942 | auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs()); |
7943 | bool HasQualifier = false; |
7944 | |
7945 | CallRef Call; |
7946 | |
7947 | // Extract function decl and 'this' pointer from the callee. |
7948 | if (CalleeType->isSpecificBuiltinType(K: BuiltinType::BoundMember)) { |
7949 | const CXXMethodDecl *Member = nullptr; |
7950 | if (const MemberExpr *ME = dyn_cast<MemberExpr>(Val: Callee)) { |
7951 | // Explicit bound member calls, such as x.f() or p->g(); |
7952 | if (!EvaluateObjectArgument(Info, Object: ME->getBase(), This&: ThisVal)) |
7953 | return false; |
7954 | Member = dyn_cast<CXXMethodDecl>(Val: ME->getMemberDecl()); |
7955 | if (!Member) |
7956 | return Error(Callee); |
7957 | This = &ThisVal; |
7958 | HasQualifier = ME->hasQualifier(); |
7959 | } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Val: Callee)) { |
7960 | // Indirect bound member calls ('.*' or '->*'). |
7961 | const ValueDecl *D = |
7962 | HandleMemberPointerAccess(Info, BO: BE, LV&: ThisVal, IncludeMember: false); |
7963 | if (!D) |
7964 | return false; |
7965 | Member = dyn_cast<CXXMethodDecl>(Val: D); |
7966 | if (!Member) |
7967 | return Error(Callee); |
7968 | This = &ThisVal; |
7969 | } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Val: Callee)) { |
7970 | if (!Info.getLangOpts().CPlusPlus20) |
7971 | Info.CCEDiag(E: PDE, DiagId: diag::note_constexpr_pseudo_destructor); |
7972 | return EvaluateObjectArgument(Info, Object: PDE->getBase(), This&: ThisVal) && |
7973 | HandleDestruction(Info, E: PDE, This: ThisVal, ThisType: PDE->getDestroyedType()); |
7974 | } else |
7975 | return Error(Callee); |
7976 | FD = Member; |
7977 | } else if (CalleeType->isFunctionPointerType()) { |
7978 | LValue CalleeLV; |
7979 | if (!EvaluatePointer(E: Callee, Result&: CalleeLV, Info)) |
7980 | return false; |
7981 | |
7982 | if (!CalleeLV.getLValueOffset().isZero()) |
7983 | return Error(Callee); |
7984 | if (CalleeLV.isNullPointer()) { |
7985 | Info.FFDiag(E: Callee, DiagId: diag::note_constexpr_null_callee) |
7986 | << const_cast<Expr *>(Callee); |
7987 | return false; |
7988 | } |
7989 | FD = dyn_cast_or_null<FunctionDecl>( |
7990 | Val: CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>()); |
7991 | if (!FD) |
7992 | return Error(Callee); |
7993 | // Don't call function pointers which have been cast to some other type. |
7994 | // Per DR (no number yet), the caller and callee can differ in noexcept. |
7995 | if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec( |
7996 | T: CalleeType->getPointeeType(), U: FD->getType())) { |
7997 | return Error(E); |
7998 | } |
7999 | |
8000 | // For an (overloaded) assignment expression, evaluate the RHS before the |
8001 | // LHS. |
8002 | auto *OCE = dyn_cast<CXXOperatorCallExpr>(Val: E); |
8003 | if (OCE && OCE->isAssignmentOp()) { |
8004 | assert(Args.size() == 2 && "wrong number of arguments in assignment" ); |
8005 | Call = Info.CurrentCall->createCall(Callee: FD); |
8006 | bool HasThis = false; |
8007 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) |
8008 | HasThis = MD->isImplicitObjectMemberFunction(); |
8009 | if (!EvaluateArgs(Args: HasThis ? Args.slice(N: 1) : Args, Call, Info, Callee: FD, |
8010 | /*RightToLeft=*/true)) |
8011 | return false; |
8012 | } |
8013 | |
8014 | // Overloaded operator calls to member functions are represented as normal |
8015 | // calls with '*this' as the first argument. |
8016 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD); |
8017 | if (MD && |
8018 | (MD->isImplicitObjectMemberFunction() || (OCE && MD->isStatic()))) { |
8019 | // FIXME: When selecting an implicit conversion for an overloaded |
8020 | // operator delete, we sometimes try to evaluate calls to conversion |
8021 | // operators without a 'this' parameter! |
8022 | if (Args.empty()) |
8023 | return Error(E); |
8024 | |
8025 | if (!EvaluateObjectArgument(Info, Object: Args[0], This&: ThisVal)) |
8026 | return false; |
8027 | |
8028 | // If we are calling a static operator, the 'this' argument needs to be |
8029 | // ignored after being evaluated. |
8030 | if (MD->isInstance()) |
8031 | This = &ThisVal; |
8032 | |
8033 | // If this is syntactically a simple assignment using a trivial |
8034 | // assignment operator, start the lifetimes of union members as needed, |
8035 | // per C++20 [class.union]5. |
8036 | if (Info.getLangOpts().CPlusPlus20 && OCE && |
8037 | OCE->getOperator() == OO_Equal && MD->isTrivial() && |
8038 | !MaybeHandleUnionActiveMemberChange(Info, LHSExpr: Args[0], LHS: ThisVal)) |
8039 | return false; |
8040 | |
8041 | Args = Args.slice(N: 1); |
8042 | } else if (MD && MD->isLambdaStaticInvoker()) { |
8043 | // Map the static invoker for the lambda back to the call operator. |
8044 | // Conveniently, we don't have to slice out the 'this' argument (as is |
8045 | // being done for the non-static case), since a static member function |
8046 | // doesn't have an implicit argument passed in. |
8047 | const CXXRecordDecl *ClosureClass = MD->getParent(); |
8048 | assert( |
8049 | ClosureClass->captures_begin() == ClosureClass->captures_end() && |
8050 | "Number of captures must be zero for conversion to function-ptr" ); |
8051 | |
8052 | const CXXMethodDecl *LambdaCallOp = |
8053 | ClosureClass->getLambdaCallOperator(); |
8054 | |
8055 | // Set 'FD', the function that will be called below, to the call |
8056 | // operator. If the closure object represents a generic lambda, find |
8057 | // the corresponding specialization of the call operator. |
8058 | |
8059 | if (ClosureClass->isGenericLambda()) { |
8060 | assert(MD->isFunctionTemplateSpecialization() && |
8061 | "A generic lambda's static-invoker function must be a " |
8062 | "template specialization" ); |
8063 | const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); |
8064 | FunctionTemplateDecl *CallOpTemplate = |
8065 | LambdaCallOp->getDescribedFunctionTemplate(); |
8066 | void *InsertPos = nullptr; |
8067 | FunctionDecl *CorrespondingCallOpSpecialization = |
8068 | CallOpTemplate->findSpecialization(Args: TAL->asArray(), InsertPos); |
8069 | assert(CorrespondingCallOpSpecialization && |
8070 | "We must always have a function call operator specialization " |
8071 | "that corresponds to our static invoker specialization" ); |
8072 | assert(isa<CXXMethodDecl>(CorrespondingCallOpSpecialization)); |
8073 | FD = CorrespondingCallOpSpecialization; |
8074 | } else |
8075 | FD = LambdaCallOp; |
8076 | } else if (FD->isReplaceableGlobalAllocationFunction()) { |
8077 | if (FD->getDeclName().getCXXOverloadedOperator() == OO_New || |
8078 | FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { |
8079 | LValue Ptr; |
8080 | if (!HandleOperatorNewCall(Info, E, Result&: Ptr)) |
8081 | return false; |
8082 | Ptr.moveInto(V&: Result); |
8083 | return CallScope.destroy(); |
8084 | } else { |
8085 | return HandleOperatorDeleteCall(Info, E) && CallScope.destroy(); |
8086 | } |
8087 | } |
8088 | } else |
8089 | return Error(E); |
8090 | |
8091 | // Evaluate the arguments now if we've not already done so. |
8092 | if (!Call) { |
8093 | Call = Info.CurrentCall->createCall(Callee: FD); |
8094 | if (!EvaluateArgs(Args, Call, Info, Callee: FD)) |
8095 | return false; |
8096 | } |
8097 | |
8098 | SmallVector<QualType, 4> CovariantAdjustmentPath; |
8099 | if (This) { |
8100 | auto *NamedMember = dyn_cast<CXXMethodDecl>(Val: FD); |
8101 | if (NamedMember && NamedMember->isVirtual() && !HasQualifier) { |
8102 | // Perform virtual dispatch, if necessary. |
8103 | FD = HandleVirtualDispatch(Info, E, This&: *This, Found: NamedMember, |
8104 | CovariantAdjustmentPath); |
8105 | if (!FD) |
8106 | return false; |
8107 | } else if (NamedMember && NamedMember->isImplicitObjectMemberFunction()) { |
8108 | // Check that the 'this' pointer points to an object of the right type. |
8109 | // FIXME: If this is an assignment operator call, we may need to change |
8110 | // the active union member before we check this. |
8111 | if (!checkNonVirtualMemberCallThisPointer(Info, E, This: *This, NamedMember)) |
8112 | return false; |
8113 | } |
8114 | } |
8115 | |
8116 | // Destructor calls are different enough that they have their own codepath. |
8117 | if (auto *DD = dyn_cast<CXXDestructorDecl>(Val: FD)) { |
8118 | assert(This && "no 'this' pointer for destructor call" ); |
8119 | return HandleDestruction(Info, E, This: *This, |
8120 | ThisType: Info.Ctx.getRecordType(Decl: DD->getParent())) && |
8121 | CallScope.destroy(); |
8122 | } |
8123 | |
8124 | const FunctionDecl *Definition = nullptr; |
8125 | Stmt *Body = FD->getBody(Definition); |
8126 | |
8127 | if (!CheckConstexprFunction(Info, CallLoc: E->getExprLoc(), Declaration: FD, Definition, Body) || |
8128 | !HandleFunctionCall(CallLoc: E->getExprLoc(), Callee: Definition, This, E, Args, Call, |
8129 | Body, Info, Result, ResultSlot)) |
8130 | return false; |
8131 | |
8132 | if (!CovariantAdjustmentPath.empty() && |
8133 | !HandleCovariantReturnAdjustment(Info, E, Result, |
8134 | Path: CovariantAdjustmentPath)) |
8135 | return false; |
8136 | |
8137 | return CallScope.destroy(); |
8138 | } |
8139 | |
8140 | bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { |
8141 | return StmtVisitorTy::Visit(E->getInitializer()); |
8142 | } |
8143 | bool VisitInitListExpr(const InitListExpr *E) { |
8144 | if (E->getNumInits() == 0) |
8145 | return DerivedZeroInitialization(E); |
8146 | if (E->getNumInits() == 1) |
8147 | return StmtVisitorTy::Visit(E->getInit(Init: 0)); |
8148 | return Error(E); |
8149 | } |
8150 | bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { |
8151 | return DerivedZeroInitialization(E); |
8152 | } |
8153 | bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { |
8154 | return DerivedZeroInitialization(E); |
8155 | } |
8156 | bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { |
8157 | return DerivedZeroInitialization(E); |
8158 | } |
8159 | |
8160 | /// A member expression where the object is a prvalue is itself a prvalue. |
8161 | bool VisitMemberExpr(const MemberExpr *E) { |
8162 | assert(!Info.Ctx.getLangOpts().CPlusPlus11 && |
8163 | "missing temporary materialization conversion" ); |
8164 | assert(!E->isArrow() && "missing call to bound member function?" ); |
8165 | |
8166 | APValue Val; |
8167 | if (!Evaluate(Result&: Val, Info, E: E->getBase())) |
8168 | return false; |
8169 | |
8170 | QualType BaseTy = E->getBase()->getType(); |
8171 | |
8172 | const FieldDecl *FD = dyn_cast<FieldDecl>(Val: E->getMemberDecl()); |
8173 | if (!FD) return Error(E); |
8174 | assert(!FD->getType()->isReferenceType() && "prvalue reference?" ); |
8175 | assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == |
8176 | FD->getParent()->getCanonicalDecl() && "record / field mismatch" ); |
8177 | |
8178 | // Note: there is no lvalue base here. But this case should only ever |
8179 | // happen in C or in C++98, where we cannot be evaluating a constexpr |
8180 | // constructor, which is the only case the base matters. |
8181 | CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy); |
8182 | SubobjectDesignator Designator(BaseTy); |
8183 | Designator.addDeclUnchecked(D: FD); |
8184 | |
8185 | APValue Result; |
8186 | return extractSubobject(Info, E, Obj, Sub: Designator, Result) && |
8187 | DerivedSuccess(V: Result, E); |
8188 | } |
8189 | |
8190 | bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) { |
8191 | APValue Val; |
8192 | if (!Evaluate(Result&: Val, Info, E: E->getBase())) |
8193 | return false; |
8194 | |
8195 | if (Val.isVector()) { |
8196 | SmallVector<uint32_t, 4> Indices; |
8197 | E->getEncodedElementAccess(Elts&: Indices); |
8198 | if (Indices.size() == 1) { |
8199 | // Return scalar. |
8200 | return DerivedSuccess(V: Val.getVectorElt(I: Indices[0]), E); |
8201 | } else { |
8202 | // Construct new APValue vector. |
8203 | SmallVector<APValue, 4> Elts; |
8204 | for (unsigned I = 0; I < Indices.size(); ++I) { |
8205 | Elts.push_back(Elt: Val.getVectorElt(I: Indices[I])); |
8206 | } |
8207 | APValue VecResult(Elts.data(), Indices.size()); |
8208 | return DerivedSuccess(V: VecResult, E); |
8209 | } |
8210 | } |
8211 | |
8212 | return false; |
8213 | } |
8214 | |
8215 | bool VisitCastExpr(const CastExpr *E) { |
8216 | switch (E->getCastKind()) { |
8217 | default: |
8218 | break; |
8219 | |
8220 | case CK_AtomicToNonAtomic: { |
8221 | APValue AtomicVal; |
8222 | // This does not need to be done in place even for class/array types: |
8223 | // atomic-to-non-atomic conversion implies copying the object |
8224 | // representation. |
8225 | if (!Evaluate(Result&: AtomicVal, Info, E: E->getSubExpr())) |
8226 | return false; |
8227 | return DerivedSuccess(V: AtomicVal, E); |
8228 | } |
8229 | |
8230 | case CK_NoOp: |
8231 | case CK_UserDefinedConversion: |
8232 | return StmtVisitorTy::Visit(E->getSubExpr()); |
8233 | |
8234 | case CK_LValueToRValue: { |
8235 | LValue LVal; |
8236 | if (!EvaluateLValue(E: E->getSubExpr(), Result&: LVal, Info)) |
8237 | return false; |
8238 | APValue RVal; |
8239 | // Note, we use the subexpression's type in order to retain cv-qualifiers. |
8240 | if (!handleLValueToRValueConversion(Info, Conv: E, Type: E->getSubExpr()->getType(), |
8241 | LVal, RVal)) |
8242 | return false; |
8243 | return DerivedSuccess(V: RVal, E); |
8244 | } |
8245 | case CK_LValueToRValueBitCast: { |
8246 | APValue DestValue, SourceValue; |
8247 | if (!Evaluate(Result&: SourceValue, Info, E: E->getSubExpr())) |
8248 | return false; |
8249 | if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, BCE: E)) |
8250 | return false; |
8251 | return DerivedSuccess(V: DestValue, E); |
8252 | } |
8253 | |
8254 | case CK_AddressSpaceConversion: { |
8255 | APValue Value; |
8256 | if (!Evaluate(Result&: Value, Info, E: E->getSubExpr())) |
8257 | return false; |
8258 | return DerivedSuccess(V: Value, E); |
8259 | } |
8260 | } |
8261 | |
8262 | return Error(E); |
8263 | } |
8264 | |
8265 | bool VisitUnaryPostInc(const UnaryOperator *UO) { |
8266 | return VisitUnaryPostIncDec(UO); |
8267 | } |
8268 | bool VisitUnaryPostDec(const UnaryOperator *UO) { |
8269 | return VisitUnaryPostIncDec(UO); |
8270 | } |
8271 | bool VisitUnaryPostIncDec(const UnaryOperator *UO) { |
8272 | if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) |
8273 | return Error(UO); |
8274 | |
8275 | LValue LVal; |
8276 | if (!EvaluateLValue(E: UO->getSubExpr(), Result&: LVal, Info)) |
8277 | return false; |
8278 | APValue RVal; |
8279 | if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(), |
8280 | UO->isIncrementOp(), &RVal)) |
8281 | return false; |
8282 | return DerivedSuccess(V: RVal, E: UO); |
8283 | } |
8284 | |
8285 | bool VisitStmtExpr(const StmtExpr *E) { |
8286 | // We will have checked the full-expressions inside the statement expression |
8287 | // when they were completed, and don't need to check them again now. |
8288 | llvm::SaveAndRestore NotCheckingForUB(Info.CheckingForUndefinedBehavior, |
8289 | false); |
8290 | |
8291 | const CompoundStmt *CS = E->getSubStmt(); |
8292 | if (CS->body_empty()) |
8293 | return true; |
8294 | |
8295 | BlockScopeRAII Scope(Info); |
8296 | for (CompoundStmt::const_body_iterator BI = CS->body_begin(), |
8297 | BE = CS->body_end(); |
8298 | /**/; ++BI) { |
8299 | if (BI + 1 == BE) { |
8300 | const Expr *FinalExpr = dyn_cast<Expr>(Val: *BI); |
8301 | if (!FinalExpr) { |
8302 | Info.FFDiag(Loc: (*BI)->getBeginLoc(), |
8303 | DiagId: diag::note_constexpr_stmt_expr_unsupported); |
8304 | return false; |
8305 | } |
8306 | return this->Visit(FinalExpr) && Scope.destroy(); |
8307 | } |
8308 | |
8309 | APValue ReturnValue; |
8310 | StmtResult Result = { .Value: ReturnValue, .Slot: nullptr }; |
8311 | EvalStmtResult ESR = EvaluateStmt(Result, Info, S: *BI); |
8312 | if (ESR != ESR_Succeeded) { |
8313 | // FIXME: If the statement-expression terminated due to 'return', |
8314 | // 'break', or 'continue', it would be nice to propagate that to |
8315 | // the outer statement evaluation rather than bailing out. |
8316 | if (ESR != ESR_Failed) |
8317 | Info.FFDiag(Loc: (*BI)->getBeginLoc(), |
8318 | DiagId: diag::note_constexpr_stmt_expr_unsupported); |
8319 | return false; |
8320 | } |
8321 | } |
8322 | |
8323 | llvm_unreachable("Return from function from the loop above." ); |
8324 | } |
8325 | |
8326 | bool VisitPackIndexingExpr(const PackIndexingExpr *E) { |
8327 | return StmtVisitorTy::Visit(E->getSelectedExpr()); |
8328 | } |
8329 | |
8330 | /// Visit a value which is evaluated, but whose value is ignored. |
8331 | void VisitIgnoredValue(const Expr *E) { |
8332 | EvaluateIgnoredValue(Info, E); |
8333 | } |
8334 | |
8335 | /// Potentially visit a MemberExpr's base expression. |
8336 | void VisitIgnoredBaseExpression(const Expr *E) { |
8337 | // While MSVC doesn't evaluate the base expression, it does diagnose the |
8338 | // presence of side-effecting behavior. |
8339 | if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Ctx: Info.Ctx)) |
8340 | return; |
8341 | VisitIgnoredValue(E); |
8342 | } |
8343 | }; |
8344 | |
8345 | } // namespace |
8346 | |
8347 | //===----------------------------------------------------------------------===// |
8348 | // Common base class for lvalue and temporary evaluation. |
8349 | //===----------------------------------------------------------------------===// |
8350 | namespace { |
8351 | template<class Derived> |
8352 | class LValueExprEvaluatorBase |
8353 | : public ExprEvaluatorBase<Derived> { |
8354 | protected: |
8355 | LValue &Result; |
8356 | bool InvalidBaseOK; |
8357 | typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy; |
8358 | typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy; |
8359 | |
8360 | bool Success(APValue::LValueBase B) { |
8361 | Result.set(B); |
8362 | return true; |
8363 | } |
8364 | |
8365 | bool evaluatePointer(const Expr *E, LValue &Result) { |
8366 | return EvaluatePointer(E, Result, this->Info, InvalidBaseOK); |
8367 | } |
8368 | |
8369 | public: |
8370 | LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) |
8371 | : ExprEvaluatorBaseTy(Info), Result(Result), |
8372 | InvalidBaseOK(InvalidBaseOK) {} |
8373 | |
8374 | bool Success(const APValue &V, const Expr *E) { |
8375 | Result.setFrom(Ctx&: this->Info.Ctx, V); |
8376 | return true; |
8377 | } |
8378 | |
8379 | bool VisitMemberExpr(const MemberExpr *E) { |
8380 | // Handle non-static data members. |
8381 | QualType BaseTy; |
8382 | bool EvalOK; |
8383 | if (E->isArrow()) { |
8384 | EvalOK = evaluatePointer(E: E->getBase(), Result); |
8385 | BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType(); |
8386 | } else if (E->getBase()->isPRValue()) { |
8387 | assert(E->getBase()->getType()->isRecordType()); |
8388 | EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info); |
8389 | BaseTy = E->getBase()->getType(); |
8390 | } else { |
8391 | EvalOK = this->Visit(E->getBase()); |
8392 | BaseTy = E->getBase()->getType(); |
8393 | } |
8394 | if (!EvalOK) { |
8395 | if (!InvalidBaseOK) |
8396 | return false; |
8397 | Result.setInvalid(B: E); |
8398 | return true; |
8399 | } |
8400 | |
8401 | const ValueDecl *MD = E->getMemberDecl(); |
8402 | if (const FieldDecl *FD = dyn_cast<FieldDecl>(Val: E->getMemberDecl())) { |
8403 | assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == |
8404 | FD->getParent()->getCanonicalDecl() && "record / field mismatch" ); |
8405 | (void)BaseTy; |
8406 | if (!HandleLValueMember(this->Info, E, Result, FD)) |
8407 | return false; |
8408 | } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(Val: MD)) { |
8409 | if (!HandleLValueIndirectMember(this->Info, E, Result, IFD)) |
8410 | return false; |
8411 | } else |
8412 | return this->Error(E); |
8413 | |
8414 | if (MD->getType()->isReferenceType()) { |
8415 | APValue RefValue; |
8416 | if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result, |
8417 | RefValue)) |
8418 | return false; |
8419 | return Success(RefValue, E); |
8420 | } |
8421 | return true; |
8422 | } |
8423 | |
8424 | bool VisitBinaryOperator(const BinaryOperator *E) { |
8425 | switch (E->getOpcode()) { |
8426 | default: |
8427 | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
8428 | |
8429 | case BO_PtrMemD: |
8430 | case BO_PtrMemI: |
8431 | return HandleMemberPointerAccess(this->Info, E, Result); |
8432 | } |
8433 | } |
8434 | |
8435 | bool VisitCastExpr(const CastExpr *E) { |
8436 | switch (E->getCastKind()) { |
8437 | default: |
8438 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
8439 | |
8440 | case CK_DerivedToBase: |
8441 | case CK_UncheckedDerivedToBase: |
8442 | if (!this->Visit(E->getSubExpr())) |
8443 | return false; |
8444 | |
8445 | // Now figure out the necessary offset to add to the base LV to get from |
8446 | // the derived class to the base class. |
8447 | return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(), |
8448 | Result); |
8449 | } |
8450 | } |
8451 | }; |
8452 | } |
8453 | |
8454 | //===----------------------------------------------------------------------===// |
8455 | // LValue Evaluation |
8456 | // |
8457 | // This is used for evaluating lvalues (in C and C++), xvalues (in C++11), |
8458 | // function designators (in C), decl references to void objects (in C), and |
8459 | // temporaries (if building with -Wno-address-of-temporary). |
8460 | // |
8461 | // LValue evaluation produces values comprising a base expression of one of the |
8462 | // following types: |
8463 | // - Declarations |
8464 | // * VarDecl |
8465 | // * FunctionDecl |
8466 | // - Literals |
8467 | // * CompoundLiteralExpr in C (and in global scope in C++) |
8468 | // * StringLiteral |
8469 | // * PredefinedExpr |
8470 | // * ObjCStringLiteralExpr |
8471 | // * ObjCEncodeExpr |
8472 | // * AddrLabelExpr |
8473 | // * BlockExpr |
8474 | // * CallExpr for a MakeStringConstant builtin |
8475 | // - typeid(T) expressions, as TypeInfoLValues |
8476 | // - Locals and temporaries |
8477 | // * MaterializeTemporaryExpr |
8478 | // * Any Expr, with a CallIndex indicating the function in which the temporary |
8479 | // was evaluated, for cases where the MaterializeTemporaryExpr is missing |
8480 | // from the AST (FIXME). |
8481 | // * A MaterializeTemporaryExpr that has static storage duration, with no |
8482 | // CallIndex, for a lifetime-extended temporary. |
8483 | // * The ConstantExpr that is currently being evaluated during evaluation of an |
8484 | // immediate invocation. |
8485 | // plus an offset in bytes. |
8486 | //===----------------------------------------------------------------------===// |
8487 | namespace { |
8488 | class LValueExprEvaluator |
8489 | : public LValueExprEvaluatorBase<LValueExprEvaluator> { |
8490 | public: |
8491 | LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) : |
8492 | LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {} |
8493 | |
8494 | bool VisitVarDecl(const Expr *E, const VarDecl *VD); |
8495 | bool VisitUnaryPreIncDec(const UnaryOperator *UO); |
8496 | |
8497 | bool VisitCallExpr(const CallExpr *E); |
8498 | bool VisitDeclRefExpr(const DeclRefExpr *E); |
8499 | bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(B: E); } |
8500 | bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); |
8501 | bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); |
8502 | bool VisitMemberExpr(const MemberExpr *E); |
8503 | bool VisitStringLiteral(const StringLiteral *E) { return Success(B: E); } |
8504 | bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(B: E); } |
8505 | bool VisitCXXTypeidExpr(const CXXTypeidExpr *E); |
8506 | bool VisitCXXUuidofExpr(const CXXUuidofExpr *E); |
8507 | bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E); |
8508 | bool VisitUnaryDeref(const UnaryOperator *E); |
8509 | bool VisitUnaryReal(const UnaryOperator *E); |
8510 | bool VisitUnaryImag(const UnaryOperator *E); |
8511 | bool VisitUnaryPreInc(const UnaryOperator *UO) { |
8512 | return VisitUnaryPreIncDec(UO); |
8513 | } |
8514 | bool VisitUnaryPreDec(const UnaryOperator *UO) { |
8515 | return VisitUnaryPreIncDec(UO); |
8516 | } |
8517 | bool VisitBinAssign(const BinaryOperator *BO); |
8518 | bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO); |
8519 | |
8520 | bool VisitCastExpr(const CastExpr *E) { |
8521 | switch (E->getCastKind()) { |
8522 | default: |
8523 | return LValueExprEvaluatorBaseTy::VisitCastExpr(E); |
8524 | |
8525 | case CK_LValueBitCast: |
8526 | this->CCEDiag(E, D: diag::note_constexpr_invalid_cast) |
8527 | << 2 << Info.Ctx.getLangOpts().CPlusPlus; |
8528 | if (!Visit(S: E->getSubExpr())) |
8529 | return false; |
8530 | Result.Designator.setInvalid(); |
8531 | return true; |
8532 | |
8533 | case CK_BaseToDerived: |
8534 | if (!Visit(S: E->getSubExpr())) |
8535 | return false; |
8536 | return HandleBaseToDerivedCast(Info, E, Result); |
8537 | |
8538 | case CK_Dynamic: |
8539 | if (!Visit(S: E->getSubExpr())) |
8540 | return false; |
8541 | return HandleDynamicCast(Info, E: cast<ExplicitCastExpr>(Val: E), Ptr&: Result); |
8542 | } |
8543 | } |
8544 | }; |
8545 | } // end anonymous namespace |
8546 | |
8547 | /// Get an lvalue to a field of a lambda's closure type. |
8548 | static bool HandleLambdaCapture(EvalInfo &Info, const Expr *E, LValue &Result, |
8549 | const CXXMethodDecl *MD, const FieldDecl *FD, |
8550 | bool LValueToRValueConversion) { |
8551 | // Static lambda function call operators can't have captures. We already |
8552 | // diagnosed this, so bail out here. |
8553 | if (MD->isStatic()) { |
8554 | assert(Info.CurrentCall->This == nullptr && |
8555 | "This should not be set for a static call operator" ); |
8556 | return false; |
8557 | } |
8558 | |
8559 | // Start with 'Result' referring to the complete closure object... |
8560 | if (MD->isExplicitObjectMemberFunction()) { |
8561 | // Self may be passed by reference or by value. |
8562 | const ParmVarDecl *Self = MD->getParamDecl(i: 0); |
8563 | if (Self->getType()->isReferenceType()) { |
8564 | APValue *RefValue = Info.getParamSlot(Call: Info.CurrentCall->Arguments, PVD: Self); |
8565 | Result.setFrom(Ctx&: Info.Ctx, V: *RefValue); |
8566 | } else { |
8567 | const ParmVarDecl *VD = Info.CurrentCall->Arguments.getOrigParam(PVD: Self); |
8568 | CallStackFrame *Frame = |
8569 | Info.getCallFrameAndDepth(CallIndex: Info.CurrentCall->Arguments.CallIndex) |
8570 | .first; |
8571 | unsigned Version = Info.CurrentCall->Arguments.Version; |
8572 | Result.set(B: {VD, Frame->Index, Version}); |
8573 | } |
8574 | } else |
8575 | Result = *Info.CurrentCall->This; |
8576 | |
8577 | // ... then update it to refer to the field of the closure object |
8578 | // that represents the capture. |
8579 | if (!HandleLValueMember(Info, E, LVal&: Result, FD)) |
8580 | return false; |
8581 | |
8582 | // And if the field is of reference type (or if we captured '*this' by |
8583 | // reference), update 'Result' to refer to what |
8584 | // the field refers to. |
8585 | if (LValueToRValueConversion) { |
8586 | APValue RVal; |
8587 | if (!handleLValueToRValueConversion(Info, Conv: E, Type: FD->getType(), LVal: Result, RVal)) |
8588 | return false; |
8589 | Result.setFrom(Ctx&: Info.Ctx, V: RVal); |
8590 | } |
8591 | return true; |
8592 | } |
8593 | |
8594 | /// Evaluate an expression as an lvalue. This can be legitimately called on |
8595 | /// expressions which are not glvalues, in three cases: |
8596 | /// * function designators in C, and |
8597 | /// * "extern void" objects |
8598 | /// * @selector() expressions in Objective-C |
8599 | static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, |
8600 | bool InvalidBaseOK) { |
8601 | assert(!E->isValueDependent()); |
8602 | assert(E->isGLValue() || E->getType()->isFunctionType() || |
8603 | E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E->IgnoreParens())); |
8604 | return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(S: E); |
8605 | } |
8606 | |
8607 | bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { |
8608 | const NamedDecl *D = E->getDecl(); |
8609 | if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl, |
8610 | UnnamedGlobalConstantDecl>(Val: D)) |
8611 | return Success(B: cast<ValueDecl>(Val: D)); |
8612 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) |
8613 | return VisitVarDecl(E, VD); |
8614 | if (const BindingDecl *BD = dyn_cast<BindingDecl>(Val: D)) |
8615 | return Visit(S: BD->getBinding()); |
8616 | return Error(E); |
8617 | } |
8618 | |
8619 | |
8620 | bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) { |
8621 | |
8622 | // If we are within a lambda's call operator, check whether the 'VD' referred |
8623 | // to within 'E' actually represents a lambda-capture that maps to a |
8624 | // data-member/field within the closure object, and if so, evaluate to the |
8625 | // field or what the field refers to. |
8626 | if (Info.CurrentCall && isLambdaCallOperator(DC: Info.CurrentCall->Callee) && |
8627 | isa<DeclRefExpr>(Val: E) && |
8628 | cast<DeclRefExpr>(Val: E)->refersToEnclosingVariableOrCapture()) { |
8629 | // We don't always have a complete capture-map when checking or inferring if |
8630 | // the function call operator meets the requirements of a constexpr function |
8631 | // - but we don't need to evaluate the captures to determine constexprness |
8632 | // (dcl.constexpr C++17). |
8633 | if (Info.checkingPotentialConstantExpression()) |
8634 | return false; |
8635 | |
8636 | if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(Val: VD)) { |
8637 | const auto *MD = cast<CXXMethodDecl>(Val: Info.CurrentCall->Callee); |
8638 | return HandleLambdaCapture(Info, E, Result, MD, FD, |
8639 | LValueToRValueConversion: FD->getType()->isReferenceType()); |
8640 | } |
8641 | } |
8642 | |
8643 | CallStackFrame *Frame = nullptr; |
8644 | unsigned Version = 0; |
8645 | if (VD->hasLocalStorage()) { |
8646 | // Only if a local variable was declared in the function currently being |
8647 | // evaluated, do we expect to be able to find its value in the current |
8648 | // frame. (Otherwise it was likely declared in an enclosing context and |
8649 | // could either have a valid evaluatable value (for e.g. a constexpr |
8650 | // variable) or be ill-formed (and trigger an appropriate evaluation |
8651 | // diagnostic)). |
8652 | CallStackFrame *CurrFrame = Info.CurrentCall; |
8653 | if (CurrFrame->Callee && CurrFrame->Callee->Equals(DC: VD->getDeclContext())) { |
8654 | // Function parameters are stored in some caller's frame. (Usually the |
8655 | // immediate caller, but for an inherited constructor they may be more |
8656 | // distant.) |
8657 | if (auto *PVD = dyn_cast<ParmVarDecl>(Val: VD)) { |
8658 | if (CurrFrame->Arguments) { |
8659 | VD = CurrFrame->Arguments.getOrigParam(PVD); |
8660 | Frame = |
8661 | Info.getCallFrameAndDepth(CallIndex: CurrFrame->Arguments.CallIndex).first; |
8662 | Version = CurrFrame->Arguments.Version; |
8663 | } |
8664 | } else { |
8665 | Frame = CurrFrame; |
8666 | Version = CurrFrame->getCurrentTemporaryVersion(Key: VD); |
8667 | } |
8668 | } |
8669 | } |
8670 | |
8671 | if (!VD->getType()->isReferenceType()) { |
8672 | if (Frame) { |
8673 | Result.set(B: {VD, Frame->Index, Version}); |
8674 | return true; |
8675 | } |
8676 | return Success(B: VD); |
8677 | } |
8678 | |
8679 | if (!Info.getLangOpts().CPlusPlus11) { |
8680 | Info.CCEDiag(E, DiagId: diag::note_constexpr_ltor_non_integral, ExtraNotes: 1) |
8681 | << VD << VD->getType(); |
8682 | Info.Note(Loc: VD->getLocation(), DiagId: diag::note_declared_at); |
8683 | } |
8684 | |
8685 | APValue *V; |
8686 | if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, Result&: V)) |
8687 | return false; |
8688 | if (!V->hasValue()) { |
8689 | // FIXME: Is it possible for V to be indeterminate here? If so, we should |
8690 | // adjust the diagnostic to say that. |
8691 | if (!Info.checkingPotentialConstantExpression()) |
8692 | Info.FFDiag(E, DiagId: diag::note_constexpr_use_uninit_reference); |
8693 | return false; |
8694 | } |
8695 | return Success(V: *V, E); |
8696 | } |
8697 | |
8698 | bool LValueExprEvaluator::VisitCallExpr(const CallExpr *E) { |
8699 | if (!IsConstantEvaluatedBuiltinCall(E)) |
8700 | return ExprEvaluatorBaseTy::VisitCallExpr(E); |
8701 | |
8702 | switch (E->getBuiltinCallee()) { |
8703 | default: |
8704 | return false; |
8705 | case Builtin::BIas_const: |
8706 | case Builtin::BIforward: |
8707 | case Builtin::BIforward_like: |
8708 | case Builtin::BImove: |
8709 | case Builtin::BImove_if_noexcept: |
8710 | if (cast<FunctionDecl>(Val: E->getCalleeDecl())->isConstexpr()) |
8711 | return Visit(S: E->getArg(Arg: 0)); |
8712 | break; |
8713 | } |
8714 | |
8715 | return ExprEvaluatorBaseTy::VisitCallExpr(E); |
8716 | } |
8717 | |
8718 | bool LValueExprEvaluator::VisitMaterializeTemporaryExpr( |
8719 | const MaterializeTemporaryExpr *E) { |
8720 | // Walk through the expression to find the materialized temporary itself. |
8721 | SmallVector<const Expr *, 2> CommaLHSs; |
8722 | SmallVector<SubobjectAdjustment, 2> Adjustments; |
8723 | const Expr *Inner = |
8724 | E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHS&: CommaLHSs, Adjustments); |
8725 | |
8726 | // If we passed any comma operators, evaluate their LHSs. |
8727 | for (const Expr *E : CommaLHSs) |
8728 | if (!EvaluateIgnoredValue(Info, E)) |
8729 | return false; |
8730 | |
8731 | // A materialized temporary with static storage duration can appear within the |
8732 | // result of a constant expression evaluation, so we need to preserve its |
8733 | // value for use outside this evaluation. |
8734 | APValue *Value; |
8735 | if (E->getStorageDuration() == SD_Static) { |
8736 | if (Info.EvalMode == EvalInfo::EM_ConstantFold) |
8737 | return false; |
8738 | // FIXME: What about SD_Thread? |
8739 | Value = E->getOrCreateValue(MayCreate: true); |
8740 | *Value = APValue(); |
8741 | Result.set(B: E); |
8742 | } else { |
8743 | Value = &Info.CurrentCall->createTemporary( |
8744 | Key: E, T: Inner->getType(), |
8745 | Scope: E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression |
8746 | : ScopeKind::Block, |
8747 | LV&: Result); |
8748 | } |
8749 | |
8750 | QualType Type = Inner->getType(); |
8751 | |
8752 | // Materialize the temporary itself. |
8753 | if (!EvaluateInPlace(Result&: *Value, Info, This: Result, E: Inner)) { |
8754 | *Value = APValue(); |
8755 | return false; |
8756 | } |
8757 | |
8758 | // Adjust our lvalue to refer to the desired subobject. |
8759 | for (unsigned I = Adjustments.size(); I != 0; /**/) { |
8760 | --I; |
8761 | switch (Adjustments[I].Kind) { |
8762 | case SubobjectAdjustment::DerivedToBaseAdjustment: |
8763 | if (!HandleLValueBasePath(Info, E: Adjustments[I].DerivedToBase.BasePath, |
8764 | Type, Result)) |
8765 | return false; |
8766 | Type = Adjustments[I].DerivedToBase.BasePath->getType(); |
8767 | break; |
8768 | |
8769 | case SubobjectAdjustment::FieldAdjustment: |
8770 | if (!HandleLValueMember(Info, E, LVal&: Result, FD: Adjustments[I].Field)) |
8771 | return false; |
8772 | Type = Adjustments[I].Field->getType(); |
8773 | break; |
8774 | |
8775 | case SubobjectAdjustment::MemberPointerAdjustment: |
8776 | if (!HandleMemberPointerAccess(Info&: this->Info, LVType: Type, LV&: Result, |
8777 | RHS: Adjustments[I].Ptr.RHS)) |
8778 | return false; |
8779 | Type = Adjustments[I].Ptr.MPT->getPointeeType(); |
8780 | break; |
8781 | } |
8782 | } |
8783 | |
8784 | return true; |
8785 | } |
8786 | |
8787 | bool |
8788 | LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { |
8789 | assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) && |
8790 | "lvalue compound literal in c++?" ); |
8791 | // Defer visiting the literal until the lvalue-to-rvalue conversion. We can |
8792 | // only see this when folding in C, so there's no standard to follow here. |
8793 | return Success(B: E); |
8794 | } |
8795 | |
8796 | bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { |
8797 | TypeInfoLValue TypeInfo; |
8798 | |
8799 | if (!E->isPotentiallyEvaluated()) { |
8800 | if (E->isTypeOperand()) |
8801 | TypeInfo = TypeInfoLValue(E->getTypeOperand(Context&: Info.Ctx).getTypePtr()); |
8802 | else |
8803 | TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr()); |
8804 | } else { |
8805 | if (!Info.Ctx.getLangOpts().CPlusPlus20) { |
8806 | Info.CCEDiag(E, DiagId: diag::note_constexpr_typeid_polymorphic) |
8807 | << E->getExprOperand()->getType() |
8808 | << E->getExprOperand()->getSourceRange(); |
8809 | } |
8810 | |
8811 | if (!Visit(S: E->getExprOperand())) |
8812 | return false; |
8813 | |
8814 | std::optional<DynamicType> DynType = |
8815 | ComputeDynamicType(Info, E, This&: Result, AK: AK_TypeId); |
8816 | if (!DynType) |
8817 | return false; |
8818 | |
8819 | TypeInfo = |
8820 | TypeInfoLValue(Info.Ctx.getRecordType(Decl: DynType->Type).getTypePtr()); |
8821 | } |
8822 | |
8823 | return Success(B: APValue::LValueBase::getTypeInfo(LV: TypeInfo, TypeInfo: E->getType())); |
8824 | } |
8825 | |
8826 | bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { |
8827 | return Success(B: E->getGuidDecl()); |
8828 | } |
8829 | |
8830 | bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) { |
8831 | // Handle static data members. |
8832 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: E->getMemberDecl())) { |
8833 | VisitIgnoredBaseExpression(E: E->getBase()); |
8834 | return VisitVarDecl(E, VD); |
8835 | } |
8836 | |
8837 | // Handle static member functions. |
8838 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: E->getMemberDecl())) { |
8839 | if (MD->isStatic()) { |
8840 | VisitIgnoredBaseExpression(E: E->getBase()); |
8841 | return Success(B: MD); |
8842 | } |
8843 | } |
8844 | |
8845 | // Handle non-static data members. |
8846 | return LValueExprEvaluatorBaseTy::VisitMemberExpr(E); |
8847 | } |
8848 | |
8849 | bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { |
8850 | // FIXME: Deal with vectors as array subscript bases. |
8851 | if (E->getBase()->getType()->isVectorType() || |
8852 | E->getBase()->getType()->isSveVLSBuiltinType()) |
8853 | return Error(E); |
8854 | |
8855 | APSInt Index; |
8856 | bool Success = true; |
8857 | |
8858 | // C++17's rules require us to evaluate the LHS first, regardless of which |
8859 | // side is the base. |
8860 | for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) { |
8861 | if (SubExpr == E->getBase() ? !evaluatePointer(E: SubExpr, Result) |
8862 | : !EvaluateInteger(E: SubExpr, Result&: Index, Info)) { |
8863 | if (!Info.noteFailure()) |
8864 | return false; |
8865 | Success = false; |
8866 | } |
8867 | } |
8868 | |
8869 | return Success && |
8870 | HandleLValueArrayAdjustment(Info, E, LVal&: Result, EltTy: E->getType(), Adjustment: Index); |
8871 | } |
8872 | |
8873 | bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) { |
8874 | return evaluatePointer(E: E->getSubExpr(), Result); |
8875 | } |
8876 | |
8877 | bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { |
8878 | if (!Visit(S: E->getSubExpr())) |
8879 | return false; |
8880 | // __real is a no-op on scalar lvalues. |
8881 | if (E->getSubExpr()->getType()->isAnyComplexType()) |
8882 | HandleLValueComplexElement(Info, E, LVal&: Result, EltTy: E->getType(), Imag: false); |
8883 | return true; |
8884 | } |
8885 | |
8886 | bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
8887 | assert(E->getSubExpr()->getType()->isAnyComplexType() && |
8888 | "lvalue __imag__ on scalar?" ); |
8889 | if (!Visit(S: E->getSubExpr())) |
8890 | return false; |
8891 | HandleLValueComplexElement(Info, E, LVal&: Result, EltTy: E->getType(), Imag: true); |
8892 | return true; |
8893 | } |
8894 | |
8895 | bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) { |
8896 | if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) |
8897 | return Error(E: UO); |
8898 | |
8899 | if (!this->Visit(S: UO->getSubExpr())) |
8900 | return false; |
8901 | |
8902 | return handleIncDec( |
8903 | Info&: this->Info, E: UO, LVal: Result, LValType: UO->getSubExpr()->getType(), |
8904 | IsIncrement: UO->isIncrementOp(), Old: nullptr); |
8905 | } |
8906 | |
8907 | bool LValueExprEvaluator::VisitCompoundAssignOperator( |
8908 | const CompoundAssignOperator *CAO) { |
8909 | if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) |
8910 | return Error(E: CAO); |
8911 | |
8912 | bool Success = true; |
8913 | |
8914 | // C++17 onwards require that we evaluate the RHS first. |
8915 | APValue RHS; |
8916 | if (!Evaluate(Result&: RHS, Info&: this->Info, E: CAO->getRHS())) { |
8917 | if (!Info.noteFailure()) |
8918 | return false; |
8919 | Success = false; |
8920 | } |
8921 | |
8922 | // The overall lvalue result is the result of evaluating the LHS. |
8923 | if (!this->Visit(S: CAO->getLHS()) || !Success) |
8924 | return false; |
8925 | |
8926 | return handleCompoundAssignment( |
8927 | Info&: this->Info, E: CAO, |
8928 | LVal: Result, LValType: CAO->getLHS()->getType(), PromotedLValType: CAO->getComputationLHSType(), |
8929 | Opcode: CAO->getOpForCompoundAssignment(Opc: CAO->getOpcode()), RVal: RHS); |
8930 | } |
8931 | |
8932 | bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) { |
8933 | if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) |
8934 | return Error(E); |
8935 | |
8936 | bool Success = true; |
8937 | |
8938 | // C++17 onwards require that we evaluate the RHS first. |
8939 | APValue NewVal; |
8940 | if (!Evaluate(Result&: NewVal, Info&: this->Info, E: E->getRHS())) { |
8941 | if (!Info.noteFailure()) |
8942 | return false; |
8943 | Success = false; |
8944 | } |
8945 | |
8946 | if (!this->Visit(S: E->getLHS()) || !Success) |
8947 | return false; |
8948 | |
8949 | if (Info.getLangOpts().CPlusPlus20 && |
8950 | !MaybeHandleUnionActiveMemberChange(Info, LHSExpr: E->getLHS(), LHS: Result)) |
8951 | return false; |
8952 | |
8953 | return handleAssignment(Info&: this->Info, E, LVal: Result, LValType: E->getLHS()->getType(), |
8954 | Val&: NewVal); |
8955 | } |
8956 | |
8957 | //===----------------------------------------------------------------------===// |
8958 | // Pointer Evaluation |
8959 | //===----------------------------------------------------------------------===// |
8960 | |
8961 | /// Attempts to compute the number of bytes available at the pointer |
8962 | /// returned by a function with the alloc_size attribute. Returns true if we |
8963 | /// were successful. Places an unsigned number into `Result`. |
8964 | /// |
8965 | /// This expects the given CallExpr to be a call to a function with an |
8966 | /// alloc_size attribute. |
8967 | static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, |
8968 | const CallExpr *Call, |
8969 | llvm::APInt &Result) { |
8970 | const AllocSizeAttr *AllocSize = getAllocSizeAttr(CE: Call); |
8971 | |
8972 | assert(AllocSize && AllocSize->getElemSizeParam().isValid()); |
8973 | unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex(); |
8974 | unsigned BitsInSizeT = Ctx.getTypeSize(T: Ctx.getSizeType()); |
8975 | if (Call->getNumArgs() <= SizeArgNo) |
8976 | return false; |
8977 | |
8978 | auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) { |
8979 | Expr::EvalResult ExprResult; |
8980 | if (!E->EvaluateAsInt(Result&: ExprResult, Ctx, AllowSideEffects: Expr::SE_AllowSideEffects)) |
8981 | return false; |
8982 | Into = ExprResult.Val.getInt(); |
8983 | if (Into.isNegative() || !Into.isIntN(N: BitsInSizeT)) |
8984 | return false; |
8985 | Into = Into.zext(width: BitsInSizeT); |
8986 | return true; |
8987 | }; |
8988 | |
8989 | APSInt SizeOfElem; |
8990 | if (!EvaluateAsSizeT(Call->getArg(Arg: SizeArgNo), SizeOfElem)) |
8991 | return false; |
8992 | |
8993 | if (!AllocSize->getNumElemsParam().isValid()) { |
8994 | Result = std::move(SizeOfElem); |
8995 | return true; |
8996 | } |
8997 | |
8998 | APSInt NumberOfElems; |
8999 | unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex(); |
9000 | if (!EvaluateAsSizeT(Call->getArg(Arg: NumArgNo), NumberOfElems)) |
9001 | return false; |
9002 | |
9003 | bool Overflow; |
9004 | llvm::APInt BytesAvailable = SizeOfElem.umul_ov(RHS: NumberOfElems, Overflow); |
9005 | if (Overflow) |
9006 | return false; |
9007 | |
9008 | Result = std::move(BytesAvailable); |
9009 | return true; |
9010 | } |
9011 | |
9012 | /// Convenience function. LVal's base must be a call to an alloc_size |
9013 | /// function. |
9014 | static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, |
9015 | const LValue &LVal, |
9016 | llvm::APInt &Result) { |
9017 | assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) && |
9018 | "Can't get the size of a non alloc_size function" ); |
9019 | const auto *Base = LVal.getLValueBase().get<const Expr *>(); |
9020 | const CallExpr *CE = tryUnwrapAllocSizeCall(E: Base); |
9021 | return getBytesReturnedByAllocSizeCall(Ctx, Call: CE, Result); |
9022 | } |
9023 | |
9024 | /// Attempts to evaluate the given LValueBase as the result of a call to |
9025 | /// a function with the alloc_size attribute. If it was possible to do so, this |
9026 | /// function will return true, make Result's Base point to said function call, |
9027 | /// and mark Result's Base as invalid. |
9028 | static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base, |
9029 | LValue &Result) { |
9030 | if (Base.isNull()) |
9031 | return false; |
9032 | |
9033 | // Because we do no form of static analysis, we only support const variables. |
9034 | // |
9035 | // Additionally, we can't support parameters, nor can we support static |
9036 | // variables (in the latter case, use-before-assign isn't UB; in the former, |
9037 | // we have no clue what they'll be assigned to). |
9038 | const auto *VD = |
9039 | dyn_cast_or_null<VarDecl>(Val: Base.dyn_cast<const ValueDecl *>()); |
9040 | if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified()) |
9041 | return false; |
9042 | |
9043 | const Expr *Init = VD->getAnyInitializer(); |
9044 | if (!Init || Init->getType().isNull()) |
9045 | return false; |
9046 | |
9047 | const Expr *E = Init->IgnoreParens(); |
9048 | if (!tryUnwrapAllocSizeCall(E)) |
9049 | return false; |
9050 | |
9051 | // Store E instead of E unwrapped so that the type of the LValue's base is |
9052 | // what the user wanted. |
9053 | Result.setInvalid(B: E); |
9054 | |
9055 | QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType(); |
9056 | Result.addUnsizedArray(Info, E, ElemTy: Pointee); |
9057 | return true; |
9058 | } |
9059 | |
9060 | namespace { |
9061 | class PointerExprEvaluator |
9062 | : public ExprEvaluatorBase<PointerExprEvaluator> { |
9063 | LValue &Result; |
9064 | bool InvalidBaseOK; |
9065 | |
9066 | bool Success(const Expr *E) { |
9067 | Result.set(B: E); |
9068 | return true; |
9069 | } |
9070 | |
9071 | bool evaluateLValue(const Expr *E, LValue &Result) { |
9072 | return EvaluateLValue(E, Result, Info, InvalidBaseOK); |
9073 | } |
9074 | |
9075 | bool evaluatePointer(const Expr *E, LValue &Result) { |
9076 | return EvaluatePointer(E, Result, Info, InvalidBaseOK); |
9077 | } |
9078 | |
9079 | bool visitNonBuiltinCallExpr(const CallExpr *E); |
9080 | public: |
9081 | |
9082 | PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK) |
9083 | : ExprEvaluatorBaseTy(info), Result(Result), |
9084 | InvalidBaseOK(InvalidBaseOK) {} |
9085 | |
9086 | bool Success(const APValue &V, const Expr *E) { |
9087 | Result.setFrom(Ctx&: Info.Ctx, V); |
9088 | return true; |
9089 | } |
9090 | bool ZeroInitialization(const Expr *E) { |
9091 | Result.setNull(Ctx&: Info.Ctx, PointerTy: E->getType()); |
9092 | return true; |
9093 | } |
9094 | |
9095 | bool VisitBinaryOperator(const BinaryOperator *E); |
9096 | bool VisitCastExpr(const CastExpr* E); |
9097 | bool VisitUnaryAddrOf(const UnaryOperator *E); |
9098 | bool VisitObjCStringLiteral(const ObjCStringLiteral *E) |
9099 | { return Success(E); } |
9100 | bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { |
9101 | if (E->isExpressibleAsConstantInitializer()) |
9102 | return Success(E); |
9103 | if (Info.noteFailure()) |
9104 | EvaluateIgnoredValue(Info, E: E->getSubExpr()); |
9105 | return Error(E); |
9106 | } |
9107 | bool VisitAddrLabelExpr(const AddrLabelExpr *E) |
9108 | { return Success(E); } |
9109 | bool VisitCallExpr(const CallExpr *E); |
9110 | bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); |
9111 | bool VisitBlockExpr(const BlockExpr *E) { |
9112 | if (!E->getBlockDecl()->hasCaptures()) |
9113 | return Success(E); |
9114 | return Error(E); |
9115 | } |
9116 | bool VisitCXXThisExpr(const CXXThisExpr *E) { |
9117 | auto DiagnoseInvalidUseOfThis = [&] { |
9118 | if (Info.getLangOpts().CPlusPlus11) |
9119 | Info.FFDiag(E, DiagId: diag::note_constexpr_this) << E->isImplicit(); |
9120 | else |
9121 | Info.FFDiag(E); |
9122 | }; |
9123 | |
9124 | // Can't look at 'this' when checking a potential constant expression. |
9125 | if (Info.checkingPotentialConstantExpression()) |
9126 | return false; |
9127 | |
9128 | bool IsExplicitLambda = |
9129 | isLambdaCallWithExplicitObjectParameter(DC: Info.CurrentCall->Callee); |
9130 | if (!IsExplicitLambda) { |
9131 | if (!Info.CurrentCall->This) { |
9132 | DiagnoseInvalidUseOfThis(); |
9133 | return false; |
9134 | } |
9135 | |
9136 | Result = *Info.CurrentCall->This; |
9137 | } |
9138 | |
9139 | if (isLambdaCallOperator(DC: Info.CurrentCall->Callee)) { |
9140 | // Ensure we actually have captured 'this'. If something was wrong with |
9141 | // 'this' capture, the error would have been previously reported. |
9142 | // Otherwise we can be inside of a default initialization of an object |
9143 | // declared by lambda's body, so no need to return false. |
9144 | if (!Info.CurrentCall->LambdaThisCaptureField) { |
9145 | if (IsExplicitLambda && !Info.CurrentCall->This) { |
9146 | DiagnoseInvalidUseOfThis(); |
9147 | return false; |
9148 | } |
9149 | |
9150 | return true; |
9151 | } |
9152 | |
9153 | const auto *MD = cast<CXXMethodDecl>(Val: Info.CurrentCall->Callee); |
9154 | return HandleLambdaCapture( |
9155 | Info, E, Result, MD, FD: Info.CurrentCall->LambdaThisCaptureField, |
9156 | LValueToRValueConversion: Info.CurrentCall->LambdaThisCaptureField->getType()->isPointerType()); |
9157 | } |
9158 | return true; |
9159 | } |
9160 | |
9161 | bool VisitCXXNewExpr(const CXXNewExpr *E); |
9162 | |
9163 | bool VisitSourceLocExpr(const SourceLocExpr *E) { |
9164 | assert(!E->isIntType() && "SourceLocExpr isn't a pointer type?" ); |
9165 | APValue LValResult = E->EvaluateInContext( |
9166 | Ctx: Info.Ctx, DefaultExpr: Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); |
9167 | Result.setFrom(Ctx&: Info.Ctx, V: LValResult); |
9168 | return true; |
9169 | } |
9170 | |
9171 | bool VisitEmbedExpr(const EmbedExpr *E) { |
9172 | llvm::report_fatal_error(reason: "Not yet implemented for ExprConstant.cpp" ); |
9173 | return true; |
9174 | } |
9175 | |
9176 | bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) { |
9177 | std::string ResultStr = E->ComputeName(Context&: Info.Ctx); |
9178 | |
9179 | QualType CharTy = Info.Ctx.CharTy.withConst(); |
9180 | APInt Size(Info.Ctx.getTypeSize(T: Info.Ctx.getSizeType()), |
9181 | ResultStr.size() + 1); |
9182 | QualType ArrayTy = Info.Ctx.getConstantArrayType( |
9183 | EltTy: CharTy, ArySize: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
9184 | |
9185 | StringLiteral *SL = |
9186 | StringLiteral::Create(Ctx: Info.Ctx, Str: ResultStr, Kind: StringLiteralKind::Ordinary, |
9187 | /*Pascal*/ false, Ty: ArrayTy, Loc: E->getLocation()); |
9188 | |
9189 | evaluateLValue(E: SL, Result); |
9190 | Result.addArray(Info, E, CAT: cast<ConstantArrayType>(Val&: ArrayTy)); |
9191 | return true; |
9192 | } |
9193 | |
9194 | // FIXME: Missing: @protocol, @selector |
9195 | }; |
9196 | } // end anonymous namespace |
9197 | |
9198 | static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info, |
9199 | bool InvalidBaseOK) { |
9200 | assert(!E->isValueDependent()); |
9201 | assert(E->isPRValue() && E->getType()->hasPointerRepresentation()); |
9202 | return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(S: E); |
9203 | } |
9204 | |
9205 | bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
9206 | if (E->getOpcode() != BO_Add && |
9207 | E->getOpcode() != BO_Sub) |
9208 | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
9209 | |
9210 | const Expr *PExp = E->getLHS(); |
9211 | const Expr *IExp = E->getRHS(); |
9212 | if (IExp->getType()->isPointerType()) |
9213 | std::swap(a&: PExp, b&: IExp); |
9214 | |
9215 | bool EvalPtrOK = evaluatePointer(E: PExp, Result); |
9216 | if (!EvalPtrOK && !Info.noteFailure()) |
9217 | return false; |
9218 | |
9219 | llvm::APSInt Offset; |
9220 | if (!EvaluateInteger(E: IExp, Result&: Offset, Info) || !EvalPtrOK) |
9221 | return false; |
9222 | |
9223 | if (E->getOpcode() == BO_Sub) |
9224 | negateAsSigned(Int&: Offset); |
9225 | |
9226 | QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType(); |
9227 | return HandleLValueArrayAdjustment(Info, E, LVal&: Result, EltTy: Pointee, Adjustment: Offset); |
9228 | } |
9229 | |
9230 | bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { |
9231 | return evaluateLValue(E: E->getSubExpr(), Result); |
9232 | } |
9233 | |
9234 | // Is the provided decl 'std::source_location::current'? |
9235 | static bool IsDeclSourceLocationCurrent(const FunctionDecl *FD) { |
9236 | if (!FD) |
9237 | return false; |
9238 | const IdentifierInfo *FnII = FD->getIdentifier(); |
9239 | if (!FnII || !FnII->isStr(Str: "current" )) |
9240 | return false; |
9241 | |
9242 | const auto *RD = dyn_cast<RecordDecl>(Val: FD->getParent()); |
9243 | if (!RD) |
9244 | return false; |
9245 | |
9246 | const IdentifierInfo *ClassII = RD->getIdentifier(); |
9247 | return RD->isInStdNamespace() && ClassII && ClassII->isStr(Str: "source_location" ); |
9248 | } |
9249 | |
9250 | bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) { |
9251 | const Expr *SubExpr = E->getSubExpr(); |
9252 | |
9253 | switch (E->getCastKind()) { |
9254 | default: |
9255 | break; |
9256 | case CK_BitCast: |
9257 | case CK_CPointerToObjCPointerCast: |
9258 | case CK_BlockPointerToObjCPointerCast: |
9259 | case CK_AnyPointerToBlockPointerCast: |
9260 | case CK_AddressSpaceConversion: |
9261 | if (!Visit(S: SubExpr)) |
9262 | return false; |
9263 | // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are |
9264 | // permitted in constant expressions in C++11. Bitcasts from cv void* are |
9265 | // also static_casts, but we disallow them as a resolution to DR1312. |
9266 | if (!E->getType()->isVoidPointerType()) { |
9267 | // In some circumstances, we permit casting from void* to cv1 T*, when the |
9268 | // actual pointee object is actually a cv2 T. |
9269 | bool HasValidResult = !Result.InvalidBase && !Result.Designator.Invalid && |
9270 | !Result.IsNullPtr; |
9271 | bool VoidPtrCastMaybeOK = |
9272 | Result.IsNullPtr || |
9273 | (HasValidResult && |
9274 | Info.Ctx.hasSimilarType(T1: Result.Designator.getType(Ctx&: Info.Ctx), |
9275 | T2: E->getType()->getPointeeType())); |
9276 | // 1. We'll allow it in std::allocator::allocate, and anything which that |
9277 | // calls. |
9278 | // 2. HACK 2022-03-28: Work around an issue with libstdc++'s |
9279 | // <source_location> header. Fixed in GCC 12 and later (2022-04-??). |
9280 | // We'll allow it in the body of std::source_location::current. GCC's |
9281 | // implementation had a parameter of type `void*`, and casts from |
9282 | // that back to `const __impl*` in its body. |
9283 | if (VoidPtrCastMaybeOK && |
9284 | (Info.getStdAllocatorCaller(FnName: "allocate" ) || |
9285 | IsDeclSourceLocationCurrent(FD: Info.CurrentCall->Callee) || |
9286 | Info.getLangOpts().CPlusPlus26)) { |
9287 | // Permitted. |
9288 | } else { |
9289 | if (SubExpr->getType()->isVoidPointerType() && |
9290 | Info.getLangOpts().CPlusPlus) { |
9291 | if (HasValidResult) |
9292 | CCEDiag(E, D: diag::note_constexpr_invalid_void_star_cast) |
9293 | << SubExpr->getType() << Info.getLangOpts().CPlusPlus26 |
9294 | << Result.Designator.getType(Ctx&: Info.Ctx).getCanonicalType() |
9295 | << E->getType()->getPointeeType(); |
9296 | else |
9297 | CCEDiag(E, D: diag::note_constexpr_invalid_cast) |
9298 | << 3 << SubExpr->getType(); |
9299 | } else |
9300 | CCEDiag(E, D: diag::note_constexpr_invalid_cast) |
9301 | << 2 << Info.Ctx.getLangOpts().CPlusPlus; |
9302 | Result.Designator.setInvalid(); |
9303 | } |
9304 | } |
9305 | if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr) |
9306 | ZeroInitialization(E); |
9307 | return true; |
9308 | |
9309 | case CK_DerivedToBase: |
9310 | case CK_UncheckedDerivedToBase: |
9311 | if (!evaluatePointer(E: E->getSubExpr(), Result)) |
9312 | return false; |
9313 | if (!Result.Base && Result.Offset.isZero()) |
9314 | return true; |
9315 | |
9316 | // Now figure out the necessary offset to add to the base LV to get from |
9317 | // the derived class to the base class. |
9318 | return HandleLValueBasePath(Info, E, Type: E->getSubExpr()->getType()-> |
9319 | castAs<PointerType>()->getPointeeType(), |
9320 | Result); |
9321 | |
9322 | case CK_BaseToDerived: |
9323 | if (!Visit(S: E->getSubExpr())) |
9324 | return false; |
9325 | if (!Result.Base && Result.Offset.isZero()) |
9326 | return true; |
9327 | return HandleBaseToDerivedCast(Info, E, Result); |
9328 | |
9329 | case CK_Dynamic: |
9330 | if (!Visit(S: E->getSubExpr())) |
9331 | return false; |
9332 | return HandleDynamicCast(Info, E: cast<ExplicitCastExpr>(Val: E), Ptr&: Result); |
9333 | |
9334 | case CK_NullToPointer: |
9335 | VisitIgnoredValue(E: E->getSubExpr()); |
9336 | return ZeroInitialization(E); |
9337 | |
9338 | case CK_IntegralToPointer: { |
9339 | CCEDiag(E, D: diag::note_constexpr_invalid_cast) |
9340 | << 2 << Info.Ctx.getLangOpts().CPlusPlus; |
9341 | |
9342 | APValue Value; |
9343 | if (!EvaluateIntegerOrLValue(E: SubExpr, Result&: Value, Info)) |
9344 | break; |
9345 | |
9346 | if (Value.isInt()) { |
9347 | unsigned Size = Info.Ctx.getTypeSize(T: E->getType()); |
9348 | uint64_t N = Value.getInt().extOrTrunc(width: Size).getZExtValue(); |
9349 | Result.Base = (Expr*)nullptr; |
9350 | Result.InvalidBase = false; |
9351 | Result.Offset = CharUnits::fromQuantity(Quantity: N); |
9352 | Result.Designator.setInvalid(); |
9353 | Result.IsNullPtr = false; |
9354 | return true; |
9355 | } else { |
9356 | // In rare instances, the value isn't an lvalue. |
9357 | // For example, when the value is the difference between the addresses of |
9358 | // two labels. We reject that as a constant expression because we can't |
9359 | // compute a valid offset to convert into a pointer. |
9360 | if (!Value.isLValue()) |
9361 | return false; |
9362 | |
9363 | // Cast is of an lvalue, no need to change value. |
9364 | Result.setFrom(Ctx&: Info.Ctx, V: Value); |
9365 | return true; |
9366 | } |
9367 | } |
9368 | |
9369 | case CK_ArrayToPointerDecay: { |
9370 | if (SubExpr->isGLValue()) { |
9371 | if (!evaluateLValue(E: SubExpr, Result)) |
9372 | return false; |
9373 | } else { |
9374 | APValue &Value = Info.CurrentCall->createTemporary( |
9375 | Key: SubExpr, T: SubExpr->getType(), Scope: ScopeKind::FullExpression, LV&: Result); |
9376 | if (!EvaluateInPlace(Result&: Value, Info, This: Result, E: SubExpr)) |
9377 | return false; |
9378 | } |
9379 | // The result is a pointer to the first element of the array. |
9380 | auto *AT = Info.Ctx.getAsArrayType(T: SubExpr->getType()); |
9381 | if (auto *CAT = dyn_cast<ConstantArrayType>(Val: AT)) |
9382 | Result.addArray(Info, E, CAT); |
9383 | else |
9384 | Result.addUnsizedArray(Info, E, ElemTy: AT->getElementType()); |
9385 | return true; |
9386 | } |
9387 | |
9388 | case CK_FunctionToPointerDecay: |
9389 | return evaluateLValue(E: SubExpr, Result); |
9390 | |
9391 | case CK_LValueToRValue: { |
9392 | LValue LVal; |
9393 | if (!evaluateLValue(E: E->getSubExpr(), Result&: LVal)) |
9394 | return false; |
9395 | |
9396 | APValue RVal; |
9397 | // Note, we use the subexpression's type in order to retain cv-qualifiers. |
9398 | if (!handleLValueToRValueConversion(Info, Conv: E, Type: E->getSubExpr()->getType(), |
9399 | LVal, RVal)) |
9400 | return InvalidBaseOK && |
9401 | evaluateLValueAsAllocSize(Info, Base: LVal.Base, Result); |
9402 | return Success(V: RVal, E); |
9403 | } |
9404 | } |
9405 | |
9406 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
9407 | } |
9408 | |
9409 | static CharUnits GetAlignOfType(EvalInfo &Info, QualType T, |
9410 | UnaryExprOrTypeTrait ExprKind) { |
9411 | // C++ [expr.alignof]p3: |
9412 | // When alignof is applied to a reference type, the result is the |
9413 | // alignment of the referenced type. |
9414 | T = T.getNonReferenceType(); |
9415 | |
9416 | if (T.getQualifiers().hasUnaligned()) |
9417 | return CharUnits::One(); |
9418 | |
9419 | const bool AlignOfReturnsPreferred = |
9420 | Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; |
9421 | |
9422 | // __alignof is defined to return the preferred alignment. |
9423 | // Before 8, clang returned the preferred alignment for alignof and _Alignof |
9424 | // as well. |
9425 | if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) |
9426 | return Info.Ctx.toCharUnitsFromBits( |
9427 | BitSize: Info.Ctx.getPreferredTypeAlign(T: T.getTypePtr())); |
9428 | // alignof and _Alignof are defined to return the ABI alignment. |
9429 | else if (ExprKind == UETT_AlignOf) |
9430 | return Info.Ctx.getTypeAlignInChars(T: T.getTypePtr()); |
9431 | else |
9432 | llvm_unreachable("GetAlignOfType on a non-alignment ExprKind" ); |
9433 | } |
9434 | |
9435 | static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E, |
9436 | UnaryExprOrTypeTrait ExprKind) { |
9437 | E = E->IgnoreParens(); |
9438 | |
9439 | // The kinds of expressions that we have special-case logic here for |
9440 | // should be kept up to date with the special checks for those |
9441 | // expressions in Sema. |
9442 | |
9443 | // alignof decl is always accepted, even if it doesn't make sense: we default |
9444 | // to 1 in those cases. |
9445 | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
9446 | return Info.Ctx.getDeclAlign(D: DRE->getDecl(), |
9447 | /*RefAsPointee*/ForAlignof: true); |
9448 | |
9449 | if (const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E)) |
9450 | return Info.Ctx.getDeclAlign(D: ME->getMemberDecl(), |
9451 | /*RefAsPointee*/ForAlignof: true); |
9452 | |
9453 | return GetAlignOfType(Info, T: E->getType(), ExprKind); |
9454 | } |
9455 | |
9456 | static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) { |
9457 | if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>()) |
9458 | return Info.Ctx.getDeclAlign(D: VD); |
9459 | if (const auto *E = Value.Base.dyn_cast<const Expr *>()) |
9460 | return GetAlignOfExpr(Info, E, ExprKind: UETT_AlignOf); |
9461 | return GetAlignOfType(Info, T: Value.Base.getTypeInfoType(), ExprKind: UETT_AlignOf); |
9462 | } |
9463 | |
9464 | /// Evaluate the value of the alignment argument to __builtin_align_{up,down}, |
9465 | /// __builtin_is_aligned and __builtin_assume_aligned. |
9466 | static bool getAlignmentArgument(const Expr *E, QualType ForType, |
9467 | EvalInfo &Info, APSInt &Alignment) { |
9468 | if (!EvaluateInteger(E, Result&: Alignment, Info)) |
9469 | return false; |
9470 | if (Alignment < 0 || !Alignment.isPowerOf2()) { |
9471 | Info.FFDiag(E, DiagId: diag::note_constexpr_invalid_alignment) << Alignment; |
9472 | return false; |
9473 | } |
9474 | unsigned SrcWidth = Info.Ctx.getIntWidth(T: ForType); |
9475 | APSInt MaxValue(APInt::getOneBitSet(numBits: SrcWidth, BitNo: SrcWidth - 1)); |
9476 | if (APSInt::compareValues(I1: Alignment, I2: MaxValue) > 0) { |
9477 | Info.FFDiag(E, DiagId: diag::note_constexpr_alignment_too_big) |
9478 | << MaxValue << ForType << Alignment; |
9479 | return false; |
9480 | } |
9481 | // Ensure both alignment and source value have the same bit width so that we |
9482 | // don't assert when computing the resulting value. |
9483 | APSInt ExtAlignment = |
9484 | APSInt(Alignment.zextOrTrunc(width: SrcWidth), /*isUnsigned=*/true); |
9485 | assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 && |
9486 | "Alignment should not be changed by ext/trunc" ); |
9487 | Alignment = ExtAlignment; |
9488 | assert(Alignment.getBitWidth() == SrcWidth); |
9489 | return true; |
9490 | } |
9491 | |
9492 | // To be clear: this happily visits unsupported builtins. Better name welcomed. |
9493 | bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) { |
9494 | if (ExprEvaluatorBaseTy::VisitCallExpr(E)) |
9495 | return true; |
9496 | |
9497 | if (!(InvalidBaseOK && getAllocSizeAttr(CE: E))) |
9498 | return false; |
9499 | |
9500 | Result.setInvalid(B: E); |
9501 | QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType(); |
9502 | Result.addUnsizedArray(Info, E, ElemTy: PointeeTy); |
9503 | return true; |
9504 | } |
9505 | |
9506 | bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) { |
9507 | if (!IsConstantEvaluatedBuiltinCall(E)) |
9508 | return visitNonBuiltinCallExpr(E); |
9509 | return VisitBuiltinCallExpr(E, BuiltinOp: E->getBuiltinCallee()); |
9510 | } |
9511 | |
9512 | // Determine if T is a character type for which we guarantee that |
9513 | // sizeof(T) == 1. |
9514 | static bool isOneByteCharacterType(QualType T) { |
9515 | return T->isCharType() || T->isChar8Type(); |
9516 | } |
9517 | |
9518 | bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, |
9519 | unsigned BuiltinOp) { |
9520 | if (IsNoOpCall(E)) |
9521 | return Success(E); |
9522 | |
9523 | switch (BuiltinOp) { |
9524 | case Builtin::BIaddressof: |
9525 | case Builtin::BI__addressof: |
9526 | case Builtin::BI__builtin_addressof: |
9527 | return evaluateLValue(E: E->getArg(Arg: 0), Result); |
9528 | case Builtin::BI__builtin_assume_aligned: { |
9529 | // We need to be very careful here because: if the pointer does not have the |
9530 | // asserted alignment, then the behavior is undefined, and undefined |
9531 | // behavior is non-constant. |
9532 | if (!evaluatePointer(E: E->getArg(Arg: 0), Result)) |
9533 | return false; |
9534 | |
9535 | LValue OffsetResult(Result); |
9536 | APSInt Alignment; |
9537 | if (!getAlignmentArgument(E: E->getArg(Arg: 1), ForType: E->getArg(Arg: 0)->getType(), Info, |
9538 | Alignment)) |
9539 | return false; |
9540 | CharUnits Align = CharUnits::fromQuantity(Quantity: Alignment.getZExtValue()); |
9541 | |
9542 | if (E->getNumArgs() > 2) { |
9543 | APSInt Offset; |
9544 | if (!EvaluateInteger(E: E->getArg(Arg: 2), Result&: Offset, Info)) |
9545 | return false; |
9546 | |
9547 | int64_t AdditionalOffset = -Offset.getZExtValue(); |
9548 | OffsetResult.Offset += CharUnits::fromQuantity(Quantity: AdditionalOffset); |
9549 | } |
9550 | |
9551 | // If there is a base object, then it must have the correct alignment. |
9552 | if (OffsetResult.Base) { |
9553 | CharUnits BaseAlignment = getBaseAlignment(Info, Value: OffsetResult); |
9554 | |
9555 | if (BaseAlignment < Align) { |
9556 | Result.Designator.setInvalid(); |
9557 | // FIXME: Add support to Diagnostic for long / long long. |
9558 | CCEDiag(E: E->getArg(Arg: 0), |
9559 | D: diag::note_constexpr_baa_insufficient_alignment) << 0 |
9560 | << (unsigned)BaseAlignment.getQuantity() |
9561 | << (unsigned)Align.getQuantity(); |
9562 | return false; |
9563 | } |
9564 | } |
9565 | |
9566 | // The offset must also have the correct alignment. |
9567 | if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) { |
9568 | Result.Designator.setInvalid(); |
9569 | |
9570 | (OffsetResult.Base |
9571 | ? CCEDiag(E: E->getArg(Arg: 0), |
9572 | D: diag::note_constexpr_baa_insufficient_alignment) << 1 |
9573 | : CCEDiag(E: E->getArg(Arg: 0), |
9574 | D: diag::note_constexpr_baa_value_insufficient_alignment)) |
9575 | << (int)OffsetResult.Offset.getQuantity() |
9576 | << (unsigned)Align.getQuantity(); |
9577 | return false; |
9578 | } |
9579 | |
9580 | return true; |
9581 | } |
9582 | case Builtin::BI__builtin_align_up: |
9583 | case Builtin::BI__builtin_align_down: { |
9584 | if (!evaluatePointer(E: E->getArg(Arg: 0), Result)) |
9585 | return false; |
9586 | APSInt Alignment; |
9587 | if (!getAlignmentArgument(E: E->getArg(Arg: 1), ForType: E->getArg(Arg: 0)->getType(), Info, |
9588 | Alignment)) |
9589 | return false; |
9590 | CharUnits BaseAlignment = getBaseAlignment(Info, Value: Result); |
9591 | CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(offset: Result.Offset); |
9592 | // For align_up/align_down, we can return the same value if the alignment |
9593 | // is known to be greater or equal to the requested value. |
9594 | if (PtrAlign.getQuantity() >= Alignment) |
9595 | return true; |
9596 | |
9597 | // The alignment could be greater than the minimum at run-time, so we cannot |
9598 | // infer much about the resulting pointer value. One case is possible: |
9599 | // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we |
9600 | // can infer the correct index if the requested alignment is smaller than |
9601 | // the base alignment so we can perform the computation on the offset. |
9602 | if (BaseAlignment.getQuantity() >= Alignment) { |
9603 | assert(Alignment.getBitWidth() <= 64 && |
9604 | "Cannot handle > 64-bit address-space" ); |
9605 | uint64_t Alignment64 = Alignment.getZExtValue(); |
9606 | CharUnits NewOffset = CharUnits::fromQuantity( |
9607 | Quantity: BuiltinOp == Builtin::BI__builtin_align_down |
9608 | ? llvm::alignDown(Value: Result.Offset.getQuantity(), Align: Alignment64) |
9609 | : llvm::alignTo(Value: Result.Offset.getQuantity(), Align: Alignment64)); |
9610 | Result.adjustOffset(N: NewOffset - Result.Offset); |
9611 | // TODO: diagnose out-of-bounds values/only allow for arrays? |
9612 | return true; |
9613 | } |
9614 | // Otherwise, we cannot constant-evaluate the result. |
9615 | Info.FFDiag(E: E->getArg(Arg: 0), DiagId: diag::note_constexpr_alignment_adjust) |
9616 | << Alignment; |
9617 | return false; |
9618 | } |
9619 | case Builtin::BI__builtin_operator_new: |
9620 | return HandleOperatorNewCall(Info, E, Result); |
9621 | case Builtin::BI__builtin_launder: |
9622 | return evaluatePointer(E: E->getArg(Arg: 0), Result); |
9623 | case Builtin::BIstrchr: |
9624 | case Builtin::BIwcschr: |
9625 | case Builtin::BImemchr: |
9626 | case Builtin::BIwmemchr: |
9627 | if (Info.getLangOpts().CPlusPlus11) |
9628 | Info.CCEDiag(E, DiagId: diag::note_constexpr_invalid_function) |
9629 | << /*isConstexpr*/ 0 << /*isConstructor*/ 0 |
9630 | << ("'" + Info.Ctx.BuiltinInfo.getName(ID: BuiltinOp) + "'" ).str(); |
9631 | else |
9632 | Info.CCEDiag(E, DiagId: diag::note_invalid_subexpr_in_const_expr); |
9633 | [[fallthrough]]; |
9634 | case Builtin::BI__builtin_strchr: |
9635 | case Builtin::BI__builtin_wcschr: |
9636 | case Builtin::BI__builtin_memchr: |
9637 | case Builtin::BI__builtin_char_memchr: |
9638 | case Builtin::BI__builtin_wmemchr: { |
9639 | if (!Visit(S: E->getArg(Arg: 0))) |
9640 | return false; |
9641 | APSInt Desired; |
9642 | if (!EvaluateInteger(E: E->getArg(Arg: 1), Result&: Desired, Info)) |
9643 | return false; |
9644 | uint64_t MaxLength = uint64_t(-1); |
9645 | if (BuiltinOp != Builtin::BIstrchr && |
9646 | BuiltinOp != Builtin::BIwcschr && |
9647 | BuiltinOp != Builtin::BI__builtin_strchr && |
9648 | BuiltinOp != Builtin::BI__builtin_wcschr) { |
9649 | APSInt N; |
9650 | if (!EvaluateInteger(E: E->getArg(Arg: 2), Result&: N, Info)) |
9651 | return false; |
9652 | MaxLength = N.getZExtValue(); |
9653 | } |
9654 | // We cannot find the value if there are no candidates to match against. |
9655 | if (MaxLength == 0u) |
9656 | return ZeroInitialization(E); |
9657 | if (!Result.checkNullPointerForFoldAccess(Info, E, AK: AK_Read) || |
9658 | Result.Designator.Invalid) |
9659 | return false; |
9660 | QualType CharTy = Result.Designator.getType(Ctx&: Info.Ctx); |
9661 | bool IsRawByte = BuiltinOp == Builtin::BImemchr || |
9662 | BuiltinOp == Builtin::BI__builtin_memchr; |
9663 | assert(IsRawByte || |
9664 | Info.Ctx.hasSameUnqualifiedType( |
9665 | CharTy, E->getArg(0)->getType()->getPointeeType())); |
9666 | // Pointers to const void may point to objects of incomplete type. |
9667 | if (IsRawByte && CharTy->isIncompleteType()) { |
9668 | Info.FFDiag(E, DiagId: diag::note_constexpr_ltor_incomplete_type) << CharTy; |
9669 | return false; |
9670 | } |
9671 | // Give up on byte-oriented matching against multibyte elements. |
9672 | // FIXME: We can compare the bytes in the correct order. |
9673 | if (IsRawByte && !isOneByteCharacterType(T: CharTy)) { |
9674 | Info.FFDiag(E, DiagId: diag::note_constexpr_memchr_unsupported) |
9675 | << ("'" + Info.Ctx.BuiltinInfo.getName(ID: BuiltinOp) + "'" ).str() |
9676 | << CharTy; |
9677 | return false; |
9678 | } |
9679 | // Figure out what value we're actually looking for (after converting to |
9680 | // the corresponding unsigned type if necessary). |
9681 | uint64_t DesiredVal; |
9682 | bool StopAtNull = false; |
9683 | switch (BuiltinOp) { |
9684 | case Builtin::BIstrchr: |
9685 | case Builtin::BI__builtin_strchr: |
9686 | // strchr compares directly to the passed integer, and therefore |
9687 | // always fails if given an int that is not a char. |
9688 | if (!APSInt::isSameValue(I1: HandleIntToIntCast(Info, E, DestType: CharTy, |
9689 | SrcType: E->getArg(Arg: 1)->getType(), |
9690 | Value: Desired), |
9691 | I2: Desired)) |
9692 | return ZeroInitialization(E); |
9693 | StopAtNull = true; |
9694 | [[fallthrough]]; |
9695 | case Builtin::BImemchr: |
9696 | case Builtin::BI__builtin_memchr: |
9697 | case Builtin::BI__builtin_char_memchr: |
9698 | // memchr compares by converting both sides to unsigned char. That's also |
9699 | // correct for strchr if we get this far (to cope with plain char being |
9700 | // unsigned in the strchr case). |
9701 | DesiredVal = Desired.trunc(width: Info.Ctx.getCharWidth()).getZExtValue(); |
9702 | break; |
9703 | |
9704 | case Builtin::BIwcschr: |
9705 | case Builtin::BI__builtin_wcschr: |
9706 | StopAtNull = true; |
9707 | [[fallthrough]]; |
9708 | case Builtin::BIwmemchr: |
9709 | case Builtin::BI__builtin_wmemchr: |
9710 | // wcschr and wmemchr are given a wchar_t to look for. Just use it. |
9711 | DesiredVal = Desired.getZExtValue(); |
9712 | break; |
9713 | } |
9714 | |
9715 | for (; MaxLength; --MaxLength) { |
9716 | APValue Char; |
9717 | if (!handleLValueToRValueConversion(Info, Conv: E, Type: CharTy, LVal: Result, RVal&: Char) || |
9718 | !Char.isInt()) |
9719 | return false; |
9720 | if (Char.getInt().getZExtValue() == DesiredVal) |
9721 | return true; |
9722 | if (StopAtNull && !Char.getInt()) |
9723 | break; |
9724 | if (!HandleLValueArrayAdjustment(Info, E, LVal&: Result, EltTy: CharTy, Adjustment: 1)) |
9725 | return false; |
9726 | } |
9727 | // Not found: return nullptr. |
9728 | return ZeroInitialization(E); |
9729 | } |
9730 | |
9731 | case Builtin::BImemcpy: |
9732 | case Builtin::BImemmove: |
9733 | case Builtin::BIwmemcpy: |
9734 | case Builtin::BIwmemmove: |
9735 | if (Info.getLangOpts().CPlusPlus11) |
9736 | Info.CCEDiag(E, DiagId: diag::note_constexpr_invalid_function) |
9737 | << /*isConstexpr*/ 0 << /*isConstructor*/ 0 |
9738 | << ("'" + Info.Ctx.BuiltinInfo.getName(ID: BuiltinOp) + "'" ).str(); |
9739 | else |
9740 | Info.CCEDiag(E, DiagId: diag::note_invalid_subexpr_in_const_expr); |
9741 | [[fallthrough]]; |
9742 | case Builtin::BI__builtin_memcpy: |
9743 | case Builtin::BI__builtin_memmove: |
9744 | case Builtin::BI__builtin_wmemcpy: |
9745 | case Builtin::BI__builtin_wmemmove: { |
9746 | bool WChar = BuiltinOp == Builtin::BIwmemcpy || |
9747 | BuiltinOp == Builtin::BIwmemmove || |
9748 | BuiltinOp == Builtin::BI__builtin_wmemcpy || |
9749 | BuiltinOp == Builtin::BI__builtin_wmemmove; |
9750 | bool Move = BuiltinOp == Builtin::BImemmove || |
9751 | BuiltinOp == Builtin::BIwmemmove || |
9752 | BuiltinOp == Builtin::BI__builtin_memmove || |
9753 | BuiltinOp == Builtin::BI__builtin_wmemmove; |
9754 | |
9755 | // The result of mem* is the first argument. |
9756 | if (!Visit(S: E->getArg(Arg: 0))) |
9757 | return false; |
9758 | LValue Dest = Result; |
9759 | |
9760 | LValue Src; |
9761 | if (!EvaluatePointer(E: E->getArg(Arg: 1), Result&: Src, Info)) |
9762 | return false; |
9763 | |
9764 | APSInt N; |
9765 | if (!EvaluateInteger(E: E->getArg(Arg: 2), Result&: N, Info)) |
9766 | return false; |
9767 | assert(!N.isSigned() && "memcpy and friends take an unsigned size" ); |
9768 | |
9769 | // If the size is zero, we treat this as always being a valid no-op. |
9770 | // (Even if one of the src and dest pointers is null.) |
9771 | if (!N) |
9772 | return true; |
9773 | |
9774 | // Otherwise, if either of the operands is null, we can't proceed. Don't |
9775 | // try to determine the type of the copied objects, because there aren't |
9776 | // any. |
9777 | if (!Src.Base || !Dest.Base) { |
9778 | APValue Val; |
9779 | (!Src.Base ? Src : Dest).moveInto(V&: Val); |
9780 | Info.FFDiag(E, DiagId: diag::note_constexpr_memcpy_null) |
9781 | << Move << WChar << !!Src.Base |
9782 | << Val.getAsString(Ctx: Info.Ctx, Ty: E->getArg(Arg: 0)->getType()); |
9783 | return false; |
9784 | } |
9785 | if (Src.Designator.Invalid || Dest.Designator.Invalid) |
9786 | return false; |
9787 | |
9788 | // We require that Src and Dest are both pointers to arrays of |
9789 | // trivially-copyable type. (For the wide version, the designator will be |
9790 | // invalid if the designated object is not a wchar_t.) |
9791 | QualType T = Dest.Designator.getType(Ctx&: Info.Ctx); |
9792 | QualType SrcT = Src.Designator.getType(Ctx&: Info.Ctx); |
9793 | if (!Info.Ctx.hasSameUnqualifiedType(T1: T, T2: SrcT)) { |
9794 | // FIXME: Consider using our bit_cast implementation to support this. |
9795 | Info.FFDiag(E, DiagId: diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T; |
9796 | return false; |
9797 | } |
9798 | if (T->isIncompleteType()) { |
9799 | Info.FFDiag(E, DiagId: diag::note_constexpr_memcpy_incomplete_type) << Move << T; |
9800 | return false; |
9801 | } |
9802 | if (!T.isTriviallyCopyableType(Context: Info.Ctx)) { |
9803 | Info.FFDiag(E, DiagId: diag::note_constexpr_memcpy_nontrivial) << Move << T; |
9804 | return false; |
9805 | } |
9806 | |
9807 | // Figure out how many T's we're copying. |
9808 | uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity(); |
9809 | if (TSize == 0) |
9810 | return false; |
9811 | if (!WChar) { |
9812 | uint64_t Remainder; |
9813 | llvm::APInt OrigN = N; |
9814 | llvm::APInt::udivrem(LHS: OrigN, RHS: TSize, Quotient&: N, Remainder); |
9815 | if (Remainder) { |
9816 | Info.FFDiag(E, DiagId: diag::note_constexpr_memcpy_unsupported) |
9817 | << Move << WChar << 0 << T << toString(I: OrigN, Radix: 10, /*Signed*/false) |
9818 | << (unsigned)TSize; |
9819 | return false; |
9820 | } |
9821 | } |
9822 | |
9823 | // Check that the copying will remain within the arrays, just so that we |
9824 | // can give a more meaningful diagnostic. This implicitly also checks that |
9825 | // N fits into 64 bits. |
9826 | uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second; |
9827 | uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second; |
9828 | if (N.ugt(RHS: RemainingSrcSize) || N.ugt(RHS: RemainingDestSize)) { |
9829 | Info.FFDiag(E, DiagId: diag::note_constexpr_memcpy_unsupported) |
9830 | << Move << WChar << (N.ugt(RHS: RemainingSrcSize) ? 1 : 2) << T |
9831 | << toString(I: N, Radix: 10, /*Signed*/false); |
9832 | return false; |
9833 | } |
9834 | uint64_t NElems = N.getZExtValue(); |
9835 | uint64_t NBytes = NElems * TSize; |
9836 | |
9837 | // Check for overlap. |
9838 | int Direction = 1; |
9839 | if (HasSameBase(A: Src, B: Dest)) { |
9840 | uint64_t SrcOffset = Src.getLValueOffset().getQuantity(); |
9841 | uint64_t DestOffset = Dest.getLValueOffset().getQuantity(); |
9842 | if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) { |
9843 | // Dest is inside the source region. |
9844 | if (!Move) { |
9845 | Info.FFDiag(E, DiagId: diag::note_constexpr_memcpy_overlap) << WChar; |
9846 | return false; |
9847 | } |
9848 | // For memmove and friends, copy backwards. |
9849 | if (!HandleLValueArrayAdjustment(Info, E, LVal&: Src, EltTy: T, Adjustment: NElems - 1) || |
9850 | !HandleLValueArrayAdjustment(Info, E, LVal&: Dest, EltTy: T, Adjustment: NElems - 1)) |
9851 | return false; |
9852 | Direction = -1; |
9853 | } else if (!Move && SrcOffset >= DestOffset && |
9854 | SrcOffset - DestOffset < NBytes) { |
9855 | // Src is inside the destination region for memcpy: invalid. |
9856 | Info.FFDiag(E, DiagId: diag::note_constexpr_memcpy_overlap) << WChar; |
9857 | return false; |
9858 | } |
9859 | } |
9860 | |
9861 | while (true) { |
9862 | APValue Val; |
9863 | // FIXME: Set WantObjectRepresentation to true if we're copying a |
9864 | // char-like type? |
9865 | if (!handleLValueToRValueConversion(Info, Conv: E, Type: T, LVal: Src, RVal&: Val) || |
9866 | !handleAssignment(Info, E, LVal: Dest, LValType: T, Val)) |
9867 | return false; |
9868 | // Do not iterate past the last element; if we're copying backwards, that |
9869 | // might take us off the start of the array. |
9870 | if (--NElems == 0) |
9871 | return true; |
9872 | if (!HandleLValueArrayAdjustment(Info, E, LVal&: Src, EltTy: T, Adjustment: Direction) || |
9873 | !HandleLValueArrayAdjustment(Info, E, LVal&: Dest, EltTy: T, Adjustment: Direction)) |
9874 | return false; |
9875 | } |
9876 | } |
9877 | |
9878 | default: |
9879 | return false; |
9880 | } |
9881 | } |
9882 | |
9883 | static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, |
9884 | APValue &Result, const InitListExpr *ILE, |
9885 | QualType AllocType); |
9886 | static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This, |
9887 | APValue &Result, |
9888 | const CXXConstructExpr *CCE, |
9889 | QualType AllocType); |
9890 | |
9891 | bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) { |
9892 | if (!Info.getLangOpts().CPlusPlus20) |
9893 | Info.CCEDiag(E, DiagId: diag::note_constexpr_new); |
9894 | |
9895 | // We cannot speculatively evaluate a delete expression. |
9896 | if (Info.SpeculativeEvaluationDepth) |
9897 | return false; |
9898 | |
9899 | FunctionDecl *OperatorNew = E->getOperatorNew(); |
9900 | |
9901 | bool IsNothrow = false; |
9902 | bool IsPlacement = false; |
9903 | if (OperatorNew->isReservedGlobalPlacementOperator() && |
9904 | Info.CurrentCall->isStdFunction() && !E->isArray()) { |
9905 | // FIXME Support array placement new. |
9906 | assert(E->getNumPlacementArgs() == 1); |
9907 | if (!EvaluatePointer(E: E->getPlacementArg(I: 0), Result, Info)) |
9908 | return false; |
9909 | if (Result.Designator.Invalid) |
9910 | return false; |
9911 | IsPlacement = true; |
9912 | } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) { |
9913 | Info.FFDiag(E, DiagId: diag::note_constexpr_new_non_replaceable) |
9914 | << isa<CXXMethodDecl>(Val: OperatorNew) << OperatorNew; |
9915 | return false; |
9916 | } else if (E->getNumPlacementArgs()) { |
9917 | // The only new-placement list we support is of the form (std::nothrow). |
9918 | // |
9919 | // FIXME: There is no restriction on this, but it's not clear that any |
9920 | // other form makes any sense. We get here for cases such as: |
9921 | // |
9922 | // new (std::align_val_t{N}) X(int) |
9923 | // |
9924 | // (which should presumably be valid only if N is a multiple of |
9925 | // alignof(int), and in any case can't be deallocated unless N is |
9926 | // alignof(X) and X has new-extended alignment). |
9927 | if (E->getNumPlacementArgs() != 1 || |
9928 | !E->getPlacementArg(I: 0)->getType()->isNothrowT()) |
9929 | return Error(E, D: diag::note_constexpr_new_placement); |
9930 | |
9931 | LValue Nothrow; |
9932 | if (!EvaluateLValue(E: E->getPlacementArg(I: 0), Result&: Nothrow, Info)) |
9933 | return false; |
9934 | IsNothrow = true; |
9935 | } |
9936 | |
9937 | const Expr *Init = E->getInitializer(); |
9938 | const InitListExpr *ResizedArrayILE = nullptr; |
9939 | const CXXConstructExpr *ResizedArrayCCE = nullptr; |
9940 | bool ValueInit = false; |
9941 | |
9942 | QualType AllocType = E->getAllocatedType(); |
9943 | if (std::optional<const Expr *> ArraySize = E->getArraySize()) { |
9944 | const Expr *Stripped = *ArraySize; |
9945 | for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Val: Stripped); |
9946 | Stripped = ICE->getSubExpr()) |
9947 | if (ICE->getCastKind() != CK_NoOp && |
9948 | ICE->getCastKind() != CK_IntegralCast) |
9949 | break; |
9950 | |
9951 | llvm::APSInt ArrayBound; |
9952 | if (!EvaluateInteger(E: Stripped, Result&: ArrayBound, Info)) |
9953 | return false; |
9954 | |
9955 | // C++ [expr.new]p9: |
9956 | // The expression is erroneous if: |
9957 | // -- [...] its value before converting to size_t [or] applying the |
9958 | // second standard conversion sequence is less than zero |
9959 | if (ArrayBound.isSigned() && ArrayBound.isNegative()) { |
9960 | if (IsNothrow) |
9961 | return ZeroInitialization(E); |
9962 | |
9963 | Info.FFDiag(E: *ArraySize, DiagId: diag::note_constexpr_new_negative) |
9964 | << ArrayBound << (*ArraySize)->getSourceRange(); |
9965 | return false; |
9966 | } |
9967 | |
9968 | // -- its value is such that the size of the allocated object would |
9969 | // exceed the implementation-defined limit |
9970 | if (!Info.CheckArraySize(Loc: ArraySize.value()->getExprLoc(), |
9971 | BitWidth: ConstantArrayType::getNumAddressingBits( |
9972 | Context: Info.Ctx, ElementType: AllocType, NumElements: ArrayBound), |
9973 | ElemCount: ArrayBound.getZExtValue(), /*Diag=*/!IsNothrow)) { |
9974 | if (IsNothrow) |
9975 | return ZeroInitialization(E); |
9976 | return false; |
9977 | } |
9978 | |
9979 | // -- the new-initializer is a braced-init-list and the number of |
9980 | // array elements for which initializers are provided [...] |
9981 | // exceeds the number of elements to initialize |
9982 | if (!Init) { |
9983 | // No initialization is performed. |
9984 | } else if (isa<CXXScalarValueInitExpr>(Val: Init) || |
9985 | isa<ImplicitValueInitExpr>(Val: Init)) { |
9986 | ValueInit = true; |
9987 | } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Val: Init)) { |
9988 | ResizedArrayCCE = CCE; |
9989 | } else { |
9990 | auto *CAT = Info.Ctx.getAsConstantArrayType(T: Init->getType()); |
9991 | assert(CAT && "unexpected type for array initializer" ); |
9992 | |
9993 | unsigned Bits = |
9994 | std::max(a: CAT->getSizeBitWidth(), b: ArrayBound.getBitWidth()); |
9995 | llvm::APInt InitBound = CAT->getSize().zext(width: Bits); |
9996 | llvm::APInt AllocBound = ArrayBound.zext(width: Bits); |
9997 | if (InitBound.ugt(RHS: AllocBound)) { |
9998 | if (IsNothrow) |
9999 | return ZeroInitialization(E); |
10000 | |
10001 | Info.FFDiag(E: *ArraySize, DiagId: diag::note_constexpr_new_too_small) |
10002 | << toString(I: AllocBound, Radix: 10, /*Signed=*/false) |
10003 | << toString(I: InitBound, Radix: 10, /*Signed=*/false) |
10004 | << (*ArraySize)->getSourceRange(); |
10005 | return false; |
10006 | } |
10007 | |
10008 | // If the sizes differ, we must have an initializer list, and we need |
10009 | // special handling for this case when we initialize. |
10010 | if (InitBound != AllocBound) |
10011 | ResizedArrayILE = cast<InitListExpr>(Val: Init); |
10012 | } |
10013 | |
10014 | AllocType = Info.Ctx.getConstantArrayType(EltTy: AllocType, ArySize: ArrayBound, SizeExpr: nullptr, |
10015 | ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
10016 | } else { |
10017 | assert(!AllocType->isArrayType() && |
10018 | "array allocation with non-array new" ); |
10019 | } |
10020 | |
10021 | APValue *Val; |
10022 | if (IsPlacement) { |
10023 | AccessKinds AK = AK_Construct; |
10024 | struct FindObjectHandler { |
10025 | EvalInfo &Info; |
10026 | const Expr *E; |
10027 | QualType AllocType; |
10028 | const AccessKinds AccessKind; |
10029 | APValue *Value; |
10030 | |
10031 | typedef bool result_type; |
10032 | bool failed() { return false; } |
10033 | bool found(APValue &Subobj, QualType SubobjType) { |
10034 | // FIXME: Reject the cases where [basic.life]p8 would not permit the |
10035 | // old name of the object to be used to name the new object. |
10036 | if (!Info.Ctx.hasSameUnqualifiedType(T1: SubobjType, T2: AllocType)) { |
10037 | Info.FFDiag(E, DiagId: diag::note_constexpr_placement_new_wrong_type) << |
10038 | SubobjType << AllocType; |
10039 | return false; |
10040 | } |
10041 | Value = &Subobj; |
10042 | return true; |
10043 | } |
10044 | bool found(APSInt &Value, QualType SubobjType) { |
10045 | Info.FFDiag(E, DiagId: diag::note_constexpr_construct_complex_elem); |
10046 | return false; |
10047 | } |
10048 | bool found(APFloat &Value, QualType SubobjType) { |
10049 | Info.FFDiag(E, DiagId: diag::note_constexpr_construct_complex_elem); |
10050 | return false; |
10051 | } |
10052 | } Handler = {.Info: Info, .E: E, .AllocType: AllocType, .AccessKind: AK, .Value: nullptr}; |
10053 | |
10054 | CompleteObject Obj = findCompleteObject(Info, E, AK, LVal: Result, LValType: AllocType); |
10055 | if (!Obj || !findSubobject(Info, E, Obj, Sub: Result.Designator, handler&: Handler)) |
10056 | return false; |
10057 | |
10058 | Val = Handler.Value; |
10059 | |
10060 | // [basic.life]p1: |
10061 | // The lifetime of an object o of type T ends when [...] the storage |
10062 | // which the object occupies is [...] reused by an object that is not |
10063 | // nested within o (6.6.2). |
10064 | *Val = APValue(); |
10065 | } else { |
10066 | // Perform the allocation and obtain a pointer to the resulting object. |
10067 | Val = Info.createHeapAlloc(E, T: AllocType, LV&: Result); |
10068 | if (!Val) |
10069 | return false; |
10070 | } |
10071 | |
10072 | if (ValueInit) { |
10073 | ImplicitValueInitExpr VIE(AllocType); |
10074 | if (!EvaluateInPlace(Result&: *Val, Info, This: Result, E: &VIE)) |
10075 | return false; |
10076 | } else if (ResizedArrayILE) { |
10077 | if (!EvaluateArrayNewInitList(Info, This&: Result, Result&: *Val, ILE: ResizedArrayILE, |
10078 | AllocType)) |
10079 | return false; |
10080 | } else if (ResizedArrayCCE) { |
10081 | if (!EvaluateArrayNewConstructExpr(Info, This&: Result, Result&: *Val, CCE: ResizedArrayCCE, |
10082 | AllocType)) |
10083 | return false; |
10084 | } else if (Init) { |
10085 | if (!EvaluateInPlace(Result&: *Val, Info, This: Result, E: Init)) |
10086 | return false; |
10087 | } else if (!handleDefaultInitValue(T: AllocType, Result&: *Val)) { |
10088 | return false; |
10089 | } |
10090 | |
10091 | // Array new returns a pointer to the first element, not a pointer to the |
10092 | // array. |
10093 | if (auto *AT = AllocType->getAsArrayTypeUnsafe()) |
10094 | Result.addArray(Info, E, CAT: cast<ConstantArrayType>(Val: AT)); |
10095 | |
10096 | return true; |
10097 | } |
10098 | //===----------------------------------------------------------------------===// |
10099 | // Member Pointer Evaluation |
10100 | //===----------------------------------------------------------------------===// |
10101 | |
10102 | namespace { |
10103 | class MemberPointerExprEvaluator |
10104 | : public ExprEvaluatorBase<MemberPointerExprEvaluator> { |
10105 | MemberPtr &Result; |
10106 | |
10107 | bool Success(const ValueDecl *D) { |
10108 | Result = MemberPtr(D); |
10109 | return true; |
10110 | } |
10111 | public: |
10112 | |
10113 | MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result) |
10114 | : ExprEvaluatorBaseTy(Info), Result(Result) {} |
10115 | |
10116 | bool Success(const APValue &V, const Expr *E) { |
10117 | Result.setFrom(V); |
10118 | return true; |
10119 | } |
10120 | bool ZeroInitialization(const Expr *E) { |
10121 | return Success(D: (const ValueDecl*)nullptr); |
10122 | } |
10123 | |
10124 | bool VisitCastExpr(const CastExpr *E); |
10125 | bool VisitUnaryAddrOf(const UnaryOperator *E); |
10126 | }; |
10127 | } // end anonymous namespace |
10128 | |
10129 | static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, |
10130 | EvalInfo &Info) { |
10131 | assert(!E->isValueDependent()); |
10132 | assert(E->isPRValue() && E->getType()->isMemberPointerType()); |
10133 | return MemberPointerExprEvaluator(Info, Result).Visit(S: E); |
10134 | } |
10135 | |
10136 | bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) { |
10137 | switch (E->getCastKind()) { |
10138 | default: |
10139 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
10140 | |
10141 | case CK_NullToMemberPointer: |
10142 | VisitIgnoredValue(E: E->getSubExpr()); |
10143 | return ZeroInitialization(E); |
10144 | |
10145 | case CK_BaseToDerivedMemberPointer: { |
10146 | if (!Visit(S: E->getSubExpr())) |
10147 | return false; |
10148 | if (E->path_empty()) |
10149 | return true; |
10150 | // Base-to-derived member pointer casts store the path in derived-to-base |
10151 | // order, so iterate backwards. The CXXBaseSpecifier also provides us with |
10152 | // the wrong end of the derived->base arc, so stagger the path by one class. |
10153 | typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter; |
10154 | for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin()); |
10155 | PathI != PathE; ++PathI) { |
10156 | assert(!(*PathI)->isVirtual() && "memptr cast through vbase" ); |
10157 | const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl(); |
10158 | if (!Result.castToDerived(Derived)) |
10159 | return Error(E); |
10160 | } |
10161 | const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass(); |
10162 | if (!Result.castToDerived(Derived: FinalTy->getAsCXXRecordDecl())) |
10163 | return Error(E); |
10164 | return true; |
10165 | } |
10166 | |
10167 | case CK_DerivedToBaseMemberPointer: |
10168 | if (!Visit(S: E->getSubExpr())) |
10169 | return false; |
10170 | for (CastExpr::path_const_iterator PathI = E->path_begin(), |
10171 | PathE = E->path_end(); PathI != PathE; ++PathI) { |
10172 | assert(!(*PathI)->isVirtual() && "memptr cast through vbase" ); |
10173 | const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); |
10174 | if (!Result.castToBase(Base)) |
10175 | return Error(E); |
10176 | } |
10177 | return true; |
10178 | } |
10179 | } |
10180 | |
10181 | bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { |
10182 | // C++11 [expr.unary.op]p3 has very strict rules on how the address of a |
10183 | // member can be formed. |
10184 | return Success(D: cast<DeclRefExpr>(Val: E->getSubExpr())->getDecl()); |
10185 | } |
10186 | |
10187 | //===----------------------------------------------------------------------===// |
10188 | // Record Evaluation |
10189 | //===----------------------------------------------------------------------===// |
10190 | |
10191 | namespace { |
10192 | class RecordExprEvaluator |
10193 | : public ExprEvaluatorBase<RecordExprEvaluator> { |
10194 | const LValue &This; |
10195 | APValue &Result; |
10196 | public: |
10197 | |
10198 | RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result) |
10199 | : ExprEvaluatorBaseTy(info), This(This), Result(Result) {} |
10200 | |
10201 | bool Success(const APValue &V, const Expr *E) { |
10202 | Result = V; |
10203 | return true; |
10204 | } |
10205 | bool ZeroInitialization(const Expr *E) { |
10206 | return ZeroInitialization(E, T: E->getType()); |
10207 | } |
10208 | bool ZeroInitialization(const Expr *E, QualType T); |
10209 | |
10210 | bool VisitCallExpr(const CallExpr *E) { |
10211 | return handleCallExpr(E, Result, ResultSlot: &This); |
10212 | } |
10213 | bool VisitCastExpr(const CastExpr *E); |
10214 | bool VisitInitListExpr(const InitListExpr *E); |
10215 | bool VisitCXXConstructExpr(const CXXConstructExpr *E) { |
10216 | return VisitCXXConstructExpr(E, T: E->getType()); |
10217 | } |
10218 | bool VisitLambdaExpr(const LambdaExpr *E); |
10219 | bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); |
10220 | bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T); |
10221 | bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E); |
10222 | bool VisitBinCmp(const BinaryOperator *E); |
10223 | bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E); |
10224 | bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit, |
10225 | ArrayRef<Expr *> Args); |
10226 | }; |
10227 | } |
10228 | |
10229 | /// Perform zero-initialization on an object of non-union class type. |
10230 | /// C++11 [dcl.init]p5: |
10231 | /// To zero-initialize an object or reference of type T means: |
10232 | /// [...] |
10233 | /// -- if T is a (possibly cv-qualified) non-union class type, |
10234 | /// each non-static data member and each base-class subobject is |
10235 | /// zero-initialized |
10236 | static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E, |
10237 | const RecordDecl *RD, |
10238 | const LValue &This, APValue &Result) { |
10239 | assert(!RD->isUnion() && "Expected non-union class type" ); |
10240 | const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(Val: RD); |
10241 | Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0, |
10242 | std::distance(first: RD->field_begin(), last: RD->field_end())); |
10243 | |
10244 | if (RD->isInvalidDecl()) return false; |
10245 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD); |
10246 | |
10247 | if (CD) { |
10248 | unsigned Index = 0; |
10249 | for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(), |
10250 | End = CD->bases_end(); I != End; ++I, ++Index) { |
10251 | const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl(); |
10252 | LValue Subobject = This; |
10253 | if (!HandleLValueDirectBase(Info, E, Obj&: Subobject, Derived: CD, Base, RL: &Layout)) |
10254 | return false; |
10255 | if (!HandleClassZeroInitialization(Info, E, RD: Base, This: Subobject, |
10256 | Result&: Result.getStructBase(i: Index))) |
10257 | return false; |
10258 | } |
10259 | } |
10260 | |
10261 | for (const auto *I : RD->fields()) { |
10262 | // -- if T is a reference type, no initialization is performed. |
10263 | if (I->isUnnamedBitField() || I->getType()->isReferenceType()) |
10264 | continue; |
10265 | |
10266 | LValue Subobject = This; |
10267 | if (!HandleLValueMember(Info, E, LVal&: Subobject, FD: I, RL: &Layout)) |
10268 | return false; |
10269 | |
10270 | ImplicitValueInitExpr VIE(I->getType()); |
10271 | if (!EvaluateInPlace( |
10272 | Result&: Result.getStructField(i: I->getFieldIndex()), Info, This: Subobject, E: &VIE)) |
10273 | return false; |
10274 | } |
10275 | |
10276 | return true; |
10277 | } |
10278 | |
10279 | bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) { |
10280 | const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); |
10281 | if (RD->isInvalidDecl()) return false; |
10282 | if (RD->isUnion()) { |
10283 | // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the |
10284 | // object's first non-static named data member is zero-initialized |
10285 | RecordDecl::field_iterator I = RD->field_begin(); |
10286 | while (I != RD->field_end() && (*I)->isUnnamedBitField()) |
10287 | ++I; |
10288 | if (I == RD->field_end()) { |
10289 | Result = APValue((const FieldDecl*)nullptr); |
10290 | return true; |
10291 | } |
10292 | |
10293 | LValue Subobject = This; |
10294 | if (!HandleLValueMember(Info, E, LVal&: Subobject, FD: *I)) |
10295 | return false; |
10296 | Result = APValue(*I); |
10297 | ImplicitValueInitExpr VIE(I->getType()); |
10298 | return EvaluateInPlace(Result&: Result.getUnionValue(), Info, This: Subobject, E: &VIE); |
10299 | } |
10300 | |
10301 | if (isa<CXXRecordDecl>(Val: RD) && cast<CXXRecordDecl>(Val: RD)->getNumVBases()) { |
10302 | Info.FFDiag(E, DiagId: diag::note_constexpr_virtual_base) << RD; |
10303 | return false; |
10304 | } |
10305 | |
10306 | return HandleClassZeroInitialization(Info, E, RD, This, Result); |
10307 | } |
10308 | |
10309 | bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) { |
10310 | switch (E->getCastKind()) { |
10311 | default: |
10312 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
10313 | |
10314 | case CK_ConstructorConversion: |
10315 | return Visit(S: E->getSubExpr()); |
10316 | |
10317 | case CK_DerivedToBase: |
10318 | case CK_UncheckedDerivedToBase: { |
10319 | APValue DerivedObject; |
10320 | if (!Evaluate(Result&: DerivedObject, Info, E: E->getSubExpr())) |
10321 | return false; |
10322 | if (!DerivedObject.isStruct()) |
10323 | return Error(E: E->getSubExpr()); |
10324 | |
10325 | // Derived-to-base rvalue conversion: just slice off the derived part. |
10326 | APValue *Value = &DerivedObject; |
10327 | const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl(); |
10328 | for (CastExpr::path_const_iterator PathI = E->path_begin(), |
10329 | PathE = E->path_end(); PathI != PathE; ++PathI) { |
10330 | assert(!(*PathI)->isVirtual() && "record rvalue with virtual base" ); |
10331 | const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); |
10332 | Value = &Value->getStructBase(i: getBaseIndex(Derived: RD, Base)); |
10333 | RD = Base; |
10334 | } |
10335 | Result = *Value; |
10336 | return true; |
10337 | } |
10338 | } |
10339 | } |
10340 | |
10341 | bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) { |
10342 | if (E->isTransparent()) |
10343 | return Visit(S: E->getInit(Init: 0)); |
10344 | return VisitCXXParenListOrInitListExpr(ExprToVisit: E, Args: E->inits()); |
10345 | } |
10346 | |
10347 | bool RecordExprEvaluator::VisitCXXParenListOrInitListExpr( |
10348 | const Expr *ExprToVisit, ArrayRef<Expr *> Args) { |
10349 | const RecordDecl *RD = |
10350 | ExprToVisit->getType()->castAs<RecordType>()->getDecl(); |
10351 | if (RD->isInvalidDecl()) return false; |
10352 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD); |
10353 | auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD); |
10354 | |
10355 | EvalInfo::EvaluatingConstructorRAII EvalObj( |
10356 | Info, |
10357 | ObjectUnderConstruction{.Base: This.getLValueBase(), .Path: This.Designator.Entries}, |
10358 | CXXRD && CXXRD->getNumBases()); |
10359 | |
10360 | if (RD->isUnion()) { |
10361 | const FieldDecl *Field; |
10362 | if (auto *ILE = dyn_cast<InitListExpr>(Val: ExprToVisit)) { |
10363 | Field = ILE->getInitializedFieldInUnion(); |
10364 | } else if (auto *PLIE = dyn_cast<CXXParenListInitExpr>(Val: ExprToVisit)) { |
10365 | Field = PLIE->getInitializedFieldInUnion(); |
10366 | } else { |
10367 | llvm_unreachable( |
10368 | "Expression is neither an init list nor a C++ paren list" ); |
10369 | } |
10370 | |
10371 | Result = APValue(Field); |
10372 | if (!Field) |
10373 | return true; |
10374 | |
10375 | // If the initializer list for a union does not contain any elements, the |
10376 | // first element of the union is value-initialized. |
10377 | // FIXME: The element should be initialized from an initializer list. |
10378 | // Is this difference ever observable for initializer lists which |
10379 | // we don't build? |
10380 | ImplicitValueInitExpr VIE(Field->getType()); |
10381 | const Expr *InitExpr = Args.empty() ? &VIE : Args[0]; |
10382 | |
10383 | LValue Subobject = This; |
10384 | if (!HandleLValueMember(Info, E: InitExpr, LVal&: Subobject, FD: Field, RL: &Layout)) |
10385 | return false; |
10386 | |
10387 | // Temporarily override This, in case there's a CXXDefaultInitExpr in here. |
10388 | ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, |
10389 | isa<CXXDefaultInitExpr>(Val: InitExpr)); |
10390 | |
10391 | if (EvaluateInPlace(Result&: Result.getUnionValue(), Info, This: Subobject, E: InitExpr)) { |
10392 | if (Field->isBitField()) |
10393 | return truncateBitfieldValue(Info, E: InitExpr, Value&: Result.getUnionValue(), |
10394 | FD: Field); |
10395 | return true; |
10396 | } |
10397 | |
10398 | return false; |
10399 | } |
10400 | |
10401 | if (!Result.hasValue()) |
10402 | Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0, |
10403 | std::distance(first: RD->field_begin(), last: RD->field_end())); |
10404 | unsigned ElementNo = 0; |
10405 | bool Success = true; |
10406 | |
10407 | // Initialize base classes. |
10408 | if (CXXRD && CXXRD->getNumBases()) { |
10409 | for (const auto &Base : CXXRD->bases()) { |
10410 | assert(ElementNo < Args.size() && "missing init for base class" ); |
10411 | const Expr *Init = Args[ElementNo]; |
10412 | |
10413 | LValue Subobject = This; |
10414 | if (!HandleLValueBase(Info, E: Init, Obj&: Subobject, DerivedDecl: CXXRD, Base: &Base)) |
10415 | return false; |
10416 | |
10417 | APValue &FieldVal = Result.getStructBase(i: ElementNo); |
10418 | if (!EvaluateInPlace(Result&: FieldVal, Info, This: Subobject, E: Init)) { |
10419 | if (!Info.noteFailure()) |
10420 | return false; |
10421 | Success = false; |
10422 | } |
10423 | ++ElementNo; |
10424 | } |
10425 | |
10426 | EvalObj.finishedConstructingBases(); |
10427 | } |
10428 | |
10429 | // Initialize members. |
10430 | for (const auto *Field : RD->fields()) { |
10431 | // Anonymous bit-fields are not considered members of the class for |
10432 | // purposes of aggregate initialization. |
10433 | if (Field->isUnnamedBitField()) |
10434 | continue; |
10435 | |
10436 | LValue Subobject = This; |
10437 | |
10438 | bool HaveInit = ElementNo < Args.size(); |
10439 | |
10440 | // FIXME: Diagnostics here should point to the end of the initializer |
10441 | // list, not the start. |
10442 | if (!HandleLValueMember(Info, E: HaveInit ? Args[ElementNo] : ExprToVisit, |
10443 | LVal&: Subobject, FD: Field, RL: &Layout)) |
10444 | return false; |
10445 | |
10446 | // Perform an implicit value-initialization for members beyond the end of |
10447 | // the initializer list. |
10448 | ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType()); |
10449 | const Expr *Init = HaveInit ? Args[ElementNo++] : &VIE; |
10450 | |
10451 | if (Field->getType()->isIncompleteArrayType()) { |
10452 | if (auto *CAT = Info.Ctx.getAsConstantArrayType(T: Init->getType())) { |
10453 | if (!CAT->isZeroSize()) { |
10454 | // Bail out for now. This might sort of "work", but the rest of the |
10455 | // code isn't really prepared to handle it. |
10456 | Info.FFDiag(E: Init, DiagId: diag::note_constexpr_unsupported_flexible_array); |
10457 | return false; |
10458 | } |
10459 | } |
10460 | } |
10461 | |
10462 | // Temporarily override This, in case there's a CXXDefaultInitExpr in here. |
10463 | ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, |
10464 | isa<CXXDefaultInitExpr>(Val: Init)); |
10465 | |
10466 | APValue &FieldVal = Result.getStructField(i: Field->getFieldIndex()); |
10467 | if (!EvaluateInPlace(Result&: FieldVal, Info, This: Subobject, E: Init) || |
10468 | (Field->isBitField() && !truncateBitfieldValue(Info, E: Init, |
10469 | Value&: FieldVal, FD: Field))) { |
10470 | if (!Info.noteFailure()) |
10471 | return false; |
10472 | Success = false; |
10473 | } |
10474 | } |
10475 | |
10476 | EvalObj.finishedConstructingFields(); |
10477 | |
10478 | return Success; |
10479 | } |
10480 | |
10481 | bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, |
10482 | QualType T) { |
10483 | // Note that E's type is not necessarily the type of our class here; we might |
10484 | // be initializing an array element instead. |
10485 | const CXXConstructorDecl *FD = E->getConstructor(); |
10486 | if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false; |
10487 | |
10488 | bool ZeroInit = E->requiresZeroInitialization(); |
10489 | if (CheckTrivialDefaultConstructor(Info, Loc: E->getExprLoc(), CD: FD, IsValueInitialization: ZeroInit)) { |
10490 | // If we've already performed zero-initialization, we're already done. |
10491 | if (Result.hasValue()) |
10492 | return true; |
10493 | |
10494 | if (ZeroInit) |
10495 | return ZeroInitialization(E, T); |
10496 | |
10497 | return handleDefaultInitValue(T, Result); |
10498 | } |
10499 | |
10500 | const FunctionDecl *Definition = nullptr; |
10501 | auto Body = FD->getBody(Definition); |
10502 | |
10503 | if (!CheckConstexprFunction(Info, CallLoc: E->getExprLoc(), Declaration: FD, Definition, Body)) |
10504 | return false; |
10505 | |
10506 | // Avoid materializing a temporary for an elidable copy/move constructor. |
10507 | if (E->isElidable() && !ZeroInit) { |
10508 | // FIXME: This only handles the simplest case, where the source object |
10509 | // is passed directly as the first argument to the constructor. |
10510 | // This should also handle stepping though implicit casts and |
10511 | // and conversion sequences which involve two steps, with a |
10512 | // conversion operator followed by a converting constructor. |
10513 | const Expr *SrcObj = E->getArg(Arg: 0); |
10514 | assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent())); |
10515 | assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType())); |
10516 | if (const MaterializeTemporaryExpr *ME = |
10517 | dyn_cast<MaterializeTemporaryExpr>(Val: SrcObj)) |
10518 | return Visit(S: ME->getSubExpr()); |
10519 | } |
10520 | |
10521 | if (ZeroInit && !ZeroInitialization(E, T)) |
10522 | return false; |
10523 | |
10524 | auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs()); |
10525 | return HandleConstructorCall(E, This, Args, |
10526 | Definition: cast<CXXConstructorDecl>(Val: Definition), Info, |
10527 | Result); |
10528 | } |
10529 | |
10530 | bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr( |
10531 | const CXXInheritedCtorInitExpr *E) { |
10532 | if (!Info.CurrentCall) { |
10533 | assert(Info.checkingPotentialConstantExpression()); |
10534 | return false; |
10535 | } |
10536 | |
10537 | const CXXConstructorDecl *FD = E->getConstructor(); |
10538 | if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) |
10539 | return false; |
10540 | |
10541 | const FunctionDecl *Definition = nullptr; |
10542 | auto Body = FD->getBody(Definition); |
10543 | |
10544 | if (!CheckConstexprFunction(Info, CallLoc: E->getExprLoc(), Declaration: FD, Definition, Body)) |
10545 | return false; |
10546 | |
10547 | return HandleConstructorCall(E, This, Call: Info.CurrentCall->Arguments, |
10548 | Definition: cast<CXXConstructorDecl>(Val: Definition), Info, |
10549 | Result); |
10550 | } |
10551 | |
10552 | bool RecordExprEvaluator::VisitCXXStdInitializerListExpr( |
10553 | const CXXStdInitializerListExpr *E) { |
10554 | const ConstantArrayType *ArrayType = |
10555 | Info.Ctx.getAsConstantArrayType(T: E->getSubExpr()->getType()); |
10556 | |
10557 | LValue Array; |
10558 | if (!EvaluateLValue(E: E->getSubExpr(), Result&: Array, Info)) |
10559 | return false; |
10560 | |
10561 | assert(ArrayType && "unexpected type for array initializer" ); |
10562 | |
10563 | // Get a pointer to the first element of the array. |
10564 | Array.addArray(Info, E, CAT: ArrayType); |
10565 | |
10566 | // FIXME: What if the initializer_list type has base classes, etc? |
10567 | Result = APValue(APValue::UninitStruct(), 0, 2); |
10568 | Array.moveInto(V&: Result.getStructField(i: 0)); |
10569 | |
10570 | RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); |
10571 | RecordDecl::field_iterator Field = Record->field_begin(); |
10572 | assert(Field != Record->field_end() && |
10573 | Info.Ctx.hasSameType(Field->getType()->getPointeeType(), |
10574 | ArrayType->getElementType()) && |
10575 | "Expected std::initializer_list first field to be const E *" ); |
10576 | ++Field; |
10577 | assert(Field != Record->field_end() && |
10578 | "Expected std::initializer_list to have two fields" ); |
10579 | |
10580 | if (Info.Ctx.hasSameType(T1: Field->getType(), T2: Info.Ctx.getSizeType())) { |
10581 | // Length. |
10582 | Result.getStructField(i: 1) = APValue(APSInt(ArrayType->getSize())); |
10583 | } else { |
10584 | // End pointer. |
10585 | assert(Info.Ctx.hasSameType(Field->getType()->getPointeeType(), |
10586 | ArrayType->getElementType()) && |
10587 | "Expected std::initializer_list second field to be const E *" ); |
10588 | if (!HandleLValueArrayAdjustment(Info, E, LVal&: Array, |
10589 | EltTy: ArrayType->getElementType(), |
10590 | Adjustment: ArrayType->getZExtSize())) |
10591 | return false; |
10592 | Array.moveInto(V&: Result.getStructField(i: 1)); |
10593 | } |
10594 | |
10595 | assert(++Field == Record->field_end() && |
10596 | "Expected std::initializer_list to only have two fields" ); |
10597 | |
10598 | return true; |
10599 | } |
10600 | |
10601 | bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) { |
10602 | const CXXRecordDecl *ClosureClass = E->getLambdaClass(); |
10603 | if (ClosureClass->isInvalidDecl()) |
10604 | return false; |
10605 | |
10606 | const size_t NumFields = |
10607 | std::distance(first: ClosureClass->field_begin(), last: ClosureClass->field_end()); |
10608 | |
10609 | assert(NumFields == (size_t)std::distance(E->capture_init_begin(), |
10610 | E->capture_init_end()) && |
10611 | "The number of lambda capture initializers should equal the number of " |
10612 | "fields within the closure type" ); |
10613 | |
10614 | Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields); |
10615 | // Iterate through all the lambda's closure object's fields and initialize |
10616 | // them. |
10617 | auto *CaptureInitIt = E->capture_init_begin(); |
10618 | bool Success = true; |
10619 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: ClosureClass); |
10620 | for (const auto *Field : ClosureClass->fields()) { |
10621 | assert(CaptureInitIt != E->capture_init_end()); |
10622 | // Get the initializer for this field |
10623 | Expr *const CurFieldInit = *CaptureInitIt++; |
10624 | |
10625 | // If there is no initializer, either this is a VLA or an error has |
10626 | // occurred. |
10627 | if (!CurFieldInit) |
10628 | return Error(E); |
10629 | |
10630 | LValue Subobject = This; |
10631 | |
10632 | if (!HandleLValueMember(Info, E, LVal&: Subobject, FD: Field, RL: &Layout)) |
10633 | return false; |
10634 | |
10635 | APValue &FieldVal = Result.getStructField(i: Field->getFieldIndex()); |
10636 | if (!EvaluateInPlace(Result&: FieldVal, Info, This: Subobject, E: CurFieldInit)) { |
10637 | if (!Info.keepEvaluatingAfterFailure()) |
10638 | return false; |
10639 | Success = false; |
10640 | } |
10641 | } |
10642 | return Success; |
10643 | } |
10644 | |
10645 | static bool EvaluateRecord(const Expr *E, const LValue &This, |
10646 | APValue &Result, EvalInfo &Info) { |
10647 | assert(!E->isValueDependent()); |
10648 | assert(E->isPRValue() && E->getType()->isRecordType() && |
10649 | "can't evaluate expression as a record rvalue" ); |
10650 | return RecordExprEvaluator(Info, This, Result).Visit(S: E); |
10651 | } |
10652 | |
10653 | //===----------------------------------------------------------------------===// |
10654 | // Temporary Evaluation |
10655 | // |
10656 | // Temporaries are represented in the AST as rvalues, but generally behave like |
10657 | // lvalues. The full-object of which the temporary is a subobject is implicitly |
10658 | // materialized so that a reference can bind to it. |
10659 | //===----------------------------------------------------------------------===// |
10660 | namespace { |
10661 | class TemporaryExprEvaluator |
10662 | : public LValueExprEvaluatorBase<TemporaryExprEvaluator> { |
10663 | public: |
10664 | TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) : |
10665 | LValueExprEvaluatorBaseTy(Info, Result, false) {} |
10666 | |
10667 | /// Visit an expression which constructs the value of this temporary. |
10668 | bool VisitConstructExpr(const Expr *E) { |
10669 | APValue &Value = Info.CurrentCall->createTemporary( |
10670 | Key: E, T: E->getType(), Scope: ScopeKind::FullExpression, LV&: Result); |
10671 | return EvaluateInPlace(Result&: Value, Info, This: Result, E); |
10672 | } |
10673 | |
10674 | bool VisitCastExpr(const CastExpr *E) { |
10675 | switch (E->getCastKind()) { |
10676 | default: |
10677 | return LValueExprEvaluatorBaseTy::VisitCastExpr(E); |
10678 | |
10679 | case CK_ConstructorConversion: |
10680 | return VisitConstructExpr(E: E->getSubExpr()); |
10681 | } |
10682 | } |
10683 | bool VisitInitListExpr(const InitListExpr *E) { |
10684 | return VisitConstructExpr(E); |
10685 | } |
10686 | bool VisitCXXConstructExpr(const CXXConstructExpr *E) { |
10687 | return VisitConstructExpr(E); |
10688 | } |
10689 | bool VisitCallExpr(const CallExpr *E) { |
10690 | return VisitConstructExpr(E); |
10691 | } |
10692 | bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) { |
10693 | return VisitConstructExpr(E); |
10694 | } |
10695 | bool VisitLambdaExpr(const LambdaExpr *E) { |
10696 | return VisitConstructExpr(E); |
10697 | } |
10698 | }; |
10699 | } // end anonymous namespace |
10700 | |
10701 | /// Evaluate an expression of record type as a temporary. |
10702 | static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) { |
10703 | assert(!E->isValueDependent()); |
10704 | assert(E->isPRValue() && E->getType()->isRecordType()); |
10705 | return TemporaryExprEvaluator(Info, Result).Visit(S: E); |
10706 | } |
10707 | |
10708 | //===----------------------------------------------------------------------===// |
10709 | // Vector Evaluation |
10710 | //===----------------------------------------------------------------------===// |
10711 | |
10712 | namespace { |
10713 | class VectorExprEvaluator |
10714 | : public ExprEvaluatorBase<VectorExprEvaluator> { |
10715 | APValue &Result; |
10716 | public: |
10717 | |
10718 | VectorExprEvaluator(EvalInfo &info, APValue &Result) |
10719 | : ExprEvaluatorBaseTy(info), Result(Result) {} |
10720 | |
10721 | bool Success(ArrayRef<APValue> V, const Expr *E) { |
10722 | assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements()); |
10723 | // FIXME: remove this APValue copy. |
10724 | Result = APValue(V.data(), V.size()); |
10725 | return true; |
10726 | } |
10727 | bool Success(const APValue &V, const Expr *E) { |
10728 | assert(V.isVector()); |
10729 | Result = V; |
10730 | return true; |
10731 | } |
10732 | bool ZeroInitialization(const Expr *E); |
10733 | |
10734 | bool VisitUnaryReal(const UnaryOperator *E) |
10735 | { return Visit(S: E->getSubExpr()); } |
10736 | bool VisitCastExpr(const CastExpr* E); |
10737 | bool VisitInitListExpr(const InitListExpr *E); |
10738 | bool VisitUnaryImag(const UnaryOperator *E); |
10739 | bool VisitBinaryOperator(const BinaryOperator *E); |
10740 | bool VisitUnaryOperator(const UnaryOperator *E); |
10741 | bool VisitConvertVectorExpr(const ConvertVectorExpr *E); |
10742 | bool VisitShuffleVectorExpr(const ShuffleVectorExpr *E); |
10743 | |
10744 | // FIXME: Missing: conditional operator (for GNU |
10745 | // conditional select), ExtVectorElementExpr |
10746 | }; |
10747 | } // end anonymous namespace |
10748 | |
10749 | static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) { |
10750 | assert(E->isPRValue() && E->getType()->isVectorType() && |
10751 | "not a vector prvalue" ); |
10752 | return VectorExprEvaluator(Info, Result).Visit(S: E); |
10753 | } |
10754 | |
10755 | bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) { |
10756 | const VectorType *VTy = E->getType()->castAs<VectorType>(); |
10757 | unsigned NElts = VTy->getNumElements(); |
10758 | |
10759 | const Expr *SE = E->getSubExpr(); |
10760 | QualType SETy = SE->getType(); |
10761 | |
10762 | switch (E->getCastKind()) { |
10763 | case CK_VectorSplat: { |
10764 | APValue Val = APValue(); |
10765 | if (SETy->isIntegerType()) { |
10766 | APSInt IntResult; |
10767 | if (!EvaluateInteger(E: SE, Result&: IntResult, Info)) |
10768 | return false; |
10769 | Val = APValue(std::move(IntResult)); |
10770 | } else if (SETy->isRealFloatingType()) { |
10771 | APFloat FloatResult(0.0); |
10772 | if (!EvaluateFloat(E: SE, Result&: FloatResult, Info)) |
10773 | return false; |
10774 | Val = APValue(std::move(FloatResult)); |
10775 | } else { |
10776 | return Error(E); |
10777 | } |
10778 | |
10779 | // Splat and create vector APValue. |
10780 | SmallVector<APValue, 4> Elts(NElts, Val); |
10781 | return Success(V: Elts, E); |
10782 | } |
10783 | case CK_BitCast: { |
10784 | APValue SVal; |
10785 | if (!Evaluate(Result&: SVal, Info, E: SE)) |
10786 | return false; |
10787 | |
10788 | if (!SVal.isInt() && !SVal.isFloat() && !SVal.isVector()) { |
10789 | // Give up if the input isn't an int, float, or vector. For example, we |
10790 | // reject "(v4i16)(intptr_t)&a". |
10791 | Info.FFDiag(E, DiagId: diag::note_constexpr_invalid_cast) |
10792 | << 2 << Info.Ctx.getLangOpts().CPlusPlus; |
10793 | return false; |
10794 | } |
10795 | |
10796 | if (!handleRValueToRValueBitCast(Info, DestValue&: Result, SourceRValue: SVal, BCE: E)) |
10797 | return false; |
10798 | |
10799 | return true; |
10800 | } |
10801 | default: |
10802 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
10803 | } |
10804 | } |
10805 | |
10806 | bool |
10807 | VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) { |
10808 | const VectorType *VT = E->getType()->castAs<VectorType>(); |
10809 | unsigned NumInits = E->getNumInits(); |
10810 | unsigned NumElements = VT->getNumElements(); |
10811 | |
10812 | QualType EltTy = VT->getElementType(); |
10813 | SmallVector<APValue, 4> Elements; |
10814 | |
10815 | // The number of initializers can be less than the number of |
10816 | // vector elements. For OpenCL, this can be due to nested vector |
10817 | // initialization. For GCC compatibility, missing trailing elements |
10818 | // should be initialized with zeroes. |
10819 | unsigned CountInits = 0, CountElts = 0; |
10820 | while (CountElts < NumElements) { |
10821 | // Handle nested vector initialization. |
10822 | if (CountInits < NumInits |
10823 | && E->getInit(Init: CountInits)->getType()->isVectorType()) { |
10824 | APValue v; |
10825 | if (!EvaluateVector(E: E->getInit(Init: CountInits), Result&: v, Info)) |
10826 | return Error(E); |
10827 | unsigned vlen = v.getVectorLength(); |
10828 | for (unsigned j = 0; j < vlen; j++) |
10829 | Elements.push_back(Elt: v.getVectorElt(I: j)); |
10830 | CountElts += vlen; |
10831 | } else if (EltTy->isIntegerType()) { |
10832 | llvm::APSInt sInt(32); |
10833 | if (CountInits < NumInits) { |
10834 | if (!EvaluateInteger(E: E->getInit(Init: CountInits), Result&: sInt, Info)) |
10835 | return false; |
10836 | } else // trailing integer zero. |
10837 | sInt = Info.Ctx.MakeIntValue(Value: 0, Type: EltTy); |
10838 | Elements.push_back(Elt: APValue(sInt)); |
10839 | CountElts++; |
10840 | } else { |
10841 | llvm::APFloat f(0.0); |
10842 | if (CountInits < NumInits) { |
10843 | if (!EvaluateFloat(E: E->getInit(Init: CountInits), Result&: f, Info)) |
10844 | return false; |
10845 | } else // trailing float zero. |
10846 | f = APFloat::getZero(Sem: Info.Ctx.getFloatTypeSemantics(T: EltTy)); |
10847 | Elements.push_back(Elt: APValue(f)); |
10848 | CountElts++; |
10849 | } |
10850 | CountInits++; |
10851 | } |
10852 | return Success(V: Elements, E); |
10853 | } |
10854 | |
10855 | bool |
10856 | VectorExprEvaluator::ZeroInitialization(const Expr *E) { |
10857 | const auto *VT = E->getType()->castAs<VectorType>(); |
10858 | QualType EltTy = VT->getElementType(); |
10859 | APValue ZeroElement; |
10860 | if (EltTy->isIntegerType()) |
10861 | ZeroElement = APValue(Info.Ctx.MakeIntValue(Value: 0, Type: EltTy)); |
10862 | else |
10863 | ZeroElement = |
10864 | APValue(APFloat::getZero(Sem: Info.Ctx.getFloatTypeSemantics(T: EltTy))); |
10865 | |
10866 | SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement); |
10867 | return Success(V: Elements, E); |
10868 | } |
10869 | |
10870 | bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
10871 | VisitIgnoredValue(E: E->getSubExpr()); |
10872 | return ZeroInitialization(E); |
10873 | } |
10874 | |
10875 | bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
10876 | BinaryOperatorKind Op = E->getOpcode(); |
10877 | assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp && |
10878 | "Operation not supported on vector types" ); |
10879 | |
10880 | if (Op == BO_Comma) |
10881 | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
10882 | |
10883 | Expr *LHS = E->getLHS(); |
10884 | Expr *RHS = E->getRHS(); |
10885 | |
10886 | assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() && |
10887 | "Must both be vector types" ); |
10888 | // Checking JUST the types are the same would be fine, except shifts don't |
10889 | // need to have their types be the same (since you always shift by an int). |
10890 | assert(LHS->getType()->castAs<VectorType>()->getNumElements() == |
10891 | E->getType()->castAs<VectorType>()->getNumElements() && |
10892 | RHS->getType()->castAs<VectorType>()->getNumElements() == |
10893 | E->getType()->castAs<VectorType>()->getNumElements() && |
10894 | "All operands must be the same size." ); |
10895 | |
10896 | APValue LHSValue; |
10897 | APValue RHSValue; |
10898 | bool LHSOK = Evaluate(Result&: LHSValue, Info, E: LHS); |
10899 | if (!LHSOK && !Info.noteFailure()) |
10900 | return false; |
10901 | if (!Evaluate(Result&: RHSValue, Info, E: RHS) || !LHSOK) |
10902 | return false; |
10903 | |
10904 | if (!handleVectorVectorBinOp(Info, E, Opcode: Op, LHSValue, RHSValue)) |
10905 | return false; |
10906 | |
10907 | return Success(V: LHSValue, E); |
10908 | } |
10909 | |
10910 | static std::optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx, |
10911 | QualType ResultTy, |
10912 | UnaryOperatorKind Op, |
10913 | APValue Elt) { |
10914 | switch (Op) { |
10915 | case UO_Plus: |
10916 | // Nothing to do here. |
10917 | return Elt; |
10918 | case UO_Minus: |
10919 | if (Elt.getKind() == APValue::Int) { |
10920 | Elt.getInt().negate(); |
10921 | } else { |
10922 | assert(Elt.getKind() == APValue::Float && |
10923 | "Vector can only be int or float type" ); |
10924 | Elt.getFloat().changeSign(); |
10925 | } |
10926 | return Elt; |
10927 | case UO_Not: |
10928 | // This is only valid for integral types anyway, so we don't have to handle |
10929 | // float here. |
10930 | assert(Elt.getKind() == APValue::Int && |
10931 | "Vector operator ~ can only be int" ); |
10932 | Elt.getInt().flipAllBits(); |
10933 | return Elt; |
10934 | case UO_LNot: { |
10935 | if (Elt.getKind() == APValue::Int) { |
10936 | Elt.getInt() = !Elt.getInt(); |
10937 | // operator ! on vectors returns -1 for 'truth', so negate it. |
10938 | Elt.getInt().negate(); |
10939 | return Elt; |
10940 | } |
10941 | assert(Elt.getKind() == APValue::Float && |
10942 | "Vector can only be int or float type" ); |
10943 | // Float types result in an int of the same size, but -1 for true, or 0 for |
10944 | // false. |
10945 | APSInt EltResult{Ctx.getIntWidth(T: ResultTy), |
10946 | ResultTy->isUnsignedIntegerType()}; |
10947 | if (Elt.getFloat().isZero()) |
10948 | EltResult.setAllBits(); |
10949 | else |
10950 | EltResult.clearAllBits(); |
10951 | |
10952 | return APValue{EltResult}; |
10953 | } |
10954 | default: |
10955 | // FIXME: Implement the rest of the unary operators. |
10956 | return std::nullopt; |
10957 | } |
10958 | } |
10959 | |
10960 | bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
10961 | Expr *SubExpr = E->getSubExpr(); |
10962 | const auto *VD = SubExpr->getType()->castAs<VectorType>(); |
10963 | // This result element type differs in the case of negating a floating point |
10964 | // vector, since the result type is the a vector of the equivilant sized |
10965 | // integer. |
10966 | const QualType ResultEltTy = VD->getElementType(); |
10967 | UnaryOperatorKind Op = E->getOpcode(); |
10968 | |
10969 | APValue SubExprValue; |
10970 | if (!Evaluate(Result&: SubExprValue, Info, E: SubExpr)) |
10971 | return false; |
10972 | |
10973 | // FIXME: This vector evaluator someday needs to be changed to be LValue |
10974 | // aware/keep LValue information around, rather than dealing with just vector |
10975 | // types directly. Until then, we cannot handle cases where the operand to |
10976 | // these unary operators is an LValue. The only case I've been able to see |
10977 | // cause this is operator++ assigning to a member expression (only valid in |
10978 | // altivec compilations) in C mode, so this shouldn't limit us too much. |
10979 | if (SubExprValue.isLValue()) |
10980 | return false; |
10981 | |
10982 | assert(SubExprValue.getVectorLength() == VD->getNumElements() && |
10983 | "Vector length doesn't match type?" ); |
10984 | |
10985 | SmallVector<APValue, 4> ResultElements; |
10986 | for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) { |
10987 | std::optional<APValue> Elt = handleVectorUnaryOperator( |
10988 | Ctx&: Info.Ctx, ResultTy: ResultEltTy, Op, Elt: SubExprValue.getVectorElt(I: EltNum)); |
10989 | if (!Elt) |
10990 | return false; |
10991 | ResultElements.push_back(Elt: *Elt); |
10992 | } |
10993 | return Success(V: APValue(ResultElements.data(), ResultElements.size()), E); |
10994 | } |
10995 | |
10996 | static bool handleVectorElementCast(EvalInfo &Info, const FPOptions FPO, |
10997 | const Expr *E, QualType SourceTy, |
10998 | QualType DestTy, APValue const &Original, |
10999 | APValue &Result) { |
11000 | if (SourceTy->isIntegerType()) { |
11001 | if (DestTy->isRealFloatingType()) { |
11002 | Result = APValue(APFloat(0.0)); |
11003 | return HandleIntToFloatCast(Info, E, FPO, SrcType: SourceTy, Value: Original.getInt(), |
11004 | DestType: DestTy, Result&: Result.getFloat()); |
11005 | } |
11006 | if (DestTy->isIntegerType()) { |
11007 | Result = APValue( |
11008 | HandleIntToIntCast(Info, E, DestType: DestTy, SrcType: SourceTy, Value: Original.getInt())); |
11009 | return true; |
11010 | } |
11011 | } else if (SourceTy->isRealFloatingType()) { |
11012 | if (DestTy->isRealFloatingType()) { |
11013 | Result = Original; |
11014 | return HandleFloatToFloatCast(Info, E, SrcType: SourceTy, DestType: DestTy, |
11015 | Result&: Result.getFloat()); |
11016 | } |
11017 | if (DestTy->isIntegerType()) { |
11018 | Result = APValue(APSInt()); |
11019 | return HandleFloatToIntCast(Info, E, SrcType: SourceTy, Value: Original.getFloat(), |
11020 | DestType: DestTy, Result&: Result.getInt()); |
11021 | } |
11022 | } |
11023 | |
11024 | Info.FFDiag(E, DiagId: diag::err_convertvector_constexpr_unsupported_vector_cast) |
11025 | << SourceTy << DestTy; |
11026 | return false; |
11027 | } |
11028 | |
11029 | bool VectorExprEvaluator::VisitConvertVectorExpr(const ConvertVectorExpr *E) { |
11030 | APValue Source; |
11031 | QualType SourceVecType = E->getSrcExpr()->getType(); |
11032 | if (!EvaluateAsRValue(Info, E: E->getSrcExpr(), Result&: Source)) |
11033 | return false; |
11034 | |
11035 | QualType DestTy = E->getType()->castAs<VectorType>()->getElementType(); |
11036 | QualType SourceTy = SourceVecType->castAs<VectorType>()->getElementType(); |
11037 | |
11038 | const FPOptions FPO = E->getFPFeaturesInEffect(LO: Info.Ctx.getLangOpts()); |
11039 | |
11040 | auto SourceLen = Source.getVectorLength(); |
11041 | SmallVector<APValue, 4> ResultElements; |
11042 | ResultElements.reserve(N: SourceLen); |
11043 | for (unsigned EltNum = 0; EltNum < SourceLen; ++EltNum) { |
11044 | APValue Elt; |
11045 | if (!handleVectorElementCast(Info, FPO, E, SourceTy, DestTy, |
11046 | Original: Source.getVectorElt(I: EltNum), Result&: Elt)) |
11047 | return false; |
11048 | ResultElements.push_back(Elt: std::move(Elt)); |
11049 | } |
11050 | |
11051 | return Success(V: APValue(ResultElements.data(), ResultElements.size()), E); |
11052 | } |
11053 | |
11054 | static bool handleVectorShuffle(EvalInfo &Info, const ShuffleVectorExpr *E, |
11055 | QualType ElemType, APValue const &VecVal1, |
11056 | APValue const &VecVal2, unsigned EltNum, |
11057 | APValue &Result) { |
11058 | unsigned const TotalElementsInInputVector1 = VecVal1.getVectorLength(); |
11059 | unsigned const TotalElementsInInputVector2 = VecVal2.getVectorLength(); |
11060 | |
11061 | APSInt IndexVal = E->getShuffleMaskIdx(Ctx: Info.Ctx, N: EltNum); |
11062 | int64_t index = IndexVal.getExtValue(); |
11063 | // The spec says that -1 should be treated as undef for optimizations, |
11064 | // but in constexpr we'd have to produce an APValue::Indeterminate, |
11065 | // which is prohibited from being a top-level constant value. Emit a |
11066 | // diagnostic instead. |
11067 | if (index == -1) { |
11068 | Info.FFDiag( |
11069 | E, DiagId: diag::err_shufflevector_minus_one_is_undefined_behavior_constexpr) |
11070 | << EltNum; |
11071 | return false; |
11072 | } |
11073 | |
11074 | if (index < 0 || |
11075 | index >= TotalElementsInInputVector1 + TotalElementsInInputVector2) |
11076 | llvm_unreachable("Out of bounds shuffle index" ); |
11077 | |
11078 | if (index >= TotalElementsInInputVector1) |
11079 | Result = VecVal2.getVectorElt(I: index - TotalElementsInInputVector1); |
11080 | else |
11081 | Result = VecVal1.getVectorElt(I: index); |
11082 | return true; |
11083 | } |
11084 | |
11085 | bool VectorExprEvaluator::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { |
11086 | APValue VecVal1; |
11087 | const Expr *Vec1 = E->getExpr(Index: 0); |
11088 | if (!EvaluateAsRValue(Info, E: Vec1, Result&: VecVal1)) |
11089 | return false; |
11090 | APValue VecVal2; |
11091 | const Expr *Vec2 = E->getExpr(Index: 1); |
11092 | if (!EvaluateAsRValue(Info, E: Vec2, Result&: VecVal2)) |
11093 | return false; |
11094 | |
11095 | VectorType const *DestVecTy = E->getType()->castAs<VectorType>(); |
11096 | QualType DestElTy = DestVecTy->getElementType(); |
11097 | |
11098 | auto TotalElementsInOutputVector = DestVecTy->getNumElements(); |
11099 | |
11100 | SmallVector<APValue, 4> ResultElements; |
11101 | ResultElements.reserve(N: TotalElementsInOutputVector); |
11102 | for (unsigned EltNum = 0; EltNum < TotalElementsInOutputVector; ++EltNum) { |
11103 | APValue Elt; |
11104 | if (!handleVectorShuffle(Info, E, ElemType: DestElTy, VecVal1, VecVal2, EltNum, Result&: Elt)) |
11105 | return false; |
11106 | ResultElements.push_back(Elt: std::move(Elt)); |
11107 | } |
11108 | |
11109 | return Success(V: APValue(ResultElements.data(), ResultElements.size()), E); |
11110 | } |
11111 | |
11112 | //===----------------------------------------------------------------------===// |
11113 | // Array Evaluation |
11114 | //===----------------------------------------------------------------------===// |
11115 | |
11116 | namespace { |
11117 | class ArrayExprEvaluator |
11118 | : public ExprEvaluatorBase<ArrayExprEvaluator> { |
11119 | const LValue &This; |
11120 | APValue &Result; |
11121 | public: |
11122 | |
11123 | ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result) |
11124 | : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} |
11125 | |
11126 | bool Success(const APValue &V, const Expr *E) { |
11127 | assert(V.isArray() && "expected array" ); |
11128 | Result = V; |
11129 | return true; |
11130 | } |
11131 | |
11132 | bool ZeroInitialization(const Expr *E) { |
11133 | const ConstantArrayType *CAT = |
11134 | Info.Ctx.getAsConstantArrayType(T: E->getType()); |
11135 | if (!CAT) { |
11136 | if (E->getType()->isIncompleteArrayType()) { |
11137 | // We can be asked to zero-initialize a flexible array member; this |
11138 | // is represented as an ImplicitValueInitExpr of incomplete array |
11139 | // type. In this case, the array has zero elements. |
11140 | Result = APValue(APValue::UninitArray(), 0, 0); |
11141 | return true; |
11142 | } |
11143 | // FIXME: We could handle VLAs here. |
11144 | return Error(E); |
11145 | } |
11146 | |
11147 | Result = APValue(APValue::UninitArray(), 0, CAT->getZExtSize()); |
11148 | if (!Result.hasArrayFiller()) |
11149 | return true; |
11150 | |
11151 | // Zero-initialize all elements. |
11152 | LValue Subobject = This; |
11153 | Subobject.addArray(Info, E, CAT); |
11154 | ImplicitValueInitExpr VIE(CAT->getElementType()); |
11155 | return EvaluateInPlace(Result&: Result.getArrayFiller(), Info, This: Subobject, E: &VIE); |
11156 | } |
11157 | |
11158 | bool VisitCallExpr(const CallExpr *E) { |
11159 | return handleCallExpr(E, Result, ResultSlot: &This); |
11160 | } |
11161 | bool VisitInitListExpr(const InitListExpr *E, |
11162 | QualType AllocType = QualType()); |
11163 | bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E); |
11164 | bool VisitCXXConstructExpr(const CXXConstructExpr *E); |
11165 | bool VisitCXXConstructExpr(const CXXConstructExpr *E, |
11166 | const LValue &Subobject, |
11167 | APValue *Value, QualType Type); |
11168 | bool VisitStringLiteral(const StringLiteral *E, |
11169 | QualType AllocType = QualType()) { |
11170 | expandStringLiteral(Info, S: E, Result, AllocType); |
11171 | return true; |
11172 | } |
11173 | bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E); |
11174 | bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit, |
11175 | ArrayRef<Expr *> Args, |
11176 | const Expr *ArrayFiller, |
11177 | QualType AllocType = QualType()); |
11178 | }; |
11179 | } // end anonymous namespace |
11180 | |
11181 | static bool EvaluateArray(const Expr *E, const LValue &This, |
11182 | APValue &Result, EvalInfo &Info) { |
11183 | assert(!E->isValueDependent()); |
11184 | assert(E->isPRValue() && E->getType()->isArrayType() && |
11185 | "not an array prvalue" ); |
11186 | return ArrayExprEvaluator(Info, This, Result).Visit(S: E); |
11187 | } |
11188 | |
11189 | static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, |
11190 | APValue &Result, const InitListExpr *ILE, |
11191 | QualType AllocType) { |
11192 | assert(!ILE->isValueDependent()); |
11193 | assert(ILE->isPRValue() && ILE->getType()->isArrayType() && |
11194 | "not an array prvalue" ); |
11195 | return ArrayExprEvaluator(Info, This, Result) |
11196 | .VisitInitListExpr(E: ILE, AllocType); |
11197 | } |
11198 | |
11199 | static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This, |
11200 | APValue &Result, |
11201 | const CXXConstructExpr *CCE, |
11202 | QualType AllocType) { |
11203 | assert(!CCE->isValueDependent()); |
11204 | assert(CCE->isPRValue() && CCE->getType()->isArrayType() && |
11205 | "not an array prvalue" ); |
11206 | return ArrayExprEvaluator(Info, This, Result) |
11207 | .VisitCXXConstructExpr(E: CCE, Subobject: This, Value: &Result, Type: AllocType); |
11208 | } |
11209 | |
11210 | // Return true iff the given array filler may depend on the element index. |
11211 | static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) { |
11212 | // For now, just allow non-class value-initialization and initialization |
11213 | // lists comprised of them. |
11214 | if (isa<ImplicitValueInitExpr>(Val: FillerExpr)) |
11215 | return false; |
11216 | if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Val: FillerExpr)) { |
11217 | for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) { |
11218 | if (MaybeElementDependentArrayFiller(FillerExpr: ILE->getInit(Init: I))) |
11219 | return true; |
11220 | } |
11221 | |
11222 | if (ILE->hasArrayFiller() && |
11223 | MaybeElementDependentArrayFiller(FillerExpr: ILE->getArrayFiller())) |
11224 | return true; |
11225 | |
11226 | return false; |
11227 | } |
11228 | return true; |
11229 | } |
11230 | |
11231 | bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E, |
11232 | QualType AllocType) { |
11233 | const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( |
11234 | T: AllocType.isNull() ? E->getType() : AllocType); |
11235 | if (!CAT) |
11236 | return Error(E); |
11237 | |
11238 | // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...] |
11239 | // an appropriately-typed string literal enclosed in braces. |
11240 | if (E->isStringLiteralInit()) { |
11241 | auto *SL = dyn_cast<StringLiteral>(Val: E->getInit(Init: 0)->IgnoreParenImpCasts()); |
11242 | // FIXME: Support ObjCEncodeExpr here once we support it in |
11243 | // ArrayExprEvaluator generally. |
11244 | if (!SL) |
11245 | return Error(E); |
11246 | return VisitStringLiteral(E: SL, AllocType); |
11247 | } |
11248 | // Any other transparent list init will need proper handling of the |
11249 | // AllocType; we can't just recurse to the inner initializer. |
11250 | assert(!E->isTransparent() && |
11251 | "transparent array list initialization is not string literal init?" ); |
11252 | |
11253 | return VisitCXXParenListOrInitListExpr(ExprToVisit: E, Args: E->inits(), ArrayFiller: E->getArrayFiller(), |
11254 | AllocType); |
11255 | } |
11256 | |
11257 | bool ArrayExprEvaluator::VisitCXXParenListOrInitListExpr( |
11258 | const Expr *ExprToVisit, ArrayRef<Expr *> Args, const Expr *ArrayFiller, |
11259 | QualType AllocType) { |
11260 | const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( |
11261 | T: AllocType.isNull() ? ExprToVisit->getType() : AllocType); |
11262 | |
11263 | bool Success = true; |
11264 | |
11265 | assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) && |
11266 | "zero-initialized array shouldn't have any initialized elts" ); |
11267 | APValue Filler; |
11268 | if (Result.isArray() && Result.hasArrayFiller()) |
11269 | Filler = Result.getArrayFiller(); |
11270 | |
11271 | unsigned NumEltsToInit = Args.size(); |
11272 | unsigned NumElts = CAT->getZExtSize(); |
11273 | |
11274 | // If the initializer might depend on the array index, run it for each |
11275 | // array element. |
11276 | if (NumEltsToInit != NumElts && |
11277 | MaybeElementDependentArrayFiller(FillerExpr: ArrayFiller)) { |
11278 | NumEltsToInit = NumElts; |
11279 | } else { |
11280 | for (auto *Init : Args) { |
11281 | if (auto *EmbedS = dyn_cast<EmbedExpr>(Val: Init->IgnoreParenImpCasts())) |
11282 | NumEltsToInit += EmbedS->getDataElementCount() - 1; |
11283 | } |
11284 | if (NumEltsToInit > NumElts) |
11285 | NumEltsToInit = NumElts; |
11286 | } |
11287 | |
11288 | LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: " |
11289 | << NumEltsToInit << ".\n" ); |
11290 | |
11291 | Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts); |
11292 | |
11293 | // If the array was previously zero-initialized, preserve the |
11294 | // zero-initialized values. |
11295 | if (Filler.hasValue()) { |
11296 | for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I) |
11297 | Result.getArrayInitializedElt(I) = Filler; |
11298 | if (Result.hasArrayFiller()) |
11299 | Result.getArrayFiller() = Filler; |
11300 | } |
11301 | |
11302 | LValue Subobject = This; |
11303 | Subobject.addArray(Info, E: ExprToVisit, CAT); |
11304 | auto Eval = [&](const Expr *Init, unsigned ArrayIndex) { |
11305 | if (!EvaluateInPlace(Result&: Result.getArrayInitializedElt(I: ArrayIndex), Info, |
11306 | This: Subobject, E: Init) || |
11307 | !HandleLValueArrayAdjustment(Info, E: Init, LVal&: Subobject, |
11308 | EltTy: CAT->getElementType(), Adjustment: 1)) { |
11309 | if (!Info.noteFailure()) |
11310 | return false; |
11311 | Success = false; |
11312 | } |
11313 | return true; |
11314 | }; |
11315 | unsigned ArrayIndex = 0; |
11316 | QualType DestTy = CAT->getElementType(); |
11317 | APSInt Value(Info.Ctx.getTypeSize(T: DestTy), DestTy->isUnsignedIntegerType()); |
11318 | for (unsigned Index = 0; Index != NumEltsToInit; ++Index) { |
11319 | const Expr *Init = Index < Args.size() ? Args[Index] : ArrayFiller; |
11320 | if (ArrayIndex >= NumEltsToInit) |
11321 | break; |
11322 | if (auto *EmbedS = dyn_cast<EmbedExpr>(Val: Init->IgnoreParenImpCasts())) { |
11323 | StringLiteral *SL = EmbedS->getDataStringLiteral(); |
11324 | for (unsigned I = EmbedS->getStartingElementPos(), |
11325 | N = EmbedS->getDataElementCount(); |
11326 | I != EmbedS->getStartingElementPos() + N; ++I) { |
11327 | Value = SL->getCodeUnit(i: I); |
11328 | if (DestTy->isIntegerType()) { |
11329 | Result.getArrayInitializedElt(I: ArrayIndex) = APValue(Value); |
11330 | } else { |
11331 | assert(DestTy->isFloatingType() && "unexpected type" ); |
11332 | const FPOptions FPO = |
11333 | Init->getFPFeaturesInEffect(LO: Info.Ctx.getLangOpts()); |
11334 | APFloat FValue(0.0); |
11335 | if (!HandleIntToFloatCast(Info, E: Init, FPO, SrcType: EmbedS->getType(), Value, |
11336 | DestType: DestTy, Result&: FValue)) |
11337 | return false; |
11338 | Result.getArrayInitializedElt(I: ArrayIndex) = APValue(FValue); |
11339 | } |
11340 | ArrayIndex++; |
11341 | } |
11342 | } else { |
11343 | if (!Eval(Init, ArrayIndex)) |
11344 | return false; |
11345 | ++ArrayIndex; |
11346 | } |
11347 | } |
11348 | |
11349 | if (!Result.hasArrayFiller()) |
11350 | return Success; |
11351 | |
11352 | // If we get here, we have a trivial filler, which we can just evaluate |
11353 | // once and splat over the rest of the array elements. |
11354 | assert(ArrayFiller && "no array filler for incomplete init list" ); |
11355 | return EvaluateInPlace(Result&: Result.getArrayFiller(), Info, This: Subobject, |
11356 | E: ArrayFiller) && |
11357 | Success; |
11358 | } |
11359 | |
11360 | bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { |
11361 | LValue CommonLV; |
11362 | if (E->getCommonExpr() && |
11363 | !Evaluate(Result&: Info.CurrentCall->createTemporary( |
11364 | Key: E->getCommonExpr(), |
11365 | T: getStorageType(Ctx: Info.Ctx, E: E->getCommonExpr()), |
11366 | Scope: ScopeKind::FullExpression, LV&: CommonLV), |
11367 | Info, E: E->getCommonExpr()->getSourceExpr())) |
11368 | return false; |
11369 | |
11370 | auto *CAT = cast<ConstantArrayType>(Val: E->getType()->castAsArrayTypeUnsafe()); |
11371 | |
11372 | uint64_t Elements = CAT->getZExtSize(); |
11373 | Result = APValue(APValue::UninitArray(), Elements, Elements); |
11374 | |
11375 | LValue Subobject = This; |
11376 | Subobject.addArray(Info, E, CAT); |
11377 | |
11378 | bool Success = true; |
11379 | for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) { |
11380 | // C++ [class.temporary]/5 |
11381 | // There are four contexts in which temporaries are destroyed at a different |
11382 | // point than the end of the full-expression. [...] The second context is |
11383 | // when a copy constructor is called to copy an element of an array while |
11384 | // the entire array is copied [...]. In either case, if the constructor has |
11385 | // one or more default arguments, the destruction of every temporary created |
11386 | // in a default argument is sequenced before the construction of the next |
11387 | // array element, if any. |
11388 | FullExpressionRAII Scope(Info); |
11389 | |
11390 | if (!EvaluateInPlace(Result&: Result.getArrayInitializedElt(I: Index), |
11391 | Info, This: Subobject, E: E->getSubExpr()) || |
11392 | !HandleLValueArrayAdjustment(Info, E, LVal&: Subobject, |
11393 | EltTy: CAT->getElementType(), Adjustment: 1)) { |
11394 | if (!Info.noteFailure()) |
11395 | return false; |
11396 | Success = false; |
11397 | } |
11398 | |
11399 | // Make sure we run the destructors too. |
11400 | Scope.destroy(); |
11401 | } |
11402 | |
11403 | return Success; |
11404 | } |
11405 | |
11406 | bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) { |
11407 | return VisitCXXConstructExpr(E, Subobject: This, Value: &Result, Type: E->getType()); |
11408 | } |
11409 | |
11410 | bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, |
11411 | const LValue &Subobject, |
11412 | APValue *Value, |
11413 | QualType Type) { |
11414 | bool HadZeroInit = Value->hasValue(); |
11415 | |
11416 | if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T: Type)) { |
11417 | unsigned FinalSize = CAT->getZExtSize(); |
11418 | |
11419 | // Preserve the array filler if we had prior zero-initialization. |
11420 | APValue Filler = |
11421 | HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller() |
11422 | : APValue(); |
11423 | |
11424 | *Value = APValue(APValue::UninitArray(), 0, FinalSize); |
11425 | if (FinalSize == 0) |
11426 | return true; |
11427 | |
11428 | bool HasTrivialConstructor = CheckTrivialDefaultConstructor( |
11429 | Info, Loc: E->getExprLoc(), CD: E->getConstructor(), |
11430 | IsValueInitialization: E->requiresZeroInitialization()); |
11431 | LValue ArrayElt = Subobject; |
11432 | ArrayElt.addArray(Info, E, CAT); |
11433 | // We do the whole initialization in two passes, first for just one element, |
11434 | // then for the whole array. It's possible we may find out we can't do const |
11435 | // init in the first pass, in which case we avoid allocating a potentially |
11436 | // large array. We don't do more passes because expanding array requires |
11437 | // copying the data, which is wasteful. |
11438 | for (const unsigned N : {1u, FinalSize}) { |
11439 | unsigned OldElts = Value->getArrayInitializedElts(); |
11440 | if (OldElts == N) |
11441 | break; |
11442 | |
11443 | // Expand the array to appropriate size. |
11444 | APValue NewValue(APValue::UninitArray(), N, FinalSize); |
11445 | for (unsigned I = 0; I < OldElts; ++I) |
11446 | NewValue.getArrayInitializedElt(I).swap( |
11447 | RHS&: Value->getArrayInitializedElt(I)); |
11448 | Value->swap(RHS&: NewValue); |
11449 | |
11450 | if (HadZeroInit) |
11451 | for (unsigned I = OldElts; I < N; ++I) |
11452 | Value->getArrayInitializedElt(I) = Filler; |
11453 | |
11454 | if (HasTrivialConstructor && N == FinalSize && FinalSize != 1) { |
11455 | // If we have a trivial constructor, only evaluate it once and copy |
11456 | // the result into all the array elements. |
11457 | APValue &FirstResult = Value->getArrayInitializedElt(I: 0); |
11458 | for (unsigned I = OldElts; I < FinalSize; ++I) |
11459 | Value->getArrayInitializedElt(I) = FirstResult; |
11460 | } else { |
11461 | for (unsigned I = OldElts; I < N; ++I) { |
11462 | if (!VisitCXXConstructExpr(E, Subobject: ArrayElt, |
11463 | Value: &Value->getArrayInitializedElt(I), |
11464 | Type: CAT->getElementType()) || |
11465 | !HandleLValueArrayAdjustment(Info, E, LVal&: ArrayElt, |
11466 | EltTy: CAT->getElementType(), Adjustment: 1)) |
11467 | return false; |
11468 | // When checking for const initilization any diagnostic is considered |
11469 | // an error. |
11470 | if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() && |
11471 | !Info.keepEvaluatingAfterFailure()) |
11472 | return false; |
11473 | } |
11474 | } |
11475 | } |
11476 | |
11477 | return true; |
11478 | } |
11479 | |
11480 | if (!Type->isRecordType()) |
11481 | return Error(E); |
11482 | |
11483 | return RecordExprEvaluator(Info, Subobject, *Value) |
11484 | .VisitCXXConstructExpr(E, T: Type); |
11485 | } |
11486 | |
11487 | bool ArrayExprEvaluator::VisitCXXParenListInitExpr( |
11488 | const CXXParenListInitExpr *E) { |
11489 | assert(E->getType()->isConstantArrayType() && |
11490 | "Expression result is not a constant array type" ); |
11491 | |
11492 | return VisitCXXParenListOrInitListExpr(ExprToVisit: E, Args: E->getInitExprs(), |
11493 | ArrayFiller: E->getArrayFiller()); |
11494 | } |
11495 | |
11496 | //===----------------------------------------------------------------------===// |
11497 | // Integer Evaluation |
11498 | // |
11499 | // As a GNU extension, we support casting pointers to sufficiently-wide integer |
11500 | // types and back in constant folding. Integer values are thus represented |
11501 | // either as an integer-valued APValue, or as an lvalue-valued APValue. |
11502 | //===----------------------------------------------------------------------===// |
11503 | |
11504 | namespace { |
11505 | class IntExprEvaluator |
11506 | : public ExprEvaluatorBase<IntExprEvaluator> { |
11507 | APValue &Result; |
11508 | public: |
11509 | IntExprEvaluator(EvalInfo &info, APValue &result) |
11510 | : ExprEvaluatorBaseTy(info), Result(result) {} |
11511 | |
11512 | bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) { |
11513 | assert(E->getType()->isIntegralOrEnumerationType() && |
11514 | "Invalid evaluation result." ); |
11515 | assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && |
11516 | "Invalid evaluation result." ); |
11517 | assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && |
11518 | "Invalid evaluation result." ); |
11519 | Result = APValue(SI); |
11520 | return true; |
11521 | } |
11522 | bool Success(const llvm::APSInt &SI, const Expr *E) { |
11523 | return Success(SI, E, Result); |
11524 | } |
11525 | |
11526 | bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) { |
11527 | assert(E->getType()->isIntegralOrEnumerationType() && |
11528 | "Invalid evaluation result." ); |
11529 | assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && |
11530 | "Invalid evaluation result." ); |
11531 | Result = APValue(APSInt(I)); |
11532 | Result.getInt().setIsUnsigned( |
11533 | E->getType()->isUnsignedIntegerOrEnumerationType()); |
11534 | return true; |
11535 | } |
11536 | bool Success(const llvm::APInt &I, const Expr *E) { |
11537 | return Success(I, E, Result); |
11538 | } |
11539 | |
11540 | bool Success(uint64_t Value, const Expr *E, APValue &Result) { |
11541 | assert(E->getType()->isIntegralOrEnumerationType() && |
11542 | "Invalid evaluation result." ); |
11543 | Result = APValue(Info.Ctx.MakeIntValue(Value, Type: E->getType())); |
11544 | return true; |
11545 | } |
11546 | bool Success(uint64_t Value, const Expr *E) { |
11547 | return Success(Value, E, Result); |
11548 | } |
11549 | |
11550 | bool Success(CharUnits Size, const Expr *E) { |
11551 | return Success(Value: Size.getQuantity(), E); |
11552 | } |
11553 | |
11554 | bool Success(const APValue &V, const Expr *E) { |
11555 | if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) { |
11556 | Result = V; |
11557 | return true; |
11558 | } |
11559 | return Success(SI: V.getInt(), E); |
11560 | } |
11561 | |
11562 | bool ZeroInitialization(const Expr *E) { return Success(Value: 0, E); } |
11563 | |
11564 | //===--------------------------------------------------------------------===// |
11565 | // Visitor Methods |
11566 | //===--------------------------------------------------------------------===// |
11567 | |
11568 | bool VisitIntegerLiteral(const IntegerLiteral *E) { |
11569 | return Success(I: E->getValue(), E); |
11570 | } |
11571 | bool VisitCharacterLiteral(const CharacterLiteral *E) { |
11572 | return Success(Value: E->getValue(), E); |
11573 | } |
11574 | |
11575 | bool CheckReferencedDecl(const Expr *E, const Decl *D); |
11576 | bool VisitDeclRefExpr(const DeclRefExpr *E) { |
11577 | if (CheckReferencedDecl(E, D: E->getDecl())) |
11578 | return true; |
11579 | |
11580 | return ExprEvaluatorBaseTy::VisitDeclRefExpr(S: E); |
11581 | } |
11582 | bool VisitMemberExpr(const MemberExpr *E) { |
11583 | if (CheckReferencedDecl(E, D: E->getMemberDecl())) { |
11584 | VisitIgnoredBaseExpression(E: E->getBase()); |
11585 | return true; |
11586 | } |
11587 | |
11588 | return ExprEvaluatorBaseTy::VisitMemberExpr(E); |
11589 | } |
11590 | |
11591 | bool VisitCallExpr(const CallExpr *E); |
11592 | bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); |
11593 | bool VisitBinaryOperator(const BinaryOperator *E); |
11594 | bool VisitOffsetOfExpr(const OffsetOfExpr *E); |
11595 | bool VisitUnaryOperator(const UnaryOperator *E); |
11596 | |
11597 | bool VisitCastExpr(const CastExpr* E); |
11598 | bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); |
11599 | |
11600 | bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
11601 | return Success(Value: E->getValue(), E); |
11602 | } |
11603 | |
11604 | bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { |
11605 | return Success(Value: E->getValue(), E); |
11606 | } |
11607 | |
11608 | bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { |
11609 | if (Info.ArrayInitIndex == uint64_t(-1)) { |
11610 | // We were asked to evaluate this subexpression independent of the |
11611 | // enclosing ArrayInitLoopExpr. We can't do that. |
11612 | Info.FFDiag(E); |
11613 | return false; |
11614 | } |
11615 | return Success(Value: Info.ArrayInitIndex, E); |
11616 | } |
11617 | |
11618 | // Note, GNU defines __null as an integer, not a pointer. |
11619 | bool VisitGNUNullExpr(const GNUNullExpr *E) { |
11620 | return ZeroInitialization(E); |
11621 | } |
11622 | |
11623 | bool VisitTypeTraitExpr(const TypeTraitExpr *E) { |
11624 | return Success(Value: E->getValue(), E); |
11625 | } |
11626 | |
11627 | bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { |
11628 | return Success(Value: E->getValue(), E); |
11629 | } |
11630 | |
11631 | bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { |
11632 | return Success(Value: E->getValue(), E); |
11633 | } |
11634 | |
11635 | bool VisitUnaryReal(const UnaryOperator *E); |
11636 | bool VisitUnaryImag(const UnaryOperator *E); |
11637 | |
11638 | bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E); |
11639 | bool VisitSizeOfPackExpr(const SizeOfPackExpr *E); |
11640 | bool VisitSourceLocExpr(const SourceLocExpr *E); |
11641 | bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E); |
11642 | bool VisitRequiresExpr(const RequiresExpr *E); |
11643 | // FIXME: Missing: array subscript of vector, member of vector |
11644 | }; |
11645 | |
11646 | class FixedPointExprEvaluator |
11647 | : public ExprEvaluatorBase<FixedPointExprEvaluator> { |
11648 | APValue &Result; |
11649 | |
11650 | public: |
11651 | FixedPointExprEvaluator(EvalInfo &info, APValue &result) |
11652 | : ExprEvaluatorBaseTy(info), Result(result) {} |
11653 | |
11654 | bool Success(const llvm::APInt &I, const Expr *E) { |
11655 | return Success( |
11656 | V: APFixedPoint(I, Info.Ctx.getFixedPointSemantics(Ty: E->getType())), E); |
11657 | } |
11658 | |
11659 | bool Success(uint64_t Value, const Expr *E) { |
11660 | return Success( |
11661 | V: APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(Ty: E->getType())), E); |
11662 | } |
11663 | |
11664 | bool Success(const APValue &V, const Expr *E) { |
11665 | return Success(V: V.getFixedPoint(), E); |
11666 | } |
11667 | |
11668 | bool Success(const APFixedPoint &V, const Expr *E) { |
11669 | assert(E->getType()->isFixedPointType() && "Invalid evaluation result." ); |
11670 | assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) && |
11671 | "Invalid evaluation result." ); |
11672 | Result = APValue(V); |
11673 | return true; |
11674 | } |
11675 | |
11676 | bool ZeroInitialization(const Expr *E) { |
11677 | return Success(Value: 0, E); |
11678 | } |
11679 | |
11680 | //===--------------------------------------------------------------------===// |
11681 | // Visitor Methods |
11682 | //===--------------------------------------------------------------------===// |
11683 | |
11684 | bool VisitFixedPointLiteral(const FixedPointLiteral *E) { |
11685 | return Success(I: E->getValue(), E); |
11686 | } |
11687 | |
11688 | bool VisitCastExpr(const CastExpr *E); |
11689 | bool VisitUnaryOperator(const UnaryOperator *E); |
11690 | bool VisitBinaryOperator(const BinaryOperator *E); |
11691 | }; |
11692 | } // end anonymous namespace |
11693 | |
11694 | /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and |
11695 | /// produce either the integer value or a pointer. |
11696 | /// |
11697 | /// GCC has a heinous extension which folds casts between pointer types and |
11698 | /// pointer-sized integral types. We support this by allowing the evaluation of |
11699 | /// an integer rvalue to produce a pointer (represented as an lvalue) instead. |
11700 | /// Some simple arithmetic on such values is supported (they are treated much |
11701 | /// like char*). |
11702 | static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, |
11703 | EvalInfo &Info) { |
11704 | assert(!E->isValueDependent()); |
11705 | assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType()); |
11706 | return IntExprEvaluator(Info, Result).Visit(S: E); |
11707 | } |
11708 | |
11709 | static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) { |
11710 | assert(!E->isValueDependent()); |
11711 | APValue Val; |
11712 | if (!EvaluateIntegerOrLValue(E, Result&: Val, Info)) |
11713 | return false; |
11714 | if (!Val.isInt()) { |
11715 | // FIXME: It would be better to produce the diagnostic for casting |
11716 | // a pointer to an integer. |
11717 | Info.FFDiag(E, DiagId: diag::note_invalid_subexpr_in_const_expr); |
11718 | return false; |
11719 | } |
11720 | Result = Val.getInt(); |
11721 | return true; |
11722 | } |
11723 | |
11724 | bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) { |
11725 | APValue Evaluated = E->EvaluateInContext( |
11726 | Ctx: Info.Ctx, DefaultExpr: Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); |
11727 | return Success(V: Evaluated, E); |
11728 | } |
11729 | |
11730 | static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, |
11731 | EvalInfo &Info) { |
11732 | assert(!E->isValueDependent()); |
11733 | if (E->getType()->isFixedPointType()) { |
11734 | APValue Val; |
11735 | if (!FixedPointExprEvaluator(Info, Val).Visit(S: E)) |
11736 | return false; |
11737 | if (!Val.isFixedPoint()) |
11738 | return false; |
11739 | |
11740 | Result = Val.getFixedPoint(); |
11741 | return true; |
11742 | } |
11743 | return false; |
11744 | } |
11745 | |
11746 | static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, |
11747 | EvalInfo &Info) { |
11748 | assert(!E->isValueDependent()); |
11749 | if (E->getType()->isIntegerType()) { |
11750 | auto FXSema = Info.Ctx.getFixedPointSemantics(Ty: E->getType()); |
11751 | APSInt Val; |
11752 | if (!EvaluateInteger(E, Result&: Val, Info)) |
11753 | return false; |
11754 | Result = APFixedPoint(Val, FXSema); |
11755 | return true; |
11756 | } else if (E->getType()->isFixedPointType()) { |
11757 | return EvaluateFixedPoint(E, Result, Info); |
11758 | } |
11759 | return false; |
11760 | } |
11761 | |
11762 | /// Check whether the given declaration can be directly converted to an integral |
11763 | /// rvalue. If not, no diagnostic is produced; there are other things we can |
11764 | /// try. |
11765 | bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) { |
11766 | // Enums are integer constant exprs. |
11767 | if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(Val: D)) { |
11768 | // Check for signedness/width mismatches between E type and ECD value. |
11769 | bool SameSign = (ECD->getInitVal().isSigned() |
11770 | == E->getType()->isSignedIntegerOrEnumerationType()); |
11771 | bool SameWidth = (ECD->getInitVal().getBitWidth() |
11772 | == Info.Ctx.getIntWidth(T: E->getType())); |
11773 | if (SameSign && SameWidth) |
11774 | return Success(SI: ECD->getInitVal(), E); |
11775 | else { |
11776 | // Get rid of mismatch (otherwise Success assertions will fail) |
11777 | // by computing a new value matching the type of E. |
11778 | llvm::APSInt Val = ECD->getInitVal(); |
11779 | if (!SameSign) |
11780 | Val.setIsSigned(!ECD->getInitVal().isSigned()); |
11781 | if (!SameWidth) |
11782 | Val = Val.extOrTrunc(width: Info.Ctx.getIntWidth(T: E->getType())); |
11783 | return Success(SI: Val, E); |
11784 | } |
11785 | } |
11786 | return false; |
11787 | } |
11788 | |
11789 | /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way |
11790 | /// as GCC. |
11791 | GCCTypeClass EvaluateBuiltinClassifyType(QualType T, |
11792 | const LangOptions &LangOpts) { |
11793 | assert(!T->isDependentType() && "unexpected dependent type" ); |
11794 | |
11795 | QualType CanTy = T.getCanonicalType(); |
11796 | |
11797 | switch (CanTy->getTypeClass()) { |
11798 | #define TYPE(ID, BASE) |
11799 | #define DEPENDENT_TYPE(ID, BASE) case Type::ID: |
11800 | #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID: |
11801 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID: |
11802 | #include "clang/AST/TypeNodes.inc" |
11803 | case Type::Auto: |
11804 | case Type::DeducedTemplateSpecialization: |
11805 | llvm_unreachable("unexpected non-canonical or dependent type" ); |
11806 | |
11807 | case Type::Builtin: |
11808 | switch (cast<BuiltinType>(Val&: CanTy)->getKind()) { |
11809 | #define BUILTIN_TYPE(ID, SINGLETON_ID) |
11810 | #define SIGNED_TYPE(ID, SINGLETON_ID) \ |
11811 | case BuiltinType::ID: return GCCTypeClass::Integer; |
11812 | #define FLOATING_TYPE(ID, SINGLETON_ID) \ |
11813 | case BuiltinType::ID: return GCCTypeClass::RealFloat; |
11814 | #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \ |
11815 | case BuiltinType::ID: break; |
11816 | #include "clang/AST/BuiltinTypes.def" |
11817 | case BuiltinType::Void: |
11818 | return GCCTypeClass::Void; |
11819 | |
11820 | case BuiltinType::Bool: |
11821 | return GCCTypeClass::Bool; |
11822 | |
11823 | case BuiltinType::Char_U: |
11824 | case BuiltinType::UChar: |
11825 | case BuiltinType::WChar_U: |
11826 | case BuiltinType::Char8: |
11827 | case BuiltinType::Char16: |
11828 | case BuiltinType::Char32: |
11829 | case BuiltinType::UShort: |
11830 | case BuiltinType::UInt: |
11831 | case BuiltinType::ULong: |
11832 | case BuiltinType::ULongLong: |
11833 | case BuiltinType::UInt128: |
11834 | return GCCTypeClass::Integer; |
11835 | |
11836 | case BuiltinType::UShortAccum: |
11837 | case BuiltinType::UAccum: |
11838 | case BuiltinType::ULongAccum: |
11839 | case BuiltinType::UShortFract: |
11840 | case BuiltinType::UFract: |
11841 | case BuiltinType::ULongFract: |
11842 | case BuiltinType::SatUShortAccum: |
11843 | case BuiltinType::SatUAccum: |
11844 | case BuiltinType::SatULongAccum: |
11845 | case BuiltinType::SatUShortFract: |
11846 | case BuiltinType::SatUFract: |
11847 | case BuiltinType::SatULongFract: |
11848 | return GCCTypeClass::None; |
11849 | |
11850 | case BuiltinType::NullPtr: |
11851 | |
11852 | case BuiltinType::ObjCId: |
11853 | case BuiltinType::ObjCClass: |
11854 | case BuiltinType::ObjCSel: |
11855 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
11856 | case BuiltinType::Id: |
11857 | #include "clang/Basic/OpenCLImageTypes.def" |
11858 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
11859 | case BuiltinType::Id: |
11860 | #include "clang/Basic/OpenCLExtensionTypes.def" |
11861 | case BuiltinType::OCLSampler: |
11862 | case BuiltinType::OCLEvent: |
11863 | case BuiltinType::OCLClkEvent: |
11864 | case BuiltinType::OCLQueue: |
11865 | case BuiltinType::OCLReserveID: |
11866 | #define SVE_TYPE(Name, Id, SingletonId) \ |
11867 | case BuiltinType::Id: |
11868 | #include "clang/Basic/AArch64SVEACLETypes.def" |
11869 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
11870 | case BuiltinType::Id: |
11871 | #include "clang/Basic/PPCTypes.def" |
11872 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
11873 | #include "clang/Basic/RISCVVTypes.def" |
11874 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
11875 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
11876 | #define AMDGPU_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
11877 | #include "clang/Basic/AMDGPUTypes.def" |
11878 | return GCCTypeClass::None; |
11879 | |
11880 | case BuiltinType::Dependent: |
11881 | llvm_unreachable("unexpected dependent type" ); |
11882 | }; |
11883 | llvm_unreachable("unexpected placeholder type" ); |
11884 | |
11885 | case Type::Enum: |
11886 | return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer; |
11887 | |
11888 | case Type::Pointer: |
11889 | case Type::ConstantArray: |
11890 | case Type::VariableArray: |
11891 | case Type::IncompleteArray: |
11892 | case Type::FunctionNoProto: |
11893 | case Type::FunctionProto: |
11894 | case Type::ArrayParameter: |
11895 | return GCCTypeClass::Pointer; |
11896 | |
11897 | case Type::MemberPointer: |
11898 | return CanTy->isMemberDataPointerType() |
11899 | ? GCCTypeClass::PointerToDataMember |
11900 | : GCCTypeClass::PointerToMemberFunction; |
11901 | |
11902 | case Type::Complex: |
11903 | return GCCTypeClass::Complex; |
11904 | |
11905 | case Type::Record: |
11906 | return CanTy->isUnionType() ? GCCTypeClass::Union |
11907 | : GCCTypeClass::ClassOrStruct; |
11908 | |
11909 | case Type::Atomic: |
11910 | // GCC classifies _Atomic T the same as T. |
11911 | return EvaluateBuiltinClassifyType( |
11912 | T: CanTy->castAs<AtomicType>()->getValueType(), LangOpts); |
11913 | |
11914 | case Type::Vector: |
11915 | case Type::ExtVector: |
11916 | return GCCTypeClass::Vector; |
11917 | |
11918 | case Type::BlockPointer: |
11919 | case Type::ConstantMatrix: |
11920 | case Type::ObjCObject: |
11921 | case Type::ObjCInterface: |
11922 | case Type::ObjCObjectPointer: |
11923 | case Type::Pipe: |
11924 | // Classify all other types that don't fit into the regular |
11925 | // classification the same way. |
11926 | return GCCTypeClass::None; |
11927 | |
11928 | case Type::BitInt: |
11929 | return GCCTypeClass::BitInt; |
11930 | |
11931 | case Type::LValueReference: |
11932 | case Type::RValueReference: |
11933 | llvm_unreachable("invalid type for expression" ); |
11934 | } |
11935 | |
11936 | llvm_unreachable("unexpected type class" ); |
11937 | } |
11938 | |
11939 | /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way |
11940 | /// as GCC. |
11941 | static GCCTypeClass |
11942 | EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) { |
11943 | // If no argument was supplied, default to None. This isn't |
11944 | // ideal, however it is what gcc does. |
11945 | if (E->getNumArgs() == 0) |
11946 | return GCCTypeClass::None; |
11947 | |
11948 | // FIXME: Bizarrely, GCC treats a call with more than one argument as not |
11949 | // being an ICE, but still folds it to a constant using the type of the first |
11950 | // argument. |
11951 | return EvaluateBuiltinClassifyType(T: E->getArg(Arg: 0)->getType(), LangOpts); |
11952 | } |
11953 | |
11954 | /// EvaluateBuiltinConstantPForLValue - Determine the result of |
11955 | /// __builtin_constant_p when applied to the given pointer. |
11956 | /// |
11957 | /// A pointer is only "constant" if it is null (or a pointer cast to integer) |
11958 | /// or it points to the first character of a string literal. |
11959 | static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) { |
11960 | APValue::LValueBase Base = LV.getLValueBase(); |
11961 | if (Base.isNull()) { |
11962 | // A null base is acceptable. |
11963 | return true; |
11964 | } else if (const Expr *E = Base.dyn_cast<const Expr *>()) { |
11965 | if (!isa<StringLiteral>(Val: E)) |
11966 | return false; |
11967 | return LV.getLValueOffset().isZero(); |
11968 | } else if (Base.is<TypeInfoLValue>()) { |
11969 | // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to |
11970 | // evaluate to true. |
11971 | return true; |
11972 | } else { |
11973 | // Any other base is not constant enough for GCC. |
11974 | return false; |
11975 | } |
11976 | } |
11977 | |
11978 | /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to |
11979 | /// GCC as we can manage. |
11980 | static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) { |
11981 | // This evaluation is not permitted to have side-effects, so evaluate it in |
11982 | // a speculative evaluation context. |
11983 | SpeculativeEvaluationRAII SpeculativeEval(Info); |
11984 | |
11985 | // Constant-folding is always enabled for the operand of __builtin_constant_p |
11986 | // (even when the enclosing evaluation context otherwise requires a strict |
11987 | // language-specific constant expression). |
11988 | FoldConstant Fold(Info, true); |
11989 | |
11990 | QualType ArgType = Arg->getType(); |
11991 | |
11992 | // __builtin_constant_p always has one operand. The rules which gcc follows |
11993 | // are not precisely documented, but are as follows: |
11994 | // |
11995 | // - If the operand is of integral, floating, complex or enumeration type, |
11996 | // and can be folded to a known value of that type, it returns 1. |
11997 | // - If the operand can be folded to a pointer to the first character |
11998 | // of a string literal (or such a pointer cast to an integral type) |
11999 | // or to a null pointer or an integer cast to a pointer, it returns 1. |
12000 | // |
12001 | // Otherwise, it returns 0. |
12002 | // |
12003 | // FIXME: GCC also intends to return 1 for literals of aggregate types, but |
12004 | // its support for this did not work prior to GCC 9 and is not yet well |
12005 | // understood. |
12006 | if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() || |
12007 | ArgType->isAnyComplexType() || ArgType->isPointerType() || |
12008 | ArgType->isNullPtrType()) { |
12009 | APValue V; |
12010 | if (!::EvaluateAsRValue(Info, E: Arg, Result&: V) || Info.EvalStatus.HasSideEffects) { |
12011 | Fold.keepDiagnostics(); |
12012 | return false; |
12013 | } |
12014 | |
12015 | // For a pointer (possibly cast to integer), there are special rules. |
12016 | if (V.getKind() == APValue::LValue) |
12017 | return EvaluateBuiltinConstantPForLValue(LV: V); |
12018 | |
12019 | // Otherwise, any constant value is good enough. |
12020 | return V.hasValue(); |
12021 | } |
12022 | |
12023 | // Anything else isn't considered to be sufficiently constant. |
12024 | return false; |
12025 | } |
12026 | |
12027 | /// Retrieves the "underlying object type" of the given expression, |
12028 | /// as used by __builtin_object_size. |
12029 | static QualType getObjectType(APValue::LValueBase B) { |
12030 | if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { |
12031 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) |
12032 | return VD->getType(); |
12033 | } else if (const Expr *E = B.dyn_cast<const Expr*>()) { |
12034 | if (isa<CompoundLiteralExpr>(Val: E)) |
12035 | return E->getType(); |
12036 | } else if (B.is<TypeInfoLValue>()) { |
12037 | return B.getTypeInfoType(); |
12038 | } else if (B.is<DynamicAllocLValue>()) { |
12039 | return B.getDynamicAllocType(); |
12040 | } |
12041 | |
12042 | return QualType(); |
12043 | } |
12044 | |
12045 | /// A more selective version of E->IgnoreParenCasts for |
12046 | /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only |
12047 | /// to change the type of E. |
12048 | /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo` |
12049 | /// |
12050 | /// Always returns an RValue with a pointer representation. |
12051 | static const Expr *ignorePointerCastsAndParens(const Expr *E) { |
12052 | assert(E->isPRValue() && E->getType()->hasPointerRepresentation()); |
12053 | |
12054 | const Expr *NoParens = E->IgnoreParens(); |
12055 | const auto *Cast = dyn_cast<CastExpr>(Val: NoParens); |
12056 | if (Cast == nullptr) |
12057 | return NoParens; |
12058 | |
12059 | // We only conservatively allow a few kinds of casts, because this code is |
12060 | // inherently a simple solution that seeks to support the common case. |
12061 | auto CastKind = Cast->getCastKind(); |
12062 | if (CastKind != CK_NoOp && CastKind != CK_BitCast && |
12063 | CastKind != CK_AddressSpaceConversion) |
12064 | return NoParens; |
12065 | |
12066 | const auto *SubExpr = Cast->getSubExpr(); |
12067 | if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue()) |
12068 | return NoParens; |
12069 | return ignorePointerCastsAndParens(E: SubExpr); |
12070 | } |
12071 | |
12072 | /// Checks to see if the given LValue's Designator is at the end of the LValue's |
12073 | /// record layout. e.g. |
12074 | /// struct { struct { int a, b; } fst, snd; } obj; |
12075 | /// obj.fst // no |
12076 | /// obj.snd // yes |
12077 | /// obj.fst.a // no |
12078 | /// obj.fst.b // no |
12079 | /// obj.snd.a // no |
12080 | /// obj.snd.b // yes |
12081 | /// |
12082 | /// Please note: this function is specialized for how __builtin_object_size |
12083 | /// views "objects". |
12084 | /// |
12085 | /// If this encounters an invalid RecordDecl or otherwise cannot determine the |
12086 | /// correct result, it will always return true. |
12087 | static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) { |
12088 | assert(!LVal.Designator.Invalid); |
12089 | |
12090 | auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) { |
12091 | const RecordDecl *Parent = FD->getParent(); |
12092 | Invalid = Parent->isInvalidDecl(); |
12093 | if (Invalid || Parent->isUnion()) |
12094 | return true; |
12095 | const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(D: Parent); |
12096 | return FD->getFieldIndex() + 1 == Layout.getFieldCount(); |
12097 | }; |
12098 | |
12099 | auto &Base = LVal.getLValueBase(); |
12100 | if (auto *ME = dyn_cast_or_null<MemberExpr>(Val: Base.dyn_cast<const Expr *>())) { |
12101 | if (auto *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl())) { |
12102 | bool Invalid; |
12103 | if (!IsLastOrInvalidFieldDecl(FD, Invalid)) |
12104 | return Invalid; |
12105 | } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(Val: ME->getMemberDecl())) { |
12106 | for (auto *FD : IFD->chain()) { |
12107 | bool Invalid; |
12108 | if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(Val: FD), Invalid)) |
12109 | return Invalid; |
12110 | } |
12111 | } |
12112 | } |
12113 | |
12114 | unsigned I = 0; |
12115 | QualType BaseType = getType(B: Base); |
12116 | if (LVal.Designator.FirstEntryIsAnUnsizedArray) { |
12117 | // If we don't know the array bound, conservatively assume we're looking at |
12118 | // the final array element. |
12119 | ++I; |
12120 | if (BaseType->isIncompleteArrayType()) |
12121 | BaseType = Ctx.getAsArrayType(T: BaseType)->getElementType(); |
12122 | else |
12123 | BaseType = BaseType->castAs<PointerType>()->getPointeeType(); |
12124 | } |
12125 | |
12126 | for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) { |
12127 | const auto &Entry = LVal.Designator.Entries[I]; |
12128 | if (BaseType->isArrayType()) { |
12129 | // Because __builtin_object_size treats arrays as objects, we can ignore |
12130 | // the index iff this is the last array in the Designator. |
12131 | if (I + 1 == E) |
12132 | return true; |
12133 | const auto *CAT = cast<ConstantArrayType>(Val: Ctx.getAsArrayType(T: BaseType)); |
12134 | uint64_t Index = Entry.getAsArrayIndex(); |
12135 | if (Index + 1 != CAT->getZExtSize()) |
12136 | return false; |
12137 | BaseType = CAT->getElementType(); |
12138 | } else if (BaseType->isAnyComplexType()) { |
12139 | const auto *CT = BaseType->castAs<ComplexType>(); |
12140 | uint64_t Index = Entry.getAsArrayIndex(); |
12141 | if (Index != 1) |
12142 | return false; |
12143 | BaseType = CT->getElementType(); |
12144 | } else if (auto *FD = getAsField(E: Entry)) { |
12145 | bool Invalid; |
12146 | if (!IsLastOrInvalidFieldDecl(FD, Invalid)) |
12147 | return Invalid; |
12148 | BaseType = FD->getType(); |
12149 | } else { |
12150 | assert(getAsBaseClass(Entry) && "Expecting cast to a base class" ); |
12151 | return false; |
12152 | } |
12153 | } |
12154 | return true; |
12155 | } |
12156 | |
12157 | /// Tests to see if the LValue has a user-specified designator (that isn't |
12158 | /// necessarily valid). Note that this always returns 'true' if the LValue has |
12159 | /// an unsized array as its first designator entry, because there's currently no |
12160 | /// way to tell if the user typed *foo or foo[0]. |
12161 | static bool refersToCompleteObject(const LValue &LVal) { |
12162 | if (LVal.Designator.Invalid) |
12163 | return false; |
12164 | |
12165 | if (!LVal.Designator.Entries.empty()) |
12166 | return LVal.Designator.isMostDerivedAnUnsizedArray(); |
12167 | |
12168 | if (!LVal.InvalidBase) |
12169 | return true; |
12170 | |
12171 | // If `E` is a MemberExpr, then the first part of the designator is hiding in |
12172 | // the LValueBase. |
12173 | const auto *E = LVal.Base.dyn_cast<const Expr *>(); |
12174 | return !E || !isa<MemberExpr>(Val: E); |
12175 | } |
12176 | |
12177 | /// Attempts to detect a user writing into a piece of memory that's impossible |
12178 | /// to figure out the size of by just using types. |
12179 | static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) { |
12180 | const SubobjectDesignator &Designator = LVal.Designator; |
12181 | // Notes: |
12182 | // - Users can only write off of the end when we have an invalid base. Invalid |
12183 | // bases imply we don't know where the memory came from. |
12184 | // - We used to be a bit more aggressive here; we'd only be conservative if |
12185 | // the array at the end was flexible, or if it had 0 or 1 elements. This |
12186 | // broke some common standard library extensions (PR30346), but was |
12187 | // otherwise seemingly fine. It may be useful to reintroduce this behavior |
12188 | // with some sort of list. OTOH, it seems that GCC is always |
12189 | // conservative with the last element in structs (if it's an array), so our |
12190 | // current behavior is more compatible than an explicit list approach would |
12191 | // be. |
12192 | auto isFlexibleArrayMember = [&] { |
12193 | using FAMKind = LangOptions::StrictFlexArraysLevelKind; |
12194 | FAMKind StrictFlexArraysLevel = |
12195 | Ctx.getLangOpts().getStrictFlexArraysLevel(); |
12196 | |
12197 | if (Designator.isMostDerivedAnUnsizedArray()) |
12198 | return true; |
12199 | |
12200 | if (StrictFlexArraysLevel == FAMKind::Default) |
12201 | return true; |
12202 | |
12203 | if (Designator.getMostDerivedArraySize() == 0 && |
12204 | StrictFlexArraysLevel != FAMKind::IncompleteOnly) |
12205 | return true; |
12206 | |
12207 | if (Designator.getMostDerivedArraySize() == 1 && |
12208 | StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete) |
12209 | return true; |
12210 | |
12211 | return false; |
12212 | }; |
12213 | |
12214 | return LVal.InvalidBase && |
12215 | Designator.Entries.size() == Designator.MostDerivedPathLength && |
12216 | Designator.MostDerivedIsArrayElement && isFlexibleArrayMember() && |
12217 | isDesignatorAtObjectEnd(Ctx, LVal); |
12218 | } |
12219 | |
12220 | /// Converts the given APInt to CharUnits, assuming the APInt is unsigned. |
12221 | /// Fails if the conversion would cause loss of precision. |
12222 | static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int, |
12223 | CharUnits &Result) { |
12224 | auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max(); |
12225 | if (Int.ugt(RHS: CharUnitsMax)) |
12226 | return false; |
12227 | Result = CharUnits::fromQuantity(Quantity: Int.getZExtValue()); |
12228 | return true; |
12229 | } |
12230 | |
12231 | /// If we're evaluating the object size of an instance of a struct that |
12232 | /// contains a flexible array member, add the size of the initializer. |
12233 | static void addFlexibleArrayMemberInitSize(EvalInfo &Info, const QualType &T, |
12234 | const LValue &LV, CharUnits &Size) { |
12235 | if (!T.isNull() && T->isStructureType() && |
12236 | T->getAsStructureType()->getDecl()->hasFlexibleArrayMember()) |
12237 | if (const auto *V = LV.getLValueBase().dyn_cast<const ValueDecl *>()) |
12238 | if (const auto *VD = dyn_cast<VarDecl>(Val: V)) |
12239 | if (VD->hasInit()) |
12240 | Size += VD->getFlexibleArrayInitChars(Ctx: Info.Ctx); |
12241 | } |
12242 | |
12243 | /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will |
12244 | /// determine how many bytes exist from the beginning of the object to either |
12245 | /// the end of the current subobject, or the end of the object itself, depending |
12246 | /// on what the LValue looks like + the value of Type. |
12247 | /// |
12248 | /// If this returns false, the value of Result is undefined. |
12249 | static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc, |
12250 | unsigned Type, const LValue &LVal, |
12251 | CharUnits &EndOffset) { |
12252 | bool DetermineForCompleteObject = refersToCompleteObject(LVal); |
12253 | |
12254 | auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) { |
12255 | if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType()) |
12256 | return false; |
12257 | return HandleSizeof(Info, Loc: ExprLoc, Type: Ty, Size&: Result); |
12258 | }; |
12259 | |
12260 | // We want to evaluate the size of the entire object. This is a valid fallback |
12261 | // for when Type=1 and the designator is invalid, because we're asked for an |
12262 | // upper-bound. |
12263 | if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) { |
12264 | // Type=3 wants a lower bound, so we can't fall back to this. |
12265 | if (Type == 3 && !DetermineForCompleteObject) |
12266 | return false; |
12267 | |
12268 | llvm::APInt APEndOffset; |
12269 | if (isBaseAnAllocSizeCall(Base: LVal.getLValueBase()) && |
12270 | getBytesReturnedByAllocSizeCall(Ctx: Info.Ctx, LVal, Result&: APEndOffset)) |
12271 | return convertUnsignedAPIntToCharUnits(Int: APEndOffset, Result&: EndOffset); |
12272 | |
12273 | if (LVal.InvalidBase) |
12274 | return false; |
12275 | |
12276 | QualType BaseTy = getObjectType(B: LVal.getLValueBase()); |
12277 | const bool Ret = CheckedHandleSizeof(BaseTy, EndOffset); |
12278 | addFlexibleArrayMemberInitSize(Info, T: BaseTy, LV: LVal, Size&: EndOffset); |
12279 | return Ret; |
12280 | } |
12281 | |
12282 | // We want to evaluate the size of a subobject. |
12283 | const SubobjectDesignator &Designator = LVal.Designator; |
12284 | |
12285 | // The following is a moderately common idiom in C: |
12286 | // |
12287 | // struct Foo { int a; char c[1]; }; |
12288 | // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar)); |
12289 | // strcpy(&F->c[0], Bar); |
12290 | // |
12291 | // In order to not break too much legacy code, we need to support it. |
12292 | if (isUserWritingOffTheEnd(Ctx: Info.Ctx, LVal)) { |
12293 | // If we can resolve this to an alloc_size call, we can hand that back, |
12294 | // because we know for certain how many bytes there are to write to. |
12295 | llvm::APInt APEndOffset; |
12296 | if (isBaseAnAllocSizeCall(Base: LVal.getLValueBase()) && |
12297 | getBytesReturnedByAllocSizeCall(Ctx: Info.Ctx, LVal, Result&: APEndOffset)) |
12298 | return convertUnsignedAPIntToCharUnits(Int: APEndOffset, Result&: EndOffset); |
12299 | |
12300 | // If we cannot determine the size of the initial allocation, then we can't |
12301 | // given an accurate upper-bound. However, we are still able to give |
12302 | // conservative lower-bounds for Type=3. |
12303 | if (Type == 1) |
12304 | return false; |
12305 | } |
12306 | |
12307 | CharUnits BytesPerElem; |
12308 | if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem)) |
12309 | return false; |
12310 | |
12311 | // According to the GCC documentation, we want the size of the subobject |
12312 | // denoted by the pointer. But that's not quite right -- what we actually |
12313 | // want is the size of the immediately-enclosing array, if there is one. |
12314 | int64_t ElemsRemaining; |
12315 | if (Designator.MostDerivedIsArrayElement && |
12316 | Designator.Entries.size() == Designator.MostDerivedPathLength) { |
12317 | uint64_t ArraySize = Designator.getMostDerivedArraySize(); |
12318 | uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex(); |
12319 | ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex; |
12320 | } else { |
12321 | ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1; |
12322 | } |
12323 | |
12324 | EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining; |
12325 | return true; |
12326 | } |
12327 | |
12328 | /// Tries to evaluate the __builtin_object_size for @p E. If successful, |
12329 | /// returns true and stores the result in @p Size. |
12330 | /// |
12331 | /// If @p WasError is non-null, this will report whether the failure to evaluate |
12332 | /// is to be treated as an Error in IntExprEvaluator. |
12333 | static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type, |
12334 | EvalInfo &Info, uint64_t &Size) { |
12335 | // Determine the denoted object. |
12336 | LValue LVal; |
12337 | { |
12338 | // The operand of __builtin_object_size is never evaluated for side-effects. |
12339 | // If there are any, but we can determine the pointed-to object anyway, then |
12340 | // ignore the side-effects. |
12341 | SpeculativeEvaluationRAII SpeculativeEval(Info); |
12342 | IgnoreSideEffectsRAII Fold(Info); |
12343 | |
12344 | if (E->isGLValue()) { |
12345 | // It's possible for us to be given GLValues if we're called via |
12346 | // Expr::tryEvaluateObjectSize. |
12347 | APValue RVal; |
12348 | if (!EvaluateAsRValue(Info, E, Result&: RVal)) |
12349 | return false; |
12350 | LVal.setFrom(Ctx&: Info.Ctx, V: RVal); |
12351 | } else if (!EvaluatePointer(E: ignorePointerCastsAndParens(E), Result&: LVal, Info, |
12352 | /*InvalidBaseOK=*/true)) |
12353 | return false; |
12354 | } |
12355 | |
12356 | // If we point to before the start of the object, there are no accessible |
12357 | // bytes. |
12358 | if (LVal.getLValueOffset().isNegative()) { |
12359 | Size = 0; |
12360 | return true; |
12361 | } |
12362 | |
12363 | CharUnits EndOffset; |
12364 | if (!determineEndOffset(Info, ExprLoc: E->getExprLoc(), Type, LVal, EndOffset)) |
12365 | return false; |
12366 | |
12367 | // If we've fallen outside of the end offset, just pretend there's nothing to |
12368 | // write to/read from. |
12369 | if (EndOffset <= LVal.getLValueOffset()) |
12370 | Size = 0; |
12371 | else |
12372 | Size = (EndOffset - LVal.getLValueOffset()).getQuantity(); |
12373 | return true; |
12374 | } |
12375 | |
12376 | bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { |
12377 | if (!IsConstantEvaluatedBuiltinCall(E)) |
12378 | return ExprEvaluatorBaseTy::VisitCallExpr(E); |
12379 | return VisitBuiltinCallExpr(E, BuiltinOp: E->getBuiltinCallee()); |
12380 | } |
12381 | |
12382 | static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info, |
12383 | APValue &Val, APSInt &Alignment) { |
12384 | QualType SrcTy = E->getArg(Arg: 0)->getType(); |
12385 | if (!getAlignmentArgument(E: E->getArg(Arg: 1), ForType: SrcTy, Info, Alignment)) |
12386 | return false; |
12387 | // Even though we are evaluating integer expressions we could get a pointer |
12388 | // argument for the __builtin_is_aligned() case. |
12389 | if (SrcTy->isPointerType()) { |
12390 | LValue Ptr; |
12391 | if (!EvaluatePointer(E: E->getArg(Arg: 0), Result&: Ptr, Info)) |
12392 | return false; |
12393 | Ptr.moveInto(V&: Val); |
12394 | } else if (!SrcTy->isIntegralOrEnumerationType()) { |
12395 | Info.FFDiag(E: E->getArg(Arg: 0)); |
12396 | return false; |
12397 | } else { |
12398 | APSInt SrcInt; |
12399 | if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: SrcInt, Info)) |
12400 | return false; |
12401 | assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() && |
12402 | "Bit widths must be the same" ); |
12403 | Val = APValue(SrcInt); |
12404 | } |
12405 | assert(Val.hasValue()); |
12406 | return true; |
12407 | } |
12408 | |
12409 | bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, |
12410 | unsigned BuiltinOp) { |
12411 | switch (BuiltinOp) { |
12412 | default: |
12413 | return false; |
12414 | |
12415 | case Builtin::BI__builtin_dynamic_object_size: |
12416 | case Builtin::BI__builtin_object_size: { |
12417 | // The type was checked when we built the expression. |
12418 | unsigned Type = |
12419 | E->getArg(Arg: 1)->EvaluateKnownConstInt(Ctx: Info.Ctx).getZExtValue(); |
12420 | assert(Type <= 3 && "unexpected type" ); |
12421 | |
12422 | uint64_t Size; |
12423 | if (tryEvaluateBuiltinObjectSize(E: E->getArg(Arg: 0), Type, Info, Size)) |
12424 | return Success(Value: Size, E); |
12425 | |
12426 | if (E->getArg(Arg: 0)->HasSideEffects(Ctx: Info.Ctx)) |
12427 | return Success(Value: (Type & 2) ? 0 : -1, E); |
12428 | |
12429 | // Expression had no side effects, but we couldn't statically determine the |
12430 | // size of the referenced object. |
12431 | switch (Info.EvalMode) { |
12432 | case EvalInfo::EM_ConstantExpression: |
12433 | case EvalInfo::EM_ConstantFold: |
12434 | case EvalInfo::EM_IgnoreSideEffects: |
12435 | // Leave it to IR generation. |
12436 | return Error(E); |
12437 | case EvalInfo::EM_ConstantExpressionUnevaluated: |
12438 | // Reduce it to a constant now. |
12439 | return Success(Value: (Type & 2) ? 0 : -1, E); |
12440 | } |
12441 | |
12442 | llvm_unreachable("unexpected EvalMode" ); |
12443 | } |
12444 | |
12445 | case Builtin::BI__builtin_os_log_format_buffer_size: { |
12446 | analyze_os_log::OSLogBufferLayout Layout; |
12447 | analyze_os_log::computeOSLogBufferLayout(Ctx&: Info.Ctx, E, layout&: Layout); |
12448 | return Success(Value: Layout.size().getQuantity(), E); |
12449 | } |
12450 | |
12451 | case Builtin::BI__builtin_is_aligned: { |
12452 | APValue Src; |
12453 | APSInt Alignment; |
12454 | if (!getBuiltinAlignArguments(E, Info, Val&: Src, Alignment)) |
12455 | return false; |
12456 | if (Src.isLValue()) { |
12457 | // If we evaluated a pointer, check the minimum known alignment. |
12458 | LValue Ptr; |
12459 | Ptr.setFrom(Ctx&: Info.Ctx, V: Src); |
12460 | CharUnits BaseAlignment = getBaseAlignment(Info, Value: Ptr); |
12461 | CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(offset: Ptr.Offset); |
12462 | // We can return true if the known alignment at the computed offset is |
12463 | // greater than the requested alignment. |
12464 | assert(PtrAlign.isPowerOfTwo()); |
12465 | assert(Alignment.isPowerOf2()); |
12466 | if (PtrAlign.getQuantity() >= Alignment) |
12467 | return Success(Value: 1, E); |
12468 | // If the alignment is not known to be sufficient, some cases could still |
12469 | // be aligned at run time. However, if the requested alignment is less or |
12470 | // equal to the base alignment and the offset is not aligned, we know that |
12471 | // the run-time value can never be aligned. |
12472 | if (BaseAlignment.getQuantity() >= Alignment && |
12473 | PtrAlign.getQuantity() < Alignment) |
12474 | return Success(Value: 0, E); |
12475 | // Otherwise we can't infer whether the value is sufficiently aligned. |
12476 | // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N) |
12477 | // in cases where we can't fully evaluate the pointer. |
12478 | Info.FFDiag(E: E->getArg(Arg: 0), DiagId: diag::note_constexpr_alignment_compute) |
12479 | << Alignment; |
12480 | return false; |
12481 | } |
12482 | assert(Src.isInt()); |
12483 | return Success(Value: (Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E); |
12484 | } |
12485 | case Builtin::BI__builtin_align_up: { |
12486 | APValue Src; |
12487 | APSInt Alignment; |
12488 | if (!getBuiltinAlignArguments(E, Info, Val&: Src, Alignment)) |
12489 | return false; |
12490 | if (!Src.isInt()) |
12491 | return Error(E); |
12492 | APSInt AlignedVal = |
12493 | APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1), |
12494 | Src.getInt().isUnsigned()); |
12495 | assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth()); |
12496 | return Success(SI: AlignedVal, E); |
12497 | } |
12498 | case Builtin::BI__builtin_align_down: { |
12499 | APValue Src; |
12500 | APSInt Alignment; |
12501 | if (!getBuiltinAlignArguments(E, Info, Val&: Src, Alignment)) |
12502 | return false; |
12503 | if (!Src.isInt()) |
12504 | return Error(E); |
12505 | APSInt AlignedVal = |
12506 | APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned()); |
12507 | assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth()); |
12508 | return Success(SI: AlignedVal, E); |
12509 | } |
12510 | |
12511 | case Builtin::BI__builtin_bitreverse8: |
12512 | case Builtin::BI__builtin_bitreverse16: |
12513 | case Builtin::BI__builtin_bitreverse32: |
12514 | case Builtin::BI__builtin_bitreverse64: { |
12515 | APSInt Val; |
12516 | if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info)) |
12517 | return false; |
12518 | |
12519 | return Success(I: Val.reverseBits(), E); |
12520 | } |
12521 | |
12522 | case Builtin::BI__builtin_bswap16: |
12523 | case Builtin::BI__builtin_bswap32: |
12524 | case Builtin::BI__builtin_bswap64: { |
12525 | APSInt Val; |
12526 | if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info)) |
12527 | return false; |
12528 | |
12529 | return Success(I: Val.byteSwap(), E); |
12530 | } |
12531 | |
12532 | case Builtin::BI__builtin_classify_type: |
12533 | return Success(Value: (int)EvaluateBuiltinClassifyType(E, LangOpts: Info.getLangOpts()), E); |
12534 | |
12535 | case Builtin::BI__builtin_clrsb: |
12536 | case Builtin::BI__builtin_clrsbl: |
12537 | case Builtin::BI__builtin_clrsbll: { |
12538 | APSInt Val; |
12539 | if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info)) |
12540 | return false; |
12541 | |
12542 | return Success(Value: Val.getBitWidth() - Val.getSignificantBits(), E); |
12543 | } |
12544 | |
12545 | case Builtin::BI__builtin_clz: |
12546 | case Builtin::BI__builtin_clzl: |
12547 | case Builtin::BI__builtin_clzll: |
12548 | case Builtin::BI__builtin_clzs: |
12549 | case Builtin::BI__builtin_clzg: |
12550 | case Builtin::BI__lzcnt16: // Microsoft variants of count leading-zeroes |
12551 | case Builtin::BI__lzcnt: |
12552 | case Builtin::BI__lzcnt64: { |
12553 | APSInt Val; |
12554 | if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info)) |
12555 | return false; |
12556 | |
12557 | std::optional<APSInt> Fallback; |
12558 | if (BuiltinOp == Builtin::BI__builtin_clzg && E->getNumArgs() > 1) { |
12559 | APSInt FallbackTemp; |
12560 | if (!EvaluateInteger(E: E->getArg(Arg: 1), Result&: FallbackTemp, Info)) |
12561 | return false; |
12562 | Fallback = FallbackTemp; |
12563 | } |
12564 | |
12565 | if (!Val) { |
12566 | if (Fallback) |
12567 | return Success(SI: *Fallback, E); |
12568 | |
12569 | // When the argument is 0, the result of GCC builtins is undefined, |
12570 | // whereas for Microsoft intrinsics, the result is the bit-width of the |
12571 | // argument. |
12572 | bool ZeroIsUndefined = BuiltinOp != Builtin::BI__lzcnt16 && |
12573 | BuiltinOp != Builtin::BI__lzcnt && |
12574 | BuiltinOp != Builtin::BI__lzcnt64; |
12575 | |
12576 | if (ZeroIsUndefined) |
12577 | return Error(E); |
12578 | } |
12579 | |
12580 | return Success(Value: Val.countl_zero(), E); |
12581 | } |
12582 | |
12583 | case Builtin::BI__builtin_constant_p: { |
12584 | const Expr *Arg = E->getArg(Arg: 0); |
12585 | if (EvaluateBuiltinConstantP(Info, Arg)) |
12586 | return Success(Value: true, E); |
12587 | if (Info.InConstantContext || Arg->HasSideEffects(Ctx: Info.Ctx)) { |
12588 | // Outside a constant context, eagerly evaluate to false in the presence |
12589 | // of side-effects in order to avoid -Wunsequenced false-positives in |
12590 | // a branch on __builtin_constant_p(expr). |
12591 | return Success(Value: false, E); |
12592 | } |
12593 | Info.FFDiag(E, DiagId: diag::note_invalid_subexpr_in_const_expr); |
12594 | return false; |
12595 | } |
12596 | |
12597 | case Builtin::BI__builtin_is_constant_evaluated: { |
12598 | const auto *Callee = Info.CurrentCall->getCallee(); |
12599 | if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression && |
12600 | (Info.CallStackDepth == 1 || |
12601 | (Info.CallStackDepth == 2 && Callee->isInStdNamespace() && |
12602 | Callee->getIdentifier() && |
12603 | Callee->getIdentifier()->isStr(Str: "is_constant_evaluated" )))) { |
12604 | // FIXME: Find a better way to avoid duplicated diagnostics. |
12605 | if (Info.EvalStatus.Diag) |
12606 | Info.report(Loc: (Info.CallStackDepth == 1) |
12607 | ? E->getExprLoc() |
12608 | : Info.CurrentCall->getCallRange().getBegin(), |
12609 | DiagId: diag::warn_is_constant_evaluated_always_true_constexpr) |
12610 | << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated" |
12611 | : "std::is_constant_evaluated" ); |
12612 | } |
12613 | |
12614 | return Success(Value: Info.InConstantContext, E); |
12615 | } |
12616 | |
12617 | case Builtin::BI__builtin_ctz: |
12618 | case Builtin::BI__builtin_ctzl: |
12619 | case Builtin::BI__builtin_ctzll: |
12620 | case Builtin::BI__builtin_ctzs: |
12621 | case Builtin::BI__builtin_ctzg: { |
12622 | APSInt Val; |
12623 | if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info)) |
12624 | return false; |
12625 | |
12626 | std::optional<APSInt> Fallback; |
12627 | if (BuiltinOp == Builtin::BI__builtin_ctzg && E->getNumArgs() > 1) { |
12628 | APSInt FallbackTemp; |
12629 | if (!EvaluateInteger(E: E->getArg(Arg: 1), Result&: FallbackTemp, Info)) |
12630 | return false; |
12631 | Fallback = FallbackTemp; |
12632 | } |
12633 | |
12634 | if (!Val) { |
12635 | if (Fallback) |
12636 | return Success(SI: *Fallback, E); |
12637 | |
12638 | return Error(E); |
12639 | } |
12640 | |
12641 | return Success(Value: Val.countr_zero(), E); |
12642 | } |
12643 | |
12644 | case Builtin::BI__builtin_eh_return_data_regno: { |
12645 | int Operand = E->getArg(Arg: 0)->EvaluateKnownConstInt(Ctx: Info.Ctx).getZExtValue(); |
12646 | Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(RegNo: Operand); |
12647 | return Success(Value: Operand, E); |
12648 | } |
12649 | |
12650 | case Builtin::BI__builtin_expect: |
12651 | case Builtin::BI__builtin_expect_with_probability: |
12652 | return Visit(S: E->getArg(Arg: 0)); |
12653 | |
12654 | case Builtin::BI__builtin_ptrauth_string_discriminator: { |
12655 | const auto *Literal = |
12656 | cast<StringLiteral>(Val: E->getArg(Arg: 0)->IgnoreParenImpCasts()); |
12657 | uint64_t Result = getPointerAuthStableSipHash(S: Literal->getString()); |
12658 | return Success(Value: Result, E); |
12659 | } |
12660 | |
12661 | case Builtin::BI__builtin_ffs: |
12662 | case Builtin::BI__builtin_ffsl: |
12663 | case Builtin::BI__builtin_ffsll: { |
12664 | APSInt Val; |
12665 | if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info)) |
12666 | return false; |
12667 | |
12668 | unsigned N = Val.countr_zero(); |
12669 | return Success(Value: N == Val.getBitWidth() ? 0 : N + 1, E); |
12670 | } |
12671 | |
12672 | case Builtin::BI__builtin_fpclassify: { |
12673 | APFloat Val(0.0); |
12674 | if (!EvaluateFloat(E: E->getArg(Arg: 5), Result&: Val, Info)) |
12675 | return false; |
12676 | unsigned Arg; |
12677 | switch (Val.getCategory()) { |
12678 | case APFloat::fcNaN: Arg = 0; break; |
12679 | case APFloat::fcInfinity: Arg = 1; break; |
12680 | case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break; |
12681 | case APFloat::fcZero: Arg = 4; break; |
12682 | } |
12683 | return Visit(S: E->getArg(Arg)); |
12684 | } |
12685 | |
12686 | case Builtin::BI__builtin_isinf_sign: { |
12687 | APFloat Val(0.0); |
12688 | return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) && |
12689 | Success(Value: Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E); |
12690 | } |
12691 | |
12692 | case Builtin::BI__builtin_isinf: { |
12693 | APFloat Val(0.0); |
12694 | return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) && |
12695 | Success(Value: Val.isInfinity() ? 1 : 0, E); |
12696 | } |
12697 | |
12698 | case Builtin::BI__builtin_isfinite: { |
12699 | APFloat Val(0.0); |
12700 | return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) && |
12701 | Success(Value: Val.isFinite() ? 1 : 0, E); |
12702 | } |
12703 | |
12704 | case Builtin::BI__builtin_isnan: { |
12705 | APFloat Val(0.0); |
12706 | return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) && |
12707 | Success(Value: Val.isNaN() ? 1 : 0, E); |
12708 | } |
12709 | |
12710 | case Builtin::BI__builtin_isnormal: { |
12711 | APFloat Val(0.0); |
12712 | return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) && |
12713 | Success(Value: Val.isNormal() ? 1 : 0, E); |
12714 | } |
12715 | |
12716 | case Builtin::BI__builtin_issubnormal: { |
12717 | APFloat Val(0.0); |
12718 | return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) && |
12719 | Success(Value: Val.isDenormal() ? 1 : 0, E); |
12720 | } |
12721 | |
12722 | case Builtin::BI__builtin_iszero: { |
12723 | APFloat Val(0.0); |
12724 | return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) && |
12725 | Success(Value: Val.isZero() ? 1 : 0, E); |
12726 | } |
12727 | |
12728 | case Builtin::BI__builtin_issignaling: { |
12729 | APFloat Val(0.0); |
12730 | return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) && |
12731 | Success(Value: Val.isSignaling() ? 1 : 0, E); |
12732 | } |
12733 | |
12734 | case Builtin::BI__builtin_isfpclass: { |
12735 | APSInt MaskVal; |
12736 | if (!EvaluateInteger(E: E->getArg(Arg: 1), Result&: MaskVal, Info)) |
12737 | return false; |
12738 | unsigned Test = static_cast<llvm::FPClassTest>(MaskVal.getZExtValue()); |
12739 | APFloat Val(0.0); |
12740 | return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) && |
12741 | Success(Value: (Val.classify() & Test) ? 1 : 0, E); |
12742 | } |
12743 | |
12744 | case Builtin::BI__builtin_parity: |
12745 | case Builtin::BI__builtin_parityl: |
12746 | case Builtin::BI__builtin_parityll: { |
12747 | APSInt Val; |
12748 | if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info)) |
12749 | return false; |
12750 | |
12751 | return Success(Value: Val.popcount() % 2, E); |
12752 | } |
12753 | |
12754 | case Builtin::BI__builtin_popcount: |
12755 | case Builtin::BI__builtin_popcountl: |
12756 | case Builtin::BI__builtin_popcountll: |
12757 | case Builtin::BI__builtin_popcountg: |
12758 | case Builtin::BI__popcnt16: // Microsoft variants of popcount |
12759 | case Builtin::BI__popcnt: |
12760 | case Builtin::BI__popcnt64: { |
12761 | APSInt Val; |
12762 | if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info)) |
12763 | return false; |
12764 | |
12765 | return Success(Value: Val.popcount(), E); |
12766 | } |
12767 | |
12768 | case Builtin::BI__builtin_rotateleft8: |
12769 | case Builtin::BI__builtin_rotateleft16: |
12770 | case Builtin::BI__builtin_rotateleft32: |
12771 | case Builtin::BI__builtin_rotateleft64: |
12772 | case Builtin::BI_rotl8: // Microsoft variants of rotate right |
12773 | case Builtin::BI_rotl16: |
12774 | case Builtin::BI_rotl: |
12775 | case Builtin::BI_lrotl: |
12776 | case Builtin::BI_rotl64: { |
12777 | APSInt Val, Amt; |
12778 | if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info) || |
12779 | !EvaluateInteger(E: E->getArg(Arg: 1), Result&: Amt, Info)) |
12780 | return false; |
12781 | |
12782 | return Success(I: Val.rotl(rotateAmt: Amt.urem(RHS: Val.getBitWidth())), E); |
12783 | } |
12784 | |
12785 | case Builtin::BI__builtin_rotateright8: |
12786 | case Builtin::BI__builtin_rotateright16: |
12787 | case Builtin::BI__builtin_rotateright32: |
12788 | case Builtin::BI__builtin_rotateright64: |
12789 | case Builtin::BI_rotr8: // Microsoft variants of rotate right |
12790 | case Builtin::BI_rotr16: |
12791 | case Builtin::BI_rotr: |
12792 | case Builtin::BI_lrotr: |
12793 | case Builtin::BI_rotr64: { |
12794 | APSInt Val, Amt; |
12795 | if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info) || |
12796 | !EvaluateInteger(E: E->getArg(Arg: 1), Result&: Amt, Info)) |
12797 | return false; |
12798 | |
12799 | return Success(I: Val.rotr(rotateAmt: Amt.urem(RHS: Val.getBitWidth())), E); |
12800 | } |
12801 | |
12802 | case Builtin::BIstrlen: |
12803 | case Builtin::BIwcslen: |
12804 | // A call to strlen is not a constant expression. |
12805 | if (Info.getLangOpts().CPlusPlus11) |
12806 | Info.CCEDiag(E, DiagId: diag::note_constexpr_invalid_function) |
12807 | << /*isConstexpr*/ 0 << /*isConstructor*/ 0 |
12808 | << ("'" + Info.Ctx.BuiltinInfo.getName(ID: BuiltinOp) + "'" ).str(); |
12809 | else |
12810 | Info.CCEDiag(E, DiagId: diag::note_invalid_subexpr_in_const_expr); |
12811 | [[fallthrough]]; |
12812 | case Builtin::BI__builtin_strlen: |
12813 | case Builtin::BI__builtin_wcslen: { |
12814 | // As an extension, we support __builtin_strlen() as a constant expression, |
12815 | // and support folding strlen() to a constant. |
12816 | uint64_t StrLen; |
12817 | if (EvaluateBuiltinStrLen(E: E->getArg(Arg: 0), Result&: StrLen, Info)) |
12818 | return Success(Value: StrLen, E); |
12819 | return false; |
12820 | } |
12821 | |
12822 | case Builtin::BIstrcmp: |
12823 | case Builtin::BIwcscmp: |
12824 | case Builtin::BIstrncmp: |
12825 | case Builtin::BIwcsncmp: |
12826 | case Builtin::BImemcmp: |
12827 | case Builtin::BIbcmp: |
12828 | case Builtin::BIwmemcmp: |
12829 | // A call to strlen is not a constant expression. |
12830 | if (Info.getLangOpts().CPlusPlus11) |
12831 | Info.CCEDiag(E, DiagId: diag::note_constexpr_invalid_function) |
12832 | << /*isConstexpr*/ 0 << /*isConstructor*/ 0 |
12833 | << ("'" + Info.Ctx.BuiltinInfo.getName(ID: BuiltinOp) + "'" ).str(); |
12834 | else |
12835 | Info.CCEDiag(E, DiagId: diag::note_invalid_subexpr_in_const_expr); |
12836 | [[fallthrough]]; |
12837 | case Builtin::BI__builtin_strcmp: |
12838 | case Builtin::BI__builtin_wcscmp: |
12839 | case Builtin::BI__builtin_strncmp: |
12840 | case Builtin::BI__builtin_wcsncmp: |
12841 | case Builtin::BI__builtin_memcmp: |
12842 | case Builtin::BI__builtin_bcmp: |
12843 | case Builtin::BI__builtin_wmemcmp: { |
12844 | LValue String1, String2; |
12845 | if (!EvaluatePointer(E: E->getArg(Arg: 0), Result&: String1, Info) || |
12846 | !EvaluatePointer(E: E->getArg(Arg: 1), Result&: String2, Info)) |
12847 | return false; |
12848 | |
12849 | uint64_t MaxLength = uint64_t(-1); |
12850 | if (BuiltinOp != Builtin::BIstrcmp && |
12851 | BuiltinOp != Builtin::BIwcscmp && |
12852 | BuiltinOp != Builtin::BI__builtin_strcmp && |
12853 | BuiltinOp != Builtin::BI__builtin_wcscmp) { |
12854 | APSInt N; |
12855 | if (!EvaluateInteger(E: E->getArg(Arg: 2), Result&: N, Info)) |
12856 | return false; |
12857 | MaxLength = N.getZExtValue(); |
12858 | } |
12859 | |
12860 | // Empty substrings compare equal by definition. |
12861 | if (MaxLength == 0u) |
12862 | return Success(Value: 0, E); |
12863 | |
12864 | if (!String1.checkNullPointerForFoldAccess(Info, E, AK: AK_Read) || |
12865 | !String2.checkNullPointerForFoldAccess(Info, E, AK: AK_Read) || |
12866 | String1.Designator.Invalid || String2.Designator.Invalid) |
12867 | return false; |
12868 | |
12869 | QualType CharTy1 = String1.Designator.getType(Ctx&: Info.Ctx); |
12870 | QualType CharTy2 = String2.Designator.getType(Ctx&: Info.Ctx); |
12871 | |
12872 | bool IsRawByte = BuiltinOp == Builtin::BImemcmp || |
12873 | BuiltinOp == Builtin::BIbcmp || |
12874 | BuiltinOp == Builtin::BI__builtin_memcmp || |
12875 | BuiltinOp == Builtin::BI__builtin_bcmp; |
12876 | |
12877 | assert(IsRawByte || |
12878 | (Info.Ctx.hasSameUnqualifiedType( |
12879 | CharTy1, E->getArg(0)->getType()->getPointeeType()) && |
12880 | Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))); |
12881 | |
12882 | // For memcmp, allow comparing any arrays of '[[un]signed] char' or |
12883 | // 'char8_t', but no other types. |
12884 | if (IsRawByte && |
12885 | !(isOneByteCharacterType(T: CharTy1) && isOneByteCharacterType(T: CharTy2))) { |
12886 | // FIXME: Consider using our bit_cast implementation to support this. |
12887 | Info.FFDiag(E, DiagId: diag::note_constexpr_memcmp_unsupported) |
12888 | << ("'" + Info.Ctx.BuiltinInfo.getName(ID: BuiltinOp) + "'" ).str() |
12889 | << CharTy1 << CharTy2; |
12890 | return false; |
12891 | } |
12892 | |
12893 | const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) { |
12894 | return handleLValueToRValueConversion(Info, Conv: E, Type: CharTy1, LVal: String1, RVal&: Char1) && |
12895 | handleLValueToRValueConversion(Info, Conv: E, Type: CharTy2, LVal: String2, RVal&: Char2) && |
12896 | Char1.isInt() && Char2.isInt(); |
12897 | }; |
12898 | const auto &AdvanceElems = [&] { |
12899 | return HandleLValueArrayAdjustment(Info, E, LVal&: String1, EltTy: CharTy1, Adjustment: 1) && |
12900 | HandleLValueArrayAdjustment(Info, E, LVal&: String2, EltTy: CharTy2, Adjustment: 1); |
12901 | }; |
12902 | |
12903 | bool StopAtNull = |
12904 | (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp && |
12905 | BuiltinOp != Builtin::BIwmemcmp && |
12906 | BuiltinOp != Builtin::BI__builtin_memcmp && |
12907 | BuiltinOp != Builtin::BI__builtin_bcmp && |
12908 | BuiltinOp != Builtin::BI__builtin_wmemcmp); |
12909 | bool IsWide = BuiltinOp == Builtin::BIwcscmp || |
12910 | BuiltinOp == Builtin::BIwcsncmp || |
12911 | BuiltinOp == Builtin::BIwmemcmp || |
12912 | BuiltinOp == Builtin::BI__builtin_wcscmp || |
12913 | BuiltinOp == Builtin::BI__builtin_wcsncmp || |
12914 | BuiltinOp == Builtin::BI__builtin_wmemcmp; |
12915 | |
12916 | for (; MaxLength; --MaxLength) { |
12917 | APValue Char1, Char2; |
12918 | if (!ReadCurElems(Char1, Char2)) |
12919 | return false; |
12920 | if (Char1.getInt().ne(RHS: Char2.getInt())) { |
12921 | if (IsWide) // wmemcmp compares with wchar_t signedness. |
12922 | return Success(Value: Char1.getInt() < Char2.getInt() ? -1 : 1, E); |
12923 | // memcmp always compares unsigned chars. |
12924 | return Success(Value: Char1.getInt().ult(RHS: Char2.getInt()) ? -1 : 1, E); |
12925 | } |
12926 | if (StopAtNull && !Char1.getInt()) |
12927 | return Success(Value: 0, E); |
12928 | assert(!(StopAtNull && !Char2.getInt())); |
12929 | if (!AdvanceElems()) |
12930 | return false; |
12931 | } |
12932 | // We hit the strncmp / memcmp limit. |
12933 | return Success(Value: 0, E); |
12934 | } |
12935 | |
12936 | case Builtin::BI__atomic_always_lock_free: |
12937 | case Builtin::BI__atomic_is_lock_free: |
12938 | case Builtin::BI__c11_atomic_is_lock_free: { |
12939 | APSInt SizeVal; |
12940 | if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: SizeVal, Info)) |
12941 | return false; |
12942 | |
12943 | // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power |
12944 | // of two less than or equal to the maximum inline atomic width, we know it |
12945 | // is lock-free. If the size isn't a power of two, or greater than the |
12946 | // maximum alignment where we promote atomics, we know it is not lock-free |
12947 | // (at least not in the sense of atomic_is_lock_free). Otherwise, |
12948 | // the answer can only be determined at runtime; for example, 16-byte |
12949 | // atomics have lock-free implementations on some, but not all, |
12950 | // x86-64 processors. |
12951 | |
12952 | // Check power-of-two. |
12953 | CharUnits Size = CharUnits::fromQuantity(Quantity: SizeVal.getZExtValue()); |
12954 | if (Size.isPowerOfTwo()) { |
12955 | // Check against inlining width. |
12956 | unsigned InlineWidthBits = |
12957 | Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth(); |
12958 | if (Size <= Info.Ctx.toCharUnitsFromBits(BitSize: InlineWidthBits)) { |
12959 | if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free || |
12960 | Size == CharUnits::One()) |
12961 | return Success(Value: 1, E); |
12962 | |
12963 | // If the pointer argument can be evaluated to a compile-time constant |
12964 | // integer (or nullptr), check if that value is appropriately aligned. |
12965 | const Expr *PtrArg = E->getArg(Arg: 1); |
12966 | Expr::EvalResult ExprResult; |
12967 | APSInt IntResult; |
12968 | if (PtrArg->EvaluateAsRValue(Result&: ExprResult, Ctx: Info.Ctx) && |
12969 | ExprResult.Val.toIntegralConstant(Result&: IntResult, SrcTy: PtrArg->getType(), |
12970 | Ctx: Info.Ctx) && |
12971 | IntResult.isAligned(A: Size.getAsAlign())) |
12972 | return Success(Value: 1, E); |
12973 | |
12974 | // Otherwise, check if the type's alignment against Size. |
12975 | if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: PtrArg)) { |
12976 | // Drop the potential implicit-cast to 'const volatile void*', getting |
12977 | // the underlying type. |
12978 | if (ICE->getCastKind() == CK_BitCast) |
12979 | PtrArg = ICE->getSubExpr(); |
12980 | } |
12981 | |
12982 | if (auto PtrTy = PtrArg->getType()->getAs<PointerType>()) { |
12983 | QualType PointeeType = PtrTy->getPointeeType(); |
12984 | if (!PointeeType->isIncompleteType() && |
12985 | Info.Ctx.getTypeAlignInChars(T: PointeeType) >= Size) { |
12986 | // OK, we will inline operations on this object. |
12987 | return Success(Value: 1, E); |
12988 | } |
12989 | } |
12990 | } |
12991 | } |
12992 | |
12993 | return BuiltinOp == Builtin::BI__atomic_always_lock_free ? |
12994 | Success(Value: 0, E) : Error(E); |
12995 | } |
12996 | case Builtin::BI__builtin_addcb: |
12997 | case Builtin::BI__builtin_addcs: |
12998 | case Builtin::BI__builtin_addc: |
12999 | case Builtin::BI__builtin_addcl: |
13000 | case Builtin::BI__builtin_addcll: |
13001 | case Builtin::BI__builtin_subcb: |
13002 | case Builtin::BI__builtin_subcs: |
13003 | case Builtin::BI__builtin_subc: |
13004 | case Builtin::BI__builtin_subcl: |
13005 | case Builtin::BI__builtin_subcll: { |
13006 | LValue CarryOutLValue; |
13007 | APSInt LHS, RHS, CarryIn, CarryOut, Result; |
13008 | QualType ResultType = E->getArg(Arg: 0)->getType(); |
13009 | if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: LHS, Info) || |
13010 | !EvaluateInteger(E: E->getArg(Arg: 1), Result&: RHS, Info) || |
13011 | !EvaluateInteger(E: E->getArg(Arg: 2), Result&: CarryIn, Info) || |
13012 | !EvaluatePointer(E: E->getArg(Arg: 3), Result&: CarryOutLValue, Info)) |
13013 | return false; |
13014 | // Copy the number of bits and sign. |
13015 | Result = LHS; |
13016 | CarryOut = LHS; |
13017 | |
13018 | bool FirstOverflowed = false; |
13019 | bool SecondOverflowed = false; |
13020 | switch (BuiltinOp) { |
13021 | default: |
13022 | llvm_unreachable("Invalid value for BuiltinOp" ); |
13023 | case Builtin::BI__builtin_addcb: |
13024 | case Builtin::BI__builtin_addcs: |
13025 | case Builtin::BI__builtin_addc: |
13026 | case Builtin::BI__builtin_addcl: |
13027 | case Builtin::BI__builtin_addcll: |
13028 | Result = |
13029 | LHS.uadd_ov(RHS, Overflow&: FirstOverflowed).uadd_ov(RHS: CarryIn, Overflow&: SecondOverflowed); |
13030 | break; |
13031 | case Builtin::BI__builtin_subcb: |
13032 | case Builtin::BI__builtin_subcs: |
13033 | case Builtin::BI__builtin_subc: |
13034 | case Builtin::BI__builtin_subcl: |
13035 | case Builtin::BI__builtin_subcll: |
13036 | Result = |
13037 | LHS.usub_ov(RHS, Overflow&: FirstOverflowed).usub_ov(RHS: CarryIn, Overflow&: SecondOverflowed); |
13038 | break; |
13039 | } |
13040 | |
13041 | // It is possible for both overflows to happen but CGBuiltin uses an OR so |
13042 | // this is consistent. |
13043 | CarryOut = (uint64_t)(FirstOverflowed | SecondOverflowed); |
13044 | APValue APV{CarryOut}; |
13045 | if (!handleAssignment(Info, E, LVal: CarryOutLValue, LValType: ResultType, Val&: APV)) |
13046 | return false; |
13047 | return Success(SI: Result, E); |
13048 | } |
13049 | case Builtin::BI__builtin_add_overflow: |
13050 | case Builtin::BI__builtin_sub_overflow: |
13051 | case Builtin::BI__builtin_mul_overflow: |
13052 | case Builtin::BI__builtin_sadd_overflow: |
13053 | case Builtin::BI__builtin_uadd_overflow: |
13054 | case Builtin::BI__builtin_uaddl_overflow: |
13055 | case Builtin::BI__builtin_uaddll_overflow: |
13056 | case Builtin::BI__builtin_usub_overflow: |
13057 | case Builtin::BI__builtin_usubl_overflow: |
13058 | case Builtin::BI__builtin_usubll_overflow: |
13059 | case Builtin::BI__builtin_umul_overflow: |
13060 | case Builtin::BI__builtin_umull_overflow: |
13061 | case Builtin::BI__builtin_umulll_overflow: |
13062 | case Builtin::BI__builtin_saddl_overflow: |
13063 | case Builtin::BI__builtin_saddll_overflow: |
13064 | case Builtin::BI__builtin_ssub_overflow: |
13065 | case Builtin::BI__builtin_ssubl_overflow: |
13066 | case Builtin::BI__builtin_ssubll_overflow: |
13067 | case Builtin::BI__builtin_smul_overflow: |
13068 | case Builtin::BI__builtin_smull_overflow: |
13069 | case Builtin::BI__builtin_smulll_overflow: { |
13070 | LValue ResultLValue; |
13071 | APSInt LHS, RHS; |
13072 | |
13073 | QualType ResultType = E->getArg(Arg: 2)->getType()->getPointeeType(); |
13074 | if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: LHS, Info) || |
13075 | !EvaluateInteger(E: E->getArg(Arg: 1), Result&: RHS, Info) || |
13076 | !EvaluatePointer(E: E->getArg(Arg: 2), Result&: ResultLValue, Info)) |
13077 | return false; |
13078 | |
13079 | APSInt Result; |
13080 | bool DidOverflow = false; |
13081 | |
13082 | // If the types don't have to match, enlarge all 3 to the largest of them. |
13083 | if (BuiltinOp == Builtin::BI__builtin_add_overflow || |
13084 | BuiltinOp == Builtin::BI__builtin_sub_overflow || |
13085 | BuiltinOp == Builtin::BI__builtin_mul_overflow) { |
13086 | bool IsSigned = LHS.isSigned() || RHS.isSigned() || |
13087 | ResultType->isSignedIntegerOrEnumerationType(); |
13088 | bool AllSigned = LHS.isSigned() && RHS.isSigned() && |
13089 | ResultType->isSignedIntegerOrEnumerationType(); |
13090 | uint64_t LHSSize = LHS.getBitWidth(); |
13091 | uint64_t RHSSize = RHS.getBitWidth(); |
13092 | uint64_t ResultSize = Info.Ctx.getTypeSize(T: ResultType); |
13093 | uint64_t MaxBits = std::max(a: std::max(a: LHSSize, b: RHSSize), b: ResultSize); |
13094 | |
13095 | // Add an additional bit if the signedness isn't uniformly agreed to. We |
13096 | // could do this ONLY if there is a signed and an unsigned that both have |
13097 | // MaxBits, but the code to check that is pretty nasty. The issue will be |
13098 | // caught in the shrink-to-result later anyway. |
13099 | if (IsSigned && !AllSigned) |
13100 | ++MaxBits; |
13101 | |
13102 | LHS = APSInt(LHS.extOrTrunc(width: MaxBits), !IsSigned); |
13103 | RHS = APSInt(RHS.extOrTrunc(width: MaxBits), !IsSigned); |
13104 | Result = APSInt(MaxBits, !IsSigned); |
13105 | } |
13106 | |
13107 | // Find largest int. |
13108 | switch (BuiltinOp) { |
13109 | default: |
13110 | llvm_unreachable("Invalid value for BuiltinOp" ); |
13111 | case Builtin::BI__builtin_add_overflow: |
13112 | case Builtin::BI__builtin_sadd_overflow: |
13113 | case Builtin::BI__builtin_saddl_overflow: |
13114 | case Builtin::BI__builtin_saddll_overflow: |
13115 | case Builtin::BI__builtin_uadd_overflow: |
13116 | case Builtin::BI__builtin_uaddl_overflow: |
13117 | case Builtin::BI__builtin_uaddll_overflow: |
13118 | Result = LHS.isSigned() ? LHS.sadd_ov(RHS, Overflow&: DidOverflow) |
13119 | : LHS.uadd_ov(RHS, Overflow&: DidOverflow); |
13120 | break; |
13121 | case Builtin::BI__builtin_sub_overflow: |
13122 | case Builtin::BI__builtin_ssub_overflow: |
13123 | case Builtin::BI__builtin_ssubl_overflow: |
13124 | case Builtin::BI__builtin_ssubll_overflow: |
13125 | case Builtin::BI__builtin_usub_overflow: |
13126 | case Builtin::BI__builtin_usubl_overflow: |
13127 | case Builtin::BI__builtin_usubll_overflow: |
13128 | Result = LHS.isSigned() ? LHS.ssub_ov(RHS, Overflow&: DidOverflow) |
13129 | : LHS.usub_ov(RHS, Overflow&: DidOverflow); |
13130 | break; |
13131 | case Builtin::BI__builtin_mul_overflow: |
13132 | case Builtin::BI__builtin_smul_overflow: |
13133 | case Builtin::BI__builtin_smull_overflow: |
13134 | case Builtin::BI__builtin_smulll_overflow: |
13135 | case Builtin::BI__builtin_umul_overflow: |
13136 | case Builtin::BI__builtin_umull_overflow: |
13137 | case Builtin::BI__builtin_umulll_overflow: |
13138 | Result = LHS.isSigned() ? LHS.smul_ov(RHS, Overflow&: DidOverflow) |
13139 | : LHS.umul_ov(RHS, Overflow&: DidOverflow); |
13140 | break; |
13141 | } |
13142 | |
13143 | // In the case where multiple sizes are allowed, truncate and see if |
13144 | // the values are the same. |
13145 | if (BuiltinOp == Builtin::BI__builtin_add_overflow || |
13146 | BuiltinOp == Builtin::BI__builtin_sub_overflow || |
13147 | BuiltinOp == Builtin::BI__builtin_mul_overflow) { |
13148 | // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead, |
13149 | // since it will give us the behavior of a TruncOrSelf in the case where |
13150 | // its parameter <= its size. We previously set Result to be at least the |
13151 | // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth |
13152 | // will work exactly like TruncOrSelf. |
13153 | APSInt Temp = Result.extOrTrunc(width: Info.Ctx.getTypeSize(T: ResultType)); |
13154 | Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType()); |
13155 | |
13156 | if (!APSInt::isSameValue(I1: Temp, I2: Result)) |
13157 | DidOverflow = true; |
13158 | Result = Temp; |
13159 | } |
13160 | |
13161 | APValue APV{Result}; |
13162 | if (!handleAssignment(Info, E, LVal: ResultLValue, LValType: ResultType, Val&: APV)) |
13163 | return false; |
13164 | return Success(Value: DidOverflow, E); |
13165 | } |
13166 | } |
13167 | } |
13168 | |
13169 | /// Determine whether this is a pointer past the end of the complete |
13170 | /// object referred to by the lvalue. |
13171 | static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx, |
13172 | const LValue &LV) { |
13173 | // A null pointer can be viewed as being "past the end" but we don't |
13174 | // choose to look at it that way here. |
13175 | if (!LV.getLValueBase()) |
13176 | return false; |
13177 | |
13178 | // If the designator is valid and refers to a subobject, we're not pointing |
13179 | // past the end. |
13180 | if (!LV.getLValueDesignator().Invalid && |
13181 | !LV.getLValueDesignator().isOnePastTheEnd()) |
13182 | return false; |
13183 | |
13184 | // A pointer to an incomplete type might be past-the-end if the type's size is |
13185 | // zero. We cannot tell because the type is incomplete. |
13186 | QualType Ty = getType(B: LV.getLValueBase()); |
13187 | if (Ty->isIncompleteType()) |
13188 | return true; |
13189 | |
13190 | // Can't be past the end of an invalid object. |
13191 | if (LV.getLValueDesignator().Invalid) |
13192 | return false; |
13193 | |
13194 | // We're a past-the-end pointer if we point to the byte after the object, |
13195 | // no matter what our type or path is. |
13196 | auto Size = Ctx.getTypeSizeInChars(T: Ty); |
13197 | return LV.getLValueOffset() == Size; |
13198 | } |
13199 | |
13200 | namespace { |
13201 | |
13202 | /// Data recursive integer evaluator of certain binary operators. |
13203 | /// |
13204 | /// We use a data recursive algorithm for binary operators so that we are able |
13205 | /// to handle extreme cases of chained binary operators without causing stack |
13206 | /// overflow. |
13207 | class DataRecursiveIntBinOpEvaluator { |
13208 | struct EvalResult { |
13209 | APValue Val; |
13210 | bool Failed = false; |
13211 | |
13212 | EvalResult() = default; |
13213 | |
13214 | void swap(EvalResult &RHS) { |
13215 | Val.swap(RHS&: RHS.Val); |
13216 | Failed = RHS.Failed; |
13217 | RHS.Failed = false; |
13218 | } |
13219 | }; |
13220 | |
13221 | struct Job { |
13222 | const Expr *E; |
13223 | EvalResult LHSResult; // meaningful only for binary operator expression. |
13224 | enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind; |
13225 | |
13226 | Job() = default; |
13227 | Job(Job &&) = default; |
13228 | |
13229 | void startSpeculativeEval(EvalInfo &Info) { |
13230 | SpecEvalRAII = SpeculativeEvaluationRAII(Info); |
13231 | } |
13232 | |
13233 | private: |
13234 | SpeculativeEvaluationRAII SpecEvalRAII; |
13235 | }; |
13236 | |
13237 | SmallVector<Job, 16> Queue; |
13238 | |
13239 | IntExprEvaluator &IntEval; |
13240 | EvalInfo &Info; |
13241 | APValue &FinalResult; |
13242 | |
13243 | public: |
13244 | DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result) |
13245 | : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { } |
13246 | |
13247 | /// True if \param E is a binary operator that we are going to handle |
13248 | /// data recursively. |
13249 | /// We handle binary operators that are comma, logical, or that have operands |
13250 | /// with integral or enumeration type. |
13251 | static bool shouldEnqueue(const BinaryOperator *E) { |
13252 | return E->getOpcode() == BO_Comma || E->isLogicalOp() || |
13253 | (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() && |
13254 | E->getLHS()->getType()->isIntegralOrEnumerationType() && |
13255 | E->getRHS()->getType()->isIntegralOrEnumerationType()); |
13256 | } |
13257 | |
13258 | bool Traverse(const BinaryOperator *E) { |
13259 | enqueue(E); |
13260 | EvalResult PrevResult; |
13261 | while (!Queue.empty()) |
13262 | process(Result&: PrevResult); |
13263 | |
13264 | if (PrevResult.Failed) return false; |
13265 | |
13266 | FinalResult.swap(RHS&: PrevResult.Val); |
13267 | return true; |
13268 | } |
13269 | |
13270 | private: |
13271 | bool Success(uint64_t Value, const Expr *E, APValue &Result) { |
13272 | return IntEval.Success(Value, E, Result); |
13273 | } |
13274 | bool Success(const APSInt &Value, const Expr *E, APValue &Result) { |
13275 | return IntEval.Success(SI: Value, E, Result); |
13276 | } |
13277 | bool Error(const Expr *E) { |
13278 | return IntEval.Error(E); |
13279 | } |
13280 | bool Error(const Expr *E, diag::kind D) { |
13281 | return IntEval.Error(E, D); |
13282 | } |
13283 | |
13284 | OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { |
13285 | return Info.CCEDiag(E, DiagId: D); |
13286 | } |
13287 | |
13288 | // Returns true if visiting the RHS is necessary, false otherwise. |
13289 | bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, |
13290 | bool &SuppressRHSDiags); |
13291 | |
13292 | bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, |
13293 | const BinaryOperator *E, APValue &Result); |
13294 | |
13295 | void EvaluateExpr(const Expr *E, EvalResult &Result) { |
13296 | Result.Failed = !Evaluate(Result&: Result.Val, Info, E); |
13297 | if (Result.Failed) |
13298 | Result.Val = APValue(); |
13299 | } |
13300 | |
13301 | void process(EvalResult &Result); |
13302 | |
13303 | void enqueue(const Expr *E) { |
13304 | E = E->IgnoreParens(); |
13305 | Queue.resize(N: Queue.size()+1); |
13306 | Queue.back().E = E; |
13307 | Queue.back().Kind = Job::AnyExprKind; |
13308 | } |
13309 | }; |
13310 | |
13311 | } |
13312 | |
13313 | bool DataRecursiveIntBinOpEvaluator:: |
13314 | VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, |
13315 | bool &SuppressRHSDiags) { |
13316 | if (E->getOpcode() == BO_Comma) { |
13317 | // Ignore LHS but note if we could not evaluate it. |
13318 | if (LHSResult.Failed) |
13319 | return Info.noteSideEffect(); |
13320 | return true; |
13321 | } |
13322 | |
13323 | if (E->isLogicalOp()) { |
13324 | bool LHSAsBool; |
13325 | if (!LHSResult.Failed && HandleConversionToBool(Val: LHSResult.Val, Result&: LHSAsBool)) { |
13326 | // We were able to evaluate the LHS, see if we can get away with not |
13327 | // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 |
13328 | if (LHSAsBool == (E->getOpcode() == BO_LOr)) { |
13329 | Success(Value: LHSAsBool, E, Result&: LHSResult.Val); |
13330 | return false; // Ignore RHS |
13331 | } |
13332 | } else { |
13333 | LHSResult.Failed = true; |
13334 | |
13335 | // Since we weren't able to evaluate the left hand side, it |
13336 | // might have had side effects. |
13337 | if (!Info.noteSideEffect()) |
13338 | return false; |
13339 | |
13340 | // We can't evaluate the LHS; however, sometimes the result |
13341 | // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. |
13342 | // Don't ignore RHS and suppress diagnostics from this arm. |
13343 | SuppressRHSDiags = true; |
13344 | } |
13345 | |
13346 | return true; |
13347 | } |
13348 | |
13349 | assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && |
13350 | E->getRHS()->getType()->isIntegralOrEnumerationType()); |
13351 | |
13352 | if (LHSResult.Failed && !Info.noteFailure()) |
13353 | return false; // Ignore RHS; |
13354 | |
13355 | return true; |
13356 | } |
13357 | |
13358 | static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index, |
13359 | bool IsSub) { |
13360 | // Compute the new offset in the appropriate width, wrapping at 64 bits. |
13361 | // FIXME: When compiling for a 32-bit target, we should use 32-bit |
13362 | // offsets. |
13363 | assert(!LVal.hasLValuePath() && "have designator for integer lvalue" ); |
13364 | CharUnits &Offset = LVal.getLValueOffset(); |
13365 | uint64_t Offset64 = Offset.getQuantity(); |
13366 | uint64_t Index64 = Index.extOrTrunc(width: 64).getZExtValue(); |
13367 | Offset = CharUnits::fromQuantity(Quantity: IsSub ? Offset64 - Index64 |
13368 | : Offset64 + Index64); |
13369 | } |
13370 | |
13371 | bool DataRecursiveIntBinOpEvaluator:: |
13372 | VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, |
13373 | const BinaryOperator *E, APValue &Result) { |
13374 | if (E->getOpcode() == BO_Comma) { |
13375 | if (RHSResult.Failed) |
13376 | return false; |
13377 | Result = RHSResult.Val; |
13378 | return true; |
13379 | } |
13380 | |
13381 | if (E->isLogicalOp()) { |
13382 | bool lhsResult, rhsResult; |
13383 | bool LHSIsOK = HandleConversionToBool(Val: LHSResult.Val, Result&: lhsResult); |
13384 | bool RHSIsOK = HandleConversionToBool(Val: RHSResult.Val, Result&: rhsResult); |
13385 | |
13386 | if (LHSIsOK) { |
13387 | if (RHSIsOK) { |
13388 | if (E->getOpcode() == BO_LOr) |
13389 | return Success(Value: lhsResult || rhsResult, E, Result); |
13390 | else |
13391 | return Success(Value: lhsResult && rhsResult, E, Result); |
13392 | } |
13393 | } else { |
13394 | if (RHSIsOK) { |
13395 | // We can't evaluate the LHS; however, sometimes the result |
13396 | // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. |
13397 | if (rhsResult == (E->getOpcode() == BO_LOr)) |
13398 | return Success(Value: rhsResult, E, Result); |
13399 | } |
13400 | } |
13401 | |
13402 | return false; |
13403 | } |
13404 | |
13405 | assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && |
13406 | E->getRHS()->getType()->isIntegralOrEnumerationType()); |
13407 | |
13408 | if (LHSResult.Failed || RHSResult.Failed) |
13409 | return false; |
13410 | |
13411 | const APValue &LHSVal = LHSResult.Val; |
13412 | const APValue &RHSVal = RHSResult.Val; |
13413 | |
13414 | // Handle cases like (unsigned long)&a + 4. |
13415 | if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) { |
13416 | Result = LHSVal; |
13417 | addOrSubLValueAsInteger(LVal&: Result, Index: RHSVal.getInt(), IsSub: E->getOpcode() == BO_Sub); |
13418 | return true; |
13419 | } |
13420 | |
13421 | // Handle cases like 4 + (unsigned long)&a |
13422 | if (E->getOpcode() == BO_Add && |
13423 | RHSVal.isLValue() && LHSVal.isInt()) { |
13424 | Result = RHSVal; |
13425 | addOrSubLValueAsInteger(LVal&: Result, Index: LHSVal.getInt(), /*IsSub*/false); |
13426 | return true; |
13427 | } |
13428 | |
13429 | if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) { |
13430 | // Handle (intptr_t)&&A - (intptr_t)&&B. |
13431 | if (!LHSVal.getLValueOffset().isZero() || |
13432 | !RHSVal.getLValueOffset().isZero()) |
13433 | return false; |
13434 | const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>(); |
13435 | const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>(); |
13436 | if (!LHSExpr || !RHSExpr) |
13437 | return false; |
13438 | const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(Val: LHSExpr); |
13439 | const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(Val: RHSExpr); |
13440 | if (!LHSAddrExpr || !RHSAddrExpr) |
13441 | return false; |
13442 | // Make sure both labels come from the same function. |
13443 | if (LHSAddrExpr->getLabel()->getDeclContext() != |
13444 | RHSAddrExpr->getLabel()->getDeclContext()) |
13445 | return false; |
13446 | Result = APValue(LHSAddrExpr, RHSAddrExpr); |
13447 | return true; |
13448 | } |
13449 | |
13450 | // All the remaining cases expect both operands to be an integer |
13451 | if (!LHSVal.isInt() || !RHSVal.isInt()) |
13452 | return Error(E); |
13453 | |
13454 | // Set up the width and signedness manually, in case it can't be deduced |
13455 | // from the operation we're performing. |
13456 | // FIXME: Don't do this in the cases where we can deduce it. |
13457 | APSInt Value(Info.Ctx.getIntWidth(T: E->getType()), |
13458 | E->getType()->isUnsignedIntegerOrEnumerationType()); |
13459 | if (!handleIntIntBinOp(Info, E, LHS: LHSVal.getInt(), Opcode: E->getOpcode(), |
13460 | RHS: RHSVal.getInt(), Result&: Value)) |
13461 | return false; |
13462 | return Success(Value, E, Result); |
13463 | } |
13464 | |
13465 | void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) { |
13466 | Job &job = Queue.back(); |
13467 | |
13468 | switch (job.Kind) { |
13469 | case Job::AnyExprKind: { |
13470 | if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: job.E)) { |
13471 | if (shouldEnqueue(E: Bop)) { |
13472 | job.Kind = Job::BinOpKind; |
13473 | enqueue(E: Bop->getLHS()); |
13474 | return; |
13475 | } |
13476 | } |
13477 | |
13478 | EvaluateExpr(E: job.E, Result); |
13479 | Queue.pop_back(); |
13480 | return; |
13481 | } |
13482 | |
13483 | case Job::BinOpKind: { |
13484 | const BinaryOperator *Bop = cast<BinaryOperator>(Val: job.E); |
13485 | bool SuppressRHSDiags = false; |
13486 | if (!VisitBinOpLHSOnly(LHSResult&: Result, E: Bop, SuppressRHSDiags)) { |
13487 | Queue.pop_back(); |
13488 | return; |
13489 | } |
13490 | if (SuppressRHSDiags) |
13491 | job.startSpeculativeEval(Info); |
13492 | job.LHSResult.swap(RHS&: Result); |
13493 | job.Kind = Job::BinOpVisitedLHSKind; |
13494 | enqueue(E: Bop->getRHS()); |
13495 | return; |
13496 | } |
13497 | |
13498 | case Job::BinOpVisitedLHSKind: { |
13499 | const BinaryOperator *Bop = cast<BinaryOperator>(Val: job.E); |
13500 | EvalResult RHS; |
13501 | RHS.swap(RHS&: Result); |
13502 | Result.Failed = !VisitBinOp(LHSResult: job.LHSResult, RHSResult: RHS, E: Bop, Result&: Result.Val); |
13503 | Queue.pop_back(); |
13504 | return; |
13505 | } |
13506 | } |
13507 | |
13508 | llvm_unreachable("Invalid Job::Kind!" ); |
13509 | } |
13510 | |
13511 | namespace { |
13512 | enum class CmpResult { |
13513 | Unequal, |
13514 | Less, |
13515 | Equal, |
13516 | Greater, |
13517 | Unordered, |
13518 | }; |
13519 | } |
13520 | |
13521 | template <class SuccessCB, class AfterCB> |
13522 | static bool |
13523 | EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E, |
13524 | SuccessCB &&Success, AfterCB &&DoAfter) { |
13525 | assert(!E->isValueDependent()); |
13526 | assert(E->isComparisonOp() && "expected comparison operator" ); |
13527 | assert((E->getOpcode() == BO_Cmp || |
13528 | E->getType()->isIntegralOrEnumerationType()) && |
13529 | "unsupported binary expression evaluation" ); |
13530 | auto Error = [&](const Expr *E) { |
13531 | Info.FFDiag(E, DiagId: diag::note_invalid_subexpr_in_const_expr); |
13532 | return false; |
13533 | }; |
13534 | |
13535 | bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp; |
13536 | bool IsEquality = E->isEqualityOp(); |
13537 | |
13538 | QualType LHSTy = E->getLHS()->getType(); |
13539 | QualType RHSTy = E->getRHS()->getType(); |
13540 | |
13541 | if (LHSTy->isIntegralOrEnumerationType() && |
13542 | RHSTy->isIntegralOrEnumerationType()) { |
13543 | APSInt LHS, RHS; |
13544 | bool LHSOK = EvaluateInteger(E: E->getLHS(), Result&: LHS, Info); |
13545 | if (!LHSOK && !Info.noteFailure()) |
13546 | return false; |
13547 | if (!EvaluateInteger(E: E->getRHS(), Result&: RHS, Info) || !LHSOK) |
13548 | return false; |
13549 | if (LHS < RHS) |
13550 | return Success(CmpResult::Less, E); |
13551 | if (LHS > RHS) |
13552 | return Success(CmpResult::Greater, E); |
13553 | return Success(CmpResult::Equal, E); |
13554 | } |
13555 | |
13556 | if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) { |
13557 | APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(Ty: LHSTy)); |
13558 | APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(Ty: RHSTy)); |
13559 | |
13560 | bool LHSOK = EvaluateFixedPointOrInteger(E: E->getLHS(), Result&: LHSFX, Info); |
13561 | if (!LHSOK && !Info.noteFailure()) |
13562 | return false; |
13563 | if (!EvaluateFixedPointOrInteger(E: E->getRHS(), Result&: RHSFX, Info) || !LHSOK) |
13564 | return false; |
13565 | if (LHSFX < RHSFX) |
13566 | return Success(CmpResult::Less, E); |
13567 | if (LHSFX > RHSFX) |
13568 | return Success(CmpResult::Greater, E); |
13569 | return Success(CmpResult::Equal, E); |
13570 | } |
13571 | |
13572 | if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) { |
13573 | ComplexValue LHS, RHS; |
13574 | bool LHSOK; |
13575 | if (E->isAssignmentOp()) { |
13576 | LValue LV; |
13577 | EvaluateLValue(E: E->getLHS(), Result&: LV, Info); |
13578 | LHSOK = false; |
13579 | } else if (LHSTy->isRealFloatingType()) { |
13580 | LHSOK = EvaluateFloat(E: E->getLHS(), Result&: LHS.FloatReal, Info); |
13581 | if (LHSOK) { |
13582 | LHS.makeComplexFloat(); |
13583 | LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics()); |
13584 | } |
13585 | } else { |
13586 | LHSOK = EvaluateComplex(E: E->getLHS(), Res&: LHS, Info); |
13587 | } |
13588 | if (!LHSOK && !Info.noteFailure()) |
13589 | return false; |
13590 | |
13591 | if (E->getRHS()->getType()->isRealFloatingType()) { |
13592 | if (!EvaluateFloat(E: E->getRHS(), Result&: RHS.FloatReal, Info) || !LHSOK) |
13593 | return false; |
13594 | RHS.makeComplexFloat(); |
13595 | RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics()); |
13596 | } else if (!EvaluateComplex(E: E->getRHS(), Res&: RHS, Info) || !LHSOK) |
13597 | return false; |
13598 | |
13599 | if (LHS.isComplexFloat()) { |
13600 | APFloat::cmpResult CR_r = |
13601 | LHS.getComplexFloatReal().compare(RHS: RHS.getComplexFloatReal()); |
13602 | APFloat::cmpResult CR_i = |
13603 | LHS.getComplexFloatImag().compare(RHS: RHS.getComplexFloatImag()); |
13604 | bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual; |
13605 | return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E); |
13606 | } else { |
13607 | assert(IsEquality && "invalid complex comparison" ); |
13608 | bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() && |
13609 | LHS.getComplexIntImag() == RHS.getComplexIntImag(); |
13610 | return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E); |
13611 | } |
13612 | } |
13613 | |
13614 | if (LHSTy->isRealFloatingType() && |
13615 | RHSTy->isRealFloatingType()) { |
13616 | APFloat RHS(0.0), LHS(0.0); |
13617 | |
13618 | bool LHSOK = EvaluateFloat(E: E->getRHS(), Result&: RHS, Info); |
13619 | if (!LHSOK && !Info.noteFailure()) |
13620 | return false; |
13621 | |
13622 | if (!EvaluateFloat(E: E->getLHS(), Result&: LHS, Info) || !LHSOK) |
13623 | return false; |
13624 | |
13625 | assert(E->isComparisonOp() && "Invalid binary operator!" ); |
13626 | llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS); |
13627 | if (!Info.InConstantContext && |
13628 | APFloatCmpResult == APFloat::cmpUnordered && |
13629 | E->getFPFeaturesInEffect(LO: Info.Ctx.getLangOpts()).isFPConstrained()) { |
13630 | // Note: Compares may raise invalid in some cases involving NaN or sNaN. |
13631 | Info.FFDiag(E, DiagId: diag::note_constexpr_float_arithmetic_strict); |
13632 | return false; |
13633 | } |
13634 | auto GetCmpRes = [&]() { |
13635 | switch (APFloatCmpResult) { |
13636 | case APFloat::cmpEqual: |
13637 | return CmpResult::Equal; |
13638 | case APFloat::cmpLessThan: |
13639 | return CmpResult::Less; |
13640 | case APFloat::cmpGreaterThan: |
13641 | return CmpResult::Greater; |
13642 | case APFloat::cmpUnordered: |
13643 | return CmpResult::Unordered; |
13644 | } |
13645 | llvm_unreachable("Unrecognised APFloat::cmpResult enum" ); |
13646 | }; |
13647 | return Success(GetCmpRes(), E); |
13648 | } |
13649 | |
13650 | if (LHSTy->isPointerType() && RHSTy->isPointerType()) { |
13651 | LValue LHSValue, RHSValue; |
13652 | |
13653 | bool LHSOK = EvaluatePointer(E: E->getLHS(), Result&: LHSValue, Info); |
13654 | if (!LHSOK && !Info.noteFailure()) |
13655 | return false; |
13656 | |
13657 | if (!EvaluatePointer(E: E->getRHS(), Result&: RHSValue, Info) || !LHSOK) |
13658 | return false; |
13659 | |
13660 | // Reject differing bases from the normal codepath; we special-case |
13661 | // comparisons to null. |
13662 | if (!HasSameBase(A: LHSValue, B: RHSValue)) { |
13663 | auto DiagComparison = [&] (unsigned DiagID, bool Reversed = false) { |
13664 | std::string LHS = LHSValue.toString(Ctx&: Info.Ctx, T: E->getLHS()->getType()); |
13665 | std::string RHS = RHSValue.toString(Ctx&: Info.Ctx, T: E->getRHS()->getType()); |
13666 | Info.FFDiag(E, DiagId: DiagID) |
13667 | << (Reversed ? RHS : LHS) << (Reversed ? LHS : RHS); |
13668 | return false; |
13669 | }; |
13670 | // Inequalities and subtractions between unrelated pointers have |
13671 | // unspecified or undefined behavior. |
13672 | if (!IsEquality) |
13673 | return DiagComparison( |
13674 | diag::note_constexpr_pointer_comparison_unspecified); |
13675 | // A constant address may compare equal to the address of a symbol. |
13676 | // The one exception is that address of an object cannot compare equal |
13677 | // to a null pointer constant. |
13678 | // TODO: Should we restrict this to actual null pointers, and exclude the |
13679 | // case of zero cast to pointer type? |
13680 | if ((!LHSValue.Base && !LHSValue.Offset.isZero()) || |
13681 | (!RHSValue.Base && !RHSValue.Offset.isZero())) |
13682 | return DiagComparison(diag::note_constexpr_pointer_constant_comparison, |
13683 | !RHSValue.Base); |
13684 | // It's implementation-defined whether distinct literals will have |
13685 | // distinct addresses. In clang, the result of such a comparison is |
13686 | // unspecified, so it is not a constant expression. However, we do know |
13687 | // that the address of a literal will be non-null. |
13688 | if ((IsLiteralLValue(Value: LHSValue) || IsLiteralLValue(Value: RHSValue)) && |
13689 | LHSValue.Base && RHSValue.Base) |
13690 | return DiagComparison(diag::note_constexpr_literal_comparison); |
13691 | // We can't tell whether weak symbols will end up pointing to the same |
13692 | // object. |
13693 | if (IsWeakLValue(Value: LHSValue) || IsWeakLValue(Value: RHSValue)) |
13694 | return DiagComparison(diag::note_constexpr_pointer_weak_comparison, |
13695 | !IsWeakLValue(Value: LHSValue)); |
13696 | // We can't compare the address of the start of one object with the |
13697 | // past-the-end address of another object, per C++ DR1652. |
13698 | if (LHSValue.Base && LHSValue.Offset.isZero() && |
13699 | isOnePastTheEndOfCompleteObject(Ctx: Info.Ctx, LV: RHSValue)) |
13700 | return DiagComparison(diag::note_constexpr_pointer_comparison_past_end, |
13701 | true); |
13702 | if (RHSValue.Base && RHSValue.Offset.isZero() && |
13703 | isOnePastTheEndOfCompleteObject(Ctx: Info.Ctx, LV: LHSValue)) |
13704 | return DiagComparison(diag::note_constexpr_pointer_comparison_past_end, |
13705 | false); |
13706 | // We can't tell whether an object is at the same address as another |
13707 | // zero sized object. |
13708 | if ((RHSValue.Base && isZeroSized(Value: LHSValue)) || |
13709 | (LHSValue.Base && isZeroSized(Value: RHSValue))) |
13710 | return DiagComparison( |
13711 | diag::note_constexpr_pointer_comparison_zero_sized); |
13712 | return Success(CmpResult::Unequal, E); |
13713 | } |
13714 | |
13715 | const CharUnits &LHSOffset = LHSValue.getLValueOffset(); |
13716 | const CharUnits &RHSOffset = RHSValue.getLValueOffset(); |
13717 | |
13718 | SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); |
13719 | SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); |
13720 | |
13721 | // C++11 [expr.rel]p3: |
13722 | // Pointers to void (after pointer conversions) can be compared, with a |
13723 | // result defined as follows: If both pointers represent the same |
13724 | // address or are both the null pointer value, the result is true if the |
13725 | // operator is <= or >= and false otherwise; otherwise the result is |
13726 | // unspecified. |
13727 | // We interpret this as applying to pointers to *cv* void. |
13728 | if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational) |
13729 | Info.CCEDiag(E, DiagId: diag::note_constexpr_void_comparison); |
13730 | |
13731 | // C++11 [expr.rel]p2: |
13732 | // - If two pointers point to non-static data members of the same object, |
13733 | // or to subobjects or array elements fo such members, recursively, the |
13734 | // pointer to the later declared member compares greater provided the |
13735 | // two members have the same access control and provided their class is |
13736 | // not a union. |
13737 | // [...] |
13738 | // - Otherwise pointer comparisons are unspecified. |
13739 | if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) { |
13740 | bool WasArrayIndex; |
13741 | unsigned Mismatch = FindDesignatorMismatch( |
13742 | ObjType: getType(B: LHSValue.Base), A: LHSDesignator, B: RHSDesignator, WasArrayIndex); |
13743 | // At the point where the designators diverge, the comparison has a |
13744 | // specified value if: |
13745 | // - we are comparing array indices |
13746 | // - we are comparing fields of a union, or fields with the same access |
13747 | // Otherwise, the result is unspecified and thus the comparison is not a |
13748 | // constant expression. |
13749 | if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() && |
13750 | Mismatch < RHSDesignator.Entries.size()) { |
13751 | const FieldDecl *LF = getAsField(E: LHSDesignator.Entries[Mismatch]); |
13752 | const FieldDecl *RF = getAsField(E: RHSDesignator.Entries[Mismatch]); |
13753 | if (!LF && !RF) |
13754 | Info.CCEDiag(E, DiagId: diag::note_constexpr_pointer_comparison_base_classes); |
13755 | else if (!LF) |
13756 | Info.CCEDiag(E, DiagId: diag::note_constexpr_pointer_comparison_base_field) |
13757 | << getAsBaseClass(E: LHSDesignator.Entries[Mismatch]) |
13758 | << RF->getParent() << RF; |
13759 | else if (!RF) |
13760 | Info.CCEDiag(E, DiagId: diag::note_constexpr_pointer_comparison_base_field) |
13761 | << getAsBaseClass(E: RHSDesignator.Entries[Mismatch]) |
13762 | << LF->getParent() << LF; |
13763 | else if (!LF->getParent()->isUnion() && |
13764 | LF->getAccess() != RF->getAccess()) |
13765 | Info.CCEDiag(E, |
13766 | DiagId: diag::note_constexpr_pointer_comparison_differing_access) |
13767 | << LF << LF->getAccess() << RF << RF->getAccess() |
13768 | << LF->getParent(); |
13769 | } |
13770 | } |
13771 | |
13772 | // The comparison here must be unsigned, and performed with the same |
13773 | // width as the pointer. |
13774 | unsigned PtrSize = Info.Ctx.getTypeSize(T: LHSTy); |
13775 | uint64_t CompareLHS = LHSOffset.getQuantity(); |
13776 | uint64_t CompareRHS = RHSOffset.getQuantity(); |
13777 | assert(PtrSize <= 64 && "Unexpected pointer width" ); |
13778 | uint64_t Mask = ~0ULL >> (64 - PtrSize); |
13779 | CompareLHS &= Mask; |
13780 | CompareRHS &= Mask; |
13781 | |
13782 | // If there is a base and this is a relational operator, we can only |
13783 | // compare pointers within the object in question; otherwise, the result |
13784 | // depends on where the object is located in memory. |
13785 | if (!LHSValue.Base.isNull() && IsRelational) { |
13786 | QualType BaseTy = getType(B: LHSValue.Base); |
13787 | if (BaseTy->isIncompleteType()) |
13788 | return Error(E); |
13789 | CharUnits Size = Info.Ctx.getTypeSizeInChars(T: BaseTy); |
13790 | uint64_t OffsetLimit = Size.getQuantity(); |
13791 | if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit) |
13792 | return Error(E); |
13793 | } |
13794 | |
13795 | if (CompareLHS < CompareRHS) |
13796 | return Success(CmpResult::Less, E); |
13797 | if (CompareLHS > CompareRHS) |
13798 | return Success(CmpResult::Greater, E); |
13799 | return Success(CmpResult::Equal, E); |
13800 | } |
13801 | |
13802 | if (LHSTy->isMemberPointerType()) { |
13803 | assert(IsEquality && "unexpected member pointer operation" ); |
13804 | assert(RHSTy->isMemberPointerType() && "invalid comparison" ); |
13805 | |
13806 | MemberPtr LHSValue, RHSValue; |
13807 | |
13808 | bool LHSOK = EvaluateMemberPointer(E: E->getLHS(), Result&: LHSValue, Info); |
13809 | if (!LHSOK && !Info.noteFailure()) |
13810 | return false; |
13811 | |
13812 | if (!EvaluateMemberPointer(E: E->getRHS(), Result&: RHSValue, Info) || !LHSOK) |
13813 | return false; |
13814 | |
13815 | // If either operand is a pointer to a weak function, the comparison is not |
13816 | // constant. |
13817 | if (LHSValue.getDecl() && LHSValue.getDecl()->isWeak()) { |
13818 | Info.FFDiag(E, DiagId: diag::note_constexpr_mem_pointer_weak_comparison) |
13819 | << LHSValue.getDecl(); |
13820 | return false; |
13821 | } |
13822 | if (RHSValue.getDecl() && RHSValue.getDecl()->isWeak()) { |
13823 | Info.FFDiag(E, DiagId: diag::note_constexpr_mem_pointer_weak_comparison) |
13824 | << RHSValue.getDecl(); |
13825 | return false; |
13826 | } |
13827 | |
13828 | // C++11 [expr.eq]p2: |
13829 | // If both operands are null, they compare equal. Otherwise if only one is |
13830 | // null, they compare unequal. |
13831 | if (!LHSValue.getDecl() || !RHSValue.getDecl()) { |
13832 | bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl(); |
13833 | return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E); |
13834 | } |
13835 | |
13836 | // Otherwise if either is a pointer to a virtual member function, the |
13837 | // result is unspecified. |
13838 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: LHSValue.getDecl())) |
13839 | if (MD->isVirtual()) |
13840 | Info.CCEDiag(E, DiagId: diag::note_constexpr_compare_virtual_mem_ptr) << MD; |
13841 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: RHSValue.getDecl())) |
13842 | if (MD->isVirtual()) |
13843 | Info.CCEDiag(E, DiagId: diag::note_constexpr_compare_virtual_mem_ptr) << MD; |
13844 | |
13845 | // Otherwise they compare equal if and only if they would refer to the |
13846 | // same member of the same most derived object or the same subobject if |
13847 | // they were dereferenced with a hypothetical object of the associated |
13848 | // class type. |
13849 | bool Equal = LHSValue == RHSValue; |
13850 | return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E); |
13851 | } |
13852 | |
13853 | if (LHSTy->isNullPtrType()) { |
13854 | assert(E->isComparisonOp() && "unexpected nullptr operation" ); |
13855 | assert(RHSTy->isNullPtrType() && "missing pointer conversion" ); |
13856 | // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t |
13857 | // are compared, the result is true of the operator is <=, >= or ==, and |
13858 | // false otherwise. |
13859 | LValue Res; |
13860 | if (!EvaluatePointer(E: E->getLHS(), Result&: Res, Info) || |
13861 | !EvaluatePointer(E: E->getRHS(), Result&: Res, Info)) |
13862 | return false; |
13863 | return Success(CmpResult::Equal, E); |
13864 | } |
13865 | |
13866 | return DoAfter(); |
13867 | } |
13868 | |
13869 | bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) { |
13870 | if (!CheckLiteralType(Info, E)) |
13871 | return false; |
13872 | |
13873 | auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) { |
13874 | ComparisonCategoryResult CCR; |
13875 | switch (CR) { |
13876 | case CmpResult::Unequal: |
13877 | llvm_unreachable("should never produce Unequal for three-way comparison" ); |
13878 | case CmpResult::Less: |
13879 | CCR = ComparisonCategoryResult::Less; |
13880 | break; |
13881 | case CmpResult::Equal: |
13882 | CCR = ComparisonCategoryResult::Equal; |
13883 | break; |
13884 | case CmpResult::Greater: |
13885 | CCR = ComparisonCategoryResult::Greater; |
13886 | break; |
13887 | case CmpResult::Unordered: |
13888 | CCR = ComparisonCategoryResult::Unordered; |
13889 | break; |
13890 | } |
13891 | // Evaluation succeeded. Lookup the information for the comparison category |
13892 | // type and fetch the VarDecl for the result. |
13893 | const ComparisonCategoryInfo &CmpInfo = |
13894 | Info.Ctx.CompCategories.getInfoForType(Ty: E->getType()); |
13895 | const VarDecl *VD = CmpInfo.getValueInfo(ValueKind: CmpInfo.makeWeakResult(Res: CCR))->VD; |
13896 | // Check and evaluate the result as a constant expression. |
13897 | LValue LV; |
13898 | LV.set(B: VD); |
13899 | if (!handleLValueToRValueConversion(Info, Conv: E, Type: E->getType(), LVal: LV, RVal&: Result)) |
13900 | return false; |
13901 | return CheckConstantExpression(Info, DiagLoc: E->getExprLoc(), Type: E->getType(), Value: Result, |
13902 | Kind: ConstantExprKind::Normal); |
13903 | }; |
13904 | return EvaluateComparisonBinaryOperator(Info, E, Success&: OnSuccess, DoAfter: [&]() { |
13905 | return ExprEvaluatorBaseTy::VisitBinCmp(S: E); |
13906 | }); |
13907 | } |
13908 | |
13909 | bool RecordExprEvaluator::VisitCXXParenListInitExpr( |
13910 | const CXXParenListInitExpr *E) { |
13911 | return VisitCXXParenListOrInitListExpr(ExprToVisit: E, Args: E->getInitExprs()); |
13912 | } |
13913 | |
13914 | bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
13915 | // We don't support assignment in C. C++ assignments don't get here because |
13916 | // assignment is an lvalue in C++. |
13917 | if (E->isAssignmentOp()) { |
13918 | Error(E); |
13919 | if (!Info.noteFailure()) |
13920 | return false; |
13921 | } |
13922 | |
13923 | if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E)) |
13924 | return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E); |
13925 | |
13926 | assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() || |
13927 | !E->getRHS()->getType()->isIntegralOrEnumerationType()) && |
13928 | "DataRecursiveIntBinOpEvaluator should have handled integral types" ); |
13929 | |
13930 | if (E->isComparisonOp()) { |
13931 | // Evaluate builtin binary comparisons by evaluating them as three-way |
13932 | // comparisons and then translating the result. |
13933 | auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) { |
13934 | assert((CR != CmpResult::Unequal || E->isEqualityOp()) && |
13935 | "should only produce Unequal for equality comparisons" ); |
13936 | bool IsEqual = CR == CmpResult::Equal, |
13937 | IsLess = CR == CmpResult::Less, |
13938 | IsGreater = CR == CmpResult::Greater; |
13939 | auto Op = E->getOpcode(); |
13940 | switch (Op) { |
13941 | default: |
13942 | llvm_unreachable("unsupported binary operator" ); |
13943 | case BO_EQ: |
13944 | case BO_NE: |
13945 | return Success(Value: IsEqual == (Op == BO_EQ), E); |
13946 | case BO_LT: |
13947 | return Success(Value: IsLess, E); |
13948 | case BO_GT: |
13949 | return Success(Value: IsGreater, E); |
13950 | case BO_LE: |
13951 | return Success(Value: IsEqual || IsLess, E); |
13952 | case BO_GE: |
13953 | return Success(Value: IsEqual || IsGreater, E); |
13954 | } |
13955 | }; |
13956 | return EvaluateComparisonBinaryOperator(Info, E, Success&: OnSuccess, DoAfter: [&]() { |
13957 | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
13958 | }); |
13959 | } |
13960 | |
13961 | QualType LHSTy = E->getLHS()->getType(); |
13962 | QualType RHSTy = E->getRHS()->getType(); |
13963 | |
13964 | if (LHSTy->isPointerType() && RHSTy->isPointerType() && |
13965 | E->getOpcode() == BO_Sub) { |
13966 | LValue LHSValue, RHSValue; |
13967 | |
13968 | bool LHSOK = EvaluatePointer(E: E->getLHS(), Result&: LHSValue, Info); |
13969 | if (!LHSOK && !Info.noteFailure()) |
13970 | return false; |
13971 | |
13972 | if (!EvaluatePointer(E: E->getRHS(), Result&: RHSValue, Info) || !LHSOK) |
13973 | return false; |
13974 | |
13975 | // Reject differing bases from the normal codepath; we special-case |
13976 | // comparisons to null. |
13977 | if (!HasSameBase(A: LHSValue, B: RHSValue)) { |
13978 | // Handle &&A - &&B. |
13979 | if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero()) |
13980 | return Error(E); |
13981 | const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>(); |
13982 | const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>(); |
13983 | if (!LHSExpr || !RHSExpr) |
13984 | return Error(E); |
13985 | const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(Val: LHSExpr); |
13986 | const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(Val: RHSExpr); |
13987 | if (!LHSAddrExpr || !RHSAddrExpr) |
13988 | return Error(E); |
13989 | // Make sure both labels come from the same function. |
13990 | if (LHSAddrExpr->getLabel()->getDeclContext() != |
13991 | RHSAddrExpr->getLabel()->getDeclContext()) |
13992 | return Error(E); |
13993 | return Success(V: APValue(LHSAddrExpr, RHSAddrExpr), E); |
13994 | } |
13995 | const CharUnits &LHSOffset = LHSValue.getLValueOffset(); |
13996 | const CharUnits &RHSOffset = RHSValue.getLValueOffset(); |
13997 | |
13998 | SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); |
13999 | SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); |
14000 | |
14001 | // C++11 [expr.add]p6: |
14002 | // Unless both pointers point to elements of the same array object, or |
14003 | // one past the last element of the array object, the behavior is |
14004 | // undefined. |
14005 | if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && |
14006 | !AreElementsOfSameArray(ObjType: getType(B: LHSValue.Base), A: LHSDesignator, |
14007 | B: RHSDesignator)) |
14008 | Info.CCEDiag(E, DiagId: diag::note_constexpr_pointer_subtraction_not_same_array); |
14009 | |
14010 | QualType Type = E->getLHS()->getType(); |
14011 | QualType ElementType = Type->castAs<PointerType>()->getPointeeType(); |
14012 | |
14013 | CharUnits ElementSize; |
14014 | if (!HandleSizeof(Info, Loc: E->getExprLoc(), Type: ElementType, Size&: ElementSize)) |
14015 | return false; |
14016 | |
14017 | // As an extension, a type may have zero size (empty struct or union in |
14018 | // C, array of zero length). Pointer subtraction in such cases has |
14019 | // undefined behavior, so is not constant. |
14020 | if (ElementSize.isZero()) { |
14021 | Info.FFDiag(E, DiagId: diag::note_constexpr_pointer_subtraction_zero_size) |
14022 | << ElementType; |
14023 | return false; |
14024 | } |
14025 | |
14026 | // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime, |
14027 | // and produce incorrect results when it overflows. Such behavior |
14028 | // appears to be non-conforming, but is common, so perhaps we should |
14029 | // assume the standard intended for such cases to be undefined behavior |
14030 | // and check for them. |
14031 | |
14032 | // Compute (LHSOffset - RHSOffset) / Size carefully, checking for |
14033 | // overflow in the final conversion to ptrdiff_t. |
14034 | APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false); |
14035 | APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false); |
14036 | APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), |
14037 | false); |
14038 | APSInt TrueResult = (LHS - RHS) / ElemSize; |
14039 | APSInt Result = TrueResult.trunc(width: Info.Ctx.getIntWidth(T: E->getType())); |
14040 | |
14041 | if (Result.extend(width: 65) != TrueResult && |
14042 | !HandleOverflow(Info, E, SrcValue: TrueResult, DestType: E->getType())) |
14043 | return false; |
14044 | return Success(SI: Result, E); |
14045 | } |
14046 | |
14047 | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
14048 | } |
14049 | |
14050 | /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with |
14051 | /// a result as the expression's type. |
14052 | bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr( |
14053 | const UnaryExprOrTypeTraitExpr *E) { |
14054 | switch(E->getKind()) { |
14055 | case UETT_PreferredAlignOf: |
14056 | case UETT_AlignOf: { |
14057 | if (E->isArgumentType()) |
14058 | return Success(Size: GetAlignOfType(Info, T: E->getArgumentType(), ExprKind: E->getKind()), |
14059 | E); |
14060 | else |
14061 | return Success(Size: GetAlignOfExpr(Info, E: E->getArgumentExpr(), ExprKind: E->getKind()), |
14062 | E); |
14063 | } |
14064 | |
14065 | case UETT_PtrAuthTypeDiscriminator: { |
14066 | if (E->getArgumentType()->isDependentType()) |
14067 | return false; |
14068 | return Success( |
14069 | Value: Info.Ctx.getPointerAuthTypeDiscriminator(T: E->getArgumentType()), E); |
14070 | } |
14071 | case UETT_VecStep: { |
14072 | QualType Ty = E->getTypeOfArgument(); |
14073 | |
14074 | if (Ty->isVectorType()) { |
14075 | unsigned n = Ty->castAs<VectorType>()->getNumElements(); |
14076 | |
14077 | // The vec_step built-in functions that take a 3-component |
14078 | // vector return 4. (OpenCL 1.1 spec 6.11.12) |
14079 | if (n == 3) |
14080 | n = 4; |
14081 | |
14082 | return Success(Value: n, E); |
14083 | } else |
14084 | return Success(Value: 1, E); |
14085 | } |
14086 | |
14087 | case UETT_DataSizeOf: |
14088 | case UETT_SizeOf: { |
14089 | QualType SrcTy = E->getTypeOfArgument(); |
14090 | // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, |
14091 | // the result is the size of the referenced type." |
14092 | if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>()) |
14093 | SrcTy = Ref->getPointeeType(); |
14094 | |
14095 | CharUnits Sizeof; |
14096 | if (!HandleSizeof(Info, Loc: E->getExprLoc(), Type: SrcTy, Size&: Sizeof, |
14097 | SOT: E->getKind() == UETT_DataSizeOf ? SizeOfType::DataSizeOf |
14098 | : SizeOfType::SizeOf)) { |
14099 | return false; |
14100 | } |
14101 | return Success(Size: Sizeof, E); |
14102 | } |
14103 | case UETT_OpenMPRequiredSimdAlign: |
14104 | assert(E->isArgumentType()); |
14105 | return Success( |
14106 | Value: Info.Ctx.toCharUnitsFromBits( |
14107 | BitSize: Info.Ctx.getOpenMPDefaultSimdAlign(T: E->getArgumentType())) |
14108 | .getQuantity(), |
14109 | E); |
14110 | case UETT_VectorElements: { |
14111 | QualType Ty = E->getTypeOfArgument(); |
14112 | // If the vector has a fixed size, we can determine the number of elements |
14113 | // at compile time. |
14114 | if (const auto *VT = Ty->getAs<VectorType>()) |
14115 | return Success(Value: VT->getNumElements(), E); |
14116 | |
14117 | assert(Ty->isSizelessVectorType()); |
14118 | if (Info.InConstantContext) |
14119 | Info.CCEDiag(E, DiagId: diag::note_constexpr_non_const_vectorelements) |
14120 | << E->getSourceRange(); |
14121 | |
14122 | return false; |
14123 | } |
14124 | } |
14125 | |
14126 | llvm_unreachable("unknown expr/type trait" ); |
14127 | } |
14128 | |
14129 | bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) { |
14130 | CharUnits Result; |
14131 | unsigned n = OOE->getNumComponents(); |
14132 | if (n == 0) |
14133 | return Error(E: OOE); |
14134 | QualType CurrentType = OOE->getTypeSourceInfo()->getType(); |
14135 | for (unsigned i = 0; i != n; ++i) { |
14136 | OffsetOfNode ON = OOE->getComponent(Idx: i); |
14137 | switch (ON.getKind()) { |
14138 | case OffsetOfNode::Array: { |
14139 | const Expr *Idx = OOE->getIndexExpr(Idx: ON.getArrayExprIndex()); |
14140 | APSInt IdxResult; |
14141 | if (!EvaluateInteger(E: Idx, Result&: IdxResult, Info)) |
14142 | return false; |
14143 | const ArrayType *AT = Info.Ctx.getAsArrayType(T: CurrentType); |
14144 | if (!AT) |
14145 | return Error(E: OOE); |
14146 | CurrentType = AT->getElementType(); |
14147 | CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(T: CurrentType); |
14148 | Result += IdxResult.getSExtValue() * ElementSize; |
14149 | break; |
14150 | } |
14151 | |
14152 | case OffsetOfNode::Field: { |
14153 | FieldDecl *MemberDecl = ON.getField(); |
14154 | const RecordType *RT = CurrentType->getAs<RecordType>(); |
14155 | if (!RT) |
14156 | return Error(E: OOE); |
14157 | RecordDecl *RD = RT->getDecl(); |
14158 | if (RD->isInvalidDecl()) return false; |
14159 | const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(D: RD); |
14160 | unsigned i = MemberDecl->getFieldIndex(); |
14161 | assert(i < RL.getFieldCount() && "offsetof field in wrong type" ); |
14162 | Result += Info.Ctx.toCharUnitsFromBits(BitSize: RL.getFieldOffset(FieldNo: i)); |
14163 | CurrentType = MemberDecl->getType().getNonReferenceType(); |
14164 | break; |
14165 | } |
14166 | |
14167 | case OffsetOfNode::Identifier: |
14168 | llvm_unreachable("dependent __builtin_offsetof" ); |
14169 | |
14170 | case OffsetOfNode::Base: { |
14171 | CXXBaseSpecifier *BaseSpec = ON.getBase(); |
14172 | if (BaseSpec->isVirtual()) |
14173 | return Error(E: OOE); |
14174 | |
14175 | // Find the layout of the class whose base we are looking into. |
14176 | const RecordType *RT = CurrentType->getAs<RecordType>(); |
14177 | if (!RT) |
14178 | return Error(E: OOE); |
14179 | RecordDecl *RD = RT->getDecl(); |
14180 | if (RD->isInvalidDecl()) return false; |
14181 | const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(D: RD); |
14182 | |
14183 | // Find the base class itself. |
14184 | CurrentType = BaseSpec->getType(); |
14185 | const RecordType *BaseRT = CurrentType->getAs<RecordType>(); |
14186 | if (!BaseRT) |
14187 | return Error(E: OOE); |
14188 | |
14189 | // Add the offset to the base. |
14190 | Result += RL.getBaseClassOffset(Base: cast<CXXRecordDecl>(Val: BaseRT->getDecl())); |
14191 | break; |
14192 | } |
14193 | } |
14194 | } |
14195 | return Success(Size: Result, E: OOE); |
14196 | } |
14197 | |
14198 | bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
14199 | switch (E->getOpcode()) { |
14200 | default: |
14201 | // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. |
14202 | // See C99 6.6p3. |
14203 | return Error(E); |
14204 | case UO_Extension: |
14205 | // FIXME: Should extension allow i-c-e extension expressions in its scope? |
14206 | // If so, we could clear the diagnostic ID. |
14207 | return Visit(S: E->getSubExpr()); |
14208 | case UO_Plus: |
14209 | // The result is just the value. |
14210 | return Visit(S: E->getSubExpr()); |
14211 | case UO_Minus: { |
14212 | if (!Visit(S: E->getSubExpr())) |
14213 | return false; |
14214 | if (!Result.isInt()) return Error(E); |
14215 | const APSInt &Value = Result.getInt(); |
14216 | if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow()) { |
14217 | if (Info.checkingForUndefinedBehavior()) |
14218 | Info.Ctx.getDiagnostics().Report(Loc: E->getExprLoc(), |
14219 | DiagID: diag::warn_integer_constant_overflow) |
14220 | << toString(I: Value, Radix: 10, Signed: Value.isSigned(), /*formatAsCLiteral=*/false, |
14221 | /*UpperCase=*/true, /*InsertSeparators=*/true) |
14222 | << E->getType() << E->getSourceRange(); |
14223 | |
14224 | if (!HandleOverflow(Info, E, SrcValue: -Value.extend(width: Value.getBitWidth() + 1), |
14225 | DestType: E->getType())) |
14226 | return false; |
14227 | } |
14228 | return Success(SI: -Value, E); |
14229 | } |
14230 | case UO_Not: { |
14231 | if (!Visit(S: E->getSubExpr())) |
14232 | return false; |
14233 | if (!Result.isInt()) return Error(E); |
14234 | return Success(SI: ~Result.getInt(), E); |
14235 | } |
14236 | case UO_LNot: { |
14237 | bool bres; |
14238 | if (!EvaluateAsBooleanCondition(E: E->getSubExpr(), Result&: bres, Info)) |
14239 | return false; |
14240 | return Success(Value: !bres, E); |
14241 | } |
14242 | } |
14243 | } |
14244 | |
14245 | /// HandleCast - This is used to evaluate implicit or explicit casts where the |
14246 | /// result type is integer. |
14247 | bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) { |
14248 | const Expr *SubExpr = E->getSubExpr(); |
14249 | QualType DestType = E->getType(); |
14250 | QualType SrcType = SubExpr->getType(); |
14251 | |
14252 | switch (E->getCastKind()) { |
14253 | case CK_BaseToDerived: |
14254 | case CK_DerivedToBase: |
14255 | case CK_UncheckedDerivedToBase: |
14256 | case CK_Dynamic: |
14257 | case CK_ToUnion: |
14258 | case CK_ArrayToPointerDecay: |
14259 | case CK_FunctionToPointerDecay: |
14260 | case CK_NullToPointer: |
14261 | case CK_NullToMemberPointer: |
14262 | case CK_BaseToDerivedMemberPointer: |
14263 | case CK_DerivedToBaseMemberPointer: |
14264 | case CK_ReinterpretMemberPointer: |
14265 | case CK_ConstructorConversion: |
14266 | case CK_IntegralToPointer: |
14267 | case CK_ToVoid: |
14268 | case CK_VectorSplat: |
14269 | case CK_IntegralToFloating: |
14270 | case CK_FloatingCast: |
14271 | case CK_CPointerToObjCPointerCast: |
14272 | case CK_BlockPointerToObjCPointerCast: |
14273 | case CK_AnyPointerToBlockPointerCast: |
14274 | case CK_ObjCObjectLValueCast: |
14275 | case CK_FloatingRealToComplex: |
14276 | case CK_FloatingComplexToReal: |
14277 | case CK_FloatingComplexCast: |
14278 | case CK_FloatingComplexToIntegralComplex: |
14279 | case CK_IntegralRealToComplex: |
14280 | case CK_IntegralComplexCast: |
14281 | case CK_IntegralComplexToFloatingComplex: |
14282 | case CK_BuiltinFnToFnPtr: |
14283 | case CK_ZeroToOCLOpaqueType: |
14284 | case CK_NonAtomicToAtomic: |
14285 | case CK_AddressSpaceConversion: |
14286 | case CK_IntToOCLSampler: |
14287 | case CK_FloatingToFixedPoint: |
14288 | case CK_FixedPointToFloating: |
14289 | case CK_FixedPointCast: |
14290 | case CK_IntegralToFixedPoint: |
14291 | case CK_MatrixCast: |
14292 | case CK_HLSLVectorTruncation: |
14293 | llvm_unreachable("invalid cast kind for integral value" ); |
14294 | |
14295 | case CK_BitCast: |
14296 | case CK_Dependent: |
14297 | case CK_LValueBitCast: |
14298 | case CK_ARCProduceObject: |
14299 | case CK_ARCConsumeObject: |
14300 | case CK_ARCReclaimReturnedObject: |
14301 | case CK_ARCExtendBlockObject: |
14302 | case CK_CopyAndAutoreleaseBlockObject: |
14303 | return Error(E); |
14304 | |
14305 | case CK_UserDefinedConversion: |
14306 | case CK_LValueToRValue: |
14307 | case CK_AtomicToNonAtomic: |
14308 | case CK_NoOp: |
14309 | case CK_LValueToRValueBitCast: |
14310 | case CK_HLSLArrayRValue: |
14311 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
14312 | |
14313 | case CK_MemberPointerToBoolean: |
14314 | case CK_PointerToBoolean: |
14315 | case CK_IntegralToBoolean: |
14316 | case CK_FloatingToBoolean: |
14317 | case CK_BooleanToSignedIntegral: |
14318 | case CK_FloatingComplexToBoolean: |
14319 | case CK_IntegralComplexToBoolean: { |
14320 | bool BoolResult; |
14321 | if (!EvaluateAsBooleanCondition(E: SubExpr, Result&: BoolResult, Info)) |
14322 | return false; |
14323 | uint64_t IntResult = BoolResult; |
14324 | if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral) |
14325 | IntResult = (uint64_t)-1; |
14326 | return Success(Value: IntResult, E); |
14327 | } |
14328 | |
14329 | case CK_FixedPointToIntegral: { |
14330 | APFixedPoint Src(Info.Ctx.getFixedPointSemantics(Ty: SrcType)); |
14331 | if (!EvaluateFixedPoint(E: SubExpr, Result&: Src, Info)) |
14332 | return false; |
14333 | bool Overflowed; |
14334 | llvm::APSInt Result = Src.convertToInt( |
14335 | DstWidth: Info.Ctx.getIntWidth(T: DestType), |
14336 | DstSign: DestType->isSignedIntegerOrEnumerationType(), Overflow: &Overflowed); |
14337 | if (Overflowed && !HandleOverflow(Info, E, SrcValue: Result, DestType)) |
14338 | return false; |
14339 | return Success(SI: Result, E); |
14340 | } |
14341 | |
14342 | case CK_FixedPointToBoolean: { |
14343 | // Unsigned padding does not affect this. |
14344 | APValue Val; |
14345 | if (!Evaluate(Result&: Val, Info, E: SubExpr)) |
14346 | return false; |
14347 | return Success(Value: Val.getFixedPoint().getBoolValue(), E); |
14348 | } |
14349 | |
14350 | case CK_IntegralCast: { |
14351 | if (!Visit(S: SubExpr)) |
14352 | return false; |
14353 | |
14354 | if (!Result.isInt()) { |
14355 | // Allow casts of address-of-label differences if they are no-ops |
14356 | // or narrowing. (The narrowing case isn't actually guaranteed to |
14357 | // be constant-evaluatable except in some narrow cases which are hard |
14358 | // to detect here. We let it through on the assumption the user knows |
14359 | // what they are doing.) |
14360 | if (Result.isAddrLabelDiff()) |
14361 | return Info.Ctx.getTypeSize(T: DestType) <= Info.Ctx.getTypeSize(T: SrcType); |
14362 | // Only allow casts of lvalues if they are lossless. |
14363 | return Info.Ctx.getTypeSize(T: DestType) == Info.Ctx.getTypeSize(T: SrcType); |
14364 | } |
14365 | |
14366 | if (Info.Ctx.getLangOpts().CPlusPlus && Info.InConstantContext && |
14367 | Info.EvalMode == EvalInfo::EM_ConstantExpression && |
14368 | DestType->isEnumeralType()) { |
14369 | |
14370 | bool ConstexprVar = true; |
14371 | |
14372 | // We know if we are here that we are in a context that we might require |
14373 | // a constant expression or a context that requires a constant |
14374 | // value. But if we are initializing a value we don't know if it is a |
14375 | // constexpr variable or not. We can check the EvaluatingDecl to determine |
14376 | // if it constexpr or not. If not then we don't want to emit a diagnostic. |
14377 | if (const auto *VD = dyn_cast_or_null<VarDecl>( |
14378 | Val: Info.EvaluatingDecl.dyn_cast<const ValueDecl *>())) |
14379 | ConstexprVar = VD->isConstexpr(); |
14380 | |
14381 | const EnumType *ET = dyn_cast<EnumType>(Val: DestType.getCanonicalType()); |
14382 | const EnumDecl *ED = ET->getDecl(); |
14383 | // Check that the value is within the range of the enumeration values. |
14384 | // |
14385 | // This corressponds to [expr.static.cast]p10 which says: |
14386 | // A value of integral or enumeration type can be explicitly converted |
14387 | // to a complete enumeration type ... If the enumeration type does not |
14388 | // have a fixed underlying type, the value is unchanged if the original |
14389 | // value is within the range of the enumeration values ([dcl.enum]), and |
14390 | // otherwise, the behavior is undefined. |
14391 | // |
14392 | // This was resolved as part of DR2338 which has CD5 status. |
14393 | if (!ED->isFixed()) { |
14394 | llvm::APInt Min; |
14395 | llvm::APInt Max; |
14396 | |
14397 | ED->getValueRange(Max, Min); |
14398 | --Max; |
14399 | |
14400 | if (ED->getNumNegativeBits() && ConstexprVar && |
14401 | (Max.slt(RHS: Result.getInt().getSExtValue()) || |
14402 | Min.sgt(RHS: Result.getInt().getSExtValue()))) |
14403 | Info.Ctx.getDiagnostics().Report( |
14404 | Loc: E->getExprLoc(), DiagID: diag::warn_constexpr_unscoped_enum_out_of_range) |
14405 | << llvm::toString(I: Result.getInt(), Radix: 10) << Min.getSExtValue() |
14406 | << Max.getSExtValue() << ED; |
14407 | else if (!ED->getNumNegativeBits() && ConstexprVar && |
14408 | Max.ult(RHS: Result.getInt().getZExtValue())) |
14409 | Info.Ctx.getDiagnostics().Report( |
14410 | Loc: E->getExprLoc(), DiagID: diag::warn_constexpr_unscoped_enum_out_of_range) |
14411 | << llvm::toString(I: Result.getInt(), Radix: 10) << Min.getZExtValue() |
14412 | << Max.getZExtValue() << ED; |
14413 | } |
14414 | } |
14415 | |
14416 | return Success(SI: HandleIntToIntCast(Info, E, DestType, SrcType, |
14417 | Value: Result.getInt()), E); |
14418 | } |
14419 | |
14420 | case CK_PointerToIntegral: { |
14421 | CCEDiag(E, D: diag::note_constexpr_invalid_cast) |
14422 | << 2 << Info.Ctx.getLangOpts().CPlusPlus << E->getSourceRange(); |
14423 | |
14424 | LValue LV; |
14425 | if (!EvaluatePointer(E: SubExpr, Result&: LV, Info)) |
14426 | return false; |
14427 | |
14428 | if (LV.getLValueBase()) { |
14429 | // Only allow based lvalue casts if they are lossless. |
14430 | // FIXME: Allow a larger integer size than the pointer size, and allow |
14431 | // narrowing back down to pointer width in subsequent integral casts. |
14432 | // FIXME: Check integer type's active bits, not its type size. |
14433 | if (Info.Ctx.getTypeSize(T: DestType) != Info.Ctx.getTypeSize(T: SrcType)) |
14434 | return Error(E); |
14435 | |
14436 | LV.Designator.setInvalid(); |
14437 | LV.moveInto(V&: Result); |
14438 | return true; |
14439 | } |
14440 | |
14441 | APSInt AsInt; |
14442 | APValue V; |
14443 | LV.moveInto(V); |
14444 | if (!V.toIntegralConstant(Result&: AsInt, SrcTy: SrcType, Ctx: Info.Ctx)) |
14445 | llvm_unreachable("Can't cast this!" ); |
14446 | |
14447 | return Success(SI: HandleIntToIntCast(Info, E, DestType, SrcType, Value: AsInt), E); |
14448 | } |
14449 | |
14450 | case CK_IntegralComplexToReal: { |
14451 | ComplexValue C; |
14452 | if (!EvaluateComplex(E: SubExpr, Res&: C, Info)) |
14453 | return false; |
14454 | return Success(SI: C.getComplexIntReal(), E); |
14455 | } |
14456 | |
14457 | case CK_FloatingToIntegral: { |
14458 | APFloat F(0.0); |
14459 | if (!EvaluateFloat(E: SubExpr, Result&: F, Info)) |
14460 | return false; |
14461 | |
14462 | APSInt Value; |
14463 | if (!HandleFloatToIntCast(Info, E, SrcType, Value: F, DestType, Result&: Value)) |
14464 | return false; |
14465 | return Success(SI: Value, E); |
14466 | } |
14467 | } |
14468 | |
14469 | llvm_unreachable("unknown cast resulting in integral value" ); |
14470 | } |
14471 | |
14472 | bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { |
14473 | if (E->getSubExpr()->getType()->isAnyComplexType()) { |
14474 | ComplexValue LV; |
14475 | if (!EvaluateComplex(E: E->getSubExpr(), Res&: LV, Info)) |
14476 | return false; |
14477 | if (!LV.isComplexInt()) |
14478 | return Error(E); |
14479 | return Success(SI: LV.getComplexIntReal(), E); |
14480 | } |
14481 | |
14482 | return Visit(S: E->getSubExpr()); |
14483 | } |
14484 | |
14485 | bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
14486 | if (E->getSubExpr()->getType()->isComplexIntegerType()) { |
14487 | ComplexValue LV; |
14488 | if (!EvaluateComplex(E: E->getSubExpr(), Res&: LV, Info)) |
14489 | return false; |
14490 | if (!LV.isComplexInt()) |
14491 | return Error(E); |
14492 | return Success(SI: LV.getComplexIntImag(), E); |
14493 | } |
14494 | |
14495 | VisitIgnoredValue(E: E->getSubExpr()); |
14496 | return Success(Value: 0, E); |
14497 | } |
14498 | |
14499 | bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { |
14500 | return Success(Value: E->getPackLength(), E); |
14501 | } |
14502 | |
14503 | bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { |
14504 | return Success(Value: E->getValue(), E); |
14505 | } |
14506 | |
14507 | bool IntExprEvaluator::VisitConceptSpecializationExpr( |
14508 | const ConceptSpecializationExpr *E) { |
14509 | return Success(Value: E->isSatisfied(), E); |
14510 | } |
14511 | |
14512 | bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) { |
14513 | return Success(Value: E->isSatisfied(), E); |
14514 | } |
14515 | |
14516 | bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
14517 | switch (E->getOpcode()) { |
14518 | default: |
14519 | // Invalid unary operators |
14520 | return Error(E); |
14521 | case UO_Plus: |
14522 | // The result is just the value. |
14523 | return Visit(S: E->getSubExpr()); |
14524 | case UO_Minus: { |
14525 | if (!Visit(S: E->getSubExpr())) return false; |
14526 | if (!Result.isFixedPoint()) |
14527 | return Error(E); |
14528 | bool Overflowed; |
14529 | APFixedPoint Negated = Result.getFixedPoint().negate(Overflow: &Overflowed); |
14530 | if (Overflowed && !HandleOverflow(Info, E, SrcValue: Negated, DestType: E->getType())) |
14531 | return false; |
14532 | return Success(V: Negated, E); |
14533 | } |
14534 | case UO_LNot: { |
14535 | bool bres; |
14536 | if (!EvaluateAsBooleanCondition(E: E->getSubExpr(), Result&: bres, Info)) |
14537 | return false; |
14538 | return Success(Value: !bres, E); |
14539 | } |
14540 | } |
14541 | } |
14542 | |
14543 | bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) { |
14544 | const Expr *SubExpr = E->getSubExpr(); |
14545 | QualType DestType = E->getType(); |
14546 | assert(DestType->isFixedPointType() && |
14547 | "Expected destination type to be a fixed point type" ); |
14548 | auto DestFXSema = Info.Ctx.getFixedPointSemantics(Ty: DestType); |
14549 | |
14550 | switch (E->getCastKind()) { |
14551 | case CK_FixedPointCast: { |
14552 | APFixedPoint Src(Info.Ctx.getFixedPointSemantics(Ty: SubExpr->getType())); |
14553 | if (!EvaluateFixedPoint(E: SubExpr, Result&: Src, Info)) |
14554 | return false; |
14555 | bool Overflowed; |
14556 | APFixedPoint Result = Src.convert(DstSema: DestFXSema, Overflow: &Overflowed); |
14557 | if (Overflowed) { |
14558 | if (Info.checkingForUndefinedBehavior()) |
14559 | Info.Ctx.getDiagnostics().Report(Loc: E->getExprLoc(), |
14560 | DiagID: diag::warn_fixedpoint_constant_overflow) |
14561 | << Result.toString() << E->getType(); |
14562 | if (!HandleOverflow(Info, E, SrcValue: Result, DestType: E->getType())) |
14563 | return false; |
14564 | } |
14565 | return Success(V: Result, E); |
14566 | } |
14567 | case CK_IntegralToFixedPoint: { |
14568 | APSInt Src; |
14569 | if (!EvaluateInteger(E: SubExpr, Result&: Src, Info)) |
14570 | return false; |
14571 | |
14572 | bool Overflowed; |
14573 | APFixedPoint IntResult = APFixedPoint::getFromIntValue( |
14574 | Value: Src, DstFXSema: Info.Ctx.getFixedPointSemantics(Ty: DestType), Overflow: &Overflowed); |
14575 | |
14576 | if (Overflowed) { |
14577 | if (Info.checkingForUndefinedBehavior()) |
14578 | Info.Ctx.getDiagnostics().Report(Loc: E->getExprLoc(), |
14579 | DiagID: diag::warn_fixedpoint_constant_overflow) |
14580 | << IntResult.toString() << E->getType(); |
14581 | if (!HandleOverflow(Info, E, SrcValue: IntResult, DestType: E->getType())) |
14582 | return false; |
14583 | } |
14584 | |
14585 | return Success(V: IntResult, E); |
14586 | } |
14587 | case CK_FloatingToFixedPoint: { |
14588 | APFloat Src(0.0); |
14589 | if (!EvaluateFloat(E: SubExpr, Result&: Src, Info)) |
14590 | return false; |
14591 | |
14592 | bool Overflowed; |
14593 | APFixedPoint Result = APFixedPoint::getFromFloatValue( |
14594 | Value: Src, DstFXSema: Info.Ctx.getFixedPointSemantics(Ty: DestType), Overflow: &Overflowed); |
14595 | |
14596 | if (Overflowed) { |
14597 | if (Info.checkingForUndefinedBehavior()) |
14598 | Info.Ctx.getDiagnostics().Report(Loc: E->getExprLoc(), |
14599 | DiagID: diag::warn_fixedpoint_constant_overflow) |
14600 | << Result.toString() << E->getType(); |
14601 | if (!HandleOverflow(Info, E, SrcValue: Result, DestType: E->getType())) |
14602 | return false; |
14603 | } |
14604 | |
14605 | return Success(V: Result, E); |
14606 | } |
14607 | case CK_NoOp: |
14608 | case CK_LValueToRValue: |
14609 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
14610 | default: |
14611 | return Error(E); |
14612 | } |
14613 | } |
14614 | |
14615 | bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
14616 | if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) |
14617 | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
14618 | |
14619 | const Expr *LHS = E->getLHS(); |
14620 | const Expr *RHS = E->getRHS(); |
14621 | FixedPointSemantics ResultFXSema = |
14622 | Info.Ctx.getFixedPointSemantics(Ty: E->getType()); |
14623 | |
14624 | APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(Ty: LHS->getType())); |
14625 | if (!EvaluateFixedPointOrInteger(E: LHS, Result&: LHSFX, Info)) |
14626 | return false; |
14627 | APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(Ty: RHS->getType())); |
14628 | if (!EvaluateFixedPointOrInteger(E: RHS, Result&: RHSFX, Info)) |
14629 | return false; |
14630 | |
14631 | bool OpOverflow = false, ConversionOverflow = false; |
14632 | APFixedPoint Result(LHSFX.getSemantics()); |
14633 | switch (E->getOpcode()) { |
14634 | case BO_Add: { |
14635 | Result = LHSFX.add(Other: RHSFX, Overflow: &OpOverflow) |
14636 | .convert(DstSema: ResultFXSema, Overflow: &ConversionOverflow); |
14637 | break; |
14638 | } |
14639 | case BO_Sub: { |
14640 | Result = LHSFX.sub(Other: RHSFX, Overflow: &OpOverflow) |
14641 | .convert(DstSema: ResultFXSema, Overflow: &ConversionOverflow); |
14642 | break; |
14643 | } |
14644 | case BO_Mul: { |
14645 | Result = LHSFX.mul(Other: RHSFX, Overflow: &OpOverflow) |
14646 | .convert(DstSema: ResultFXSema, Overflow: &ConversionOverflow); |
14647 | break; |
14648 | } |
14649 | case BO_Div: { |
14650 | if (RHSFX.getValue() == 0) { |
14651 | Info.FFDiag(E, DiagId: diag::note_expr_divide_by_zero); |
14652 | return false; |
14653 | } |
14654 | Result = LHSFX.div(Other: RHSFX, Overflow: &OpOverflow) |
14655 | .convert(DstSema: ResultFXSema, Overflow: &ConversionOverflow); |
14656 | break; |
14657 | } |
14658 | case BO_Shl: |
14659 | case BO_Shr: { |
14660 | FixedPointSemantics LHSSema = LHSFX.getSemantics(); |
14661 | llvm::APSInt RHSVal = RHSFX.getValue(); |
14662 | |
14663 | unsigned ShiftBW = |
14664 | LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding(); |
14665 | unsigned Amt = RHSVal.getLimitedValue(Limit: ShiftBW - 1); |
14666 | // Embedded-C 4.1.6.2.2: |
14667 | // The right operand must be nonnegative and less than the total number |
14668 | // of (nonpadding) bits of the fixed-point operand ... |
14669 | if (RHSVal.isNegative()) |
14670 | Info.CCEDiag(E, DiagId: diag::note_constexpr_negative_shift) << RHSVal; |
14671 | else if (Amt != RHSVal) |
14672 | Info.CCEDiag(E, DiagId: diag::note_constexpr_large_shift) |
14673 | << RHSVal << E->getType() << ShiftBW; |
14674 | |
14675 | if (E->getOpcode() == BO_Shl) |
14676 | Result = LHSFX.shl(Amt, Overflow: &OpOverflow); |
14677 | else |
14678 | Result = LHSFX.shr(Amt, Overflow: &OpOverflow); |
14679 | break; |
14680 | } |
14681 | default: |
14682 | return false; |
14683 | } |
14684 | if (OpOverflow || ConversionOverflow) { |
14685 | if (Info.checkingForUndefinedBehavior()) |
14686 | Info.Ctx.getDiagnostics().Report(Loc: E->getExprLoc(), |
14687 | DiagID: diag::warn_fixedpoint_constant_overflow) |
14688 | << Result.toString() << E->getType(); |
14689 | if (!HandleOverflow(Info, E, SrcValue: Result, DestType: E->getType())) |
14690 | return false; |
14691 | } |
14692 | return Success(V: Result, E); |
14693 | } |
14694 | |
14695 | //===----------------------------------------------------------------------===// |
14696 | // Float Evaluation |
14697 | //===----------------------------------------------------------------------===// |
14698 | |
14699 | namespace { |
14700 | class FloatExprEvaluator |
14701 | : public ExprEvaluatorBase<FloatExprEvaluator> { |
14702 | APFloat &Result; |
14703 | public: |
14704 | FloatExprEvaluator(EvalInfo &info, APFloat &result) |
14705 | : ExprEvaluatorBaseTy(info), Result(result) {} |
14706 | |
14707 | bool Success(const APValue &V, const Expr *e) { |
14708 | Result = V.getFloat(); |
14709 | return true; |
14710 | } |
14711 | |
14712 | bool ZeroInitialization(const Expr *E) { |
14713 | Result = APFloat::getZero(Sem: Info.Ctx.getFloatTypeSemantics(T: E->getType())); |
14714 | return true; |
14715 | } |
14716 | |
14717 | bool VisitCallExpr(const CallExpr *E); |
14718 | |
14719 | bool VisitUnaryOperator(const UnaryOperator *E); |
14720 | bool VisitBinaryOperator(const BinaryOperator *E); |
14721 | bool VisitFloatingLiteral(const FloatingLiteral *E); |
14722 | bool VisitCastExpr(const CastExpr *E); |
14723 | |
14724 | bool VisitUnaryReal(const UnaryOperator *E); |
14725 | bool VisitUnaryImag(const UnaryOperator *E); |
14726 | |
14727 | // FIXME: Missing: array subscript of vector, member of vector |
14728 | }; |
14729 | } // end anonymous namespace |
14730 | |
14731 | static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { |
14732 | assert(!E->isValueDependent()); |
14733 | assert(E->isPRValue() && E->getType()->isRealFloatingType()); |
14734 | return FloatExprEvaluator(Info, Result).Visit(S: E); |
14735 | } |
14736 | |
14737 | static bool TryEvaluateBuiltinNaN(const ASTContext &Context, |
14738 | QualType ResultTy, |
14739 | const Expr *Arg, |
14740 | bool SNaN, |
14741 | llvm::APFloat &Result) { |
14742 | const StringLiteral *S = dyn_cast<StringLiteral>(Val: Arg->IgnoreParenCasts()); |
14743 | if (!S) return false; |
14744 | |
14745 | const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(T: ResultTy); |
14746 | |
14747 | llvm::APInt fill; |
14748 | |
14749 | // Treat empty strings as if they were zero. |
14750 | if (S->getString().empty()) |
14751 | fill = llvm::APInt(32, 0); |
14752 | else if (S->getString().getAsInteger(Radix: 0, Result&: fill)) |
14753 | return false; |
14754 | |
14755 | if (Context.getTargetInfo().isNan2008()) { |
14756 | if (SNaN) |
14757 | Result = llvm::APFloat::getSNaN(Sem, Negative: false, payload: &fill); |
14758 | else |
14759 | Result = llvm::APFloat::getQNaN(Sem, Negative: false, payload: &fill); |
14760 | } else { |
14761 | // Prior to IEEE 754-2008, architectures were allowed to choose whether |
14762 | // the first bit of their significand was set for qNaN or sNaN. MIPS chose |
14763 | // a different encoding to what became a standard in 2008, and for pre- |
14764 | // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as |
14765 | // sNaN. This is now known as "legacy NaN" encoding. |
14766 | if (SNaN) |
14767 | Result = llvm::APFloat::getQNaN(Sem, Negative: false, payload: &fill); |
14768 | else |
14769 | Result = llvm::APFloat::getSNaN(Sem, Negative: false, payload: &fill); |
14770 | } |
14771 | |
14772 | return true; |
14773 | } |
14774 | |
14775 | bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { |
14776 | if (!IsConstantEvaluatedBuiltinCall(E)) |
14777 | return ExprEvaluatorBaseTy::VisitCallExpr(E); |
14778 | |
14779 | switch (E->getBuiltinCallee()) { |
14780 | default: |
14781 | return false; |
14782 | |
14783 | case Builtin::BI__builtin_huge_val: |
14784 | case Builtin::BI__builtin_huge_valf: |
14785 | case Builtin::BI__builtin_huge_vall: |
14786 | case Builtin::BI__builtin_huge_valf16: |
14787 | case Builtin::BI__builtin_huge_valf128: |
14788 | case Builtin::BI__builtin_inf: |
14789 | case Builtin::BI__builtin_inff: |
14790 | case Builtin::BI__builtin_infl: |
14791 | case Builtin::BI__builtin_inff16: |
14792 | case Builtin::BI__builtin_inff128: { |
14793 | const llvm::fltSemantics &Sem = |
14794 | Info.Ctx.getFloatTypeSemantics(T: E->getType()); |
14795 | Result = llvm::APFloat::getInf(Sem); |
14796 | return true; |
14797 | } |
14798 | |
14799 | case Builtin::BI__builtin_nans: |
14800 | case Builtin::BI__builtin_nansf: |
14801 | case Builtin::BI__builtin_nansl: |
14802 | case Builtin::BI__builtin_nansf16: |
14803 | case Builtin::BI__builtin_nansf128: |
14804 | if (!TryEvaluateBuiltinNaN(Context: Info.Ctx, ResultTy: E->getType(), Arg: E->getArg(Arg: 0), |
14805 | SNaN: true, Result)) |
14806 | return Error(E); |
14807 | return true; |
14808 | |
14809 | case Builtin::BI__builtin_nan: |
14810 | case Builtin::BI__builtin_nanf: |
14811 | case Builtin::BI__builtin_nanl: |
14812 | case Builtin::BI__builtin_nanf16: |
14813 | case Builtin::BI__builtin_nanf128: |
14814 | // If this is __builtin_nan() turn this into a nan, otherwise we |
14815 | // can't constant fold it. |
14816 | if (!TryEvaluateBuiltinNaN(Context: Info.Ctx, ResultTy: E->getType(), Arg: E->getArg(Arg: 0), |
14817 | SNaN: false, Result)) |
14818 | return Error(E); |
14819 | return true; |
14820 | |
14821 | case Builtin::BI__builtin_fabs: |
14822 | case Builtin::BI__builtin_fabsf: |
14823 | case Builtin::BI__builtin_fabsl: |
14824 | case Builtin::BI__builtin_fabsf128: |
14825 | // The C standard says "fabs raises no floating-point exceptions, |
14826 | // even if x is a signaling NaN. The returned value is independent of |
14827 | // the current rounding direction mode." Therefore constant folding can |
14828 | // proceed without regard to the floating point settings. |
14829 | // Reference, WG14 N2478 F.10.4.3 |
14830 | if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info)) |
14831 | return false; |
14832 | |
14833 | if (Result.isNegative()) |
14834 | Result.changeSign(); |
14835 | return true; |
14836 | |
14837 | case Builtin::BI__arithmetic_fence: |
14838 | return EvaluateFloat(E: E->getArg(Arg: 0), Result, Info); |
14839 | |
14840 | // FIXME: Builtin::BI__builtin_powi |
14841 | // FIXME: Builtin::BI__builtin_powif |
14842 | // FIXME: Builtin::BI__builtin_powil |
14843 | |
14844 | case Builtin::BI__builtin_copysign: |
14845 | case Builtin::BI__builtin_copysignf: |
14846 | case Builtin::BI__builtin_copysignl: |
14847 | case Builtin::BI__builtin_copysignf128: { |
14848 | APFloat RHS(0.); |
14849 | if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info) || |
14850 | !EvaluateFloat(E: E->getArg(Arg: 1), Result&: RHS, Info)) |
14851 | return false; |
14852 | Result.copySign(RHS); |
14853 | return true; |
14854 | } |
14855 | |
14856 | case Builtin::BI__builtin_fmax: |
14857 | case Builtin::BI__builtin_fmaxf: |
14858 | case Builtin::BI__builtin_fmaxl: |
14859 | case Builtin::BI__builtin_fmaxf16: |
14860 | case Builtin::BI__builtin_fmaxf128: { |
14861 | // TODO: Handle sNaN. |
14862 | APFloat RHS(0.); |
14863 | if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info) || |
14864 | !EvaluateFloat(E: E->getArg(Arg: 1), Result&: RHS, Info)) |
14865 | return false; |
14866 | // When comparing zeroes, return +0.0 if one of the zeroes is positive. |
14867 | if (Result.isZero() && RHS.isZero() && Result.isNegative()) |
14868 | Result = RHS; |
14869 | else if (Result.isNaN() || RHS > Result) |
14870 | Result = RHS; |
14871 | return true; |
14872 | } |
14873 | |
14874 | case Builtin::BI__builtin_fmin: |
14875 | case Builtin::BI__builtin_fminf: |
14876 | case Builtin::BI__builtin_fminl: |
14877 | case Builtin::BI__builtin_fminf16: |
14878 | case Builtin::BI__builtin_fminf128: { |
14879 | // TODO: Handle sNaN. |
14880 | APFloat RHS(0.); |
14881 | if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info) || |
14882 | !EvaluateFloat(E: E->getArg(Arg: 1), Result&: RHS, Info)) |
14883 | return false; |
14884 | // When comparing zeroes, return -0.0 if one of the zeroes is negative. |
14885 | if (Result.isZero() && RHS.isZero() && RHS.isNegative()) |
14886 | Result = RHS; |
14887 | else if (Result.isNaN() || RHS < Result) |
14888 | Result = RHS; |
14889 | return true; |
14890 | } |
14891 | } |
14892 | } |
14893 | |
14894 | bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { |
14895 | if (E->getSubExpr()->getType()->isAnyComplexType()) { |
14896 | ComplexValue CV; |
14897 | if (!EvaluateComplex(E: E->getSubExpr(), Res&: CV, Info)) |
14898 | return false; |
14899 | Result = CV.FloatReal; |
14900 | return true; |
14901 | } |
14902 | |
14903 | return Visit(S: E->getSubExpr()); |
14904 | } |
14905 | |
14906 | bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
14907 | if (E->getSubExpr()->getType()->isAnyComplexType()) { |
14908 | ComplexValue CV; |
14909 | if (!EvaluateComplex(E: E->getSubExpr(), Res&: CV, Info)) |
14910 | return false; |
14911 | Result = CV.FloatImag; |
14912 | return true; |
14913 | } |
14914 | |
14915 | VisitIgnoredValue(E: E->getSubExpr()); |
14916 | const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(T: E->getType()); |
14917 | Result = llvm::APFloat::getZero(Sem); |
14918 | return true; |
14919 | } |
14920 | |
14921 | bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
14922 | switch (E->getOpcode()) { |
14923 | default: return Error(E); |
14924 | case UO_Plus: |
14925 | return EvaluateFloat(E: E->getSubExpr(), Result, Info); |
14926 | case UO_Minus: |
14927 | // In C standard, WG14 N2478 F.3 p4 |
14928 | // "the unary - raises no floating point exceptions, |
14929 | // even if the operand is signalling." |
14930 | if (!EvaluateFloat(E: E->getSubExpr(), Result, Info)) |
14931 | return false; |
14932 | Result.changeSign(); |
14933 | return true; |
14934 | } |
14935 | } |
14936 | |
14937 | bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
14938 | if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) |
14939 | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
14940 | |
14941 | APFloat RHS(0.0); |
14942 | bool LHSOK = EvaluateFloat(E: E->getLHS(), Result, Info); |
14943 | if (!LHSOK && !Info.noteFailure()) |
14944 | return false; |
14945 | return EvaluateFloat(E: E->getRHS(), Result&: RHS, Info) && LHSOK && |
14946 | handleFloatFloatBinOp(Info, E, LHS&: Result, Opcode: E->getOpcode(), RHS); |
14947 | } |
14948 | |
14949 | bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { |
14950 | Result = E->getValue(); |
14951 | return true; |
14952 | } |
14953 | |
14954 | bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) { |
14955 | const Expr* SubExpr = E->getSubExpr(); |
14956 | |
14957 | switch (E->getCastKind()) { |
14958 | default: |
14959 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
14960 | |
14961 | case CK_IntegralToFloating: { |
14962 | APSInt IntResult; |
14963 | const FPOptions FPO = E->getFPFeaturesInEffect( |
14964 | LO: Info.Ctx.getLangOpts()); |
14965 | return EvaluateInteger(E: SubExpr, Result&: IntResult, Info) && |
14966 | HandleIntToFloatCast(Info, E, FPO, SrcType: SubExpr->getType(), |
14967 | Value: IntResult, DestType: E->getType(), Result); |
14968 | } |
14969 | |
14970 | case CK_FixedPointToFloating: { |
14971 | APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(Ty: SubExpr->getType())); |
14972 | if (!EvaluateFixedPoint(E: SubExpr, Result&: FixResult, Info)) |
14973 | return false; |
14974 | Result = |
14975 | FixResult.convertToFloat(FloatSema: Info.Ctx.getFloatTypeSemantics(T: E->getType())); |
14976 | return true; |
14977 | } |
14978 | |
14979 | case CK_FloatingCast: { |
14980 | if (!Visit(S: SubExpr)) |
14981 | return false; |
14982 | return HandleFloatToFloatCast(Info, E, SrcType: SubExpr->getType(), DestType: E->getType(), |
14983 | Result); |
14984 | } |
14985 | |
14986 | case CK_FloatingComplexToReal: { |
14987 | ComplexValue V; |
14988 | if (!EvaluateComplex(E: SubExpr, Res&: V, Info)) |
14989 | return false; |
14990 | Result = V.getComplexFloatReal(); |
14991 | return true; |
14992 | } |
14993 | } |
14994 | } |
14995 | |
14996 | //===----------------------------------------------------------------------===// |
14997 | // Complex Evaluation (for float and integer) |
14998 | //===----------------------------------------------------------------------===// |
14999 | |
15000 | namespace { |
15001 | class ComplexExprEvaluator |
15002 | : public ExprEvaluatorBase<ComplexExprEvaluator> { |
15003 | ComplexValue &Result; |
15004 | |
15005 | public: |
15006 | ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result) |
15007 | : ExprEvaluatorBaseTy(info), Result(Result) {} |
15008 | |
15009 | bool Success(const APValue &V, const Expr *e) { |
15010 | Result.setFrom(V); |
15011 | return true; |
15012 | } |
15013 | |
15014 | bool ZeroInitialization(const Expr *E); |
15015 | |
15016 | //===--------------------------------------------------------------------===// |
15017 | // Visitor Methods |
15018 | //===--------------------------------------------------------------------===// |
15019 | |
15020 | bool VisitImaginaryLiteral(const ImaginaryLiteral *E); |
15021 | bool VisitCastExpr(const CastExpr *E); |
15022 | bool VisitBinaryOperator(const BinaryOperator *E); |
15023 | bool VisitUnaryOperator(const UnaryOperator *E); |
15024 | bool VisitInitListExpr(const InitListExpr *E); |
15025 | bool VisitCallExpr(const CallExpr *E); |
15026 | }; |
15027 | } // end anonymous namespace |
15028 | |
15029 | static bool EvaluateComplex(const Expr *E, ComplexValue &Result, |
15030 | EvalInfo &Info) { |
15031 | assert(!E->isValueDependent()); |
15032 | assert(E->isPRValue() && E->getType()->isAnyComplexType()); |
15033 | return ComplexExprEvaluator(Info, Result).Visit(S: E); |
15034 | } |
15035 | |
15036 | bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) { |
15037 | QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); |
15038 | if (ElemTy->isRealFloatingType()) { |
15039 | Result.makeComplexFloat(); |
15040 | APFloat Zero = APFloat::getZero(Sem: Info.Ctx.getFloatTypeSemantics(T: ElemTy)); |
15041 | Result.FloatReal = Zero; |
15042 | Result.FloatImag = Zero; |
15043 | } else { |
15044 | Result.makeComplexInt(); |
15045 | APSInt Zero = Info.Ctx.MakeIntValue(Value: 0, Type: ElemTy); |
15046 | Result.IntReal = Zero; |
15047 | Result.IntImag = Zero; |
15048 | } |
15049 | return true; |
15050 | } |
15051 | |
15052 | bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) { |
15053 | const Expr* SubExpr = E->getSubExpr(); |
15054 | |
15055 | if (SubExpr->getType()->isRealFloatingType()) { |
15056 | Result.makeComplexFloat(); |
15057 | APFloat &Imag = Result.FloatImag; |
15058 | if (!EvaluateFloat(E: SubExpr, Result&: Imag, Info)) |
15059 | return false; |
15060 | |
15061 | Result.FloatReal = APFloat(Imag.getSemantics()); |
15062 | return true; |
15063 | } else { |
15064 | assert(SubExpr->getType()->isIntegerType() && |
15065 | "Unexpected imaginary literal." ); |
15066 | |
15067 | Result.makeComplexInt(); |
15068 | APSInt &Imag = Result.IntImag; |
15069 | if (!EvaluateInteger(E: SubExpr, Result&: Imag, Info)) |
15070 | return false; |
15071 | |
15072 | Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned()); |
15073 | return true; |
15074 | } |
15075 | } |
15076 | |
15077 | bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) { |
15078 | |
15079 | switch (E->getCastKind()) { |
15080 | case CK_BitCast: |
15081 | case CK_BaseToDerived: |
15082 | case CK_DerivedToBase: |
15083 | case CK_UncheckedDerivedToBase: |
15084 | case CK_Dynamic: |
15085 | case CK_ToUnion: |
15086 | case CK_ArrayToPointerDecay: |
15087 | case CK_FunctionToPointerDecay: |
15088 | case CK_NullToPointer: |
15089 | case CK_NullToMemberPointer: |
15090 | case CK_BaseToDerivedMemberPointer: |
15091 | case CK_DerivedToBaseMemberPointer: |
15092 | case CK_MemberPointerToBoolean: |
15093 | case CK_ReinterpretMemberPointer: |
15094 | case CK_ConstructorConversion: |
15095 | case CK_IntegralToPointer: |
15096 | case CK_PointerToIntegral: |
15097 | case CK_PointerToBoolean: |
15098 | case CK_ToVoid: |
15099 | case CK_VectorSplat: |
15100 | case CK_IntegralCast: |
15101 | case CK_BooleanToSignedIntegral: |
15102 | case CK_IntegralToBoolean: |
15103 | case CK_IntegralToFloating: |
15104 | case CK_FloatingToIntegral: |
15105 | case CK_FloatingToBoolean: |
15106 | case CK_FloatingCast: |
15107 | case CK_CPointerToObjCPointerCast: |
15108 | case CK_BlockPointerToObjCPointerCast: |
15109 | case CK_AnyPointerToBlockPointerCast: |
15110 | case CK_ObjCObjectLValueCast: |
15111 | case CK_FloatingComplexToReal: |
15112 | case CK_FloatingComplexToBoolean: |
15113 | case CK_IntegralComplexToReal: |
15114 | case CK_IntegralComplexToBoolean: |
15115 | case CK_ARCProduceObject: |
15116 | case CK_ARCConsumeObject: |
15117 | case CK_ARCReclaimReturnedObject: |
15118 | case CK_ARCExtendBlockObject: |
15119 | case CK_CopyAndAutoreleaseBlockObject: |
15120 | case CK_BuiltinFnToFnPtr: |
15121 | case CK_ZeroToOCLOpaqueType: |
15122 | case CK_NonAtomicToAtomic: |
15123 | case CK_AddressSpaceConversion: |
15124 | case CK_IntToOCLSampler: |
15125 | case CK_FloatingToFixedPoint: |
15126 | case CK_FixedPointToFloating: |
15127 | case CK_FixedPointCast: |
15128 | case CK_FixedPointToBoolean: |
15129 | case CK_FixedPointToIntegral: |
15130 | case CK_IntegralToFixedPoint: |
15131 | case CK_MatrixCast: |
15132 | case CK_HLSLVectorTruncation: |
15133 | llvm_unreachable("invalid cast kind for complex value" ); |
15134 | |
15135 | case CK_LValueToRValue: |
15136 | case CK_AtomicToNonAtomic: |
15137 | case CK_NoOp: |
15138 | case CK_LValueToRValueBitCast: |
15139 | case CK_HLSLArrayRValue: |
15140 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
15141 | |
15142 | case CK_Dependent: |
15143 | case CK_LValueBitCast: |
15144 | case CK_UserDefinedConversion: |
15145 | return Error(E); |
15146 | |
15147 | case CK_FloatingRealToComplex: { |
15148 | APFloat &Real = Result.FloatReal; |
15149 | if (!EvaluateFloat(E: E->getSubExpr(), Result&: Real, Info)) |
15150 | return false; |
15151 | |
15152 | Result.makeComplexFloat(); |
15153 | Result.FloatImag = APFloat(Real.getSemantics()); |
15154 | return true; |
15155 | } |
15156 | |
15157 | case CK_FloatingComplexCast: { |
15158 | if (!Visit(S: E->getSubExpr())) |
15159 | return false; |
15160 | |
15161 | QualType To = E->getType()->castAs<ComplexType>()->getElementType(); |
15162 | QualType From |
15163 | = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); |
15164 | |
15165 | return HandleFloatToFloatCast(Info, E, SrcType: From, DestType: To, Result&: Result.FloatReal) && |
15166 | HandleFloatToFloatCast(Info, E, SrcType: From, DestType: To, Result&: Result.FloatImag); |
15167 | } |
15168 | |
15169 | case CK_FloatingComplexToIntegralComplex: { |
15170 | if (!Visit(S: E->getSubExpr())) |
15171 | return false; |
15172 | |
15173 | QualType To = E->getType()->castAs<ComplexType>()->getElementType(); |
15174 | QualType From |
15175 | = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); |
15176 | Result.makeComplexInt(); |
15177 | return HandleFloatToIntCast(Info, E, SrcType: From, Value: Result.FloatReal, |
15178 | DestType: To, Result&: Result.IntReal) && |
15179 | HandleFloatToIntCast(Info, E, SrcType: From, Value: Result.FloatImag, |
15180 | DestType: To, Result&: Result.IntImag); |
15181 | } |
15182 | |
15183 | case CK_IntegralRealToComplex: { |
15184 | APSInt &Real = Result.IntReal; |
15185 | if (!EvaluateInteger(E: E->getSubExpr(), Result&: Real, Info)) |
15186 | return false; |
15187 | |
15188 | Result.makeComplexInt(); |
15189 | Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned()); |
15190 | return true; |
15191 | } |
15192 | |
15193 | case CK_IntegralComplexCast: { |
15194 | if (!Visit(S: E->getSubExpr())) |
15195 | return false; |
15196 | |
15197 | QualType To = E->getType()->castAs<ComplexType>()->getElementType(); |
15198 | QualType From |
15199 | = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); |
15200 | |
15201 | Result.IntReal = HandleIntToIntCast(Info, E, DestType: To, SrcType: From, Value: Result.IntReal); |
15202 | Result.IntImag = HandleIntToIntCast(Info, E, DestType: To, SrcType: From, Value: Result.IntImag); |
15203 | return true; |
15204 | } |
15205 | |
15206 | case CK_IntegralComplexToFloatingComplex: { |
15207 | if (!Visit(S: E->getSubExpr())) |
15208 | return false; |
15209 | |
15210 | const FPOptions FPO = E->getFPFeaturesInEffect( |
15211 | LO: Info.Ctx.getLangOpts()); |
15212 | QualType To = E->getType()->castAs<ComplexType>()->getElementType(); |
15213 | QualType From |
15214 | = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); |
15215 | Result.makeComplexFloat(); |
15216 | return HandleIntToFloatCast(Info, E, FPO, SrcType: From, Value: Result.IntReal, |
15217 | DestType: To, Result&: Result.FloatReal) && |
15218 | HandleIntToFloatCast(Info, E, FPO, SrcType: From, Value: Result.IntImag, |
15219 | DestType: To, Result&: Result.FloatImag); |
15220 | } |
15221 | } |
15222 | |
15223 | llvm_unreachable("unknown cast resulting in complex value" ); |
15224 | } |
15225 | |
15226 | void HandleComplexComplexMul(APFloat A, APFloat B, APFloat C, APFloat D, |
15227 | APFloat &ResR, APFloat &ResI) { |
15228 | // This is an implementation of complex multiplication according to the |
15229 | // constraints laid out in C11 Annex G. The implementation uses the |
15230 | // following naming scheme: |
15231 | // (a + ib) * (c + id) |
15232 | |
15233 | APFloat AC = A * C; |
15234 | APFloat BD = B * D; |
15235 | APFloat AD = A * D; |
15236 | APFloat BC = B * C; |
15237 | ResR = AC - BD; |
15238 | ResI = AD + BC; |
15239 | if (ResR.isNaN() && ResI.isNaN()) { |
15240 | bool Recalc = false; |
15241 | if (A.isInfinity() || B.isInfinity()) { |
15242 | A = APFloat::copySign(Value: APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), |
15243 | Sign: A); |
15244 | B = APFloat::copySign(Value: APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), |
15245 | Sign: B); |
15246 | if (C.isNaN()) |
15247 | C = APFloat::copySign(Value: APFloat(C.getSemantics()), Sign: C); |
15248 | if (D.isNaN()) |
15249 | D = APFloat::copySign(Value: APFloat(D.getSemantics()), Sign: D); |
15250 | Recalc = true; |
15251 | } |
15252 | if (C.isInfinity() || D.isInfinity()) { |
15253 | C = APFloat::copySign(Value: APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), |
15254 | Sign: C); |
15255 | D = APFloat::copySign(Value: APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), |
15256 | Sign: D); |
15257 | if (A.isNaN()) |
15258 | A = APFloat::copySign(Value: APFloat(A.getSemantics()), Sign: A); |
15259 | if (B.isNaN()) |
15260 | B = APFloat::copySign(Value: APFloat(B.getSemantics()), Sign: B); |
15261 | Recalc = true; |
15262 | } |
15263 | if (!Recalc && (AC.isInfinity() || BD.isInfinity() || AD.isInfinity() || |
15264 | BC.isInfinity())) { |
15265 | if (A.isNaN()) |
15266 | A = APFloat::copySign(Value: APFloat(A.getSemantics()), Sign: A); |
15267 | if (B.isNaN()) |
15268 | B = APFloat::copySign(Value: APFloat(B.getSemantics()), Sign: B); |
15269 | if (C.isNaN()) |
15270 | C = APFloat::copySign(Value: APFloat(C.getSemantics()), Sign: C); |
15271 | if (D.isNaN()) |
15272 | D = APFloat::copySign(Value: APFloat(D.getSemantics()), Sign: D); |
15273 | Recalc = true; |
15274 | } |
15275 | if (Recalc) { |
15276 | ResR = APFloat::getInf(Sem: A.getSemantics()) * (A * C - B * D); |
15277 | ResI = APFloat::getInf(Sem: A.getSemantics()) * (A * D + B * C); |
15278 | } |
15279 | } |
15280 | } |
15281 | |
15282 | void HandleComplexComplexDiv(APFloat A, APFloat B, APFloat C, APFloat D, |
15283 | APFloat &ResR, APFloat &ResI) { |
15284 | // This is an implementation of complex division according to the |
15285 | // constraints laid out in C11 Annex G. The implementation uses the |
15286 | // following naming scheme: |
15287 | // (a + ib) / (c + id) |
15288 | |
15289 | int DenomLogB = 0; |
15290 | APFloat MaxCD = maxnum(A: abs(X: C), B: abs(X: D)); |
15291 | if (MaxCD.isFinite()) { |
15292 | DenomLogB = ilogb(Arg: MaxCD); |
15293 | C = scalbn(X: C, Exp: -DenomLogB, RM: APFloat::rmNearestTiesToEven); |
15294 | D = scalbn(X: D, Exp: -DenomLogB, RM: APFloat::rmNearestTiesToEven); |
15295 | } |
15296 | APFloat Denom = C * C + D * D; |
15297 | ResR = |
15298 | scalbn(X: (A * C + B * D) / Denom, Exp: -DenomLogB, RM: APFloat::rmNearestTiesToEven); |
15299 | ResI = |
15300 | scalbn(X: (B * C - A * D) / Denom, Exp: -DenomLogB, RM: APFloat::rmNearestTiesToEven); |
15301 | if (ResR.isNaN() && ResI.isNaN()) { |
15302 | if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) { |
15303 | ResR = APFloat::getInf(Sem: ResR.getSemantics(), Negative: C.isNegative()) * A; |
15304 | ResI = APFloat::getInf(Sem: ResR.getSemantics(), Negative: C.isNegative()) * B; |
15305 | } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() && |
15306 | D.isFinite()) { |
15307 | A = APFloat::copySign(Value: APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), |
15308 | Sign: A); |
15309 | B = APFloat::copySign(Value: APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), |
15310 | Sign: B); |
15311 | ResR = APFloat::getInf(Sem: ResR.getSemantics()) * (A * C + B * D); |
15312 | ResI = APFloat::getInf(Sem: ResI.getSemantics()) * (B * C - A * D); |
15313 | } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) { |
15314 | C = APFloat::copySign(Value: APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), |
15315 | Sign: C); |
15316 | D = APFloat::copySign(Value: APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), |
15317 | Sign: D); |
15318 | ResR = APFloat::getZero(Sem: ResR.getSemantics()) * (A * C + B * D); |
15319 | ResI = APFloat::getZero(Sem: ResI.getSemantics()) * (B * C - A * D); |
15320 | } |
15321 | } |
15322 | } |
15323 | |
15324 | bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
15325 | if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) |
15326 | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
15327 | |
15328 | // Track whether the LHS or RHS is real at the type system level. When this is |
15329 | // the case we can simplify our evaluation strategy. |
15330 | bool LHSReal = false, RHSReal = false; |
15331 | |
15332 | bool LHSOK; |
15333 | if (E->getLHS()->getType()->isRealFloatingType()) { |
15334 | LHSReal = true; |
15335 | APFloat &Real = Result.FloatReal; |
15336 | LHSOK = EvaluateFloat(E: E->getLHS(), Result&: Real, Info); |
15337 | if (LHSOK) { |
15338 | Result.makeComplexFloat(); |
15339 | Result.FloatImag = APFloat(Real.getSemantics()); |
15340 | } |
15341 | } else { |
15342 | LHSOK = Visit(S: E->getLHS()); |
15343 | } |
15344 | if (!LHSOK && !Info.noteFailure()) |
15345 | return false; |
15346 | |
15347 | ComplexValue RHS; |
15348 | if (E->getRHS()->getType()->isRealFloatingType()) { |
15349 | RHSReal = true; |
15350 | APFloat &Real = RHS.FloatReal; |
15351 | if (!EvaluateFloat(E: E->getRHS(), Result&: Real, Info) || !LHSOK) |
15352 | return false; |
15353 | RHS.makeComplexFloat(); |
15354 | RHS.FloatImag = APFloat(Real.getSemantics()); |
15355 | } else if (!EvaluateComplex(E: E->getRHS(), Result&: RHS, Info) || !LHSOK) |
15356 | return false; |
15357 | |
15358 | assert(!(LHSReal && RHSReal) && |
15359 | "Cannot have both operands of a complex operation be real." ); |
15360 | switch (E->getOpcode()) { |
15361 | default: return Error(E); |
15362 | case BO_Add: |
15363 | if (Result.isComplexFloat()) { |
15364 | Result.getComplexFloatReal().add(RHS: RHS.getComplexFloatReal(), |
15365 | RM: APFloat::rmNearestTiesToEven); |
15366 | if (LHSReal) |
15367 | Result.getComplexFloatImag() = RHS.getComplexFloatImag(); |
15368 | else if (!RHSReal) |
15369 | Result.getComplexFloatImag().add(RHS: RHS.getComplexFloatImag(), |
15370 | RM: APFloat::rmNearestTiesToEven); |
15371 | } else { |
15372 | Result.getComplexIntReal() += RHS.getComplexIntReal(); |
15373 | Result.getComplexIntImag() += RHS.getComplexIntImag(); |
15374 | } |
15375 | break; |
15376 | case BO_Sub: |
15377 | if (Result.isComplexFloat()) { |
15378 | Result.getComplexFloatReal().subtract(RHS: RHS.getComplexFloatReal(), |
15379 | RM: APFloat::rmNearestTiesToEven); |
15380 | if (LHSReal) { |
15381 | Result.getComplexFloatImag() = RHS.getComplexFloatImag(); |
15382 | Result.getComplexFloatImag().changeSign(); |
15383 | } else if (!RHSReal) { |
15384 | Result.getComplexFloatImag().subtract(RHS: RHS.getComplexFloatImag(), |
15385 | RM: APFloat::rmNearestTiesToEven); |
15386 | } |
15387 | } else { |
15388 | Result.getComplexIntReal() -= RHS.getComplexIntReal(); |
15389 | Result.getComplexIntImag() -= RHS.getComplexIntImag(); |
15390 | } |
15391 | break; |
15392 | case BO_Mul: |
15393 | if (Result.isComplexFloat()) { |
15394 | // This is an implementation of complex multiplication according to the |
15395 | // constraints laid out in C11 Annex G. The implementation uses the |
15396 | // following naming scheme: |
15397 | // (a + ib) * (c + id) |
15398 | ComplexValue LHS = Result; |
15399 | APFloat &A = LHS.getComplexFloatReal(); |
15400 | APFloat &B = LHS.getComplexFloatImag(); |
15401 | APFloat &C = RHS.getComplexFloatReal(); |
15402 | APFloat &D = RHS.getComplexFloatImag(); |
15403 | APFloat &ResR = Result.getComplexFloatReal(); |
15404 | APFloat &ResI = Result.getComplexFloatImag(); |
15405 | if (LHSReal) { |
15406 | assert(!RHSReal && "Cannot have two real operands for a complex op!" ); |
15407 | ResR = A; |
15408 | ResI = A; |
15409 | // ResR = A * C; |
15410 | // ResI = A * D; |
15411 | if (!handleFloatFloatBinOp(Info, E, LHS&: ResR, Opcode: BO_Mul, RHS: C) || |
15412 | !handleFloatFloatBinOp(Info, E, LHS&: ResI, Opcode: BO_Mul, RHS: D)) |
15413 | return false; |
15414 | } else if (RHSReal) { |
15415 | // ResR = C * A; |
15416 | // ResI = C * B; |
15417 | ResR = C; |
15418 | ResI = C; |
15419 | if (!handleFloatFloatBinOp(Info, E, LHS&: ResR, Opcode: BO_Mul, RHS: A) || |
15420 | !handleFloatFloatBinOp(Info, E, LHS&: ResI, Opcode: BO_Mul, RHS: B)) |
15421 | return false; |
15422 | } else { |
15423 | HandleComplexComplexMul(A, B, C, D, ResR, ResI); |
15424 | } |
15425 | } else { |
15426 | ComplexValue LHS = Result; |
15427 | Result.getComplexIntReal() = |
15428 | (LHS.getComplexIntReal() * RHS.getComplexIntReal() - |
15429 | LHS.getComplexIntImag() * RHS.getComplexIntImag()); |
15430 | Result.getComplexIntImag() = |
15431 | (LHS.getComplexIntReal() * RHS.getComplexIntImag() + |
15432 | LHS.getComplexIntImag() * RHS.getComplexIntReal()); |
15433 | } |
15434 | break; |
15435 | case BO_Div: |
15436 | if (Result.isComplexFloat()) { |
15437 | // This is an implementation of complex division according to the |
15438 | // constraints laid out in C11 Annex G. The implementation uses the |
15439 | // following naming scheme: |
15440 | // (a + ib) / (c + id) |
15441 | ComplexValue LHS = Result; |
15442 | APFloat &A = LHS.getComplexFloatReal(); |
15443 | APFloat &B = LHS.getComplexFloatImag(); |
15444 | APFloat &C = RHS.getComplexFloatReal(); |
15445 | APFloat &D = RHS.getComplexFloatImag(); |
15446 | APFloat &ResR = Result.getComplexFloatReal(); |
15447 | APFloat &ResI = Result.getComplexFloatImag(); |
15448 | if (RHSReal) { |
15449 | ResR = A; |
15450 | ResI = B; |
15451 | // ResR = A / C; |
15452 | // ResI = B / C; |
15453 | if (!handleFloatFloatBinOp(Info, E, LHS&: ResR, Opcode: BO_Div, RHS: C) || |
15454 | !handleFloatFloatBinOp(Info, E, LHS&: ResI, Opcode: BO_Div, RHS: C)) |
15455 | return false; |
15456 | } else { |
15457 | if (LHSReal) { |
15458 | // No real optimizations we can do here, stub out with zero. |
15459 | B = APFloat::getZero(Sem: A.getSemantics()); |
15460 | } |
15461 | HandleComplexComplexDiv(A, B, C, D, ResR, ResI); |
15462 | } |
15463 | } else { |
15464 | if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0) |
15465 | return Error(E, D: diag::note_expr_divide_by_zero); |
15466 | |
15467 | ComplexValue LHS = Result; |
15468 | APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() + |
15469 | RHS.getComplexIntImag() * RHS.getComplexIntImag(); |
15470 | Result.getComplexIntReal() = |
15471 | (LHS.getComplexIntReal() * RHS.getComplexIntReal() + |
15472 | LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den; |
15473 | Result.getComplexIntImag() = |
15474 | (LHS.getComplexIntImag() * RHS.getComplexIntReal() - |
15475 | LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den; |
15476 | } |
15477 | break; |
15478 | } |
15479 | |
15480 | return true; |
15481 | } |
15482 | |
15483 | bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
15484 | // Get the operand value into 'Result'. |
15485 | if (!Visit(S: E->getSubExpr())) |
15486 | return false; |
15487 | |
15488 | switch (E->getOpcode()) { |
15489 | default: |
15490 | return Error(E); |
15491 | case UO_Extension: |
15492 | return true; |
15493 | case UO_Plus: |
15494 | // The result is always just the subexpr. |
15495 | return true; |
15496 | case UO_Minus: |
15497 | if (Result.isComplexFloat()) { |
15498 | Result.getComplexFloatReal().changeSign(); |
15499 | Result.getComplexFloatImag().changeSign(); |
15500 | } |
15501 | else { |
15502 | Result.getComplexIntReal() = -Result.getComplexIntReal(); |
15503 | Result.getComplexIntImag() = -Result.getComplexIntImag(); |
15504 | } |
15505 | return true; |
15506 | case UO_Not: |
15507 | if (Result.isComplexFloat()) |
15508 | Result.getComplexFloatImag().changeSign(); |
15509 | else |
15510 | Result.getComplexIntImag() = -Result.getComplexIntImag(); |
15511 | return true; |
15512 | } |
15513 | } |
15514 | |
15515 | bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) { |
15516 | if (E->getNumInits() == 2) { |
15517 | if (E->getType()->isComplexType()) { |
15518 | Result.makeComplexFloat(); |
15519 | if (!EvaluateFloat(E: E->getInit(Init: 0), Result&: Result.FloatReal, Info)) |
15520 | return false; |
15521 | if (!EvaluateFloat(E: E->getInit(Init: 1), Result&: Result.FloatImag, Info)) |
15522 | return false; |
15523 | } else { |
15524 | Result.makeComplexInt(); |
15525 | if (!EvaluateInteger(E: E->getInit(Init: 0), Result&: Result.IntReal, Info)) |
15526 | return false; |
15527 | if (!EvaluateInteger(E: E->getInit(Init: 1), Result&: Result.IntImag, Info)) |
15528 | return false; |
15529 | } |
15530 | return true; |
15531 | } |
15532 | return ExprEvaluatorBaseTy::VisitInitListExpr(E); |
15533 | } |
15534 | |
15535 | bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) { |
15536 | if (!IsConstantEvaluatedBuiltinCall(E)) |
15537 | return ExprEvaluatorBaseTy::VisitCallExpr(E); |
15538 | |
15539 | switch (E->getBuiltinCallee()) { |
15540 | case Builtin::BI__builtin_complex: |
15541 | Result.makeComplexFloat(); |
15542 | if (!EvaluateFloat(E: E->getArg(Arg: 0), Result&: Result.FloatReal, Info)) |
15543 | return false; |
15544 | if (!EvaluateFloat(E: E->getArg(Arg: 1), Result&: Result.FloatImag, Info)) |
15545 | return false; |
15546 | return true; |
15547 | |
15548 | default: |
15549 | return false; |
15550 | } |
15551 | } |
15552 | |
15553 | //===----------------------------------------------------------------------===// |
15554 | // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic |
15555 | // implicit conversion. |
15556 | //===----------------------------------------------------------------------===// |
15557 | |
15558 | namespace { |
15559 | class AtomicExprEvaluator : |
15560 | public ExprEvaluatorBase<AtomicExprEvaluator> { |
15561 | const LValue *This; |
15562 | APValue &Result; |
15563 | public: |
15564 | AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result) |
15565 | : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} |
15566 | |
15567 | bool Success(const APValue &V, const Expr *E) { |
15568 | Result = V; |
15569 | return true; |
15570 | } |
15571 | |
15572 | bool ZeroInitialization(const Expr *E) { |
15573 | ImplicitValueInitExpr VIE( |
15574 | E->getType()->castAs<AtomicType>()->getValueType()); |
15575 | // For atomic-qualified class (and array) types in C++, initialize the |
15576 | // _Atomic-wrapped subobject directly, in-place. |
15577 | return This ? EvaluateInPlace(Result, Info, This: *This, E: &VIE) |
15578 | : Evaluate(Result, Info, E: &VIE); |
15579 | } |
15580 | |
15581 | bool VisitCastExpr(const CastExpr *E) { |
15582 | switch (E->getCastKind()) { |
15583 | default: |
15584 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
15585 | case CK_NullToPointer: |
15586 | VisitIgnoredValue(E: E->getSubExpr()); |
15587 | return ZeroInitialization(E); |
15588 | case CK_NonAtomicToAtomic: |
15589 | return This ? EvaluateInPlace(Result, Info, This: *This, E: E->getSubExpr()) |
15590 | : Evaluate(Result, Info, E: E->getSubExpr()); |
15591 | } |
15592 | } |
15593 | }; |
15594 | } // end anonymous namespace |
15595 | |
15596 | static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, |
15597 | EvalInfo &Info) { |
15598 | assert(!E->isValueDependent()); |
15599 | assert(E->isPRValue() && E->getType()->isAtomicType()); |
15600 | return AtomicExprEvaluator(Info, This, Result).Visit(S: E); |
15601 | } |
15602 | |
15603 | //===----------------------------------------------------------------------===// |
15604 | // Void expression evaluation, primarily for a cast to void on the LHS of a |
15605 | // comma operator |
15606 | //===----------------------------------------------------------------------===// |
15607 | |
15608 | namespace { |
15609 | class VoidExprEvaluator |
15610 | : public ExprEvaluatorBase<VoidExprEvaluator> { |
15611 | public: |
15612 | VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {} |
15613 | |
15614 | bool Success(const APValue &V, const Expr *e) { return true; } |
15615 | |
15616 | bool ZeroInitialization(const Expr *E) { return true; } |
15617 | |
15618 | bool VisitCastExpr(const CastExpr *E) { |
15619 | switch (E->getCastKind()) { |
15620 | default: |
15621 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
15622 | case CK_ToVoid: |
15623 | VisitIgnoredValue(E: E->getSubExpr()); |
15624 | return true; |
15625 | } |
15626 | } |
15627 | |
15628 | bool VisitCallExpr(const CallExpr *E) { |
15629 | if (!IsConstantEvaluatedBuiltinCall(E)) |
15630 | return ExprEvaluatorBaseTy::VisitCallExpr(E); |
15631 | |
15632 | switch (E->getBuiltinCallee()) { |
15633 | case Builtin::BI__assume: |
15634 | case Builtin::BI__builtin_assume: |
15635 | // The argument is not evaluated! |
15636 | return true; |
15637 | |
15638 | case Builtin::BI__builtin_operator_delete: |
15639 | return HandleOperatorDeleteCall(Info, E); |
15640 | |
15641 | default: |
15642 | return false; |
15643 | } |
15644 | } |
15645 | |
15646 | bool VisitCXXDeleteExpr(const CXXDeleteExpr *E); |
15647 | }; |
15648 | } // end anonymous namespace |
15649 | |
15650 | bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { |
15651 | // We cannot speculatively evaluate a delete expression. |
15652 | if (Info.SpeculativeEvaluationDepth) |
15653 | return false; |
15654 | |
15655 | FunctionDecl *OperatorDelete = E->getOperatorDelete(); |
15656 | if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) { |
15657 | Info.FFDiag(E, DiagId: diag::note_constexpr_new_non_replaceable) |
15658 | << isa<CXXMethodDecl>(Val: OperatorDelete) << OperatorDelete; |
15659 | return false; |
15660 | } |
15661 | |
15662 | const Expr *Arg = E->getArgument(); |
15663 | |
15664 | LValue Pointer; |
15665 | if (!EvaluatePointer(E: Arg, Result&: Pointer, Info)) |
15666 | return false; |
15667 | if (Pointer.Designator.Invalid) |
15668 | return false; |
15669 | |
15670 | // Deleting a null pointer has no effect. |
15671 | if (Pointer.isNullPointer()) { |
15672 | // This is the only case where we need to produce an extension warning: |
15673 | // the only other way we can succeed is if we find a dynamic allocation, |
15674 | // and we will have warned when we allocated it in that case. |
15675 | if (!Info.getLangOpts().CPlusPlus20) |
15676 | Info.CCEDiag(E, DiagId: diag::note_constexpr_new); |
15677 | return true; |
15678 | } |
15679 | |
15680 | std::optional<DynAlloc *> Alloc = CheckDeleteKind( |
15681 | Info, E, Pointer, DeallocKind: E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New); |
15682 | if (!Alloc) |
15683 | return false; |
15684 | QualType AllocType = Pointer.Base.getDynamicAllocType(); |
15685 | |
15686 | // For the non-array case, the designator must be empty if the static type |
15687 | // does not have a virtual destructor. |
15688 | if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 && |
15689 | !hasVirtualDestructor(T: Arg->getType()->getPointeeType())) { |
15690 | Info.FFDiag(E, DiagId: diag::note_constexpr_delete_base_nonvirt_dtor) |
15691 | << Arg->getType()->getPointeeType() << AllocType; |
15692 | return false; |
15693 | } |
15694 | |
15695 | // For a class type with a virtual destructor, the selected operator delete |
15696 | // is the one looked up when building the destructor. |
15697 | if (!E->isArrayForm() && !E->isGlobalDelete()) { |
15698 | const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(T: AllocType); |
15699 | if (VirtualDelete && |
15700 | !VirtualDelete->isReplaceableGlobalAllocationFunction()) { |
15701 | Info.FFDiag(E, DiagId: diag::note_constexpr_new_non_replaceable) |
15702 | << isa<CXXMethodDecl>(Val: VirtualDelete) << VirtualDelete; |
15703 | return false; |
15704 | } |
15705 | } |
15706 | |
15707 | if (!HandleDestruction(Info, Loc: E->getExprLoc(), LVBase: Pointer.getLValueBase(), |
15708 | Value&: (*Alloc)->Value, T: AllocType)) |
15709 | return false; |
15710 | |
15711 | if (!Info.HeapAllocs.erase(x: Pointer.Base.dyn_cast<DynamicAllocLValue>())) { |
15712 | // The element was already erased. This means the destructor call also |
15713 | // deleted the object. |
15714 | // FIXME: This probably results in undefined behavior before we get this |
15715 | // far, and should be diagnosed elsewhere first. |
15716 | Info.FFDiag(E, DiagId: diag::note_constexpr_double_delete); |
15717 | return false; |
15718 | } |
15719 | |
15720 | return true; |
15721 | } |
15722 | |
15723 | static bool EvaluateVoid(const Expr *E, EvalInfo &Info) { |
15724 | assert(!E->isValueDependent()); |
15725 | assert(E->isPRValue() && E->getType()->isVoidType()); |
15726 | return VoidExprEvaluator(Info).Visit(S: E); |
15727 | } |
15728 | |
15729 | //===----------------------------------------------------------------------===// |
15730 | // Top level Expr::EvaluateAsRValue method. |
15731 | //===----------------------------------------------------------------------===// |
15732 | |
15733 | static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) { |
15734 | assert(!E->isValueDependent()); |
15735 | // In C, function designators are not lvalues, but we evaluate them as if they |
15736 | // are. |
15737 | QualType T = E->getType(); |
15738 | if (E->isGLValue() || T->isFunctionType()) { |
15739 | LValue LV; |
15740 | if (!EvaluateLValue(E, Result&: LV, Info)) |
15741 | return false; |
15742 | LV.moveInto(V&: Result); |
15743 | } else if (T->isVectorType()) { |
15744 | if (!EvaluateVector(E, Result, Info)) |
15745 | return false; |
15746 | } else if (T->isIntegralOrEnumerationType()) { |
15747 | if (!IntExprEvaluator(Info, Result).Visit(S: E)) |
15748 | return false; |
15749 | } else if (T->hasPointerRepresentation()) { |
15750 | LValue LV; |
15751 | if (!EvaluatePointer(E, Result&: LV, Info)) |
15752 | return false; |
15753 | LV.moveInto(V&: Result); |
15754 | } else if (T->isRealFloatingType()) { |
15755 | llvm::APFloat F(0.0); |
15756 | if (!EvaluateFloat(E, Result&: F, Info)) |
15757 | return false; |
15758 | Result = APValue(F); |
15759 | } else if (T->isAnyComplexType()) { |
15760 | ComplexValue C; |
15761 | if (!EvaluateComplex(E, Result&: C, Info)) |
15762 | return false; |
15763 | C.moveInto(v&: Result); |
15764 | } else if (T->isFixedPointType()) { |
15765 | if (!FixedPointExprEvaluator(Info, Result).Visit(S: E)) return false; |
15766 | } else if (T->isMemberPointerType()) { |
15767 | MemberPtr P; |
15768 | if (!EvaluateMemberPointer(E, Result&: P, Info)) |
15769 | return false; |
15770 | P.moveInto(V&: Result); |
15771 | return true; |
15772 | } else if (T->isArrayType()) { |
15773 | LValue LV; |
15774 | APValue &Value = |
15775 | Info.CurrentCall->createTemporary(Key: E, T, Scope: ScopeKind::FullExpression, LV); |
15776 | if (!EvaluateArray(E, This: LV, Result&: Value, Info)) |
15777 | return false; |
15778 | Result = Value; |
15779 | } else if (T->isRecordType()) { |
15780 | LValue LV; |
15781 | APValue &Value = |
15782 | Info.CurrentCall->createTemporary(Key: E, T, Scope: ScopeKind::FullExpression, LV); |
15783 | if (!EvaluateRecord(E, This: LV, Result&: Value, Info)) |
15784 | return false; |
15785 | Result = Value; |
15786 | } else if (T->isVoidType()) { |
15787 | if (!Info.getLangOpts().CPlusPlus11) |
15788 | Info.CCEDiag(E, DiagId: diag::note_constexpr_nonliteral) |
15789 | << E->getType(); |
15790 | if (!EvaluateVoid(E, Info)) |
15791 | return false; |
15792 | } else if (T->isAtomicType()) { |
15793 | QualType Unqual = T.getAtomicUnqualifiedType(); |
15794 | if (Unqual->isArrayType() || Unqual->isRecordType()) { |
15795 | LValue LV; |
15796 | APValue &Value = Info.CurrentCall->createTemporary( |
15797 | Key: E, T: Unqual, Scope: ScopeKind::FullExpression, LV); |
15798 | if (!EvaluateAtomic(E, This: &LV, Result&: Value, Info)) |
15799 | return false; |
15800 | Result = Value; |
15801 | } else { |
15802 | if (!EvaluateAtomic(E, This: nullptr, Result, Info)) |
15803 | return false; |
15804 | } |
15805 | } else if (Info.getLangOpts().CPlusPlus11) { |
15806 | Info.FFDiag(E, DiagId: diag::note_constexpr_nonliteral) << E->getType(); |
15807 | return false; |
15808 | } else { |
15809 | Info.FFDiag(E, DiagId: diag::note_invalid_subexpr_in_const_expr); |
15810 | return false; |
15811 | } |
15812 | |
15813 | return true; |
15814 | } |
15815 | |
15816 | /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some |
15817 | /// cases, the in-place evaluation is essential, since later initializers for |
15818 | /// an object can indirectly refer to subobjects which were initialized earlier. |
15819 | static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This, |
15820 | const Expr *E, bool AllowNonLiteralTypes) { |
15821 | assert(!E->isValueDependent()); |
15822 | |
15823 | if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, This: &This)) |
15824 | return false; |
15825 | |
15826 | if (E->isPRValue()) { |
15827 | // Evaluate arrays and record types in-place, so that later initializers can |
15828 | // refer to earlier-initialized members of the object. |
15829 | QualType T = E->getType(); |
15830 | if (T->isArrayType()) |
15831 | return EvaluateArray(E, This, Result, Info); |
15832 | else if (T->isRecordType()) |
15833 | return EvaluateRecord(E, This, Result, Info); |
15834 | else if (T->isAtomicType()) { |
15835 | QualType Unqual = T.getAtomicUnqualifiedType(); |
15836 | if (Unqual->isArrayType() || Unqual->isRecordType()) |
15837 | return EvaluateAtomic(E, This: &This, Result, Info); |
15838 | } |
15839 | } |
15840 | |
15841 | // For any other type, in-place evaluation is unimportant. |
15842 | return Evaluate(Result, Info, E); |
15843 | } |
15844 | |
15845 | /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit |
15846 | /// lvalue-to-rvalue cast if it is an lvalue. |
15847 | static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) { |
15848 | assert(!E->isValueDependent()); |
15849 | |
15850 | if (E->getType().isNull()) |
15851 | return false; |
15852 | |
15853 | if (!CheckLiteralType(Info, E)) |
15854 | return false; |
15855 | |
15856 | if (Info.EnableNewConstInterp) { |
15857 | if (!Info.Ctx.getInterpContext().evaluateAsRValue(Parent&: Info, E, Result)) |
15858 | return false; |
15859 | return CheckConstantExpression(Info, DiagLoc: E->getExprLoc(), Type: E->getType(), Value: Result, |
15860 | Kind: ConstantExprKind::Normal); |
15861 | } |
15862 | |
15863 | if (!::Evaluate(Result, Info, E)) |
15864 | return false; |
15865 | |
15866 | // Implicit lvalue-to-rvalue cast. |
15867 | if (E->isGLValue()) { |
15868 | LValue LV; |
15869 | LV.setFrom(Ctx&: Info.Ctx, V: Result); |
15870 | if (!handleLValueToRValueConversion(Info, Conv: E, Type: E->getType(), LVal: LV, RVal&: Result)) |
15871 | return false; |
15872 | } |
15873 | |
15874 | // Check this core constant expression is a constant expression. |
15875 | return CheckConstantExpression(Info, DiagLoc: E->getExprLoc(), Type: E->getType(), Value: Result, |
15876 | Kind: ConstantExprKind::Normal) && |
15877 | CheckMemoryLeaks(Info); |
15878 | } |
15879 | |
15880 | static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result, |
15881 | const ASTContext &Ctx, bool &IsConst) { |
15882 | // Fast-path evaluations of integer literals, since we sometimes see files |
15883 | // containing vast quantities of these. |
15884 | if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Val: Exp)) { |
15885 | Result.Val = APValue(APSInt(L->getValue(), |
15886 | L->getType()->isUnsignedIntegerType())); |
15887 | IsConst = true; |
15888 | return true; |
15889 | } |
15890 | |
15891 | if (const auto *L = dyn_cast<CXXBoolLiteralExpr>(Val: Exp)) { |
15892 | Result.Val = APValue(APSInt(APInt(1, L->getValue()))); |
15893 | IsConst = true; |
15894 | return true; |
15895 | } |
15896 | |
15897 | if (const auto *CE = dyn_cast<ConstantExpr>(Val: Exp)) { |
15898 | if (CE->hasAPValueResult()) { |
15899 | APValue APV = CE->getAPValueResult(); |
15900 | if (!APV.isLValue()) { |
15901 | Result.Val = std::move(APV); |
15902 | IsConst = true; |
15903 | return true; |
15904 | } |
15905 | } |
15906 | |
15907 | // The SubExpr is usually just an IntegerLiteral. |
15908 | return FastEvaluateAsRValue(Exp: CE->getSubExpr(), Result, Ctx, IsConst); |
15909 | } |
15910 | |
15911 | // This case should be rare, but we need to check it before we check on |
15912 | // the type below. |
15913 | if (Exp->getType().isNull()) { |
15914 | IsConst = false; |
15915 | return true; |
15916 | } |
15917 | |
15918 | return false; |
15919 | } |
15920 | |
15921 | static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result, |
15922 | Expr::SideEffectsKind SEK) { |
15923 | return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) || |
15924 | (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior); |
15925 | } |
15926 | |
15927 | static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result, |
15928 | const ASTContext &Ctx, EvalInfo &Info) { |
15929 | assert(!E->isValueDependent()); |
15930 | bool IsConst; |
15931 | if (FastEvaluateAsRValue(Exp: E, Result, Ctx, IsConst)) |
15932 | return IsConst; |
15933 | |
15934 | return EvaluateAsRValue(Info, E, Result&: Result.Val); |
15935 | } |
15936 | |
15937 | static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult, |
15938 | const ASTContext &Ctx, |
15939 | Expr::SideEffectsKind AllowSideEffects, |
15940 | EvalInfo &Info) { |
15941 | assert(!E->isValueDependent()); |
15942 | if (!E->getType()->isIntegralOrEnumerationType()) |
15943 | return false; |
15944 | |
15945 | if (!::EvaluateAsRValue(E, Result&: ExprResult, Ctx, Info) || |
15946 | !ExprResult.Val.isInt() || |
15947 | hasUnacceptableSideEffect(Result&: ExprResult, SEK: AllowSideEffects)) |
15948 | return false; |
15949 | |
15950 | return true; |
15951 | } |
15952 | |
15953 | static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult, |
15954 | const ASTContext &Ctx, |
15955 | Expr::SideEffectsKind AllowSideEffects, |
15956 | EvalInfo &Info) { |
15957 | assert(!E->isValueDependent()); |
15958 | if (!E->getType()->isFixedPointType()) |
15959 | return false; |
15960 | |
15961 | if (!::EvaluateAsRValue(E, Result&: ExprResult, Ctx, Info)) |
15962 | return false; |
15963 | |
15964 | if (!ExprResult.Val.isFixedPoint() || |
15965 | hasUnacceptableSideEffect(Result&: ExprResult, SEK: AllowSideEffects)) |
15966 | return false; |
15967 | |
15968 | return true; |
15969 | } |
15970 | |
15971 | /// EvaluateAsRValue - Return true if this is a constant which we can fold using |
15972 | /// any crazy technique (that has nothing to do with language standards) that |
15973 | /// we want to. If this function returns true, it returns the folded constant |
15974 | /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion |
15975 | /// will be applied to the result. |
15976 | bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx, |
15977 | bool InConstantContext) const { |
15978 | assert(!isValueDependent() && |
15979 | "Expression evaluator can't be called on a dependent expression." ); |
15980 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsRValue" ); |
15981 | EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); |
15982 | Info.InConstantContext = InConstantContext; |
15983 | return ::EvaluateAsRValue(E: this, Result, Ctx, Info); |
15984 | } |
15985 | |
15986 | bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx, |
15987 | bool InConstantContext) const { |
15988 | assert(!isValueDependent() && |
15989 | "Expression evaluator can't be called on a dependent expression." ); |
15990 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsBooleanCondition" ); |
15991 | EvalResult Scratch; |
15992 | return EvaluateAsRValue(Result&: Scratch, Ctx, InConstantContext) && |
15993 | HandleConversionToBool(Val: Scratch.Val, Result); |
15994 | } |
15995 | |
15996 | bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, |
15997 | SideEffectsKind AllowSideEffects, |
15998 | bool InConstantContext) const { |
15999 | assert(!isValueDependent() && |
16000 | "Expression evaluator can't be called on a dependent expression." ); |
16001 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsInt" ); |
16002 | EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); |
16003 | Info.InConstantContext = InConstantContext; |
16004 | return ::EvaluateAsInt(E: this, ExprResult&: Result, Ctx, AllowSideEffects, Info); |
16005 | } |
16006 | |
16007 | bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx, |
16008 | SideEffectsKind AllowSideEffects, |
16009 | bool InConstantContext) const { |
16010 | assert(!isValueDependent() && |
16011 | "Expression evaluator can't be called on a dependent expression." ); |
16012 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFixedPoint" ); |
16013 | EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); |
16014 | Info.InConstantContext = InConstantContext; |
16015 | return ::EvaluateAsFixedPoint(E: this, ExprResult&: Result, Ctx, AllowSideEffects, Info); |
16016 | } |
16017 | |
16018 | bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx, |
16019 | SideEffectsKind AllowSideEffects, |
16020 | bool InConstantContext) const { |
16021 | assert(!isValueDependent() && |
16022 | "Expression evaluator can't be called on a dependent expression." ); |
16023 | |
16024 | if (!getType()->isRealFloatingType()) |
16025 | return false; |
16026 | |
16027 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFloat" ); |
16028 | EvalResult ExprResult; |
16029 | if (!EvaluateAsRValue(Result&: ExprResult, Ctx, InConstantContext) || |
16030 | !ExprResult.Val.isFloat() || |
16031 | hasUnacceptableSideEffect(Result&: ExprResult, SEK: AllowSideEffects)) |
16032 | return false; |
16033 | |
16034 | Result = ExprResult.Val.getFloat(); |
16035 | return true; |
16036 | } |
16037 | |
16038 | bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx, |
16039 | bool InConstantContext) const { |
16040 | assert(!isValueDependent() && |
16041 | "Expression evaluator can't be called on a dependent expression." ); |
16042 | |
16043 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsLValue" ); |
16044 | EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold); |
16045 | Info.InConstantContext = InConstantContext; |
16046 | LValue LV; |
16047 | CheckedTemporaries CheckedTemps; |
16048 | if (!EvaluateLValue(E: this, Result&: LV, Info) || !Info.discardCleanups() || |
16049 | Result.HasSideEffects || |
16050 | !CheckLValueConstantExpression(Info, Loc: getExprLoc(), |
16051 | Type: Ctx.getLValueReferenceType(T: getType()), LVal: LV, |
16052 | Kind: ConstantExprKind::Normal, CheckedTemps)) |
16053 | return false; |
16054 | |
16055 | LV.moveInto(V&: Result.Val); |
16056 | return true; |
16057 | } |
16058 | |
16059 | static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base, |
16060 | APValue DestroyedValue, QualType Type, |
16061 | SourceLocation Loc, Expr::EvalStatus &EStatus, |
16062 | bool IsConstantDestruction) { |
16063 | EvalInfo Info(Ctx, EStatus, |
16064 | IsConstantDestruction ? EvalInfo::EM_ConstantExpression |
16065 | : EvalInfo::EM_ConstantFold); |
16066 | Info.setEvaluatingDecl(Base, Value&: DestroyedValue, |
16067 | EDK: EvalInfo::EvaluatingDeclKind::Dtor); |
16068 | Info.InConstantContext = IsConstantDestruction; |
16069 | |
16070 | LValue LVal; |
16071 | LVal.set(B: Base); |
16072 | |
16073 | if (!HandleDestruction(Info, Loc, LVBase: Base, Value&: DestroyedValue, T: Type) || |
16074 | EStatus.HasSideEffects) |
16075 | return false; |
16076 | |
16077 | if (!Info.discardCleanups()) |
16078 | llvm_unreachable("Unhandled cleanup; missing full expression marker?" ); |
16079 | |
16080 | return true; |
16081 | } |
16082 | |
16083 | bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx, |
16084 | ConstantExprKind Kind) const { |
16085 | assert(!isValueDependent() && |
16086 | "Expression evaluator can't be called on a dependent expression." ); |
16087 | bool IsConst; |
16088 | if (FastEvaluateAsRValue(Exp: this, Result, Ctx, IsConst) && Result.Val.hasValue()) |
16089 | return true; |
16090 | |
16091 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsConstantExpr" ); |
16092 | EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression; |
16093 | EvalInfo Info(Ctx, Result, EM); |
16094 | Info.InConstantContext = true; |
16095 | |
16096 | if (Info.EnableNewConstInterp) { |
16097 | if (!Info.Ctx.getInterpContext().evaluate(Parent&: Info, E: this, Result&: Result.Val)) |
16098 | return false; |
16099 | return CheckConstantExpression(Info, DiagLoc: getExprLoc(), |
16100 | Type: getStorageType(Ctx, E: this), Value: Result.Val, Kind); |
16101 | } |
16102 | |
16103 | // The type of the object we're initializing is 'const T' for a class NTTP. |
16104 | QualType T = getType(); |
16105 | if (Kind == ConstantExprKind::ClassTemplateArgument) |
16106 | T.addConst(); |
16107 | |
16108 | // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to |
16109 | // represent the result of the evaluation. CheckConstantExpression ensures |
16110 | // this doesn't escape. |
16111 | MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true); |
16112 | APValue::LValueBase Base(&BaseMTE); |
16113 | Info.setEvaluatingDecl(Base, Value&: Result.Val); |
16114 | |
16115 | if (Info.EnableNewConstInterp) { |
16116 | if (!Info.Ctx.getInterpContext().evaluateAsRValue(Parent&: Info, E: this, Result&: Result.Val)) |
16117 | return false; |
16118 | } else { |
16119 | LValue LVal; |
16120 | LVal.set(B: Base); |
16121 | // C++23 [intro.execution]/p5 |
16122 | // A full-expression is [...] a constant-expression |
16123 | // So we need to make sure temporary objects are destroyed after having |
16124 | // evaluating the expression (per C++23 [class.temporary]/p4). |
16125 | FullExpressionRAII Scope(Info); |
16126 | if (!::EvaluateInPlace(Result&: Result.Val, Info, This: LVal, E: this) || |
16127 | Result.HasSideEffects || !Scope.destroy()) |
16128 | return false; |
16129 | |
16130 | if (!Info.discardCleanups()) |
16131 | llvm_unreachable("Unhandled cleanup; missing full expression marker?" ); |
16132 | } |
16133 | |
16134 | if (!CheckConstantExpression(Info, DiagLoc: getExprLoc(), Type: getStorageType(Ctx, E: this), |
16135 | Value: Result.Val, Kind)) |
16136 | return false; |
16137 | if (!CheckMemoryLeaks(Info)) |
16138 | return false; |
16139 | |
16140 | // If this is a class template argument, it's required to have constant |
16141 | // destruction too. |
16142 | if (Kind == ConstantExprKind::ClassTemplateArgument && |
16143 | (!EvaluateDestruction(Ctx, Base, DestroyedValue: Result.Val, Type: T, Loc: getBeginLoc(), EStatus&: Result, |
16144 | IsConstantDestruction: true) || |
16145 | Result.HasSideEffects)) { |
16146 | // FIXME: Prefix a note to indicate that the problem is lack of constant |
16147 | // destruction. |
16148 | return false; |
16149 | } |
16150 | |
16151 | return true; |
16152 | } |
16153 | |
16154 | bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx, |
16155 | const VarDecl *VD, |
16156 | SmallVectorImpl<PartialDiagnosticAt> &Notes, |
16157 | bool IsConstantInitialization) const { |
16158 | assert(!isValueDependent() && |
16159 | "Expression evaluator can't be called on a dependent expression." ); |
16160 | |
16161 | llvm::TimeTraceScope TimeScope("EvaluateAsInitializer" , [&] { |
16162 | std::string Name; |
16163 | llvm::raw_string_ostream OS(Name); |
16164 | VD->printQualifiedName(OS); |
16165 | return Name; |
16166 | }); |
16167 | |
16168 | Expr::EvalStatus EStatus; |
16169 | EStatus.Diag = &Notes; |
16170 | |
16171 | EvalInfo Info(Ctx, EStatus, |
16172 | (IsConstantInitialization && |
16173 | (Ctx.getLangOpts().CPlusPlus || Ctx.getLangOpts().C23)) |
16174 | ? EvalInfo::EM_ConstantExpression |
16175 | : EvalInfo::EM_ConstantFold); |
16176 | Info.setEvaluatingDecl(Base: VD, Value); |
16177 | Info.InConstantContext = IsConstantInitialization; |
16178 | |
16179 | SourceLocation DeclLoc = VD->getLocation(); |
16180 | QualType DeclTy = VD->getType(); |
16181 | |
16182 | if (Info.EnableNewConstInterp) { |
16183 | auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext(); |
16184 | if (!InterpCtx.evaluateAsInitializer(Parent&: Info, VD, Result&: Value)) |
16185 | return false; |
16186 | |
16187 | return CheckConstantExpression(Info, DiagLoc: DeclLoc, Type: DeclTy, Value, |
16188 | Kind: ConstantExprKind::Normal); |
16189 | } else { |
16190 | LValue LVal; |
16191 | LVal.set(B: VD); |
16192 | |
16193 | { |
16194 | // C++23 [intro.execution]/p5 |
16195 | // A full-expression is ... an init-declarator ([dcl.decl]) or a |
16196 | // mem-initializer. |
16197 | // So we need to make sure temporary objects are destroyed after having |
16198 | // evaluated the expression (per C++23 [class.temporary]/p4). |
16199 | // |
16200 | // FIXME: Otherwise this may break test/Modules/pr68702.cpp because the |
16201 | // serialization code calls ParmVarDecl::getDefaultArg() which strips the |
16202 | // outermost FullExpr, such as ExprWithCleanups. |
16203 | FullExpressionRAII Scope(Info); |
16204 | if (!EvaluateInPlace(Result&: Value, Info, This: LVal, E: this, |
16205 | /*AllowNonLiteralTypes=*/true) || |
16206 | EStatus.HasSideEffects) |
16207 | return false; |
16208 | } |
16209 | |
16210 | // At this point, any lifetime-extended temporaries are completely |
16211 | // initialized. |
16212 | Info.performLifetimeExtension(); |
16213 | |
16214 | if (!Info.discardCleanups()) |
16215 | llvm_unreachable("Unhandled cleanup; missing full expression marker?" ); |
16216 | } |
16217 | |
16218 | return CheckConstantExpression(Info, DiagLoc: DeclLoc, Type: DeclTy, Value, |
16219 | Kind: ConstantExprKind::Normal) && |
16220 | CheckMemoryLeaks(Info); |
16221 | } |
16222 | |
16223 | bool VarDecl::evaluateDestruction( |
16224 | SmallVectorImpl<PartialDiagnosticAt> &Notes) const { |
16225 | Expr::EvalStatus EStatus; |
16226 | EStatus.Diag = &Notes; |
16227 | |
16228 | // Only treat the destruction as constant destruction if we formally have |
16229 | // constant initialization (or are usable in a constant expression). |
16230 | bool IsConstantDestruction = hasConstantInitialization(); |
16231 | |
16232 | // Make a copy of the value for the destructor to mutate, if we know it. |
16233 | // Otherwise, treat the value as default-initialized; if the destructor works |
16234 | // anyway, then the destruction is constant (and must be essentially empty). |
16235 | APValue DestroyedValue; |
16236 | if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent()) |
16237 | DestroyedValue = *getEvaluatedValue(); |
16238 | else if (!handleDefaultInitValue(T: getType(), Result&: DestroyedValue)) |
16239 | return false; |
16240 | |
16241 | if (!EvaluateDestruction(Ctx: getASTContext(), Base: this, DestroyedValue: std::move(DestroyedValue), |
16242 | Type: getType(), Loc: getLocation(), EStatus, |
16243 | IsConstantDestruction) || |
16244 | EStatus.HasSideEffects) |
16245 | return false; |
16246 | |
16247 | ensureEvaluatedStmt()->HasConstantDestruction = true; |
16248 | return true; |
16249 | } |
16250 | |
16251 | /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be |
16252 | /// constant folded, but discard the result. |
16253 | bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const { |
16254 | assert(!isValueDependent() && |
16255 | "Expression evaluator can't be called on a dependent expression." ); |
16256 | |
16257 | EvalResult Result; |
16258 | return EvaluateAsRValue(Result, Ctx, /* in constant context */ InConstantContext: true) && |
16259 | !hasUnacceptableSideEffect(Result, SEK); |
16260 | } |
16261 | |
16262 | APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx, |
16263 | SmallVectorImpl<PartialDiagnosticAt> *Diag) const { |
16264 | assert(!isValueDependent() && |
16265 | "Expression evaluator can't be called on a dependent expression." ); |
16266 | |
16267 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstInt" ); |
16268 | EvalResult EVResult; |
16269 | EVResult.Diag = Diag; |
16270 | EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); |
16271 | Info.InConstantContext = true; |
16272 | |
16273 | bool Result = ::EvaluateAsRValue(E: this, Result&: EVResult, Ctx, Info); |
16274 | (void)Result; |
16275 | assert(Result && "Could not evaluate expression" ); |
16276 | assert(EVResult.Val.isInt() && "Expression did not evaluate to integer" ); |
16277 | |
16278 | return EVResult.Val.getInt(); |
16279 | } |
16280 | |
16281 | APSInt Expr::EvaluateKnownConstIntCheckOverflow( |
16282 | const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const { |
16283 | assert(!isValueDependent() && |
16284 | "Expression evaluator can't be called on a dependent expression." ); |
16285 | |
16286 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstIntCheckOverflow" ); |
16287 | EvalResult EVResult; |
16288 | EVResult.Diag = Diag; |
16289 | EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); |
16290 | Info.InConstantContext = true; |
16291 | Info.CheckingForUndefinedBehavior = true; |
16292 | |
16293 | bool Result = ::EvaluateAsRValue(Info, E: this, Result&: EVResult.Val); |
16294 | (void)Result; |
16295 | assert(Result && "Could not evaluate expression" ); |
16296 | assert(EVResult.Val.isInt() && "Expression did not evaluate to integer" ); |
16297 | |
16298 | return EVResult.Val.getInt(); |
16299 | } |
16300 | |
16301 | void Expr::EvaluateForOverflow(const ASTContext &Ctx) const { |
16302 | assert(!isValueDependent() && |
16303 | "Expression evaluator can't be called on a dependent expression." ); |
16304 | |
16305 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateForOverflow" ); |
16306 | bool IsConst; |
16307 | EvalResult EVResult; |
16308 | if (!FastEvaluateAsRValue(Exp: this, Result&: EVResult, Ctx, IsConst)) { |
16309 | EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); |
16310 | Info.CheckingForUndefinedBehavior = true; |
16311 | (void)::EvaluateAsRValue(Info, E: this, Result&: EVResult.Val); |
16312 | } |
16313 | } |
16314 | |
16315 | bool Expr::EvalResult::isGlobalLValue() const { |
16316 | assert(Val.isLValue()); |
16317 | return IsGlobalLValue(B: Val.getLValueBase()); |
16318 | } |
16319 | |
16320 | /// isIntegerConstantExpr - this recursive routine will test if an expression is |
16321 | /// an integer constant expression. |
16322 | |
16323 | /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, |
16324 | /// comma, etc |
16325 | |
16326 | // CheckICE - This function does the fundamental ICE checking: the returned |
16327 | // ICEDiag contains an ICEKind indicating whether the expression is an ICE, |
16328 | // and a (possibly null) SourceLocation indicating the location of the problem. |
16329 | // |
16330 | // Note that to reduce code duplication, this helper does no evaluation |
16331 | // itself; the caller checks whether the expression is evaluatable, and |
16332 | // in the rare cases where CheckICE actually cares about the evaluated |
16333 | // value, it calls into Evaluate. |
16334 | |
16335 | namespace { |
16336 | |
16337 | enum ICEKind { |
16338 | /// This expression is an ICE. |
16339 | IK_ICE, |
16340 | /// This expression is not an ICE, but if it isn't evaluated, it's |
16341 | /// a legal subexpression for an ICE. This return value is used to handle |
16342 | /// the comma operator in C99 mode, and non-constant subexpressions. |
16343 | IK_ICEIfUnevaluated, |
16344 | /// This expression is not an ICE, and is not a legal subexpression for one. |
16345 | IK_NotICE |
16346 | }; |
16347 | |
16348 | struct ICEDiag { |
16349 | ICEKind Kind; |
16350 | SourceLocation Loc; |
16351 | |
16352 | ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {} |
16353 | }; |
16354 | |
16355 | } |
16356 | |
16357 | static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); } |
16358 | |
16359 | static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; } |
16360 | |
16361 | static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) { |
16362 | Expr::EvalResult EVResult; |
16363 | Expr::EvalStatus Status; |
16364 | EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); |
16365 | |
16366 | Info.InConstantContext = true; |
16367 | if (!::EvaluateAsRValue(E, Result&: EVResult, Ctx, Info) || EVResult.HasSideEffects || |
16368 | !EVResult.Val.isInt()) |
16369 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16370 | |
16371 | return NoDiag(); |
16372 | } |
16373 | |
16374 | static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) { |
16375 | assert(!E->isValueDependent() && "Should not see value dependent exprs!" ); |
16376 | if (!E->getType()->isIntegralOrEnumerationType()) |
16377 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16378 | |
16379 | switch (E->getStmtClass()) { |
16380 | #define ABSTRACT_STMT(Node) |
16381 | #define STMT(Node, Base) case Expr::Node##Class: |
16382 | #define EXPR(Node, Base) |
16383 | #include "clang/AST/StmtNodes.inc" |
16384 | case Expr::PredefinedExprClass: |
16385 | case Expr::FloatingLiteralClass: |
16386 | case Expr::ImaginaryLiteralClass: |
16387 | case Expr::StringLiteralClass: |
16388 | case Expr::ArraySubscriptExprClass: |
16389 | case Expr::MatrixSubscriptExprClass: |
16390 | case Expr::ArraySectionExprClass: |
16391 | case Expr::OMPArrayShapingExprClass: |
16392 | case Expr::OMPIteratorExprClass: |
16393 | case Expr::MemberExprClass: |
16394 | case Expr::CompoundAssignOperatorClass: |
16395 | case Expr::CompoundLiteralExprClass: |
16396 | case Expr::ExtVectorElementExprClass: |
16397 | case Expr::DesignatedInitExprClass: |
16398 | case Expr::ArrayInitLoopExprClass: |
16399 | case Expr::ArrayInitIndexExprClass: |
16400 | case Expr::NoInitExprClass: |
16401 | case Expr::DesignatedInitUpdateExprClass: |
16402 | case Expr::ImplicitValueInitExprClass: |
16403 | case Expr::ParenListExprClass: |
16404 | case Expr::VAArgExprClass: |
16405 | case Expr::AddrLabelExprClass: |
16406 | case Expr::StmtExprClass: |
16407 | case Expr::CXXMemberCallExprClass: |
16408 | case Expr::CUDAKernelCallExprClass: |
16409 | case Expr::CXXAddrspaceCastExprClass: |
16410 | case Expr::CXXDynamicCastExprClass: |
16411 | case Expr::CXXTypeidExprClass: |
16412 | case Expr::CXXUuidofExprClass: |
16413 | case Expr::MSPropertyRefExprClass: |
16414 | case Expr::MSPropertySubscriptExprClass: |
16415 | case Expr::CXXNullPtrLiteralExprClass: |
16416 | case Expr::UserDefinedLiteralClass: |
16417 | case Expr::CXXThisExprClass: |
16418 | case Expr::CXXThrowExprClass: |
16419 | case Expr::CXXNewExprClass: |
16420 | case Expr::CXXDeleteExprClass: |
16421 | case Expr::CXXPseudoDestructorExprClass: |
16422 | case Expr::UnresolvedLookupExprClass: |
16423 | case Expr::TypoExprClass: |
16424 | case Expr::RecoveryExprClass: |
16425 | case Expr::DependentScopeDeclRefExprClass: |
16426 | case Expr::CXXConstructExprClass: |
16427 | case Expr::CXXInheritedCtorInitExprClass: |
16428 | case Expr::CXXStdInitializerListExprClass: |
16429 | case Expr::CXXBindTemporaryExprClass: |
16430 | case Expr::ExprWithCleanupsClass: |
16431 | case Expr::CXXTemporaryObjectExprClass: |
16432 | case Expr::CXXUnresolvedConstructExprClass: |
16433 | case Expr::CXXDependentScopeMemberExprClass: |
16434 | case Expr::UnresolvedMemberExprClass: |
16435 | case Expr::ObjCStringLiteralClass: |
16436 | case Expr::ObjCBoxedExprClass: |
16437 | case Expr::ObjCArrayLiteralClass: |
16438 | case Expr::ObjCDictionaryLiteralClass: |
16439 | case Expr::ObjCEncodeExprClass: |
16440 | case Expr::ObjCMessageExprClass: |
16441 | case Expr::ObjCSelectorExprClass: |
16442 | case Expr::ObjCProtocolExprClass: |
16443 | case Expr::ObjCIvarRefExprClass: |
16444 | case Expr::ObjCPropertyRefExprClass: |
16445 | case Expr::ObjCSubscriptRefExprClass: |
16446 | case Expr::ObjCIsaExprClass: |
16447 | case Expr::ObjCAvailabilityCheckExprClass: |
16448 | case Expr::ShuffleVectorExprClass: |
16449 | case Expr::ConvertVectorExprClass: |
16450 | case Expr::BlockExprClass: |
16451 | case Expr::NoStmtClass: |
16452 | case Expr::OpaqueValueExprClass: |
16453 | case Expr::PackExpansionExprClass: |
16454 | case Expr::SubstNonTypeTemplateParmPackExprClass: |
16455 | case Expr::FunctionParmPackExprClass: |
16456 | case Expr::AsTypeExprClass: |
16457 | case Expr::ObjCIndirectCopyRestoreExprClass: |
16458 | case Expr::MaterializeTemporaryExprClass: |
16459 | case Expr::PseudoObjectExprClass: |
16460 | case Expr::AtomicExprClass: |
16461 | case Expr::LambdaExprClass: |
16462 | case Expr::CXXFoldExprClass: |
16463 | case Expr::CoawaitExprClass: |
16464 | case Expr::DependentCoawaitExprClass: |
16465 | case Expr::CoyieldExprClass: |
16466 | case Expr::SYCLUniqueStableNameExprClass: |
16467 | case Expr::CXXParenListInitExprClass: |
16468 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16469 | |
16470 | case Expr::InitListExprClass: { |
16471 | // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the |
16472 | // form "T x = { a };" is equivalent to "T x = a;". |
16473 | // Unless we're initializing a reference, T is a scalar as it is known to be |
16474 | // of integral or enumeration type. |
16475 | if (E->isPRValue()) |
16476 | if (cast<InitListExpr>(Val: E)->getNumInits() == 1) |
16477 | return CheckICE(E: cast<InitListExpr>(Val: E)->getInit(Init: 0), Ctx); |
16478 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16479 | } |
16480 | |
16481 | case Expr::SizeOfPackExprClass: |
16482 | case Expr::GNUNullExprClass: |
16483 | case Expr::SourceLocExprClass: |
16484 | case Expr::EmbedExprClass: |
16485 | return NoDiag(); |
16486 | |
16487 | case Expr::PackIndexingExprClass: |
16488 | return CheckICE(E: cast<PackIndexingExpr>(Val: E)->getSelectedExpr(), Ctx); |
16489 | |
16490 | case Expr::SubstNonTypeTemplateParmExprClass: |
16491 | return |
16492 | CheckICE(E: cast<SubstNonTypeTemplateParmExpr>(Val: E)->getReplacement(), Ctx); |
16493 | |
16494 | case Expr::ConstantExprClass: |
16495 | return CheckICE(E: cast<ConstantExpr>(Val: E)->getSubExpr(), Ctx); |
16496 | |
16497 | case Expr::ParenExprClass: |
16498 | return CheckICE(E: cast<ParenExpr>(Val: E)->getSubExpr(), Ctx); |
16499 | case Expr::GenericSelectionExprClass: |
16500 | return CheckICE(E: cast<GenericSelectionExpr>(Val: E)->getResultExpr(), Ctx); |
16501 | case Expr::IntegerLiteralClass: |
16502 | case Expr::FixedPointLiteralClass: |
16503 | case Expr::CharacterLiteralClass: |
16504 | case Expr::ObjCBoolLiteralExprClass: |
16505 | case Expr::CXXBoolLiteralExprClass: |
16506 | case Expr::CXXScalarValueInitExprClass: |
16507 | case Expr::TypeTraitExprClass: |
16508 | case Expr::ConceptSpecializationExprClass: |
16509 | case Expr::RequiresExprClass: |
16510 | case Expr::ArrayTypeTraitExprClass: |
16511 | case Expr::ExpressionTraitExprClass: |
16512 | case Expr::CXXNoexceptExprClass: |
16513 | return NoDiag(); |
16514 | case Expr::CallExprClass: |
16515 | case Expr::CXXOperatorCallExprClass: { |
16516 | // C99 6.6/3 allows function calls within unevaluated subexpressions of |
16517 | // constant expressions, but they can never be ICEs because an ICE cannot |
16518 | // contain an operand of (pointer to) function type. |
16519 | const CallExpr *CE = cast<CallExpr>(Val: E); |
16520 | if (CE->getBuiltinCallee()) |
16521 | return CheckEvalInICE(E, Ctx); |
16522 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16523 | } |
16524 | case Expr::CXXRewrittenBinaryOperatorClass: |
16525 | return CheckICE(E: cast<CXXRewrittenBinaryOperator>(Val: E)->getSemanticForm(), |
16526 | Ctx); |
16527 | case Expr::DeclRefExprClass: { |
16528 | const NamedDecl *D = cast<DeclRefExpr>(Val: E)->getDecl(); |
16529 | if (isa<EnumConstantDecl>(Val: D)) |
16530 | return NoDiag(); |
16531 | |
16532 | // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified |
16533 | // integer variables in constant expressions: |
16534 | // |
16535 | // C++ 7.1.5.1p2 |
16536 | // A variable of non-volatile const-qualified integral or enumeration |
16537 | // type initialized by an ICE can be used in ICEs. |
16538 | // |
16539 | // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In |
16540 | // that mode, use of reference variables should not be allowed. |
16541 | const VarDecl *VD = dyn_cast<VarDecl>(Val: D); |
16542 | if (VD && VD->isUsableInConstantExpressions(C: Ctx) && |
16543 | !VD->getType()->isReferenceType()) |
16544 | return NoDiag(); |
16545 | |
16546 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16547 | } |
16548 | case Expr::UnaryOperatorClass: { |
16549 | const UnaryOperator *Exp = cast<UnaryOperator>(Val: E); |
16550 | switch (Exp->getOpcode()) { |
16551 | case UO_PostInc: |
16552 | case UO_PostDec: |
16553 | case UO_PreInc: |
16554 | case UO_PreDec: |
16555 | case UO_AddrOf: |
16556 | case UO_Deref: |
16557 | case UO_Coawait: |
16558 | // C99 6.6/3 allows increment and decrement within unevaluated |
16559 | // subexpressions of constant expressions, but they can never be ICEs |
16560 | // because an ICE cannot contain an lvalue operand. |
16561 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16562 | case UO_Extension: |
16563 | case UO_LNot: |
16564 | case UO_Plus: |
16565 | case UO_Minus: |
16566 | case UO_Not: |
16567 | case UO_Real: |
16568 | case UO_Imag: |
16569 | return CheckICE(E: Exp->getSubExpr(), Ctx); |
16570 | } |
16571 | llvm_unreachable("invalid unary operator class" ); |
16572 | } |
16573 | case Expr::OffsetOfExprClass: { |
16574 | // Note that per C99, offsetof must be an ICE. And AFAIK, using |
16575 | // EvaluateAsRValue matches the proposed gcc behavior for cases like |
16576 | // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect |
16577 | // compliance: we should warn earlier for offsetof expressions with |
16578 | // array subscripts that aren't ICEs, and if the array subscripts |
16579 | // are ICEs, the value of the offsetof must be an integer constant. |
16580 | return CheckEvalInICE(E, Ctx); |
16581 | } |
16582 | case Expr::UnaryExprOrTypeTraitExprClass: { |
16583 | const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(Val: E); |
16584 | if ((Exp->getKind() == UETT_SizeOf) && |
16585 | Exp->getTypeOfArgument()->isVariableArrayType()) |
16586 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16587 | return NoDiag(); |
16588 | } |
16589 | case Expr::BinaryOperatorClass: { |
16590 | const BinaryOperator *Exp = cast<BinaryOperator>(Val: E); |
16591 | switch (Exp->getOpcode()) { |
16592 | case BO_PtrMemD: |
16593 | case BO_PtrMemI: |
16594 | case BO_Assign: |
16595 | case BO_MulAssign: |
16596 | case BO_DivAssign: |
16597 | case BO_RemAssign: |
16598 | case BO_AddAssign: |
16599 | case BO_SubAssign: |
16600 | case BO_ShlAssign: |
16601 | case BO_ShrAssign: |
16602 | case BO_AndAssign: |
16603 | case BO_XorAssign: |
16604 | case BO_OrAssign: |
16605 | // C99 6.6/3 allows assignments within unevaluated subexpressions of |
16606 | // constant expressions, but they can never be ICEs because an ICE cannot |
16607 | // contain an lvalue operand. |
16608 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16609 | |
16610 | case BO_Mul: |
16611 | case BO_Div: |
16612 | case BO_Rem: |
16613 | case BO_Add: |
16614 | case BO_Sub: |
16615 | case BO_Shl: |
16616 | case BO_Shr: |
16617 | case BO_LT: |
16618 | case BO_GT: |
16619 | case BO_LE: |
16620 | case BO_GE: |
16621 | case BO_EQ: |
16622 | case BO_NE: |
16623 | case BO_And: |
16624 | case BO_Xor: |
16625 | case BO_Or: |
16626 | case BO_Comma: |
16627 | case BO_Cmp: { |
16628 | ICEDiag LHSResult = CheckICE(E: Exp->getLHS(), Ctx); |
16629 | ICEDiag RHSResult = CheckICE(E: Exp->getRHS(), Ctx); |
16630 | if (Exp->getOpcode() == BO_Div || |
16631 | Exp->getOpcode() == BO_Rem) { |
16632 | // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure |
16633 | // we don't evaluate one. |
16634 | if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) { |
16635 | llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx); |
16636 | if (REval == 0) |
16637 | return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); |
16638 | if (REval.isSigned() && REval.isAllOnes()) { |
16639 | llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx); |
16640 | if (LEval.isMinSignedValue()) |
16641 | return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); |
16642 | } |
16643 | } |
16644 | } |
16645 | if (Exp->getOpcode() == BO_Comma) { |
16646 | if (Ctx.getLangOpts().C99) { |
16647 | // C99 6.6p3 introduces a strange edge case: comma can be in an ICE |
16648 | // if it isn't evaluated. |
16649 | if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) |
16650 | return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); |
16651 | } else { |
16652 | // In both C89 and C++, commas in ICEs are illegal. |
16653 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16654 | } |
16655 | } |
16656 | return Worst(A: LHSResult, B: RHSResult); |
16657 | } |
16658 | case BO_LAnd: |
16659 | case BO_LOr: { |
16660 | ICEDiag LHSResult = CheckICE(E: Exp->getLHS(), Ctx); |
16661 | ICEDiag RHSResult = CheckICE(E: Exp->getRHS(), Ctx); |
16662 | if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) { |
16663 | // Rare case where the RHS has a comma "side-effect"; we need |
16664 | // to actually check the condition to see whether the side |
16665 | // with the comma is evaluated. |
16666 | if ((Exp->getOpcode() == BO_LAnd) != |
16667 | (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0)) |
16668 | return RHSResult; |
16669 | return NoDiag(); |
16670 | } |
16671 | |
16672 | return Worst(A: LHSResult, B: RHSResult); |
16673 | } |
16674 | } |
16675 | llvm_unreachable("invalid binary operator kind" ); |
16676 | } |
16677 | case Expr::ImplicitCastExprClass: |
16678 | case Expr::CStyleCastExprClass: |
16679 | case Expr::CXXFunctionalCastExprClass: |
16680 | case Expr::CXXStaticCastExprClass: |
16681 | case Expr::CXXReinterpretCastExprClass: |
16682 | case Expr::CXXConstCastExprClass: |
16683 | case Expr::ObjCBridgedCastExprClass: { |
16684 | const Expr *SubExpr = cast<CastExpr>(Val: E)->getSubExpr(); |
16685 | if (isa<ExplicitCastExpr>(Val: E)) { |
16686 | if (const FloatingLiteral *FL |
16687 | = dyn_cast<FloatingLiteral>(Val: SubExpr->IgnoreParenImpCasts())) { |
16688 | unsigned DestWidth = Ctx.getIntWidth(T: E->getType()); |
16689 | bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType(); |
16690 | APSInt IgnoredVal(DestWidth, !DestSigned); |
16691 | bool Ignored; |
16692 | // If the value does not fit in the destination type, the behavior is |
16693 | // undefined, so we are not required to treat it as a constant |
16694 | // expression. |
16695 | if (FL->getValue().convertToInteger(Result&: IgnoredVal, |
16696 | RM: llvm::APFloat::rmTowardZero, |
16697 | IsExact: &Ignored) & APFloat::opInvalidOp) |
16698 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16699 | return NoDiag(); |
16700 | } |
16701 | } |
16702 | switch (cast<CastExpr>(Val: E)->getCastKind()) { |
16703 | case CK_LValueToRValue: |
16704 | case CK_AtomicToNonAtomic: |
16705 | case CK_NonAtomicToAtomic: |
16706 | case CK_NoOp: |
16707 | case CK_IntegralToBoolean: |
16708 | case CK_IntegralCast: |
16709 | return CheckICE(E: SubExpr, Ctx); |
16710 | default: |
16711 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16712 | } |
16713 | } |
16714 | case Expr::BinaryConditionalOperatorClass: { |
16715 | const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(Val: E); |
16716 | ICEDiag CommonResult = CheckICE(E: Exp->getCommon(), Ctx); |
16717 | if (CommonResult.Kind == IK_NotICE) return CommonResult; |
16718 | ICEDiag FalseResult = CheckICE(E: Exp->getFalseExpr(), Ctx); |
16719 | if (FalseResult.Kind == IK_NotICE) return FalseResult; |
16720 | if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult; |
16721 | if (FalseResult.Kind == IK_ICEIfUnevaluated && |
16722 | Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag(); |
16723 | return FalseResult; |
16724 | } |
16725 | case Expr::ConditionalOperatorClass: { |
16726 | const ConditionalOperator *Exp = cast<ConditionalOperator>(Val: E); |
16727 | // If the condition (ignoring parens) is a __builtin_constant_p call, |
16728 | // then only the true side is actually considered in an integer constant |
16729 | // expression, and it is fully evaluated. This is an important GNU |
16730 | // extension. See GCC PR38377 for discussion. |
16731 | if (const CallExpr *CallCE |
16732 | = dyn_cast<CallExpr>(Val: Exp->getCond()->IgnoreParenCasts())) |
16733 | if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) |
16734 | return CheckEvalInICE(E, Ctx); |
16735 | ICEDiag CondResult = CheckICE(E: Exp->getCond(), Ctx); |
16736 | if (CondResult.Kind == IK_NotICE) |
16737 | return CondResult; |
16738 | |
16739 | ICEDiag TrueResult = CheckICE(E: Exp->getTrueExpr(), Ctx); |
16740 | ICEDiag FalseResult = CheckICE(E: Exp->getFalseExpr(), Ctx); |
16741 | |
16742 | if (TrueResult.Kind == IK_NotICE) |
16743 | return TrueResult; |
16744 | if (FalseResult.Kind == IK_NotICE) |
16745 | return FalseResult; |
16746 | if (CondResult.Kind == IK_ICEIfUnevaluated) |
16747 | return CondResult; |
16748 | if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE) |
16749 | return NoDiag(); |
16750 | // Rare case where the diagnostics depend on which side is evaluated |
16751 | // Note that if we get here, CondResult is 0, and at least one of |
16752 | // TrueResult and FalseResult is non-zero. |
16753 | if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) |
16754 | return FalseResult; |
16755 | return TrueResult; |
16756 | } |
16757 | case Expr::CXXDefaultArgExprClass: |
16758 | return CheckICE(E: cast<CXXDefaultArgExpr>(Val: E)->getExpr(), Ctx); |
16759 | case Expr::CXXDefaultInitExprClass: |
16760 | return CheckICE(E: cast<CXXDefaultInitExpr>(Val: E)->getExpr(), Ctx); |
16761 | case Expr::ChooseExprClass: { |
16762 | return CheckICE(E: cast<ChooseExpr>(Val: E)->getChosenSubExpr(), Ctx); |
16763 | } |
16764 | case Expr::BuiltinBitCastExprClass: { |
16765 | if (!checkBitCastConstexprEligibility(Info: nullptr, Ctx, BCE: cast<CastExpr>(Val: E))) |
16766 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16767 | return CheckICE(E: cast<CastExpr>(Val: E)->getSubExpr(), Ctx); |
16768 | } |
16769 | } |
16770 | |
16771 | llvm_unreachable("Invalid StmtClass!" ); |
16772 | } |
16773 | |
16774 | /// Evaluate an expression as a C++11 integral constant expression. |
16775 | static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx, |
16776 | const Expr *E, |
16777 | llvm::APSInt *Value, |
16778 | SourceLocation *Loc) { |
16779 | if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { |
16780 | if (Loc) *Loc = E->getExprLoc(); |
16781 | return false; |
16782 | } |
16783 | |
16784 | APValue Result; |
16785 | if (!E->isCXX11ConstantExpr(Ctx, Result: &Result, Loc)) |
16786 | return false; |
16787 | |
16788 | if (!Result.isInt()) { |
16789 | if (Loc) *Loc = E->getExprLoc(); |
16790 | return false; |
16791 | } |
16792 | |
16793 | if (Value) *Value = Result.getInt(); |
16794 | return true; |
16795 | } |
16796 | |
16797 | bool Expr::isIntegerConstantExpr(const ASTContext &Ctx, |
16798 | SourceLocation *Loc) const { |
16799 | assert(!isValueDependent() && |
16800 | "Expression evaluator can't be called on a dependent expression." ); |
16801 | |
16802 | ExprTimeTraceScope TimeScope(this, Ctx, "isIntegerConstantExpr" ); |
16803 | |
16804 | if (Ctx.getLangOpts().CPlusPlus11) |
16805 | return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, E: this, Value: nullptr, Loc); |
16806 | |
16807 | ICEDiag D = CheckICE(E: this, Ctx); |
16808 | if (D.Kind != IK_ICE) { |
16809 | if (Loc) *Loc = D.Loc; |
16810 | return false; |
16811 | } |
16812 | return true; |
16813 | } |
16814 | |
16815 | std::optional<llvm::APSInt> |
16816 | Expr::getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc) const { |
16817 | if (isValueDependent()) { |
16818 | // Expression evaluator can't succeed on a dependent expression. |
16819 | return std::nullopt; |
16820 | } |
16821 | |
16822 | APSInt Value; |
16823 | |
16824 | if (Ctx.getLangOpts().CPlusPlus11) { |
16825 | if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, E: this, Value: &Value, Loc)) |
16826 | return Value; |
16827 | return std::nullopt; |
16828 | } |
16829 | |
16830 | if (!isIntegerConstantExpr(Ctx, Loc)) |
16831 | return std::nullopt; |
16832 | |
16833 | // The only possible side-effects here are due to UB discovered in the |
16834 | // evaluation (for instance, INT_MAX + 1). In such a case, we are still |
16835 | // required to treat the expression as an ICE, so we produce the folded |
16836 | // value. |
16837 | EvalResult ExprResult; |
16838 | Expr::EvalStatus Status; |
16839 | EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects); |
16840 | Info.InConstantContext = true; |
16841 | |
16842 | if (!::EvaluateAsInt(E: this, ExprResult, Ctx, AllowSideEffects: SE_AllowSideEffects, Info)) |
16843 | llvm_unreachable("ICE cannot be evaluated!" ); |
16844 | |
16845 | return ExprResult.Val.getInt(); |
16846 | } |
16847 | |
16848 | bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const { |
16849 | assert(!isValueDependent() && |
16850 | "Expression evaluator can't be called on a dependent expression." ); |
16851 | |
16852 | return CheckICE(E: this, Ctx).Kind == IK_ICE; |
16853 | } |
16854 | |
16855 | bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result, |
16856 | SourceLocation *Loc) const { |
16857 | assert(!isValueDependent() && |
16858 | "Expression evaluator can't be called on a dependent expression." ); |
16859 | |
16860 | // We support this checking in C++98 mode in order to diagnose compatibility |
16861 | // issues. |
16862 | assert(Ctx.getLangOpts().CPlusPlus); |
16863 | |
16864 | // Build evaluation settings. |
16865 | Expr::EvalStatus Status; |
16866 | SmallVector<PartialDiagnosticAt, 8> Diags; |
16867 | Status.Diag = &Diags; |
16868 | EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); |
16869 | |
16870 | APValue Scratch; |
16871 | bool IsConstExpr = |
16872 | ::EvaluateAsRValue(Info, E: this, Result&: Result ? *Result : Scratch) && |
16873 | // FIXME: We don't produce a diagnostic for this, but the callers that |
16874 | // call us on arbitrary full-expressions should generally not care. |
16875 | Info.discardCleanups() && !Status.HasSideEffects; |
16876 | |
16877 | if (!Diags.empty()) { |
16878 | IsConstExpr = false; |
16879 | if (Loc) *Loc = Diags[0].first; |
16880 | } else if (!IsConstExpr) { |
16881 | // FIXME: This shouldn't happen. |
16882 | if (Loc) *Loc = getExprLoc(); |
16883 | } |
16884 | |
16885 | return IsConstExpr; |
16886 | } |
16887 | |
16888 | bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx, |
16889 | const FunctionDecl *Callee, |
16890 | ArrayRef<const Expr*> Args, |
16891 | const Expr *This) const { |
16892 | assert(!isValueDependent() && |
16893 | "Expression evaluator can't be called on a dependent expression." ); |
16894 | |
16895 | llvm::TimeTraceScope TimeScope("EvaluateWithSubstitution" , [&] { |
16896 | std::string Name; |
16897 | llvm::raw_string_ostream OS(Name); |
16898 | Callee->getNameForDiagnostic(OS, Policy: Ctx.getPrintingPolicy(), |
16899 | /*Qualified=*/true); |
16900 | return Name; |
16901 | }); |
16902 | |
16903 | Expr::EvalStatus Status; |
16904 | EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated); |
16905 | Info.InConstantContext = true; |
16906 | |
16907 | LValue ThisVal; |
16908 | const LValue *ThisPtr = nullptr; |
16909 | if (This) { |
16910 | #ifndef NDEBUG |
16911 | auto *MD = dyn_cast<CXXMethodDecl>(Callee); |
16912 | assert(MD && "Don't provide `this` for non-methods." ); |
16913 | assert(MD->isImplicitObjectMemberFunction() && |
16914 | "Don't provide `this` for methods without an implicit object." ); |
16915 | #endif |
16916 | if (!This->isValueDependent() && |
16917 | EvaluateObjectArgument(Info, Object: This, This&: ThisVal) && |
16918 | !Info.EvalStatus.HasSideEffects) |
16919 | ThisPtr = &ThisVal; |
16920 | |
16921 | // Ignore any side-effects from a failed evaluation. This is safe because |
16922 | // they can't interfere with any other argument evaluation. |
16923 | Info.EvalStatus.HasSideEffects = false; |
16924 | } |
16925 | |
16926 | CallRef Call = Info.CurrentCall->createCall(Callee); |
16927 | for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end(); |
16928 | I != E; ++I) { |
16929 | unsigned Idx = I - Args.begin(); |
16930 | if (Idx >= Callee->getNumParams()) |
16931 | break; |
16932 | const ParmVarDecl *PVD = Callee->getParamDecl(i: Idx); |
16933 | if ((*I)->isValueDependent() || |
16934 | !EvaluateCallArg(PVD, Arg: *I, Call, Info) || |
16935 | Info.EvalStatus.HasSideEffects) { |
16936 | // If evaluation fails, throw away the argument entirely. |
16937 | if (APValue *Slot = Info.getParamSlot(Call, PVD)) |
16938 | *Slot = APValue(); |
16939 | } |
16940 | |
16941 | // Ignore any side-effects from a failed evaluation. This is safe because |
16942 | // they can't interfere with any other argument evaluation. |
16943 | Info.EvalStatus.HasSideEffects = false; |
16944 | } |
16945 | |
16946 | // Parameter cleanups happen in the caller and are not part of this |
16947 | // evaluation. |
16948 | Info.discardCleanups(); |
16949 | Info.EvalStatus.HasSideEffects = false; |
16950 | |
16951 | // Build fake call to Callee. |
16952 | CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, This, |
16953 | Call); |
16954 | // FIXME: Missing ExprWithCleanups in enable_if conditions? |
16955 | FullExpressionRAII Scope(Info); |
16956 | return Evaluate(Result&: Value, Info, E: this) && Scope.destroy() && |
16957 | !Info.EvalStatus.HasSideEffects; |
16958 | } |
16959 | |
16960 | bool Expr::isPotentialConstantExpr(const FunctionDecl *FD, |
16961 | SmallVectorImpl< |
16962 | PartialDiagnosticAt> &Diags) { |
16963 | // FIXME: It would be useful to check constexpr function templates, but at the |
16964 | // moment the constant expression evaluator cannot cope with the non-rigorous |
16965 | // ASTs which we build for dependent expressions. |
16966 | if (FD->isDependentContext()) |
16967 | return true; |
16968 | |
16969 | llvm::TimeTraceScope TimeScope("isPotentialConstantExpr" , [&] { |
16970 | std::string Name; |
16971 | llvm::raw_string_ostream OS(Name); |
16972 | FD->getNameForDiagnostic(OS, Policy: FD->getASTContext().getPrintingPolicy(), |
16973 | /*Qualified=*/true); |
16974 | return Name; |
16975 | }); |
16976 | |
16977 | Expr::EvalStatus Status; |
16978 | Status.Diag = &Diags; |
16979 | |
16980 | EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression); |
16981 | Info.InConstantContext = true; |
16982 | Info.CheckingPotentialConstantExpression = true; |
16983 | |
16984 | // The constexpr VM attempts to compile all methods to bytecode here. |
16985 | if (Info.EnableNewConstInterp) { |
16986 | Info.Ctx.getInterpContext().isPotentialConstantExpr(Parent&: Info, FnDecl: FD); |
16987 | return Diags.empty(); |
16988 | } |
16989 | |
16990 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD); |
16991 | const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr; |
16992 | |
16993 | // Fabricate an arbitrary expression on the stack and pretend that it |
16994 | // is a temporary being used as the 'this' pointer. |
16995 | LValue This; |
16996 | ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(Decl: RD) : Info.Ctx.IntTy); |
16997 | This.set(B: {&VIE, Info.CurrentCall->Index}); |
16998 | |
16999 | ArrayRef<const Expr*> Args; |
17000 | |
17001 | APValue Scratch; |
17002 | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Val: FD)) { |
17003 | // Evaluate the call as a constant initializer, to allow the construction |
17004 | // of objects of non-literal types. |
17005 | Info.setEvaluatingDecl(Base: This.getLValueBase(), Value&: Scratch); |
17006 | HandleConstructorCall(E: &VIE, This, Args, Definition: CD, Info, Result&: Scratch); |
17007 | } else { |
17008 | SourceLocation Loc = FD->getLocation(); |
17009 | HandleFunctionCall( |
17010 | CallLoc: Loc, Callee: FD, This: (MD && MD->isImplicitObjectMemberFunction()) ? &This : nullptr, |
17011 | E: &VIE, Args, Call: CallRef(), Body: FD->getBody(), Info, Result&: Scratch, |
17012 | /*ResultSlot=*/nullptr); |
17013 | } |
17014 | |
17015 | return Diags.empty(); |
17016 | } |
17017 | |
17018 | bool Expr::isPotentialConstantExprUnevaluated(Expr *E, |
17019 | const FunctionDecl *FD, |
17020 | SmallVectorImpl< |
17021 | PartialDiagnosticAt> &Diags) { |
17022 | assert(!E->isValueDependent() && |
17023 | "Expression evaluator can't be called on a dependent expression." ); |
17024 | |
17025 | Expr::EvalStatus Status; |
17026 | Status.Diag = &Diags; |
17027 | |
17028 | EvalInfo Info(FD->getASTContext(), Status, |
17029 | EvalInfo::EM_ConstantExpressionUnevaluated); |
17030 | Info.InConstantContext = true; |
17031 | Info.CheckingPotentialConstantExpression = true; |
17032 | |
17033 | // Fabricate a call stack frame to give the arguments a plausible cover story. |
17034 | CallStackFrame Frame(Info, SourceLocation(), FD, /*This=*/nullptr, |
17035 | /*CallExpr=*/nullptr, CallRef()); |
17036 | |
17037 | APValue ResultScratch; |
17038 | Evaluate(Result&: ResultScratch, Info, E); |
17039 | return Diags.empty(); |
17040 | } |
17041 | |
17042 | bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx, |
17043 | unsigned Type) const { |
17044 | if (!getType()->isPointerType()) |
17045 | return false; |
17046 | |
17047 | Expr::EvalStatus Status; |
17048 | EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); |
17049 | return tryEvaluateBuiltinObjectSize(E: this, Type, Info, Size&: Result); |
17050 | } |
17051 | |
17052 | static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result, |
17053 | EvalInfo &Info, std::string *StringResult) { |
17054 | if (!E->getType()->hasPointerRepresentation() || !E->isPRValue()) |
17055 | return false; |
17056 | |
17057 | LValue String; |
17058 | |
17059 | if (!EvaluatePointer(E, Result&: String, Info)) |
17060 | return false; |
17061 | |
17062 | QualType CharTy = E->getType()->getPointeeType(); |
17063 | |
17064 | // Fast path: if it's a string literal, search the string value. |
17065 | if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>( |
17066 | Val: String.getLValueBase().dyn_cast<const Expr *>())) { |
17067 | StringRef Str = S->getBytes(); |
17068 | int64_t Off = String.Offset.getQuantity(); |
17069 | if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() && |
17070 | S->getCharByteWidth() == 1 && |
17071 | // FIXME: Add fast-path for wchar_t too. |
17072 | Info.Ctx.hasSameUnqualifiedType(T1: CharTy, T2: Info.Ctx.CharTy)) { |
17073 | Str = Str.substr(Start: Off); |
17074 | |
17075 | StringRef::size_type Pos = Str.find(C: 0); |
17076 | if (Pos != StringRef::npos) |
17077 | Str = Str.substr(Start: 0, N: Pos); |
17078 | |
17079 | Result = Str.size(); |
17080 | if (StringResult) |
17081 | *StringResult = Str; |
17082 | return true; |
17083 | } |
17084 | |
17085 | // Fall through to slow path. |
17086 | } |
17087 | |
17088 | // Slow path: scan the bytes of the string looking for the terminating 0. |
17089 | for (uint64_t Strlen = 0; /**/; ++Strlen) { |
17090 | APValue Char; |
17091 | if (!handleLValueToRValueConversion(Info, Conv: E, Type: CharTy, LVal: String, RVal&: Char) || |
17092 | !Char.isInt()) |
17093 | return false; |
17094 | if (!Char.getInt()) { |
17095 | Result = Strlen; |
17096 | return true; |
17097 | } else if (StringResult) |
17098 | StringResult->push_back(c: Char.getInt().getExtValue()); |
17099 | if (!HandleLValueArrayAdjustment(Info, E, LVal&: String, EltTy: CharTy, Adjustment: 1)) |
17100 | return false; |
17101 | } |
17102 | } |
17103 | |
17104 | std::optional<std::string> Expr::tryEvaluateString(ASTContext &Ctx) const { |
17105 | Expr::EvalStatus Status; |
17106 | EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); |
17107 | uint64_t Result; |
17108 | std::string StringResult; |
17109 | |
17110 | if (EvaluateBuiltinStrLen(E: this, Result, Info, StringResult: &StringResult)) |
17111 | return StringResult; |
17112 | return {}; |
17113 | } |
17114 | |
17115 | bool Expr::EvaluateCharRangeAsString(std::string &Result, |
17116 | const Expr *SizeExpression, |
17117 | const Expr *PtrExpression, ASTContext &Ctx, |
17118 | EvalResult &Status) const { |
17119 | LValue String; |
17120 | EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); |
17121 | Info.InConstantContext = true; |
17122 | |
17123 | FullExpressionRAII Scope(Info); |
17124 | APSInt SizeValue; |
17125 | if (!::EvaluateInteger(E: SizeExpression, Result&: SizeValue, Info)) |
17126 | return false; |
17127 | |
17128 | uint64_t Size = SizeValue.getZExtValue(); |
17129 | |
17130 | if (!::EvaluatePointer(E: PtrExpression, Result&: String, Info)) |
17131 | return false; |
17132 | |
17133 | QualType CharTy = PtrExpression->getType()->getPointeeType(); |
17134 | for (uint64_t I = 0; I < Size; ++I) { |
17135 | APValue Char; |
17136 | if (!handleLValueToRValueConversion(Info, Conv: PtrExpression, Type: CharTy, LVal: String, |
17137 | RVal&: Char)) |
17138 | return false; |
17139 | |
17140 | APSInt C = Char.getInt(); |
17141 | Result.push_back(c: static_cast<char>(C.getExtValue())); |
17142 | if (!HandleLValueArrayAdjustment(Info, E: PtrExpression, LVal&: String, EltTy: CharTy, Adjustment: 1)) |
17143 | return false; |
17144 | } |
17145 | if (!Scope.destroy()) |
17146 | return false; |
17147 | |
17148 | if (!CheckMemoryLeaks(Info)) |
17149 | return false; |
17150 | |
17151 | return true; |
17152 | } |
17153 | |
17154 | bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const { |
17155 | Expr::EvalStatus Status; |
17156 | EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); |
17157 | return EvaluateBuiltinStrLen(E: this, Result, Info); |
17158 | } |
17159 | |