1 | //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Implements C++ name mangling according to the Itanium C++ ABI, |
10 | // which is used in GCC 3.2 and newer (and many compilers that are |
11 | // ABI-compatible with GCC): |
12 | // |
13 | // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #include "clang/AST/ASTContext.h" |
18 | #include "clang/AST/Attr.h" |
19 | #include "clang/AST/Decl.h" |
20 | #include "clang/AST/DeclCXX.h" |
21 | #include "clang/AST/DeclObjC.h" |
22 | #include "clang/AST/DeclOpenMP.h" |
23 | #include "clang/AST/DeclTemplate.h" |
24 | #include "clang/AST/Expr.h" |
25 | #include "clang/AST/ExprCXX.h" |
26 | #include "clang/AST/ExprConcepts.h" |
27 | #include "clang/AST/ExprObjC.h" |
28 | #include "clang/AST/Mangle.h" |
29 | #include "clang/AST/TypeLoc.h" |
30 | #include "clang/Basic/ABI.h" |
31 | #include "clang/Basic/DiagnosticAST.h" |
32 | #include "clang/Basic/Module.h" |
33 | #include "clang/Basic/SourceManager.h" |
34 | #include "clang/Basic/TargetInfo.h" |
35 | #include "clang/Basic/Thunk.h" |
36 | #include "llvm/ADT/StringExtras.h" |
37 | #include "llvm/Support/ErrorHandling.h" |
38 | #include "llvm/Support/raw_ostream.h" |
39 | #include "llvm/TargetParser/RISCVTargetParser.h" |
40 | #include <optional> |
41 | |
42 | using namespace clang; |
43 | |
44 | namespace { |
45 | |
46 | static bool isLocalContainerContext(const DeclContext *DC) { |
47 | return isa<FunctionDecl>(Val: DC) || isa<ObjCMethodDecl>(Val: DC) || isa<BlockDecl>(Val: DC); |
48 | } |
49 | |
50 | static const FunctionDecl *getStructor(const FunctionDecl *fn) { |
51 | if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) |
52 | return ftd->getTemplatedDecl(); |
53 | |
54 | return fn; |
55 | } |
56 | |
57 | static const NamedDecl *getStructor(const NamedDecl *decl) { |
58 | const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(Val: decl); |
59 | return (fn ? getStructor(fn) : decl); |
60 | } |
61 | |
62 | static bool isLambda(const NamedDecl *ND) { |
63 | const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: ND); |
64 | if (!Record) |
65 | return false; |
66 | |
67 | return Record->isLambda(); |
68 | } |
69 | |
70 | static const unsigned UnknownArity = ~0U; |
71 | |
72 | class ItaniumMangleContextImpl : public ItaniumMangleContext { |
73 | typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy; |
74 | llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; |
75 | llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier; |
76 | const DiscriminatorOverrideTy DiscriminatorOverride = nullptr; |
77 | NamespaceDecl *StdNamespace = nullptr; |
78 | |
79 | bool NeedsUniqueInternalLinkageNames = false; |
80 | |
81 | public: |
82 | explicit ItaniumMangleContextImpl( |
83 | ASTContext &Context, DiagnosticsEngine &Diags, |
84 | DiscriminatorOverrideTy DiscriminatorOverride, bool IsAux = false) |
85 | : ItaniumMangleContext(Context, Diags, IsAux), |
86 | DiscriminatorOverride(DiscriminatorOverride) {} |
87 | |
88 | /// @name Mangler Entry Points |
89 | /// @{ |
90 | |
91 | bool shouldMangleCXXName(const NamedDecl *D) override; |
92 | bool shouldMangleStringLiteral(const StringLiteral *) override { |
93 | return false; |
94 | } |
95 | |
96 | bool isUniqueInternalLinkageDecl(const NamedDecl *ND) override; |
97 | void needsUniqueInternalLinkageNames() override { |
98 | NeedsUniqueInternalLinkageNames = true; |
99 | } |
100 | |
101 | void mangleCXXName(GlobalDecl GD, raw_ostream &) override; |
102 | void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, bool, |
103 | raw_ostream &) override; |
104 | void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, |
105 | const ThunkInfo &Thunk, bool, raw_ostream &) override; |
106 | void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber, |
107 | raw_ostream &) override; |
108 | void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override; |
109 | void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override; |
110 | void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, |
111 | const CXXRecordDecl *Type, raw_ostream &) override; |
112 | void mangleCXXRTTI(QualType T, raw_ostream &) override; |
113 | void mangleCXXRTTIName(QualType T, raw_ostream &, |
114 | bool NormalizeIntegers) override; |
115 | void mangleCanonicalTypeName(QualType T, raw_ostream &, |
116 | bool NormalizeIntegers) override; |
117 | |
118 | void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override; |
119 | void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override; |
120 | void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override; |
121 | void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; |
122 | void mangleDynamicAtExitDestructor(const VarDecl *D, |
123 | raw_ostream &Out) override; |
124 | void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override; |
125 | void mangleSEHFilterExpression(GlobalDecl EnclosingDecl, |
126 | raw_ostream &Out) override; |
127 | void mangleSEHFinallyBlock(GlobalDecl EnclosingDecl, |
128 | raw_ostream &Out) override; |
129 | void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override; |
130 | void mangleItaniumThreadLocalWrapper(const VarDecl *D, |
131 | raw_ostream &) override; |
132 | |
133 | void mangleStringLiteral(const StringLiteral *, raw_ostream &) override; |
134 | |
135 | void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override; |
136 | |
137 | void mangleModuleInitializer(const Module *Module, raw_ostream &) override; |
138 | |
139 | bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { |
140 | // Lambda closure types are already numbered. |
141 | if (isLambda(ND)) |
142 | return false; |
143 | |
144 | // Anonymous tags are already numbered. |
145 | if (const TagDecl *Tag = dyn_cast<TagDecl>(Val: ND)) { |
146 | if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl()) |
147 | return false; |
148 | } |
149 | |
150 | // Use the canonical number for externally visible decls. |
151 | if (ND->isExternallyVisible()) { |
152 | unsigned discriminator = getASTContext().getManglingNumber(ND, ForAuxTarget: isAux()); |
153 | if (discriminator == 1) |
154 | return false; |
155 | disc = discriminator - 2; |
156 | return true; |
157 | } |
158 | |
159 | // Make up a reasonable number for internal decls. |
160 | unsigned &discriminator = Uniquifier[ND]; |
161 | if (!discriminator) { |
162 | const DeclContext *DC = getEffectiveDeclContext(D: ND); |
163 | discriminator = ++Discriminator[std::make_pair(x&: DC, y: ND->getIdentifier())]; |
164 | } |
165 | if (discriminator == 1) |
166 | return false; |
167 | disc = discriminator-2; |
168 | return true; |
169 | } |
170 | |
171 | std::string getLambdaString(const CXXRecordDecl *Lambda) override { |
172 | // This function matches the one in MicrosoftMangle, which returns |
173 | // the string that is used in lambda mangled names. |
174 | assert(Lambda->isLambda() && "RD must be a lambda!" ); |
175 | std::string Name("<lambda" ); |
176 | Decl *LambdaContextDecl = Lambda->getLambdaContextDecl(); |
177 | unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber(); |
178 | unsigned LambdaId; |
179 | const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(Val: LambdaContextDecl); |
180 | const FunctionDecl *Func = |
181 | Parm ? dyn_cast<FunctionDecl>(Val: Parm->getDeclContext()) : nullptr; |
182 | |
183 | if (Func) { |
184 | unsigned DefaultArgNo = |
185 | Func->getNumParams() - Parm->getFunctionScopeIndex(); |
186 | Name += llvm::utostr(X: DefaultArgNo); |
187 | Name += "_" ; |
188 | } |
189 | |
190 | if (LambdaManglingNumber) |
191 | LambdaId = LambdaManglingNumber; |
192 | else |
193 | LambdaId = getAnonymousStructIdForDebugInfo(D: Lambda); |
194 | |
195 | Name += llvm::utostr(X: LambdaId); |
196 | Name += '>'; |
197 | return Name; |
198 | } |
199 | |
200 | DiscriminatorOverrideTy getDiscriminatorOverride() const override { |
201 | return DiscriminatorOverride; |
202 | } |
203 | |
204 | NamespaceDecl *getStdNamespace(); |
205 | |
206 | const DeclContext *getEffectiveDeclContext(const Decl *D); |
207 | const DeclContext *getEffectiveParentContext(const DeclContext *DC) { |
208 | return getEffectiveDeclContext(D: cast<Decl>(Val: DC)); |
209 | } |
210 | |
211 | bool isInternalLinkageDecl(const NamedDecl *ND); |
212 | |
213 | /// @} |
214 | }; |
215 | |
216 | /// Manage the mangling of a single name. |
217 | class CXXNameMangler { |
218 | ItaniumMangleContextImpl &Context; |
219 | raw_ostream &Out; |
220 | /// Normalize integer types for cross-language CFI support with other |
221 | /// languages that can't represent and encode C/C++ integer types. |
222 | bool NormalizeIntegers = false; |
223 | |
224 | bool NullOut = false; |
225 | /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated. |
226 | /// This mode is used when mangler creates another mangler recursively to |
227 | /// calculate ABI tags for the function return value or the variable type. |
228 | /// Also it is required to avoid infinite recursion in some cases. |
229 | bool DisableDerivedAbiTags = false; |
230 | |
231 | /// The "structor" is the top-level declaration being mangled, if |
232 | /// that's not a template specialization; otherwise it's the pattern |
233 | /// for that specialization. |
234 | const NamedDecl *Structor; |
235 | unsigned StructorType = 0; |
236 | |
237 | // An offset to add to all template parameter depths while mangling. Used |
238 | // when mangling a template parameter list to see if it matches a template |
239 | // template parameter exactly. |
240 | unsigned TemplateDepthOffset = 0; |
241 | |
242 | /// The next substitution sequence number. |
243 | unsigned SeqID = 0; |
244 | |
245 | class FunctionTypeDepthState { |
246 | unsigned Bits = 0; |
247 | |
248 | enum { InResultTypeMask = 1 }; |
249 | |
250 | public: |
251 | FunctionTypeDepthState() = default; |
252 | |
253 | /// The number of function types we're inside. |
254 | unsigned getDepth() const { |
255 | return Bits >> 1; |
256 | } |
257 | |
258 | /// True if we're in the return type of the innermost function type. |
259 | bool isInResultType() const { |
260 | return Bits & InResultTypeMask; |
261 | } |
262 | |
263 | FunctionTypeDepthState push() { |
264 | FunctionTypeDepthState tmp = *this; |
265 | Bits = (Bits & ~InResultTypeMask) + 2; |
266 | return tmp; |
267 | } |
268 | |
269 | void enterResultType() { |
270 | Bits |= InResultTypeMask; |
271 | } |
272 | |
273 | void leaveResultType() { |
274 | Bits &= ~InResultTypeMask; |
275 | } |
276 | |
277 | void pop(FunctionTypeDepthState saved) { |
278 | assert(getDepth() == saved.getDepth() + 1); |
279 | Bits = saved.Bits; |
280 | } |
281 | |
282 | } FunctionTypeDepth; |
283 | |
284 | // abi_tag is a gcc attribute, taking one or more strings called "tags". |
285 | // The goal is to annotate against which version of a library an object was |
286 | // built and to be able to provide backwards compatibility ("dual abi"). |
287 | // For more information see docs/ItaniumMangleAbiTags.rst. |
288 | typedef SmallVector<StringRef, 4> AbiTagList; |
289 | |
290 | // State to gather all implicit and explicit tags used in a mangled name. |
291 | // Must always have an instance of this while emitting any name to keep |
292 | // track. |
293 | class AbiTagState final { |
294 | public: |
295 | explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) { |
296 | Parent = LinkHead; |
297 | LinkHead = this; |
298 | } |
299 | |
300 | // No copy, no move. |
301 | AbiTagState(const AbiTagState &) = delete; |
302 | AbiTagState &operator=(const AbiTagState &) = delete; |
303 | |
304 | ~AbiTagState() { pop(); } |
305 | |
306 | void write(raw_ostream &Out, const NamedDecl *ND, |
307 | const AbiTagList *AdditionalAbiTags) { |
308 | ND = cast<NamedDecl>(Val: ND->getCanonicalDecl()); |
309 | if (!isa<FunctionDecl>(Val: ND) && !isa<VarDecl>(Val: ND)) { |
310 | assert( |
311 | !AdditionalAbiTags && |
312 | "only function and variables need a list of additional abi tags" ); |
313 | if (const auto *NS = dyn_cast<NamespaceDecl>(Val: ND)) { |
314 | if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) { |
315 | UsedAbiTags.insert(I: UsedAbiTags.end(), From: AbiTag->tags().begin(), |
316 | To: AbiTag->tags().end()); |
317 | } |
318 | // Don't emit abi tags for namespaces. |
319 | return; |
320 | } |
321 | } |
322 | |
323 | AbiTagList TagList; |
324 | if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) { |
325 | UsedAbiTags.insert(I: UsedAbiTags.end(), From: AbiTag->tags().begin(), |
326 | To: AbiTag->tags().end()); |
327 | TagList.insert(I: TagList.end(), From: AbiTag->tags().begin(), |
328 | To: AbiTag->tags().end()); |
329 | } |
330 | |
331 | if (AdditionalAbiTags) { |
332 | UsedAbiTags.insert(I: UsedAbiTags.end(), From: AdditionalAbiTags->begin(), |
333 | To: AdditionalAbiTags->end()); |
334 | TagList.insert(I: TagList.end(), From: AdditionalAbiTags->begin(), |
335 | To: AdditionalAbiTags->end()); |
336 | } |
337 | |
338 | llvm::sort(C&: TagList); |
339 | TagList.erase(CS: std::unique(first: TagList.begin(), last: TagList.end()), CE: TagList.end()); |
340 | |
341 | writeSortedUniqueAbiTags(Out, AbiTags: TagList); |
342 | } |
343 | |
344 | const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; } |
345 | void setUsedAbiTags(const AbiTagList &AbiTags) { |
346 | UsedAbiTags = AbiTags; |
347 | } |
348 | |
349 | const AbiTagList &getEmittedAbiTags() const { |
350 | return EmittedAbiTags; |
351 | } |
352 | |
353 | const AbiTagList &getSortedUniqueUsedAbiTags() { |
354 | llvm::sort(C&: UsedAbiTags); |
355 | UsedAbiTags.erase(CS: std::unique(first: UsedAbiTags.begin(), last: UsedAbiTags.end()), |
356 | CE: UsedAbiTags.end()); |
357 | return UsedAbiTags; |
358 | } |
359 | |
360 | private: |
361 | //! All abi tags used implicitly or explicitly. |
362 | AbiTagList UsedAbiTags; |
363 | //! All explicit abi tags (i.e. not from namespace). |
364 | AbiTagList EmittedAbiTags; |
365 | |
366 | AbiTagState *&LinkHead; |
367 | AbiTagState *Parent = nullptr; |
368 | |
369 | void pop() { |
370 | assert(LinkHead == this && |
371 | "abi tag link head must point to us on destruction" ); |
372 | if (Parent) { |
373 | Parent->UsedAbiTags.insert(I: Parent->UsedAbiTags.end(), |
374 | From: UsedAbiTags.begin(), To: UsedAbiTags.end()); |
375 | Parent->EmittedAbiTags.insert(I: Parent->EmittedAbiTags.end(), |
376 | From: EmittedAbiTags.begin(), |
377 | To: EmittedAbiTags.end()); |
378 | } |
379 | LinkHead = Parent; |
380 | } |
381 | |
382 | void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) { |
383 | for (const auto &Tag : AbiTags) { |
384 | EmittedAbiTags.push_back(Elt: Tag); |
385 | Out << "B" ; |
386 | Out << Tag.size(); |
387 | Out << Tag; |
388 | } |
389 | } |
390 | }; |
391 | |
392 | AbiTagState *AbiTags = nullptr; |
393 | AbiTagState AbiTagsRoot; |
394 | |
395 | llvm::DenseMap<uintptr_t, unsigned> Substitutions; |
396 | llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions; |
397 | |
398 | ASTContext &getASTContext() const { return Context.getASTContext(); } |
399 | |
400 | bool isCompatibleWith(LangOptions::ClangABI Ver) { |
401 | return Context.getASTContext().getLangOpts().getClangABICompat() <= Ver; |
402 | } |
403 | |
404 | bool isStd(const NamespaceDecl *NS); |
405 | bool isStdNamespace(const DeclContext *DC); |
406 | |
407 | const RecordDecl *GetLocalClassDecl(const Decl *D); |
408 | bool isSpecializedAs(QualType S, llvm::StringRef Name, QualType A); |
409 | bool isStdCharSpecialization(const ClassTemplateSpecializationDecl *SD, |
410 | llvm::StringRef Name, bool HasAllocator); |
411 | |
412 | public: |
413 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
414 | const NamedDecl *D = nullptr, bool NullOut_ = false) |
415 | : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(decl: D)), |
416 | AbiTagsRoot(AbiTags) { |
417 | // These can't be mangled without a ctor type or dtor type. |
418 | assert(!D || (!isa<CXXDestructorDecl>(D) && |
419 | !isa<CXXConstructorDecl>(D))); |
420 | } |
421 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
422 | const CXXConstructorDecl *D, CXXCtorType Type) |
423 | : Context(C), Out(Out_), Structor(getStructor(fn: D)), StructorType(Type), |
424 | AbiTagsRoot(AbiTags) {} |
425 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
426 | const CXXDestructorDecl *D, CXXDtorType Type) |
427 | : Context(C), Out(Out_), Structor(getStructor(fn: D)), StructorType(Type), |
428 | AbiTagsRoot(AbiTags) {} |
429 | |
430 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
431 | bool NormalizeIntegers_) |
432 | : Context(C), Out(Out_), NormalizeIntegers(NormalizeIntegers_), |
433 | NullOut(false), Structor(nullptr), AbiTagsRoot(AbiTags) {} |
434 | CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_) |
435 | : Context(Outer.Context), Out(Out_), Structor(Outer.Structor), |
436 | StructorType(Outer.StructorType), SeqID(Outer.SeqID), |
437 | FunctionTypeDepth(Outer.FunctionTypeDepth), AbiTagsRoot(AbiTags), |
438 | Substitutions(Outer.Substitutions), |
439 | ModuleSubstitutions(Outer.ModuleSubstitutions) {} |
440 | |
441 | CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_) |
442 | : CXXNameMangler(Outer, (raw_ostream &)Out_) { |
443 | NullOut = true; |
444 | } |
445 | |
446 | struct WithTemplateDepthOffset { unsigned Offset; }; |
447 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out, |
448 | WithTemplateDepthOffset Offset) |
449 | : CXXNameMangler(C, Out) { |
450 | TemplateDepthOffset = Offset.Offset; |
451 | } |
452 | |
453 | raw_ostream &getStream() { return Out; } |
454 | |
455 | void disableDerivedAbiTags() { DisableDerivedAbiTags = true; } |
456 | static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD); |
457 | |
458 | void mangle(GlobalDecl GD); |
459 | void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); |
460 | void mangleNumber(const llvm::APSInt &I); |
461 | void mangleNumber(int64_t Number); |
462 | void mangleFloat(const llvm::APFloat &F); |
463 | void mangleFunctionEncoding(GlobalDecl GD); |
464 | void mangleSeqID(unsigned SeqID); |
465 | void mangleName(GlobalDecl GD); |
466 | void mangleType(QualType T); |
467 | void mangleNameOrStandardSubstitution(const NamedDecl *ND); |
468 | void mangleLambdaSig(const CXXRecordDecl *Lambda); |
469 | void mangleModuleNamePrefix(StringRef Name, bool IsPartition = false); |
470 | void mangleVendorQualifier(StringRef Name); |
471 | |
472 | private: |
473 | |
474 | bool mangleSubstitution(const NamedDecl *ND); |
475 | bool mangleSubstitution(NestedNameSpecifier *NNS); |
476 | bool mangleSubstitution(QualType T); |
477 | bool mangleSubstitution(TemplateName Template); |
478 | bool mangleSubstitution(uintptr_t Ptr); |
479 | |
480 | void mangleExistingSubstitution(TemplateName name); |
481 | |
482 | bool mangleStandardSubstitution(const NamedDecl *ND); |
483 | |
484 | void addSubstitution(const NamedDecl *ND) { |
485 | ND = cast<NamedDecl>(Val: ND->getCanonicalDecl()); |
486 | |
487 | addSubstitution(Ptr: reinterpret_cast<uintptr_t>(ND)); |
488 | } |
489 | void addSubstitution(NestedNameSpecifier *NNS) { |
490 | NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS); |
491 | |
492 | addSubstitution(Ptr: reinterpret_cast<uintptr_t>(NNS)); |
493 | } |
494 | void addSubstitution(QualType T); |
495 | void addSubstitution(TemplateName Template); |
496 | void addSubstitution(uintptr_t Ptr); |
497 | // Destructive copy substitutions from other mangler. |
498 | void extendSubstitutions(CXXNameMangler* Other); |
499 | |
500 | void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, |
501 | bool recursive = false); |
502 | void mangleUnresolvedName(NestedNameSpecifier *qualifier, |
503 | DeclarationName name, |
504 | const TemplateArgumentLoc *TemplateArgs, |
505 | unsigned NumTemplateArgs, |
506 | unsigned KnownArity = UnknownArity); |
507 | |
508 | void mangleFunctionEncodingBareType(const FunctionDecl *FD); |
509 | |
510 | void mangleNameWithAbiTags(GlobalDecl GD, |
511 | const AbiTagList *AdditionalAbiTags); |
512 | void mangleModuleName(const NamedDecl *ND); |
513 | void mangleTemplateName(const TemplateDecl *TD, |
514 | ArrayRef<TemplateArgument> Args); |
515 | void mangleUnqualifiedName(GlobalDecl GD, const DeclContext *DC, |
516 | const AbiTagList *AdditionalAbiTags) { |
517 | mangleUnqualifiedName(GD, Name: cast<NamedDecl>(Val: GD.getDecl())->getDeclName(), DC, |
518 | KnownArity: UnknownArity, AdditionalAbiTags); |
519 | } |
520 | void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name, |
521 | const DeclContext *DC, unsigned KnownArity, |
522 | const AbiTagList *AdditionalAbiTags); |
523 | void mangleUnscopedName(GlobalDecl GD, const DeclContext *DC, |
524 | const AbiTagList *AdditionalAbiTags); |
525 | void mangleUnscopedTemplateName(GlobalDecl GD, const DeclContext *DC, |
526 | const AbiTagList *AdditionalAbiTags); |
527 | void mangleSourceName(const IdentifierInfo *II); |
528 | void mangleRegCallName(const IdentifierInfo *II); |
529 | void mangleDeviceStubName(const IdentifierInfo *II); |
530 | void mangleSourceNameWithAbiTags( |
531 | const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr); |
532 | void mangleLocalName(GlobalDecl GD, |
533 | const AbiTagList *AdditionalAbiTags); |
534 | void mangleBlockForPrefix(const BlockDecl *Block); |
535 | void mangleUnqualifiedBlock(const BlockDecl *Block); |
536 | void mangleTemplateParamDecl(const NamedDecl *Decl); |
537 | void mangleTemplateParameterList(const TemplateParameterList *Params); |
538 | void mangleTypeConstraint(const ConceptDecl *Concept, |
539 | ArrayRef<TemplateArgument> Arguments); |
540 | void mangleTypeConstraint(const TypeConstraint *Constraint); |
541 | void mangleRequiresClause(const Expr *RequiresClause); |
542 | void mangleLambda(const CXXRecordDecl *Lambda); |
543 | void mangleNestedName(GlobalDecl GD, const DeclContext *DC, |
544 | const AbiTagList *AdditionalAbiTags, |
545 | bool NoFunction=false); |
546 | void mangleNestedName(const TemplateDecl *TD, |
547 | ArrayRef<TemplateArgument> Args); |
548 | void mangleNestedNameWithClosurePrefix(GlobalDecl GD, |
549 | const NamedDecl *PrefixND, |
550 | const AbiTagList *AdditionalAbiTags); |
551 | void manglePrefix(NestedNameSpecifier *qualifier); |
552 | void manglePrefix(const DeclContext *DC, bool NoFunction=false); |
553 | void manglePrefix(QualType type); |
554 | void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false); |
555 | void mangleTemplatePrefix(TemplateName Template); |
556 | const NamedDecl *getClosurePrefix(const Decl *ND); |
557 | void mangleClosurePrefix(const NamedDecl *ND, bool NoFunction = false); |
558 | bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType, |
559 | StringRef Prefix = "" ); |
560 | void mangleOperatorName(DeclarationName Name, unsigned Arity); |
561 | void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); |
562 | void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr); |
563 | void mangleRefQualifier(RefQualifierKind RefQualifier); |
564 | |
565 | void mangleObjCMethodName(const ObjCMethodDecl *MD); |
566 | |
567 | // Declare manglers for every type class. |
568 | #define ABSTRACT_TYPE(CLASS, PARENT) |
569 | #define NON_CANONICAL_TYPE(CLASS, PARENT) |
570 | #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); |
571 | #include "clang/AST/TypeNodes.inc" |
572 | |
573 | void mangleType(const TagType*); |
574 | void mangleType(TemplateName); |
575 | static StringRef getCallingConvQualifierName(CallingConv CC); |
576 | void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info); |
577 | void mangleExtFunctionInfo(const FunctionType *T); |
578 | void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType, |
579 | const FunctionDecl *FD = nullptr); |
580 | void mangleNeonVectorType(const VectorType *T); |
581 | void mangleNeonVectorType(const DependentVectorType *T); |
582 | void mangleAArch64NeonVectorType(const VectorType *T); |
583 | void mangleAArch64NeonVectorType(const DependentVectorType *T); |
584 | void mangleAArch64FixedSveVectorType(const VectorType *T); |
585 | void mangleAArch64FixedSveVectorType(const DependentVectorType *T); |
586 | void mangleRISCVFixedRVVVectorType(const VectorType *T); |
587 | void mangleRISCVFixedRVVVectorType(const DependentVectorType *T); |
588 | |
589 | void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); |
590 | void mangleFloatLiteral(QualType T, const llvm::APFloat &V); |
591 | void mangleFixedPointLiteral(); |
592 | void mangleNullPointer(QualType T); |
593 | |
594 | void mangleMemberExprBase(const Expr *base, bool isArrow); |
595 | void mangleMemberExpr(const Expr *base, bool isArrow, |
596 | NestedNameSpecifier *qualifier, |
597 | NamedDecl *firstQualifierLookup, |
598 | DeclarationName name, |
599 | const TemplateArgumentLoc *TemplateArgs, |
600 | unsigned NumTemplateArgs, |
601 | unsigned knownArity); |
602 | void mangleCastExpression(const Expr *E, StringRef CastEncoding); |
603 | void mangleInitListElements(const InitListExpr *InitList); |
604 | void mangleRequirement(SourceLocation RequiresExprLoc, |
605 | const concepts::Requirement *Req); |
606 | void mangleExpression(const Expr *E, unsigned Arity = UnknownArity, |
607 | bool AsTemplateArg = false); |
608 | void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom); |
609 | void mangleCXXDtorType(CXXDtorType T); |
610 | |
611 | struct TemplateArgManglingInfo; |
612 | void mangleTemplateArgs(TemplateName TN, |
613 | const TemplateArgumentLoc *TemplateArgs, |
614 | unsigned NumTemplateArgs); |
615 | void mangleTemplateArgs(TemplateName TN, ArrayRef<TemplateArgument> Args); |
616 | void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL); |
617 | void mangleTemplateArg(TemplateArgManglingInfo &Info, unsigned Index, |
618 | TemplateArgument A); |
619 | void mangleTemplateArg(TemplateArgument A, bool NeedExactType); |
620 | void mangleTemplateArgExpr(const Expr *E); |
621 | void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel, |
622 | bool NeedExactType = false); |
623 | |
624 | void mangleTemplateParameter(unsigned Depth, unsigned Index); |
625 | |
626 | void mangleFunctionParam(const ParmVarDecl *parm); |
627 | |
628 | void writeAbiTags(const NamedDecl *ND, |
629 | const AbiTagList *AdditionalAbiTags); |
630 | |
631 | // Returns sorted unique list of ABI tags. |
632 | AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD); |
633 | // Returns sorted unique list of ABI tags. |
634 | AbiTagList makeVariableTypeTags(const VarDecl *VD); |
635 | }; |
636 | |
637 | } |
638 | |
639 | NamespaceDecl *ItaniumMangleContextImpl::getStdNamespace() { |
640 | if (!StdNamespace) { |
641 | StdNamespace = NamespaceDecl::Create( |
642 | C&: getASTContext(), DC: getASTContext().getTranslationUnitDecl(), |
643 | /*Inline=*/false, StartLoc: SourceLocation(), IdLoc: SourceLocation(), |
644 | Id: &getASTContext().Idents.get(Name: "std" ), |
645 | /*PrevDecl=*/nullptr, /*Nested=*/false); |
646 | StdNamespace->setImplicit(); |
647 | } |
648 | return StdNamespace; |
649 | } |
650 | |
651 | /// Retrieve the declaration context that should be used when mangling the given |
652 | /// declaration. |
653 | const DeclContext * |
654 | ItaniumMangleContextImpl::getEffectiveDeclContext(const Decl *D) { |
655 | // The ABI assumes that lambda closure types that occur within |
656 | // default arguments live in the context of the function. However, due to |
657 | // the way in which Clang parses and creates function declarations, this is |
658 | // not the case: the lambda closure type ends up living in the context |
659 | // where the function itself resides, because the function declaration itself |
660 | // had not yet been created. Fix the context here. |
661 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: D)) { |
662 | if (RD->isLambda()) |
663 | if (ParmVarDecl *ContextParam = |
664 | dyn_cast_or_null<ParmVarDecl>(Val: RD->getLambdaContextDecl())) |
665 | return ContextParam->getDeclContext(); |
666 | } |
667 | |
668 | // Perform the same check for block literals. |
669 | if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: D)) { |
670 | if (ParmVarDecl *ContextParam = |
671 | dyn_cast_or_null<ParmVarDecl>(Val: BD->getBlockManglingContextDecl())) |
672 | return ContextParam->getDeclContext(); |
673 | } |
674 | |
675 | // On ARM and AArch64, the va_list tag is always mangled as if in the std |
676 | // namespace. We do not represent va_list as actually being in the std |
677 | // namespace in C because this would result in incorrect debug info in C, |
678 | // among other things. It is important for both languages to have the same |
679 | // mangling in order for -fsanitize=cfi-icall to work. |
680 | if (D == getASTContext().getVaListTagDecl()) { |
681 | const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); |
682 | if (T.isARM() || T.isThumb() || T.isAArch64()) |
683 | return getStdNamespace(); |
684 | } |
685 | |
686 | const DeclContext *DC = D->getDeclContext(); |
687 | if (isa<CapturedDecl>(Val: DC) || isa<OMPDeclareReductionDecl>(Val: DC) || |
688 | isa<OMPDeclareMapperDecl>(Val: DC)) { |
689 | return getEffectiveDeclContext(D: cast<Decl>(Val: DC)); |
690 | } |
691 | |
692 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) |
693 | if (VD->isExternC()) |
694 | return getASTContext().getTranslationUnitDecl(); |
695 | |
696 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
697 | if (FD->isExternC()) |
698 | return getASTContext().getTranslationUnitDecl(); |
699 | // Member-like constrained friends are mangled as if they were members of |
700 | // the enclosing class. |
701 | if (FD->isMemberLikeConstrainedFriend() && |
702 | getASTContext().getLangOpts().getClangABICompat() > |
703 | LangOptions::ClangABI::Ver17) |
704 | return D->getLexicalDeclContext()->getRedeclContext(); |
705 | } |
706 | |
707 | return DC->getRedeclContext(); |
708 | } |
709 | |
710 | bool ItaniumMangleContextImpl::isInternalLinkageDecl(const NamedDecl *ND) { |
711 | if (ND && ND->getFormalLinkage() == Linkage::Internal && |
712 | !ND->isExternallyVisible() && |
713 | getEffectiveDeclContext(D: ND)->isFileContext() && |
714 | !ND->isInAnonymousNamespace()) |
715 | return true; |
716 | return false; |
717 | } |
718 | |
719 | // Check if this Function Decl needs a unique internal linkage name. |
720 | bool ItaniumMangleContextImpl::isUniqueInternalLinkageDecl( |
721 | const NamedDecl *ND) { |
722 | if (!NeedsUniqueInternalLinkageNames || !ND) |
723 | return false; |
724 | |
725 | const auto *FD = dyn_cast<FunctionDecl>(Val: ND); |
726 | if (!FD) |
727 | return false; |
728 | |
729 | // For C functions without prototypes, return false as their |
730 | // names should not be mangled. |
731 | if (!FD->getType()->getAs<FunctionProtoType>()) |
732 | return false; |
733 | |
734 | if (isInternalLinkageDecl(ND)) |
735 | return true; |
736 | |
737 | return false; |
738 | } |
739 | |
740 | bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { |
741 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
742 | LanguageLinkage L = FD->getLanguageLinkage(); |
743 | // Overloadable functions need mangling. |
744 | if (FD->hasAttr<OverloadableAttr>()) |
745 | return true; |
746 | |
747 | // "main" is not mangled. |
748 | if (FD->isMain()) |
749 | return false; |
750 | |
751 | // The Windows ABI expects that we would never mangle "typical" |
752 | // user-defined entry points regardless of visibility or freestanding-ness. |
753 | // |
754 | // N.B. This is distinct from asking about "main". "main" has a lot of |
755 | // special rules associated with it in the standard while these |
756 | // user-defined entry points are outside of the purview of the standard. |
757 | // For example, there can be only one definition for "main" in a standards |
758 | // compliant program; however nothing forbids the existence of wmain and |
759 | // WinMain in the same translation unit. |
760 | if (FD->isMSVCRTEntryPoint()) |
761 | return false; |
762 | |
763 | // C++ functions and those whose names are not a simple identifier need |
764 | // mangling. |
765 | if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) |
766 | return true; |
767 | |
768 | // C functions are not mangled. |
769 | if (L == CLanguageLinkage) |
770 | return false; |
771 | } |
772 | |
773 | // Otherwise, no mangling is done outside C++ mode. |
774 | if (!getASTContext().getLangOpts().CPlusPlus) |
775 | return false; |
776 | |
777 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
778 | // Decompositions are mangled. |
779 | if (isa<DecompositionDecl>(Val: VD)) |
780 | return true; |
781 | |
782 | // C variables are not mangled. |
783 | if (VD->isExternC()) |
784 | return false; |
785 | |
786 | // Variables at global scope are not mangled unless they have internal |
787 | // linkage or are specializations or are attached to a named module. |
788 | const DeclContext *DC = getEffectiveDeclContext(D); |
789 | // Check for extern variable declared locally. |
790 | if (DC->isFunctionOrMethod() && D->hasLinkage()) |
791 | while (!DC->isFileContext()) |
792 | DC = getEffectiveParentContext(DC); |
793 | if (DC->isTranslationUnit() && D->getFormalLinkage() != Linkage::Internal && |
794 | !CXXNameMangler::shouldHaveAbiTags(C&: *this, VD) && |
795 | !isa<VarTemplateSpecializationDecl>(Val: VD) && |
796 | !VD->getOwningModuleForLinkage()) |
797 | return false; |
798 | } |
799 | |
800 | return true; |
801 | } |
802 | |
803 | void CXXNameMangler::writeAbiTags(const NamedDecl *ND, |
804 | const AbiTagList *AdditionalAbiTags) { |
805 | assert(AbiTags && "require AbiTagState" ); |
806 | AbiTags->write(Out, ND, AdditionalAbiTags: DisableDerivedAbiTags ? nullptr : AdditionalAbiTags); |
807 | } |
808 | |
809 | void CXXNameMangler::mangleSourceNameWithAbiTags( |
810 | const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) { |
811 | mangleSourceName(II: ND->getIdentifier()); |
812 | writeAbiTags(ND, AdditionalAbiTags); |
813 | } |
814 | |
815 | void CXXNameMangler::mangle(GlobalDecl GD) { |
816 | // <mangled-name> ::= _Z <encoding> |
817 | // ::= <data name> |
818 | // ::= <special-name> |
819 | Out << "_Z" ; |
820 | if (isa<FunctionDecl>(Val: GD.getDecl())) |
821 | mangleFunctionEncoding(GD); |
822 | else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl, |
823 | BindingDecl>(Val: GD.getDecl())) |
824 | mangleName(GD); |
825 | else if (const IndirectFieldDecl *IFD = |
826 | dyn_cast<IndirectFieldDecl>(Val: GD.getDecl())) |
827 | mangleName(GD: IFD->getAnonField()); |
828 | else |
829 | llvm_unreachable("unexpected kind of global decl" ); |
830 | } |
831 | |
832 | void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) { |
833 | const FunctionDecl *FD = cast<FunctionDecl>(Val: GD.getDecl()); |
834 | // <encoding> ::= <function name> <bare-function-type> |
835 | |
836 | // Don't mangle in the type if this isn't a decl we should typically mangle. |
837 | if (!Context.shouldMangleDeclName(D: FD)) { |
838 | mangleName(GD); |
839 | return; |
840 | } |
841 | |
842 | AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD); |
843 | if (ReturnTypeAbiTags.empty()) { |
844 | // There are no tags for return type, the simplest case. Enter the function |
845 | // parameter scope before mangling the name, because a template using |
846 | // constrained `auto` can have references to its parameters within its |
847 | // template argument list: |
848 | // |
849 | // template<typename T> void f(T x, C<decltype(x)> auto) |
850 | // ... is mangled as ... |
851 | // template<typename T, C<decltype(param 1)> U> void f(T, U) |
852 | FunctionTypeDepthState Saved = FunctionTypeDepth.push(); |
853 | mangleName(GD); |
854 | FunctionTypeDepth.pop(saved: Saved); |
855 | mangleFunctionEncodingBareType(FD); |
856 | return; |
857 | } |
858 | |
859 | // Mangle function name and encoding to temporary buffer. |
860 | // We have to output name and encoding to the same mangler to get the same |
861 | // substitution as it will be in final mangling. |
862 | SmallString<256> FunctionEncodingBuf; |
863 | llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf); |
864 | CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream); |
865 | // Output name of the function. |
866 | FunctionEncodingMangler.disableDerivedAbiTags(); |
867 | |
868 | FunctionTypeDepthState Saved = FunctionTypeDepth.push(); |
869 | FunctionEncodingMangler.mangleNameWithAbiTags(GD: FD, AdditionalAbiTags: nullptr); |
870 | FunctionTypeDepth.pop(saved: Saved); |
871 | |
872 | // Remember length of the function name in the buffer. |
873 | size_t EncodingPositionStart = FunctionEncodingStream.str().size(); |
874 | FunctionEncodingMangler.mangleFunctionEncodingBareType(FD); |
875 | |
876 | // Get tags from return type that are not present in function name or |
877 | // encoding. |
878 | const AbiTagList &UsedAbiTags = |
879 | FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
880 | AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size()); |
881 | AdditionalAbiTags.erase( |
882 | CS: std::set_difference(first1: ReturnTypeAbiTags.begin(), last1: ReturnTypeAbiTags.end(), |
883 | first2: UsedAbiTags.begin(), last2: UsedAbiTags.end(), |
884 | result: AdditionalAbiTags.begin()), |
885 | CE: AdditionalAbiTags.end()); |
886 | |
887 | // Output name with implicit tags and function encoding from temporary buffer. |
888 | Saved = FunctionTypeDepth.push(); |
889 | mangleNameWithAbiTags(GD: FD, AdditionalAbiTags: &AdditionalAbiTags); |
890 | FunctionTypeDepth.pop(saved: Saved); |
891 | Out << FunctionEncodingStream.str().substr(Start: EncodingPositionStart); |
892 | |
893 | // Function encoding could create new substitutions so we have to add |
894 | // temp mangled substitutions to main mangler. |
895 | extendSubstitutions(Other: &FunctionEncodingMangler); |
896 | } |
897 | |
898 | void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) { |
899 | if (FD->hasAttr<EnableIfAttr>()) { |
900 | FunctionTypeDepthState Saved = FunctionTypeDepth.push(); |
901 | Out << "Ua9enable_ifI" ; |
902 | for (AttrVec::const_iterator I = FD->getAttrs().begin(), |
903 | E = FD->getAttrs().end(); |
904 | I != E; ++I) { |
905 | EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(Val: *I); |
906 | if (!EIA) |
907 | continue; |
908 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
909 | // Prior to Clang 12, we hardcoded the X/E around enable-if's argument, |
910 | // even though <template-arg> should not include an X/E around |
911 | // <expr-primary>. |
912 | Out << 'X'; |
913 | mangleExpression(E: EIA->getCond()); |
914 | Out << 'E'; |
915 | } else { |
916 | mangleTemplateArgExpr(E: EIA->getCond()); |
917 | } |
918 | } |
919 | Out << 'E'; |
920 | FunctionTypeDepth.pop(saved: Saved); |
921 | } |
922 | |
923 | // When mangling an inheriting constructor, the bare function type used is |
924 | // that of the inherited constructor. |
925 | if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: FD)) |
926 | if (auto Inherited = CD->getInheritedConstructor()) |
927 | FD = Inherited.getConstructor(); |
928 | |
929 | // Whether the mangling of a function type includes the return type depends on |
930 | // the context and the nature of the function. The rules for deciding whether |
931 | // the return type is included are: |
932 | // |
933 | // 1. Template functions (names or types) have return types encoded, with |
934 | // the exceptions listed below. |
935 | // 2. Function types not appearing as part of a function name mangling, |
936 | // e.g. parameters, pointer types, etc., have return type encoded, with the |
937 | // exceptions listed below. |
938 | // 3. Non-template function names do not have return types encoded. |
939 | // |
940 | // The exceptions mentioned in (1) and (2) above, for which the return type is |
941 | // never included, are |
942 | // 1. Constructors. |
943 | // 2. Destructors. |
944 | // 3. Conversion operator functions, e.g. operator int. |
945 | bool MangleReturnType = false; |
946 | if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { |
947 | if (!(isa<CXXConstructorDecl>(Val: FD) || isa<CXXDestructorDecl>(Val: FD) || |
948 | isa<CXXConversionDecl>(Val: FD))) |
949 | MangleReturnType = true; |
950 | |
951 | // Mangle the type of the primary template. |
952 | FD = PrimaryTemplate->getTemplatedDecl(); |
953 | } |
954 | |
955 | mangleBareFunctionType(T: FD->getType()->castAs<FunctionProtoType>(), |
956 | MangleReturnType, FD); |
957 | } |
958 | |
959 | /// Return whether a given namespace is the 'std' namespace. |
960 | bool CXXNameMangler::isStd(const NamespaceDecl *NS) { |
961 | if (!Context.getEffectiveParentContext(DC: NS)->isTranslationUnit()) |
962 | return false; |
963 | |
964 | const IdentifierInfo *II = NS->getFirstDecl()->getIdentifier(); |
965 | return II && II->isStr(Str: "std" ); |
966 | } |
967 | |
968 | // isStdNamespace - Return whether a given decl context is a toplevel 'std' |
969 | // namespace. |
970 | bool CXXNameMangler::isStdNamespace(const DeclContext *DC) { |
971 | if (!DC->isNamespace()) |
972 | return false; |
973 | |
974 | return isStd(NS: cast<NamespaceDecl>(Val: DC)); |
975 | } |
976 | |
977 | static const GlobalDecl |
978 | isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) { |
979 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
980 | // Check if we have a function template. |
981 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: ND)) { |
982 | if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { |
983 | TemplateArgs = FD->getTemplateSpecializationArgs(); |
984 | return GD.getWithDecl(D: TD); |
985 | } |
986 | } |
987 | |
988 | // Check if we have a class template. |
989 | if (const ClassTemplateSpecializationDecl *Spec = |
990 | dyn_cast<ClassTemplateSpecializationDecl>(Val: ND)) { |
991 | TemplateArgs = &Spec->getTemplateArgs(); |
992 | return GD.getWithDecl(D: Spec->getSpecializedTemplate()); |
993 | } |
994 | |
995 | // Check if we have a variable template. |
996 | if (const VarTemplateSpecializationDecl *Spec = |
997 | dyn_cast<VarTemplateSpecializationDecl>(Val: ND)) { |
998 | TemplateArgs = &Spec->getTemplateArgs(); |
999 | return GD.getWithDecl(D: Spec->getSpecializedTemplate()); |
1000 | } |
1001 | |
1002 | return GlobalDecl(); |
1003 | } |
1004 | |
1005 | static TemplateName asTemplateName(GlobalDecl GD) { |
1006 | const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(Val: GD.getDecl()); |
1007 | return TemplateName(const_cast<TemplateDecl*>(TD)); |
1008 | } |
1009 | |
1010 | void CXXNameMangler::mangleName(GlobalDecl GD) { |
1011 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
1012 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: ND)) { |
1013 | // Variables should have implicit tags from its type. |
1014 | AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD); |
1015 | if (VariableTypeAbiTags.empty()) { |
1016 | // Simple case no variable type tags. |
1017 | mangleNameWithAbiTags(GD: VD, AdditionalAbiTags: nullptr); |
1018 | return; |
1019 | } |
1020 | |
1021 | // Mangle variable name to null stream to collect tags. |
1022 | llvm::raw_null_ostream NullOutStream; |
1023 | CXXNameMangler VariableNameMangler(*this, NullOutStream); |
1024 | VariableNameMangler.disableDerivedAbiTags(); |
1025 | VariableNameMangler.mangleNameWithAbiTags(GD: VD, AdditionalAbiTags: nullptr); |
1026 | |
1027 | // Get tags from variable type that are not present in its name. |
1028 | const AbiTagList &UsedAbiTags = |
1029 | VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
1030 | AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size()); |
1031 | AdditionalAbiTags.erase( |
1032 | CS: std::set_difference(first1: VariableTypeAbiTags.begin(), |
1033 | last1: VariableTypeAbiTags.end(), first2: UsedAbiTags.begin(), |
1034 | last2: UsedAbiTags.end(), result: AdditionalAbiTags.begin()), |
1035 | CE: AdditionalAbiTags.end()); |
1036 | |
1037 | // Output name with implicit tags. |
1038 | mangleNameWithAbiTags(GD: VD, AdditionalAbiTags: &AdditionalAbiTags); |
1039 | } else { |
1040 | mangleNameWithAbiTags(GD, AdditionalAbiTags: nullptr); |
1041 | } |
1042 | } |
1043 | |
1044 | const RecordDecl *CXXNameMangler::GetLocalClassDecl(const Decl *D) { |
1045 | const DeclContext *DC = Context.getEffectiveDeclContext(D); |
1046 | while (!DC->isNamespace() && !DC->isTranslationUnit()) { |
1047 | if (isLocalContainerContext(DC)) |
1048 | return dyn_cast<RecordDecl>(Val: D); |
1049 | D = cast<Decl>(Val: DC); |
1050 | DC = Context.getEffectiveDeclContext(D); |
1051 | } |
1052 | return nullptr; |
1053 | } |
1054 | |
1055 | void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD, |
1056 | const AbiTagList *AdditionalAbiTags) { |
1057 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
1058 | // <name> ::= [<module-name>] <nested-name> |
1059 | // ::= [<module-name>] <unscoped-name> |
1060 | // ::= [<module-name>] <unscoped-template-name> <template-args> |
1061 | // ::= <local-name> |
1062 | // |
1063 | const DeclContext *DC = Context.getEffectiveDeclContext(D: ND); |
1064 | bool IsLambda = isLambda(ND); |
1065 | |
1066 | // If this is an extern variable declared locally, the relevant DeclContext |
1067 | // is that of the containing namespace, or the translation unit. |
1068 | // FIXME: This is a hack; extern variables declared locally should have |
1069 | // a proper semantic declaration context! |
1070 | if (isLocalContainerContext(DC) && ND->hasLinkage() && !IsLambda) |
1071 | while (!DC->isNamespace() && !DC->isTranslationUnit()) |
1072 | DC = Context.getEffectiveParentContext(DC); |
1073 | else if (GetLocalClassDecl(D: ND) && |
1074 | (!IsLambda || isCompatibleWith(Ver: LangOptions::ClangABI::Ver18))) { |
1075 | mangleLocalName(GD, AdditionalAbiTags); |
1076 | return; |
1077 | } |
1078 | |
1079 | assert(!isa<LinkageSpecDecl>(DC) && "context cannot be LinkageSpecDecl" ); |
1080 | |
1081 | // Closures can require a nested-name mangling even if they're semantically |
1082 | // in the global namespace. |
1083 | if (const NamedDecl *PrefixND = getClosurePrefix(ND)) { |
1084 | mangleNestedNameWithClosurePrefix(GD, PrefixND, AdditionalAbiTags); |
1085 | return; |
1086 | } |
1087 | |
1088 | if (isLocalContainerContext(DC)) { |
1089 | mangleLocalName(GD, AdditionalAbiTags); |
1090 | return; |
1091 | } |
1092 | |
1093 | if (DC->isTranslationUnit() || isStdNamespace(DC)) { |
1094 | // Check if we have a template. |
1095 | const TemplateArgumentList *TemplateArgs = nullptr; |
1096 | if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { |
1097 | mangleUnscopedTemplateName(GD: TD, DC, AdditionalAbiTags); |
1098 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
1099 | return; |
1100 | } |
1101 | |
1102 | mangleUnscopedName(GD, DC, AdditionalAbiTags); |
1103 | return; |
1104 | } |
1105 | |
1106 | mangleNestedName(GD, DC, AdditionalAbiTags); |
1107 | } |
1108 | |
1109 | void CXXNameMangler::mangleModuleName(const NamedDecl *ND) { |
1110 | if (ND->isExternallyVisible()) |
1111 | if (Module *M = ND->getOwningModuleForLinkage()) |
1112 | mangleModuleNamePrefix(Name: M->getPrimaryModuleInterfaceName()); |
1113 | } |
1114 | |
1115 | // <module-name> ::= <module-subname> |
1116 | // ::= <module-name> <module-subname> |
1117 | // ::= <substitution> |
1118 | // <module-subname> ::= W <source-name> |
1119 | // ::= W P <source-name> |
1120 | void CXXNameMangler::mangleModuleNamePrefix(StringRef Name, bool IsPartition) { |
1121 | // <substitution> ::= S <seq-id> _ |
1122 | auto It = ModuleSubstitutions.find(Val: Name); |
1123 | if (It != ModuleSubstitutions.end()) { |
1124 | Out << 'S'; |
1125 | mangleSeqID(SeqID: It->second); |
1126 | return; |
1127 | } |
1128 | |
1129 | // FIXME: Preserve hierarchy in module names rather than flattening |
1130 | // them to strings; use Module*s as substitution keys. |
1131 | auto Parts = Name.rsplit(Separator: '.'); |
1132 | if (Parts.second.empty()) |
1133 | Parts.second = Parts.first; |
1134 | else { |
1135 | mangleModuleNamePrefix(Name: Parts.first, IsPartition); |
1136 | IsPartition = false; |
1137 | } |
1138 | |
1139 | Out << 'W'; |
1140 | if (IsPartition) |
1141 | Out << 'P'; |
1142 | Out << Parts.second.size() << Parts.second; |
1143 | ModuleSubstitutions.insert(KV: {Name, SeqID++}); |
1144 | } |
1145 | |
1146 | void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD, |
1147 | ArrayRef<TemplateArgument> Args) { |
1148 | const DeclContext *DC = Context.getEffectiveDeclContext(D: TD); |
1149 | |
1150 | if (DC->isTranslationUnit() || isStdNamespace(DC)) { |
1151 | mangleUnscopedTemplateName(GD: TD, DC, AdditionalAbiTags: nullptr); |
1152 | mangleTemplateArgs(TN: asTemplateName(GD: TD), Args); |
1153 | } else { |
1154 | mangleNestedName(TD, Args); |
1155 | } |
1156 | } |
1157 | |
1158 | void CXXNameMangler::mangleUnscopedName(GlobalDecl GD, const DeclContext *DC, |
1159 | const AbiTagList *AdditionalAbiTags) { |
1160 | // <unscoped-name> ::= <unqualified-name> |
1161 | // ::= St <unqualified-name> # ::std:: |
1162 | |
1163 | assert(!isa<LinkageSpecDecl>(DC) && "unskipped LinkageSpecDecl" ); |
1164 | if (isStdNamespace(DC)) |
1165 | Out << "St" ; |
1166 | |
1167 | mangleUnqualifiedName(GD, DC, AdditionalAbiTags); |
1168 | } |
1169 | |
1170 | void CXXNameMangler::mangleUnscopedTemplateName( |
1171 | GlobalDecl GD, const DeclContext *DC, const AbiTagList *AdditionalAbiTags) { |
1172 | const TemplateDecl *ND = cast<TemplateDecl>(Val: GD.getDecl()); |
1173 | // <unscoped-template-name> ::= <unscoped-name> |
1174 | // ::= <substitution> |
1175 | if (mangleSubstitution(ND)) |
1176 | return; |
1177 | |
1178 | // <template-template-param> ::= <template-param> |
1179 | if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: ND)) { |
1180 | assert(!AdditionalAbiTags && |
1181 | "template template param cannot have abi tags" ); |
1182 | mangleTemplateParameter(Depth: TTP->getDepth(), Index: TTP->getIndex()); |
1183 | } else if (isa<BuiltinTemplateDecl>(Val: ND) || isa<ConceptDecl>(Val: ND)) { |
1184 | mangleUnscopedName(GD, DC, AdditionalAbiTags); |
1185 | } else { |
1186 | mangleUnscopedName(GD: GD.getWithDecl(D: ND->getTemplatedDecl()), DC, |
1187 | AdditionalAbiTags); |
1188 | } |
1189 | |
1190 | addSubstitution(ND); |
1191 | } |
1192 | |
1193 | void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { |
1194 | // ABI: |
1195 | // Floating-point literals are encoded using a fixed-length |
1196 | // lowercase hexadecimal string corresponding to the internal |
1197 | // representation (IEEE on Itanium), high-order bytes first, |
1198 | // without leading zeroes. For example: "Lf bf800000 E" is -1.0f |
1199 | // on Itanium. |
1200 | // The 'without leading zeroes' thing seems to be an editorial |
1201 | // mistake; see the discussion on cxx-abi-dev beginning on |
1202 | // 2012-01-16. |
1203 | |
1204 | // Our requirements here are just barely weird enough to justify |
1205 | // using a custom algorithm instead of post-processing APInt::toString(). |
1206 | |
1207 | llvm::APInt valueBits = f.bitcastToAPInt(); |
1208 | unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; |
1209 | assert(numCharacters != 0); |
1210 | |
1211 | // Allocate a buffer of the right number of characters. |
1212 | SmallVector<char, 20> buffer(numCharacters); |
1213 | |
1214 | // Fill the buffer left-to-right. |
1215 | for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { |
1216 | // The bit-index of the next hex digit. |
1217 | unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); |
1218 | |
1219 | // Project out 4 bits starting at 'digitIndex'. |
1220 | uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64]; |
1221 | hexDigit >>= (digitBitIndex % 64); |
1222 | hexDigit &= 0xF; |
1223 | |
1224 | // Map that over to a lowercase hex digit. |
1225 | static const char charForHex[16] = { |
1226 | '0', '1', '2', '3', '4', '5', '6', '7', |
1227 | '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' |
1228 | }; |
1229 | buffer[stringIndex] = charForHex[hexDigit]; |
1230 | } |
1231 | |
1232 | Out.write(Ptr: buffer.data(), Size: numCharacters); |
1233 | } |
1234 | |
1235 | void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) { |
1236 | Out << 'L'; |
1237 | mangleType(T); |
1238 | mangleFloat(f: V); |
1239 | Out << 'E'; |
1240 | } |
1241 | |
1242 | void CXXNameMangler::mangleFixedPointLiteral() { |
1243 | DiagnosticsEngine &Diags = Context.getDiags(); |
1244 | unsigned DiagID = Diags.getCustomDiagID( |
1245 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle fixed point literals yet" ); |
1246 | Diags.Report(DiagID); |
1247 | } |
1248 | |
1249 | void CXXNameMangler::mangleNullPointer(QualType T) { |
1250 | // <expr-primary> ::= L <type> 0 E |
1251 | Out << 'L'; |
1252 | mangleType(T); |
1253 | Out << "0E" ; |
1254 | } |
1255 | |
1256 | void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { |
1257 | if (Value.isSigned() && Value.isNegative()) { |
1258 | Out << 'n'; |
1259 | Value.abs().print(OS&: Out, /*signed*/ isSigned: false); |
1260 | } else { |
1261 | Value.print(OS&: Out, /*signed*/ isSigned: false); |
1262 | } |
1263 | } |
1264 | |
1265 | void CXXNameMangler::mangleNumber(int64_t Number) { |
1266 | // <number> ::= [n] <non-negative decimal integer> |
1267 | if (Number < 0) { |
1268 | Out << 'n'; |
1269 | Number = -Number; |
1270 | } |
1271 | |
1272 | Out << Number; |
1273 | } |
1274 | |
1275 | void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { |
1276 | // <call-offset> ::= h <nv-offset> _ |
1277 | // ::= v <v-offset> _ |
1278 | // <nv-offset> ::= <offset number> # non-virtual base override |
1279 | // <v-offset> ::= <offset number> _ <virtual offset number> |
1280 | // # virtual base override, with vcall offset |
1281 | if (!Virtual) { |
1282 | Out << 'h'; |
1283 | mangleNumber(Number: NonVirtual); |
1284 | Out << '_'; |
1285 | return; |
1286 | } |
1287 | |
1288 | Out << 'v'; |
1289 | mangleNumber(Number: NonVirtual); |
1290 | Out << '_'; |
1291 | mangleNumber(Number: Virtual); |
1292 | Out << '_'; |
1293 | } |
1294 | |
1295 | void CXXNameMangler::manglePrefix(QualType type) { |
1296 | if (const auto *TST = type->getAs<TemplateSpecializationType>()) { |
1297 | if (!mangleSubstitution(T: QualType(TST, 0))) { |
1298 | mangleTemplatePrefix(Template: TST->getTemplateName()); |
1299 | |
1300 | // FIXME: GCC does not appear to mangle the template arguments when |
1301 | // the template in question is a dependent template name. Should we |
1302 | // emulate that badness? |
1303 | mangleTemplateArgs(TN: TST->getTemplateName(), Args: TST->template_arguments()); |
1304 | addSubstitution(T: QualType(TST, 0)); |
1305 | } |
1306 | } else if (const auto *DTST = |
1307 | type->getAs<DependentTemplateSpecializationType>()) { |
1308 | if (!mangleSubstitution(T: QualType(DTST, 0))) { |
1309 | TemplateName Template = getASTContext().getDependentTemplateName( |
1310 | NNS: DTST->getQualifier(), Name: DTST->getIdentifier()); |
1311 | mangleTemplatePrefix(Template); |
1312 | |
1313 | // FIXME: GCC does not appear to mangle the template arguments when |
1314 | // the template in question is a dependent template name. Should we |
1315 | // emulate that badness? |
1316 | mangleTemplateArgs(TN: Template, Args: DTST->template_arguments()); |
1317 | addSubstitution(T: QualType(DTST, 0)); |
1318 | } |
1319 | } else { |
1320 | // We use the QualType mangle type variant here because it handles |
1321 | // substitutions. |
1322 | mangleType(T: type); |
1323 | } |
1324 | } |
1325 | |
1326 | /// Mangle everything prior to the base-unresolved-name in an unresolved-name. |
1327 | /// |
1328 | /// \param recursive - true if this is being called recursively, |
1329 | /// i.e. if there is more prefix "to the right". |
1330 | void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, |
1331 | bool recursive) { |
1332 | |
1333 | // x, ::x |
1334 | // <unresolved-name> ::= [gs] <base-unresolved-name> |
1335 | |
1336 | // T::x / decltype(p)::x |
1337 | // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name> |
1338 | |
1339 | // T::N::x /decltype(p)::N::x |
1340 | // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E |
1341 | // <base-unresolved-name> |
1342 | |
1343 | // A::x, N::y, A<T>::z; "gs" means leading "::" |
1344 | // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E |
1345 | // <base-unresolved-name> |
1346 | |
1347 | switch (qualifier->getKind()) { |
1348 | case NestedNameSpecifier::Global: |
1349 | Out << "gs" ; |
1350 | |
1351 | // We want an 'sr' unless this is the entire NNS. |
1352 | if (recursive) |
1353 | Out << "sr" ; |
1354 | |
1355 | // We never want an 'E' here. |
1356 | return; |
1357 | |
1358 | case NestedNameSpecifier::Super: |
1359 | llvm_unreachable("Can't mangle __super specifier" ); |
1360 | |
1361 | case NestedNameSpecifier::Namespace: |
1362 | if (qualifier->getPrefix()) |
1363 | mangleUnresolvedPrefix(qualifier: qualifier->getPrefix(), |
1364 | /*recursive*/ true); |
1365 | else |
1366 | Out << "sr" ; |
1367 | mangleSourceNameWithAbiTags(ND: qualifier->getAsNamespace()); |
1368 | break; |
1369 | case NestedNameSpecifier::NamespaceAlias: |
1370 | if (qualifier->getPrefix()) |
1371 | mangleUnresolvedPrefix(qualifier: qualifier->getPrefix(), |
1372 | /*recursive*/ true); |
1373 | else |
1374 | Out << "sr" ; |
1375 | mangleSourceNameWithAbiTags(ND: qualifier->getAsNamespaceAlias()); |
1376 | break; |
1377 | |
1378 | case NestedNameSpecifier::TypeSpec: |
1379 | case NestedNameSpecifier::TypeSpecWithTemplate: { |
1380 | const Type *type = qualifier->getAsType(); |
1381 | |
1382 | // We only want to use an unresolved-type encoding if this is one of: |
1383 | // - a decltype |
1384 | // - a template type parameter |
1385 | // - a template template parameter with arguments |
1386 | // In all of these cases, we should have no prefix. |
1387 | if (qualifier->getPrefix()) { |
1388 | mangleUnresolvedPrefix(qualifier: qualifier->getPrefix(), |
1389 | /*recursive*/ true); |
1390 | } else { |
1391 | // Otherwise, all the cases want this. |
1392 | Out << "sr" ; |
1393 | } |
1394 | |
1395 | if (mangleUnresolvedTypeOrSimpleId(DestroyedType: QualType(type, 0), Prefix: recursive ? "N" : "" )) |
1396 | return; |
1397 | |
1398 | break; |
1399 | } |
1400 | |
1401 | case NestedNameSpecifier::Identifier: |
1402 | // Member expressions can have these without prefixes. |
1403 | if (qualifier->getPrefix()) |
1404 | mangleUnresolvedPrefix(qualifier: qualifier->getPrefix(), |
1405 | /*recursive*/ true); |
1406 | else |
1407 | Out << "sr" ; |
1408 | |
1409 | mangleSourceName(II: qualifier->getAsIdentifier()); |
1410 | // An Identifier has no type information, so we can't emit abi tags for it. |
1411 | break; |
1412 | } |
1413 | |
1414 | // If this was the innermost part of the NNS, and we fell out to |
1415 | // here, append an 'E'. |
1416 | if (!recursive) |
1417 | Out << 'E'; |
1418 | } |
1419 | |
1420 | /// Mangle an unresolved-name, which is generally used for names which |
1421 | /// weren't resolved to specific entities. |
1422 | void CXXNameMangler::mangleUnresolvedName( |
1423 | NestedNameSpecifier *qualifier, DeclarationName name, |
1424 | const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs, |
1425 | unsigned knownArity) { |
1426 | if (qualifier) mangleUnresolvedPrefix(qualifier); |
1427 | switch (name.getNameKind()) { |
1428 | // <base-unresolved-name> ::= <simple-id> |
1429 | case DeclarationName::Identifier: |
1430 | mangleSourceName(II: name.getAsIdentifierInfo()); |
1431 | break; |
1432 | // <base-unresolved-name> ::= dn <destructor-name> |
1433 | case DeclarationName::CXXDestructorName: |
1434 | Out << "dn" ; |
1435 | mangleUnresolvedTypeOrSimpleId(DestroyedType: name.getCXXNameType()); |
1436 | break; |
1437 | // <base-unresolved-name> ::= on <operator-name> |
1438 | case DeclarationName::CXXConversionFunctionName: |
1439 | case DeclarationName::CXXLiteralOperatorName: |
1440 | case DeclarationName::CXXOperatorName: |
1441 | Out << "on" ; |
1442 | mangleOperatorName(Name: name, Arity: knownArity); |
1443 | break; |
1444 | case DeclarationName::CXXConstructorName: |
1445 | llvm_unreachable("Can't mangle a constructor name!" ); |
1446 | case DeclarationName::CXXUsingDirective: |
1447 | llvm_unreachable("Can't mangle a using directive name!" ); |
1448 | case DeclarationName::CXXDeductionGuideName: |
1449 | llvm_unreachable("Can't mangle a deduction guide name!" ); |
1450 | case DeclarationName::ObjCMultiArgSelector: |
1451 | case DeclarationName::ObjCOneArgSelector: |
1452 | case DeclarationName::ObjCZeroArgSelector: |
1453 | llvm_unreachable("Can't mangle Objective-C selector names here!" ); |
1454 | } |
1455 | |
1456 | // The <simple-id> and on <operator-name> productions end in an optional |
1457 | // <template-args>. |
1458 | if (TemplateArgs) |
1459 | mangleTemplateArgs(TN: TemplateName(), TemplateArgs, NumTemplateArgs); |
1460 | } |
1461 | |
1462 | void CXXNameMangler::mangleUnqualifiedName( |
1463 | GlobalDecl GD, DeclarationName Name, const DeclContext *DC, |
1464 | unsigned KnownArity, const AbiTagList *AdditionalAbiTags) { |
1465 | const NamedDecl *ND = cast_or_null<NamedDecl>(Val: GD.getDecl()); |
1466 | // <unqualified-name> ::= [<module-name>] [F] <operator-name> |
1467 | // ::= <ctor-dtor-name> |
1468 | // ::= [<module-name>] [F] <source-name> |
1469 | // ::= [<module-name>] DC <source-name>* E |
1470 | |
1471 | if (ND && DC && DC->isFileContext()) |
1472 | mangleModuleName(ND); |
1473 | |
1474 | // A member-like constrained friend is mangled with a leading 'F'. |
1475 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
1476 | auto *FD = dyn_cast<FunctionDecl>(Val: ND); |
1477 | auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: ND); |
1478 | if ((FD && FD->isMemberLikeConstrainedFriend()) || |
1479 | (FTD && FTD->getTemplatedDecl()->isMemberLikeConstrainedFriend())) { |
1480 | if (!isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) |
1481 | Out << 'F'; |
1482 | } |
1483 | |
1484 | unsigned Arity = KnownArity; |
1485 | switch (Name.getNameKind()) { |
1486 | case DeclarationName::Identifier: { |
1487 | const IdentifierInfo *II = Name.getAsIdentifierInfo(); |
1488 | |
1489 | // We mangle decomposition declarations as the names of their bindings. |
1490 | if (auto *DD = dyn_cast<DecompositionDecl>(Val: ND)) { |
1491 | // FIXME: Non-standard mangling for decomposition declarations: |
1492 | // |
1493 | // <unqualified-name> ::= DC <source-name>* E |
1494 | // |
1495 | // Proposed on cxx-abi-dev on 2016-08-12 |
1496 | Out << "DC" ; |
1497 | for (auto *BD : DD->bindings()) |
1498 | mangleSourceName(II: BD->getDeclName().getAsIdentifierInfo()); |
1499 | Out << 'E'; |
1500 | writeAbiTags(ND, AdditionalAbiTags); |
1501 | break; |
1502 | } |
1503 | |
1504 | if (auto *GD = dyn_cast<MSGuidDecl>(Val: ND)) { |
1505 | // We follow MSVC in mangling GUID declarations as if they were variables |
1506 | // with a particular reserved name. Continue the pretense here. |
1507 | SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab" )> GUID; |
1508 | llvm::raw_svector_ostream GUIDOS(GUID); |
1509 | Context.mangleMSGuidDecl(GD, GUIDOS); |
1510 | Out << GUID.size() << GUID; |
1511 | break; |
1512 | } |
1513 | |
1514 | if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(Val: ND)) { |
1515 | // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. |
1516 | Out << "TA" ; |
1517 | mangleValueInTemplateArg(T: TPO->getType().getUnqualifiedType(), |
1518 | V: TPO->getValue(), /*TopLevel=*/true); |
1519 | break; |
1520 | } |
1521 | |
1522 | if (II) { |
1523 | // Match GCC's naming convention for internal linkage symbols, for |
1524 | // symbols that are not actually visible outside of this TU. GCC |
1525 | // distinguishes between internal and external linkage symbols in |
1526 | // its mangling, to support cases like this that were valid C++ prior |
1527 | // to DR426: |
1528 | // |
1529 | // void test() { extern void foo(); } |
1530 | // static void foo(); |
1531 | // |
1532 | // Don't bother with the L marker for names in anonymous namespaces; the |
1533 | // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better |
1534 | // matches GCC anyway, because GCC does not treat anonymous namespaces as |
1535 | // implying internal linkage. |
1536 | if (Context.isInternalLinkageDecl(ND)) |
1537 | Out << 'L'; |
1538 | |
1539 | bool IsRegCall = FD && |
1540 | FD->getType()->castAs<FunctionType>()->getCallConv() == |
1541 | clang::CC_X86RegCall; |
1542 | bool IsDeviceStub = |
1543 | FD && FD->hasAttr<CUDAGlobalAttr>() && |
1544 | GD.getKernelReferenceKind() == KernelReferenceKind::Stub; |
1545 | if (IsDeviceStub) |
1546 | mangleDeviceStubName(II); |
1547 | else if (IsRegCall) |
1548 | mangleRegCallName(II); |
1549 | else |
1550 | mangleSourceName(II); |
1551 | |
1552 | writeAbiTags(ND, AdditionalAbiTags); |
1553 | break; |
1554 | } |
1555 | |
1556 | // Otherwise, an anonymous entity. We must have a declaration. |
1557 | assert(ND && "mangling empty name without declaration" ); |
1558 | |
1559 | if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Val: ND)) { |
1560 | if (NS->isAnonymousNamespace()) { |
1561 | // This is how gcc mangles these names. |
1562 | Out << "12_GLOBAL__N_1" ; |
1563 | break; |
1564 | } |
1565 | } |
1566 | |
1567 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: ND)) { |
1568 | // We must have an anonymous union or struct declaration. |
1569 | const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl(); |
1570 | |
1571 | // Itanium C++ ABI 5.1.2: |
1572 | // |
1573 | // For the purposes of mangling, the name of an anonymous union is |
1574 | // considered to be the name of the first named data member found by a |
1575 | // pre-order, depth-first, declaration-order walk of the data members of |
1576 | // the anonymous union. If there is no such data member (i.e., if all of |
1577 | // the data members in the union are unnamed), then there is no way for |
1578 | // a program to refer to the anonymous union, and there is therefore no |
1579 | // need to mangle its name. |
1580 | assert(RD->isAnonymousStructOrUnion() |
1581 | && "Expected anonymous struct or union!" ); |
1582 | const FieldDecl *FD = RD->findFirstNamedDataMember(); |
1583 | |
1584 | // It's actually possible for various reasons for us to get here |
1585 | // with an empty anonymous struct / union. Fortunately, it |
1586 | // doesn't really matter what name we generate. |
1587 | if (!FD) break; |
1588 | assert(FD->getIdentifier() && "Data member name isn't an identifier!" ); |
1589 | |
1590 | mangleSourceName(II: FD->getIdentifier()); |
1591 | // Not emitting abi tags: internal name anyway. |
1592 | break; |
1593 | } |
1594 | |
1595 | // Class extensions have no name as a category, and it's possible |
1596 | // for them to be the semantic parent of certain declarations |
1597 | // (primarily, tag decls defined within declarations). Such |
1598 | // declarations will always have internal linkage, so the name |
1599 | // doesn't really matter, but we shouldn't crash on them. For |
1600 | // safety, just handle all ObjC containers here. |
1601 | if (isa<ObjCContainerDecl>(Val: ND)) |
1602 | break; |
1603 | |
1604 | // We must have an anonymous struct. |
1605 | const TagDecl *TD = cast<TagDecl>(Val: ND); |
1606 | if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { |
1607 | assert(TD->getDeclContext() == D->getDeclContext() && |
1608 | "Typedef should not be in another decl context!" ); |
1609 | assert(D->getDeclName().getAsIdentifierInfo() && |
1610 | "Typedef was not named!" ); |
1611 | mangleSourceName(II: D->getDeclName().getAsIdentifierInfo()); |
1612 | assert(!AdditionalAbiTags && "Type cannot have additional abi tags" ); |
1613 | // Explicit abi tags are still possible; take from underlying type, not |
1614 | // from typedef. |
1615 | writeAbiTags(ND: TD, AdditionalAbiTags: nullptr); |
1616 | break; |
1617 | } |
1618 | |
1619 | // <unnamed-type-name> ::= <closure-type-name> |
1620 | // |
1621 | // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _ |
1622 | // <lambda-sig> ::= <template-param-decl>* <parameter-type>+ |
1623 | // # Parameter types or 'v' for 'void'. |
1624 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: TD)) { |
1625 | std::optional<unsigned> DeviceNumber = |
1626 | Context.getDiscriminatorOverride()(Context.getASTContext(), Record); |
1627 | |
1628 | // If we have a device-number via the discriminator, use that to mangle |
1629 | // the lambda, otherwise use the typical lambda-mangling-number. In either |
1630 | // case, a '0' should be mangled as a normal unnamed class instead of as a |
1631 | // lambda. |
1632 | if (Record->isLambda() && |
1633 | ((DeviceNumber && *DeviceNumber > 0) || |
1634 | (!DeviceNumber && Record->getLambdaManglingNumber() > 0))) { |
1635 | assert(!AdditionalAbiTags && |
1636 | "Lambda type cannot have additional abi tags" ); |
1637 | mangleLambda(Lambda: Record); |
1638 | break; |
1639 | } |
1640 | } |
1641 | |
1642 | if (TD->isExternallyVisible()) { |
1643 | unsigned UnnamedMangle = |
1644 | getASTContext().getManglingNumber(ND: TD, ForAuxTarget: Context.isAux()); |
1645 | Out << "Ut" ; |
1646 | if (UnnamedMangle > 1) |
1647 | Out << UnnamedMangle - 2; |
1648 | Out << '_'; |
1649 | writeAbiTags(ND: TD, AdditionalAbiTags); |
1650 | break; |
1651 | } |
1652 | |
1653 | // Get a unique id for the anonymous struct. If it is not a real output |
1654 | // ID doesn't matter so use fake one. |
1655 | unsigned AnonStructId = |
1656 | NullOut ? 0 |
1657 | : Context.getAnonymousStructId(D: TD, FD: dyn_cast<FunctionDecl>(Val: DC)); |
1658 | |
1659 | // Mangle it as a source name in the form |
1660 | // [n] $_<id> |
1661 | // where n is the length of the string. |
1662 | SmallString<8> Str; |
1663 | Str += "$_" ; |
1664 | Str += llvm::utostr(X: AnonStructId); |
1665 | |
1666 | Out << Str.size(); |
1667 | Out << Str; |
1668 | break; |
1669 | } |
1670 | |
1671 | case DeclarationName::ObjCZeroArgSelector: |
1672 | case DeclarationName::ObjCOneArgSelector: |
1673 | case DeclarationName::ObjCMultiArgSelector: |
1674 | llvm_unreachable("Can't mangle Objective-C selector names here!" ); |
1675 | |
1676 | case DeclarationName::CXXConstructorName: { |
1677 | const CXXRecordDecl *InheritedFrom = nullptr; |
1678 | TemplateName InheritedTemplateName; |
1679 | const TemplateArgumentList *InheritedTemplateArgs = nullptr; |
1680 | if (auto Inherited = |
1681 | cast<CXXConstructorDecl>(Val: ND)->getInheritedConstructor()) { |
1682 | InheritedFrom = Inherited.getConstructor()->getParent(); |
1683 | InheritedTemplateName = |
1684 | TemplateName(Inherited.getConstructor()->getPrimaryTemplate()); |
1685 | InheritedTemplateArgs = |
1686 | Inherited.getConstructor()->getTemplateSpecializationArgs(); |
1687 | } |
1688 | |
1689 | if (ND == Structor) |
1690 | // If the named decl is the C++ constructor we're mangling, use the type |
1691 | // we were given. |
1692 | mangleCXXCtorType(T: static_cast<CXXCtorType>(StructorType), InheritedFrom); |
1693 | else |
1694 | // Otherwise, use the complete constructor name. This is relevant if a |
1695 | // class with a constructor is declared within a constructor. |
1696 | mangleCXXCtorType(T: Ctor_Complete, InheritedFrom); |
1697 | |
1698 | // FIXME: The template arguments are part of the enclosing prefix or |
1699 | // nested-name, but it's more convenient to mangle them here. |
1700 | if (InheritedTemplateArgs) |
1701 | mangleTemplateArgs(TN: InheritedTemplateName, AL: *InheritedTemplateArgs); |
1702 | |
1703 | writeAbiTags(ND, AdditionalAbiTags); |
1704 | break; |
1705 | } |
1706 | |
1707 | case DeclarationName::CXXDestructorName: |
1708 | if (ND == Structor) |
1709 | // If the named decl is the C++ destructor we're mangling, use the type we |
1710 | // were given. |
1711 | mangleCXXDtorType(T: static_cast<CXXDtorType>(StructorType)); |
1712 | else |
1713 | // Otherwise, use the complete destructor name. This is relevant if a |
1714 | // class with a destructor is declared within a destructor. |
1715 | mangleCXXDtorType(T: Dtor_Complete); |
1716 | assert(ND); |
1717 | writeAbiTags(ND, AdditionalAbiTags); |
1718 | break; |
1719 | |
1720 | case DeclarationName::CXXOperatorName: |
1721 | if (ND && Arity == UnknownArity) { |
1722 | Arity = cast<FunctionDecl>(Val: ND)->getNumParams(); |
1723 | |
1724 | // If we have a member function, we need to include the 'this' pointer. |
1725 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: ND)) |
1726 | if (MD->isImplicitObjectMemberFunction()) |
1727 | Arity++; |
1728 | } |
1729 | [[fallthrough]]; |
1730 | case DeclarationName::CXXConversionFunctionName: |
1731 | case DeclarationName::CXXLiteralOperatorName: |
1732 | mangleOperatorName(Name, Arity); |
1733 | writeAbiTags(ND, AdditionalAbiTags); |
1734 | break; |
1735 | |
1736 | case DeclarationName::CXXDeductionGuideName: |
1737 | llvm_unreachable("Can't mangle a deduction guide name!" ); |
1738 | |
1739 | case DeclarationName::CXXUsingDirective: |
1740 | llvm_unreachable("Can't mangle a using directive name!" ); |
1741 | } |
1742 | } |
1743 | |
1744 | void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) { |
1745 | // <source-name> ::= <positive length number> __regcall3__ <identifier> |
1746 | // <number> ::= [n] <non-negative decimal integer> |
1747 | // <identifier> ::= <unqualified source code identifier> |
1748 | if (getASTContext().getLangOpts().RegCall4) |
1749 | Out << II->getLength() + sizeof("__regcall4__" ) - 1 << "__regcall4__" |
1750 | << II->getName(); |
1751 | else |
1752 | Out << II->getLength() + sizeof("__regcall3__" ) - 1 << "__regcall3__" |
1753 | << II->getName(); |
1754 | } |
1755 | |
1756 | void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) { |
1757 | // <source-name> ::= <positive length number> __device_stub__ <identifier> |
1758 | // <number> ::= [n] <non-negative decimal integer> |
1759 | // <identifier> ::= <unqualified source code identifier> |
1760 | Out << II->getLength() + sizeof("__device_stub__" ) - 1 << "__device_stub__" |
1761 | << II->getName(); |
1762 | } |
1763 | |
1764 | void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { |
1765 | // <source-name> ::= <positive length number> <identifier> |
1766 | // <number> ::= [n] <non-negative decimal integer> |
1767 | // <identifier> ::= <unqualified source code identifier> |
1768 | Out << II->getLength() << II->getName(); |
1769 | } |
1770 | |
1771 | void CXXNameMangler::mangleNestedName(GlobalDecl GD, |
1772 | const DeclContext *DC, |
1773 | const AbiTagList *AdditionalAbiTags, |
1774 | bool NoFunction) { |
1775 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
1776 | // <nested-name> |
1777 | // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E |
1778 | // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> |
1779 | // <template-args> E |
1780 | |
1781 | Out << 'N'; |
1782 | if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: ND)) { |
1783 | Qualifiers MethodQuals = Method->getMethodQualifiers(); |
1784 | // We do not consider restrict a distinguishing attribute for overloading |
1785 | // purposes so we must not mangle it. |
1786 | if (Method->isExplicitObjectMemberFunction()) |
1787 | Out << 'H'; |
1788 | MethodQuals.removeRestrict(); |
1789 | mangleQualifiers(Quals: MethodQuals); |
1790 | mangleRefQualifier(RefQualifier: Method->getRefQualifier()); |
1791 | } |
1792 | |
1793 | // Check if we have a template. |
1794 | const TemplateArgumentList *TemplateArgs = nullptr; |
1795 | if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { |
1796 | mangleTemplatePrefix(GD: TD, NoFunction); |
1797 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
1798 | } else { |
1799 | manglePrefix(DC, NoFunction); |
1800 | mangleUnqualifiedName(GD, DC, AdditionalAbiTags); |
1801 | } |
1802 | |
1803 | Out << 'E'; |
1804 | } |
1805 | void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, |
1806 | ArrayRef<TemplateArgument> Args) { |
1807 | // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E |
1808 | |
1809 | Out << 'N'; |
1810 | |
1811 | mangleTemplatePrefix(GD: TD); |
1812 | mangleTemplateArgs(TN: asTemplateName(GD: TD), Args); |
1813 | |
1814 | Out << 'E'; |
1815 | } |
1816 | |
1817 | void CXXNameMangler::mangleNestedNameWithClosurePrefix( |
1818 | GlobalDecl GD, const NamedDecl *PrefixND, |
1819 | const AbiTagList *AdditionalAbiTags) { |
1820 | // A <closure-prefix> represents a variable or field, not a regular |
1821 | // DeclContext, so needs special handling. In this case we're mangling a |
1822 | // limited form of <nested-name>: |
1823 | // |
1824 | // <nested-name> ::= N <closure-prefix> <closure-type-name> E |
1825 | |
1826 | Out << 'N'; |
1827 | |
1828 | mangleClosurePrefix(ND: PrefixND); |
1829 | mangleUnqualifiedName(GD, DC: nullptr, AdditionalAbiTags); |
1830 | |
1831 | Out << 'E'; |
1832 | } |
1833 | |
1834 | static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) { |
1835 | GlobalDecl GD; |
1836 | // The Itanium spec says: |
1837 | // For entities in constructors and destructors, the mangling of the |
1838 | // complete object constructor or destructor is used as the base function |
1839 | // name, i.e. the C1 or D1 version. |
1840 | if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: DC)) |
1841 | GD = GlobalDecl(CD, Ctor_Complete); |
1842 | else if (auto *DD = dyn_cast<CXXDestructorDecl>(Val: DC)) |
1843 | GD = GlobalDecl(DD, Dtor_Complete); |
1844 | else |
1845 | GD = GlobalDecl(cast<FunctionDecl>(Val: DC)); |
1846 | return GD; |
1847 | } |
1848 | |
1849 | void CXXNameMangler::mangleLocalName(GlobalDecl GD, |
1850 | const AbiTagList *AdditionalAbiTags) { |
1851 | const Decl *D = GD.getDecl(); |
1852 | // <local-name> := Z <function encoding> E <entity name> [<discriminator>] |
1853 | // := Z <function encoding> E s [<discriminator>] |
1854 | // <local-name> := Z <function encoding> E d [ <parameter number> ] |
1855 | // _ <entity name> |
1856 | // <discriminator> := _ <non-negative number> |
1857 | assert(isa<NamedDecl>(D) || isa<BlockDecl>(D)); |
1858 | const RecordDecl *RD = GetLocalClassDecl(D); |
1859 | const DeclContext *DC = Context.getEffectiveDeclContext(D: RD ? RD : D); |
1860 | |
1861 | Out << 'Z'; |
1862 | |
1863 | { |
1864 | AbiTagState LocalAbiTags(AbiTags); |
1865 | |
1866 | if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Val: DC)) |
1867 | mangleObjCMethodName(MD); |
1868 | else if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: DC)) |
1869 | mangleBlockForPrefix(Block: BD); |
1870 | else |
1871 | mangleFunctionEncoding(GD: getParentOfLocalEntity(DC)); |
1872 | |
1873 | // Implicit ABI tags (from namespace) are not available in the following |
1874 | // entity; reset to actually emitted tags, which are available. |
1875 | LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags()); |
1876 | } |
1877 | |
1878 | Out << 'E'; |
1879 | |
1880 | // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to |
1881 | // be a bug that is fixed in trunk. |
1882 | |
1883 | if (RD) { |
1884 | // The parameter number is omitted for the last parameter, 0 for the |
1885 | // second-to-last parameter, 1 for the third-to-last parameter, etc. The |
1886 | // <entity name> will of course contain a <closure-type-name>: Its |
1887 | // numbering will be local to the particular argument in which it appears |
1888 | // -- other default arguments do not affect its encoding. |
1889 | const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD); |
1890 | if (CXXRD && CXXRD->isLambda()) { |
1891 | if (const ParmVarDecl *Parm |
1892 | = dyn_cast_or_null<ParmVarDecl>(Val: CXXRD->getLambdaContextDecl())) { |
1893 | if (const FunctionDecl *Func |
1894 | = dyn_cast<FunctionDecl>(Val: Parm->getDeclContext())) { |
1895 | Out << 'd'; |
1896 | unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); |
1897 | if (Num > 1) |
1898 | mangleNumber(Number: Num - 2); |
1899 | Out << '_'; |
1900 | } |
1901 | } |
1902 | } |
1903 | |
1904 | // Mangle the name relative to the closest enclosing function. |
1905 | // equality ok because RD derived from ND above |
1906 | if (D == RD) { |
1907 | mangleUnqualifiedName(GD: RD, DC, AdditionalAbiTags); |
1908 | } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: D)) { |
1909 | if (const NamedDecl *PrefixND = getClosurePrefix(ND: BD)) |
1910 | mangleClosurePrefix(ND: PrefixND, NoFunction: true /*NoFunction*/); |
1911 | else |
1912 | manglePrefix(DC: Context.getEffectiveDeclContext(D: BD), NoFunction: true /*NoFunction*/); |
1913 | assert(!AdditionalAbiTags && "Block cannot have additional abi tags" ); |
1914 | mangleUnqualifiedBlock(Block: BD); |
1915 | } else { |
1916 | const NamedDecl *ND = cast<NamedDecl>(Val: D); |
1917 | mangleNestedName(GD, DC: Context.getEffectiveDeclContext(D: ND), |
1918 | AdditionalAbiTags, NoFunction: true /*NoFunction*/); |
1919 | } |
1920 | } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: D)) { |
1921 | // Mangle a block in a default parameter; see above explanation for |
1922 | // lambdas. |
1923 | if (const ParmVarDecl *Parm |
1924 | = dyn_cast_or_null<ParmVarDecl>(Val: BD->getBlockManglingContextDecl())) { |
1925 | if (const FunctionDecl *Func |
1926 | = dyn_cast<FunctionDecl>(Val: Parm->getDeclContext())) { |
1927 | Out << 'd'; |
1928 | unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); |
1929 | if (Num > 1) |
1930 | mangleNumber(Number: Num - 2); |
1931 | Out << '_'; |
1932 | } |
1933 | } |
1934 | |
1935 | assert(!AdditionalAbiTags && "Block cannot have additional abi tags" ); |
1936 | mangleUnqualifiedBlock(Block: BD); |
1937 | } else { |
1938 | mangleUnqualifiedName(GD, DC, AdditionalAbiTags); |
1939 | } |
1940 | |
1941 | if (const NamedDecl *ND = dyn_cast<NamedDecl>(Val: RD ? RD : D)) { |
1942 | unsigned disc; |
1943 | if (Context.getNextDiscriminator(ND, disc)) { |
1944 | if (disc < 10) |
1945 | Out << '_' << disc; |
1946 | else |
1947 | Out << "__" << disc << '_'; |
1948 | } |
1949 | } |
1950 | } |
1951 | |
1952 | void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) { |
1953 | if (GetLocalClassDecl(D: Block)) { |
1954 | mangleLocalName(GD: Block, /* AdditionalAbiTags */ nullptr); |
1955 | return; |
1956 | } |
1957 | const DeclContext *DC = Context.getEffectiveDeclContext(D: Block); |
1958 | if (isLocalContainerContext(DC)) { |
1959 | mangleLocalName(GD: Block, /* AdditionalAbiTags */ nullptr); |
1960 | return; |
1961 | } |
1962 | if (const NamedDecl *PrefixND = getClosurePrefix(ND: Block)) |
1963 | mangleClosurePrefix(ND: PrefixND); |
1964 | else |
1965 | manglePrefix(DC); |
1966 | mangleUnqualifiedBlock(Block); |
1967 | } |
1968 | |
1969 | void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) { |
1970 | // When trying to be ABI-compatibility with clang 12 and before, mangle a |
1971 | // <data-member-prefix> now, with no substitutions and no <template-args>. |
1972 | if (Decl *Context = Block->getBlockManglingContextDecl()) { |
1973 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver12) && |
1974 | (isa<VarDecl>(Val: Context) || isa<FieldDecl>(Val: Context)) && |
1975 | Context->getDeclContext()->isRecord()) { |
1976 | const auto *ND = cast<NamedDecl>(Val: Context); |
1977 | if (ND->getIdentifier()) { |
1978 | mangleSourceNameWithAbiTags(ND); |
1979 | Out << 'M'; |
1980 | } |
1981 | } |
1982 | } |
1983 | |
1984 | // If we have a block mangling number, use it. |
1985 | unsigned Number = Block->getBlockManglingNumber(); |
1986 | // Otherwise, just make up a number. It doesn't matter what it is because |
1987 | // the symbol in question isn't externally visible. |
1988 | if (!Number) |
1989 | Number = Context.getBlockId(BD: Block, Local: false); |
1990 | else { |
1991 | // Stored mangling numbers are 1-based. |
1992 | --Number; |
1993 | } |
1994 | Out << "Ub" ; |
1995 | if (Number > 0) |
1996 | Out << Number - 1; |
1997 | Out << '_'; |
1998 | } |
1999 | |
2000 | // <template-param-decl> |
2001 | // ::= Ty # template type parameter |
2002 | // ::= Tk <concept name> [<template-args>] # constrained type parameter |
2003 | // ::= Tn <type> # template non-type parameter |
2004 | // ::= Tt <template-param-decl>* E [Q <requires-clause expr>] |
2005 | // # template template parameter |
2006 | // ::= Tp <template-param-decl> # template parameter pack |
2007 | void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) { |
2008 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/47. |
2009 | if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Val: Decl)) { |
2010 | if (Ty->isParameterPack()) |
2011 | Out << "Tp" ; |
2012 | const TypeConstraint *Constraint = Ty->getTypeConstraint(); |
2013 | if (Constraint && !isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
2014 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
2015 | Out << "Tk" ; |
2016 | mangleTypeConstraint(Constraint); |
2017 | } else { |
2018 | Out << "Ty" ; |
2019 | } |
2020 | } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Val: Decl)) { |
2021 | if (Tn->isExpandedParameterPack()) { |
2022 | for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) { |
2023 | Out << "Tn" ; |
2024 | mangleType(T: Tn->getExpansionType(I)); |
2025 | } |
2026 | } else { |
2027 | QualType T = Tn->getType(); |
2028 | if (Tn->isParameterPack()) { |
2029 | Out << "Tp" ; |
2030 | if (auto *PackExpansion = T->getAs<PackExpansionType>()) |
2031 | T = PackExpansion->getPattern(); |
2032 | } |
2033 | Out << "Tn" ; |
2034 | mangleType(T); |
2035 | } |
2036 | } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Val: Decl)) { |
2037 | if (Tt->isExpandedParameterPack()) { |
2038 | for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N; |
2039 | ++I) |
2040 | mangleTemplateParameterList(Params: Tt->getExpansionTemplateParameters(I)); |
2041 | } else { |
2042 | if (Tt->isParameterPack()) |
2043 | Out << "Tp" ; |
2044 | mangleTemplateParameterList(Params: Tt->getTemplateParameters()); |
2045 | } |
2046 | } |
2047 | } |
2048 | |
2049 | void CXXNameMangler::mangleTemplateParameterList( |
2050 | const TemplateParameterList *Params) { |
2051 | Out << "Tt" ; |
2052 | for (auto *Param : *Params) |
2053 | mangleTemplateParamDecl(Decl: Param); |
2054 | mangleRequiresClause(RequiresClause: Params->getRequiresClause()); |
2055 | Out << "E" ; |
2056 | } |
2057 | |
2058 | void CXXNameMangler::mangleTypeConstraint( |
2059 | const ConceptDecl *Concept, ArrayRef<TemplateArgument> Arguments) { |
2060 | const DeclContext *DC = Context.getEffectiveDeclContext(D: Concept); |
2061 | if (!Arguments.empty()) |
2062 | mangleTemplateName(TD: Concept, Args: Arguments); |
2063 | else if (DC->isTranslationUnit() || isStdNamespace(DC)) |
2064 | mangleUnscopedName(GD: Concept, DC, AdditionalAbiTags: nullptr); |
2065 | else |
2066 | mangleNestedName(GD: Concept, DC, AdditionalAbiTags: nullptr); |
2067 | } |
2068 | |
2069 | void CXXNameMangler::mangleTypeConstraint(const TypeConstraint *Constraint) { |
2070 | llvm::SmallVector<TemplateArgument, 8> Args; |
2071 | if (Constraint->getTemplateArgsAsWritten()) { |
2072 | for (const TemplateArgumentLoc &ArgLoc : |
2073 | Constraint->getTemplateArgsAsWritten()->arguments()) |
2074 | Args.push_back(Elt: ArgLoc.getArgument()); |
2075 | } |
2076 | return mangleTypeConstraint(Concept: Constraint->getNamedConcept(), Arguments: Args); |
2077 | } |
2078 | |
2079 | void CXXNameMangler::mangleRequiresClause(const Expr *RequiresClause) { |
2080 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
2081 | if (RequiresClause && !isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
2082 | Out << 'Q'; |
2083 | mangleExpression(E: RequiresClause); |
2084 | } |
2085 | } |
2086 | |
2087 | void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) { |
2088 | // When trying to be ABI-compatibility with clang 12 and before, mangle a |
2089 | // <data-member-prefix> now, with no substitutions. |
2090 | if (Decl *Context = Lambda->getLambdaContextDecl()) { |
2091 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver12) && |
2092 | (isa<VarDecl>(Val: Context) || isa<FieldDecl>(Val: Context)) && |
2093 | !isa<ParmVarDecl>(Val: Context)) { |
2094 | if (const IdentifierInfo *Name |
2095 | = cast<NamedDecl>(Val: Context)->getIdentifier()) { |
2096 | mangleSourceName(II: Name); |
2097 | const TemplateArgumentList *TemplateArgs = nullptr; |
2098 | if (GlobalDecl TD = isTemplate(GD: cast<NamedDecl>(Val: Context), TemplateArgs)) |
2099 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
2100 | Out << 'M'; |
2101 | } |
2102 | } |
2103 | } |
2104 | |
2105 | Out << "Ul" ; |
2106 | mangleLambdaSig(Lambda); |
2107 | Out << "E" ; |
2108 | |
2109 | // The number is omitted for the first closure type with a given |
2110 | // <lambda-sig> in a given context; it is n-2 for the nth closure type |
2111 | // (in lexical order) with that same <lambda-sig> and context. |
2112 | // |
2113 | // The AST keeps track of the number for us. |
2114 | // |
2115 | // In CUDA/HIP, to ensure the consistent lamba numbering between the device- |
2116 | // and host-side compilations, an extra device mangle context may be created |
2117 | // if the host-side CXX ABI has different numbering for lambda. In such case, |
2118 | // if the mangle context is that device-side one, use the device-side lambda |
2119 | // mangling number for this lambda. |
2120 | std::optional<unsigned> DeviceNumber = |
2121 | Context.getDiscriminatorOverride()(Context.getASTContext(), Lambda); |
2122 | unsigned Number = |
2123 | DeviceNumber ? *DeviceNumber : Lambda->getLambdaManglingNumber(); |
2124 | |
2125 | assert(Number > 0 && "Lambda should be mangled as an unnamed class" ); |
2126 | if (Number > 1) |
2127 | mangleNumber(Number: Number - 2); |
2128 | Out << '_'; |
2129 | } |
2130 | |
2131 | void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) { |
2132 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/31. |
2133 | for (auto *D : Lambda->getLambdaExplicitTemplateParameters()) |
2134 | mangleTemplateParamDecl(Decl: D); |
2135 | |
2136 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
2137 | if (auto *TPL = Lambda->getGenericLambdaTemplateParameterList()) |
2138 | mangleRequiresClause(RequiresClause: TPL->getRequiresClause()); |
2139 | |
2140 | auto *Proto = |
2141 | Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>(); |
2142 | mangleBareFunctionType(T: Proto, /*MangleReturnType=*/false, |
2143 | FD: Lambda->getLambdaStaticInvoker()); |
2144 | } |
2145 | |
2146 | void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { |
2147 | switch (qualifier->getKind()) { |
2148 | case NestedNameSpecifier::Global: |
2149 | // nothing |
2150 | return; |
2151 | |
2152 | case NestedNameSpecifier::Super: |
2153 | llvm_unreachable("Can't mangle __super specifier" ); |
2154 | |
2155 | case NestedNameSpecifier::Namespace: |
2156 | mangleName(GD: qualifier->getAsNamespace()); |
2157 | return; |
2158 | |
2159 | case NestedNameSpecifier::NamespaceAlias: |
2160 | mangleName(GD: qualifier->getAsNamespaceAlias()->getNamespace()); |
2161 | return; |
2162 | |
2163 | case NestedNameSpecifier::TypeSpec: |
2164 | case NestedNameSpecifier::TypeSpecWithTemplate: |
2165 | manglePrefix(type: QualType(qualifier->getAsType(), 0)); |
2166 | return; |
2167 | |
2168 | case NestedNameSpecifier::Identifier: |
2169 | // Clang 14 and before did not consider this substitutable. |
2170 | bool Clang14Compat = isCompatibleWith(Ver: LangOptions::ClangABI::Ver14); |
2171 | if (!Clang14Compat && mangleSubstitution(NNS: qualifier)) |
2172 | return; |
2173 | |
2174 | // Member expressions can have these without prefixes, but that |
2175 | // should end up in mangleUnresolvedPrefix instead. |
2176 | assert(qualifier->getPrefix()); |
2177 | manglePrefix(qualifier: qualifier->getPrefix()); |
2178 | |
2179 | mangleSourceName(II: qualifier->getAsIdentifier()); |
2180 | |
2181 | if (!Clang14Compat) |
2182 | addSubstitution(NNS: qualifier); |
2183 | return; |
2184 | } |
2185 | |
2186 | llvm_unreachable("unexpected nested name specifier" ); |
2187 | } |
2188 | |
2189 | void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { |
2190 | // <prefix> ::= <prefix> <unqualified-name> |
2191 | // ::= <template-prefix> <template-args> |
2192 | // ::= <closure-prefix> |
2193 | // ::= <template-param> |
2194 | // ::= # empty |
2195 | // ::= <substitution> |
2196 | |
2197 | assert(!isa<LinkageSpecDecl>(DC) && "prefix cannot be LinkageSpecDecl" ); |
2198 | |
2199 | if (DC->isTranslationUnit()) |
2200 | return; |
2201 | |
2202 | if (NoFunction && isLocalContainerContext(DC)) |
2203 | return; |
2204 | |
2205 | const NamedDecl *ND = cast<NamedDecl>(Val: DC); |
2206 | if (mangleSubstitution(ND)) |
2207 | return; |
2208 | |
2209 | // Check if we have a template-prefix or a closure-prefix. |
2210 | const TemplateArgumentList *TemplateArgs = nullptr; |
2211 | if (GlobalDecl TD = isTemplate(GD: ND, TemplateArgs)) { |
2212 | mangleTemplatePrefix(GD: TD); |
2213 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
2214 | } else if (const NamedDecl *PrefixND = getClosurePrefix(ND)) { |
2215 | mangleClosurePrefix(ND: PrefixND, NoFunction); |
2216 | mangleUnqualifiedName(GD: ND, DC: nullptr, AdditionalAbiTags: nullptr); |
2217 | } else { |
2218 | const DeclContext *DC = Context.getEffectiveDeclContext(D: ND); |
2219 | manglePrefix(DC, NoFunction); |
2220 | mangleUnqualifiedName(GD: ND, DC, AdditionalAbiTags: nullptr); |
2221 | } |
2222 | |
2223 | addSubstitution(ND); |
2224 | } |
2225 | |
2226 | void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { |
2227 | // <template-prefix> ::= <prefix> <template unqualified-name> |
2228 | // ::= <template-param> |
2229 | // ::= <substitution> |
2230 | if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
2231 | return mangleTemplatePrefix(GD: TD); |
2232 | |
2233 | DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); |
2234 | assert(Dependent && "unexpected template name kind" ); |
2235 | |
2236 | // Clang 11 and before mangled the substitution for a dependent template name |
2237 | // after already having emitted (a substitution for) the prefix. |
2238 | bool Clang11Compat = isCompatibleWith(Ver: LangOptions::ClangABI::Ver11); |
2239 | if (!Clang11Compat && mangleSubstitution(Template)) |
2240 | return; |
2241 | |
2242 | if (NestedNameSpecifier *Qualifier = Dependent->getQualifier()) |
2243 | manglePrefix(qualifier: Qualifier); |
2244 | |
2245 | if (Clang11Compat && mangleSubstitution(Template)) |
2246 | return; |
2247 | |
2248 | if (const IdentifierInfo *Id = Dependent->getIdentifier()) |
2249 | mangleSourceName(II: Id); |
2250 | else |
2251 | mangleOperatorName(OO: Dependent->getOperator(), Arity: UnknownArity); |
2252 | |
2253 | addSubstitution(Template); |
2254 | } |
2255 | |
2256 | void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD, |
2257 | bool NoFunction) { |
2258 | const TemplateDecl *ND = cast<TemplateDecl>(Val: GD.getDecl()); |
2259 | // <template-prefix> ::= <prefix> <template unqualified-name> |
2260 | // ::= <template-param> |
2261 | // ::= <substitution> |
2262 | // <template-template-param> ::= <template-param> |
2263 | // <substitution> |
2264 | |
2265 | if (mangleSubstitution(ND)) |
2266 | return; |
2267 | |
2268 | // <template-template-param> ::= <template-param> |
2269 | if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: ND)) { |
2270 | mangleTemplateParameter(Depth: TTP->getDepth(), Index: TTP->getIndex()); |
2271 | } else { |
2272 | const DeclContext *DC = Context.getEffectiveDeclContext(D: ND); |
2273 | manglePrefix(DC, NoFunction); |
2274 | if (isa<BuiltinTemplateDecl>(Val: ND) || isa<ConceptDecl>(Val: ND)) |
2275 | mangleUnqualifiedName(GD, DC, AdditionalAbiTags: nullptr); |
2276 | else |
2277 | mangleUnqualifiedName(GD: GD.getWithDecl(D: ND->getTemplatedDecl()), DC, |
2278 | AdditionalAbiTags: nullptr); |
2279 | } |
2280 | |
2281 | addSubstitution(ND); |
2282 | } |
2283 | |
2284 | const NamedDecl *CXXNameMangler::getClosurePrefix(const Decl *ND) { |
2285 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver12)) |
2286 | return nullptr; |
2287 | |
2288 | const NamedDecl *Context = nullptr; |
2289 | if (auto *Block = dyn_cast<BlockDecl>(Val: ND)) { |
2290 | Context = dyn_cast_or_null<NamedDecl>(Val: Block->getBlockManglingContextDecl()); |
2291 | } else if (auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) { |
2292 | if (RD->isLambda()) |
2293 | Context = dyn_cast_or_null<NamedDecl>(Val: RD->getLambdaContextDecl()); |
2294 | } |
2295 | if (!Context) |
2296 | return nullptr; |
2297 | |
2298 | // Only lambdas within the initializer of a non-local variable or non-static |
2299 | // data member get a <closure-prefix>. |
2300 | if ((isa<VarDecl>(Val: Context) && cast<VarDecl>(Val: Context)->hasGlobalStorage()) || |
2301 | isa<FieldDecl>(Val: Context)) |
2302 | return Context; |
2303 | |
2304 | return nullptr; |
2305 | } |
2306 | |
2307 | void CXXNameMangler::mangleClosurePrefix(const NamedDecl *ND, bool NoFunction) { |
2308 | // <closure-prefix> ::= [ <prefix> ] <unqualified-name> M |
2309 | // ::= <template-prefix> <template-args> M |
2310 | if (mangleSubstitution(ND)) |
2311 | return; |
2312 | |
2313 | const TemplateArgumentList *TemplateArgs = nullptr; |
2314 | if (GlobalDecl TD = isTemplate(GD: ND, TemplateArgs)) { |
2315 | mangleTemplatePrefix(GD: TD, NoFunction); |
2316 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
2317 | } else { |
2318 | const auto *DC = Context.getEffectiveDeclContext(D: ND); |
2319 | manglePrefix(DC, NoFunction); |
2320 | mangleUnqualifiedName(GD: ND, DC, AdditionalAbiTags: nullptr); |
2321 | } |
2322 | |
2323 | Out << 'M'; |
2324 | |
2325 | addSubstitution(ND); |
2326 | } |
2327 | |
2328 | /// Mangles a template name under the production <type>. Required for |
2329 | /// template template arguments. |
2330 | /// <type> ::= <class-enum-type> |
2331 | /// ::= <template-param> |
2332 | /// ::= <substitution> |
2333 | void CXXNameMangler::mangleType(TemplateName TN) { |
2334 | if (mangleSubstitution(Template: TN)) |
2335 | return; |
2336 | |
2337 | TemplateDecl *TD = nullptr; |
2338 | |
2339 | switch (TN.getKind()) { |
2340 | case TemplateName::QualifiedTemplate: |
2341 | case TemplateName::UsingTemplate: |
2342 | case TemplateName::Template: |
2343 | TD = TN.getAsTemplateDecl(); |
2344 | goto HaveDecl; |
2345 | |
2346 | HaveDecl: |
2347 | if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: TD)) |
2348 | mangleTemplateParameter(Depth: TTP->getDepth(), Index: TTP->getIndex()); |
2349 | else |
2350 | mangleName(GD: TD); |
2351 | break; |
2352 | |
2353 | case TemplateName::OverloadedTemplate: |
2354 | case TemplateName::AssumedTemplate: |
2355 | llvm_unreachable("can't mangle an overloaded template name as a <type>" ); |
2356 | |
2357 | case TemplateName::DependentTemplate: { |
2358 | const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); |
2359 | assert(Dependent->isIdentifier()); |
2360 | |
2361 | // <class-enum-type> ::= <name> |
2362 | // <name> ::= <nested-name> |
2363 | mangleUnresolvedPrefix(qualifier: Dependent->getQualifier()); |
2364 | mangleSourceName(II: Dependent->getIdentifier()); |
2365 | break; |
2366 | } |
2367 | |
2368 | case TemplateName::SubstTemplateTemplateParm: { |
2369 | // Substituted template parameters are mangled as the substituted |
2370 | // template. This will check for the substitution twice, which is |
2371 | // fine, but we have to return early so that we don't try to *add* |
2372 | // the substitution twice. |
2373 | SubstTemplateTemplateParmStorage *subst |
2374 | = TN.getAsSubstTemplateTemplateParm(); |
2375 | mangleType(TN: subst->getReplacement()); |
2376 | return; |
2377 | } |
2378 | |
2379 | case TemplateName::SubstTemplateTemplateParmPack: { |
2380 | // FIXME: not clear how to mangle this! |
2381 | // template <template <class> class T...> class A { |
2382 | // template <template <class> class U...> void foo(B<T,U> x...); |
2383 | // }; |
2384 | Out << "_SUBSTPACK_" ; |
2385 | break; |
2386 | } |
2387 | } |
2388 | |
2389 | addSubstitution(Template: TN); |
2390 | } |
2391 | |
2392 | bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty, |
2393 | StringRef Prefix) { |
2394 | // Only certain other types are valid as prefixes; enumerate them. |
2395 | switch (Ty->getTypeClass()) { |
2396 | case Type::Builtin: |
2397 | case Type::Complex: |
2398 | case Type::Adjusted: |
2399 | case Type::Decayed: |
2400 | case Type::ArrayParameter: |
2401 | case Type::Pointer: |
2402 | case Type::BlockPointer: |
2403 | case Type::LValueReference: |
2404 | case Type::RValueReference: |
2405 | case Type::MemberPointer: |
2406 | case Type::ConstantArray: |
2407 | case Type::IncompleteArray: |
2408 | case Type::VariableArray: |
2409 | case Type::DependentSizedArray: |
2410 | case Type::DependentAddressSpace: |
2411 | case Type::DependentVector: |
2412 | case Type::DependentSizedExtVector: |
2413 | case Type::Vector: |
2414 | case Type::ExtVector: |
2415 | case Type::ConstantMatrix: |
2416 | case Type::DependentSizedMatrix: |
2417 | case Type::FunctionProto: |
2418 | case Type::FunctionNoProto: |
2419 | case Type::Paren: |
2420 | case Type::Attributed: |
2421 | case Type::BTFTagAttributed: |
2422 | case Type::Auto: |
2423 | case Type::DeducedTemplateSpecialization: |
2424 | case Type::PackExpansion: |
2425 | case Type::ObjCObject: |
2426 | case Type::ObjCInterface: |
2427 | case Type::ObjCObjectPointer: |
2428 | case Type::ObjCTypeParam: |
2429 | case Type::Atomic: |
2430 | case Type::Pipe: |
2431 | case Type::MacroQualified: |
2432 | case Type::BitInt: |
2433 | case Type::DependentBitInt: |
2434 | case Type::CountAttributed: |
2435 | llvm_unreachable("type is illegal as a nested name specifier" ); |
2436 | |
2437 | case Type::SubstTemplateTypeParmPack: |
2438 | // FIXME: not clear how to mangle this! |
2439 | // template <class T...> class A { |
2440 | // template <class U...> void foo(decltype(T::foo(U())) x...); |
2441 | // }; |
2442 | Out << "_SUBSTPACK_" ; |
2443 | break; |
2444 | |
2445 | // <unresolved-type> ::= <template-param> |
2446 | // ::= <decltype> |
2447 | // ::= <template-template-param> <template-args> |
2448 | // (this last is not official yet) |
2449 | case Type::TypeOfExpr: |
2450 | case Type::TypeOf: |
2451 | case Type::Decltype: |
2452 | case Type::PackIndexing: |
2453 | case Type::TemplateTypeParm: |
2454 | case Type::UnaryTransform: |
2455 | case Type::SubstTemplateTypeParm: |
2456 | unresolvedType: |
2457 | // Some callers want a prefix before the mangled type. |
2458 | Out << Prefix; |
2459 | |
2460 | // This seems to do everything we want. It's not really |
2461 | // sanctioned for a substituted template parameter, though. |
2462 | mangleType(T: Ty); |
2463 | |
2464 | // We never want to print 'E' directly after an unresolved-type, |
2465 | // so we return directly. |
2466 | return true; |
2467 | |
2468 | case Type::Typedef: |
2469 | mangleSourceNameWithAbiTags(ND: cast<TypedefType>(Val&: Ty)->getDecl()); |
2470 | break; |
2471 | |
2472 | case Type::UnresolvedUsing: |
2473 | mangleSourceNameWithAbiTags( |
2474 | ND: cast<UnresolvedUsingType>(Val&: Ty)->getDecl()); |
2475 | break; |
2476 | |
2477 | case Type::Enum: |
2478 | case Type::Record: |
2479 | mangleSourceNameWithAbiTags(ND: cast<TagType>(Val&: Ty)->getDecl()); |
2480 | break; |
2481 | |
2482 | case Type::TemplateSpecialization: { |
2483 | const TemplateSpecializationType *TST = |
2484 | cast<TemplateSpecializationType>(Val&: Ty); |
2485 | TemplateName TN = TST->getTemplateName(); |
2486 | switch (TN.getKind()) { |
2487 | case TemplateName::Template: |
2488 | case TemplateName::QualifiedTemplate: { |
2489 | TemplateDecl *TD = TN.getAsTemplateDecl(); |
2490 | |
2491 | // If the base is a template template parameter, this is an |
2492 | // unresolved type. |
2493 | assert(TD && "no template for template specialization type" ); |
2494 | if (isa<TemplateTemplateParmDecl>(Val: TD)) |
2495 | goto unresolvedType; |
2496 | |
2497 | mangleSourceNameWithAbiTags(ND: TD); |
2498 | break; |
2499 | } |
2500 | |
2501 | case TemplateName::OverloadedTemplate: |
2502 | case TemplateName::AssumedTemplate: |
2503 | case TemplateName::DependentTemplate: |
2504 | llvm_unreachable("invalid base for a template specialization type" ); |
2505 | |
2506 | case TemplateName::SubstTemplateTemplateParm: { |
2507 | SubstTemplateTemplateParmStorage *subst = |
2508 | TN.getAsSubstTemplateTemplateParm(); |
2509 | mangleExistingSubstitution(name: subst->getReplacement()); |
2510 | break; |
2511 | } |
2512 | |
2513 | case TemplateName::SubstTemplateTemplateParmPack: { |
2514 | // FIXME: not clear how to mangle this! |
2515 | // template <template <class U> class T...> class A { |
2516 | // template <class U...> void foo(decltype(T<U>::foo) x...); |
2517 | // }; |
2518 | Out << "_SUBSTPACK_" ; |
2519 | break; |
2520 | } |
2521 | case TemplateName::UsingTemplate: { |
2522 | TemplateDecl *TD = TN.getAsTemplateDecl(); |
2523 | assert(TD && !isa<TemplateTemplateParmDecl>(TD)); |
2524 | mangleSourceNameWithAbiTags(ND: TD); |
2525 | break; |
2526 | } |
2527 | } |
2528 | |
2529 | // Note: we don't pass in the template name here. We are mangling the |
2530 | // original source-level template arguments, so we shouldn't consider |
2531 | // conversions to the corresponding template parameter. |
2532 | // FIXME: Other compilers mangle partially-resolved template arguments in |
2533 | // unresolved-qualifier-levels. |
2534 | mangleTemplateArgs(TN: TemplateName(), Args: TST->template_arguments()); |
2535 | break; |
2536 | } |
2537 | |
2538 | case Type::InjectedClassName: |
2539 | mangleSourceNameWithAbiTags( |
2540 | ND: cast<InjectedClassNameType>(Val&: Ty)->getDecl()); |
2541 | break; |
2542 | |
2543 | case Type::DependentName: |
2544 | mangleSourceName(II: cast<DependentNameType>(Val&: Ty)->getIdentifier()); |
2545 | break; |
2546 | |
2547 | case Type::DependentTemplateSpecialization: { |
2548 | const DependentTemplateSpecializationType *DTST = |
2549 | cast<DependentTemplateSpecializationType>(Val&: Ty); |
2550 | TemplateName Template = getASTContext().getDependentTemplateName( |
2551 | NNS: DTST->getQualifier(), Name: DTST->getIdentifier()); |
2552 | mangleSourceName(II: DTST->getIdentifier()); |
2553 | mangleTemplateArgs(TN: Template, Args: DTST->template_arguments()); |
2554 | break; |
2555 | } |
2556 | |
2557 | case Type::Using: |
2558 | return mangleUnresolvedTypeOrSimpleId(Ty: cast<UsingType>(Val&: Ty)->desugar(), |
2559 | Prefix); |
2560 | case Type::Elaborated: |
2561 | return mangleUnresolvedTypeOrSimpleId( |
2562 | Ty: cast<ElaboratedType>(Val&: Ty)->getNamedType(), Prefix); |
2563 | } |
2564 | |
2565 | return false; |
2566 | } |
2567 | |
2568 | void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) { |
2569 | switch (Name.getNameKind()) { |
2570 | case DeclarationName::CXXConstructorName: |
2571 | case DeclarationName::CXXDestructorName: |
2572 | case DeclarationName::CXXDeductionGuideName: |
2573 | case DeclarationName::CXXUsingDirective: |
2574 | case DeclarationName::Identifier: |
2575 | case DeclarationName::ObjCMultiArgSelector: |
2576 | case DeclarationName::ObjCOneArgSelector: |
2577 | case DeclarationName::ObjCZeroArgSelector: |
2578 | llvm_unreachable("Not an operator name" ); |
2579 | |
2580 | case DeclarationName::CXXConversionFunctionName: |
2581 | // <operator-name> ::= cv <type> # (cast) |
2582 | Out << "cv" ; |
2583 | mangleType(T: Name.getCXXNameType()); |
2584 | break; |
2585 | |
2586 | case DeclarationName::CXXLiteralOperatorName: |
2587 | Out << "li" ; |
2588 | mangleSourceName(II: Name.getCXXLiteralIdentifier()); |
2589 | return; |
2590 | |
2591 | case DeclarationName::CXXOperatorName: |
2592 | mangleOperatorName(OO: Name.getCXXOverloadedOperator(), Arity); |
2593 | break; |
2594 | } |
2595 | } |
2596 | |
2597 | void |
2598 | CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { |
2599 | switch (OO) { |
2600 | // <operator-name> ::= nw # new |
2601 | case OO_New: Out << "nw" ; break; |
2602 | // ::= na # new[] |
2603 | case OO_Array_New: Out << "na" ; break; |
2604 | // ::= dl # delete |
2605 | case OO_Delete: Out << "dl" ; break; |
2606 | // ::= da # delete[] |
2607 | case OO_Array_Delete: Out << "da" ; break; |
2608 | // ::= ps # + (unary) |
2609 | // ::= pl # + (binary or unknown) |
2610 | case OO_Plus: |
2611 | Out << (Arity == 1? "ps" : "pl" ); break; |
2612 | // ::= ng # - (unary) |
2613 | // ::= mi # - (binary or unknown) |
2614 | case OO_Minus: |
2615 | Out << (Arity == 1? "ng" : "mi" ); break; |
2616 | // ::= ad # & (unary) |
2617 | // ::= an # & (binary or unknown) |
2618 | case OO_Amp: |
2619 | Out << (Arity == 1? "ad" : "an" ); break; |
2620 | // ::= de # * (unary) |
2621 | // ::= ml # * (binary or unknown) |
2622 | case OO_Star: |
2623 | // Use binary when unknown. |
2624 | Out << (Arity == 1? "de" : "ml" ); break; |
2625 | // ::= co # ~ |
2626 | case OO_Tilde: Out << "co" ; break; |
2627 | // ::= dv # / |
2628 | case OO_Slash: Out << "dv" ; break; |
2629 | // ::= rm # % |
2630 | case OO_Percent: Out << "rm" ; break; |
2631 | // ::= or # | |
2632 | case OO_Pipe: Out << "or" ; break; |
2633 | // ::= eo # ^ |
2634 | case OO_Caret: Out << "eo" ; break; |
2635 | // ::= aS # = |
2636 | case OO_Equal: Out << "aS" ; break; |
2637 | // ::= pL # += |
2638 | case OO_PlusEqual: Out << "pL" ; break; |
2639 | // ::= mI # -= |
2640 | case OO_MinusEqual: Out << "mI" ; break; |
2641 | // ::= mL # *= |
2642 | case OO_StarEqual: Out << "mL" ; break; |
2643 | // ::= dV # /= |
2644 | case OO_SlashEqual: Out << "dV" ; break; |
2645 | // ::= rM # %= |
2646 | case OO_PercentEqual: Out << "rM" ; break; |
2647 | // ::= aN # &= |
2648 | case OO_AmpEqual: Out << "aN" ; break; |
2649 | // ::= oR # |= |
2650 | case OO_PipeEqual: Out << "oR" ; break; |
2651 | // ::= eO # ^= |
2652 | case OO_CaretEqual: Out << "eO" ; break; |
2653 | // ::= ls # << |
2654 | case OO_LessLess: Out << "ls" ; break; |
2655 | // ::= rs # >> |
2656 | case OO_GreaterGreater: Out << "rs" ; break; |
2657 | // ::= lS # <<= |
2658 | case OO_LessLessEqual: Out << "lS" ; break; |
2659 | // ::= rS # >>= |
2660 | case OO_GreaterGreaterEqual: Out << "rS" ; break; |
2661 | // ::= eq # == |
2662 | case OO_EqualEqual: Out << "eq" ; break; |
2663 | // ::= ne # != |
2664 | case OO_ExclaimEqual: Out << "ne" ; break; |
2665 | // ::= lt # < |
2666 | case OO_Less: Out << "lt" ; break; |
2667 | // ::= gt # > |
2668 | case OO_Greater: Out << "gt" ; break; |
2669 | // ::= le # <= |
2670 | case OO_LessEqual: Out << "le" ; break; |
2671 | // ::= ge # >= |
2672 | case OO_GreaterEqual: Out << "ge" ; break; |
2673 | // ::= nt # ! |
2674 | case OO_Exclaim: Out << "nt" ; break; |
2675 | // ::= aa # && |
2676 | case OO_AmpAmp: Out << "aa" ; break; |
2677 | // ::= oo # || |
2678 | case OO_PipePipe: Out << "oo" ; break; |
2679 | // ::= pp # ++ |
2680 | case OO_PlusPlus: Out << "pp" ; break; |
2681 | // ::= mm # -- |
2682 | case OO_MinusMinus: Out << "mm" ; break; |
2683 | // ::= cm # , |
2684 | case OO_Comma: Out << "cm" ; break; |
2685 | // ::= pm # ->* |
2686 | case OO_ArrowStar: Out << "pm" ; break; |
2687 | // ::= pt # -> |
2688 | case OO_Arrow: Out << "pt" ; break; |
2689 | // ::= cl # () |
2690 | case OO_Call: Out << "cl" ; break; |
2691 | // ::= ix # [] |
2692 | case OO_Subscript: Out << "ix" ; break; |
2693 | |
2694 | // ::= qu # ? |
2695 | // The conditional operator can't be overloaded, but we still handle it when |
2696 | // mangling expressions. |
2697 | case OO_Conditional: Out << "qu" ; break; |
2698 | // Proposal on cxx-abi-dev, 2015-10-21. |
2699 | // ::= aw # co_await |
2700 | case OO_Coawait: Out << "aw" ; break; |
2701 | // Proposed in cxx-abi github issue 43. |
2702 | // ::= ss # <=> |
2703 | case OO_Spaceship: Out << "ss" ; break; |
2704 | |
2705 | case OO_None: |
2706 | case NUM_OVERLOADED_OPERATORS: |
2707 | llvm_unreachable("Not an overloaded operator" ); |
2708 | } |
2709 | } |
2710 | |
2711 | void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) { |
2712 | // Vendor qualifiers come first and if they are order-insensitive they must |
2713 | // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5. |
2714 | |
2715 | // <type> ::= U <addrspace-expr> |
2716 | if (DAST) { |
2717 | Out << "U2ASI" ; |
2718 | mangleExpression(E: DAST->getAddrSpaceExpr()); |
2719 | Out << "E" ; |
2720 | } |
2721 | |
2722 | // Address space qualifiers start with an ordinary letter. |
2723 | if (Quals.hasAddressSpace()) { |
2724 | // Address space extension: |
2725 | // |
2726 | // <type> ::= U <target-addrspace> |
2727 | // <type> ::= U <OpenCL-addrspace> |
2728 | // <type> ::= U <CUDA-addrspace> |
2729 | |
2730 | SmallString<64> ASString; |
2731 | LangAS AS = Quals.getAddressSpace(); |
2732 | |
2733 | if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { |
2734 | // <target-addrspace> ::= "AS" <address-space-number> |
2735 | unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); |
2736 | if (TargetAS != 0 || |
2737 | Context.getASTContext().getTargetAddressSpace(AS: LangAS::Default) != 0) |
2738 | ASString = "AS" + llvm::utostr(X: TargetAS); |
2739 | } else { |
2740 | switch (AS) { |
2741 | default: llvm_unreachable("Not a language specific address space" ); |
2742 | // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | |
2743 | // "private"| "generic" | "device" | |
2744 | // "host" ] |
2745 | case LangAS::opencl_global: |
2746 | ASString = "CLglobal" ; |
2747 | break; |
2748 | case LangAS::opencl_global_device: |
2749 | ASString = "CLdevice" ; |
2750 | break; |
2751 | case LangAS::opencl_global_host: |
2752 | ASString = "CLhost" ; |
2753 | break; |
2754 | case LangAS::opencl_local: |
2755 | ASString = "CLlocal" ; |
2756 | break; |
2757 | case LangAS::opencl_constant: |
2758 | ASString = "CLconstant" ; |
2759 | break; |
2760 | case LangAS::opencl_private: |
2761 | ASString = "CLprivate" ; |
2762 | break; |
2763 | case LangAS::opencl_generic: |
2764 | ASString = "CLgeneric" ; |
2765 | break; |
2766 | // <SYCL-addrspace> ::= "SY" [ "global" | "local" | "private" | |
2767 | // "device" | "host" ] |
2768 | case LangAS::sycl_global: |
2769 | ASString = "SYglobal" ; |
2770 | break; |
2771 | case LangAS::sycl_global_device: |
2772 | ASString = "SYdevice" ; |
2773 | break; |
2774 | case LangAS::sycl_global_host: |
2775 | ASString = "SYhost" ; |
2776 | break; |
2777 | case LangAS::sycl_local: |
2778 | ASString = "SYlocal" ; |
2779 | break; |
2780 | case LangAS::sycl_private: |
2781 | ASString = "SYprivate" ; |
2782 | break; |
2783 | // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] |
2784 | case LangAS::cuda_device: |
2785 | ASString = "CUdevice" ; |
2786 | break; |
2787 | case LangAS::cuda_constant: |
2788 | ASString = "CUconstant" ; |
2789 | break; |
2790 | case LangAS::cuda_shared: |
2791 | ASString = "CUshared" ; |
2792 | break; |
2793 | // <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ] |
2794 | case LangAS::ptr32_sptr: |
2795 | ASString = "ptr32_sptr" ; |
2796 | break; |
2797 | case LangAS::ptr32_uptr: |
2798 | ASString = "ptr32_uptr" ; |
2799 | break; |
2800 | case LangAS::ptr64: |
2801 | ASString = "ptr64" ; |
2802 | break; |
2803 | } |
2804 | } |
2805 | if (!ASString.empty()) |
2806 | mangleVendorQualifier(Name: ASString); |
2807 | } |
2808 | |
2809 | // The ARC ownership qualifiers start with underscores. |
2810 | // Objective-C ARC Extension: |
2811 | // |
2812 | // <type> ::= U "__strong" |
2813 | // <type> ::= U "__weak" |
2814 | // <type> ::= U "__autoreleasing" |
2815 | // |
2816 | // Note: we emit __weak first to preserve the order as |
2817 | // required by the Itanium ABI. |
2818 | if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak) |
2819 | mangleVendorQualifier(Name: "__weak" ); |
2820 | |
2821 | // __unaligned (from -fms-extensions) |
2822 | if (Quals.hasUnaligned()) |
2823 | mangleVendorQualifier(Name: "__unaligned" ); |
2824 | |
2825 | // Remaining ARC ownership qualifiers. |
2826 | switch (Quals.getObjCLifetime()) { |
2827 | case Qualifiers::OCL_None: |
2828 | break; |
2829 | |
2830 | case Qualifiers::OCL_Weak: |
2831 | // Do nothing as we already handled this case above. |
2832 | break; |
2833 | |
2834 | case Qualifiers::OCL_Strong: |
2835 | mangleVendorQualifier(Name: "__strong" ); |
2836 | break; |
2837 | |
2838 | case Qualifiers::OCL_Autoreleasing: |
2839 | mangleVendorQualifier(Name: "__autoreleasing" ); |
2840 | break; |
2841 | |
2842 | case Qualifiers::OCL_ExplicitNone: |
2843 | // The __unsafe_unretained qualifier is *not* mangled, so that |
2844 | // __unsafe_unretained types in ARC produce the same manglings as the |
2845 | // equivalent (but, naturally, unqualified) types in non-ARC, providing |
2846 | // better ABI compatibility. |
2847 | // |
2848 | // It's safe to do this because unqualified 'id' won't show up |
2849 | // in any type signatures that need to be mangled. |
2850 | break; |
2851 | } |
2852 | |
2853 | // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const |
2854 | if (Quals.hasRestrict()) |
2855 | Out << 'r'; |
2856 | if (Quals.hasVolatile()) |
2857 | Out << 'V'; |
2858 | if (Quals.hasConst()) |
2859 | Out << 'K'; |
2860 | } |
2861 | |
2862 | void CXXNameMangler::mangleVendorQualifier(StringRef name) { |
2863 | Out << 'U' << name.size() << name; |
2864 | } |
2865 | |
2866 | void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { |
2867 | // <ref-qualifier> ::= R # lvalue reference |
2868 | // ::= O # rvalue-reference |
2869 | switch (RefQualifier) { |
2870 | case RQ_None: |
2871 | break; |
2872 | |
2873 | case RQ_LValue: |
2874 | Out << 'R'; |
2875 | break; |
2876 | |
2877 | case RQ_RValue: |
2878 | Out << 'O'; |
2879 | break; |
2880 | } |
2881 | } |
2882 | |
2883 | void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { |
2884 | Context.mangleObjCMethodNameAsSourceName(MD, Out); |
2885 | } |
2886 | |
2887 | static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty, |
2888 | ASTContext &Ctx) { |
2889 | if (Quals) |
2890 | return true; |
2891 | if (Ty->isSpecificBuiltinType(K: BuiltinType::ObjCSel)) |
2892 | return true; |
2893 | if (Ty->isOpenCLSpecificType()) |
2894 | return true; |
2895 | // From Clang 18.0 we correctly treat SVE types as substitution candidates. |
2896 | if (Ty->isSVESizelessBuiltinType() && |
2897 | Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver17) |
2898 | return true; |
2899 | if (Ty->isBuiltinType()) |
2900 | return false; |
2901 | // Through to Clang 6.0, we accidentally treated undeduced auto types as |
2902 | // substitution candidates. |
2903 | if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 && |
2904 | isa<AutoType>(Val: Ty)) |
2905 | return false; |
2906 | // A placeholder type for class template deduction is substitutable with |
2907 | // its corresponding template name; this is handled specially when mangling |
2908 | // the type. |
2909 | if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>()) |
2910 | if (DeducedTST->getDeducedType().isNull()) |
2911 | return false; |
2912 | return true; |
2913 | } |
2914 | |
2915 | void CXXNameMangler::mangleType(QualType T) { |
2916 | // If our type is instantiation-dependent but not dependent, we mangle |
2917 | // it as it was written in the source, removing any top-level sugar. |
2918 | // Otherwise, use the canonical type. |
2919 | // |
2920 | // FIXME: This is an approximation of the instantiation-dependent name |
2921 | // mangling rules, since we should really be using the type as written and |
2922 | // augmented via semantic analysis (i.e., with implicit conversions and |
2923 | // default template arguments) for any instantiation-dependent type. |
2924 | // Unfortunately, that requires several changes to our AST: |
2925 | // - Instantiation-dependent TemplateSpecializationTypes will need to be |
2926 | // uniqued, so that we can handle substitutions properly |
2927 | // - Default template arguments will need to be represented in the |
2928 | // TemplateSpecializationType, since they need to be mangled even though |
2929 | // they aren't written. |
2930 | // - Conversions on non-type template arguments need to be expressed, since |
2931 | // they can affect the mangling of sizeof/alignof. |
2932 | // |
2933 | // FIXME: This is wrong when mapping to the canonical type for a dependent |
2934 | // type discards instantiation-dependent portions of the type, such as for: |
2935 | // |
2936 | // template<typename T, int N> void f(T (&)[sizeof(N)]); |
2937 | // template<typename T> void f(T() throw(typename T::type)); (pre-C++17) |
2938 | // |
2939 | // It's also wrong in the opposite direction when instantiation-dependent, |
2940 | // canonically-equivalent types differ in some irrelevant portion of inner |
2941 | // type sugar. In such cases, we fail to form correct substitutions, eg: |
2942 | // |
2943 | // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*)); |
2944 | // |
2945 | // We should instead canonicalize the non-instantiation-dependent parts, |
2946 | // regardless of whether the type as a whole is dependent or instantiation |
2947 | // dependent. |
2948 | if (!T->isInstantiationDependentType() || T->isDependentType()) |
2949 | T = T.getCanonicalType(); |
2950 | else { |
2951 | // Desugar any types that are purely sugar. |
2952 | do { |
2953 | // Don't desugar through template specialization types that aren't |
2954 | // type aliases. We need to mangle the template arguments as written. |
2955 | if (const TemplateSpecializationType *TST |
2956 | = dyn_cast<TemplateSpecializationType>(Val&: T)) |
2957 | if (!TST->isTypeAlias()) |
2958 | break; |
2959 | |
2960 | // FIXME: We presumably shouldn't strip off ElaboratedTypes with |
2961 | // instantation-dependent qualifiers. See |
2962 | // https://github.com/itanium-cxx-abi/cxx-abi/issues/114. |
2963 | |
2964 | QualType Desugared |
2965 | = T.getSingleStepDesugaredType(Context: Context.getASTContext()); |
2966 | if (Desugared == T) |
2967 | break; |
2968 | |
2969 | T = Desugared; |
2970 | } while (true); |
2971 | } |
2972 | SplitQualType split = T.split(); |
2973 | Qualifiers quals = split.Quals; |
2974 | const Type *ty = split.Ty; |
2975 | |
2976 | bool isSubstitutable = |
2977 | isTypeSubstitutable(Quals: quals, Ty: ty, Ctx&: Context.getASTContext()); |
2978 | if (isSubstitutable && mangleSubstitution(T)) |
2979 | return; |
2980 | |
2981 | // If we're mangling a qualified array type, push the qualifiers to |
2982 | // the element type. |
2983 | if (quals && isa<ArrayType>(Val: T)) { |
2984 | ty = Context.getASTContext().getAsArrayType(T); |
2985 | quals = Qualifiers(); |
2986 | |
2987 | // Note that we don't update T: we want to add the |
2988 | // substitution at the original type. |
2989 | } |
2990 | |
2991 | if (quals || ty->isDependentAddressSpaceType()) { |
2992 | if (const DependentAddressSpaceType *DAST = |
2993 | dyn_cast<DependentAddressSpaceType>(Val: ty)) { |
2994 | SplitQualType splitDAST = DAST->getPointeeType().split(); |
2995 | mangleQualifiers(Quals: splitDAST.Quals, DAST); |
2996 | mangleType(T: QualType(splitDAST.Ty, 0)); |
2997 | } else { |
2998 | mangleQualifiers(Quals: quals); |
2999 | |
3000 | // Recurse: even if the qualified type isn't yet substitutable, |
3001 | // the unqualified type might be. |
3002 | mangleType(T: QualType(ty, 0)); |
3003 | } |
3004 | } else { |
3005 | switch (ty->getTypeClass()) { |
3006 | #define ABSTRACT_TYPE(CLASS, PARENT) |
3007 | #define NON_CANONICAL_TYPE(CLASS, PARENT) \ |
3008 | case Type::CLASS: \ |
3009 | llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ |
3010 | return; |
3011 | #define TYPE(CLASS, PARENT) \ |
3012 | case Type::CLASS: \ |
3013 | mangleType(static_cast<const CLASS##Type*>(ty)); \ |
3014 | break; |
3015 | #include "clang/AST/TypeNodes.inc" |
3016 | } |
3017 | } |
3018 | |
3019 | // Add the substitution. |
3020 | if (isSubstitutable) |
3021 | addSubstitution(T); |
3022 | } |
3023 | |
3024 | void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) { |
3025 | if (!mangleStandardSubstitution(ND)) |
3026 | mangleName(GD: ND); |
3027 | } |
3028 | |
3029 | void CXXNameMangler::mangleType(const BuiltinType *T) { |
3030 | // <type> ::= <builtin-type> |
3031 | // <builtin-type> ::= v # void |
3032 | // ::= w # wchar_t |
3033 | // ::= b # bool |
3034 | // ::= c # char |
3035 | // ::= a # signed char |
3036 | // ::= h # unsigned char |
3037 | // ::= s # short |
3038 | // ::= t # unsigned short |
3039 | // ::= i # int |
3040 | // ::= j # unsigned int |
3041 | // ::= l # long |
3042 | // ::= m # unsigned long |
3043 | // ::= x # long long, __int64 |
3044 | // ::= y # unsigned long long, __int64 |
3045 | // ::= n # __int128 |
3046 | // ::= o # unsigned __int128 |
3047 | // ::= f # float |
3048 | // ::= d # double |
3049 | // ::= e # long double, __float80 |
3050 | // ::= g # __float128 |
3051 | // ::= g # __ibm128 |
3052 | // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) |
3053 | // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) |
3054 | // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) |
3055 | // ::= Dh # IEEE 754r half-precision floating point (16 bits) |
3056 | // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits); |
3057 | // ::= Di # char32_t |
3058 | // ::= Ds # char16_t |
3059 | // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) |
3060 | // ::= [DS] DA # N1169 fixed-point [_Sat] T _Accum |
3061 | // ::= [DS] DR # N1169 fixed-point [_Sat] T _Fract |
3062 | // ::= u <source-name> # vendor extended type |
3063 | // |
3064 | // <fixed-point-size> |
3065 | // ::= s # short |
3066 | // ::= t # unsigned short |
3067 | // ::= i # plain |
3068 | // ::= j # unsigned |
3069 | // ::= l # long |
3070 | // ::= m # unsigned long |
3071 | std::string type_name; |
3072 | // Normalize integer types as vendor extended types: |
3073 | // u<length>i<type size> |
3074 | // u<length>u<type size> |
3075 | if (NormalizeIntegers && T->isInteger()) { |
3076 | if (T->isSignedInteger()) { |
3077 | switch (getASTContext().getTypeSize(T)) { |
3078 | case 8: |
3079 | // Pick a representative for each integer size in the substitution |
3080 | // dictionary. (Its actual defined size is not relevant.) |
3081 | if (mangleSubstitution(Ptr: BuiltinType::SChar)) |
3082 | break; |
3083 | Out << "u2i8" ; |
3084 | addSubstitution(Ptr: BuiltinType::SChar); |
3085 | break; |
3086 | case 16: |
3087 | if (mangleSubstitution(Ptr: BuiltinType::Short)) |
3088 | break; |
3089 | Out << "u3i16" ; |
3090 | addSubstitution(Ptr: BuiltinType::Short); |
3091 | break; |
3092 | case 32: |
3093 | if (mangleSubstitution(Ptr: BuiltinType::Int)) |
3094 | break; |
3095 | Out << "u3i32" ; |
3096 | addSubstitution(Ptr: BuiltinType::Int); |
3097 | break; |
3098 | case 64: |
3099 | if (mangleSubstitution(Ptr: BuiltinType::Long)) |
3100 | break; |
3101 | Out << "u3i64" ; |
3102 | addSubstitution(Ptr: BuiltinType::Long); |
3103 | break; |
3104 | case 128: |
3105 | if (mangleSubstitution(Ptr: BuiltinType::Int128)) |
3106 | break; |
3107 | Out << "u4i128" ; |
3108 | addSubstitution(Ptr: BuiltinType::Int128); |
3109 | break; |
3110 | default: |
3111 | llvm_unreachable("Unknown integer size for normalization" ); |
3112 | } |
3113 | } else { |
3114 | switch (getASTContext().getTypeSize(T)) { |
3115 | case 8: |
3116 | if (mangleSubstitution(Ptr: BuiltinType::UChar)) |
3117 | break; |
3118 | Out << "u2u8" ; |
3119 | addSubstitution(Ptr: BuiltinType::UChar); |
3120 | break; |
3121 | case 16: |
3122 | if (mangleSubstitution(Ptr: BuiltinType::UShort)) |
3123 | break; |
3124 | Out << "u3u16" ; |
3125 | addSubstitution(Ptr: BuiltinType::UShort); |
3126 | break; |
3127 | case 32: |
3128 | if (mangleSubstitution(Ptr: BuiltinType::UInt)) |
3129 | break; |
3130 | Out << "u3u32" ; |
3131 | addSubstitution(Ptr: BuiltinType::UInt); |
3132 | break; |
3133 | case 64: |
3134 | if (mangleSubstitution(Ptr: BuiltinType::ULong)) |
3135 | break; |
3136 | Out << "u3u64" ; |
3137 | addSubstitution(Ptr: BuiltinType::ULong); |
3138 | break; |
3139 | case 128: |
3140 | if (mangleSubstitution(Ptr: BuiltinType::UInt128)) |
3141 | break; |
3142 | Out << "u4u128" ; |
3143 | addSubstitution(Ptr: BuiltinType::UInt128); |
3144 | break; |
3145 | default: |
3146 | llvm_unreachable("Unknown integer size for normalization" ); |
3147 | } |
3148 | } |
3149 | return; |
3150 | } |
3151 | switch (T->getKind()) { |
3152 | case BuiltinType::Void: |
3153 | Out << 'v'; |
3154 | break; |
3155 | case BuiltinType::Bool: |
3156 | Out << 'b'; |
3157 | break; |
3158 | case BuiltinType::Char_U: |
3159 | case BuiltinType::Char_S: |
3160 | Out << 'c'; |
3161 | break; |
3162 | case BuiltinType::UChar: |
3163 | Out << 'h'; |
3164 | break; |
3165 | case BuiltinType::UShort: |
3166 | Out << 't'; |
3167 | break; |
3168 | case BuiltinType::UInt: |
3169 | Out << 'j'; |
3170 | break; |
3171 | case BuiltinType::ULong: |
3172 | Out << 'm'; |
3173 | break; |
3174 | case BuiltinType::ULongLong: |
3175 | Out << 'y'; |
3176 | break; |
3177 | case BuiltinType::UInt128: |
3178 | Out << 'o'; |
3179 | break; |
3180 | case BuiltinType::SChar: |
3181 | Out << 'a'; |
3182 | break; |
3183 | case BuiltinType::WChar_S: |
3184 | case BuiltinType::WChar_U: |
3185 | Out << 'w'; |
3186 | break; |
3187 | case BuiltinType::Char8: |
3188 | Out << "Du" ; |
3189 | break; |
3190 | case BuiltinType::Char16: |
3191 | Out << "Ds" ; |
3192 | break; |
3193 | case BuiltinType::Char32: |
3194 | Out << "Di" ; |
3195 | break; |
3196 | case BuiltinType::Short: |
3197 | Out << 's'; |
3198 | break; |
3199 | case BuiltinType::Int: |
3200 | Out << 'i'; |
3201 | break; |
3202 | case BuiltinType::Long: |
3203 | Out << 'l'; |
3204 | break; |
3205 | case BuiltinType::LongLong: |
3206 | Out << 'x'; |
3207 | break; |
3208 | case BuiltinType::Int128: |
3209 | Out << 'n'; |
3210 | break; |
3211 | case BuiltinType::Float16: |
3212 | Out << "DF16_" ; |
3213 | break; |
3214 | case BuiltinType::ShortAccum: |
3215 | Out << "DAs" ; |
3216 | break; |
3217 | case BuiltinType::Accum: |
3218 | Out << "DAi" ; |
3219 | break; |
3220 | case BuiltinType::LongAccum: |
3221 | Out << "DAl" ; |
3222 | break; |
3223 | case BuiltinType::UShortAccum: |
3224 | Out << "DAt" ; |
3225 | break; |
3226 | case BuiltinType::UAccum: |
3227 | Out << "DAj" ; |
3228 | break; |
3229 | case BuiltinType::ULongAccum: |
3230 | Out << "DAm" ; |
3231 | break; |
3232 | case BuiltinType::ShortFract: |
3233 | Out << "DRs" ; |
3234 | break; |
3235 | case BuiltinType::Fract: |
3236 | Out << "DRi" ; |
3237 | break; |
3238 | case BuiltinType::LongFract: |
3239 | Out << "DRl" ; |
3240 | break; |
3241 | case BuiltinType::UShortFract: |
3242 | Out << "DRt" ; |
3243 | break; |
3244 | case BuiltinType::UFract: |
3245 | Out << "DRj" ; |
3246 | break; |
3247 | case BuiltinType::ULongFract: |
3248 | Out << "DRm" ; |
3249 | break; |
3250 | case BuiltinType::SatShortAccum: |
3251 | Out << "DSDAs" ; |
3252 | break; |
3253 | case BuiltinType::SatAccum: |
3254 | Out << "DSDAi" ; |
3255 | break; |
3256 | case BuiltinType::SatLongAccum: |
3257 | Out << "DSDAl" ; |
3258 | break; |
3259 | case BuiltinType::SatUShortAccum: |
3260 | Out << "DSDAt" ; |
3261 | break; |
3262 | case BuiltinType::SatUAccum: |
3263 | Out << "DSDAj" ; |
3264 | break; |
3265 | case BuiltinType::SatULongAccum: |
3266 | Out << "DSDAm" ; |
3267 | break; |
3268 | case BuiltinType::SatShortFract: |
3269 | Out << "DSDRs" ; |
3270 | break; |
3271 | case BuiltinType::SatFract: |
3272 | Out << "DSDRi" ; |
3273 | break; |
3274 | case BuiltinType::SatLongFract: |
3275 | Out << "DSDRl" ; |
3276 | break; |
3277 | case BuiltinType::SatUShortFract: |
3278 | Out << "DSDRt" ; |
3279 | break; |
3280 | case BuiltinType::SatUFract: |
3281 | Out << "DSDRj" ; |
3282 | break; |
3283 | case BuiltinType::SatULongFract: |
3284 | Out << "DSDRm" ; |
3285 | break; |
3286 | case BuiltinType::Half: |
3287 | Out << "Dh" ; |
3288 | break; |
3289 | case BuiltinType::Float: |
3290 | Out << 'f'; |
3291 | break; |
3292 | case BuiltinType::Double: |
3293 | Out << 'd'; |
3294 | break; |
3295 | case BuiltinType::LongDouble: { |
3296 | const TargetInfo *TI = |
3297 | getASTContext().getLangOpts().OpenMP && |
3298 | getASTContext().getLangOpts().OpenMPIsTargetDevice |
3299 | ? getASTContext().getAuxTargetInfo() |
3300 | : &getASTContext().getTargetInfo(); |
3301 | Out << TI->getLongDoubleMangling(); |
3302 | break; |
3303 | } |
3304 | case BuiltinType::Float128: { |
3305 | const TargetInfo *TI = |
3306 | getASTContext().getLangOpts().OpenMP && |
3307 | getASTContext().getLangOpts().OpenMPIsTargetDevice |
3308 | ? getASTContext().getAuxTargetInfo() |
3309 | : &getASTContext().getTargetInfo(); |
3310 | Out << TI->getFloat128Mangling(); |
3311 | break; |
3312 | } |
3313 | case BuiltinType::BFloat16: { |
3314 | const TargetInfo *TI = |
3315 | ((getASTContext().getLangOpts().OpenMP && |
3316 | getASTContext().getLangOpts().OpenMPIsTargetDevice) || |
3317 | getASTContext().getLangOpts().SYCLIsDevice) |
3318 | ? getASTContext().getAuxTargetInfo() |
3319 | : &getASTContext().getTargetInfo(); |
3320 | Out << TI->getBFloat16Mangling(); |
3321 | break; |
3322 | } |
3323 | case BuiltinType::Ibm128: { |
3324 | const TargetInfo *TI = &getASTContext().getTargetInfo(); |
3325 | Out << TI->getIbm128Mangling(); |
3326 | break; |
3327 | } |
3328 | case BuiltinType::NullPtr: |
3329 | Out << "Dn" ; |
3330 | break; |
3331 | |
3332 | #define BUILTIN_TYPE(Id, SingletonId) |
3333 | #define PLACEHOLDER_TYPE(Id, SingletonId) \ |
3334 | case BuiltinType::Id: |
3335 | #include "clang/AST/BuiltinTypes.def" |
3336 | case BuiltinType::Dependent: |
3337 | if (!NullOut) |
3338 | llvm_unreachable("mangling a placeholder type" ); |
3339 | break; |
3340 | case BuiltinType::ObjCId: |
3341 | Out << "11objc_object" ; |
3342 | break; |
3343 | case BuiltinType::ObjCClass: |
3344 | Out << "10objc_class" ; |
3345 | break; |
3346 | case BuiltinType::ObjCSel: |
3347 | Out << "13objc_selector" ; |
3348 | break; |
3349 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
3350 | case BuiltinType::Id: \ |
3351 | type_name = "ocl_" #ImgType "_" #Suffix; \ |
3352 | Out << type_name.size() << type_name; \ |
3353 | break; |
3354 | #include "clang/Basic/OpenCLImageTypes.def" |
3355 | case BuiltinType::OCLSampler: |
3356 | Out << "11ocl_sampler" ; |
3357 | break; |
3358 | case BuiltinType::OCLEvent: |
3359 | Out << "9ocl_event" ; |
3360 | break; |
3361 | case BuiltinType::OCLClkEvent: |
3362 | Out << "12ocl_clkevent" ; |
3363 | break; |
3364 | case BuiltinType::OCLQueue: |
3365 | Out << "9ocl_queue" ; |
3366 | break; |
3367 | case BuiltinType::OCLReserveID: |
3368 | Out << "13ocl_reserveid" ; |
3369 | break; |
3370 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
3371 | case BuiltinType::Id: \ |
3372 | type_name = "ocl_" #ExtType; \ |
3373 | Out << type_name.size() << type_name; \ |
3374 | break; |
3375 | #include "clang/Basic/OpenCLExtensionTypes.def" |
3376 | // The SVE types are effectively target-specific. The mangling scheme |
3377 | // is defined in the appendices to the Procedure Call Standard for the |
3378 | // Arm Architecture. |
3379 | #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls, \ |
3380 | ElBits, IsSigned, IsFP, IsBF) \ |
3381 | case BuiltinType::Id: \ |
3382 | if (T->getKind() == BuiltinType::SveBFloat16 && \ |
3383 | isCompatibleWith(LangOptions::ClangABI::Ver17)) { \ |
3384 | /* Prior to Clang 18.0 we used this incorrect mangled name */ \ |
3385 | type_name = "__SVBFloat16_t"; \ |
3386 | Out << "u" << type_name.size() << type_name; \ |
3387 | } else { \ |
3388 | type_name = MangledName; \ |
3389 | Out << (type_name == InternalName ? "u" : "") << type_name.size() \ |
3390 | << type_name; \ |
3391 | } \ |
3392 | break; |
3393 | #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \ |
3394 | case BuiltinType::Id: \ |
3395 | type_name = MangledName; \ |
3396 | Out << (type_name == InternalName ? "u" : "") << type_name.size() \ |
3397 | << type_name; \ |
3398 | break; |
3399 | #define SVE_OPAQUE_TYPE(InternalName, MangledName, Id, SingletonId) \ |
3400 | case BuiltinType::Id: \ |
3401 | type_name = MangledName; \ |
3402 | Out << (type_name == InternalName ? "u" : "") << type_name.size() \ |
3403 | << type_name; \ |
3404 | break; |
3405 | #include "clang/Basic/AArch64SVEACLETypes.def" |
3406 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
3407 | case BuiltinType::Id: \ |
3408 | type_name = #Name; \ |
3409 | Out << 'u' << type_name.size() << type_name; \ |
3410 | break; |
3411 | #include "clang/Basic/PPCTypes.def" |
3412 | // TODO: Check the mangling scheme for RISC-V V. |
3413 | #define RVV_TYPE(Name, Id, SingletonId) \ |
3414 | case BuiltinType::Id: \ |
3415 | type_name = Name; \ |
3416 | Out << 'u' << type_name.size() << type_name; \ |
3417 | break; |
3418 | #include "clang/Basic/RISCVVTypes.def" |
3419 | #define WASM_REF_TYPE(InternalName, MangledName, Id, SingletonId, AS) \ |
3420 | case BuiltinType::Id: \ |
3421 | type_name = MangledName; \ |
3422 | Out << 'u' << type_name.size() << type_name; \ |
3423 | break; |
3424 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
3425 | #define AMDGPU_TYPE(Name, Id, SingletonId) \ |
3426 | case BuiltinType::Id: \ |
3427 | type_name = Name; \ |
3428 | Out << 'u' << type_name.size() << type_name; \ |
3429 | break; |
3430 | #include "clang/Basic/AMDGPUTypes.def" |
3431 | } |
3432 | } |
3433 | |
3434 | StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) { |
3435 | switch (CC) { |
3436 | case CC_C: |
3437 | return "" ; |
3438 | |
3439 | case CC_X86VectorCall: |
3440 | case CC_X86Pascal: |
3441 | case CC_X86RegCall: |
3442 | case CC_AAPCS: |
3443 | case CC_AAPCS_VFP: |
3444 | case CC_AArch64VectorCall: |
3445 | case CC_AArch64SVEPCS: |
3446 | case CC_AMDGPUKernelCall: |
3447 | case CC_IntelOclBicc: |
3448 | case CC_SpirFunction: |
3449 | case CC_OpenCLKernel: |
3450 | case CC_PreserveMost: |
3451 | case CC_PreserveAll: |
3452 | case CC_M68kRTD: |
3453 | case CC_PreserveNone: |
3454 | case CC_RISCVVectorCall: |
3455 | // FIXME: we should be mangling all of the above. |
3456 | return "" ; |
3457 | |
3458 | case CC_X86ThisCall: |
3459 | // FIXME: To match mingw GCC, thiscall should only be mangled in when it is |
3460 | // used explicitly. At this point, we don't have that much information in |
3461 | // the AST, since clang tends to bake the convention into the canonical |
3462 | // function type. thiscall only rarely used explicitly, so don't mangle it |
3463 | // for now. |
3464 | return "" ; |
3465 | |
3466 | case CC_X86StdCall: |
3467 | return "stdcall" ; |
3468 | case CC_X86FastCall: |
3469 | return "fastcall" ; |
3470 | case CC_X86_64SysV: |
3471 | return "sysv_abi" ; |
3472 | case CC_Win64: |
3473 | return "ms_abi" ; |
3474 | case CC_Swift: |
3475 | return "swiftcall" ; |
3476 | case CC_SwiftAsync: |
3477 | return "swiftasynccall" ; |
3478 | } |
3479 | llvm_unreachable("bad calling convention" ); |
3480 | } |
3481 | |
3482 | void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) { |
3483 | // Fast path. |
3484 | if (T->getExtInfo() == FunctionType::ExtInfo()) |
3485 | return; |
3486 | |
3487 | // Vendor-specific qualifiers are emitted in reverse alphabetical order. |
3488 | // This will get more complicated in the future if we mangle other |
3489 | // things here; but for now, since we mangle ns_returns_retained as |
3490 | // a qualifier on the result type, we can get away with this: |
3491 | StringRef CCQualifier = getCallingConvQualifierName(CC: T->getExtInfo().getCC()); |
3492 | if (!CCQualifier.empty()) |
3493 | mangleVendorQualifier(name: CCQualifier); |
3494 | |
3495 | // FIXME: regparm |
3496 | // FIXME: noreturn |
3497 | } |
3498 | |
3499 | void |
3500 | CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) { |
3501 | // Vendor-specific qualifiers are emitted in reverse alphabetical order. |
3502 | |
3503 | // Note that these are *not* substitution candidates. Demanglers might |
3504 | // have trouble with this if the parameter type is fully substituted. |
3505 | |
3506 | switch (PI.getABI()) { |
3507 | case ParameterABI::Ordinary: |
3508 | break; |
3509 | |
3510 | // All of these start with "swift", so they come before "ns_consumed". |
3511 | case ParameterABI::SwiftContext: |
3512 | case ParameterABI::SwiftAsyncContext: |
3513 | case ParameterABI::SwiftErrorResult: |
3514 | case ParameterABI::SwiftIndirectResult: |
3515 | mangleVendorQualifier(name: getParameterABISpelling(kind: PI.getABI())); |
3516 | break; |
3517 | } |
3518 | |
3519 | if (PI.isConsumed()) |
3520 | mangleVendorQualifier(name: "ns_consumed" ); |
3521 | |
3522 | if (PI.isNoEscape()) |
3523 | mangleVendorQualifier(name: "noescape" ); |
3524 | } |
3525 | |
3526 | // <type> ::= <function-type> |
3527 | // <function-type> ::= [<CV-qualifiers>] F [Y] |
3528 | // <bare-function-type> [<ref-qualifier>] E |
3529 | void CXXNameMangler::mangleType(const FunctionProtoType *T) { |
3530 | mangleExtFunctionInfo(T); |
3531 | |
3532 | // Mangle CV-qualifiers, if present. These are 'this' qualifiers, |
3533 | // e.g. "const" in "int (A::*)() const". |
3534 | mangleQualifiers(Quals: T->getMethodQuals()); |
3535 | |
3536 | // Mangle instantiation-dependent exception-specification, if present, |
3537 | // per cxx-abi-dev proposal on 2016-10-11. |
3538 | if (T->hasInstantiationDependentExceptionSpec()) { |
3539 | if (isComputedNoexcept(ESpecType: T->getExceptionSpecType())) { |
3540 | Out << "DO" ; |
3541 | mangleExpression(E: T->getNoexceptExpr()); |
3542 | Out << "E" ; |
3543 | } else { |
3544 | assert(T->getExceptionSpecType() == EST_Dynamic); |
3545 | Out << "Dw" ; |
3546 | for (auto ExceptTy : T->exceptions()) |
3547 | mangleType(T: ExceptTy); |
3548 | Out << "E" ; |
3549 | } |
3550 | } else if (T->isNothrow()) { |
3551 | Out << "Do" ; |
3552 | } |
3553 | |
3554 | Out << 'F'; |
3555 | |
3556 | // FIXME: We don't have enough information in the AST to produce the 'Y' |
3557 | // encoding for extern "C" function types. |
3558 | mangleBareFunctionType(T, /*MangleReturnType=*/true); |
3559 | |
3560 | // Mangle the ref-qualifier, if present. |
3561 | mangleRefQualifier(RefQualifier: T->getRefQualifier()); |
3562 | |
3563 | Out << 'E'; |
3564 | } |
3565 | |
3566 | void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { |
3567 | // Function types without prototypes can arise when mangling a function type |
3568 | // within an overloadable function in C. We mangle these as the absence of any |
3569 | // parameter types (not even an empty parameter list). |
3570 | Out << 'F'; |
3571 | |
3572 | FunctionTypeDepthState saved = FunctionTypeDepth.push(); |
3573 | |
3574 | FunctionTypeDepth.enterResultType(); |
3575 | mangleType(T: T->getReturnType()); |
3576 | FunctionTypeDepth.leaveResultType(); |
3577 | |
3578 | FunctionTypeDepth.pop(saved); |
3579 | Out << 'E'; |
3580 | } |
3581 | |
3582 | void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto, |
3583 | bool MangleReturnType, |
3584 | const FunctionDecl *FD) { |
3585 | // Record that we're in a function type. See mangleFunctionParam |
3586 | // for details on what we're trying to achieve here. |
3587 | FunctionTypeDepthState saved = FunctionTypeDepth.push(); |
3588 | |
3589 | // <bare-function-type> ::= <signature type>+ |
3590 | if (MangleReturnType) { |
3591 | FunctionTypeDepth.enterResultType(); |
3592 | |
3593 | // Mangle ns_returns_retained as an order-sensitive qualifier here. |
3594 | if (Proto->getExtInfo().getProducesResult() && FD == nullptr) |
3595 | mangleVendorQualifier(name: "ns_returns_retained" ); |
3596 | |
3597 | // Mangle the return type without any direct ARC ownership qualifiers. |
3598 | QualType ReturnTy = Proto->getReturnType(); |
3599 | if (ReturnTy.getObjCLifetime()) { |
3600 | auto SplitReturnTy = ReturnTy.split(); |
3601 | SplitReturnTy.Quals.removeObjCLifetime(); |
3602 | ReturnTy = getASTContext().getQualifiedType(split: SplitReturnTy); |
3603 | } |
3604 | mangleType(T: ReturnTy); |
3605 | |
3606 | FunctionTypeDepth.leaveResultType(); |
3607 | } |
3608 | |
3609 | if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { |
3610 | // <builtin-type> ::= v # void |
3611 | Out << 'v'; |
3612 | } else { |
3613 | assert(!FD || FD->getNumParams() == Proto->getNumParams()); |
3614 | for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { |
3615 | // Mangle extended parameter info as order-sensitive qualifiers here. |
3616 | if (Proto->hasExtParameterInfos() && FD == nullptr) { |
3617 | mangleExtParameterInfo(PI: Proto->getExtParameterInfo(I)); |
3618 | } |
3619 | |
3620 | // Mangle the type. |
3621 | QualType ParamTy = Proto->getParamType(i: I); |
3622 | mangleType(T: Context.getASTContext().getSignatureParameterType(T: ParamTy)); |
3623 | |
3624 | if (FD) { |
3625 | if (auto *Attr = FD->getParamDecl(i: I)->getAttr<PassObjectSizeAttr>()) { |
3626 | // Attr can only take 1 character, so we can hardcode the length |
3627 | // below. |
3628 | assert(Attr->getType() <= 9 && Attr->getType() >= 0); |
3629 | if (Attr->isDynamic()) |
3630 | Out << "U25pass_dynamic_object_size" << Attr->getType(); |
3631 | else |
3632 | Out << "U17pass_object_size" << Attr->getType(); |
3633 | } |
3634 | } |
3635 | } |
3636 | |
3637 | // <builtin-type> ::= z # ellipsis |
3638 | if (Proto->isVariadic()) |
3639 | Out << 'z'; |
3640 | } |
3641 | |
3642 | if (FD) { |
3643 | FunctionTypeDepth.enterResultType(); |
3644 | mangleRequiresClause(RequiresClause: FD->getTrailingRequiresClause()); |
3645 | } |
3646 | |
3647 | FunctionTypeDepth.pop(saved); |
3648 | } |
3649 | |
3650 | // <type> ::= <class-enum-type> |
3651 | // <class-enum-type> ::= <name> |
3652 | void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { |
3653 | mangleName(GD: T->getDecl()); |
3654 | } |
3655 | |
3656 | // <type> ::= <class-enum-type> |
3657 | // <class-enum-type> ::= <name> |
3658 | void CXXNameMangler::mangleType(const EnumType *T) { |
3659 | mangleType(static_cast<const TagType*>(T)); |
3660 | } |
3661 | void CXXNameMangler::mangleType(const RecordType *T) { |
3662 | mangleType(static_cast<const TagType*>(T)); |
3663 | } |
3664 | void CXXNameMangler::mangleType(const TagType *T) { |
3665 | mangleName(GD: T->getDecl()); |
3666 | } |
3667 | |
3668 | // <type> ::= <array-type> |
3669 | // <array-type> ::= A <positive dimension number> _ <element type> |
3670 | // ::= A [<dimension expression>] _ <element type> |
3671 | void CXXNameMangler::mangleType(const ConstantArrayType *T) { |
3672 | Out << 'A' << T->getSize() << '_'; |
3673 | mangleType(T: T->getElementType()); |
3674 | } |
3675 | void CXXNameMangler::mangleType(const VariableArrayType *T) { |
3676 | Out << 'A'; |
3677 | // decayed vla types (size 0) will just be skipped. |
3678 | if (T->getSizeExpr()) |
3679 | mangleExpression(E: T->getSizeExpr()); |
3680 | Out << '_'; |
3681 | mangleType(T: T->getElementType()); |
3682 | } |
3683 | void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { |
3684 | Out << 'A'; |
3685 | // A DependentSizedArrayType might not have size expression as below |
3686 | // |
3687 | // template<int ...N> int arr[] = {N...}; |
3688 | if (T->getSizeExpr()) |
3689 | mangleExpression(E: T->getSizeExpr()); |
3690 | Out << '_'; |
3691 | mangleType(T: T->getElementType()); |
3692 | } |
3693 | void CXXNameMangler::mangleType(const IncompleteArrayType *T) { |
3694 | Out << "A_" ; |
3695 | mangleType(T: T->getElementType()); |
3696 | } |
3697 | |
3698 | // <type> ::= <pointer-to-member-type> |
3699 | // <pointer-to-member-type> ::= M <class type> <member type> |
3700 | void CXXNameMangler::mangleType(const MemberPointerType *T) { |
3701 | Out << 'M'; |
3702 | mangleType(T: QualType(T->getClass(), 0)); |
3703 | QualType PointeeType = T->getPointeeType(); |
3704 | if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(Val&: PointeeType)) { |
3705 | mangleType(T: FPT); |
3706 | |
3707 | // Itanium C++ ABI 5.1.8: |
3708 | // |
3709 | // The type of a non-static member function is considered to be different, |
3710 | // for the purposes of substitution, from the type of a namespace-scope or |
3711 | // static member function whose type appears similar. The types of two |
3712 | // non-static member functions are considered to be different, for the |
3713 | // purposes of substitution, if the functions are members of different |
3714 | // classes. In other words, for the purposes of substitution, the class of |
3715 | // which the function is a member is considered part of the type of |
3716 | // function. |
3717 | |
3718 | // Given that we already substitute member function pointers as a |
3719 | // whole, the net effect of this rule is just to unconditionally |
3720 | // suppress substitution on the function type in a member pointer. |
3721 | // We increment the SeqID here to emulate adding an entry to the |
3722 | // substitution table. |
3723 | ++SeqID; |
3724 | } else |
3725 | mangleType(T: PointeeType); |
3726 | } |
3727 | |
3728 | // <type> ::= <template-param> |
3729 | void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { |
3730 | mangleTemplateParameter(Depth: T->getDepth(), Index: T->getIndex()); |
3731 | } |
3732 | |
3733 | // <type> ::= <template-param> |
3734 | void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) { |
3735 | // FIXME: not clear how to mangle this! |
3736 | // template <class T...> class A { |
3737 | // template <class U...> void foo(T(*)(U) x...); |
3738 | // }; |
3739 | Out << "_SUBSTPACK_" ; |
3740 | } |
3741 | |
3742 | // <type> ::= P <type> # pointer-to |
3743 | void CXXNameMangler::mangleType(const PointerType *T) { |
3744 | Out << 'P'; |
3745 | mangleType(T: T->getPointeeType()); |
3746 | } |
3747 | void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { |
3748 | Out << 'P'; |
3749 | mangleType(T: T->getPointeeType()); |
3750 | } |
3751 | |
3752 | // <type> ::= R <type> # reference-to |
3753 | void CXXNameMangler::mangleType(const LValueReferenceType *T) { |
3754 | Out << 'R'; |
3755 | mangleType(T: T->getPointeeType()); |
3756 | } |
3757 | |
3758 | // <type> ::= O <type> # rvalue reference-to (C++0x) |
3759 | void CXXNameMangler::mangleType(const RValueReferenceType *T) { |
3760 | Out << 'O'; |
3761 | mangleType(T: T->getPointeeType()); |
3762 | } |
3763 | |
3764 | // <type> ::= C <type> # complex pair (C 2000) |
3765 | void CXXNameMangler::mangleType(const ComplexType *T) { |
3766 | Out << 'C'; |
3767 | mangleType(T: T->getElementType()); |
3768 | } |
3769 | |
3770 | // ARM's ABI for Neon vector types specifies that they should be mangled as |
3771 | // if they are structs (to match ARM's initial implementation). The |
3772 | // vector type must be one of the special types predefined by ARM. |
3773 | void CXXNameMangler::mangleNeonVectorType(const VectorType *T) { |
3774 | QualType EltType = T->getElementType(); |
3775 | assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType" ); |
3776 | const char *EltName = nullptr; |
3777 | if (T->getVectorKind() == VectorKind::NeonPoly) { |
3778 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
3779 | case BuiltinType::SChar: |
3780 | case BuiltinType::UChar: |
3781 | EltName = "poly8_t" ; |
3782 | break; |
3783 | case BuiltinType::Short: |
3784 | case BuiltinType::UShort: |
3785 | EltName = "poly16_t" ; |
3786 | break; |
3787 | case BuiltinType::LongLong: |
3788 | case BuiltinType::ULongLong: |
3789 | EltName = "poly64_t" ; |
3790 | break; |
3791 | default: llvm_unreachable("unexpected Neon polynomial vector element type" ); |
3792 | } |
3793 | } else { |
3794 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
3795 | case BuiltinType::SChar: EltName = "int8_t" ; break; |
3796 | case BuiltinType::UChar: EltName = "uint8_t" ; break; |
3797 | case BuiltinType::Short: EltName = "int16_t" ; break; |
3798 | case BuiltinType::UShort: EltName = "uint16_t" ; break; |
3799 | case BuiltinType::Int: EltName = "int32_t" ; break; |
3800 | case BuiltinType::UInt: EltName = "uint32_t" ; break; |
3801 | case BuiltinType::LongLong: EltName = "int64_t" ; break; |
3802 | case BuiltinType::ULongLong: EltName = "uint64_t" ; break; |
3803 | case BuiltinType::Double: EltName = "float64_t" ; break; |
3804 | case BuiltinType::Float: EltName = "float32_t" ; break; |
3805 | case BuiltinType::Half: EltName = "float16_t" ; break; |
3806 | case BuiltinType::BFloat16: EltName = "bfloat16_t" ; break; |
3807 | default: |
3808 | llvm_unreachable("unexpected Neon vector element type" ); |
3809 | } |
3810 | } |
3811 | const char *BaseName = nullptr; |
3812 | unsigned BitSize = (T->getNumElements() * |
3813 | getASTContext().getTypeSize(T: EltType)); |
3814 | if (BitSize == 64) |
3815 | BaseName = "__simd64_" ; |
3816 | else { |
3817 | assert(BitSize == 128 && "Neon vector type not 64 or 128 bits" ); |
3818 | BaseName = "__simd128_" ; |
3819 | } |
3820 | Out << strlen(s: BaseName) + strlen(s: EltName); |
3821 | Out << BaseName << EltName; |
3822 | } |
3823 | |
3824 | void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) { |
3825 | DiagnosticsEngine &Diags = Context.getDiags(); |
3826 | unsigned DiagID = Diags.getCustomDiagID( |
3827 | L: DiagnosticsEngine::Error, |
3828 | FormatString: "cannot mangle this dependent neon vector type yet" ); |
3829 | Diags.Report(Loc: T->getAttributeLoc(), DiagID); |
3830 | } |
3831 | |
3832 | static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) { |
3833 | switch (EltType->getKind()) { |
3834 | case BuiltinType::SChar: |
3835 | return "Int8" ; |
3836 | case BuiltinType::Short: |
3837 | return "Int16" ; |
3838 | case BuiltinType::Int: |
3839 | return "Int32" ; |
3840 | case BuiltinType::Long: |
3841 | case BuiltinType::LongLong: |
3842 | return "Int64" ; |
3843 | case BuiltinType::UChar: |
3844 | return "Uint8" ; |
3845 | case BuiltinType::UShort: |
3846 | return "Uint16" ; |
3847 | case BuiltinType::UInt: |
3848 | return "Uint32" ; |
3849 | case BuiltinType::ULong: |
3850 | case BuiltinType::ULongLong: |
3851 | return "Uint64" ; |
3852 | case BuiltinType::Half: |
3853 | return "Float16" ; |
3854 | case BuiltinType::Float: |
3855 | return "Float32" ; |
3856 | case BuiltinType::Double: |
3857 | return "Float64" ; |
3858 | case BuiltinType::BFloat16: |
3859 | return "Bfloat16" ; |
3860 | default: |
3861 | llvm_unreachable("Unexpected vector element base type" ); |
3862 | } |
3863 | } |
3864 | |
3865 | // AArch64's ABI for Neon vector types specifies that they should be mangled as |
3866 | // the equivalent internal name. The vector type must be one of the special |
3867 | // types predefined by ARM. |
3868 | void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) { |
3869 | QualType EltType = T->getElementType(); |
3870 | assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType" ); |
3871 | unsigned BitSize = |
3872 | (T->getNumElements() * getASTContext().getTypeSize(T: EltType)); |
3873 | (void)BitSize; // Silence warning. |
3874 | |
3875 | assert((BitSize == 64 || BitSize == 128) && |
3876 | "Neon vector type not 64 or 128 bits" ); |
3877 | |
3878 | StringRef EltName; |
3879 | if (T->getVectorKind() == VectorKind::NeonPoly) { |
3880 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
3881 | case BuiltinType::UChar: |
3882 | EltName = "Poly8" ; |
3883 | break; |
3884 | case BuiltinType::UShort: |
3885 | EltName = "Poly16" ; |
3886 | break; |
3887 | case BuiltinType::ULong: |
3888 | case BuiltinType::ULongLong: |
3889 | EltName = "Poly64" ; |
3890 | break; |
3891 | default: |
3892 | llvm_unreachable("unexpected Neon polynomial vector element type" ); |
3893 | } |
3894 | } else |
3895 | EltName = mangleAArch64VectorBase(EltType: cast<BuiltinType>(Val&: EltType)); |
3896 | |
3897 | std::string TypeName = |
3898 | ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t" ).str(); |
3899 | Out << TypeName.length() << TypeName; |
3900 | } |
3901 | void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) { |
3902 | DiagnosticsEngine &Diags = Context.getDiags(); |
3903 | unsigned DiagID = Diags.getCustomDiagID( |
3904 | L: DiagnosticsEngine::Error, |
3905 | FormatString: "cannot mangle this dependent neon vector type yet" ); |
3906 | Diags.Report(Loc: T->getAttributeLoc(), DiagID); |
3907 | } |
3908 | |
3909 | // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types |
3910 | // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64 |
3911 | // type as the sizeless variants. |
3912 | // |
3913 | // The mangling scheme for VLS types is implemented as a "pseudo" template: |
3914 | // |
3915 | // '__SVE_VLS<<type>, <vector length>>' |
3916 | // |
3917 | // Combining the existing SVE type and a specific vector length (in bits). |
3918 | // For example: |
3919 | // |
3920 | // typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512))); |
3921 | // |
3922 | // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as: |
3923 | // |
3924 | // "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE" |
3925 | // |
3926 | // i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE |
3927 | // |
3928 | // The latest ACLE specification (00bet5) does not contain details of this |
3929 | // mangling scheme, it will be specified in the next revision. The mangling |
3930 | // scheme is otherwise defined in the appendices to the Procedure Call Standard |
3931 | // for the Arm Architecture, see |
3932 | // https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#appendix-c-mangling |
3933 | void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) { |
3934 | assert((T->getVectorKind() == VectorKind::SveFixedLengthData || |
3935 | T->getVectorKind() == VectorKind::SveFixedLengthPredicate) && |
3936 | "expected fixed-length SVE vector!" ); |
3937 | |
3938 | QualType EltType = T->getElementType(); |
3939 | assert(EltType->isBuiltinType() && |
3940 | "expected builtin type for fixed-length SVE vector!" ); |
3941 | |
3942 | StringRef TypeName; |
3943 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
3944 | case BuiltinType::SChar: |
3945 | TypeName = "__SVInt8_t" ; |
3946 | break; |
3947 | case BuiltinType::UChar: { |
3948 | if (T->getVectorKind() == VectorKind::SveFixedLengthData) |
3949 | TypeName = "__SVUint8_t" ; |
3950 | else |
3951 | TypeName = "__SVBool_t" ; |
3952 | break; |
3953 | } |
3954 | case BuiltinType::Short: |
3955 | TypeName = "__SVInt16_t" ; |
3956 | break; |
3957 | case BuiltinType::UShort: |
3958 | TypeName = "__SVUint16_t" ; |
3959 | break; |
3960 | case BuiltinType::Int: |
3961 | TypeName = "__SVInt32_t" ; |
3962 | break; |
3963 | case BuiltinType::UInt: |
3964 | TypeName = "__SVUint32_t" ; |
3965 | break; |
3966 | case BuiltinType::Long: |
3967 | TypeName = "__SVInt64_t" ; |
3968 | break; |
3969 | case BuiltinType::ULong: |
3970 | TypeName = "__SVUint64_t" ; |
3971 | break; |
3972 | case BuiltinType::Half: |
3973 | TypeName = "__SVFloat16_t" ; |
3974 | break; |
3975 | case BuiltinType::Float: |
3976 | TypeName = "__SVFloat32_t" ; |
3977 | break; |
3978 | case BuiltinType::Double: |
3979 | TypeName = "__SVFloat64_t" ; |
3980 | break; |
3981 | case BuiltinType::BFloat16: |
3982 | TypeName = "__SVBfloat16_t" ; |
3983 | break; |
3984 | default: |
3985 | llvm_unreachable("unexpected element type for fixed-length SVE vector!" ); |
3986 | } |
3987 | |
3988 | unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width; |
3989 | |
3990 | if (T->getVectorKind() == VectorKind::SveFixedLengthPredicate) |
3991 | VecSizeInBits *= 8; |
3992 | |
3993 | Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj" |
3994 | << VecSizeInBits << "EE" ; |
3995 | } |
3996 | |
3997 | void CXXNameMangler::mangleAArch64FixedSveVectorType( |
3998 | const DependentVectorType *T) { |
3999 | DiagnosticsEngine &Diags = Context.getDiags(); |
4000 | unsigned DiagID = Diags.getCustomDiagID( |
4001 | L: DiagnosticsEngine::Error, |
4002 | FormatString: "cannot mangle this dependent fixed-length SVE vector type yet" ); |
4003 | Diags.Report(Loc: T->getAttributeLoc(), DiagID); |
4004 | } |
4005 | |
4006 | void CXXNameMangler::mangleRISCVFixedRVVVectorType(const VectorType *T) { |
4007 | assert((T->getVectorKind() == VectorKind::RVVFixedLengthData || |
4008 | T->getVectorKind() == VectorKind::RVVFixedLengthMask) && |
4009 | "expected fixed-length RVV vector!" ); |
4010 | |
4011 | QualType EltType = T->getElementType(); |
4012 | assert(EltType->isBuiltinType() && |
4013 | "expected builtin type for fixed-length RVV vector!" ); |
4014 | |
4015 | SmallString<20> TypeNameStr; |
4016 | llvm::raw_svector_ostream TypeNameOS(TypeNameStr); |
4017 | TypeNameOS << "__rvv_" ; |
4018 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
4019 | case BuiltinType::SChar: |
4020 | TypeNameOS << "int8" ; |
4021 | break; |
4022 | case BuiltinType::UChar: |
4023 | if (T->getVectorKind() == VectorKind::RVVFixedLengthData) |
4024 | TypeNameOS << "uint8" ; |
4025 | else |
4026 | TypeNameOS << "bool" ; |
4027 | break; |
4028 | case BuiltinType::Short: |
4029 | TypeNameOS << "int16" ; |
4030 | break; |
4031 | case BuiltinType::UShort: |
4032 | TypeNameOS << "uint16" ; |
4033 | break; |
4034 | case BuiltinType::Int: |
4035 | TypeNameOS << "int32" ; |
4036 | break; |
4037 | case BuiltinType::UInt: |
4038 | TypeNameOS << "uint32" ; |
4039 | break; |
4040 | case BuiltinType::Long: |
4041 | TypeNameOS << "int64" ; |
4042 | break; |
4043 | case BuiltinType::ULong: |
4044 | TypeNameOS << "uint64" ; |
4045 | break; |
4046 | case BuiltinType::Float16: |
4047 | TypeNameOS << "float16" ; |
4048 | break; |
4049 | case BuiltinType::Float: |
4050 | TypeNameOS << "float32" ; |
4051 | break; |
4052 | case BuiltinType::Double: |
4053 | TypeNameOS << "float64" ; |
4054 | break; |
4055 | default: |
4056 | llvm_unreachable("unexpected element type for fixed-length RVV vector!" ); |
4057 | } |
4058 | |
4059 | unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width; |
4060 | |
4061 | // Apend the LMUL suffix. |
4062 | auto VScale = getASTContext().getTargetInfo().getVScaleRange( |
4063 | LangOpts: getASTContext().getLangOpts()); |
4064 | unsigned VLen = VScale->first * llvm::RISCV::RVVBitsPerBlock; |
4065 | |
4066 | if (T->getVectorKind() == VectorKind::RVVFixedLengthData) { |
4067 | TypeNameOS << 'm'; |
4068 | if (VecSizeInBits >= VLen) |
4069 | TypeNameOS << (VecSizeInBits / VLen); |
4070 | else |
4071 | TypeNameOS << 'f' << (VLen / VecSizeInBits); |
4072 | } else { |
4073 | TypeNameOS << (VLen / VecSizeInBits); |
4074 | } |
4075 | TypeNameOS << "_t" ; |
4076 | |
4077 | Out << "9__RVV_VLSI" << 'u' << TypeNameStr.size() << TypeNameStr << "Lj" |
4078 | << VecSizeInBits << "EE" ; |
4079 | } |
4080 | |
4081 | void CXXNameMangler::mangleRISCVFixedRVVVectorType( |
4082 | const DependentVectorType *T) { |
4083 | DiagnosticsEngine &Diags = Context.getDiags(); |
4084 | unsigned DiagID = Diags.getCustomDiagID( |
4085 | L: DiagnosticsEngine::Error, |
4086 | FormatString: "cannot mangle this dependent fixed-length RVV vector type yet" ); |
4087 | Diags.Report(Loc: T->getAttributeLoc(), DiagID); |
4088 | } |
4089 | |
4090 | // GNU extension: vector types |
4091 | // <type> ::= <vector-type> |
4092 | // <vector-type> ::= Dv <positive dimension number> _ |
4093 | // <extended element type> |
4094 | // ::= Dv [<dimension expression>] _ <element type> |
4095 | // <extended element type> ::= <element type> |
4096 | // ::= p # AltiVec vector pixel |
4097 | // ::= b # Altivec vector bool |
4098 | void CXXNameMangler::mangleType(const VectorType *T) { |
4099 | if ((T->getVectorKind() == VectorKind::Neon || |
4100 | T->getVectorKind() == VectorKind::NeonPoly)) { |
4101 | llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); |
4102 | llvm::Triple::ArchType Arch = |
4103 | getASTContext().getTargetInfo().getTriple().getArch(); |
4104 | if ((Arch == llvm::Triple::aarch64 || |
4105 | Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin()) |
4106 | mangleAArch64NeonVectorType(T); |
4107 | else |
4108 | mangleNeonVectorType(T); |
4109 | return; |
4110 | } else if (T->getVectorKind() == VectorKind::SveFixedLengthData || |
4111 | T->getVectorKind() == VectorKind::SveFixedLengthPredicate) { |
4112 | mangleAArch64FixedSveVectorType(T); |
4113 | return; |
4114 | } else if (T->getVectorKind() == VectorKind::RVVFixedLengthData || |
4115 | T->getVectorKind() == VectorKind::RVVFixedLengthMask) { |
4116 | mangleRISCVFixedRVVVectorType(T); |
4117 | return; |
4118 | } |
4119 | Out << "Dv" << T->getNumElements() << '_'; |
4120 | if (T->getVectorKind() == VectorKind::AltiVecPixel) |
4121 | Out << 'p'; |
4122 | else if (T->getVectorKind() == VectorKind::AltiVecBool) |
4123 | Out << 'b'; |
4124 | else |
4125 | mangleType(T: T->getElementType()); |
4126 | } |
4127 | |
4128 | void CXXNameMangler::mangleType(const DependentVectorType *T) { |
4129 | if ((T->getVectorKind() == VectorKind::Neon || |
4130 | T->getVectorKind() == VectorKind::NeonPoly)) { |
4131 | llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); |
4132 | llvm::Triple::ArchType Arch = |
4133 | getASTContext().getTargetInfo().getTriple().getArch(); |
4134 | if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) && |
4135 | !Target.isOSDarwin()) |
4136 | mangleAArch64NeonVectorType(T); |
4137 | else |
4138 | mangleNeonVectorType(T); |
4139 | return; |
4140 | } else if (T->getVectorKind() == VectorKind::SveFixedLengthData || |
4141 | T->getVectorKind() == VectorKind::SveFixedLengthPredicate) { |
4142 | mangleAArch64FixedSveVectorType(T); |
4143 | return; |
4144 | } else if (T->getVectorKind() == VectorKind::RVVFixedLengthData) { |
4145 | mangleRISCVFixedRVVVectorType(T); |
4146 | return; |
4147 | } |
4148 | |
4149 | Out << "Dv" ; |
4150 | mangleExpression(E: T->getSizeExpr()); |
4151 | Out << '_'; |
4152 | if (T->getVectorKind() == VectorKind::AltiVecPixel) |
4153 | Out << 'p'; |
4154 | else if (T->getVectorKind() == VectorKind::AltiVecBool) |
4155 | Out << 'b'; |
4156 | else |
4157 | mangleType(T: T->getElementType()); |
4158 | } |
4159 | |
4160 | void CXXNameMangler::mangleType(const ExtVectorType *T) { |
4161 | mangleType(T: static_cast<const VectorType*>(T)); |
4162 | } |
4163 | void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { |
4164 | Out << "Dv" ; |
4165 | mangleExpression(E: T->getSizeExpr()); |
4166 | Out << '_'; |
4167 | mangleType(T: T->getElementType()); |
4168 | } |
4169 | |
4170 | void CXXNameMangler::mangleType(const ConstantMatrixType *T) { |
4171 | // Mangle matrix types as a vendor extended type: |
4172 | // u<Len>matrix_typeI<Rows><Columns><element type>E |
4173 | |
4174 | StringRef VendorQualifier = "matrix_type" ; |
4175 | Out << "u" << VendorQualifier.size() << VendorQualifier; |
4176 | |
4177 | Out << "I" ; |
4178 | auto &ASTCtx = getASTContext(); |
4179 | unsigned BitWidth = ASTCtx.getTypeSize(T: ASTCtx.getSizeType()); |
4180 | llvm::APSInt Rows(BitWidth); |
4181 | Rows = T->getNumRows(); |
4182 | mangleIntegerLiteral(T: ASTCtx.getSizeType(), Value: Rows); |
4183 | llvm::APSInt Columns(BitWidth); |
4184 | Columns = T->getNumColumns(); |
4185 | mangleIntegerLiteral(T: ASTCtx.getSizeType(), Value: Columns); |
4186 | mangleType(T: T->getElementType()); |
4187 | Out << "E" ; |
4188 | } |
4189 | |
4190 | void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) { |
4191 | // Mangle matrix types as a vendor extended type: |
4192 | // u<Len>matrix_typeI<row expr><column expr><element type>E |
4193 | StringRef VendorQualifier = "matrix_type" ; |
4194 | Out << "u" << VendorQualifier.size() << VendorQualifier; |
4195 | |
4196 | Out << "I" ; |
4197 | mangleTemplateArgExpr(E: T->getRowExpr()); |
4198 | mangleTemplateArgExpr(E: T->getColumnExpr()); |
4199 | mangleType(T: T->getElementType()); |
4200 | Out << "E" ; |
4201 | } |
4202 | |
4203 | void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) { |
4204 | SplitQualType split = T->getPointeeType().split(); |
4205 | mangleQualifiers(Quals: split.Quals, DAST: T); |
4206 | mangleType(T: QualType(split.Ty, 0)); |
4207 | } |
4208 | |
4209 | void CXXNameMangler::mangleType(const PackExpansionType *T) { |
4210 | // <type> ::= Dp <type> # pack expansion (C++0x) |
4211 | Out << "Dp" ; |
4212 | mangleType(T: T->getPattern()); |
4213 | } |
4214 | |
4215 | void CXXNameMangler::mangleType(const PackIndexingType *T) { |
4216 | if (!T->hasSelectedType()) |
4217 | mangleType(T: T->getPattern()); |
4218 | else |
4219 | mangleType(T: T->getSelectedType()); |
4220 | } |
4221 | |
4222 | void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { |
4223 | mangleSourceName(II: T->getDecl()->getIdentifier()); |
4224 | } |
4225 | |
4226 | void CXXNameMangler::mangleType(const ObjCObjectType *T) { |
4227 | // Treat __kindof as a vendor extended type qualifier. |
4228 | if (T->isKindOfType()) |
4229 | Out << "U8__kindof" ; |
4230 | |
4231 | if (!T->qual_empty()) { |
4232 | // Mangle protocol qualifiers. |
4233 | SmallString<64> QualStr; |
4234 | llvm::raw_svector_ostream QualOS(QualStr); |
4235 | QualOS << "objcproto" ; |
4236 | for (const auto *I : T->quals()) { |
4237 | StringRef name = I->getName(); |
4238 | QualOS << name.size() << name; |
4239 | } |
4240 | Out << 'U' << QualStr.size() << QualStr; |
4241 | } |
4242 | |
4243 | mangleType(T: T->getBaseType()); |
4244 | |
4245 | if (T->isSpecialized()) { |
4246 | // Mangle type arguments as I <type>+ E |
4247 | Out << 'I'; |
4248 | for (auto typeArg : T->getTypeArgs()) |
4249 | mangleType(T: typeArg); |
4250 | Out << 'E'; |
4251 | } |
4252 | } |
4253 | |
4254 | void CXXNameMangler::mangleType(const BlockPointerType *T) { |
4255 | Out << "U13block_pointer" ; |
4256 | mangleType(T: T->getPointeeType()); |
4257 | } |
4258 | |
4259 | void CXXNameMangler::mangleType(const InjectedClassNameType *T) { |
4260 | // Mangle injected class name types as if the user had written the |
4261 | // specialization out fully. It may not actually be possible to see |
4262 | // this mangling, though. |
4263 | mangleType(T: T->getInjectedSpecializationType()); |
4264 | } |
4265 | |
4266 | void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { |
4267 | if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) { |
4268 | mangleTemplateName(TD, Args: T->template_arguments()); |
4269 | } else { |
4270 | if (mangleSubstitution(T: QualType(T, 0))) |
4271 | return; |
4272 | |
4273 | mangleTemplatePrefix(Template: T->getTemplateName()); |
4274 | |
4275 | // FIXME: GCC does not appear to mangle the template arguments when |
4276 | // the template in question is a dependent template name. Should we |
4277 | // emulate that badness? |
4278 | mangleTemplateArgs(TN: T->getTemplateName(), Args: T->template_arguments()); |
4279 | addSubstitution(T: QualType(T, 0)); |
4280 | } |
4281 | } |
4282 | |
4283 | void CXXNameMangler::mangleType(const DependentNameType *T) { |
4284 | // Proposal by cxx-abi-dev, 2014-03-26 |
4285 | // <class-enum-type> ::= <name> # non-dependent or dependent type name or |
4286 | // # dependent elaborated type specifier using |
4287 | // # 'typename' |
4288 | // ::= Ts <name> # dependent elaborated type specifier using |
4289 | // # 'struct' or 'class' |
4290 | // ::= Tu <name> # dependent elaborated type specifier using |
4291 | // # 'union' |
4292 | // ::= Te <name> # dependent elaborated type specifier using |
4293 | // # 'enum' |
4294 | switch (T->getKeyword()) { |
4295 | case ElaboratedTypeKeyword::None: |
4296 | case ElaboratedTypeKeyword::Typename: |
4297 | break; |
4298 | case ElaboratedTypeKeyword::Struct: |
4299 | case ElaboratedTypeKeyword::Class: |
4300 | case ElaboratedTypeKeyword::Interface: |
4301 | Out << "Ts" ; |
4302 | break; |
4303 | case ElaboratedTypeKeyword::Union: |
4304 | Out << "Tu" ; |
4305 | break; |
4306 | case ElaboratedTypeKeyword::Enum: |
4307 | Out << "Te" ; |
4308 | break; |
4309 | } |
4310 | // Typename types are always nested |
4311 | Out << 'N'; |
4312 | manglePrefix(qualifier: T->getQualifier()); |
4313 | mangleSourceName(II: T->getIdentifier()); |
4314 | Out << 'E'; |
4315 | } |
4316 | |
4317 | void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) { |
4318 | // Dependently-scoped template types are nested if they have a prefix. |
4319 | Out << 'N'; |
4320 | |
4321 | // TODO: avoid making this TemplateName. |
4322 | TemplateName Prefix = |
4323 | getASTContext().getDependentTemplateName(NNS: T->getQualifier(), |
4324 | Name: T->getIdentifier()); |
4325 | mangleTemplatePrefix(Template: Prefix); |
4326 | |
4327 | // FIXME: GCC does not appear to mangle the template arguments when |
4328 | // the template in question is a dependent template name. Should we |
4329 | // emulate that badness? |
4330 | mangleTemplateArgs(TN: Prefix, Args: T->template_arguments()); |
4331 | Out << 'E'; |
4332 | } |
4333 | |
4334 | void CXXNameMangler::mangleType(const TypeOfType *T) { |
4335 | // FIXME: this is pretty unsatisfactory, but there isn't an obvious |
4336 | // "extension with parameters" mangling. |
4337 | Out << "u6typeof" ; |
4338 | } |
4339 | |
4340 | void CXXNameMangler::mangleType(const TypeOfExprType *T) { |
4341 | // FIXME: this is pretty unsatisfactory, but there isn't an obvious |
4342 | // "extension with parameters" mangling. |
4343 | Out << "u6typeof" ; |
4344 | } |
4345 | |
4346 | void CXXNameMangler::mangleType(const DecltypeType *T) { |
4347 | Expr *E = T->getUnderlyingExpr(); |
4348 | |
4349 | // type ::= Dt <expression> E # decltype of an id-expression |
4350 | // # or class member access |
4351 | // ::= DT <expression> E # decltype of an expression |
4352 | |
4353 | // This purports to be an exhaustive list of id-expressions and |
4354 | // class member accesses. Note that we do not ignore parentheses; |
4355 | // parentheses change the semantics of decltype for these |
4356 | // expressions (and cause the mangler to use the other form). |
4357 | if (isa<DeclRefExpr>(Val: E) || |
4358 | isa<MemberExpr>(Val: E) || |
4359 | isa<UnresolvedLookupExpr>(Val: E) || |
4360 | isa<DependentScopeDeclRefExpr>(Val: E) || |
4361 | isa<CXXDependentScopeMemberExpr>(Val: E) || |
4362 | isa<UnresolvedMemberExpr>(Val: E)) |
4363 | Out << "Dt" ; |
4364 | else |
4365 | Out << "DT" ; |
4366 | mangleExpression(E); |
4367 | Out << 'E'; |
4368 | } |
4369 | |
4370 | void CXXNameMangler::mangleType(const UnaryTransformType *T) { |
4371 | // If this is dependent, we need to record that. If not, we simply |
4372 | // mangle it as the underlying type since they are equivalent. |
4373 | if (T->isDependentType()) { |
4374 | Out << "u" ; |
4375 | |
4376 | StringRef BuiltinName; |
4377 | switch (T->getUTTKind()) { |
4378 | #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait) \ |
4379 | case UnaryTransformType::Enum: \ |
4380 | BuiltinName = "__" #Trait; \ |
4381 | break; |
4382 | #include "clang/Basic/TransformTypeTraits.def" |
4383 | } |
4384 | Out << BuiltinName.size() << BuiltinName; |
4385 | } |
4386 | |
4387 | Out << "I" ; |
4388 | mangleType(T: T->getBaseType()); |
4389 | Out << "E" ; |
4390 | } |
4391 | |
4392 | void CXXNameMangler::mangleType(const AutoType *T) { |
4393 | assert(T->getDeducedType().isNull() && |
4394 | "Deduced AutoType shouldn't be handled here!" ); |
4395 | assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType && |
4396 | "shouldn't need to mangle __auto_type!" ); |
4397 | // <builtin-type> ::= Da # auto |
4398 | // ::= Dc # decltype(auto) |
4399 | // ::= Dk # constrained auto |
4400 | // ::= DK # constrained decltype(auto) |
4401 | if (T->isConstrained() && !isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
4402 | Out << (T->isDecltypeAuto() ? "DK" : "Dk" ); |
4403 | mangleTypeConstraint(Concept: T->getTypeConstraintConcept(), |
4404 | Arguments: T->getTypeConstraintArguments()); |
4405 | } else { |
4406 | Out << (T->isDecltypeAuto() ? "Dc" : "Da" ); |
4407 | } |
4408 | } |
4409 | |
4410 | void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) { |
4411 | QualType Deduced = T->getDeducedType(); |
4412 | if (!Deduced.isNull()) |
4413 | return mangleType(T: Deduced); |
4414 | |
4415 | TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl(); |
4416 | assert(TD && "shouldn't form deduced TST unless we know we have a template" ); |
4417 | |
4418 | if (mangleSubstitution(ND: TD)) |
4419 | return; |
4420 | |
4421 | mangleName(GD: GlobalDecl(TD)); |
4422 | addSubstitution(ND: TD); |
4423 | } |
4424 | |
4425 | void CXXNameMangler::mangleType(const AtomicType *T) { |
4426 | // <type> ::= U <source-name> <type> # vendor extended type qualifier |
4427 | // (Until there's a standardized mangling...) |
4428 | Out << "U7_Atomic" ; |
4429 | mangleType(T: T->getValueType()); |
4430 | } |
4431 | |
4432 | void CXXNameMangler::mangleType(const PipeType *T) { |
4433 | // Pipe type mangling rules are described in SPIR 2.0 specification |
4434 | // A.1 Data types and A.3 Summary of changes |
4435 | // <type> ::= 8ocl_pipe |
4436 | Out << "8ocl_pipe" ; |
4437 | } |
4438 | |
4439 | void CXXNameMangler::mangleType(const BitIntType *T) { |
4440 | // 5.1.5.2 Builtin types |
4441 | // <type> ::= DB <number | instantiation-dependent expression> _ |
4442 | // ::= DU <number | instantiation-dependent expression> _ |
4443 | Out << "D" << (T->isUnsigned() ? "U" : "B" ) << T->getNumBits() << "_" ; |
4444 | } |
4445 | |
4446 | void CXXNameMangler::mangleType(const DependentBitIntType *T) { |
4447 | // 5.1.5.2 Builtin types |
4448 | // <type> ::= DB <number | instantiation-dependent expression> _ |
4449 | // ::= DU <number | instantiation-dependent expression> _ |
4450 | Out << "D" << (T->isUnsigned() ? "U" : "B" ); |
4451 | mangleExpression(E: T->getNumBitsExpr()); |
4452 | Out << "_" ; |
4453 | } |
4454 | |
4455 | void CXXNameMangler::mangleType(const ArrayParameterType *T) { |
4456 | mangleType(T: cast<ConstantArrayType>(Val: T)); |
4457 | } |
4458 | |
4459 | void CXXNameMangler::mangleIntegerLiteral(QualType T, |
4460 | const llvm::APSInt &Value) { |
4461 | // <expr-primary> ::= L <type> <value number> E # integer literal |
4462 | Out << 'L'; |
4463 | |
4464 | mangleType(T); |
4465 | if (T->isBooleanType()) { |
4466 | // Boolean values are encoded as 0/1. |
4467 | Out << (Value.getBoolValue() ? '1' : '0'); |
4468 | } else { |
4469 | mangleNumber(Value); |
4470 | } |
4471 | Out << 'E'; |
4472 | |
4473 | } |
4474 | |
4475 | void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) { |
4476 | // Ignore member expressions involving anonymous unions. |
4477 | while (const auto *RT = Base->getType()->getAs<RecordType>()) { |
4478 | if (!RT->getDecl()->isAnonymousStructOrUnion()) |
4479 | break; |
4480 | const auto *ME = dyn_cast<MemberExpr>(Val: Base); |
4481 | if (!ME) |
4482 | break; |
4483 | Base = ME->getBase(); |
4484 | IsArrow = ME->isArrow(); |
4485 | } |
4486 | |
4487 | if (Base->isImplicitCXXThis()) { |
4488 | // Note: GCC mangles member expressions to the implicit 'this' as |
4489 | // *this., whereas we represent them as this->. The Itanium C++ ABI |
4490 | // does not specify anything here, so we follow GCC. |
4491 | Out << "dtdefpT" ; |
4492 | } else { |
4493 | Out << (IsArrow ? "pt" : "dt" ); |
4494 | mangleExpression(E: Base); |
4495 | } |
4496 | } |
4497 | |
4498 | /// Mangles a member expression. |
4499 | void CXXNameMangler::mangleMemberExpr(const Expr *base, |
4500 | bool isArrow, |
4501 | NestedNameSpecifier *qualifier, |
4502 | NamedDecl *firstQualifierLookup, |
4503 | DeclarationName member, |
4504 | const TemplateArgumentLoc *TemplateArgs, |
4505 | unsigned NumTemplateArgs, |
4506 | unsigned arity) { |
4507 | // <expression> ::= dt <expression> <unresolved-name> |
4508 | // ::= pt <expression> <unresolved-name> |
4509 | if (base) |
4510 | mangleMemberExprBase(Base: base, IsArrow: isArrow); |
4511 | mangleUnresolvedName(qualifier, name: member, TemplateArgs, NumTemplateArgs, knownArity: arity); |
4512 | } |
4513 | |
4514 | /// Look at the callee of the given call expression and determine if |
4515 | /// it's a parenthesized id-expression which would have triggered ADL |
4516 | /// otherwise. |
4517 | static bool isParenthesizedADLCallee(const CallExpr *call) { |
4518 | const Expr *callee = call->getCallee(); |
4519 | const Expr *fn = callee->IgnoreParens(); |
4520 | |
4521 | // Must be parenthesized. IgnoreParens() skips __extension__ nodes, |
4522 | // too, but for those to appear in the callee, it would have to be |
4523 | // parenthesized. |
4524 | if (callee == fn) return false; |
4525 | |
4526 | // Must be an unresolved lookup. |
4527 | const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(Val: fn); |
4528 | if (!lookup) return false; |
4529 | |
4530 | assert(!lookup->requiresADL()); |
4531 | |
4532 | // Must be an unqualified lookup. |
4533 | if (lookup->getQualifier()) return false; |
4534 | |
4535 | // Must not have found a class member. Note that if one is a class |
4536 | // member, they're all class members. |
4537 | if (lookup->getNumDecls() > 0 && |
4538 | (*lookup->decls_begin())->isCXXClassMember()) |
4539 | return false; |
4540 | |
4541 | // Otherwise, ADL would have been triggered. |
4542 | return true; |
4543 | } |
4544 | |
4545 | void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) { |
4546 | const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(Val: E); |
4547 | Out << CastEncoding; |
4548 | mangleType(T: ECE->getType()); |
4549 | mangleExpression(E: ECE->getSubExpr()); |
4550 | } |
4551 | |
4552 | void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) { |
4553 | if (auto *Syntactic = InitList->getSyntacticForm()) |
4554 | InitList = Syntactic; |
4555 | for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i) |
4556 | mangleExpression(E: InitList->getInit(Init: i)); |
4557 | } |
4558 | |
4559 | void CXXNameMangler::mangleRequirement(SourceLocation RequiresExprLoc, |
4560 | const concepts::Requirement *Req) { |
4561 | using concepts::Requirement; |
4562 | |
4563 | // TODO: We can't mangle the result of a failed substitution. It's not clear |
4564 | // whether we should be mangling the original form prior to any substitution |
4565 | // instead. See https://lists.isocpp.org/core/2023/04/14118.php |
4566 | auto HandleSubstitutionFailure = |
4567 | [&](SourceLocation Loc) { |
4568 | DiagnosticsEngine &Diags = Context.getDiags(); |
4569 | unsigned DiagID = Diags.getCustomDiagID( |
4570 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle this requires-expression " |
4571 | "containing a substitution failure" ); |
4572 | Diags.Report(Loc, DiagID); |
4573 | Out << 'F'; |
4574 | }; |
4575 | |
4576 | switch (Req->getKind()) { |
4577 | case Requirement::RK_Type: { |
4578 | const auto *TR = cast<concepts::TypeRequirement>(Val: Req); |
4579 | if (TR->isSubstitutionFailure()) |
4580 | return HandleSubstitutionFailure( |
4581 | TR->getSubstitutionDiagnostic()->DiagLoc); |
4582 | |
4583 | Out << 'T'; |
4584 | mangleType(T: TR->getType()->getType()); |
4585 | break; |
4586 | } |
4587 | |
4588 | case Requirement::RK_Simple: |
4589 | case Requirement::RK_Compound: { |
4590 | const auto *ER = cast<concepts::ExprRequirement>(Val: Req); |
4591 | if (ER->isExprSubstitutionFailure()) |
4592 | return HandleSubstitutionFailure( |
4593 | ER->getExprSubstitutionDiagnostic()->DiagLoc); |
4594 | |
4595 | Out << 'X'; |
4596 | mangleExpression(E: ER->getExpr()); |
4597 | |
4598 | if (ER->hasNoexceptRequirement()) |
4599 | Out << 'N'; |
4600 | |
4601 | if (!ER->getReturnTypeRequirement().isEmpty()) { |
4602 | if (ER->getReturnTypeRequirement().isSubstitutionFailure()) |
4603 | return HandleSubstitutionFailure(ER->getReturnTypeRequirement() |
4604 | .getSubstitutionDiagnostic() |
4605 | ->DiagLoc); |
4606 | |
4607 | Out << 'R'; |
4608 | mangleTypeConstraint(Constraint: ER->getReturnTypeRequirement().getTypeConstraint()); |
4609 | } |
4610 | break; |
4611 | } |
4612 | |
4613 | case Requirement::RK_Nested: |
4614 | const auto *NR = cast<concepts::NestedRequirement>(Val: Req); |
4615 | if (NR->hasInvalidConstraint()) { |
4616 | // FIXME: NestedRequirement should track the location of its requires |
4617 | // keyword. |
4618 | return HandleSubstitutionFailure(RequiresExprLoc); |
4619 | } |
4620 | |
4621 | Out << 'Q'; |
4622 | mangleExpression(E: NR->getConstraintExpr()); |
4623 | break; |
4624 | } |
4625 | } |
4626 | |
4627 | void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity, |
4628 | bool AsTemplateArg) { |
4629 | // <expression> ::= <unary operator-name> <expression> |
4630 | // ::= <binary operator-name> <expression> <expression> |
4631 | // ::= <trinary operator-name> <expression> <expression> <expression> |
4632 | // ::= cv <type> expression # conversion with one argument |
4633 | // ::= cv <type> _ <expression>* E # conversion with a different number of arguments |
4634 | // ::= dc <type> <expression> # dynamic_cast<type> (expression) |
4635 | // ::= sc <type> <expression> # static_cast<type> (expression) |
4636 | // ::= cc <type> <expression> # const_cast<type> (expression) |
4637 | // ::= rc <type> <expression> # reinterpret_cast<type> (expression) |
4638 | // ::= st <type> # sizeof (a type) |
4639 | // ::= at <type> # alignof (a type) |
4640 | // ::= <template-param> |
4641 | // ::= <function-param> |
4642 | // ::= fpT # 'this' expression (part of <function-param>) |
4643 | // ::= sr <type> <unqualified-name> # dependent name |
4644 | // ::= sr <type> <unqualified-name> <template-args> # dependent template-id |
4645 | // ::= ds <expression> <expression> # expr.*expr |
4646 | // ::= sZ <template-param> # size of a parameter pack |
4647 | // ::= sZ <function-param> # size of a function parameter pack |
4648 | // ::= u <source-name> <template-arg>* E # vendor extended expression |
4649 | // ::= <expr-primary> |
4650 | // <expr-primary> ::= L <type> <value number> E # integer literal |
4651 | // ::= L <type> <value float> E # floating literal |
4652 | // ::= L <type> <string type> E # string literal |
4653 | // ::= L <nullptr type> E # nullptr literal "LDnE" |
4654 | // ::= L <pointer type> 0 E # null pointer template argument |
4655 | // ::= L <type> <real-part float> _ <imag-part float> E # complex floating point literal (C99); not used by clang |
4656 | // ::= L <mangled-name> E # external name |
4657 | QualType ImplicitlyConvertedToType; |
4658 | |
4659 | // A top-level expression that's not <expr-primary> needs to be wrapped in |
4660 | // X...E in a template arg. |
4661 | bool IsPrimaryExpr = true; |
4662 | auto NotPrimaryExpr = [&] { |
4663 | if (AsTemplateArg && IsPrimaryExpr) |
4664 | Out << 'X'; |
4665 | IsPrimaryExpr = false; |
4666 | }; |
4667 | |
4668 | auto MangleDeclRefExpr = [&](const NamedDecl *D) { |
4669 | switch (D->getKind()) { |
4670 | default: |
4671 | // <expr-primary> ::= L <mangled-name> E # external name |
4672 | Out << 'L'; |
4673 | mangle(GD: D); |
4674 | Out << 'E'; |
4675 | break; |
4676 | |
4677 | case Decl::ParmVar: |
4678 | NotPrimaryExpr(); |
4679 | mangleFunctionParam(parm: cast<ParmVarDecl>(Val: D)); |
4680 | break; |
4681 | |
4682 | case Decl::EnumConstant: { |
4683 | // <expr-primary> |
4684 | const EnumConstantDecl *ED = cast<EnumConstantDecl>(Val: D); |
4685 | mangleIntegerLiteral(T: ED->getType(), Value: ED->getInitVal()); |
4686 | break; |
4687 | } |
4688 | |
4689 | case Decl::NonTypeTemplateParm: |
4690 | NotPrimaryExpr(); |
4691 | const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(Val: D); |
4692 | mangleTemplateParameter(Depth: PD->getDepth(), Index: PD->getIndex()); |
4693 | break; |
4694 | } |
4695 | }; |
4696 | |
4697 | // 'goto recurse' is used when handling a simple "unwrapping" node which |
4698 | // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need |
4699 | // to be preserved. |
4700 | recurse: |
4701 | switch (E->getStmtClass()) { |
4702 | case Expr::NoStmtClass: |
4703 | #define ABSTRACT_STMT(Type) |
4704 | #define EXPR(Type, Base) |
4705 | #define STMT(Type, Base) \ |
4706 | case Expr::Type##Class: |
4707 | #include "clang/AST/StmtNodes.inc" |
4708 | // fallthrough |
4709 | |
4710 | // These all can only appear in local or variable-initialization |
4711 | // contexts and so should never appear in a mangling. |
4712 | case Expr::AddrLabelExprClass: |
4713 | case Expr::DesignatedInitUpdateExprClass: |
4714 | case Expr::ImplicitValueInitExprClass: |
4715 | case Expr::ArrayInitLoopExprClass: |
4716 | case Expr::ArrayInitIndexExprClass: |
4717 | case Expr::NoInitExprClass: |
4718 | case Expr::ParenListExprClass: |
4719 | case Expr::MSPropertyRefExprClass: |
4720 | case Expr::MSPropertySubscriptExprClass: |
4721 | case Expr::TypoExprClass: // This should no longer exist in the AST by now. |
4722 | case Expr::RecoveryExprClass: |
4723 | case Expr::ArraySectionExprClass: |
4724 | case Expr::OMPArrayShapingExprClass: |
4725 | case Expr::OMPIteratorExprClass: |
4726 | case Expr::CXXInheritedCtorInitExprClass: |
4727 | case Expr::CXXParenListInitExprClass: |
4728 | case Expr::PackIndexingExprClass: |
4729 | llvm_unreachable("unexpected statement kind" ); |
4730 | |
4731 | case Expr::ConstantExprClass: |
4732 | E = cast<ConstantExpr>(Val: E)->getSubExpr(); |
4733 | goto recurse; |
4734 | |
4735 | // FIXME: invent manglings for all these. |
4736 | case Expr::BlockExprClass: |
4737 | case Expr::ChooseExprClass: |
4738 | case Expr::CompoundLiteralExprClass: |
4739 | case Expr::ExtVectorElementExprClass: |
4740 | case Expr::GenericSelectionExprClass: |
4741 | case Expr::ObjCEncodeExprClass: |
4742 | case Expr::ObjCIsaExprClass: |
4743 | case Expr::ObjCIvarRefExprClass: |
4744 | case Expr::ObjCMessageExprClass: |
4745 | case Expr::ObjCPropertyRefExprClass: |
4746 | case Expr::ObjCProtocolExprClass: |
4747 | case Expr::ObjCSelectorExprClass: |
4748 | case Expr::ObjCStringLiteralClass: |
4749 | case Expr::ObjCBoxedExprClass: |
4750 | case Expr::ObjCArrayLiteralClass: |
4751 | case Expr::ObjCDictionaryLiteralClass: |
4752 | case Expr::ObjCSubscriptRefExprClass: |
4753 | case Expr::ObjCIndirectCopyRestoreExprClass: |
4754 | case Expr::ObjCAvailabilityCheckExprClass: |
4755 | case Expr::OffsetOfExprClass: |
4756 | case Expr::PredefinedExprClass: |
4757 | case Expr::ShuffleVectorExprClass: |
4758 | case Expr::ConvertVectorExprClass: |
4759 | case Expr::StmtExprClass: |
4760 | case Expr::ArrayTypeTraitExprClass: |
4761 | case Expr::ExpressionTraitExprClass: |
4762 | case Expr::VAArgExprClass: |
4763 | case Expr::CUDAKernelCallExprClass: |
4764 | case Expr::AsTypeExprClass: |
4765 | case Expr::PseudoObjectExprClass: |
4766 | case Expr::AtomicExprClass: |
4767 | case Expr::SourceLocExprClass: |
4768 | case Expr::EmbedExprClass: |
4769 | case Expr::BuiltinBitCastExprClass: |
4770 | { |
4771 | NotPrimaryExpr(); |
4772 | if (!NullOut) { |
4773 | // As bad as this diagnostic is, it's better than crashing. |
4774 | DiagnosticsEngine &Diags = Context.getDiags(); |
4775 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
4776 | FormatString: "cannot yet mangle expression type %0" ); |
4777 | Diags.Report(Loc: E->getExprLoc(), DiagID) |
4778 | << E->getStmtClassName() << E->getSourceRange(); |
4779 | return; |
4780 | } |
4781 | break; |
4782 | } |
4783 | |
4784 | case Expr::CXXUuidofExprClass: { |
4785 | NotPrimaryExpr(); |
4786 | const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(Val: E); |
4787 | // As of clang 12, uuidof uses the vendor extended expression |
4788 | // mangling. Previously, it used a special-cased nonstandard extension. |
4789 | if (!isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
4790 | Out << "u8__uuidof" ; |
4791 | if (UE->isTypeOperand()) |
4792 | mangleType(T: UE->getTypeOperand(Context&: Context.getASTContext())); |
4793 | else |
4794 | mangleTemplateArgExpr(E: UE->getExprOperand()); |
4795 | Out << 'E'; |
4796 | } else { |
4797 | if (UE->isTypeOperand()) { |
4798 | QualType UuidT = UE->getTypeOperand(Context&: Context.getASTContext()); |
4799 | Out << "u8__uuidoft" ; |
4800 | mangleType(T: UuidT); |
4801 | } else { |
4802 | Expr *UuidExp = UE->getExprOperand(); |
4803 | Out << "u8__uuidofz" ; |
4804 | mangleExpression(E: UuidExp); |
4805 | } |
4806 | } |
4807 | break; |
4808 | } |
4809 | |
4810 | // Even gcc-4.5 doesn't mangle this. |
4811 | case Expr::BinaryConditionalOperatorClass: { |
4812 | NotPrimaryExpr(); |
4813 | DiagnosticsEngine &Diags = Context.getDiags(); |
4814 | unsigned DiagID = |
4815 | Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
4816 | FormatString: "?: operator with omitted middle operand cannot be mangled" ); |
4817 | Diags.Report(Loc: E->getExprLoc(), DiagID) |
4818 | << E->getStmtClassName() << E->getSourceRange(); |
4819 | return; |
4820 | } |
4821 | |
4822 | // These are used for internal purposes and cannot be meaningfully mangled. |
4823 | case Expr::OpaqueValueExprClass: |
4824 | llvm_unreachable("cannot mangle opaque value; mangling wrong thing?" ); |
4825 | |
4826 | case Expr::InitListExprClass: { |
4827 | NotPrimaryExpr(); |
4828 | Out << "il" ; |
4829 | mangleInitListElements(InitList: cast<InitListExpr>(Val: E)); |
4830 | Out << "E" ; |
4831 | break; |
4832 | } |
4833 | |
4834 | case Expr::DesignatedInitExprClass: { |
4835 | NotPrimaryExpr(); |
4836 | auto *DIE = cast<DesignatedInitExpr>(Val: E); |
4837 | for (const auto &Designator : DIE->designators()) { |
4838 | if (Designator.isFieldDesignator()) { |
4839 | Out << "di" ; |
4840 | mangleSourceName(II: Designator.getFieldName()); |
4841 | } else if (Designator.isArrayDesignator()) { |
4842 | Out << "dx" ; |
4843 | mangleExpression(E: DIE->getArrayIndex(D: Designator)); |
4844 | } else { |
4845 | assert(Designator.isArrayRangeDesignator() && |
4846 | "unknown designator kind" ); |
4847 | Out << "dX" ; |
4848 | mangleExpression(E: DIE->getArrayRangeStart(D: Designator)); |
4849 | mangleExpression(E: DIE->getArrayRangeEnd(D: Designator)); |
4850 | } |
4851 | } |
4852 | mangleExpression(E: DIE->getInit()); |
4853 | break; |
4854 | } |
4855 | |
4856 | case Expr::CXXDefaultArgExprClass: |
4857 | E = cast<CXXDefaultArgExpr>(Val: E)->getExpr(); |
4858 | goto recurse; |
4859 | |
4860 | case Expr::CXXDefaultInitExprClass: |
4861 | E = cast<CXXDefaultInitExpr>(Val: E)->getExpr(); |
4862 | goto recurse; |
4863 | |
4864 | case Expr::CXXStdInitializerListExprClass: |
4865 | E = cast<CXXStdInitializerListExpr>(Val: E)->getSubExpr(); |
4866 | goto recurse; |
4867 | |
4868 | case Expr::SubstNonTypeTemplateParmExprClass: { |
4869 | // Mangle a substituted parameter the same way we mangle the template |
4870 | // argument. |
4871 | auto *SNTTPE = cast<SubstNonTypeTemplateParmExpr>(Val: E); |
4872 | if (auto *CE = dyn_cast<ConstantExpr>(Val: SNTTPE->getReplacement())) { |
4873 | // Pull out the constant value and mangle it as a template argument. |
4874 | QualType ParamType = SNTTPE->getParameterType(Ctx: Context.getASTContext()); |
4875 | assert(CE->hasAPValueResult() && "expected the NTTP to have an APValue" ); |
4876 | mangleValueInTemplateArg(T: ParamType, V: CE->getAPValueResult(), TopLevel: false, |
4877 | /*NeedExactType=*/true); |
4878 | break; |
4879 | } |
4880 | // The remaining cases all happen to be substituted with expressions that |
4881 | // mangle the same as a corresponding template argument anyway. |
4882 | E = cast<SubstNonTypeTemplateParmExpr>(Val: E)->getReplacement(); |
4883 | goto recurse; |
4884 | } |
4885 | |
4886 | case Expr::UserDefinedLiteralClass: |
4887 | // We follow g++'s approach of mangling a UDL as a call to the literal |
4888 | // operator. |
4889 | case Expr::CXXMemberCallExprClass: // fallthrough |
4890 | case Expr::CallExprClass: { |
4891 | NotPrimaryExpr(); |
4892 | const CallExpr *CE = cast<CallExpr>(Val: E); |
4893 | |
4894 | // <expression> ::= cp <simple-id> <expression>* E |
4895 | // We use this mangling only when the call would use ADL except |
4896 | // for being parenthesized. Per discussion with David |
4897 | // Vandervoorde, 2011.04.25. |
4898 | if (isParenthesizedADLCallee(call: CE)) { |
4899 | Out << "cp" ; |
4900 | // The callee here is a parenthesized UnresolvedLookupExpr with |
4901 | // no qualifier and should always get mangled as a <simple-id> |
4902 | // anyway. |
4903 | |
4904 | // <expression> ::= cl <expression>* E |
4905 | } else { |
4906 | Out << "cl" ; |
4907 | } |
4908 | |
4909 | unsigned CallArity = CE->getNumArgs(); |
4910 | for (const Expr *Arg : CE->arguments()) |
4911 | if (isa<PackExpansionExpr>(Val: Arg)) |
4912 | CallArity = UnknownArity; |
4913 | |
4914 | mangleExpression(E: CE->getCallee(), Arity: CallArity); |
4915 | for (const Expr *Arg : CE->arguments()) |
4916 | mangleExpression(E: Arg); |
4917 | Out << 'E'; |
4918 | break; |
4919 | } |
4920 | |
4921 | case Expr::CXXNewExprClass: { |
4922 | NotPrimaryExpr(); |
4923 | const CXXNewExpr *New = cast<CXXNewExpr>(Val: E); |
4924 | if (New->isGlobalNew()) Out << "gs" ; |
4925 | Out << (New->isArray() ? "na" : "nw" ); |
4926 | for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(), |
4927 | E = New->placement_arg_end(); I != E; ++I) |
4928 | mangleExpression(E: *I); |
4929 | Out << '_'; |
4930 | mangleType(T: New->getAllocatedType()); |
4931 | if (New->hasInitializer()) { |
4932 | if (New->getInitializationStyle() == CXXNewInitializationStyle::Braces) |
4933 | Out << "il" ; |
4934 | else |
4935 | Out << "pi" ; |
4936 | const Expr *Init = New->getInitializer(); |
4937 | if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Val: Init)) { |
4938 | // Directly inline the initializers. |
4939 | for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), |
4940 | E = CCE->arg_end(); |
4941 | I != E; ++I) |
4942 | mangleExpression(E: *I); |
4943 | } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Val: Init)) { |
4944 | for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i) |
4945 | mangleExpression(E: PLE->getExpr(Init: i)); |
4946 | } else if (New->getInitializationStyle() == |
4947 | CXXNewInitializationStyle::Braces && |
4948 | isa<InitListExpr>(Val: Init)) { |
4949 | // Only take InitListExprs apart for list-initialization. |
4950 | mangleInitListElements(InitList: cast<InitListExpr>(Val: Init)); |
4951 | } else |
4952 | mangleExpression(E: Init); |
4953 | } |
4954 | Out << 'E'; |
4955 | break; |
4956 | } |
4957 | |
4958 | case Expr::CXXPseudoDestructorExprClass: { |
4959 | NotPrimaryExpr(); |
4960 | const auto *PDE = cast<CXXPseudoDestructorExpr>(Val: E); |
4961 | if (const Expr *Base = PDE->getBase()) |
4962 | mangleMemberExprBase(Base, IsArrow: PDE->isArrow()); |
4963 | NestedNameSpecifier *Qualifier = PDE->getQualifier(); |
4964 | if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) { |
4965 | if (Qualifier) { |
4966 | mangleUnresolvedPrefix(qualifier: Qualifier, |
4967 | /*recursive=*/true); |
4968 | mangleUnresolvedTypeOrSimpleId(Ty: ScopeInfo->getType()); |
4969 | Out << 'E'; |
4970 | } else { |
4971 | Out << "sr" ; |
4972 | if (!mangleUnresolvedTypeOrSimpleId(Ty: ScopeInfo->getType())) |
4973 | Out << 'E'; |
4974 | } |
4975 | } else if (Qualifier) { |
4976 | mangleUnresolvedPrefix(qualifier: Qualifier); |
4977 | } |
4978 | // <base-unresolved-name> ::= dn <destructor-name> |
4979 | Out << "dn" ; |
4980 | QualType DestroyedType = PDE->getDestroyedType(); |
4981 | mangleUnresolvedTypeOrSimpleId(Ty: DestroyedType); |
4982 | break; |
4983 | } |
4984 | |
4985 | case Expr::MemberExprClass: { |
4986 | NotPrimaryExpr(); |
4987 | const MemberExpr *ME = cast<MemberExpr>(Val: E); |
4988 | mangleMemberExpr(base: ME->getBase(), isArrow: ME->isArrow(), |
4989 | qualifier: ME->getQualifier(), firstQualifierLookup: nullptr, |
4990 | member: ME->getMemberDecl()->getDeclName(), |
4991 | TemplateArgs: ME->getTemplateArgs(), NumTemplateArgs: ME->getNumTemplateArgs(), |
4992 | arity: Arity); |
4993 | break; |
4994 | } |
4995 | |
4996 | case Expr::UnresolvedMemberExprClass: { |
4997 | NotPrimaryExpr(); |
4998 | const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(Val: E); |
4999 | mangleMemberExpr(base: ME->isImplicitAccess() ? nullptr : ME->getBase(), |
5000 | isArrow: ME->isArrow(), qualifier: ME->getQualifier(), firstQualifierLookup: nullptr, |
5001 | member: ME->getMemberName(), |
5002 | TemplateArgs: ME->getTemplateArgs(), NumTemplateArgs: ME->getNumTemplateArgs(), |
5003 | arity: Arity); |
5004 | break; |
5005 | } |
5006 | |
5007 | case Expr::CXXDependentScopeMemberExprClass: { |
5008 | NotPrimaryExpr(); |
5009 | const CXXDependentScopeMemberExpr *ME |
5010 | = cast<CXXDependentScopeMemberExpr>(Val: E); |
5011 | mangleMemberExpr(base: ME->isImplicitAccess() ? nullptr : ME->getBase(), |
5012 | isArrow: ME->isArrow(), qualifier: ME->getQualifier(), |
5013 | firstQualifierLookup: ME->getFirstQualifierFoundInScope(), |
5014 | member: ME->getMember(), |
5015 | TemplateArgs: ME->getTemplateArgs(), NumTemplateArgs: ME->getNumTemplateArgs(), |
5016 | arity: Arity); |
5017 | break; |
5018 | } |
5019 | |
5020 | case Expr::UnresolvedLookupExprClass: { |
5021 | NotPrimaryExpr(); |
5022 | const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(Val: E); |
5023 | mangleUnresolvedName(qualifier: ULE->getQualifier(), name: ULE->getName(), |
5024 | TemplateArgs: ULE->getTemplateArgs(), NumTemplateArgs: ULE->getNumTemplateArgs(), |
5025 | knownArity: Arity); |
5026 | break; |
5027 | } |
5028 | |
5029 | case Expr::CXXUnresolvedConstructExprClass: { |
5030 | NotPrimaryExpr(); |
5031 | const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(Val: E); |
5032 | unsigned N = CE->getNumArgs(); |
5033 | |
5034 | if (CE->isListInitialization()) { |
5035 | assert(N == 1 && "unexpected form for list initialization" ); |
5036 | auto *IL = cast<InitListExpr>(Val: CE->getArg(I: 0)); |
5037 | Out << "tl" ; |
5038 | mangleType(T: CE->getType()); |
5039 | mangleInitListElements(InitList: IL); |
5040 | Out << "E" ; |
5041 | break; |
5042 | } |
5043 | |
5044 | Out << "cv" ; |
5045 | mangleType(T: CE->getType()); |
5046 | if (N != 1) Out << '_'; |
5047 | for (unsigned I = 0; I != N; ++I) mangleExpression(E: CE->getArg(I)); |
5048 | if (N != 1) Out << 'E'; |
5049 | break; |
5050 | } |
5051 | |
5052 | case Expr::CXXConstructExprClass: { |
5053 | // An implicit cast is silent, thus may contain <expr-primary>. |
5054 | const auto *CE = cast<CXXConstructExpr>(Val: E); |
5055 | if (!CE->isListInitialization() || CE->isStdInitListInitialization()) { |
5056 | assert( |
5057 | CE->getNumArgs() >= 1 && |
5058 | (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) && |
5059 | "implicit CXXConstructExpr must have one argument" ); |
5060 | E = cast<CXXConstructExpr>(Val: E)->getArg(Arg: 0); |
5061 | goto recurse; |
5062 | } |
5063 | NotPrimaryExpr(); |
5064 | Out << "il" ; |
5065 | for (auto *E : CE->arguments()) |
5066 | mangleExpression(E); |
5067 | Out << "E" ; |
5068 | break; |
5069 | } |
5070 | |
5071 | case Expr::CXXTemporaryObjectExprClass: { |
5072 | NotPrimaryExpr(); |
5073 | const auto *CE = cast<CXXTemporaryObjectExpr>(Val: E); |
5074 | unsigned N = CE->getNumArgs(); |
5075 | bool List = CE->isListInitialization(); |
5076 | |
5077 | if (List) |
5078 | Out << "tl" ; |
5079 | else |
5080 | Out << "cv" ; |
5081 | mangleType(T: CE->getType()); |
5082 | if (!List && N != 1) |
5083 | Out << '_'; |
5084 | if (CE->isStdInitListInitialization()) { |
5085 | // We implicitly created a std::initializer_list<T> for the first argument |
5086 | // of a constructor of type U in an expression of the form U{a, b, c}. |
5087 | // Strip all the semantic gunk off the initializer list. |
5088 | auto *SILE = |
5089 | cast<CXXStdInitializerListExpr>(Val: CE->getArg(Arg: 0)->IgnoreImplicit()); |
5090 | auto *ILE = cast<InitListExpr>(Val: SILE->getSubExpr()->IgnoreImplicit()); |
5091 | mangleInitListElements(InitList: ILE); |
5092 | } else { |
5093 | for (auto *E : CE->arguments()) |
5094 | mangleExpression(E); |
5095 | } |
5096 | if (List || N != 1) |
5097 | Out << 'E'; |
5098 | break; |
5099 | } |
5100 | |
5101 | case Expr::CXXScalarValueInitExprClass: |
5102 | NotPrimaryExpr(); |
5103 | Out << "cv" ; |
5104 | mangleType(T: E->getType()); |
5105 | Out << "_E" ; |
5106 | break; |
5107 | |
5108 | case Expr::CXXNoexceptExprClass: |
5109 | NotPrimaryExpr(); |
5110 | Out << "nx" ; |
5111 | mangleExpression(E: cast<CXXNoexceptExpr>(Val: E)->getOperand()); |
5112 | break; |
5113 | |
5114 | case Expr::UnaryExprOrTypeTraitExprClass: { |
5115 | // Non-instantiation-dependent traits are an <expr-primary> integer literal. |
5116 | const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(Val: E); |
5117 | |
5118 | if (!SAE->isInstantiationDependent()) { |
5119 | // Itanium C++ ABI: |
5120 | // If the operand of a sizeof or alignof operator is not |
5121 | // instantiation-dependent it is encoded as an integer literal |
5122 | // reflecting the result of the operator. |
5123 | // |
5124 | // If the result of the operator is implicitly converted to a known |
5125 | // integer type, that type is used for the literal; otherwise, the type |
5126 | // of std::size_t or std::ptrdiff_t is used. |
5127 | // |
5128 | // FIXME: We still include the operand in the profile in this case. This |
5129 | // can lead to mangling collisions between function templates that we |
5130 | // consider to be different. |
5131 | QualType T = (ImplicitlyConvertedToType.isNull() || |
5132 | !ImplicitlyConvertedToType->isIntegerType())? SAE->getType() |
5133 | : ImplicitlyConvertedToType; |
5134 | llvm::APSInt V = SAE->EvaluateKnownConstInt(Ctx: Context.getASTContext()); |
5135 | mangleIntegerLiteral(T, Value: V); |
5136 | break; |
5137 | } |
5138 | |
5139 | NotPrimaryExpr(); // But otherwise, they are not. |
5140 | |
5141 | auto MangleAlignofSizeofArg = [&] { |
5142 | if (SAE->isArgumentType()) { |
5143 | Out << 't'; |
5144 | mangleType(T: SAE->getArgumentType()); |
5145 | } else { |
5146 | Out << 'z'; |
5147 | mangleExpression(E: SAE->getArgumentExpr()); |
5148 | } |
5149 | }; |
5150 | |
5151 | switch(SAE->getKind()) { |
5152 | case UETT_SizeOf: |
5153 | Out << 's'; |
5154 | MangleAlignofSizeofArg(); |
5155 | break; |
5156 | case UETT_PreferredAlignOf: |
5157 | // As of clang 12, we mangle __alignof__ differently than alignof. (They |
5158 | // have acted differently since Clang 8, but were previously mangled the |
5159 | // same.) |
5160 | if (!isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
5161 | Out << "u11__alignof__" ; |
5162 | if (SAE->isArgumentType()) |
5163 | mangleType(T: SAE->getArgumentType()); |
5164 | else |
5165 | mangleTemplateArgExpr(E: SAE->getArgumentExpr()); |
5166 | Out << 'E'; |
5167 | break; |
5168 | } |
5169 | [[fallthrough]]; |
5170 | case UETT_AlignOf: |
5171 | Out << 'a'; |
5172 | MangleAlignofSizeofArg(); |
5173 | break; |
5174 | case UETT_DataSizeOf: { |
5175 | DiagnosticsEngine &Diags = Context.getDiags(); |
5176 | unsigned DiagID = |
5177 | Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
5178 | FormatString: "cannot yet mangle __datasizeof expression" ); |
5179 | Diags.Report(DiagID); |
5180 | return; |
5181 | } |
5182 | case UETT_PtrAuthTypeDiscriminator: { |
5183 | DiagnosticsEngine &Diags = Context.getDiags(); |
5184 | unsigned DiagID = Diags.getCustomDiagID( |
5185 | L: DiagnosticsEngine::Error, |
5186 | FormatString: "cannot yet mangle __builtin_ptrauth_type_discriminator expression" ); |
5187 | Diags.Report(Loc: E->getExprLoc(), DiagID); |
5188 | return; |
5189 | } |
5190 | case UETT_VecStep: { |
5191 | DiagnosticsEngine &Diags = Context.getDiags(); |
5192 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
5193 | FormatString: "cannot yet mangle vec_step expression" ); |
5194 | Diags.Report(DiagID); |
5195 | return; |
5196 | } |
5197 | case UETT_OpenMPRequiredSimdAlign: { |
5198 | DiagnosticsEngine &Diags = Context.getDiags(); |
5199 | unsigned DiagID = Diags.getCustomDiagID( |
5200 | L: DiagnosticsEngine::Error, |
5201 | FormatString: "cannot yet mangle __builtin_omp_required_simd_align expression" ); |
5202 | Diags.Report(DiagID); |
5203 | return; |
5204 | } |
5205 | case UETT_VectorElements: { |
5206 | DiagnosticsEngine &Diags = Context.getDiags(); |
5207 | unsigned DiagID = Diags.getCustomDiagID( |
5208 | L: DiagnosticsEngine::Error, |
5209 | FormatString: "cannot yet mangle __builtin_vectorelements expression" ); |
5210 | Diags.Report(DiagID); |
5211 | return; |
5212 | } |
5213 | } |
5214 | break; |
5215 | } |
5216 | |
5217 | case Expr::TypeTraitExprClass: { |
5218 | // <expression> ::= u <source-name> <template-arg>* E # vendor extension |
5219 | const TypeTraitExpr *TTE = cast<TypeTraitExpr>(Val: E); |
5220 | NotPrimaryExpr(); |
5221 | Out << 'u'; |
5222 | llvm::StringRef Spelling = getTraitSpelling(T: TTE->getTrait()); |
5223 | Out << Spelling.size() << Spelling; |
5224 | for (TypeSourceInfo *TSI : TTE->getArgs()) { |
5225 | mangleType(T: TSI->getType()); |
5226 | } |
5227 | Out << 'E'; |
5228 | break; |
5229 | } |
5230 | |
5231 | case Expr::CXXThrowExprClass: { |
5232 | NotPrimaryExpr(); |
5233 | const CXXThrowExpr *TE = cast<CXXThrowExpr>(Val: E); |
5234 | // <expression> ::= tw <expression> # throw expression |
5235 | // ::= tr # rethrow |
5236 | if (TE->getSubExpr()) { |
5237 | Out << "tw" ; |
5238 | mangleExpression(E: TE->getSubExpr()); |
5239 | } else { |
5240 | Out << "tr" ; |
5241 | } |
5242 | break; |
5243 | } |
5244 | |
5245 | case Expr::CXXTypeidExprClass: { |
5246 | NotPrimaryExpr(); |
5247 | const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(Val: E); |
5248 | // <expression> ::= ti <type> # typeid (type) |
5249 | // ::= te <expression> # typeid (expression) |
5250 | if (TIE->isTypeOperand()) { |
5251 | Out << "ti" ; |
5252 | mangleType(T: TIE->getTypeOperand(Context&: Context.getASTContext())); |
5253 | } else { |
5254 | Out << "te" ; |
5255 | mangleExpression(E: TIE->getExprOperand()); |
5256 | } |
5257 | break; |
5258 | } |
5259 | |
5260 | case Expr::CXXDeleteExprClass: { |
5261 | NotPrimaryExpr(); |
5262 | const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(Val: E); |
5263 | // <expression> ::= [gs] dl <expression> # [::] delete expr |
5264 | // ::= [gs] da <expression> # [::] delete [] expr |
5265 | if (DE->isGlobalDelete()) Out << "gs" ; |
5266 | Out << (DE->isArrayForm() ? "da" : "dl" ); |
5267 | mangleExpression(E: DE->getArgument()); |
5268 | break; |
5269 | } |
5270 | |
5271 | case Expr::UnaryOperatorClass: { |
5272 | NotPrimaryExpr(); |
5273 | const UnaryOperator *UO = cast<UnaryOperator>(Val: E); |
5274 | mangleOperatorName(OO: UnaryOperator::getOverloadedOperator(Opc: UO->getOpcode()), |
5275 | /*Arity=*/1); |
5276 | mangleExpression(E: UO->getSubExpr()); |
5277 | break; |
5278 | } |
5279 | |
5280 | case Expr::ArraySubscriptExprClass: { |
5281 | NotPrimaryExpr(); |
5282 | const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(Val: E); |
5283 | |
5284 | // Array subscript is treated as a syntactically weird form of |
5285 | // binary operator. |
5286 | Out << "ix" ; |
5287 | mangleExpression(E: AE->getLHS()); |
5288 | mangleExpression(E: AE->getRHS()); |
5289 | break; |
5290 | } |
5291 | |
5292 | case Expr::MatrixSubscriptExprClass: { |
5293 | NotPrimaryExpr(); |
5294 | const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(Val: E); |
5295 | Out << "ixix" ; |
5296 | mangleExpression(E: ME->getBase()); |
5297 | mangleExpression(E: ME->getRowIdx()); |
5298 | mangleExpression(E: ME->getColumnIdx()); |
5299 | break; |
5300 | } |
5301 | |
5302 | case Expr::CompoundAssignOperatorClass: // fallthrough |
5303 | case Expr::BinaryOperatorClass: { |
5304 | NotPrimaryExpr(); |
5305 | const BinaryOperator *BO = cast<BinaryOperator>(Val: E); |
5306 | if (BO->getOpcode() == BO_PtrMemD) |
5307 | Out << "ds" ; |
5308 | else |
5309 | mangleOperatorName(OO: BinaryOperator::getOverloadedOperator(Opc: BO->getOpcode()), |
5310 | /*Arity=*/2); |
5311 | mangleExpression(E: BO->getLHS()); |
5312 | mangleExpression(E: BO->getRHS()); |
5313 | break; |
5314 | } |
5315 | |
5316 | case Expr::CXXRewrittenBinaryOperatorClass: { |
5317 | NotPrimaryExpr(); |
5318 | // The mangled form represents the original syntax. |
5319 | CXXRewrittenBinaryOperator::DecomposedForm Decomposed = |
5320 | cast<CXXRewrittenBinaryOperator>(Val: E)->getDecomposedForm(); |
5321 | mangleOperatorName(OO: BinaryOperator::getOverloadedOperator(Opc: Decomposed.Opcode), |
5322 | /*Arity=*/2); |
5323 | mangleExpression(E: Decomposed.LHS); |
5324 | mangleExpression(E: Decomposed.RHS); |
5325 | break; |
5326 | } |
5327 | |
5328 | case Expr::ConditionalOperatorClass: { |
5329 | NotPrimaryExpr(); |
5330 | const ConditionalOperator *CO = cast<ConditionalOperator>(Val: E); |
5331 | mangleOperatorName(OO: OO_Conditional, /*Arity=*/3); |
5332 | mangleExpression(E: CO->getCond()); |
5333 | mangleExpression(E: CO->getLHS(), Arity); |
5334 | mangleExpression(E: CO->getRHS(), Arity); |
5335 | break; |
5336 | } |
5337 | |
5338 | case Expr::ImplicitCastExprClass: { |
5339 | ImplicitlyConvertedToType = E->getType(); |
5340 | E = cast<ImplicitCastExpr>(Val: E)->getSubExpr(); |
5341 | goto recurse; |
5342 | } |
5343 | |
5344 | case Expr::ObjCBridgedCastExprClass: { |
5345 | NotPrimaryExpr(); |
5346 | // Mangle ownership casts as a vendor extended operator __bridge, |
5347 | // __bridge_transfer, or __bridge_retain. |
5348 | StringRef Kind = cast<ObjCBridgedCastExpr>(Val: E)->getBridgeKindName(); |
5349 | Out << "v1U" << Kind.size() << Kind; |
5350 | mangleCastExpression(E, CastEncoding: "cv" ); |
5351 | break; |
5352 | } |
5353 | |
5354 | case Expr::CStyleCastExprClass: |
5355 | NotPrimaryExpr(); |
5356 | mangleCastExpression(E, CastEncoding: "cv" ); |
5357 | break; |
5358 | |
5359 | case Expr::CXXFunctionalCastExprClass: { |
5360 | NotPrimaryExpr(); |
5361 | auto *Sub = cast<ExplicitCastExpr>(Val: E)->getSubExpr()->IgnoreImplicit(); |
5362 | // FIXME: Add isImplicit to CXXConstructExpr. |
5363 | if (auto *CCE = dyn_cast<CXXConstructExpr>(Val: Sub)) |
5364 | if (CCE->getParenOrBraceRange().isInvalid()) |
5365 | Sub = CCE->getArg(Arg: 0)->IgnoreImplicit(); |
5366 | if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Val: Sub)) |
5367 | Sub = StdInitList->getSubExpr()->IgnoreImplicit(); |
5368 | if (auto *IL = dyn_cast<InitListExpr>(Val: Sub)) { |
5369 | Out << "tl" ; |
5370 | mangleType(T: E->getType()); |
5371 | mangleInitListElements(InitList: IL); |
5372 | Out << "E" ; |
5373 | } else { |
5374 | mangleCastExpression(E, CastEncoding: "cv" ); |
5375 | } |
5376 | break; |
5377 | } |
5378 | |
5379 | case Expr::CXXStaticCastExprClass: |
5380 | NotPrimaryExpr(); |
5381 | mangleCastExpression(E, CastEncoding: "sc" ); |
5382 | break; |
5383 | case Expr::CXXDynamicCastExprClass: |
5384 | NotPrimaryExpr(); |
5385 | mangleCastExpression(E, CastEncoding: "dc" ); |
5386 | break; |
5387 | case Expr::CXXReinterpretCastExprClass: |
5388 | NotPrimaryExpr(); |
5389 | mangleCastExpression(E, CastEncoding: "rc" ); |
5390 | break; |
5391 | case Expr::CXXConstCastExprClass: |
5392 | NotPrimaryExpr(); |
5393 | mangleCastExpression(E, CastEncoding: "cc" ); |
5394 | break; |
5395 | case Expr::CXXAddrspaceCastExprClass: |
5396 | NotPrimaryExpr(); |
5397 | mangleCastExpression(E, CastEncoding: "ac" ); |
5398 | break; |
5399 | |
5400 | case Expr::CXXOperatorCallExprClass: { |
5401 | NotPrimaryExpr(); |
5402 | const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(Val: E); |
5403 | unsigned NumArgs = CE->getNumArgs(); |
5404 | // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax |
5405 | // (the enclosing MemberExpr covers the syntactic portion). |
5406 | if (CE->getOperator() != OO_Arrow) |
5407 | mangleOperatorName(OO: CE->getOperator(), /*Arity=*/NumArgs); |
5408 | // Mangle the arguments. |
5409 | for (unsigned i = 0; i != NumArgs; ++i) |
5410 | mangleExpression(E: CE->getArg(Arg: i)); |
5411 | break; |
5412 | } |
5413 | |
5414 | case Expr::ParenExprClass: |
5415 | E = cast<ParenExpr>(Val: E)->getSubExpr(); |
5416 | goto recurse; |
5417 | |
5418 | case Expr::ConceptSpecializationExprClass: { |
5419 | auto *CSE = cast<ConceptSpecializationExpr>(Val: E); |
5420 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
5421 | // Clang 17 and before mangled concept-ids as if they resolved to an |
5422 | // entity, meaning that references to enclosing template arguments don't |
5423 | // work. |
5424 | Out << "L_Z" ; |
5425 | mangleTemplateName(TD: CSE->getNamedConcept(), Args: CSE->getTemplateArguments()); |
5426 | Out << 'E'; |
5427 | break; |
5428 | } |
5429 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
5430 | NotPrimaryExpr(); |
5431 | mangleUnresolvedName( |
5432 | qualifier: CSE->getNestedNameSpecifierLoc().getNestedNameSpecifier(), |
5433 | name: CSE->getConceptNameInfo().getName(), |
5434 | TemplateArgs: CSE->getTemplateArgsAsWritten()->getTemplateArgs(), |
5435 | NumTemplateArgs: CSE->getTemplateArgsAsWritten()->getNumTemplateArgs()); |
5436 | break; |
5437 | } |
5438 | |
5439 | case Expr::RequiresExprClass: { |
5440 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
5441 | auto *RE = cast<RequiresExpr>(Val: E); |
5442 | // This is a primary-expression in the C++ grammar, but does not have an |
5443 | // <expr-primary> mangling (starting with 'L'). |
5444 | NotPrimaryExpr(); |
5445 | if (RE->getLParenLoc().isValid()) { |
5446 | Out << "rQ" ; |
5447 | FunctionTypeDepthState saved = FunctionTypeDepth.push(); |
5448 | if (RE->getLocalParameters().empty()) { |
5449 | Out << 'v'; |
5450 | } else { |
5451 | for (ParmVarDecl *Param : RE->getLocalParameters()) { |
5452 | mangleType(T: Context.getASTContext().getSignatureParameterType( |
5453 | T: Param->getType())); |
5454 | } |
5455 | } |
5456 | Out << '_'; |
5457 | |
5458 | // The rest of the mangling is in the immediate scope of the parameters. |
5459 | FunctionTypeDepth.enterResultType(); |
5460 | for (const concepts::Requirement *Req : RE->getRequirements()) |
5461 | mangleRequirement(RequiresExprLoc: RE->getExprLoc(), Req); |
5462 | FunctionTypeDepth.pop(saved); |
5463 | Out << 'E'; |
5464 | } else { |
5465 | Out << "rq" ; |
5466 | for (const concepts::Requirement *Req : RE->getRequirements()) |
5467 | mangleRequirement(RequiresExprLoc: RE->getExprLoc(), Req); |
5468 | Out << 'E'; |
5469 | } |
5470 | break; |
5471 | } |
5472 | |
5473 | case Expr::DeclRefExprClass: |
5474 | // MangleDeclRefExpr helper handles primary-vs-nonprimary |
5475 | MangleDeclRefExpr(cast<DeclRefExpr>(Val: E)->getDecl()); |
5476 | break; |
5477 | |
5478 | case Expr::SubstNonTypeTemplateParmPackExprClass: |
5479 | NotPrimaryExpr(); |
5480 | // FIXME: not clear how to mangle this! |
5481 | // template <unsigned N...> class A { |
5482 | // template <class U...> void foo(U (&x)[N]...); |
5483 | // }; |
5484 | Out << "_SUBSTPACK_" ; |
5485 | break; |
5486 | |
5487 | case Expr::FunctionParmPackExprClass: { |
5488 | NotPrimaryExpr(); |
5489 | // FIXME: not clear how to mangle this! |
5490 | const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(Val: E); |
5491 | Out << "v110_SUBSTPACK" ; |
5492 | MangleDeclRefExpr(FPPE->getParameterPack()); |
5493 | break; |
5494 | } |
5495 | |
5496 | case Expr::DependentScopeDeclRefExprClass: { |
5497 | NotPrimaryExpr(); |
5498 | const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(Val: E); |
5499 | mangleUnresolvedName(qualifier: DRE->getQualifier(), name: DRE->getDeclName(), |
5500 | TemplateArgs: DRE->getTemplateArgs(), NumTemplateArgs: DRE->getNumTemplateArgs(), |
5501 | knownArity: Arity); |
5502 | break; |
5503 | } |
5504 | |
5505 | case Expr::CXXBindTemporaryExprClass: |
5506 | E = cast<CXXBindTemporaryExpr>(Val: E)->getSubExpr(); |
5507 | goto recurse; |
5508 | |
5509 | case Expr::ExprWithCleanupsClass: |
5510 | E = cast<ExprWithCleanups>(Val: E)->getSubExpr(); |
5511 | goto recurse; |
5512 | |
5513 | case Expr::FloatingLiteralClass: { |
5514 | // <expr-primary> |
5515 | const FloatingLiteral *FL = cast<FloatingLiteral>(Val: E); |
5516 | mangleFloatLiteral(T: FL->getType(), V: FL->getValue()); |
5517 | break; |
5518 | } |
5519 | |
5520 | case Expr::FixedPointLiteralClass: |
5521 | // Currently unimplemented -- might be <expr-primary> in future? |
5522 | mangleFixedPointLiteral(); |
5523 | break; |
5524 | |
5525 | case Expr::CharacterLiteralClass: |
5526 | // <expr-primary> |
5527 | Out << 'L'; |
5528 | mangleType(T: E->getType()); |
5529 | Out << cast<CharacterLiteral>(Val: E)->getValue(); |
5530 | Out << 'E'; |
5531 | break; |
5532 | |
5533 | // FIXME. __objc_yes/__objc_no are mangled same as true/false |
5534 | case Expr::ObjCBoolLiteralExprClass: |
5535 | // <expr-primary> |
5536 | Out << "Lb" ; |
5537 | Out << (cast<ObjCBoolLiteralExpr>(Val: E)->getValue() ? '1' : '0'); |
5538 | Out << 'E'; |
5539 | break; |
5540 | |
5541 | case Expr::CXXBoolLiteralExprClass: |
5542 | // <expr-primary> |
5543 | Out << "Lb" ; |
5544 | Out << (cast<CXXBoolLiteralExpr>(Val: E)->getValue() ? '1' : '0'); |
5545 | Out << 'E'; |
5546 | break; |
5547 | |
5548 | case Expr::IntegerLiteralClass: { |
5549 | // <expr-primary> |
5550 | llvm::APSInt Value(cast<IntegerLiteral>(Val: E)->getValue()); |
5551 | if (E->getType()->isSignedIntegerType()) |
5552 | Value.setIsSigned(true); |
5553 | mangleIntegerLiteral(T: E->getType(), Value); |
5554 | break; |
5555 | } |
5556 | |
5557 | case Expr::ImaginaryLiteralClass: { |
5558 | // <expr-primary> |
5559 | const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(Val: E); |
5560 | // Mangle as if a complex literal. |
5561 | // Proposal from David Vandevoorde, 2010.06.30. |
5562 | Out << 'L'; |
5563 | mangleType(T: E->getType()); |
5564 | if (const FloatingLiteral *Imag = |
5565 | dyn_cast<FloatingLiteral>(Val: IE->getSubExpr())) { |
5566 | // Mangle a floating-point zero of the appropriate type. |
5567 | mangleFloat(f: llvm::APFloat(Imag->getValue().getSemantics())); |
5568 | Out << '_'; |
5569 | mangleFloat(f: Imag->getValue()); |
5570 | } else { |
5571 | Out << "0_" ; |
5572 | llvm::APSInt Value(cast<IntegerLiteral>(Val: IE->getSubExpr())->getValue()); |
5573 | if (IE->getSubExpr()->getType()->isSignedIntegerType()) |
5574 | Value.setIsSigned(true); |
5575 | mangleNumber(Value); |
5576 | } |
5577 | Out << 'E'; |
5578 | break; |
5579 | } |
5580 | |
5581 | case Expr::StringLiteralClass: { |
5582 | // <expr-primary> |
5583 | // Revised proposal from David Vandervoorde, 2010.07.15. |
5584 | Out << 'L'; |
5585 | assert(isa<ConstantArrayType>(E->getType())); |
5586 | mangleType(T: E->getType()); |
5587 | Out << 'E'; |
5588 | break; |
5589 | } |
5590 | |
5591 | case Expr::GNUNullExprClass: |
5592 | // <expr-primary> |
5593 | // Mangle as if an integer literal 0. |
5594 | mangleIntegerLiteral(T: E->getType(), Value: llvm::APSInt(32)); |
5595 | break; |
5596 | |
5597 | case Expr::CXXNullPtrLiteralExprClass: { |
5598 | // <expr-primary> |
5599 | Out << "LDnE" ; |
5600 | break; |
5601 | } |
5602 | |
5603 | case Expr::LambdaExprClass: { |
5604 | // A lambda-expression can't appear in the signature of an |
5605 | // externally-visible declaration, so there's no standard mangling for |
5606 | // this, but mangling as a literal of the closure type seems reasonable. |
5607 | Out << "L" ; |
5608 | mangleType(T: Context.getASTContext().getRecordType(Decl: cast<LambdaExpr>(Val: E)->getLambdaClass())); |
5609 | Out << "E" ; |
5610 | break; |
5611 | } |
5612 | |
5613 | case Expr::PackExpansionExprClass: |
5614 | NotPrimaryExpr(); |
5615 | Out << "sp" ; |
5616 | mangleExpression(E: cast<PackExpansionExpr>(Val: E)->getPattern()); |
5617 | break; |
5618 | |
5619 | case Expr::SizeOfPackExprClass: { |
5620 | NotPrimaryExpr(); |
5621 | auto *SPE = cast<SizeOfPackExpr>(Val: E); |
5622 | if (SPE->isPartiallySubstituted()) { |
5623 | Out << "sP" ; |
5624 | for (const auto &A : SPE->getPartialArguments()) |
5625 | mangleTemplateArg(A, NeedExactType: false); |
5626 | Out << "E" ; |
5627 | break; |
5628 | } |
5629 | |
5630 | Out << "sZ" ; |
5631 | const NamedDecl *Pack = SPE->getPack(); |
5632 | if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: Pack)) |
5633 | mangleTemplateParameter(Depth: TTP->getDepth(), Index: TTP->getIndex()); |
5634 | else if (const NonTypeTemplateParmDecl *NTTP |
5635 | = dyn_cast<NonTypeTemplateParmDecl>(Val: Pack)) |
5636 | mangleTemplateParameter(Depth: NTTP->getDepth(), Index: NTTP->getIndex()); |
5637 | else if (const TemplateTemplateParmDecl *TempTP |
5638 | = dyn_cast<TemplateTemplateParmDecl>(Val: Pack)) |
5639 | mangleTemplateParameter(Depth: TempTP->getDepth(), Index: TempTP->getIndex()); |
5640 | else |
5641 | mangleFunctionParam(parm: cast<ParmVarDecl>(Val: Pack)); |
5642 | break; |
5643 | } |
5644 | |
5645 | case Expr::MaterializeTemporaryExprClass: |
5646 | E = cast<MaterializeTemporaryExpr>(Val: E)->getSubExpr(); |
5647 | goto recurse; |
5648 | |
5649 | case Expr::CXXFoldExprClass: { |
5650 | NotPrimaryExpr(); |
5651 | auto *FE = cast<CXXFoldExpr>(Val: E); |
5652 | if (FE->isLeftFold()) |
5653 | Out << (FE->getInit() ? "fL" : "fl" ); |
5654 | else |
5655 | Out << (FE->getInit() ? "fR" : "fr" ); |
5656 | |
5657 | if (FE->getOperator() == BO_PtrMemD) |
5658 | Out << "ds" ; |
5659 | else |
5660 | mangleOperatorName( |
5661 | OO: BinaryOperator::getOverloadedOperator(Opc: FE->getOperator()), |
5662 | /*Arity=*/2); |
5663 | |
5664 | if (FE->getLHS()) |
5665 | mangleExpression(E: FE->getLHS()); |
5666 | if (FE->getRHS()) |
5667 | mangleExpression(E: FE->getRHS()); |
5668 | break; |
5669 | } |
5670 | |
5671 | case Expr::CXXThisExprClass: |
5672 | NotPrimaryExpr(); |
5673 | Out << "fpT" ; |
5674 | break; |
5675 | |
5676 | case Expr::CoawaitExprClass: |
5677 | // FIXME: Propose a non-vendor mangling. |
5678 | NotPrimaryExpr(); |
5679 | Out << "v18co_await" ; |
5680 | mangleExpression(E: cast<CoawaitExpr>(Val: E)->getOperand()); |
5681 | break; |
5682 | |
5683 | case Expr::DependentCoawaitExprClass: |
5684 | // FIXME: Propose a non-vendor mangling. |
5685 | NotPrimaryExpr(); |
5686 | Out << "v18co_await" ; |
5687 | mangleExpression(E: cast<DependentCoawaitExpr>(Val: E)->getOperand()); |
5688 | break; |
5689 | |
5690 | case Expr::CoyieldExprClass: |
5691 | // FIXME: Propose a non-vendor mangling. |
5692 | NotPrimaryExpr(); |
5693 | Out << "v18co_yield" ; |
5694 | mangleExpression(E: cast<CoawaitExpr>(Val: E)->getOperand()); |
5695 | break; |
5696 | case Expr::SYCLUniqueStableNameExprClass: { |
5697 | const auto *USN = cast<SYCLUniqueStableNameExpr>(Val: E); |
5698 | NotPrimaryExpr(); |
5699 | |
5700 | Out << "u33__builtin_sycl_unique_stable_name" ; |
5701 | mangleType(T: USN->getTypeSourceInfo()->getType()); |
5702 | |
5703 | Out << "E" ; |
5704 | break; |
5705 | } |
5706 | } |
5707 | |
5708 | if (AsTemplateArg && !IsPrimaryExpr) |
5709 | Out << 'E'; |
5710 | } |
5711 | |
5712 | /// Mangle an expression which refers to a parameter variable. |
5713 | /// |
5714 | /// <expression> ::= <function-param> |
5715 | /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0 |
5716 | /// <function-param> ::= fp <top-level CV-qualifiers> |
5717 | /// <parameter-2 non-negative number> _ # L == 0, I > 0 |
5718 | /// <function-param> ::= fL <L-1 non-negative number> |
5719 | /// p <top-level CV-qualifiers> _ # L > 0, I == 0 |
5720 | /// <function-param> ::= fL <L-1 non-negative number> |
5721 | /// p <top-level CV-qualifiers> |
5722 | /// <I-1 non-negative number> _ # L > 0, I > 0 |
5723 | /// |
5724 | /// L is the nesting depth of the parameter, defined as 1 if the |
5725 | /// parameter comes from the innermost function prototype scope |
5726 | /// enclosing the current context, 2 if from the next enclosing |
5727 | /// function prototype scope, and so on, with one special case: if |
5728 | /// we've processed the full parameter clause for the innermost |
5729 | /// function type, then L is one less. This definition conveniently |
5730 | /// makes it irrelevant whether a function's result type was written |
5731 | /// trailing or leading, but is otherwise overly complicated; the |
5732 | /// numbering was first designed without considering references to |
5733 | /// parameter in locations other than return types, and then the |
5734 | /// mangling had to be generalized without changing the existing |
5735 | /// manglings. |
5736 | /// |
5737 | /// I is the zero-based index of the parameter within its parameter |
5738 | /// declaration clause. Note that the original ABI document describes |
5739 | /// this using 1-based ordinals. |
5740 | void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) { |
5741 | unsigned parmDepth = parm->getFunctionScopeDepth(); |
5742 | unsigned parmIndex = parm->getFunctionScopeIndex(); |
5743 | |
5744 | // Compute 'L'. |
5745 | // parmDepth does not include the declaring function prototype. |
5746 | // FunctionTypeDepth does account for that. |
5747 | assert(parmDepth < FunctionTypeDepth.getDepth()); |
5748 | unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth; |
5749 | if (FunctionTypeDepth.isInResultType()) |
5750 | nestingDepth--; |
5751 | |
5752 | if (nestingDepth == 0) { |
5753 | Out << "fp" ; |
5754 | } else { |
5755 | Out << "fL" << (nestingDepth - 1) << 'p'; |
5756 | } |
5757 | |
5758 | // Top-level qualifiers. We don't have to worry about arrays here, |
5759 | // because parameters declared as arrays should already have been |
5760 | // transformed to have pointer type. FIXME: apparently these don't |
5761 | // get mangled if used as an rvalue of a known non-class type? |
5762 | assert(!parm->getType()->isArrayType() |
5763 | && "parameter's type is still an array type?" ); |
5764 | |
5765 | if (const DependentAddressSpaceType *DAST = |
5766 | dyn_cast<DependentAddressSpaceType>(Val: parm->getType())) { |
5767 | mangleQualifiers(Quals: DAST->getPointeeType().getQualifiers(), DAST); |
5768 | } else { |
5769 | mangleQualifiers(Quals: parm->getType().getQualifiers()); |
5770 | } |
5771 | |
5772 | // Parameter index. |
5773 | if (parmIndex != 0) { |
5774 | Out << (parmIndex - 1); |
5775 | } |
5776 | Out << '_'; |
5777 | } |
5778 | |
5779 | void CXXNameMangler::mangleCXXCtorType(CXXCtorType T, |
5780 | const CXXRecordDecl *InheritedFrom) { |
5781 | // <ctor-dtor-name> ::= C1 # complete object constructor |
5782 | // ::= C2 # base object constructor |
5783 | // ::= CI1 <type> # complete inheriting constructor |
5784 | // ::= CI2 <type> # base inheriting constructor |
5785 | // |
5786 | // In addition, C5 is a comdat name with C1 and C2 in it. |
5787 | Out << 'C'; |
5788 | if (InheritedFrom) |
5789 | Out << 'I'; |
5790 | switch (T) { |
5791 | case Ctor_Complete: |
5792 | Out << '1'; |
5793 | break; |
5794 | case Ctor_Base: |
5795 | Out << '2'; |
5796 | break; |
5797 | case Ctor_Comdat: |
5798 | Out << '5'; |
5799 | break; |
5800 | case Ctor_DefaultClosure: |
5801 | case Ctor_CopyingClosure: |
5802 | llvm_unreachable("closure constructors don't exist for the Itanium ABI!" ); |
5803 | } |
5804 | if (InheritedFrom) |
5805 | mangleName(GD: InheritedFrom); |
5806 | } |
5807 | |
5808 | void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { |
5809 | // <ctor-dtor-name> ::= D0 # deleting destructor |
5810 | // ::= D1 # complete object destructor |
5811 | // ::= D2 # base object destructor |
5812 | // |
5813 | // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it. |
5814 | switch (T) { |
5815 | case Dtor_Deleting: |
5816 | Out << "D0" ; |
5817 | break; |
5818 | case Dtor_Complete: |
5819 | Out << "D1" ; |
5820 | break; |
5821 | case Dtor_Base: |
5822 | Out << "D2" ; |
5823 | break; |
5824 | case Dtor_Comdat: |
5825 | Out << "D5" ; |
5826 | break; |
5827 | } |
5828 | } |
5829 | |
5830 | // Helper to provide ancillary information on a template used to mangle its |
5831 | // arguments. |
5832 | struct CXXNameMangler::TemplateArgManglingInfo { |
5833 | const CXXNameMangler &Mangler; |
5834 | TemplateDecl *ResolvedTemplate = nullptr; |
5835 | bool SeenPackExpansionIntoNonPack = false; |
5836 | const NamedDecl *UnresolvedExpandedPack = nullptr; |
5837 | |
5838 | TemplateArgManglingInfo(const CXXNameMangler &Mangler, TemplateName TN) |
5839 | : Mangler(Mangler) { |
5840 | if (TemplateDecl *TD = TN.getAsTemplateDecl()) |
5841 | ResolvedTemplate = TD; |
5842 | } |
5843 | |
5844 | /// Information about how to mangle a template argument. |
5845 | struct Info { |
5846 | /// Do we need to mangle the template argument with an exactly correct type? |
5847 | bool NeedExactType; |
5848 | /// If we need to prefix the mangling with a mangling of the template |
5849 | /// parameter, the corresponding parameter. |
5850 | const NamedDecl *TemplateParameterToMangle; |
5851 | }; |
5852 | |
5853 | /// Determine whether the resolved template might be overloaded on its |
5854 | /// template parameter list. If so, the mangling needs to include enough |
5855 | /// information to reconstruct the template parameter list. |
5856 | bool isOverloadable() { |
5857 | // Function templates are generally overloadable. As a special case, a |
5858 | // member function template of a generic lambda is not overloadable. |
5859 | if (auto *FTD = dyn_cast_or_null<FunctionTemplateDecl>(Val: ResolvedTemplate)) { |
5860 | auto *RD = dyn_cast<CXXRecordDecl>(Val: FTD->getDeclContext()); |
5861 | if (!RD || !RD->isGenericLambda()) |
5862 | return true; |
5863 | } |
5864 | |
5865 | // All other templates are not overloadable. Partial specializations would |
5866 | // be, but we never mangle them. |
5867 | return false; |
5868 | } |
5869 | |
5870 | /// Determine whether we need to prefix this <template-arg> mangling with a |
5871 | /// <template-param-decl>. This happens if the natural template parameter for |
5872 | /// the argument mangling is not the same as the actual template parameter. |
5873 | bool needToMangleTemplateParam(const NamedDecl *Param, |
5874 | const TemplateArgument &Arg) { |
5875 | // For a template type parameter, the natural parameter is 'typename T'. |
5876 | // The actual parameter might be constrained. |
5877 | if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: Param)) |
5878 | return TTP->hasTypeConstraint(); |
5879 | |
5880 | if (Arg.getKind() == TemplateArgument::Pack) { |
5881 | // For an empty pack, the natural parameter is `typename...`. |
5882 | if (Arg.pack_size() == 0) |
5883 | return true; |
5884 | |
5885 | // For any other pack, we use the first argument to determine the natural |
5886 | // template parameter. |
5887 | return needToMangleTemplateParam(Param, Arg: *Arg.pack_begin()); |
5888 | } |
5889 | |
5890 | // For a non-type template parameter, the natural parameter is `T V` (for a |
5891 | // prvalue argument) or `T &V` (for a glvalue argument), where `T` is the |
5892 | // type of the argument, which we require to exactly match. If the actual |
5893 | // parameter has a deduced or instantiation-dependent type, it is not |
5894 | // equivalent to the natural parameter. |
5895 | if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) |
5896 | return NTTP->getType()->isInstantiationDependentType() || |
5897 | NTTP->getType()->getContainedDeducedType(); |
5898 | |
5899 | // For a template template parameter, the template-head might differ from |
5900 | // that of the template. |
5901 | auto *TTP = cast<TemplateTemplateParmDecl>(Val: Param); |
5902 | TemplateName ArgTemplateName = Arg.getAsTemplateOrTemplatePattern(); |
5903 | const TemplateDecl *ArgTemplate = ArgTemplateName.getAsTemplateDecl(); |
5904 | if (!ArgTemplate) |
5905 | return true; |
5906 | |
5907 | // Mangle the template parameter list of the parameter and argument to see |
5908 | // if they are the same. We can't use Profile for this, because it can't |
5909 | // model the depth difference between parameter and argument and might not |
5910 | // necessarily have the same definition of "identical" that we use here -- |
5911 | // that is, same mangling. |
5912 | auto MangleTemplateParamListToString = |
5913 | [&](SmallVectorImpl<char> &Buffer, const TemplateParameterList *Params, |
5914 | unsigned DepthOffset) { |
5915 | llvm::raw_svector_ostream Stream(Buffer); |
5916 | CXXNameMangler(Mangler.Context, Stream, |
5917 | WithTemplateDepthOffset{.Offset: DepthOffset}) |
5918 | .mangleTemplateParameterList(Params); |
5919 | }; |
5920 | llvm::SmallString<128> ParamTemplateHead, ArgTemplateHead; |
5921 | MangleTemplateParamListToString(ParamTemplateHead, |
5922 | TTP->getTemplateParameters(), 0); |
5923 | // Add the depth of the parameter's template parameter list to all |
5924 | // parameters appearing in the argument to make the indexes line up |
5925 | // properly. |
5926 | MangleTemplateParamListToString(ArgTemplateHead, |
5927 | ArgTemplate->getTemplateParameters(), |
5928 | TTP->getTemplateParameters()->getDepth()); |
5929 | return ParamTemplateHead != ArgTemplateHead; |
5930 | } |
5931 | |
5932 | /// Determine information about how this template argument should be mangled. |
5933 | /// This should be called exactly once for each parameter / argument pair, in |
5934 | /// order. |
5935 | Info getArgInfo(unsigned ParamIdx, const TemplateArgument &Arg) { |
5936 | // We need correct types when the template-name is unresolved or when it |
5937 | // names a template that is able to be overloaded. |
5938 | if (!ResolvedTemplate || SeenPackExpansionIntoNonPack) |
5939 | return {.NeedExactType: true, .TemplateParameterToMangle: nullptr}; |
5940 | |
5941 | // Move to the next parameter. |
5942 | const NamedDecl *Param = UnresolvedExpandedPack; |
5943 | if (!Param) { |
5944 | assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() && |
5945 | "no parameter for argument" ); |
5946 | Param = ResolvedTemplate->getTemplateParameters()->getParam(Idx: ParamIdx); |
5947 | |
5948 | // If we reach a parameter pack whose argument isn't in pack form, that |
5949 | // means Sema couldn't or didn't figure out which arguments belonged to |
5950 | // it, because it contains a pack expansion or because Sema bailed out of |
5951 | // computing parameter / argument correspondence before this point. Track |
5952 | // the pack as the corresponding parameter for all further template |
5953 | // arguments until we hit a pack expansion, at which point we don't know |
5954 | // the correspondence between parameters and arguments at all. |
5955 | if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) { |
5956 | UnresolvedExpandedPack = Param; |
5957 | } |
5958 | } |
5959 | |
5960 | // If we encounter a pack argument that is expanded into a non-pack |
5961 | // parameter, we can no longer track parameter / argument correspondence, |
5962 | // and need to use exact types from this point onwards. |
5963 | if (Arg.isPackExpansion() && |
5964 | (!Param->isParameterPack() || UnresolvedExpandedPack)) { |
5965 | SeenPackExpansionIntoNonPack = true; |
5966 | return {.NeedExactType: true, .TemplateParameterToMangle: nullptr}; |
5967 | } |
5968 | |
5969 | // We need exact types for arguments of a template that might be overloaded |
5970 | // on template parameter type. |
5971 | if (isOverloadable()) |
5972 | return {.NeedExactType: true, .TemplateParameterToMangle: needToMangleTemplateParam(Param, Arg) ? Param : nullptr}; |
5973 | |
5974 | // Otherwise, we only need a correct type if the parameter has a deduced |
5975 | // type. |
5976 | // |
5977 | // Note: for an expanded parameter pack, getType() returns the type prior |
5978 | // to expansion. We could ask for the expanded type with getExpansionType(), |
5979 | // but it doesn't matter because substitution and expansion don't affect |
5980 | // whether a deduced type appears in the type. |
5981 | auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Param); |
5982 | bool NeedExactType = NTTP && NTTP->getType()->getContainedDeducedType(); |
5983 | return {.NeedExactType: NeedExactType, .TemplateParameterToMangle: nullptr}; |
5984 | } |
5985 | |
5986 | /// Determine if we should mangle a requires-clause after the template |
5987 | /// argument list. If so, returns the expression to mangle. |
5988 | const Expr *getTrailingRequiresClauseToMangle() { |
5989 | if (!isOverloadable()) |
5990 | return nullptr; |
5991 | return ResolvedTemplate->getTemplateParameters()->getRequiresClause(); |
5992 | } |
5993 | }; |
5994 | |
5995 | void CXXNameMangler::mangleTemplateArgs(TemplateName TN, |
5996 | const TemplateArgumentLoc *TemplateArgs, |
5997 | unsigned NumTemplateArgs) { |
5998 | // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E |
5999 | Out << 'I'; |
6000 | TemplateArgManglingInfo Info(*this, TN); |
6001 | for (unsigned i = 0; i != NumTemplateArgs; ++i) { |
6002 | mangleTemplateArg(Info, Index: i, A: TemplateArgs[i].getArgument()); |
6003 | } |
6004 | mangleRequiresClause(RequiresClause: Info.getTrailingRequiresClauseToMangle()); |
6005 | Out << 'E'; |
6006 | } |
6007 | |
6008 | void CXXNameMangler::mangleTemplateArgs(TemplateName TN, |
6009 | const TemplateArgumentList &AL) { |
6010 | // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E |
6011 | Out << 'I'; |
6012 | TemplateArgManglingInfo Info(*this, TN); |
6013 | for (unsigned i = 0, e = AL.size(); i != e; ++i) { |
6014 | mangleTemplateArg(Info, Index: i, A: AL[i]); |
6015 | } |
6016 | mangleRequiresClause(RequiresClause: Info.getTrailingRequiresClauseToMangle()); |
6017 | Out << 'E'; |
6018 | } |
6019 | |
6020 | void CXXNameMangler::mangleTemplateArgs(TemplateName TN, |
6021 | ArrayRef<TemplateArgument> Args) { |
6022 | // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E |
6023 | Out << 'I'; |
6024 | TemplateArgManglingInfo Info(*this, TN); |
6025 | for (unsigned i = 0; i != Args.size(); ++i) { |
6026 | mangleTemplateArg(Info, Index: i, A: Args[i]); |
6027 | } |
6028 | mangleRequiresClause(RequiresClause: Info.getTrailingRequiresClauseToMangle()); |
6029 | Out << 'E'; |
6030 | } |
6031 | |
6032 | void CXXNameMangler::mangleTemplateArg(TemplateArgManglingInfo &Info, |
6033 | unsigned Index, TemplateArgument A) { |
6034 | TemplateArgManglingInfo::Info ArgInfo = Info.getArgInfo(ParamIdx: Index, Arg: A); |
6035 | |
6036 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/47. |
6037 | if (ArgInfo.TemplateParameterToMangle && |
6038 | !isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
6039 | // The template parameter is mangled if the mangling would otherwise be |
6040 | // ambiguous. |
6041 | // |
6042 | // <template-arg> ::= <template-param-decl> <template-arg> |
6043 | // |
6044 | // Clang 17 and before did not do this. |
6045 | mangleTemplateParamDecl(Decl: ArgInfo.TemplateParameterToMangle); |
6046 | } |
6047 | |
6048 | mangleTemplateArg(A, NeedExactType: ArgInfo.NeedExactType); |
6049 | } |
6050 | |
6051 | void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) { |
6052 | // <template-arg> ::= <type> # type or template |
6053 | // ::= X <expression> E # expression |
6054 | // ::= <expr-primary> # simple expressions |
6055 | // ::= J <template-arg>* E # argument pack |
6056 | if (!A.isInstantiationDependent() || A.isDependent()) |
6057 | A = Context.getASTContext().getCanonicalTemplateArgument(Arg: A); |
6058 | |
6059 | switch (A.getKind()) { |
6060 | case TemplateArgument::Null: |
6061 | llvm_unreachable("Cannot mangle NULL template argument" ); |
6062 | |
6063 | case TemplateArgument::Type: |
6064 | mangleType(T: A.getAsType()); |
6065 | break; |
6066 | case TemplateArgument::Template: |
6067 | // This is mangled as <type>. |
6068 | mangleType(TN: A.getAsTemplate()); |
6069 | break; |
6070 | case TemplateArgument::TemplateExpansion: |
6071 | // <type> ::= Dp <type> # pack expansion (C++0x) |
6072 | Out << "Dp" ; |
6073 | mangleType(TN: A.getAsTemplateOrTemplatePattern()); |
6074 | break; |
6075 | case TemplateArgument::Expression: |
6076 | mangleTemplateArgExpr(E: A.getAsExpr()); |
6077 | break; |
6078 | case TemplateArgument::Integral: |
6079 | mangleIntegerLiteral(T: A.getIntegralType(), Value: A.getAsIntegral()); |
6080 | break; |
6081 | case TemplateArgument::Declaration: { |
6082 | // <expr-primary> ::= L <mangled-name> E # external name |
6083 | ValueDecl *D = A.getAsDecl(); |
6084 | |
6085 | // Template parameter objects are modeled by reproducing a source form |
6086 | // produced as if by aggregate initialization. |
6087 | if (A.getParamTypeForDecl()->isRecordType()) { |
6088 | auto *TPO = cast<TemplateParamObjectDecl>(Val: D); |
6089 | mangleValueInTemplateArg(T: TPO->getType().getUnqualifiedType(), |
6090 | V: TPO->getValue(), /*TopLevel=*/true, |
6091 | NeedExactType); |
6092 | break; |
6093 | } |
6094 | |
6095 | ASTContext &Ctx = Context.getASTContext(); |
6096 | APValue Value; |
6097 | if (D->isCXXInstanceMember()) |
6098 | // Simple pointer-to-member with no conversion. |
6099 | Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{}); |
6100 | else if (D->getType()->isArrayType() && |
6101 | Ctx.hasSimilarType(T1: Ctx.getDecayedType(T: D->getType()), |
6102 | T2: A.getParamTypeForDecl()) && |
6103 | !isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) |
6104 | // Build a value corresponding to this implicit array-to-pointer decay. |
6105 | Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), |
6106 | {APValue::LValuePathEntry::ArrayIndex(Index: 0)}, |
6107 | /*OnePastTheEnd=*/false); |
6108 | else |
6109 | // Regular pointer or reference to a declaration. |
6110 | Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), |
6111 | ArrayRef<APValue::LValuePathEntry>(), |
6112 | /*OnePastTheEnd=*/false); |
6113 | mangleValueInTemplateArg(T: A.getParamTypeForDecl(), V: Value, /*TopLevel=*/true, |
6114 | NeedExactType); |
6115 | break; |
6116 | } |
6117 | case TemplateArgument::NullPtr: { |
6118 | mangleNullPointer(T: A.getNullPtrType()); |
6119 | break; |
6120 | } |
6121 | case TemplateArgument::StructuralValue: |
6122 | mangleValueInTemplateArg(T: A.getStructuralValueType(), |
6123 | V: A.getAsStructuralValue(), |
6124 | /*TopLevel=*/true, NeedExactType); |
6125 | break; |
6126 | case TemplateArgument::Pack: { |
6127 | // <template-arg> ::= J <template-arg>* E |
6128 | Out << 'J'; |
6129 | for (const auto &P : A.pack_elements()) |
6130 | mangleTemplateArg(A: P, NeedExactType); |
6131 | Out << 'E'; |
6132 | } |
6133 | } |
6134 | } |
6135 | |
6136 | void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) { |
6137 | if (!isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
6138 | mangleExpression(E, Arity: UnknownArity, /*AsTemplateArg=*/true); |
6139 | return; |
6140 | } |
6141 | |
6142 | // Prior to Clang 12, we didn't omit the X .. E around <expr-primary> |
6143 | // correctly in cases where the template argument was |
6144 | // constructed from an expression rather than an already-evaluated |
6145 | // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of |
6146 | // 'Li0E'. |
6147 | // |
6148 | // We did special-case DeclRefExpr to attempt to DTRT for that one |
6149 | // expression-kind, but while doing so, unfortunately handled ParmVarDecl |
6150 | // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of |
6151 | // the proper 'Xfp_E'. |
6152 | E = E->IgnoreParenImpCasts(); |
6153 | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) { |
6154 | const ValueDecl *D = DRE->getDecl(); |
6155 | if (isa<VarDecl>(Val: D) || isa<FunctionDecl>(Val: D)) { |
6156 | Out << 'L'; |
6157 | mangle(GD: D); |
6158 | Out << 'E'; |
6159 | return; |
6160 | } |
6161 | } |
6162 | Out << 'X'; |
6163 | mangleExpression(E); |
6164 | Out << 'E'; |
6165 | } |
6166 | |
6167 | /// Determine whether a given value is equivalent to zero-initialization for |
6168 | /// the purpose of discarding a trailing portion of a 'tl' mangling. |
6169 | /// |
6170 | /// Note that this is not in general equivalent to determining whether the |
6171 | /// value has an all-zeroes bit pattern. |
6172 | static bool isZeroInitialized(QualType T, const APValue &V) { |
6173 | // FIXME: mangleValueInTemplateArg has quadratic time complexity in |
6174 | // pathological cases due to using this, but it's a little awkward |
6175 | // to do this in linear time in general. |
6176 | switch (V.getKind()) { |
6177 | case APValue::None: |
6178 | case APValue::Indeterminate: |
6179 | case APValue::AddrLabelDiff: |
6180 | return false; |
6181 | |
6182 | case APValue::Struct: { |
6183 | const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
6184 | assert(RD && "unexpected type for record value" ); |
6185 | unsigned I = 0; |
6186 | for (const CXXBaseSpecifier &BS : RD->bases()) { |
6187 | if (!isZeroInitialized(T: BS.getType(), V: V.getStructBase(i: I))) |
6188 | return false; |
6189 | ++I; |
6190 | } |
6191 | I = 0; |
6192 | for (const FieldDecl *FD : RD->fields()) { |
6193 | if (!FD->isUnnamedBitField() && |
6194 | !isZeroInitialized(T: FD->getType(), V: V.getStructField(i: I))) |
6195 | return false; |
6196 | ++I; |
6197 | } |
6198 | return true; |
6199 | } |
6200 | |
6201 | case APValue::Union: { |
6202 | const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
6203 | assert(RD && "unexpected type for union value" ); |
6204 | // Zero-initialization zeroes the first non-unnamed-bitfield field, if any. |
6205 | for (const FieldDecl *FD : RD->fields()) { |
6206 | if (!FD->isUnnamedBitField()) |
6207 | return V.getUnionField() && declaresSameEntity(D1: FD, D2: V.getUnionField()) && |
6208 | isZeroInitialized(T: FD->getType(), V: V.getUnionValue()); |
6209 | } |
6210 | // If there are no fields (other than unnamed bitfields), the value is |
6211 | // necessarily zero-initialized. |
6212 | return true; |
6213 | } |
6214 | |
6215 | case APValue::Array: { |
6216 | QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); |
6217 | for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I) |
6218 | if (!isZeroInitialized(T: ElemT, V: V.getArrayInitializedElt(I))) |
6219 | return false; |
6220 | return !V.hasArrayFiller() || isZeroInitialized(T: ElemT, V: V.getArrayFiller()); |
6221 | } |
6222 | |
6223 | case APValue::Vector: { |
6224 | const VectorType *VT = T->castAs<VectorType>(); |
6225 | for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) |
6226 | if (!isZeroInitialized(T: VT->getElementType(), V: V.getVectorElt(I))) |
6227 | return false; |
6228 | return true; |
6229 | } |
6230 | |
6231 | case APValue::Int: |
6232 | return !V.getInt(); |
6233 | |
6234 | case APValue::Float: |
6235 | return V.getFloat().isPosZero(); |
6236 | |
6237 | case APValue::FixedPoint: |
6238 | return !V.getFixedPoint().getValue(); |
6239 | |
6240 | case APValue::ComplexFloat: |
6241 | return V.getComplexFloatReal().isPosZero() && |
6242 | V.getComplexFloatImag().isPosZero(); |
6243 | |
6244 | case APValue::ComplexInt: |
6245 | return !V.getComplexIntReal() && !V.getComplexIntImag(); |
6246 | |
6247 | case APValue::LValue: |
6248 | return V.isNullPointer(); |
6249 | |
6250 | case APValue::MemberPointer: |
6251 | return !V.getMemberPointerDecl(); |
6252 | } |
6253 | |
6254 | llvm_unreachable("Unhandled APValue::ValueKind enum" ); |
6255 | } |
6256 | |
6257 | static QualType getLValueType(ASTContext &Ctx, const APValue &LV) { |
6258 | QualType T = LV.getLValueBase().getType(); |
6259 | for (APValue::LValuePathEntry E : LV.getLValuePath()) { |
6260 | if (const ArrayType *AT = Ctx.getAsArrayType(T)) |
6261 | T = AT->getElementType(); |
6262 | else if (const FieldDecl *FD = |
6263 | dyn_cast<FieldDecl>(Val: E.getAsBaseOrMember().getPointer())) |
6264 | T = FD->getType(); |
6265 | else |
6266 | T = Ctx.getRecordType( |
6267 | Decl: cast<CXXRecordDecl>(Val: E.getAsBaseOrMember().getPointer())); |
6268 | } |
6269 | return T; |
6270 | } |
6271 | |
6272 | static IdentifierInfo *getUnionInitName(SourceLocation UnionLoc, |
6273 | DiagnosticsEngine &Diags, |
6274 | const FieldDecl *FD) { |
6275 | // According to: |
6276 | // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling.anonymous |
6277 | // For the purposes of mangling, the name of an anonymous union is considered |
6278 | // to be the name of the first named data member found by a pre-order, |
6279 | // depth-first, declaration-order walk of the data members of the anonymous |
6280 | // union. |
6281 | |
6282 | if (FD->getIdentifier()) |
6283 | return FD->getIdentifier(); |
6284 | |
6285 | // The only cases where the identifer of a FieldDecl would be blank is if the |
6286 | // field represents an anonymous record type or if it is an unnamed bitfield. |
6287 | // There is no type to descend into in the case of a bitfield, so we can just |
6288 | // return nullptr in that case. |
6289 | if (FD->isBitField()) |
6290 | return nullptr; |
6291 | const CXXRecordDecl *RD = FD->getType()->getAsCXXRecordDecl(); |
6292 | |
6293 | // Consider only the fields in declaration order, searched depth-first. We |
6294 | // don't care about the active member of the union, as all we are doing is |
6295 | // looking for a valid name. We also don't check bases, due to guidance from |
6296 | // the Itanium ABI folks. |
6297 | for (const FieldDecl *RDField : RD->fields()) { |
6298 | if (IdentifierInfo *II = getUnionInitName(UnionLoc, Diags, FD: RDField)) |
6299 | return II; |
6300 | } |
6301 | |
6302 | // According to the Itanium ABI: If there is no such data member (i.e., if all |
6303 | // of the data members in the union are unnamed), then there is no way for a |
6304 | // program to refer to the anonymous union, and there is therefore no need to |
6305 | // mangle its name. However, we should diagnose this anyway. |
6306 | unsigned DiagID = Diags.getCustomDiagID( |
6307 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle this unnamed union NTTP yet" ); |
6308 | Diags.Report(Loc: UnionLoc, DiagID); |
6309 | |
6310 | return nullptr; |
6311 | } |
6312 | |
6313 | void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V, |
6314 | bool TopLevel, |
6315 | bool NeedExactType) { |
6316 | // Ignore all top-level cv-qualifiers, to match GCC. |
6317 | Qualifiers Quals; |
6318 | T = getASTContext().getUnqualifiedArrayType(T, Quals); |
6319 | |
6320 | // A top-level expression that's not a primary expression is wrapped in X...E. |
6321 | bool IsPrimaryExpr = true; |
6322 | auto NotPrimaryExpr = [&] { |
6323 | if (TopLevel && IsPrimaryExpr) |
6324 | Out << 'X'; |
6325 | IsPrimaryExpr = false; |
6326 | }; |
6327 | |
6328 | // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. |
6329 | switch (V.getKind()) { |
6330 | case APValue::None: |
6331 | case APValue::Indeterminate: |
6332 | Out << 'L'; |
6333 | mangleType(T); |
6334 | Out << 'E'; |
6335 | break; |
6336 | |
6337 | case APValue::AddrLabelDiff: |
6338 | llvm_unreachable("unexpected value kind in template argument" ); |
6339 | |
6340 | case APValue::Struct: { |
6341 | const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
6342 | assert(RD && "unexpected type for record value" ); |
6343 | |
6344 | // Drop trailing zero-initialized elements. |
6345 | llvm::SmallVector<const FieldDecl *, 16> Fields(RD->fields()); |
6346 | while ( |
6347 | !Fields.empty() && |
6348 | (Fields.back()->isUnnamedBitField() || |
6349 | isZeroInitialized(T: Fields.back()->getType(), |
6350 | V: V.getStructField(i: Fields.back()->getFieldIndex())))) { |
6351 | Fields.pop_back(); |
6352 | } |
6353 | llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end()); |
6354 | if (Fields.empty()) { |
6355 | while (!Bases.empty() && |
6356 | isZeroInitialized(T: Bases.back().getType(), |
6357 | V: V.getStructBase(i: Bases.size() - 1))) |
6358 | Bases = Bases.drop_back(); |
6359 | } |
6360 | |
6361 | // <expression> ::= tl <type> <braced-expression>* E |
6362 | NotPrimaryExpr(); |
6363 | Out << "tl" ; |
6364 | mangleType(T); |
6365 | for (unsigned I = 0, N = Bases.size(); I != N; ++I) |
6366 | mangleValueInTemplateArg(T: Bases[I].getType(), V: V.getStructBase(i: I), TopLevel: false); |
6367 | for (unsigned I = 0, N = Fields.size(); I != N; ++I) { |
6368 | if (Fields[I]->isUnnamedBitField()) |
6369 | continue; |
6370 | mangleValueInTemplateArg(T: Fields[I]->getType(), |
6371 | V: V.getStructField(i: Fields[I]->getFieldIndex()), |
6372 | TopLevel: false); |
6373 | } |
6374 | Out << 'E'; |
6375 | break; |
6376 | } |
6377 | |
6378 | case APValue::Union: { |
6379 | assert(T->getAsCXXRecordDecl() && "unexpected type for union value" ); |
6380 | const FieldDecl *FD = V.getUnionField(); |
6381 | |
6382 | if (!FD) { |
6383 | Out << 'L'; |
6384 | mangleType(T); |
6385 | Out << 'E'; |
6386 | break; |
6387 | } |
6388 | |
6389 | // <braced-expression> ::= di <field source-name> <braced-expression> |
6390 | NotPrimaryExpr(); |
6391 | Out << "tl" ; |
6392 | mangleType(T); |
6393 | if (!isZeroInitialized(T, V)) { |
6394 | Out << "di" ; |
6395 | IdentifierInfo *II = (getUnionInitName( |
6396 | UnionLoc: T->getAsCXXRecordDecl()->getLocation(), Diags&: Context.getDiags(), FD)); |
6397 | if (II) |
6398 | mangleSourceName(II); |
6399 | mangleValueInTemplateArg(T: FD->getType(), V: V.getUnionValue(), TopLevel: false); |
6400 | } |
6401 | Out << 'E'; |
6402 | break; |
6403 | } |
6404 | |
6405 | case APValue::Array: { |
6406 | QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); |
6407 | |
6408 | NotPrimaryExpr(); |
6409 | Out << "tl" ; |
6410 | mangleType(T); |
6411 | |
6412 | // Drop trailing zero-initialized elements. |
6413 | unsigned N = V.getArraySize(); |
6414 | if (!V.hasArrayFiller() || isZeroInitialized(T: ElemT, V: V.getArrayFiller())) { |
6415 | N = V.getArrayInitializedElts(); |
6416 | while (N && isZeroInitialized(T: ElemT, V: V.getArrayInitializedElt(I: N - 1))) |
6417 | --N; |
6418 | } |
6419 | |
6420 | for (unsigned I = 0; I != N; ++I) { |
6421 | const APValue &Elem = I < V.getArrayInitializedElts() |
6422 | ? V.getArrayInitializedElt(I) |
6423 | : V.getArrayFiller(); |
6424 | mangleValueInTemplateArg(T: ElemT, V: Elem, TopLevel: false); |
6425 | } |
6426 | Out << 'E'; |
6427 | break; |
6428 | } |
6429 | |
6430 | case APValue::Vector: { |
6431 | const VectorType *VT = T->castAs<VectorType>(); |
6432 | |
6433 | NotPrimaryExpr(); |
6434 | Out << "tl" ; |
6435 | mangleType(T); |
6436 | unsigned N = V.getVectorLength(); |
6437 | while (N && isZeroInitialized(T: VT->getElementType(), V: V.getVectorElt(I: N - 1))) |
6438 | --N; |
6439 | for (unsigned I = 0; I != N; ++I) |
6440 | mangleValueInTemplateArg(T: VT->getElementType(), V: V.getVectorElt(I), TopLevel: false); |
6441 | Out << 'E'; |
6442 | break; |
6443 | } |
6444 | |
6445 | case APValue::Int: |
6446 | mangleIntegerLiteral(T, Value: V.getInt()); |
6447 | break; |
6448 | |
6449 | case APValue::Float: |
6450 | mangleFloatLiteral(T, V: V.getFloat()); |
6451 | break; |
6452 | |
6453 | case APValue::FixedPoint: |
6454 | mangleFixedPointLiteral(); |
6455 | break; |
6456 | |
6457 | case APValue::ComplexFloat: { |
6458 | const ComplexType *CT = T->castAs<ComplexType>(); |
6459 | NotPrimaryExpr(); |
6460 | Out << "tl" ; |
6461 | mangleType(T); |
6462 | if (!V.getComplexFloatReal().isPosZero() || |
6463 | !V.getComplexFloatImag().isPosZero()) |
6464 | mangleFloatLiteral(T: CT->getElementType(), V: V.getComplexFloatReal()); |
6465 | if (!V.getComplexFloatImag().isPosZero()) |
6466 | mangleFloatLiteral(T: CT->getElementType(), V: V.getComplexFloatImag()); |
6467 | Out << 'E'; |
6468 | break; |
6469 | } |
6470 | |
6471 | case APValue::ComplexInt: { |
6472 | const ComplexType *CT = T->castAs<ComplexType>(); |
6473 | NotPrimaryExpr(); |
6474 | Out << "tl" ; |
6475 | mangleType(T); |
6476 | if (V.getComplexIntReal().getBoolValue() || |
6477 | V.getComplexIntImag().getBoolValue()) |
6478 | mangleIntegerLiteral(T: CT->getElementType(), Value: V.getComplexIntReal()); |
6479 | if (V.getComplexIntImag().getBoolValue()) |
6480 | mangleIntegerLiteral(T: CT->getElementType(), Value: V.getComplexIntImag()); |
6481 | Out << 'E'; |
6482 | break; |
6483 | } |
6484 | |
6485 | case APValue::LValue: { |
6486 | // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. |
6487 | assert((T->isPointerType() || T->isReferenceType()) && |
6488 | "unexpected type for LValue template arg" ); |
6489 | |
6490 | if (V.isNullPointer()) { |
6491 | mangleNullPointer(T); |
6492 | break; |
6493 | } |
6494 | |
6495 | APValue::LValueBase B = V.getLValueBase(); |
6496 | if (!B) { |
6497 | // Non-standard mangling for integer cast to a pointer; this can only |
6498 | // occur as an extension. |
6499 | CharUnits Offset = V.getLValueOffset(); |
6500 | if (Offset.isZero()) { |
6501 | // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as |
6502 | // a cast, because L <type> 0 E means something else. |
6503 | NotPrimaryExpr(); |
6504 | Out << "rc" ; |
6505 | mangleType(T); |
6506 | Out << "Li0E" ; |
6507 | if (TopLevel) |
6508 | Out << 'E'; |
6509 | } else { |
6510 | Out << "L" ; |
6511 | mangleType(T); |
6512 | Out << Offset.getQuantity() << 'E'; |
6513 | } |
6514 | break; |
6515 | } |
6516 | |
6517 | ASTContext &Ctx = Context.getASTContext(); |
6518 | |
6519 | enum { Base, Offset, Path } Kind; |
6520 | if (!V.hasLValuePath()) { |
6521 | // Mangle as (T*)((char*)&base + N). |
6522 | if (T->isReferenceType()) { |
6523 | NotPrimaryExpr(); |
6524 | Out << "decvP" ; |
6525 | mangleType(T: T->getPointeeType()); |
6526 | } else { |
6527 | NotPrimaryExpr(); |
6528 | Out << "cv" ; |
6529 | mangleType(T); |
6530 | } |
6531 | Out << "plcvPcad" ; |
6532 | Kind = Offset; |
6533 | } else { |
6534 | // Clang 11 and before mangled an array subject to array-to-pointer decay |
6535 | // as if it were the declaration itself. |
6536 | bool IsArrayToPointerDecayMangledAsDecl = false; |
6537 | if (TopLevel && Ctx.getLangOpts().getClangABICompat() <= |
6538 | LangOptions::ClangABI::Ver11) { |
6539 | QualType BType = B.getType(); |
6540 | IsArrayToPointerDecayMangledAsDecl = |
6541 | BType->isArrayType() && V.getLValuePath().size() == 1 && |
6542 | V.getLValuePath()[0].getAsArrayIndex() == 0 && |
6543 | Ctx.hasSimilarType(T1: T, T2: Ctx.getDecayedType(T: BType)); |
6544 | } |
6545 | |
6546 | if ((!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) && |
6547 | !IsArrayToPointerDecayMangledAsDecl) { |
6548 | NotPrimaryExpr(); |
6549 | // A final conversion to the template parameter's type is usually |
6550 | // folded into the 'so' mangling, but we can't do that for 'void*' |
6551 | // parameters without introducing collisions. |
6552 | if (NeedExactType && T->isVoidPointerType()) { |
6553 | Out << "cv" ; |
6554 | mangleType(T); |
6555 | } |
6556 | if (T->isPointerType()) |
6557 | Out << "ad" ; |
6558 | Out << "so" ; |
6559 | mangleType(T: T->isVoidPointerType() |
6560 | ? getLValueType(Ctx, LV: V).getUnqualifiedType() |
6561 | : T->getPointeeType()); |
6562 | Kind = Path; |
6563 | } else { |
6564 | if (NeedExactType && |
6565 | !Ctx.hasSameType(T1: T->getPointeeType(), T2: getLValueType(Ctx, LV: V)) && |
6566 | !isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
6567 | NotPrimaryExpr(); |
6568 | Out << "cv" ; |
6569 | mangleType(T); |
6570 | } |
6571 | if (T->isPointerType()) { |
6572 | NotPrimaryExpr(); |
6573 | Out << "ad" ; |
6574 | } |
6575 | Kind = Base; |
6576 | } |
6577 | } |
6578 | |
6579 | QualType TypeSoFar = B.getType(); |
6580 | if (auto *VD = B.dyn_cast<const ValueDecl*>()) { |
6581 | Out << 'L'; |
6582 | mangle(GD: VD); |
6583 | Out << 'E'; |
6584 | } else if (auto *E = B.dyn_cast<const Expr*>()) { |
6585 | NotPrimaryExpr(); |
6586 | mangleExpression(E); |
6587 | } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) { |
6588 | NotPrimaryExpr(); |
6589 | Out << "ti" ; |
6590 | mangleType(T: QualType(TI.getType(), 0)); |
6591 | } else { |
6592 | // We should never see dynamic allocations here. |
6593 | llvm_unreachable("unexpected lvalue base kind in template argument" ); |
6594 | } |
6595 | |
6596 | switch (Kind) { |
6597 | case Base: |
6598 | break; |
6599 | |
6600 | case Offset: |
6601 | Out << 'L'; |
6602 | mangleType(T: Ctx.getPointerDiffType()); |
6603 | mangleNumber(Number: V.getLValueOffset().getQuantity()); |
6604 | Out << 'E'; |
6605 | break; |
6606 | |
6607 | case Path: |
6608 | // <expression> ::= so <referent type> <expr> [<offset number>] |
6609 | // <union-selector>* [p] E |
6610 | if (!V.getLValueOffset().isZero()) |
6611 | mangleNumber(Number: V.getLValueOffset().getQuantity()); |
6612 | |
6613 | // We model a past-the-end array pointer as array indexing with index N, |
6614 | // not with the "past the end" flag. Compensate for that. |
6615 | bool OnePastTheEnd = V.isLValueOnePastTheEnd(); |
6616 | |
6617 | for (APValue::LValuePathEntry E : V.getLValuePath()) { |
6618 | if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) { |
6619 | if (auto *CAT = dyn_cast<ConstantArrayType>(Val: AT)) |
6620 | OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex(); |
6621 | TypeSoFar = AT->getElementType(); |
6622 | } else { |
6623 | const Decl *D = E.getAsBaseOrMember().getPointer(); |
6624 | if (auto *FD = dyn_cast<FieldDecl>(Val: D)) { |
6625 | // <union-selector> ::= _ <number> |
6626 | if (FD->getParent()->isUnion()) { |
6627 | Out << '_'; |
6628 | if (FD->getFieldIndex()) |
6629 | Out << (FD->getFieldIndex() - 1); |
6630 | } |
6631 | TypeSoFar = FD->getType(); |
6632 | } else { |
6633 | TypeSoFar = Ctx.getRecordType(Decl: cast<CXXRecordDecl>(Val: D)); |
6634 | } |
6635 | } |
6636 | } |
6637 | |
6638 | if (OnePastTheEnd) |
6639 | Out << 'p'; |
6640 | Out << 'E'; |
6641 | break; |
6642 | } |
6643 | |
6644 | break; |
6645 | } |
6646 | |
6647 | case APValue::MemberPointer: |
6648 | // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. |
6649 | if (!V.getMemberPointerDecl()) { |
6650 | mangleNullPointer(T); |
6651 | break; |
6652 | } |
6653 | |
6654 | ASTContext &Ctx = Context.getASTContext(); |
6655 | |
6656 | NotPrimaryExpr(); |
6657 | if (!V.getMemberPointerPath().empty()) { |
6658 | Out << "mc" ; |
6659 | mangleType(T); |
6660 | } else if (NeedExactType && |
6661 | !Ctx.hasSameType( |
6662 | T1: T->castAs<MemberPointerType>()->getPointeeType(), |
6663 | T2: V.getMemberPointerDecl()->getType()) && |
6664 | !isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
6665 | Out << "cv" ; |
6666 | mangleType(T); |
6667 | } |
6668 | Out << "adL" ; |
6669 | mangle(GD: V.getMemberPointerDecl()); |
6670 | Out << 'E'; |
6671 | if (!V.getMemberPointerPath().empty()) { |
6672 | CharUnits Offset = |
6673 | Context.getASTContext().getMemberPointerPathAdjustment(MP: V); |
6674 | if (!Offset.isZero()) |
6675 | mangleNumber(Number: Offset.getQuantity()); |
6676 | Out << 'E'; |
6677 | } |
6678 | break; |
6679 | } |
6680 | |
6681 | if (TopLevel && !IsPrimaryExpr) |
6682 | Out << 'E'; |
6683 | } |
6684 | |
6685 | void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) { |
6686 | // <template-param> ::= T_ # first template parameter |
6687 | // ::= T <parameter-2 non-negative number> _ |
6688 | // ::= TL <L-1 non-negative number> __ |
6689 | // ::= TL <L-1 non-negative number> _ |
6690 | // <parameter-2 non-negative number> _ |
6691 | // |
6692 | // The latter two manglings are from a proposal here: |
6693 | // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117 |
6694 | Out << 'T'; |
6695 | Depth += TemplateDepthOffset; |
6696 | if (Depth != 0) |
6697 | Out << 'L' << (Depth - 1) << '_'; |
6698 | if (Index != 0) |
6699 | Out << (Index - 1); |
6700 | Out << '_'; |
6701 | } |
6702 | |
6703 | void CXXNameMangler::mangleSeqID(unsigned SeqID) { |
6704 | if (SeqID == 0) { |
6705 | // Nothing. |
6706 | } else if (SeqID == 1) { |
6707 | Out << '0'; |
6708 | } else { |
6709 | SeqID--; |
6710 | |
6711 | // <seq-id> is encoded in base-36, using digits and upper case letters. |
6712 | char Buffer[7]; // log(2**32) / log(36) ~= 7 |
6713 | MutableArrayRef<char> BufferRef(Buffer); |
6714 | MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); |
6715 | |
6716 | for (; SeqID != 0; SeqID /= 36) { |
6717 | unsigned C = SeqID % 36; |
6718 | *I++ = (C < 10 ? '0' + C : 'A' + C - 10); |
6719 | } |
6720 | |
6721 | Out.write(Ptr: I.base(), Size: I - BufferRef.rbegin()); |
6722 | } |
6723 | Out << '_'; |
6724 | } |
6725 | |
6726 | void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) { |
6727 | bool result = mangleSubstitution(Template: tname); |
6728 | assert(result && "no existing substitution for template name" ); |
6729 | (void) result; |
6730 | } |
6731 | |
6732 | // <substitution> ::= S <seq-id> _ |
6733 | // ::= S_ |
6734 | bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { |
6735 | // Try one of the standard substitutions first. |
6736 | if (mangleStandardSubstitution(ND)) |
6737 | return true; |
6738 | |
6739 | ND = cast<NamedDecl>(Val: ND->getCanonicalDecl()); |
6740 | return mangleSubstitution(Ptr: reinterpret_cast<uintptr_t>(ND)); |
6741 | } |
6742 | |
6743 | bool CXXNameMangler::mangleSubstitution(NestedNameSpecifier *NNS) { |
6744 | assert(NNS->getKind() == NestedNameSpecifier::Identifier && |
6745 | "mangleSubstitution(NestedNameSpecifier *) is only used for " |
6746 | "identifier nested name specifiers." ); |
6747 | NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS); |
6748 | return mangleSubstitution(Ptr: reinterpret_cast<uintptr_t>(NNS)); |
6749 | } |
6750 | |
6751 | /// Determine whether the given type has any qualifiers that are relevant for |
6752 | /// substitutions. |
6753 | static bool hasMangledSubstitutionQualifiers(QualType T) { |
6754 | Qualifiers Qs = T.getQualifiers(); |
6755 | return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned(); |
6756 | } |
6757 | |
6758 | bool CXXNameMangler::mangleSubstitution(QualType T) { |
6759 | if (!hasMangledSubstitutionQualifiers(T)) { |
6760 | if (const RecordType *RT = T->getAs<RecordType>()) |
6761 | return mangleSubstitution(ND: RT->getDecl()); |
6762 | } |
6763 | |
6764 | uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); |
6765 | |
6766 | return mangleSubstitution(Ptr: TypePtr); |
6767 | } |
6768 | |
6769 | bool CXXNameMangler::mangleSubstitution(TemplateName Template) { |
6770 | if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
6771 | return mangleSubstitution(ND: TD); |
6772 | |
6773 | Template = Context.getASTContext().getCanonicalTemplateName(Name: Template); |
6774 | return mangleSubstitution( |
6775 | Ptr: reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); |
6776 | } |
6777 | |
6778 | bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { |
6779 | llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Val: Ptr); |
6780 | if (I == Substitutions.end()) |
6781 | return false; |
6782 | |
6783 | unsigned SeqID = I->second; |
6784 | Out << 'S'; |
6785 | mangleSeqID(SeqID); |
6786 | |
6787 | return true; |
6788 | } |
6789 | |
6790 | /// Returns whether S is a template specialization of std::Name with a single |
6791 | /// argument of type A. |
6792 | bool CXXNameMangler::isSpecializedAs(QualType S, llvm::StringRef Name, |
6793 | QualType A) { |
6794 | if (S.isNull()) |
6795 | return false; |
6796 | |
6797 | const RecordType *RT = S->getAs<RecordType>(); |
6798 | if (!RT) |
6799 | return false; |
6800 | |
6801 | const ClassTemplateSpecializationDecl *SD = |
6802 | dyn_cast<ClassTemplateSpecializationDecl>(Val: RT->getDecl()); |
6803 | if (!SD || !SD->getIdentifier()->isStr(Str: Name)) |
6804 | return false; |
6805 | |
6806 | if (!isStdNamespace(DC: Context.getEffectiveDeclContext(D: SD))) |
6807 | return false; |
6808 | |
6809 | const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); |
6810 | if (TemplateArgs.size() != 1) |
6811 | return false; |
6812 | |
6813 | if (TemplateArgs[0].getAsType() != A) |
6814 | return false; |
6815 | |
6816 | if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) |
6817 | return false; |
6818 | |
6819 | return true; |
6820 | } |
6821 | |
6822 | /// Returns whether SD is a template specialization std::Name<char, |
6823 | /// std::char_traits<char> [, std::allocator<char>]> |
6824 | /// HasAllocator controls whether the 3rd template argument is needed. |
6825 | bool CXXNameMangler::isStdCharSpecialization( |
6826 | const ClassTemplateSpecializationDecl *SD, llvm::StringRef Name, |
6827 | bool HasAllocator) { |
6828 | if (!SD->getIdentifier()->isStr(Str: Name)) |
6829 | return false; |
6830 | |
6831 | const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); |
6832 | if (TemplateArgs.size() != (HasAllocator ? 3 : 2)) |
6833 | return false; |
6834 | |
6835 | QualType A = TemplateArgs[0].getAsType(); |
6836 | if (A.isNull()) |
6837 | return false; |
6838 | // Plain 'char' is named Char_S or Char_U depending on the target ABI. |
6839 | if (!A->isSpecificBuiltinType(K: BuiltinType::Char_S) && |
6840 | !A->isSpecificBuiltinType(K: BuiltinType::Char_U)) |
6841 | return false; |
6842 | |
6843 | if (!isSpecializedAs(S: TemplateArgs[1].getAsType(), Name: "char_traits" , A)) |
6844 | return false; |
6845 | |
6846 | if (HasAllocator && |
6847 | !isSpecializedAs(S: TemplateArgs[2].getAsType(), Name: "allocator" , A)) |
6848 | return false; |
6849 | |
6850 | if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) |
6851 | return false; |
6852 | |
6853 | return true; |
6854 | } |
6855 | |
6856 | bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { |
6857 | // <substitution> ::= St # ::std:: |
6858 | if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Val: ND)) { |
6859 | if (isStd(NS)) { |
6860 | Out << "St" ; |
6861 | return true; |
6862 | } |
6863 | return false; |
6864 | } |
6865 | |
6866 | if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(Val: ND)) { |
6867 | if (!isStdNamespace(DC: Context.getEffectiveDeclContext(D: TD))) |
6868 | return false; |
6869 | |
6870 | if (TD->getOwningModuleForLinkage()) |
6871 | return false; |
6872 | |
6873 | // <substitution> ::= Sa # ::std::allocator |
6874 | if (TD->getIdentifier()->isStr(Str: "allocator" )) { |
6875 | Out << "Sa" ; |
6876 | return true; |
6877 | } |
6878 | |
6879 | // <<substitution> ::= Sb # ::std::basic_string |
6880 | if (TD->getIdentifier()->isStr(Str: "basic_string" )) { |
6881 | Out << "Sb" ; |
6882 | return true; |
6883 | } |
6884 | return false; |
6885 | } |
6886 | |
6887 | if (const ClassTemplateSpecializationDecl *SD = |
6888 | dyn_cast<ClassTemplateSpecializationDecl>(Val: ND)) { |
6889 | if (!isStdNamespace(DC: Context.getEffectiveDeclContext(D: SD))) |
6890 | return false; |
6891 | |
6892 | if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) |
6893 | return false; |
6894 | |
6895 | // <substitution> ::= Ss # ::std::basic_string<char, |
6896 | // ::std::char_traits<char>, |
6897 | // ::std::allocator<char> > |
6898 | if (isStdCharSpecialization(SD, Name: "basic_string" , /*HasAllocator=*/true)) { |
6899 | Out << "Ss" ; |
6900 | return true; |
6901 | } |
6902 | |
6903 | // <substitution> ::= Si # ::std::basic_istream<char, |
6904 | // ::std::char_traits<char> > |
6905 | if (isStdCharSpecialization(SD, Name: "basic_istream" , /*HasAllocator=*/false)) { |
6906 | Out << "Si" ; |
6907 | return true; |
6908 | } |
6909 | |
6910 | // <substitution> ::= So # ::std::basic_ostream<char, |
6911 | // ::std::char_traits<char> > |
6912 | if (isStdCharSpecialization(SD, Name: "basic_ostream" , /*HasAllocator=*/false)) { |
6913 | Out << "So" ; |
6914 | return true; |
6915 | } |
6916 | |
6917 | // <substitution> ::= Sd # ::std::basic_iostream<char, |
6918 | // ::std::char_traits<char> > |
6919 | if (isStdCharSpecialization(SD, Name: "basic_iostream" , /*HasAllocator=*/false)) { |
6920 | Out << "Sd" ; |
6921 | return true; |
6922 | } |
6923 | return false; |
6924 | } |
6925 | |
6926 | return false; |
6927 | } |
6928 | |
6929 | void CXXNameMangler::addSubstitution(QualType T) { |
6930 | if (!hasMangledSubstitutionQualifiers(T)) { |
6931 | if (const RecordType *RT = T->getAs<RecordType>()) { |
6932 | addSubstitution(ND: RT->getDecl()); |
6933 | return; |
6934 | } |
6935 | } |
6936 | |
6937 | uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); |
6938 | addSubstitution(Ptr: TypePtr); |
6939 | } |
6940 | |
6941 | void CXXNameMangler::addSubstitution(TemplateName Template) { |
6942 | if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
6943 | return addSubstitution(ND: TD); |
6944 | |
6945 | Template = Context.getASTContext().getCanonicalTemplateName(Name: Template); |
6946 | addSubstitution(Ptr: reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); |
6947 | } |
6948 | |
6949 | void CXXNameMangler::addSubstitution(uintptr_t Ptr) { |
6950 | assert(!Substitutions.count(Ptr) && "Substitution already exists!" ); |
6951 | Substitutions[Ptr] = SeqID++; |
6952 | } |
6953 | |
6954 | void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) { |
6955 | assert(Other->SeqID >= SeqID && "Must be superset of substitutions!" ); |
6956 | if (Other->SeqID > SeqID) { |
6957 | Substitutions.swap(RHS&: Other->Substitutions); |
6958 | SeqID = Other->SeqID; |
6959 | } |
6960 | } |
6961 | |
6962 | CXXNameMangler::AbiTagList |
6963 | CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) { |
6964 | // When derived abi tags are disabled there is no need to make any list. |
6965 | if (DisableDerivedAbiTags) |
6966 | return AbiTagList(); |
6967 | |
6968 | llvm::raw_null_ostream NullOutStream; |
6969 | CXXNameMangler TrackReturnTypeTags(*this, NullOutStream); |
6970 | TrackReturnTypeTags.disableDerivedAbiTags(); |
6971 | |
6972 | const FunctionProtoType *Proto = |
6973 | cast<FunctionProtoType>(Val: FD->getType()->getAs<FunctionType>()); |
6974 | FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push(); |
6975 | TrackReturnTypeTags.FunctionTypeDepth.enterResultType(); |
6976 | TrackReturnTypeTags.mangleType(T: Proto->getReturnType()); |
6977 | TrackReturnTypeTags.FunctionTypeDepth.leaveResultType(); |
6978 | TrackReturnTypeTags.FunctionTypeDepth.pop(saved); |
6979 | |
6980 | return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
6981 | } |
6982 | |
6983 | CXXNameMangler::AbiTagList |
6984 | CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) { |
6985 | // When derived abi tags are disabled there is no need to make any list. |
6986 | if (DisableDerivedAbiTags) |
6987 | return AbiTagList(); |
6988 | |
6989 | llvm::raw_null_ostream NullOutStream; |
6990 | CXXNameMangler TrackVariableType(*this, NullOutStream); |
6991 | TrackVariableType.disableDerivedAbiTags(); |
6992 | |
6993 | TrackVariableType.mangleType(T: VD->getType()); |
6994 | |
6995 | return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
6996 | } |
6997 | |
6998 | bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C, |
6999 | const VarDecl *VD) { |
7000 | llvm::raw_null_ostream NullOutStream; |
7001 | CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true); |
7002 | TrackAbiTags.mangle(GD: VD); |
7003 | return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size(); |
7004 | } |
7005 | |
7006 | // |
7007 | |
7008 | /// Mangles the name of the declaration D and emits that name to the given |
7009 | /// output stream. |
7010 | /// |
7011 | /// If the declaration D requires a mangled name, this routine will emit that |
7012 | /// mangled name to \p os and return true. Otherwise, \p os will be unchanged |
7013 | /// and this routine will return false. In this case, the caller should just |
7014 | /// emit the identifier of the declaration (\c D->getIdentifier()) as its |
7015 | /// name. |
7016 | void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD, |
7017 | raw_ostream &Out) { |
7018 | const NamedDecl *D = cast<NamedDecl>(Val: GD.getDecl()); |
7019 | assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) && |
7020 | "Invalid mangleName() call, argument is not a variable or function!" ); |
7021 | |
7022 | PrettyStackTraceDecl CrashInfo(D, SourceLocation(), |
7023 | getASTContext().getSourceManager(), |
7024 | "Mangling declaration" ); |
7025 | |
7026 | if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: D)) { |
7027 | auto Type = GD.getCtorType(); |
7028 | CXXNameMangler Mangler(*this, Out, CD, Type); |
7029 | return Mangler.mangle(GD: GlobalDecl(CD, Type)); |
7030 | } |
7031 | |
7032 | if (auto *DD = dyn_cast<CXXDestructorDecl>(Val: D)) { |
7033 | auto Type = GD.getDtorType(); |
7034 | CXXNameMangler Mangler(*this, Out, DD, Type); |
7035 | return Mangler.mangle(GD: GlobalDecl(DD, Type)); |
7036 | } |
7037 | |
7038 | CXXNameMangler Mangler(*this, Out, D); |
7039 | Mangler.mangle(GD); |
7040 | } |
7041 | |
7042 | void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D, |
7043 | raw_ostream &Out) { |
7044 | CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat); |
7045 | Mangler.mangle(GD: GlobalDecl(D, Ctor_Comdat)); |
7046 | } |
7047 | |
7048 | void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D, |
7049 | raw_ostream &Out) { |
7050 | CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat); |
7051 | Mangler.mangle(GD: GlobalDecl(D, Dtor_Comdat)); |
7052 | } |
7053 | |
7054 | /// Mangles the pointer authentication override attribute for classes |
7055 | /// that have explicit overrides for the vtable authentication schema. |
7056 | /// |
7057 | /// The override is mangled as a parameterized vendor extension as follows |
7058 | /// |
7059 | /// <type> ::= U "__vtptrauth" I |
7060 | /// <key> |
7061 | /// <addressDiscriminated> |
7062 | /// <extraDiscriminator> |
7063 | /// E |
7064 | /// |
7065 | /// The extra discriminator encodes the explicit value derived from the |
7066 | /// override schema, e.g. if the override has specified type based |
7067 | /// discrimination the encoded value will be the discriminator derived from the |
7068 | /// type name. |
7069 | static void mangleOverrideDiscrimination(CXXNameMangler &Mangler, |
7070 | ASTContext &Context, |
7071 | const ThunkInfo &Thunk) { |
7072 | auto &LangOpts = Context.getLangOpts(); |
7073 | const CXXRecordDecl *ThisRD = Thunk.ThisType->getPointeeCXXRecordDecl(); |
7074 | const CXXRecordDecl *PtrauthClassRD = |
7075 | Context.baseForVTableAuthentication(ThisClass: ThisRD); |
7076 | unsigned TypedDiscriminator = |
7077 | Context.getPointerAuthVTablePointerDiscriminator(RD: ThisRD); |
7078 | Mangler.mangleVendorQualifier(name: "__vtptrauth" ); |
7079 | auto &ManglerStream = Mangler.getStream(); |
7080 | ManglerStream << "I" ; |
7081 | if (const auto *ExplicitAuth = |
7082 | PtrauthClassRD->getAttr<VTablePointerAuthenticationAttr>()) { |
7083 | ManglerStream << "Lj" << ExplicitAuth->getKey(); |
7084 | |
7085 | if (ExplicitAuth->getAddressDiscrimination() == |
7086 | VTablePointerAuthenticationAttr::DefaultAddressDiscrimination) |
7087 | ManglerStream << "Lb" << LangOpts.PointerAuthVTPtrAddressDiscrimination; |
7088 | else |
7089 | ManglerStream << "Lb" |
7090 | << (ExplicitAuth->getAddressDiscrimination() == |
7091 | VTablePointerAuthenticationAttr::AddressDiscrimination); |
7092 | |
7093 | switch (ExplicitAuth->getExtraDiscrimination()) { |
7094 | case VTablePointerAuthenticationAttr::DefaultExtraDiscrimination: { |
7095 | if (LangOpts.PointerAuthVTPtrTypeDiscrimination) |
7096 | ManglerStream << "Lj" << TypedDiscriminator; |
7097 | else |
7098 | ManglerStream << "Lj" << 0; |
7099 | break; |
7100 | } |
7101 | case VTablePointerAuthenticationAttr::TypeDiscrimination: |
7102 | ManglerStream << "Lj" << TypedDiscriminator; |
7103 | break; |
7104 | case VTablePointerAuthenticationAttr::CustomDiscrimination: |
7105 | ManglerStream << "Lj" << ExplicitAuth->getCustomDiscriminationValue(); |
7106 | break; |
7107 | case VTablePointerAuthenticationAttr::NoExtraDiscrimination: |
7108 | ManglerStream << "Lj" << 0; |
7109 | break; |
7110 | } |
7111 | } else { |
7112 | ManglerStream << "Lj" |
7113 | << (unsigned)VTablePointerAuthenticationAttr::DefaultKey; |
7114 | ManglerStream << "Lb" << LangOpts.PointerAuthVTPtrAddressDiscrimination; |
7115 | if (LangOpts.PointerAuthVTPtrTypeDiscrimination) |
7116 | ManglerStream << "Lj" << TypedDiscriminator; |
7117 | else |
7118 | ManglerStream << "Lj" << 0; |
7119 | } |
7120 | ManglerStream << "E" ; |
7121 | } |
7122 | |
7123 | void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, |
7124 | const ThunkInfo &Thunk, |
7125 | bool ElideOverrideInfo, |
7126 | raw_ostream &Out) { |
7127 | // <special-name> ::= T <call-offset> <base encoding> |
7128 | // # base is the nominal target function of thunk |
7129 | // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> |
7130 | // # base is the nominal target function of thunk |
7131 | // # first call-offset is 'this' adjustment |
7132 | // # second call-offset is result adjustment |
7133 | |
7134 | assert(!isa<CXXDestructorDecl>(MD) && |
7135 | "Use mangleCXXDtor for destructor decls!" ); |
7136 | CXXNameMangler Mangler(*this, Out); |
7137 | Mangler.getStream() << "_ZT" ; |
7138 | if (!Thunk.Return.isEmpty()) |
7139 | Mangler.getStream() << 'c'; |
7140 | |
7141 | // Mangle the 'this' pointer adjustment. |
7142 | Mangler.mangleCallOffset(NonVirtual: Thunk.This.NonVirtual, |
7143 | Virtual: Thunk.This.Virtual.Itanium.VCallOffsetOffset); |
7144 | |
7145 | // Mangle the return pointer adjustment if there is one. |
7146 | if (!Thunk.Return.isEmpty()) |
7147 | Mangler.mangleCallOffset(NonVirtual: Thunk.Return.NonVirtual, |
7148 | Virtual: Thunk.Return.Virtual.Itanium.VBaseOffsetOffset); |
7149 | |
7150 | Mangler.mangleFunctionEncoding(GD: MD); |
7151 | if (!ElideOverrideInfo) |
7152 | mangleOverrideDiscrimination(Mangler, Context&: getASTContext(), Thunk); |
7153 | } |
7154 | |
7155 | void ItaniumMangleContextImpl::mangleCXXDtorThunk(const CXXDestructorDecl *DD, |
7156 | CXXDtorType Type, |
7157 | const ThunkInfo &Thunk, |
7158 | bool ElideOverrideInfo, |
7159 | raw_ostream &Out) { |
7160 | // <special-name> ::= T <call-offset> <base encoding> |
7161 | // # base is the nominal target function of thunk |
7162 | CXXNameMangler Mangler(*this, Out, DD, Type); |
7163 | Mangler.getStream() << "_ZT" ; |
7164 | |
7165 | auto &ThisAdjustment = Thunk.This; |
7166 | // Mangle the 'this' pointer adjustment. |
7167 | Mangler.mangleCallOffset(NonVirtual: ThisAdjustment.NonVirtual, |
7168 | Virtual: ThisAdjustment.Virtual.Itanium.VCallOffsetOffset); |
7169 | |
7170 | Mangler.mangleFunctionEncoding(GD: GlobalDecl(DD, Type)); |
7171 | if (!ElideOverrideInfo) |
7172 | mangleOverrideDiscrimination(Mangler, Context&: getASTContext(), Thunk); |
7173 | } |
7174 | |
7175 | /// Returns the mangled name for a guard variable for the passed in VarDecl. |
7176 | void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D, |
7177 | raw_ostream &Out) { |
7178 | // <special-name> ::= GV <object name> # Guard variable for one-time |
7179 | // # initialization |
7180 | CXXNameMangler Mangler(*this, Out); |
7181 | // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to |
7182 | // be a bug that is fixed in trunk. |
7183 | Mangler.getStream() << "_ZGV" ; |
7184 | Mangler.mangleName(GD: D); |
7185 | } |
7186 | |
7187 | void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD, |
7188 | raw_ostream &Out) { |
7189 | // These symbols are internal in the Itanium ABI, so the names don't matter. |
7190 | // Clang has traditionally used this symbol and allowed LLVM to adjust it to |
7191 | // avoid duplicate symbols. |
7192 | Out << "__cxx_global_var_init" ; |
7193 | } |
7194 | |
7195 | void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, |
7196 | raw_ostream &Out) { |
7197 | // Prefix the mangling of D with __dtor_. |
7198 | CXXNameMangler Mangler(*this, Out); |
7199 | Mangler.getStream() << "__dtor_" ; |
7200 | if (shouldMangleDeclName(D)) |
7201 | Mangler.mangle(GD: D); |
7202 | else |
7203 | Mangler.getStream() << D->getName(); |
7204 | } |
7205 | |
7206 | void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D, |
7207 | raw_ostream &Out) { |
7208 | // Clang generates these internal-linkage functions as part of its |
7209 | // implementation of the XL ABI. |
7210 | CXXNameMangler Mangler(*this, Out); |
7211 | Mangler.getStream() << "__finalize_" ; |
7212 | if (shouldMangleDeclName(D)) |
7213 | Mangler.mangle(GD: D); |
7214 | else |
7215 | Mangler.getStream() << D->getName(); |
7216 | } |
7217 | |
7218 | void ItaniumMangleContextImpl::mangleSEHFilterExpression( |
7219 | GlobalDecl EnclosingDecl, raw_ostream &Out) { |
7220 | CXXNameMangler Mangler(*this, Out); |
7221 | Mangler.getStream() << "__filt_" ; |
7222 | auto *EnclosingFD = cast<FunctionDecl>(Val: EnclosingDecl.getDecl()); |
7223 | if (shouldMangleDeclName(D: EnclosingFD)) |
7224 | Mangler.mangle(GD: EnclosingDecl); |
7225 | else |
7226 | Mangler.getStream() << EnclosingFD->getName(); |
7227 | } |
7228 | |
7229 | void ItaniumMangleContextImpl::mangleSEHFinallyBlock( |
7230 | GlobalDecl EnclosingDecl, raw_ostream &Out) { |
7231 | CXXNameMangler Mangler(*this, Out); |
7232 | Mangler.getStream() << "__fin_" ; |
7233 | auto *EnclosingFD = cast<FunctionDecl>(Val: EnclosingDecl.getDecl()); |
7234 | if (shouldMangleDeclName(D: EnclosingFD)) |
7235 | Mangler.mangle(GD: EnclosingDecl); |
7236 | else |
7237 | Mangler.getStream() << EnclosingFD->getName(); |
7238 | } |
7239 | |
7240 | void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D, |
7241 | raw_ostream &Out) { |
7242 | // <special-name> ::= TH <object name> |
7243 | CXXNameMangler Mangler(*this, Out); |
7244 | Mangler.getStream() << "_ZTH" ; |
7245 | Mangler.mangleName(GD: D); |
7246 | } |
7247 | |
7248 | void |
7249 | ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D, |
7250 | raw_ostream &Out) { |
7251 | // <special-name> ::= TW <object name> |
7252 | CXXNameMangler Mangler(*this, Out); |
7253 | Mangler.getStream() << "_ZTW" ; |
7254 | Mangler.mangleName(GD: D); |
7255 | } |
7256 | |
7257 | void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D, |
7258 | unsigned ManglingNumber, |
7259 | raw_ostream &Out) { |
7260 | // We match the GCC mangling here. |
7261 | // <special-name> ::= GR <object name> |
7262 | CXXNameMangler Mangler(*this, Out); |
7263 | Mangler.getStream() << "_ZGR" ; |
7264 | Mangler.mangleName(GD: D); |
7265 | assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!" ); |
7266 | Mangler.mangleSeqID(SeqID: ManglingNumber - 1); |
7267 | } |
7268 | |
7269 | void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD, |
7270 | raw_ostream &Out) { |
7271 | // <special-name> ::= TV <type> # virtual table |
7272 | CXXNameMangler Mangler(*this, Out); |
7273 | Mangler.getStream() << "_ZTV" ; |
7274 | Mangler.mangleNameOrStandardSubstitution(ND: RD); |
7275 | } |
7276 | |
7277 | void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD, |
7278 | raw_ostream &Out) { |
7279 | // <special-name> ::= TT <type> # VTT structure |
7280 | CXXNameMangler Mangler(*this, Out); |
7281 | Mangler.getStream() << "_ZTT" ; |
7282 | Mangler.mangleNameOrStandardSubstitution(ND: RD); |
7283 | } |
7284 | |
7285 | void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD, |
7286 | int64_t Offset, |
7287 | const CXXRecordDecl *Type, |
7288 | raw_ostream &Out) { |
7289 | // <special-name> ::= TC <type> <offset number> _ <base type> |
7290 | CXXNameMangler Mangler(*this, Out); |
7291 | Mangler.getStream() << "_ZTC" ; |
7292 | Mangler.mangleNameOrStandardSubstitution(ND: RD); |
7293 | Mangler.getStream() << Offset; |
7294 | Mangler.getStream() << '_'; |
7295 | Mangler.mangleNameOrStandardSubstitution(ND: Type); |
7296 | } |
7297 | |
7298 | void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) { |
7299 | // <special-name> ::= TI <type> # typeinfo structure |
7300 | assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers" ); |
7301 | CXXNameMangler Mangler(*this, Out); |
7302 | Mangler.getStream() << "_ZTI" ; |
7303 | Mangler.mangleType(T: Ty); |
7304 | } |
7305 | |
7306 | void ItaniumMangleContextImpl::mangleCXXRTTIName( |
7307 | QualType Ty, raw_ostream &Out, bool NormalizeIntegers = false) { |
7308 | // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) |
7309 | CXXNameMangler Mangler(*this, Out, NormalizeIntegers); |
7310 | Mangler.getStream() << "_ZTS" ; |
7311 | Mangler.mangleType(T: Ty); |
7312 | } |
7313 | |
7314 | void ItaniumMangleContextImpl::mangleCanonicalTypeName( |
7315 | QualType Ty, raw_ostream &Out, bool NormalizeIntegers = false) { |
7316 | mangleCXXRTTIName(Ty, Out, NormalizeIntegers); |
7317 | } |
7318 | |
7319 | void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) { |
7320 | llvm_unreachable("Can't mangle string literals" ); |
7321 | } |
7322 | |
7323 | void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda, |
7324 | raw_ostream &Out) { |
7325 | CXXNameMangler Mangler(*this, Out); |
7326 | Mangler.mangleLambdaSig(Lambda); |
7327 | } |
7328 | |
7329 | void ItaniumMangleContextImpl::mangleModuleInitializer(const Module *M, |
7330 | raw_ostream &Out) { |
7331 | // <special-name> ::= GI <module-name> # module initializer function |
7332 | CXXNameMangler Mangler(*this, Out); |
7333 | Mangler.getStream() << "_ZGI" ; |
7334 | Mangler.mangleModuleNamePrefix(Name: M->getPrimaryModuleInterfaceName()); |
7335 | if (M->isModulePartition()) { |
7336 | // The partition needs including, as partitions can have them too. |
7337 | auto Partition = M->Name.find(c: ':'); |
7338 | Mangler.mangleModuleNamePrefix( |
7339 | Name: StringRef(&M->Name[Partition + 1], M->Name.size() - Partition - 1), |
7340 | /*IsPartition*/ true); |
7341 | } |
7342 | } |
7343 | |
7344 | ItaniumMangleContext *ItaniumMangleContext::create(ASTContext &Context, |
7345 | DiagnosticsEngine &Diags, |
7346 | bool IsAux) { |
7347 | return new ItaniumMangleContextImpl( |
7348 | Context, Diags, |
7349 | [](ASTContext &, const NamedDecl *) -> std::optional<unsigned> { |
7350 | return std::nullopt; |
7351 | }, |
7352 | IsAux); |
7353 | } |
7354 | |
7355 | ItaniumMangleContext * |
7356 | ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags, |
7357 | DiscriminatorOverrideTy DiscriminatorOverride, |
7358 | bool IsAux) { |
7359 | return new ItaniumMangleContextImpl(Context, Diags, DiscriminatorOverride, |
7360 | IsAux); |
7361 | } |
7362 | |