1 | //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This provides C++ name mangling targeting the Microsoft Visual C++ ABI. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/ASTContext.h" |
14 | #include "clang/AST/Attr.h" |
15 | #include "clang/AST/CXXInheritance.h" |
16 | #include "clang/AST/CharUnits.h" |
17 | #include "clang/AST/Decl.h" |
18 | #include "clang/AST/DeclCXX.h" |
19 | #include "clang/AST/DeclObjC.h" |
20 | #include "clang/AST/DeclOpenMP.h" |
21 | #include "clang/AST/DeclTemplate.h" |
22 | #include "clang/AST/Expr.h" |
23 | #include "clang/AST/ExprCXX.h" |
24 | #include "clang/AST/GlobalDecl.h" |
25 | #include "clang/AST/Mangle.h" |
26 | #include "clang/AST/VTableBuilder.h" |
27 | #include "clang/Basic/ABI.h" |
28 | #include "clang/Basic/DiagnosticOptions.h" |
29 | #include "clang/Basic/FileManager.h" |
30 | #include "clang/Basic/SourceManager.h" |
31 | #include "clang/Basic/TargetInfo.h" |
32 | #include "llvm/ADT/SmallVector.h" |
33 | #include "llvm/ADT/StringExtras.h" |
34 | #include "llvm/Support/CRC.h" |
35 | #include "llvm/Support/MD5.h" |
36 | #include "llvm/Support/MathExtras.h" |
37 | #include "llvm/Support/StringSaver.h" |
38 | #include "llvm/Support/xxhash.h" |
39 | #include <functional> |
40 | #include <optional> |
41 | |
42 | using namespace clang; |
43 | |
44 | namespace { |
45 | |
46 | // Get GlobalDecl of DeclContext of local entities. |
47 | static GlobalDecl getGlobalDeclAsDeclContext(const DeclContext *DC) { |
48 | GlobalDecl GD; |
49 | if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: DC)) |
50 | GD = GlobalDecl(CD, Ctor_Complete); |
51 | else if (auto *DD = dyn_cast<CXXDestructorDecl>(Val: DC)) |
52 | GD = GlobalDecl(DD, Dtor_Complete); |
53 | else |
54 | GD = GlobalDecl(cast<FunctionDecl>(Val: DC)); |
55 | return GD; |
56 | } |
57 | |
58 | struct msvc_hashing_ostream : public llvm::raw_svector_ostream { |
59 | raw_ostream &OS; |
60 | llvm::SmallString<64> Buffer; |
61 | |
62 | msvc_hashing_ostream(raw_ostream &OS) |
63 | : llvm::raw_svector_ostream(Buffer), OS(OS) {} |
64 | ~msvc_hashing_ostream() override { |
65 | StringRef MangledName = str(); |
66 | bool StartsWithEscape = MangledName.starts_with(Prefix: "\01" ); |
67 | if (StartsWithEscape) |
68 | MangledName = MangledName.drop_front(N: 1); |
69 | if (MangledName.size() < 4096) { |
70 | OS << str(); |
71 | return; |
72 | } |
73 | |
74 | llvm::MD5 Hasher; |
75 | llvm::MD5::MD5Result Hash; |
76 | Hasher.update(Str: MangledName); |
77 | Hasher.final(Result&: Hash); |
78 | |
79 | SmallString<32> HexString; |
80 | llvm::MD5::stringifyResult(Result&: Hash, Str&: HexString); |
81 | |
82 | if (StartsWithEscape) |
83 | OS << '\01'; |
84 | OS << "??@" << HexString << '@'; |
85 | } |
86 | }; |
87 | |
88 | static const DeclContext * |
89 | getLambdaDefaultArgumentDeclContext(const Decl *D) { |
90 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) |
91 | if (RD->isLambda()) |
92 | if (const auto *Parm = |
93 | dyn_cast_or_null<ParmVarDecl>(Val: RD->getLambdaContextDecl())) |
94 | return Parm->getDeclContext(); |
95 | return nullptr; |
96 | } |
97 | |
98 | /// Retrieve the declaration context that should be used when mangling |
99 | /// the given declaration. |
100 | static const DeclContext *getEffectiveDeclContext(const Decl *D) { |
101 | // The ABI assumes that lambda closure types that occur within |
102 | // default arguments live in the context of the function. However, due to |
103 | // the way in which Clang parses and creates function declarations, this is |
104 | // not the case: the lambda closure type ends up living in the context |
105 | // where the function itself resides, because the function declaration itself |
106 | // had not yet been created. Fix the context here. |
107 | if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D)) |
108 | return LDADC; |
109 | |
110 | // Perform the same check for block literals. |
111 | if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: D)) { |
112 | if (ParmVarDecl *ContextParam = |
113 | dyn_cast_or_null<ParmVarDecl>(Val: BD->getBlockManglingContextDecl())) |
114 | return ContextParam->getDeclContext(); |
115 | } |
116 | |
117 | const DeclContext *DC = D->getDeclContext(); |
118 | if (isa<CapturedDecl>(Val: DC) || isa<OMPDeclareReductionDecl>(Val: DC) || |
119 | isa<OMPDeclareMapperDecl>(Val: DC)) { |
120 | return getEffectiveDeclContext(D: cast<Decl>(Val: DC)); |
121 | } |
122 | |
123 | return DC->getRedeclContext(); |
124 | } |
125 | |
126 | static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { |
127 | return getEffectiveDeclContext(D: cast<Decl>(Val: DC)); |
128 | } |
129 | |
130 | static const FunctionDecl *getStructor(const NamedDecl *ND) { |
131 | if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: ND)) |
132 | return FTD->getTemplatedDecl()->getCanonicalDecl(); |
133 | |
134 | const auto *FD = cast<FunctionDecl>(Val: ND); |
135 | if (const auto *FTD = FD->getPrimaryTemplate()) |
136 | return FTD->getTemplatedDecl()->getCanonicalDecl(); |
137 | |
138 | return FD->getCanonicalDecl(); |
139 | } |
140 | |
141 | /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the |
142 | /// Microsoft Visual C++ ABI. |
143 | class MicrosoftMangleContextImpl : public MicrosoftMangleContext { |
144 | typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy; |
145 | llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; |
146 | llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier; |
147 | llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds; |
148 | llvm::DenseMap<GlobalDecl, unsigned> SEHFilterIds; |
149 | llvm::DenseMap<GlobalDecl, unsigned> SEHFinallyIds; |
150 | SmallString<16> AnonymousNamespaceHash; |
151 | |
152 | public: |
153 | MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags, |
154 | bool IsAux = false); |
155 | bool shouldMangleCXXName(const NamedDecl *D) override; |
156 | bool shouldMangleStringLiteral(const StringLiteral *SL) override; |
157 | void mangleCXXName(GlobalDecl GD, raw_ostream &Out) override; |
158 | void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, |
159 | const MethodVFTableLocation &ML, |
160 | raw_ostream &Out) override; |
161 | void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, |
162 | bool ElideOverrideInfo, raw_ostream &) override; |
163 | void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, |
164 | const ThunkInfo &Thunk, bool ElideOverrideInfo, |
165 | raw_ostream &) override; |
166 | void mangleCXXVFTable(const CXXRecordDecl *Derived, |
167 | ArrayRef<const CXXRecordDecl *> BasePath, |
168 | raw_ostream &Out) override; |
169 | void mangleCXXVBTable(const CXXRecordDecl *Derived, |
170 | ArrayRef<const CXXRecordDecl *> BasePath, |
171 | raw_ostream &Out) override; |
172 | |
173 | void mangleCXXVTable(const CXXRecordDecl *, raw_ostream &) override; |
174 | void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD, |
175 | const CXXRecordDecl *DstRD, |
176 | raw_ostream &Out) override; |
177 | void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile, |
178 | bool IsUnaligned, uint32_t NumEntries, |
179 | raw_ostream &Out) override; |
180 | void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries, |
181 | raw_ostream &Out) override; |
182 | void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD, |
183 | CXXCtorType CT, uint32_t Size, uint32_t NVOffset, |
184 | int32_t VBPtrOffset, uint32_t VBIndex, |
185 | raw_ostream &Out) override; |
186 | void mangleCXXRTTI(QualType T, raw_ostream &Out) override; |
187 | void mangleCXXRTTIName(QualType T, raw_ostream &Out, |
188 | bool NormalizeIntegers) override; |
189 | void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived, |
190 | uint32_t NVOffset, int32_t VBPtrOffset, |
191 | uint32_t VBTableOffset, uint32_t Flags, |
192 | raw_ostream &Out) override; |
193 | void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived, |
194 | raw_ostream &Out) override; |
195 | void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived, |
196 | raw_ostream &Out) override; |
197 | void |
198 | mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived, |
199 | ArrayRef<const CXXRecordDecl *> BasePath, |
200 | raw_ostream &Out) override; |
201 | void mangleCanonicalTypeName(QualType T, raw_ostream &, |
202 | bool NormalizeIntegers) override; |
203 | void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber, |
204 | raw_ostream &) override; |
205 | void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override; |
206 | void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum, |
207 | raw_ostream &Out) override; |
208 | void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; |
209 | void mangleDynamicAtExitDestructor(const VarDecl *D, |
210 | raw_ostream &Out) override; |
211 | void mangleSEHFilterExpression(GlobalDecl EnclosingDecl, |
212 | raw_ostream &Out) override; |
213 | void mangleSEHFinallyBlock(GlobalDecl EnclosingDecl, |
214 | raw_ostream &Out) override; |
215 | void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override; |
216 | bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { |
217 | const DeclContext *DC = getEffectiveDeclContext(D: ND); |
218 | if (!DC->isFunctionOrMethod()) |
219 | return false; |
220 | |
221 | // Lambda closure types are already numbered, give out a phony number so |
222 | // that they demangle nicely. |
223 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) { |
224 | if (RD->isLambda()) { |
225 | disc = 1; |
226 | return true; |
227 | } |
228 | } |
229 | |
230 | // Use the canonical number for externally visible decls. |
231 | if (ND->isExternallyVisible()) { |
232 | disc = getASTContext().getManglingNumber(ND, ForAuxTarget: isAux()); |
233 | return true; |
234 | } |
235 | |
236 | // Anonymous tags are already numbered. |
237 | if (const TagDecl *Tag = dyn_cast<TagDecl>(Val: ND)) { |
238 | if (!Tag->hasNameForLinkage() && |
239 | !getASTContext().getDeclaratorForUnnamedTagDecl(TD: Tag) && |
240 | !getASTContext().getTypedefNameForUnnamedTagDecl(TD: Tag)) |
241 | return false; |
242 | } |
243 | |
244 | // Make up a reasonable number for internal decls. |
245 | unsigned &discriminator = Uniquifier[ND]; |
246 | if (!discriminator) |
247 | discriminator = ++Discriminator[std::make_pair(x&: DC, y: ND->getIdentifier())]; |
248 | disc = discriminator + 1; |
249 | return true; |
250 | } |
251 | |
252 | std::string getLambdaString(const CXXRecordDecl *Lambda) override { |
253 | assert(Lambda->isLambda() && "RD must be a lambda!" ); |
254 | std::string Name("<lambda_" ); |
255 | |
256 | Decl *LambdaContextDecl = Lambda->getLambdaContextDecl(); |
257 | unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber(); |
258 | unsigned LambdaId; |
259 | const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(Val: LambdaContextDecl); |
260 | const FunctionDecl *Func = |
261 | Parm ? dyn_cast<FunctionDecl>(Val: Parm->getDeclContext()) : nullptr; |
262 | |
263 | if (Func) { |
264 | unsigned DefaultArgNo = |
265 | Func->getNumParams() - Parm->getFunctionScopeIndex(); |
266 | Name += llvm::utostr(X: DefaultArgNo); |
267 | Name += "_" ; |
268 | } |
269 | |
270 | if (LambdaManglingNumber) |
271 | LambdaId = LambdaManglingNumber; |
272 | else |
273 | LambdaId = getLambdaIdForDebugInfo(RD: Lambda); |
274 | |
275 | Name += llvm::utostr(X: LambdaId); |
276 | Name += ">" ; |
277 | return Name; |
278 | } |
279 | |
280 | unsigned getLambdaId(const CXXRecordDecl *RD) { |
281 | assert(RD->isLambda() && "RD must be a lambda!" ); |
282 | assert(!RD->isExternallyVisible() && "RD must not be visible!" ); |
283 | assert(RD->getLambdaManglingNumber() == 0 && |
284 | "RD must not have a mangling number!" ); |
285 | std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool> |
286 | Result = LambdaIds.insert(KV: std::make_pair(x&: RD, y: LambdaIds.size())); |
287 | return Result.first->second; |
288 | } |
289 | |
290 | unsigned getLambdaIdForDebugInfo(const CXXRecordDecl *RD) { |
291 | assert(RD->isLambda() && "RD must be a lambda!" ); |
292 | assert(!RD->isExternallyVisible() && "RD must not be visible!" ); |
293 | assert(RD->getLambdaManglingNumber() == 0 && |
294 | "RD must not have a mangling number!" ); |
295 | // The lambda should exist, but return 0 in case it doesn't. |
296 | return LambdaIds.lookup(Val: RD); |
297 | } |
298 | |
299 | /// Return a character sequence that is (somewhat) unique to the TU suitable |
300 | /// for mangling anonymous namespaces. |
301 | StringRef getAnonymousNamespaceHash() const { |
302 | return AnonymousNamespaceHash; |
303 | } |
304 | |
305 | private: |
306 | void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out); |
307 | }; |
308 | |
309 | /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the |
310 | /// Microsoft Visual C++ ABI. |
311 | class MicrosoftCXXNameMangler { |
312 | MicrosoftMangleContextImpl &Context; |
313 | raw_ostream &Out; |
314 | |
315 | /// The "structor" is the top-level declaration being mangled, if |
316 | /// that's not a template specialization; otherwise it's the pattern |
317 | /// for that specialization. |
318 | const NamedDecl *Structor; |
319 | unsigned StructorType; |
320 | |
321 | typedef llvm::SmallVector<std::string, 10> BackRefVec; |
322 | BackRefVec NameBackReferences; |
323 | |
324 | typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap; |
325 | ArgBackRefMap FunArgBackReferences; |
326 | ArgBackRefMap TemplateArgBackReferences; |
327 | |
328 | typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap; |
329 | TemplateArgStringMap TemplateArgStrings; |
330 | llvm::BumpPtrAllocator TemplateArgStringStorageAlloc; |
331 | llvm::StringSaver TemplateArgStringStorage; |
332 | |
333 | typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet; |
334 | PassObjectSizeArgsSet PassObjectSizeArgs; |
335 | |
336 | ASTContext &getASTContext() const { return Context.getASTContext(); } |
337 | |
338 | const bool PointersAre64Bit; |
339 | |
340 | public: |
341 | enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result }; |
342 | enum class TplArgKind { ClassNTTP, StructuralValue }; |
343 | |
344 | MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_) |
345 | : Context(C), Out(Out_), Structor(nullptr), StructorType(-1), |
346 | TemplateArgStringStorage(TemplateArgStringStorageAlloc), |
347 | PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth( |
348 | AddrSpace: LangAS::Default) == 64) {} |
349 | |
350 | MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, |
351 | const CXXConstructorDecl *D, CXXCtorType Type) |
352 | : Context(C), Out(Out_), Structor(getStructor(ND: D)), StructorType(Type), |
353 | TemplateArgStringStorage(TemplateArgStringStorageAlloc), |
354 | PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth( |
355 | AddrSpace: LangAS::Default) == 64) {} |
356 | |
357 | MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, |
358 | const CXXDestructorDecl *D, CXXDtorType Type) |
359 | : Context(C), Out(Out_), Structor(getStructor(ND: D)), StructorType(Type), |
360 | TemplateArgStringStorage(TemplateArgStringStorageAlloc), |
361 | PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth( |
362 | AddrSpace: LangAS::Default) == 64) {} |
363 | |
364 | raw_ostream &getStream() const { return Out; } |
365 | |
366 | void mangle(GlobalDecl GD, StringRef Prefix = "?" ); |
367 | void mangleName(GlobalDecl GD); |
368 | void mangleFunctionEncoding(GlobalDecl GD, bool ShouldMangle); |
369 | void mangleVariableEncoding(const VarDecl *VD); |
370 | void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD, |
371 | const NonTypeTemplateParmDecl *PD, |
372 | QualType TemplateArgType, |
373 | StringRef Prefix = "$" ); |
374 | void mangleMemberDataPointerInClassNTTP(const CXXRecordDecl *, |
375 | const ValueDecl *); |
376 | void mangleMemberFunctionPointer(const CXXRecordDecl *RD, |
377 | const CXXMethodDecl *MD, |
378 | const NonTypeTemplateParmDecl *PD, |
379 | QualType TemplateArgType, |
380 | StringRef Prefix = "$" ); |
381 | void mangleFunctionPointer(const FunctionDecl *FD, |
382 | const NonTypeTemplateParmDecl *PD, |
383 | QualType TemplateArgType); |
384 | void mangleVarDecl(const VarDecl *VD, const NonTypeTemplateParmDecl *PD, |
385 | QualType TemplateArgType); |
386 | void mangleMemberFunctionPointerInClassNTTP(const CXXRecordDecl *RD, |
387 | const CXXMethodDecl *MD); |
388 | void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, |
389 | const MethodVFTableLocation &ML); |
390 | void mangleNumber(int64_t Number); |
391 | void mangleNumber(llvm::APSInt Number); |
392 | void mangleFloat(llvm::APFloat Number); |
393 | void mangleBits(llvm::APInt Number); |
394 | void mangleTagTypeKind(TagTypeKind TK); |
395 | void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName, |
396 | ArrayRef<StringRef> NestedNames = std::nullopt); |
397 | void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range); |
398 | void mangleType(QualType T, SourceRange Range, |
399 | QualifierMangleMode QMM = QMM_Mangle); |
400 | void mangleFunctionType(const FunctionType *T, |
401 | const FunctionDecl *D = nullptr, |
402 | bool ForceThisQuals = false, |
403 | bool MangleExceptionSpec = true); |
404 | void mangleSourceName(StringRef Name); |
405 | void mangleNestedName(GlobalDecl GD); |
406 | |
407 | private: |
408 | bool isStructorDecl(const NamedDecl *ND) const { |
409 | return ND == Structor || getStructor(ND) == Structor; |
410 | } |
411 | |
412 | bool is64BitPointer(Qualifiers Quals) const { |
413 | LangAS AddrSpace = Quals.getAddressSpace(); |
414 | return AddrSpace == LangAS::ptr64 || |
415 | (PointersAre64Bit && !(AddrSpace == LangAS::ptr32_sptr || |
416 | AddrSpace == LangAS::ptr32_uptr)); |
417 | } |
418 | |
419 | void mangleUnqualifiedName(GlobalDecl GD) { |
420 | mangleUnqualifiedName(GD, Name: cast<NamedDecl>(Val: GD.getDecl())->getDeclName()); |
421 | } |
422 | void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name); |
423 | void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc); |
424 | void mangleCXXDtorType(CXXDtorType T); |
425 | void mangleQualifiers(Qualifiers Quals, bool IsMember); |
426 | void mangleRefQualifier(RefQualifierKind RefQualifier); |
427 | void manglePointerCVQualifiers(Qualifiers Quals); |
428 | void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType); |
429 | |
430 | void mangleUnscopedTemplateName(GlobalDecl GD); |
431 | void |
432 | mangleTemplateInstantiationName(GlobalDecl GD, |
433 | const TemplateArgumentList &TemplateArgs); |
434 | void mangleObjCMethodName(const ObjCMethodDecl *MD); |
435 | |
436 | void mangleFunctionArgumentType(QualType T, SourceRange Range); |
437 | void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA); |
438 | |
439 | bool isArtificialTagType(QualType T) const; |
440 | |
441 | // Declare manglers for every type class. |
442 | #define ABSTRACT_TYPE(CLASS, PARENT) |
443 | #define NON_CANONICAL_TYPE(CLASS, PARENT) |
444 | #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \ |
445 | Qualifiers Quals, \ |
446 | SourceRange Range); |
447 | #include "clang/AST/TypeNodes.inc" |
448 | #undef ABSTRACT_TYPE |
449 | #undef NON_CANONICAL_TYPE |
450 | #undef TYPE |
451 | |
452 | void mangleType(const TagDecl *TD); |
453 | void mangleDecayedArrayType(const ArrayType *T); |
454 | void mangleArrayType(const ArrayType *T); |
455 | void mangleFunctionClass(const FunctionDecl *FD); |
456 | void mangleCallingConvention(CallingConv CC, SourceRange Range); |
457 | void mangleCallingConvention(const FunctionType *T, SourceRange Range); |
458 | void mangleIntegerLiteral(const llvm::APSInt &Number, |
459 | const NonTypeTemplateParmDecl *PD = nullptr, |
460 | QualType TemplateArgType = QualType()); |
461 | void mangleExpression(const Expr *E, const NonTypeTemplateParmDecl *PD); |
462 | void mangleThrowSpecification(const FunctionProtoType *T); |
463 | |
464 | void mangleTemplateArgs(const TemplateDecl *TD, |
465 | const TemplateArgumentList &TemplateArgs); |
466 | void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA, |
467 | const NamedDecl *Parm); |
468 | void mangleTemplateArgValue(QualType T, const APValue &V, TplArgKind, |
469 | bool WithScalarType = false); |
470 | |
471 | void mangleObjCProtocol(const ObjCProtocolDecl *PD); |
472 | void mangleObjCLifetime(const QualType T, Qualifiers Quals, |
473 | SourceRange Range); |
474 | void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals, |
475 | SourceRange Range); |
476 | }; |
477 | } |
478 | |
479 | MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context, |
480 | DiagnosticsEngine &Diags, |
481 | bool IsAux) |
482 | : MicrosoftMangleContext(Context, Diags, IsAux) { |
483 | // To mangle anonymous namespaces, hash the path to the main source file. The |
484 | // path should be whatever (probably relative) path was passed on the command |
485 | // line. The goal is for the compiler to produce the same output regardless of |
486 | // working directory, so use the uncanonicalized relative path. |
487 | // |
488 | // It's important to make the mangled names unique because, when CodeView |
489 | // debug info is in use, the debugger uses mangled type names to distinguish |
490 | // between otherwise identically named types in anonymous namespaces. |
491 | // |
492 | // These symbols are always internal, so there is no need for the hash to |
493 | // match what MSVC produces. For the same reason, clang is free to change the |
494 | // hash at any time without breaking compatibility with old versions of clang. |
495 | // The generated names are intended to look similar to what MSVC generates, |
496 | // which are something like "?A0x01234567@". |
497 | SourceManager &SM = Context.getSourceManager(); |
498 | if (OptionalFileEntryRef FE = SM.getFileEntryRefForID(FID: SM.getMainFileID())) { |
499 | // Truncate the hash so we get 8 characters of hexadecimal. |
500 | uint32_t TruncatedHash = uint32_t(xxh3_64bits(data: FE->getName())); |
501 | AnonymousNamespaceHash = llvm::utohexstr(X: TruncatedHash); |
502 | } else { |
503 | // If we don't have a path to the main file, we'll just use 0. |
504 | AnonymousNamespaceHash = "0" ; |
505 | } |
506 | } |
507 | |
508 | bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { |
509 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) { |
510 | LanguageLinkage L = FD->getLanguageLinkage(); |
511 | // Overloadable functions need mangling. |
512 | if (FD->hasAttr<OverloadableAttr>()) |
513 | return true; |
514 | |
515 | // The ABI expects that we would never mangle "typical" user-defined entry |
516 | // points regardless of visibility or freestanding-ness. |
517 | // |
518 | // N.B. This is distinct from asking about "main". "main" has a lot of |
519 | // special rules associated with it in the standard while these |
520 | // user-defined entry points are outside of the purview of the standard. |
521 | // For example, there can be only one definition for "main" in a standards |
522 | // compliant program; however nothing forbids the existence of wmain and |
523 | // WinMain in the same translation unit. |
524 | if (FD->isMSVCRTEntryPoint()) |
525 | return false; |
526 | |
527 | // C++ functions and those whose names are not a simple identifier need |
528 | // mangling. |
529 | if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) |
530 | return true; |
531 | |
532 | // C functions are not mangled. |
533 | if (L == CLanguageLinkage) |
534 | return false; |
535 | } |
536 | |
537 | // Otherwise, no mangling is done outside C++ mode. |
538 | if (!getASTContext().getLangOpts().CPlusPlus) |
539 | return false; |
540 | |
541 | const VarDecl *VD = dyn_cast<VarDecl>(Val: D); |
542 | if (VD && !isa<DecompositionDecl>(Val: D)) { |
543 | // C variables are not mangled. |
544 | if (VD->isExternC()) |
545 | return false; |
546 | |
547 | // Variables at global scope with internal linkage are not mangled. |
548 | const DeclContext *DC = getEffectiveDeclContext(D); |
549 | // Check for extern variable declared locally. |
550 | if (DC->isFunctionOrMethod() && D->hasLinkage()) |
551 | while (!DC->isNamespace() && !DC->isTranslationUnit()) |
552 | DC = getEffectiveParentContext(DC); |
553 | |
554 | if (DC->isTranslationUnit() && D->getFormalLinkage() == Linkage::Internal && |
555 | !isa<VarTemplateSpecializationDecl>(Val: D) && D->getIdentifier() != nullptr) |
556 | return false; |
557 | } |
558 | |
559 | return true; |
560 | } |
561 | |
562 | bool |
563 | MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) { |
564 | return true; |
565 | } |
566 | |
567 | void MicrosoftCXXNameMangler::mangle(GlobalDecl GD, StringRef Prefix) { |
568 | const NamedDecl *D = cast<NamedDecl>(Val: GD.getDecl()); |
569 | // MSVC doesn't mangle C++ names the same way it mangles extern "C" names. |
570 | // Therefore it's really important that we don't decorate the |
571 | // name with leading underscores or leading/trailing at signs. So, by |
572 | // default, we emit an asm marker at the start so we get the name right. |
573 | // Callers can override this with a custom prefix. |
574 | |
575 | // <mangled-name> ::= ? <name> <type-encoding> |
576 | Out << Prefix; |
577 | mangleName(GD); |
578 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) |
579 | mangleFunctionEncoding(GD, ShouldMangle: Context.shouldMangleDeclName(D: FD)); |
580 | else if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) |
581 | mangleVariableEncoding(VD); |
582 | else if (isa<MSGuidDecl>(Val: D)) |
583 | // MSVC appears to mangle GUIDs as if they were variables of type |
584 | // 'const struct __s_GUID'. |
585 | Out << "3U__s_GUID@@B" ; |
586 | else if (isa<TemplateParamObjectDecl>(Val: D)) { |
587 | // Template parameter objects don't get a <type-encoding>; their type is |
588 | // specified as part of their value. |
589 | } else |
590 | llvm_unreachable("Tried to mangle unexpected NamedDecl!" ); |
591 | } |
592 | |
593 | void MicrosoftCXXNameMangler::mangleFunctionEncoding(GlobalDecl GD, |
594 | bool ShouldMangle) { |
595 | const FunctionDecl *FD = cast<FunctionDecl>(Val: GD.getDecl()); |
596 | // <type-encoding> ::= <function-class> <function-type> |
597 | |
598 | // Since MSVC operates on the type as written and not the canonical type, it |
599 | // actually matters which decl we have here. MSVC appears to choose the |
600 | // first, since it is most likely to be the declaration in a header file. |
601 | FD = FD->getFirstDecl(); |
602 | |
603 | // We should never ever see a FunctionNoProtoType at this point. |
604 | // We don't even know how to mangle their types anyway :). |
605 | const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>(); |
606 | |
607 | // extern "C" functions can hold entities that must be mangled. |
608 | // As it stands, these functions still need to get expressed in the full |
609 | // external name. They have their class and type omitted, replaced with '9'. |
610 | if (ShouldMangle) { |
611 | // We would like to mangle all extern "C" functions using this additional |
612 | // component but this would break compatibility with MSVC's behavior. |
613 | // Instead, do this when we know that compatibility isn't important (in |
614 | // other words, when it is an overloaded extern "C" function). |
615 | if (FD->isExternC() && FD->hasAttr<OverloadableAttr>()) |
616 | Out << "$$J0" ; |
617 | |
618 | mangleFunctionClass(FD); |
619 | |
620 | mangleFunctionType(T: FT, D: FD, ForceThisQuals: false, MangleExceptionSpec: false); |
621 | } else { |
622 | Out << '9'; |
623 | } |
624 | } |
625 | |
626 | void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) { |
627 | // <type-encoding> ::= <storage-class> <variable-type> |
628 | // <storage-class> ::= 0 # private static member |
629 | // ::= 1 # protected static member |
630 | // ::= 2 # public static member |
631 | // ::= 3 # global |
632 | // ::= 4 # static local |
633 | |
634 | // The first character in the encoding (after the name) is the storage class. |
635 | if (VD->isStaticDataMember()) { |
636 | // If it's a static member, it also encodes the access level. |
637 | switch (VD->getAccess()) { |
638 | default: |
639 | case AS_private: Out << '0'; break; |
640 | case AS_protected: Out << '1'; break; |
641 | case AS_public: Out << '2'; break; |
642 | } |
643 | } |
644 | else if (!VD->isStaticLocal()) |
645 | Out << '3'; |
646 | else |
647 | Out << '4'; |
648 | // Now mangle the type. |
649 | // <variable-type> ::= <type> <cvr-qualifiers> |
650 | // ::= <type> <pointee-cvr-qualifiers> # pointers, references |
651 | // Pointers and references are odd. The type of 'int * const foo;' gets |
652 | // mangled as 'QAHA' instead of 'PAHB', for example. |
653 | SourceRange SR = VD->getSourceRange(); |
654 | QualType Ty = VD->getType(); |
655 | if (Ty->isPointerType() || Ty->isReferenceType() || |
656 | Ty->isMemberPointerType()) { |
657 | mangleType(T: Ty, Range: SR, QMM: QMM_Drop); |
658 | manglePointerExtQualifiers( |
659 | Quals: Ty.getDesugaredType(Context: getASTContext()).getLocalQualifiers(), PointeeType: QualType()); |
660 | if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) { |
661 | mangleQualifiers(Quals: MPT->getPointeeType().getQualifiers(), IsMember: true); |
662 | // Member pointers are suffixed with a back reference to the member |
663 | // pointer's class name. |
664 | mangleName(GD: MPT->getClass()->getAsCXXRecordDecl()); |
665 | } else |
666 | mangleQualifiers(Quals: Ty->getPointeeType().getQualifiers(), IsMember: false); |
667 | } else if (const ArrayType *AT = getASTContext().getAsArrayType(T: Ty)) { |
668 | // Global arrays are funny, too. |
669 | mangleDecayedArrayType(T: AT); |
670 | if (AT->getElementType()->isArrayType()) |
671 | Out << 'A'; |
672 | else |
673 | mangleQualifiers(Quals: Ty.getQualifiers(), IsMember: false); |
674 | } else { |
675 | mangleType(T: Ty, Range: SR, QMM: QMM_Drop); |
676 | mangleQualifiers(Quals: Ty.getQualifiers(), IsMember: false); |
677 | } |
678 | } |
679 | |
680 | void MicrosoftCXXNameMangler::mangleMemberDataPointer( |
681 | const CXXRecordDecl *RD, const ValueDecl *VD, |
682 | const NonTypeTemplateParmDecl *PD, QualType TemplateArgType, |
683 | StringRef Prefix) { |
684 | // <member-data-pointer> ::= <integer-literal> |
685 | // ::= $F <number> <number> |
686 | // ::= $G <number> <number> <number> |
687 | // |
688 | // <auto-nttp> ::= $ M <type> <integer-literal> |
689 | // <auto-nttp> ::= $ M <type> F <name> <number> |
690 | // <auto-nttp> ::= $ M <type> G <name> <number> <number> |
691 | |
692 | int64_t FieldOffset; |
693 | int64_t VBTableOffset; |
694 | MSInheritanceModel IM = RD->getMSInheritanceModel(); |
695 | if (VD) { |
696 | FieldOffset = getASTContext().getFieldOffset(FD: VD); |
697 | assert(FieldOffset % getASTContext().getCharWidth() == 0 && |
698 | "cannot take address of bitfield" ); |
699 | FieldOffset /= getASTContext().getCharWidth(); |
700 | |
701 | VBTableOffset = 0; |
702 | |
703 | if (IM == MSInheritanceModel::Virtual) |
704 | FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); |
705 | } else { |
706 | FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1; |
707 | |
708 | VBTableOffset = -1; |
709 | } |
710 | |
711 | char Code = '\0'; |
712 | switch (IM) { |
713 | case MSInheritanceModel::Single: Code = '0'; break; |
714 | case MSInheritanceModel::Multiple: Code = '0'; break; |
715 | case MSInheritanceModel::Virtual: Code = 'F'; break; |
716 | case MSInheritanceModel::Unspecified: Code = 'G'; break; |
717 | } |
718 | |
719 | Out << Prefix; |
720 | |
721 | if (VD && |
722 | getASTContext().getLangOpts().isCompatibleWithMSVC( |
723 | MajorVersion: LangOptions::MSVC2019) && |
724 | PD && PD->getType()->getTypeClass() == Type::Auto && |
725 | !TemplateArgType.isNull()) { |
726 | Out << "M" ; |
727 | mangleType(T: TemplateArgType, Range: SourceRange(), QMM: QMM_Drop); |
728 | } |
729 | |
730 | Out << Code; |
731 | |
732 | mangleNumber(Number: FieldOffset); |
733 | |
734 | // The C++ standard doesn't allow base-to-derived member pointer conversions |
735 | // in template parameter contexts, so the vbptr offset of data member pointers |
736 | // is always zero. |
737 | if (inheritanceModelHasVBPtrOffsetField(Inheritance: IM)) |
738 | mangleNumber(Number: 0); |
739 | if (inheritanceModelHasVBTableOffsetField(Inheritance: IM)) |
740 | mangleNumber(Number: VBTableOffset); |
741 | } |
742 | |
743 | void MicrosoftCXXNameMangler::mangleMemberDataPointerInClassNTTP( |
744 | const CXXRecordDecl *RD, const ValueDecl *VD) { |
745 | MSInheritanceModel IM = RD->getMSInheritanceModel(); |
746 | // <nttp-class-member-data-pointer> ::= <member-data-pointer> |
747 | // ::= N |
748 | // ::= 8 <postfix> @ <unqualified-name> @ |
749 | |
750 | if (IM != MSInheritanceModel::Single && IM != MSInheritanceModel::Multiple) |
751 | return mangleMemberDataPointer(RD, VD, PD: nullptr, TemplateArgType: QualType(), Prefix: "" ); |
752 | |
753 | if (!VD) { |
754 | Out << 'N'; |
755 | return; |
756 | } |
757 | |
758 | Out << '8'; |
759 | mangleNestedName(GD: VD); |
760 | Out << '@'; |
761 | mangleUnqualifiedName(GD: VD); |
762 | Out << '@'; |
763 | } |
764 | |
765 | void MicrosoftCXXNameMangler::mangleMemberFunctionPointer( |
766 | const CXXRecordDecl *RD, const CXXMethodDecl *MD, |
767 | const NonTypeTemplateParmDecl *PD, QualType TemplateArgType, |
768 | StringRef Prefix) { |
769 | // <member-function-pointer> ::= $1? <name> |
770 | // ::= $H? <name> <number> |
771 | // ::= $I? <name> <number> <number> |
772 | // ::= $J? <name> <number> <number> <number> |
773 | // |
774 | // <auto-nttp> ::= $ M <type> 1? <name> |
775 | // <auto-nttp> ::= $ M <type> H? <name> <number> |
776 | // <auto-nttp> ::= $ M <type> I? <name> <number> <number> |
777 | // <auto-nttp> ::= $ M <type> J? <name> <number> <number> <number> |
778 | |
779 | MSInheritanceModel IM = RD->getMSInheritanceModel(); |
780 | |
781 | char Code = '\0'; |
782 | switch (IM) { |
783 | case MSInheritanceModel::Single: Code = '1'; break; |
784 | case MSInheritanceModel::Multiple: Code = 'H'; break; |
785 | case MSInheritanceModel::Virtual: Code = 'I'; break; |
786 | case MSInheritanceModel::Unspecified: Code = 'J'; break; |
787 | } |
788 | |
789 | // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr |
790 | // thunk. |
791 | uint64_t NVOffset = 0; |
792 | uint64_t VBTableOffset = 0; |
793 | uint64_t VBPtrOffset = 0; |
794 | if (MD) { |
795 | Out << Prefix; |
796 | |
797 | if (getASTContext().getLangOpts().isCompatibleWithMSVC( |
798 | MajorVersion: LangOptions::MSVC2019) && |
799 | PD && PD->getType()->getTypeClass() == Type::Auto && |
800 | !TemplateArgType.isNull()) { |
801 | Out << "M" ; |
802 | mangleType(T: TemplateArgType, Range: SourceRange(), QMM: QMM_Drop); |
803 | } |
804 | |
805 | Out << Code << '?'; |
806 | if (MD->isVirtual()) { |
807 | MicrosoftVTableContext *VTContext = |
808 | cast<MicrosoftVTableContext>(Val: getASTContext().getVTableContext()); |
809 | MethodVFTableLocation ML = |
810 | VTContext->getMethodVFTableLocation(GD: GlobalDecl(MD)); |
811 | mangleVirtualMemPtrThunk(MD, ML); |
812 | NVOffset = ML.VFPtrOffset.getQuantity(); |
813 | VBTableOffset = ML.VBTableIndex * 4; |
814 | if (ML.VBase) { |
815 | const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(D: RD); |
816 | VBPtrOffset = Layout.getVBPtrOffset().getQuantity(); |
817 | } |
818 | } else { |
819 | mangleName(GD: MD); |
820 | mangleFunctionEncoding(GD: MD, /*ShouldMangle=*/true); |
821 | } |
822 | |
823 | if (VBTableOffset == 0 && IM == MSInheritanceModel::Virtual) |
824 | NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); |
825 | } else { |
826 | // Null single inheritance member functions are encoded as a simple nullptr. |
827 | if (IM == MSInheritanceModel::Single) { |
828 | Out << Prefix << "0A@" ; |
829 | return; |
830 | } |
831 | if (IM == MSInheritanceModel::Unspecified) |
832 | VBTableOffset = -1; |
833 | Out << Prefix << Code; |
834 | } |
835 | |
836 | if (inheritanceModelHasNVOffsetField(/*IsMemberFunction=*/true, Inheritance: IM)) |
837 | mangleNumber(Number: static_cast<uint32_t>(NVOffset)); |
838 | if (inheritanceModelHasVBPtrOffsetField(Inheritance: IM)) |
839 | mangleNumber(Number: VBPtrOffset); |
840 | if (inheritanceModelHasVBTableOffsetField(Inheritance: IM)) |
841 | mangleNumber(Number: VBTableOffset); |
842 | } |
843 | |
844 | void MicrosoftCXXNameMangler::mangleFunctionPointer( |
845 | const FunctionDecl *FD, const NonTypeTemplateParmDecl *PD, |
846 | QualType TemplateArgType) { |
847 | // <func-ptr> ::= $1? <mangled-name> |
848 | // <func-ptr> ::= <auto-nttp> |
849 | // |
850 | // <auto-nttp> ::= $ M <type> 1? <mangled-name> |
851 | Out << '$'; |
852 | |
853 | if (getASTContext().getLangOpts().isCompatibleWithMSVC( |
854 | MajorVersion: LangOptions::MSVC2019) && |
855 | PD && PD->getType()->getTypeClass() == Type::Auto && |
856 | !TemplateArgType.isNull()) { |
857 | Out << "M" ; |
858 | mangleType(T: TemplateArgType, Range: SourceRange(), QMM: QMM_Drop); |
859 | } |
860 | |
861 | Out << "1?" ; |
862 | mangleName(GD: FD); |
863 | mangleFunctionEncoding(GD: FD, /*ShouldMangle=*/true); |
864 | } |
865 | |
866 | void MicrosoftCXXNameMangler::mangleVarDecl(const VarDecl *VD, |
867 | const NonTypeTemplateParmDecl *PD, |
868 | QualType TemplateArgType) { |
869 | // <var-ptr> ::= $1? <mangled-name> |
870 | // <var-ptr> ::= <auto-nttp> |
871 | // |
872 | // <auto-nttp> ::= $ M <type> 1? <mangled-name> |
873 | Out << '$'; |
874 | |
875 | if (getASTContext().getLangOpts().isCompatibleWithMSVC( |
876 | MajorVersion: LangOptions::MSVC2019) && |
877 | PD && PD->getType()->getTypeClass() == Type::Auto && |
878 | !TemplateArgType.isNull()) { |
879 | Out << "M" ; |
880 | mangleType(T: TemplateArgType, Range: SourceRange(), QMM: QMM_Drop); |
881 | } |
882 | |
883 | Out << "1?" ; |
884 | mangleName(GD: VD); |
885 | mangleVariableEncoding(VD); |
886 | } |
887 | |
888 | void MicrosoftCXXNameMangler::mangleMemberFunctionPointerInClassNTTP( |
889 | const CXXRecordDecl *RD, const CXXMethodDecl *MD) { |
890 | // <nttp-class-member-function-pointer> ::= <member-function-pointer> |
891 | // ::= N |
892 | // ::= E? <virtual-mem-ptr-thunk> |
893 | // ::= E? <mangled-name> <type-encoding> |
894 | |
895 | if (!MD) { |
896 | if (RD->getMSInheritanceModel() != MSInheritanceModel::Single) |
897 | return mangleMemberFunctionPointer(RD, MD, PD: nullptr, TemplateArgType: QualType(), Prefix: "" ); |
898 | |
899 | Out << 'N'; |
900 | return; |
901 | } |
902 | |
903 | Out << "E?" ; |
904 | if (MD->isVirtual()) { |
905 | MicrosoftVTableContext *VTContext = |
906 | cast<MicrosoftVTableContext>(Val: getASTContext().getVTableContext()); |
907 | MethodVFTableLocation ML = |
908 | VTContext->getMethodVFTableLocation(GD: GlobalDecl(MD)); |
909 | mangleVirtualMemPtrThunk(MD, ML); |
910 | } else { |
911 | mangleName(GD: MD); |
912 | mangleFunctionEncoding(GD: MD, /*ShouldMangle=*/true); |
913 | } |
914 | } |
915 | |
916 | void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk( |
917 | const CXXMethodDecl *MD, const MethodVFTableLocation &ML) { |
918 | // Get the vftable offset. |
919 | CharUnits PointerWidth = getASTContext().toCharUnitsFromBits( |
920 | BitSize: getASTContext().getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default)); |
921 | uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity(); |
922 | |
923 | Out << "?_9" ; |
924 | mangleName(GD: MD->getParent()); |
925 | Out << "$B" ; |
926 | mangleNumber(Number: OffsetInVFTable); |
927 | Out << 'A'; |
928 | mangleCallingConvention(T: MD->getType()->castAs<FunctionProtoType>(), |
929 | Range: MD->getSourceRange()); |
930 | } |
931 | |
932 | void MicrosoftCXXNameMangler::mangleName(GlobalDecl GD) { |
933 | // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ |
934 | |
935 | // Always start with the unqualified name. |
936 | mangleUnqualifiedName(GD); |
937 | |
938 | mangleNestedName(GD); |
939 | |
940 | // Terminate the whole name with an '@'. |
941 | Out << '@'; |
942 | } |
943 | |
944 | void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) { |
945 | mangleNumber(Number: llvm::APSInt(llvm::APInt(64, Number), /*IsUnsigned*/false)); |
946 | } |
947 | |
948 | void MicrosoftCXXNameMangler::mangleNumber(llvm::APSInt Number) { |
949 | // MSVC never mangles any integer wider than 64 bits. In general it appears |
950 | // to convert every integer to signed 64 bit before mangling (including |
951 | // unsigned 64 bit values). Do the same, but preserve bits beyond the bottom |
952 | // 64. |
953 | unsigned Width = std::max(a: Number.getBitWidth(), b: 64U); |
954 | llvm::APInt Value = Number.extend(width: Width); |
955 | |
956 | // <non-negative integer> ::= A@ # when Number == 0 |
957 | // ::= <decimal digit> # when 1 <= Number <= 10 |
958 | // ::= <hex digit>+ @ # when Number >= 10 |
959 | // |
960 | // <number> ::= [?] <non-negative integer> |
961 | |
962 | if (Value.isNegative()) { |
963 | Value = -Value; |
964 | Out << '?'; |
965 | } |
966 | mangleBits(Number: Value); |
967 | } |
968 | |
969 | void MicrosoftCXXNameMangler::mangleFloat(llvm::APFloat Number) { |
970 | using llvm::APFloat; |
971 | |
972 | switch (APFloat::SemanticsToEnum(Sem: Number.getSemantics())) { |
973 | case APFloat::S_IEEEsingle: Out << 'A'; break; |
974 | case APFloat::S_IEEEdouble: Out << 'B'; break; |
975 | |
976 | // The following are all Clang extensions. We try to pick manglings that are |
977 | // unlikely to conflict with MSVC's scheme. |
978 | case APFloat::S_IEEEhalf: Out << 'V'; break; |
979 | case APFloat::S_BFloat: Out << 'W'; break; |
980 | case APFloat::S_x87DoubleExtended: Out << 'X'; break; |
981 | case APFloat::S_IEEEquad: Out << 'Y'; break; |
982 | case APFloat::S_PPCDoubleDouble: Out << 'Z'; break; |
983 | case APFloat::S_Float8E5M2: |
984 | case APFloat::S_Float8E4M3: |
985 | case APFloat::S_Float8E4M3FN: |
986 | case APFloat::S_Float8E5M2FNUZ: |
987 | case APFloat::S_Float8E4M3FNUZ: |
988 | case APFloat::S_Float8E4M3B11FNUZ: |
989 | case APFloat::S_FloatTF32: |
990 | case APFloat::S_Float6E3M2FN: |
991 | case APFloat::S_Float6E2M3FN: |
992 | case APFloat::S_Float4E2M1FN: |
993 | llvm_unreachable("Tried to mangle unexpected APFloat semantics" ); |
994 | } |
995 | |
996 | mangleBits(Number: Number.bitcastToAPInt()); |
997 | } |
998 | |
999 | void MicrosoftCXXNameMangler::mangleBits(llvm::APInt Value) { |
1000 | if (Value == 0) |
1001 | Out << "A@" ; |
1002 | else if (Value.uge(RHS: 1) && Value.ule(RHS: 10)) |
1003 | Out << (Value - 1); |
1004 | else { |
1005 | // Numbers that are not encoded as decimal digits are represented as nibbles |
1006 | // in the range of ASCII characters 'A' to 'P'. |
1007 | // The number 0x123450 would be encoded as 'BCDEFA' |
1008 | llvm::SmallString<32> EncodedNumberBuffer; |
1009 | for (; Value != 0; Value.lshrInPlace(ShiftAmt: 4)) |
1010 | EncodedNumberBuffer.push_back(Elt: 'A' + (Value & 0xf).getZExtValue()); |
1011 | std::reverse(first: EncodedNumberBuffer.begin(), last: EncodedNumberBuffer.end()); |
1012 | Out.write(Ptr: EncodedNumberBuffer.data(), Size: EncodedNumberBuffer.size()); |
1013 | Out << '@'; |
1014 | } |
1015 | } |
1016 | |
1017 | static GlobalDecl isTemplate(GlobalDecl GD, |
1018 | const TemplateArgumentList *&TemplateArgs) { |
1019 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
1020 | // Check if we have a function template. |
1021 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: ND)) { |
1022 | if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { |
1023 | TemplateArgs = FD->getTemplateSpecializationArgs(); |
1024 | return GD.getWithDecl(D: TD); |
1025 | } |
1026 | } |
1027 | |
1028 | // Check if we have a class template. |
1029 | if (const ClassTemplateSpecializationDecl *Spec = |
1030 | dyn_cast<ClassTemplateSpecializationDecl>(Val: ND)) { |
1031 | TemplateArgs = &Spec->getTemplateArgs(); |
1032 | return GD.getWithDecl(D: Spec->getSpecializedTemplate()); |
1033 | } |
1034 | |
1035 | // Check if we have a variable template. |
1036 | if (const VarTemplateSpecializationDecl *Spec = |
1037 | dyn_cast<VarTemplateSpecializationDecl>(Val: ND)) { |
1038 | TemplateArgs = &Spec->getTemplateArgs(); |
1039 | return GD.getWithDecl(D: Spec->getSpecializedTemplate()); |
1040 | } |
1041 | |
1042 | return GlobalDecl(); |
1043 | } |
1044 | |
1045 | void MicrosoftCXXNameMangler::mangleUnqualifiedName(GlobalDecl GD, |
1046 | DeclarationName Name) { |
1047 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
1048 | // <unqualified-name> ::= <operator-name> |
1049 | // ::= <ctor-dtor-name> |
1050 | // ::= <source-name> |
1051 | // ::= <template-name> |
1052 | |
1053 | // Check if we have a template. |
1054 | const TemplateArgumentList *TemplateArgs = nullptr; |
1055 | if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { |
1056 | // Function templates aren't considered for name back referencing. This |
1057 | // makes sense since function templates aren't likely to occur multiple |
1058 | // times in a symbol. |
1059 | if (isa<FunctionTemplateDecl>(Val: TD.getDecl())) { |
1060 | mangleTemplateInstantiationName(GD: TD, TemplateArgs: *TemplateArgs); |
1061 | Out << '@'; |
1062 | return; |
1063 | } |
1064 | |
1065 | // Here comes the tricky thing: if we need to mangle something like |
1066 | // void foo(A::X<Y>, B::X<Y>), |
1067 | // the X<Y> part is aliased. However, if you need to mangle |
1068 | // void foo(A::X<A::Y>, A::X<B::Y>), |
1069 | // the A::X<> part is not aliased. |
1070 | // That is, from the mangler's perspective we have a structure like this: |
1071 | // namespace[s] -> type[ -> template-parameters] |
1072 | // but from the Clang perspective we have |
1073 | // type [ -> template-parameters] |
1074 | // \-> namespace[s] |
1075 | // What we do is we create a new mangler, mangle the same type (without |
1076 | // a namespace suffix) to a string using the extra mangler and then use |
1077 | // the mangled type name as a key to check the mangling of different types |
1078 | // for aliasing. |
1079 | |
1080 | // It's important to key cache reads off ND, not TD -- the same TD can |
1081 | // be used with different TemplateArgs, but ND uniquely identifies |
1082 | // TD / TemplateArg pairs. |
1083 | ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(Val: ND); |
1084 | if (Found == TemplateArgBackReferences.end()) { |
1085 | |
1086 | TemplateArgStringMap::iterator Found = TemplateArgStrings.find(Val: ND); |
1087 | if (Found == TemplateArgStrings.end()) { |
1088 | // Mangle full template name into temporary buffer. |
1089 | llvm::SmallString<64> TemplateMangling; |
1090 | llvm::raw_svector_ostream Stream(TemplateMangling); |
1091 | MicrosoftCXXNameMangler (Context, Stream); |
1092 | Extra.mangleTemplateInstantiationName(GD: TD, TemplateArgs: *TemplateArgs); |
1093 | |
1094 | // Use the string backref vector to possibly get a back reference. |
1095 | mangleSourceName(Name: TemplateMangling); |
1096 | |
1097 | // Memoize back reference for this type if one exist, else memoize |
1098 | // the mangling itself. |
1099 | BackRefVec::iterator StringFound = |
1100 | llvm::find(Range&: NameBackReferences, Val: TemplateMangling); |
1101 | if (StringFound != NameBackReferences.end()) { |
1102 | TemplateArgBackReferences[ND] = |
1103 | StringFound - NameBackReferences.begin(); |
1104 | } else { |
1105 | TemplateArgStrings[ND] = |
1106 | TemplateArgStringStorage.save(S: TemplateMangling.str()); |
1107 | } |
1108 | } else { |
1109 | Out << Found->second << '@'; // Outputs a StringRef. |
1110 | } |
1111 | } else { |
1112 | Out << Found->second; // Outputs a back reference (an int). |
1113 | } |
1114 | return; |
1115 | } |
1116 | |
1117 | switch (Name.getNameKind()) { |
1118 | case DeclarationName::Identifier: { |
1119 | if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { |
1120 | bool IsDeviceStub = |
1121 | ND && |
1122 | ((isa<FunctionDecl>(Val: ND) && ND->hasAttr<CUDAGlobalAttr>()) || |
1123 | (isa<FunctionTemplateDecl>(Val: ND) && |
1124 | cast<FunctionTemplateDecl>(Val: ND) |
1125 | ->getTemplatedDecl() |
1126 | ->hasAttr<CUDAGlobalAttr>())) && |
1127 | GD.getKernelReferenceKind() == KernelReferenceKind::Stub; |
1128 | if (IsDeviceStub) |
1129 | mangleSourceName( |
1130 | Name: (llvm::Twine("__device_stub__" ) + II->getName()).str()); |
1131 | else |
1132 | mangleSourceName(Name: II->getName()); |
1133 | break; |
1134 | } |
1135 | |
1136 | // Otherwise, an anonymous entity. We must have a declaration. |
1137 | assert(ND && "mangling empty name without declaration" ); |
1138 | |
1139 | if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Val: ND)) { |
1140 | if (NS->isAnonymousNamespace()) { |
1141 | Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@'; |
1142 | break; |
1143 | } |
1144 | } |
1145 | |
1146 | if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(Val: ND)) { |
1147 | // Decomposition declarations are considered anonymous, and get |
1148 | // numbered with a $S prefix. |
1149 | llvm::SmallString<64> Name("$S" ); |
1150 | // Get a unique id for the anonymous struct. |
1151 | Name += llvm::utostr(X: Context.getAnonymousStructId(D: DD) + 1); |
1152 | mangleSourceName(Name); |
1153 | break; |
1154 | } |
1155 | |
1156 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: ND)) { |
1157 | // We must have an anonymous union or struct declaration. |
1158 | const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl(); |
1159 | assert(RD && "expected variable decl to have a record type" ); |
1160 | // Anonymous types with no tag or typedef get the name of their |
1161 | // declarator mangled in. If they have no declarator, number them with |
1162 | // a $S prefix. |
1163 | llvm::SmallString<64> Name("$S" ); |
1164 | // Get a unique id for the anonymous struct. |
1165 | Name += llvm::utostr(X: Context.getAnonymousStructId(D: RD) + 1); |
1166 | mangleSourceName(Name: Name.str()); |
1167 | break; |
1168 | } |
1169 | |
1170 | if (const MSGuidDecl *GD = dyn_cast<MSGuidDecl>(Val: ND)) { |
1171 | // Mangle a GUID object as if it were a variable with the corresponding |
1172 | // mangled name. |
1173 | SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab" )> GUID; |
1174 | llvm::raw_svector_ostream GUIDOS(GUID); |
1175 | Context.mangleMSGuidDecl(GD, GUIDOS); |
1176 | mangleSourceName(Name: GUID); |
1177 | break; |
1178 | } |
1179 | |
1180 | if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(Val: ND)) { |
1181 | Out << "?__N" ; |
1182 | mangleTemplateArgValue(T: TPO->getType().getUnqualifiedType(), |
1183 | V: TPO->getValue(), TplArgKind::ClassNTTP); |
1184 | break; |
1185 | } |
1186 | |
1187 | // We must have an anonymous struct. |
1188 | const TagDecl *TD = cast<TagDecl>(Val: ND); |
1189 | if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { |
1190 | assert(TD->getDeclContext() == D->getDeclContext() && |
1191 | "Typedef should not be in another decl context!" ); |
1192 | assert(D->getDeclName().getAsIdentifierInfo() && |
1193 | "Typedef was not named!" ); |
1194 | mangleSourceName(Name: D->getDeclName().getAsIdentifierInfo()->getName()); |
1195 | break; |
1196 | } |
1197 | |
1198 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: TD)) { |
1199 | if (Record->isLambda()) { |
1200 | llvm::SmallString<10> Name("<lambda_" ); |
1201 | |
1202 | Decl *LambdaContextDecl = Record->getLambdaContextDecl(); |
1203 | unsigned LambdaManglingNumber = Record->getLambdaManglingNumber(); |
1204 | unsigned LambdaId; |
1205 | const ParmVarDecl *Parm = |
1206 | dyn_cast_or_null<ParmVarDecl>(Val: LambdaContextDecl); |
1207 | const FunctionDecl *Func = |
1208 | Parm ? dyn_cast<FunctionDecl>(Val: Parm->getDeclContext()) : nullptr; |
1209 | |
1210 | if (Func) { |
1211 | unsigned DefaultArgNo = |
1212 | Func->getNumParams() - Parm->getFunctionScopeIndex(); |
1213 | Name += llvm::utostr(X: DefaultArgNo); |
1214 | Name += "_" ; |
1215 | } |
1216 | |
1217 | if (LambdaManglingNumber) |
1218 | LambdaId = LambdaManglingNumber; |
1219 | else |
1220 | LambdaId = Context.getLambdaId(RD: Record); |
1221 | |
1222 | Name += llvm::utostr(X: LambdaId); |
1223 | Name += ">" ; |
1224 | |
1225 | mangleSourceName(Name); |
1226 | |
1227 | // If the context is a variable or a class member and not a parameter, |
1228 | // it is encoded in a qualified name. |
1229 | if (LambdaManglingNumber && LambdaContextDecl) { |
1230 | if ((isa<VarDecl>(Val: LambdaContextDecl) || |
1231 | isa<FieldDecl>(Val: LambdaContextDecl)) && |
1232 | !isa<ParmVarDecl>(Val: LambdaContextDecl)) { |
1233 | mangleUnqualifiedName(GD: cast<NamedDecl>(Val: LambdaContextDecl)); |
1234 | } |
1235 | } |
1236 | break; |
1237 | } |
1238 | } |
1239 | |
1240 | llvm::SmallString<64> Name; |
1241 | if (DeclaratorDecl *DD = |
1242 | Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) { |
1243 | // Anonymous types without a name for linkage purposes have their |
1244 | // declarator mangled in if they have one. |
1245 | Name += "<unnamed-type-" ; |
1246 | Name += DD->getName(); |
1247 | } else if (TypedefNameDecl *TND = |
1248 | Context.getASTContext().getTypedefNameForUnnamedTagDecl( |
1249 | TD)) { |
1250 | // Anonymous types without a name for linkage purposes have their |
1251 | // associate typedef mangled in if they have one. |
1252 | Name += "<unnamed-type-" ; |
1253 | Name += TND->getName(); |
1254 | } else if (isa<EnumDecl>(Val: TD) && |
1255 | cast<EnumDecl>(Val: TD)->enumerator_begin() != |
1256 | cast<EnumDecl>(Val: TD)->enumerator_end()) { |
1257 | // Anonymous non-empty enums mangle in the first enumerator. |
1258 | auto *ED = cast<EnumDecl>(Val: TD); |
1259 | Name += "<unnamed-enum-" ; |
1260 | Name += ED->enumerator_begin()->getName(); |
1261 | } else { |
1262 | // Otherwise, number the types using a $S prefix. |
1263 | Name += "<unnamed-type-$S" ; |
1264 | Name += llvm::utostr(X: Context.getAnonymousStructId(D: TD) + 1); |
1265 | } |
1266 | Name += ">" ; |
1267 | mangleSourceName(Name: Name.str()); |
1268 | break; |
1269 | } |
1270 | |
1271 | case DeclarationName::ObjCZeroArgSelector: |
1272 | case DeclarationName::ObjCOneArgSelector: |
1273 | case DeclarationName::ObjCMultiArgSelector: { |
1274 | // This is reachable only when constructing an outlined SEH finally |
1275 | // block. Nothing depends on this mangling and it's used only with |
1276 | // functinos with internal linkage. |
1277 | llvm::SmallString<64> Name; |
1278 | mangleSourceName(Name: Name.str()); |
1279 | break; |
1280 | } |
1281 | |
1282 | case DeclarationName::CXXConstructorName: |
1283 | if (isStructorDecl(ND)) { |
1284 | if (StructorType == Ctor_CopyingClosure) { |
1285 | Out << "?_O" ; |
1286 | return; |
1287 | } |
1288 | if (StructorType == Ctor_DefaultClosure) { |
1289 | Out << "?_F" ; |
1290 | return; |
1291 | } |
1292 | } |
1293 | Out << "?0" ; |
1294 | return; |
1295 | |
1296 | case DeclarationName::CXXDestructorName: |
1297 | if (isStructorDecl(ND)) |
1298 | // If the named decl is the C++ destructor we're mangling, |
1299 | // use the type we were given. |
1300 | mangleCXXDtorType(T: static_cast<CXXDtorType>(StructorType)); |
1301 | else |
1302 | // Otherwise, use the base destructor name. This is relevant if a |
1303 | // class with a destructor is declared within a destructor. |
1304 | mangleCXXDtorType(T: Dtor_Base); |
1305 | break; |
1306 | |
1307 | case DeclarationName::CXXConversionFunctionName: |
1308 | // <operator-name> ::= ?B # (cast) |
1309 | // The target type is encoded as the return type. |
1310 | Out << "?B" ; |
1311 | break; |
1312 | |
1313 | case DeclarationName::CXXOperatorName: |
1314 | mangleOperatorName(OO: Name.getCXXOverloadedOperator(), Loc: ND->getLocation()); |
1315 | break; |
1316 | |
1317 | case DeclarationName::CXXLiteralOperatorName: { |
1318 | Out << "?__K" ; |
1319 | mangleSourceName(Name: Name.getCXXLiteralIdentifier()->getName()); |
1320 | break; |
1321 | } |
1322 | |
1323 | case DeclarationName::CXXDeductionGuideName: |
1324 | llvm_unreachable("Can't mangle a deduction guide name!" ); |
1325 | |
1326 | case DeclarationName::CXXUsingDirective: |
1327 | llvm_unreachable("Can't mangle a using directive name!" ); |
1328 | } |
1329 | } |
1330 | |
1331 | // <postfix> ::= <unqualified-name> [<postfix>] |
1332 | // ::= <substitution> [<postfix>] |
1333 | void MicrosoftCXXNameMangler::mangleNestedName(GlobalDecl GD) { |
1334 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
1335 | |
1336 | if (const auto *ID = dyn_cast<IndirectFieldDecl>(Val: ND)) |
1337 | for (unsigned I = 1, IE = ID->getChainingSize(); I < IE; ++I) |
1338 | mangleSourceName(Name: "<unnamed-tag>" ); |
1339 | |
1340 | const DeclContext *DC = getEffectiveDeclContext(D: ND); |
1341 | while (!DC->isTranslationUnit()) { |
1342 | if (isa<TagDecl>(Val: ND) || isa<VarDecl>(Val: ND)) { |
1343 | unsigned Disc; |
1344 | if (Context.getNextDiscriminator(ND, disc&: Disc)) { |
1345 | Out << '?'; |
1346 | mangleNumber(Number: Disc); |
1347 | Out << '?'; |
1348 | } |
1349 | } |
1350 | |
1351 | if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: DC)) { |
1352 | auto Discriminate = |
1353 | [](StringRef Name, const unsigned Discriminator, |
1354 | const unsigned ParameterDiscriminator) -> std::string { |
1355 | std::string Buffer; |
1356 | llvm::raw_string_ostream Stream(Buffer); |
1357 | Stream << Name; |
1358 | if (Discriminator) |
1359 | Stream << '_' << Discriminator; |
1360 | if (ParameterDiscriminator) |
1361 | Stream << '_' << ParameterDiscriminator; |
1362 | return Stream.str(); |
1363 | }; |
1364 | |
1365 | unsigned Discriminator = BD->getBlockManglingNumber(); |
1366 | if (!Discriminator) |
1367 | Discriminator = Context.getBlockId(BD, /*Local=*/false); |
1368 | |
1369 | // Mangle the parameter position as a discriminator to deal with unnamed |
1370 | // parameters. Rather than mangling the unqualified parameter name, |
1371 | // always use the position to give a uniform mangling. |
1372 | unsigned ParameterDiscriminator = 0; |
1373 | if (const auto *MC = BD->getBlockManglingContextDecl()) |
1374 | if (const auto *P = dyn_cast<ParmVarDecl>(Val: MC)) |
1375 | if (const auto *F = dyn_cast<FunctionDecl>(Val: P->getDeclContext())) |
1376 | ParameterDiscriminator = |
1377 | F->getNumParams() - P->getFunctionScopeIndex(); |
1378 | |
1379 | DC = getEffectiveDeclContext(D: BD); |
1380 | |
1381 | Out << '?'; |
1382 | mangleSourceName(Name: Discriminate("_block_invoke" , Discriminator, |
1383 | ParameterDiscriminator)); |
1384 | // If we have a block mangling context, encode that now. This allows us |
1385 | // to discriminate between named static data initializers in the same |
1386 | // scope. This is handled differently from parameters, which use |
1387 | // positions to discriminate between multiple instances. |
1388 | if (const auto *MC = BD->getBlockManglingContextDecl()) |
1389 | if (!isa<ParmVarDecl>(Val: MC)) |
1390 | if (const auto *ND = dyn_cast<NamedDecl>(Val: MC)) |
1391 | mangleUnqualifiedName(GD: ND); |
1392 | // MS ABI and Itanium manglings are in inverted scopes. In the case of a |
1393 | // RecordDecl, mangle the entire scope hierarchy at this point rather than |
1394 | // just the unqualified name to get the ordering correct. |
1395 | if (const auto *RD = dyn_cast<RecordDecl>(Val: DC)) |
1396 | mangleName(GD: RD); |
1397 | else |
1398 | Out << '@'; |
1399 | // void __cdecl |
1400 | Out << "YAX" ; |
1401 | // struct __block_literal * |
1402 | Out << 'P'; |
1403 | // __ptr64 |
1404 | if (PointersAre64Bit) |
1405 | Out << 'E'; |
1406 | Out << 'A'; |
1407 | mangleArtificialTagType(TK: TagTypeKind::Struct, |
1408 | UnqualifiedName: Discriminate("__block_literal" , Discriminator, |
1409 | ParameterDiscriminator)); |
1410 | Out << "@Z" ; |
1411 | |
1412 | // If the effective context was a Record, we have fully mangled the |
1413 | // qualified name and do not need to continue. |
1414 | if (isa<RecordDecl>(Val: DC)) |
1415 | break; |
1416 | continue; |
1417 | } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Val: DC)) { |
1418 | mangleObjCMethodName(MD: Method); |
1419 | } else if (isa<NamedDecl>(Val: DC)) { |
1420 | ND = cast<NamedDecl>(Val: DC); |
1421 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: ND)) { |
1422 | mangle(GD: getGlobalDeclAsDeclContext(DC: FD), Prefix: "?" ); |
1423 | break; |
1424 | } else { |
1425 | mangleUnqualifiedName(GD: ND); |
1426 | // Lambdas in default arguments conceptually belong to the function the |
1427 | // parameter corresponds to. |
1428 | if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D: ND)) { |
1429 | DC = LDADC; |
1430 | continue; |
1431 | } |
1432 | } |
1433 | } |
1434 | DC = DC->getParent(); |
1435 | } |
1436 | } |
1437 | |
1438 | void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) { |
1439 | // Microsoft uses the names on the case labels for these dtor variants. Clang |
1440 | // uses the Itanium terminology internally. Everything in this ABI delegates |
1441 | // towards the base dtor. |
1442 | switch (T) { |
1443 | // <operator-name> ::= ?1 # destructor |
1444 | case Dtor_Base: Out << "?1" ; return; |
1445 | // <operator-name> ::= ?_D # vbase destructor |
1446 | case Dtor_Complete: Out << "?_D" ; return; |
1447 | // <operator-name> ::= ?_G # scalar deleting destructor |
1448 | case Dtor_Deleting: Out << "?_G" ; return; |
1449 | // <operator-name> ::= ?_E # vector deleting destructor |
1450 | // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need |
1451 | // it. |
1452 | case Dtor_Comdat: |
1453 | llvm_unreachable("not expecting a COMDAT" ); |
1454 | } |
1455 | llvm_unreachable("Unsupported dtor type?" ); |
1456 | } |
1457 | |
1458 | void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, |
1459 | SourceLocation Loc) { |
1460 | switch (OO) { |
1461 | // ?0 # constructor |
1462 | // ?1 # destructor |
1463 | // <operator-name> ::= ?2 # new |
1464 | case OO_New: Out << "?2" ; break; |
1465 | // <operator-name> ::= ?3 # delete |
1466 | case OO_Delete: Out << "?3" ; break; |
1467 | // <operator-name> ::= ?4 # = |
1468 | case OO_Equal: Out << "?4" ; break; |
1469 | // <operator-name> ::= ?5 # >> |
1470 | case OO_GreaterGreater: Out << "?5" ; break; |
1471 | // <operator-name> ::= ?6 # << |
1472 | case OO_LessLess: Out << "?6" ; break; |
1473 | // <operator-name> ::= ?7 # ! |
1474 | case OO_Exclaim: Out << "?7" ; break; |
1475 | // <operator-name> ::= ?8 # == |
1476 | case OO_EqualEqual: Out << "?8" ; break; |
1477 | // <operator-name> ::= ?9 # != |
1478 | case OO_ExclaimEqual: Out << "?9" ; break; |
1479 | // <operator-name> ::= ?A # [] |
1480 | case OO_Subscript: Out << "?A" ; break; |
1481 | // ?B # conversion |
1482 | // <operator-name> ::= ?C # -> |
1483 | case OO_Arrow: Out << "?C" ; break; |
1484 | // <operator-name> ::= ?D # * |
1485 | case OO_Star: Out << "?D" ; break; |
1486 | // <operator-name> ::= ?E # ++ |
1487 | case OO_PlusPlus: Out << "?E" ; break; |
1488 | // <operator-name> ::= ?F # -- |
1489 | case OO_MinusMinus: Out << "?F" ; break; |
1490 | // <operator-name> ::= ?G # - |
1491 | case OO_Minus: Out << "?G" ; break; |
1492 | // <operator-name> ::= ?H # + |
1493 | case OO_Plus: Out << "?H" ; break; |
1494 | // <operator-name> ::= ?I # & |
1495 | case OO_Amp: Out << "?I" ; break; |
1496 | // <operator-name> ::= ?J # ->* |
1497 | case OO_ArrowStar: Out << "?J" ; break; |
1498 | // <operator-name> ::= ?K # / |
1499 | case OO_Slash: Out << "?K" ; break; |
1500 | // <operator-name> ::= ?L # % |
1501 | case OO_Percent: Out << "?L" ; break; |
1502 | // <operator-name> ::= ?M # < |
1503 | case OO_Less: Out << "?M" ; break; |
1504 | // <operator-name> ::= ?N # <= |
1505 | case OO_LessEqual: Out << "?N" ; break; |
1506 | // <operator-name> ::= ?O # > |
1507 | case OO_Greater: Out << "?O" ; break; |
1508 | // <operator-name> ::= ?P # >= |
1509 | case OO_GreaterEqual: Out << "?P" ; break; |
1510 | // <operator-name> ::= ?Q # , |
1511 | case OO_Comma: Out << "?Q" ; break; |
1512 | // <operator-name> ::= ?R # () |
1513 | case OO_Call: Out << "?R" ; break; |
1514 | // <operator-name> ::= ?S # ~ |
1515 | case OO_Tilde: Out << "?S" ; break; |
1516 | // <operator-name> ::= ?T # ^ |
1517 | case OO_Caret: Out << "?T" ; break; |
1518 | // <operator-name> ::= ?U # | |
1519 | case OO_Pipe: Out << "?U" ; break; |
1520 | // <operator-name> ::= ?V # && |
1521 | case OO_AmpAmp: Out << "?V" ; break; |
1522 | // <operator-name> ::= ?W # || |
1523 | case OO_PipePipe: Out << "?W" ; break; |
1524 | // <operator-name> ::= ?X # *= |
1525 | case OO_StarEqual: Out << "?X" ; break; |
1526 | // <operator-name> ::= ?Y # += |
1527 | case OO_PlusEqual: Out << "?Y" ; break; |
1528 | // <operator-name> ::= ?Z # -= |
1529 | case OO_MinusEqual: Out << "?Z" ; break; |
1530 | // <operator-name> ::= ?_0 # /= |
1531 | case OO_SlashEqual: Out << "?_0" ; break; |
1532 | // <operator-name> ::= ?_1 # %= |
1533 | case OO_PercentEqual: Out << "?_1" ; break; |
1534 | // <operator-name> ::= ?_2 # >>= |
1535 | case OO_GreaterGreaterEqual: Out << "?_2" ; break; |
1536 | // <operator-name> ::= ?_3 # <<= |
1537 | case OO_LessLessEqual: Out << "?_3" ; break; |
1538 | // <operator-name> ::= ?_4 # &= |
1539 | case OO_AmpEqual: Out << "?_4" ; break; |
1540 | // <operator-name> ::= ?_5 # |= |
1541 | case OO_PipeEqual: Out << "?_5" ; break; |
1542 | // <operator-name> ::= ?_6 # ^= |
1543 | case OO_CaretEqual: Out << "?_6" ; break; |
1544 | // ?_7 # vftable |
1545 | // ?_8 # vbtable |
1546 | // ?_9 # vcall |
1547 | // ?_A # typeof |
1548 | // ?_B # local static guard |
1549 | // ?_C # string |
1550 | // ?_D # vbase destructor |
1551 | // ?_E # vector deleting destructor |
1552 | // ?_F # default constructor closure |
1553 | // ?_G # scalar deleting destructor |
1554 | // ?_H # vector constructor iterator |
1555 | // ?_I # vector destructor iterator |
1556 | // ?_J # vector vbase constructor iterator |
1557 | // ?_K # virtual displacement map |
1558 | // ?_L # eh vector constructor iterator |
1559 | // ?_M # eh vector destructor iterator |
1560 | // ?_N # eh vector vbase constructor iterator |
1561 | // ?_O # copy constructor closure |
1562 | // ?_P<name> # udt returning <name> |
1563 | // ?_Q # <unknown> |
1564 | // ?_R0 # RTTI Type Descriptor |
1565 | // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d) |
1566 | // ?_R2 # RTTI Base Class Array |
1567 | // ?_R3 # RTTI Class Hierarchy Descriptor |
1568 | // ?_R4 # RTTI Complete Object Locator |
1569 | // ?_S # local vftable |
1570 | // ?_T # local vftable constructor closure |
1571 | // <operator-name> ::= ?_U # new[] |
1572 | case OO_Array_New: Out << "?_U" ; break; |
1573 | // <operator-name> ::= ?_V # delete[] |
1574 | case OO_Array_Delete: Out << "?_V" ; break; |
1575 | // <operator-name> ::= ?__L # co_await |
1576 | case OO_Coawait: Out << "?__L" ; break; |
1577 | // <operator-name> ::= ?__M # <=> |
1578 | case OO_Spaceship: Out << "?__M" ; break; |
1579 | |
1580 | case OO_Conditional: { |
1581 | DiagnosticsEngine &Diags = Context.getDiags(); |
1582 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
1583 | FormatString: "cannot mangle this conditional operator yet" ); |
1584 | Diags.Report(Loc, DiagID); |
1585 | break; |
1586 | } |
1587 | |
1588 | case OO_None: |
1589 | case NUM_OVERLOADED_OPERATORS: |
1590 | llvm_unreachable("Not an overloaded operator" ); |
1591 | } |
1592 | } |
1593 | |
1594 | void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) { |
1595 | // <source name> ::= <identifier> @ |
1596 | BackRefVec::iterator Found = llvm::find(Range&: NameBackReferences, Val: Name); |
1597 | if (Found == NameBackReferences.end()) { |
1598 | if (NameBackReferences.size() < 10) |
1599 | NameBackReferences.push_back(Elt: std::string(Name)); |
1600 | Out << Name << '@'; |
1601 | } else { |
1602 | Out << (Found - NameBackReferences.begin()); |
1603 | } |
1604 | } |
1605 | |
1606 | void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { |
1607 | Context.mangleObjCMethodNameAsSourceName(MD, Out); |
1608 | } |
1609 | |
1610 | void MicrosoftCXXNameMangler::mangleTemplateInstantiationName( |
1611 | GlobalDecl GD, const TemplateArgumentList &TemplateArgs) { |
1612 | // <template-name> ::= <unscoped-template-name> <template-args> |
1613 | // ::= <substitution> |
1614 | // Always start with the unqualified name. |
1615 | |
1616 | // Templates have their own context for back references. |
1617 | ArgBackRefMap OuterFunArgsContext; |
1618 | ArgBackRefMap OuterTemplateArgsContext; |
1619 | BackRefVec OuterTemplateContext; |
1620 | PassObjectSizeArgsSet OuterPassObjectSizeArgs; |
1621 | NameBackReferences.swap(RHS&: OuterTemplateContext); |
1622 | FunArgBackReferences.swap(RHS&: OuterFunArgsContext); |
1623 | TemplateArgBackReferences.swap(RHS&: OuterTemplateArgsContext); |
1624 | PassObjectSizeArgs.swap(x&: OuterPassObjectSizeArgs); |
1625 | |
1626 | mangleUnscopedTemplateName(GD); |
1627 | mangleTemplateArgs(TD: cast<TemplateDecl>(Val: GD.getDecl()), TemplateArgs); |
1628 | |
1629 | // Restore the previous back reference contexts. |
1630 | NameBackReferences.swap(RHS&: OuterTemplateContext); |
1631 | FunArgBackReferences.swap(RHS&: OuterFunArgsContext); |
1632 | TemplateArgBackReferences.swap(RHS&: OuterTemplateArgsContext); |
1633 | PassObjectSizeArgs.swap(x&: OuterPassObjectSizeArgs); |
1634 | } |
1635 | |
1636 | void MicrosoftCXXNameMangler::mangleUnscopedTemplateName(GlobalDecl GD) { |
1637 | // <unscoped-template-name> ::= ?$ <unqualified-name> |
1638 | Out << "?$" ; |
1639 | mangleUnqualifiedName(GD); |
1640 | } |
1641 | |
1642 | void MicrosoftCXXNameMangler::mangleIntegerLiteral( |
1643 | const llvm::APSInt &Value, const NonTypeTemplateParmDecl *PD, |
1644 | QualType TemplateArgType) { |
1645 | // <integer-literal> ::= $0 <number> |
1646 | // <integer-literal> ::= <auto-nttp> |
1647 | // |
1648 | // <auto-nttp> ::= $ M <type> 0 <number> |
1649 | Out << "$" ; |
1650 | |
1651 | // Since MSVC 2019, add 'M[<type>]' after '$' for auto template parameter when |
1652 | // argument is integer. |
1653 | if (getASTContext().getLangOpts().isCompatibleWithMSVC( |
1654 | MajorVersion: LangOptions::MSVC2019) && |
1655 | PD && PD->getType()->getTypeClass() == Type::Auto && |
1656 | !TemplateArgType.isNull()) { |
1657 | Out << "M" ; |
1658 | mangleType(T: TemplateArgType, Range: SourceRange(), QMM: QMM_Drop); |
1659 | } |
1660 | |
1661 | Out << "0" ; |
1662 | |
1663 | mangleNumber(Number: Value); |
1664 | } |
1665 | |
1666 | void MicrosoftCXXNameMangler::mangleExpression( |
1667 | const Expr *E, const NonTypeTemplateParmDecl *PD) { |
1668 | // See if this is a constant expression. |
1669 | if (std::optional<llvm::APSInt> Value = |
1670 | E->getIntegerConstantExpr(Ctx: Context.getASTContext())) { |
1671 | mangleIntegerLiteral(Value: *Value, PD, TemplateArgType: E->getType()); |
1672 | return; |
1673 | } |
1674 | |
1675 | // As bad as this diagnostic is, it's better than crashing. |
1676 | DiagnosticsEngine &Diags = Context.getDiags(); |
1677 | unsigned DiagID = Diags.getCustomDiagID( |
1678 | L: DiagnosticsEngine::Error, FormatString: "cannot yet mangle expression type %0" ); |
1679 | Diags.Report(Loc: E->getExprLoc(), DiagID) << E->getStmtClassName() |
1680 | << E->getSourceRange(); |
1681 | } |
1682 | |
1683 | void MicrosoftCXXNameMangler::mangleTemplateArgs( |
1684 | const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { |
1685 | // <template-args> ::= <template-arg>+ |
1686 | const TemplateParameterList *TPL = TD->getTemplateParameters(); |
1687 | assert(TPL->size() == TemplateArgs.size() && |
1688 | "size mismatch between args and parms!" ); |
1689 | |
1690 | for (size_t i = 0; i < TemplateArgs.size(); ++i) { |
1691 | const TemplateArgument &TA = TemplateArgs[i]; |
1692 | |
1693 | // Separate consecutive packs by $$Z. |
1694 | if (i > 0 && TA.getKind() == TemplateArgument::Pack && |
1695 | TemplateArgs[i - 1].getKind() == TemplateArgument::Pack) |
1696 | Out << "$$Z" ; |
1697 | |
1698 | mangleTemplateArg(TD, TA, Parm: TPL->getParam(Idx: i)); |
1699 | } |
1700 | } |
1701 | |
1702 | /// If value V (with type T) represents a decayed pointer to the first element |
1703 | /// of an array, return that array. |
1704 | static ValueDecl *getAsArrayToPointerDecayedDecl(QualType T, const APValue &V) { |
1705 | // Must be a pointer... |
1706 | if (!T->isPointerType() || !V.isLValue() || !V.hasLValuePath() || |
1707 | !V.getLValueBase()) |
1708 | return nullptr; |
1709 | // ... to element 0 of an array. |
1710 | QualType BaseT = V.getLValueBase().getType(); |
1711 | if (!BaseT->isArrayType() || V.getLValuePath().size() != 1 || |
1712 | V.getLValuePath()[0].getAsArrayIndex() != 0) |
1713 | return nullptr; |
1714 | return const_cast<ValueDecl *>( |
1715 | V.getLValueBase().dyn_cast<const ValueDecl *>()); |
1716 | } |
1717 | |
1718 | void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD, |
1719 | const TemplateArgument &TA, |
1720 | const NamedDecl *Parm) { |
1721 | // <template-arg> ::= <type> |
1722 | // ::= <integer-literal> |
1723 | // ::= <member-data-pointer> |
1724 | // ::= <member-function-pointer> |
1725 | // ::= $ <constant-value> |
1726 | // ::= $ <auto-nttp-constant-value> |
1727 | // ::= <template-args> |
1728 | // |
1729 | // <auto-nttp-constant-value> ::= M <type> <constant-value> |
1730 | // |
1731 | // <constant-value> ::= 0 <number> # integer |
1732 | // ::= 1 <mangled-name> # address of D |
1733 | // ::= 2 <type> <typed-constant-value>* @ # struct |
1734 | // ::= 3 <type> <constant-value>* @ # array |
1735 | // ::= 4 ??? # string |
1736 | // ::= 5 <constant-value> @ # address of subobject |
1737 | // ::= 6 <constant-value> <unqualified-name> @ # a.b |
1738 | // ::= 7 <type> [<unqualified-name> <constant-value>] @ |
1739 | // # union, with or without an active member |
1740 | // # pointer to member, symbolically |
1741 | // ::= 8 <class> <unqualified-name> @ |
1742 | // ::= A <type> <non-negative integer> # float |
1743 | // ::= B <type> <non-negative integer> # double |
1744 | // # pointer to member, by component value |
1745 | // ::= F <number> <number> |
1746 | // ::= G <number> <number> <number> |
1747 | // ::= H <mangled-name> <number> |
1748 | // ::= I <mangled-name> <number> <number> |
1749 | // ::= J <mangled-name> <number> <number> <number> |
1750 | // |
1751 | // <typed-constant-value> ::= [<type>] <constant-value> |
1752 | // |
1753 | // The <type> appears to be included in a <typed-constant-value> only in the |
1754 | // '0', '1', '8', 'A', 'B', and 'E' cases. |
1755 | |
1756 | switch (TA.getKind()) { |
1757 | case TemplateArgument::Null: |
1758 | llvm_unreachable("Can't mangle null template arguments!" ); |
1759 | case TemplateArgument::TemplateExpansion: |
1760 | llvm_unreachable("Can't mangle template expansion arguments!" ); |
1761 | case TemplateArgument::Type: { |
1762 | QualType T = TA.getAsType(); |
1763 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
1764 | break; |
1765 | } |
1766 | case TemplateArgument::Declaration: { |
1767 | const NamedDecl *ND = TA.getAsDecl(); |
1768 | if (isa<FieldDecl>(Val: ND) || isa<IndirectFieldDecl>(Val: ND)) { |
1769 | mangleMemberDataPointer(RD: cast<CXXRecordDecl>(Val: ND->getDeclContext()) |
1770 | ->getMostRecentNonInjectedDecl(), |
1771 | VD: cast<ValueDecl>(Val: ND), |
1772 | PD: cast<NonTypeTemplateParmDecl>(Val: Parm), |
1773 | TemplateArgType: TA.getParamTypeForDecl()); |
1774 | } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: ND)) { |
1775 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD); |
1776 | if (MD && MD->isInstance()) { |
1777 | mangleMemberFunctionPointer( |
1778 | RD: MD->getParent()->getMostRecentNonInjectedDecl(), MD, |
1779 | PD: cast<NonTypeTemplateParmDecl>(Val: Parm), TemplateArgType: TA.getParamTypeForDecl()); |
1780 | } else { |
1781 | mangleFunctionPointer(FD, PD: cast<NonTypeTemplateParmDecl>(Val: Parm), |
1782 | TemplateArgType: TA.getParamTypeForDecl()); |
1783 | } |
1784 | } else if (TA.getParamTypeForDecl()->isRecordType()) { |
1785 | Out << "$" ; |
1786 | auto *TPO = cast<TemplateParamObjectDecl>(Val: ND); |
1787 | mangleTemplateArgValue(T: TPO->getType().getUnqualifiedType(), |
1788 | V: TPO->getValue(), TplArgKind::ClassNTTP); |
1789 | } else if (const VarDecl *VD = dyn_cast<VarDecl>(Val: ND)) { |
1790 | mangleVarDecl(VD, PD: cast<NonTypeTemplateParmDecl>(Val: Parm), |
1791 | TemplateArgType: TA.getParamTypeForDecl()); |
1792 | } else { |
1793 | mangle(GD: ND, Prefix: "$1?" ); |
1794 | } |
1795 | break; |
1796 | } |
1797 | case TemplateArgument::Integral: { |
1798 | QualType T = TA.getIntegralType(); |
1799 | mangleIntegerLiteral(Value: TA.getAsIntegral(), |
1800 | PD: cast<NonTypeTemplateParmDecl>(Val: Parm), TemplateArgType: T); |
1801 | break; |
1802 | } |
1803 | case TemplateArgument::NullPtr: { |
1804 | QualType T = TA.getNullPtrType(); |
1805 | if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) { |
1806 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
1807 | if (MPT->isMemberFunctionPointerType() && |
1808 | !isa<FunctionTemplateDecl>(Val: TD)) { |
1809 | mangleMemberFunctionPointer(RD, MD: nullptr, PD: nullptr, TemplateArgType: QualType()); |
1810 | return; |
1811 | } |
1812 | if (MPT->isMemberDataPointer()) { |
1813 | if (!isa<FunctionTemplateDecl>(Val: TD)) { |
1814 | mangleMemberDataPointer(RD, VD: nullptr, PD: nullptr, TemplateArgType: QualType()); |
1815 | return; |
1816 | } |
1817 | // nullptr data pointers are always represented with a single field |
1818 | // which is initialized with either 0 or -1. Why -1? Well, we need to |
1819 | // distinguish the case where the data member is at offset zero in the |
1820 | // record. |
1821 | // However, we are free to use 0 *if* we would use multiple fields for |
1822 | // non-nullptr member pointers. |
1823 | if (!RD->nullFieldOffsetIsZero()) { |
1824 | mangleIntegerLiteral(Value: llvm::APSInt::get(X: -1), |
1825 | PD: cast<NonTypeTemplateParmDecl>(Val: Parm), TemplateArgType: T); |
1826 | return; |
1827 | } |
1828 | } |
1829 | } |
1830 | mangleIntegerLiteral(Value: llvm::APSInt::getUnsigned(X: 0), |
1831 | PD: cast<NonTypeTemplateParmDecl>(Val: Parm), TemplateArgType: T); |
1832 | break; |
1833 | } |
1834 | case TemplateArgument::StructuralValue: |
1835 | if (ValueDecl *D = getAsArrayToPointerDecayedDecl( |
1836 | T: TA.getStructuralValueType(), V: TA.getAsStructuralValue())) { |
1837 | // Mangle the result of array-to-pointer decay as if it were a reference |
1838 | // to the original declaration, to match MSVC's behavior. This can result |
1839 | // in mangling collisions in some cases! |
1840 | return mangleTemplateArg( |
1841 | TD, TA: TemplateArgument(D, TA.getStructuralValueType()), Parm); |
1842 | } |
1843 | Out << "$" ; |
1844 | if (cast<NonTypeTemplateParmDecl>(Val: Parm) |
1845 | ->getType() |
1846 | ->getContainedDeducedType()) { |
1847 | Out << "M" ; |
1848 | mangleType(T: TA.getNonTypeTemplateArgumentType(), Range: SourceRange(), QMM: QMM_Drop); |
1849 | } |
1850 | mangleTemplateArgValue(T: TA.getStructuralValueType(), |
1851 | V: TA.getAsStructuralValue(), |
1852 | TplArgKind::StructuralValue, |
1853 | /*WithScalarType=*/false); |
1854 | break; |
1855 | case TemplateArgument::Expression: |
1856 | mangleExpression(E: TA.getAsExpr(), PD: cast<NonTypeTemplateParmDecl>(Val: Parm)); |
1857 | break; |
1858 | case TemplateArgument::Pack: { |
1859 | ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray(); |
1860 | if (TemplateArgs.empty()) { |
1861 | if (isa<TemplateTypeParmDecl>(Val: Parm) || |
1862 | isa<TemplateTemplateParmDecl>(Val: Parm)) |
1863 | // MSVC 2015 changed the mangling for empty expanded template packs, |
1864 | // use the old mangling for link compatibility for old versions. |
1865 | Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC( |
1866 | MajorVersion: LangOptions::MSVC2015) |
1867 | ? "$$V" |
1868 | : "$$$V" ); |
1869 | else if (isa<NonTypeTemplateParmDecl>(Val: Parm)) |
1870 | Out << "$S" ; |
1871 | else |
1872 | llvm_unreachable("unexpected template parameter decl!" ); |
1873 | } else { |
1874 | for (const TemplateArgument &PA : TemplateArgs) |
1875 | mangleTemplateArg(TD, TA: PA, Parm); |
1876 | } |
1877 | break; |
1878 | } |
1879 | case TemplateArgument::Template: { |
1880 | const NamedDecl *ND = |
1881 | TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl(); |
1882 | if (const auto *TD = dyn_cast<TagDecl>(Val: ND)) { |
1883 | mangleType(TD); |
1884 | } else if (isa<TypeAliasDecl>(Val: ND)) { |
1885 | Out << "$$Y" ; |
1886 | mangleName(GD: ND); |
1887 | } else { |
1888 | llvm_unreachable("unexpected template template NamedDecl!" ); |
1889 | } |
1890 | break; |
1891 | } |
1892 | } |
1893 | } |
1894 | |
1895 | void MicrosoftCXXNameMangler::mangleTemplateArgValue(QualType T, |
1896 | const APValue &V, |
1897 | TplArgKind TAK, |
1898 | bool WithScalarType) { |
1899 | switch (V.getKind()) { |
1900 | case APValue::None: |
1901 | case APValue::Indeterminate: |
1902 | // FIXME: MSVC doesn't allow this, so we can't be sure how it should be |
1903 | // mangled. |
1904 | if (WithScalarType) |
1905 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
1906 | Out << '@'; |
1907 | return; |
1908 | |
1909 | case APValue::Int: |
1910 | if (WithScalarType) |
1911 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
1912 | Out << '0'; |
1913 | mangleNumber(Number: V.getInt()); |
1914 | return; |
1915 | |
1916 | case APValue::Float: |
1917 | if (WithScalarType) |
1918 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
1919 | mangleFloat(Number: V.getFloat()); |
1920 | return; |
1921 | |
1922 | case APValue::LValue: { |
1923 | if (WithScalarType) |
1924 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
1925 | |
1926 | // We don't know how to mangle past-the-end pointers yet. |
1927 | if (V.isLValueOnePastTheEnd()) |
1928 | break; |
1929 | |
1930 | APValue::LValueBase Base = V.getLValueBase(); |
1931 | if (!V.hasLValuePath() || V.getLValuePath().empty()) { |
1932 | // Taking the address of a complete object has a special-case mangling. |
1933 | if (Base.isNull()) { |
1934 | // MSVC emits 0A@ for null pointers. Generalize this for arbitrary |
1935 | // integers cast to pointers. |
1936 | // FIXME: This mangles 0 cast to a pointer the same as a null pointer, |
1937 | // even in cases where the two are different values. |
1938 | Out << "0" ; |
1939 | mangleNumber(Number: V.getLValueOffset().getQuantity()); |
1940 | } else if (!V.hasLValuePath()) { |
1941 | // FIXME: This can only happen as an extension. Invent a mangling. |
1942 | break; |
1943 | } else if (auto *VD = Base.dyn_cast<const ValueDecl*>()) { |
1944 | Out << "E" ; |
1945 | mangle(GD: VD); |
1946 | } else { |
1947 | break; |
1948 | } |
1949 | } else { |
1950 | if (TAK == TplArgKind::ClassNTTP && T->isPointerType()) |
1951 | Out << "5" ; |
1952 | |
1953 | SmallVector<char, 2> EntryTypes; |
1954 | SmallVector<std::function<void()>, 2> EntryManglers; |
1955 | QualType ET = Base.getType(); |
1956 | for (APValue::LValuePathEntry E : V.getLValuePath()) { |
1957 | if (auto *AT = ET->getAsArrayTypeUnsafe()) { |
1958 | EntryTypes.push_back(Elt: 'C'); |
1959 | EntryManglers.push_back(Elt: [this, I = E.getAsArrayIndex()] { |
1960 | Out << '0'; |
1961 | mangleNumber(Number: I); |
1962 | Out << '@'; |
1963 | }); |
1964 | ET = AT->getElementType(); |
1965 | continue; |
1966 | } |
1967 | |
1968 | const Decl *D = E.getAsBaseOrMember().getPointer(); |
1969 | if (auto *FD = dyn_cast<FieldDecl>(Val: D)) { |
1970 | ET = FD->getType(); |
1971 | if (const auto *RD = ET->getAsRecordDecl()) |
1972 | if (RD->isAnonymousStructOrUnion()) |
1973 | continue; |
1974 | } else { |
1975 | ET = getASTContext().getRecordType(Decl: cast<CXXRecordDecl>(Val: D)); |
1976 | // Bug in MSVC: fully qualified name of base class should be used for |
1977 | // mangling to prevent collisions e.g. on base classes with same names |
1978 | // in different namespaces. |
1979 | } |
1980 | |
1981 | EntryTypes.push_back(Elt: '6'); |
1982 | EntryManglers.push_back(Elt: [this, D] { |
1983 | mangleUnqualifiedName(GD: cast<NamedDecl>(Val: D)); |
1984 | Out << '@'; |
1985 | }); |
1986 | } |
1987 | |
1988 | for (auto I = EntryTypes.rbegin(), E = EntryTypes.rend(); I != E; ++I) |
1989 | Out << *I; |
1990 | |
1991 | auto *VD = Base.dyn_cast<const ValueDecl*>(); |
1992 | if (!VD) |
1993 | break; |
1994 | Out << (TAK == TplArgKind::ClassNTTP ? 'E' : '1'); |
1995 | mangle(GD: VD); |
1996 | |
1997 | for (const std::function<void()> &Mangler : EntryManglers) |
1998 | Mangler(); |
1999 | if (TAK == TplArgKind::ClassNTTP && T->isPointerType()) |
2000 | Out << '@'; |
2001 | } |
2002 | |
2003 | return; |
2004 | } |
2005 | |
2006 | case APValue::MemberPointer: { |
2007 | if (WithScalarType) |
2008 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
2009 | |
2010 | const CXXRecordDecl *RD = |
2011 | T->castAs<MemberPointerType>()->getMostRecentCXXRecordDecl(); |
2012 | const ValueDecl *D = V.getMemberPointerDecl(); |
2013 | if (TAK == TplArgKind::ClassNTTP) { |
2014 | if (T->isMemberDataPointerType()) |
2015 | mangleMemberDataPointerInClassNTTP(RD, VD: D); |
2016 | else |
2017 | mangleMemberFunctionPointerInClassNTTP(RD, |
2018 | MD: cast_or_null<CXXMethodDecl>(Val: D)); |
2019 | } else { |
2020 | if (T->isMemberDataPointerType()) |
2021 | mangleMemberDataPointer(RD, VD: D, PD: nullptr, TemplateArgType: QualType(), Prefix: "" ); |
2022 | else |
2023 | mangleMemberFunctionPointer(RD, MD: cast_or_null<CXXMethodDecl>(Val: D), PD: nullptr, |
2024 | TemplateArgType: QualType(), Prefix: "" ); |
2025 | } |
2026 | return; |
2027 | } |
2028 | |
2029 | case APValue::Struct: { |
2030 | Out << '2'; |
2031 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
2032 | const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
2033 | assert(RD && "unexpected type for record value" ); |
2034 | |
2035 | unsigned BaseIndex = 0; |
2036 | for (const CXXBaseSpecifier &B : RD->bases()) |
2037 | mangleTemplateArgValue(T: B.getType(), V: V.getStructBase(i: BaseIndex++), TAK); |
2038 | for (const FieldDecl *FD : RD->fields()) |
2039 | if (!FD->isUnnamedBitField()) |
2040 | mangleTemplateArgValue(T: FD->getType(), |
2041 | V: V.getStructField(i: FD->getFieldIndex()), TAK, |
2042 | /*WithScalarType*/ true); |
2043 | Out << '@'; |
2044 | return; |
2045 | } |
2046 | |
2047 | case APValue::Union: |
2048 | Out << '7'; |
2049 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
2050 | if (const FieldDecl *FD = V.getUnionField()) { |
2051 | mangleUnqualifiedName(GD: FD); |
2052 | mangleTemplateArgValue(T: FD->getType(), V: V.getUnionValue(), TAK); |
2053 | } |
2054 | Out << '@'; |
2055 | return; |
2056 | |
2057 | case APValue::ComplexInt: |
2058 | // We mangle complex types as structs, so mangle the value as a struct too. |
2059 | Out << '2'; |
2060 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
2061 | Out << '0'; |
2062 | mangleNumber(Number: V.getComplexIntReal()); |
2063 | Out << '0'; |
2064 | mangleNumber(Number: V.getComplexIntImag()); |
2065 | Out << '@'; |
2066 | return; |
2067 | |
2068 | case APValue::ComplexFloat: |
2069 | Out << '2'; |
2070 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
2071 | mangleFloat(Number: V.getComplexFloatReal()); |
2072 | mangleFloat(Number: V.getComplexFloatImag()); |
2073 | Out << '@'; |
2074 | return; |
2075 | |
2076 | case APValue::Array: { |
2077 | Out << '3'; |
2078 | QualType ElemT = getASTContext().getAsArrayType(T)->getElementType(); |
2079 | mangleType(T: ElemT, Range: SourceRange(), QMM: QMM_Escape); |
2080 | for (unsigned I = 0, N = V.getArraySize(); I != N; ++I) { |
2081 | const APValue &ElemV = I < V.getArrayInitializedElts() |
2082 | ? V.getArrayInitializedElt(I) |
2083 | : V.getArrayFiller(); |
2084 | mangleTemplateArgValue(T: ElemT, V: ElemV, TAK); |
2085 | Out << '@'; |
2086 | } |
2087 | Out << '@'; |
2088 | return; |
2089 | } |
2090 | |
2091 | case APValue::Vector: { |
2092 | // __m128 is mangled as a struct containing an array. We follow this |
2093 | // approach for all vector types. |
2094 | Out << '2'; |
2095 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
2096 | Out << '3'; |
2097 | QualType ElemT = T->castAs<VectorType>()->getElementType(); |
2098 | mangleType(T: ElemT, Range: SourceRange(), QMM: QMM_Escape); |
2099 | for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) { |
2100 | const APValue &ElemV = V.getVectorElt(I); |
2101 | mangleTemplateArgValue(T: ElemT, V: ElemV, TAK); |
2102 | Out << '@'; |
2103 | } |
2104 | Out << "@@" ; |
2105 | return; |
2106 | } |
2107 | |
2108 | case APValue::AddrLabelDiff: |
2109 | case APValue::FixedPoint: |
2110 | break; |
2111 | } |
2112 | |
2113 | DiagnosticsEngine &Diags = Context.getDiags(); |
2114 | unsigned DiagID = Diags.getCustomDiagID( |
2115 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle this template argument yet" ); |
2116 | Diags.Report(DiagID); |
2117 | } |
2118 | |
2119 | void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) { |
2120 | llvm::SmallString<64> TemplateMangling; |
2121 | llvm::raw_svector_ostream Stream(TemplateMangling); |
2122 | MicrosoftCXXNameMangler (Context, Stream); |
2123 | |
2124 | Stream << "?$" ; |
2125 | Extra.mangleSourceName(Name: "Protocol" ); |
2126 | Extra.mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: PD->getName()); |
2127 | |
2128 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__ObjC" }); |
2129 | } |
2130 | |
2131 | void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type, |
2132 | Qualifiers Quals, |
2133 | SourceRange Range) { |
2134 | llvm::SmallString<64> TemplateMangling; |
2135 | llvm::raw_svector_ostream Stream(TemplateMangling); |
2136 | MicrosoftCXXNameMangler (Context, Stream); |
2137 | |
2138 | Stream << "?$" ; |
2139 | switch (Quals.getObjCLifetime()) { |
2140 | case Qualifiers::OCL_None: |
2141 | case Qualifiers::OCL_ExplicitNone: |
2142 | break; |
2143 | case Qualifiers::OCL_Autoreleasing: |
2144 | Extra.mangleSourceName(Name: "Autoreleasing" ); |
2145 | break; |
2146 | case Qualifiers::OCL_Strong: |
2147 | Extra.mangleSourceName(Name: "Strong" ); |
2148 | break; |
2149 | case Qualifiers::OCL_Weak: |
2150 | Extra.mangleSourceName(Name: "Weak" ); |
2151 | break; |
2152 | } |
2153 | Extra.manglePointerCVQualifiers(Quals); |
2154 | Extra.manglePointerExtQualifiers(Quals, PointeeType: Type); |
2155 | Extra.mangleType(T: Type, Range); |
2156 | |
2157 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__ObjC" }); |
2158 | } |
2159 | |
2160 | void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T, |
2161 | Qualifiers Quals, |
2162 | SourceRange Range) { |
2163 | llvm::SmallString<64> TemplateMangling; |
2164 | llvm::raw_svector_ostream Stream(TemplateMangling); |
2165 | MicrosoftCXXNameMangler (Context, Stream); |
2166 | |
2167 | Stream << "?$" ; |
2168 | Extra.mangleSourceName(Name: "KindOf" ); |
2169 | Extra.mangleType(T: QualType(T, 0) |
2170 | .stripObjCKindOfType(ctx: getASTContext()) |
2171 | ->castAs<ObjCObjectType>(), |
2172 | Quals, Range); |
2173 | |
2174 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__ObjC" }); |
2175 | } |
2176 | |
2177 | void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals, |
2178 | bool IsMember) { |
2179 | // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers> |
2180 | // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only); |
2181 | // 'I' means __restrict (32/64-bit). |
2182 | // Note that the MSVC __restrict keyword isn't the same as the C99 restrict |
2183 | // keyword! |
2184 | // <base-cvr-qualifiers> ::= A # near |
2185 | // ::= B # near const |
2186 | // ::= C # near volatile |
2187 | // ::= D # near const volatile |
2188 | // ::= E # far (16-bit) |
2189 | // ::= F # far const (16-bit) |
2190 | // ::= G # far volatile (16-bit) |
2191 | // ::= H # far const volatile (16-bit) |
2192 | // ::= I # huge (16-bit) |
2193 | // ::= J # huge const (16-bit) |
2194 | // ::= K # huge volatile (16-bit) |
2195 | // ::= L # huge const volatile (16-bit) |
2196 | // ::= M <basis> # based |
2197 | // ::= N <basis> # based const |
2198 | // ::= O <basis> # based volatile |
2199 | // ::= P <basis> # based const volatile |
2200 | // ::= Q # near member |
2201 | // ::= R # near const member |
2202 | // ::= S # near volatile member |
2203 | // ::= T # near const volatile member |
2204 | // ::= U # far member (16-bit) |
2205 | // ::= V # far const member (16-bit) |
2206 | // ::= W # far volatile member (16-bit) |
2207 | // ::= X # far const volatile member (16-bit) |
2208 | // ::= Y # huge member (16-bit) |
2209 | // ::= Z # huge const member (16-bit) |
2210 | // ::= 0 # huge volatile member (16-bit) |
2211 | // ::= 1 # huge const volatile member (16-bit) |
2212 | // ::= 2 <basis> # based member |
2213 | // ::= 3 <basis> # based const member |
2214 | // ::= 4 <basis> # based volatile member |
2215 | // ::= 5 <basis> # based const volatile member |
2216 | // ::= 6 # near function (pointers only) |
2217 | // ::= 7 # far function (pointers only) |
2218 | // ::= 8 # near method (pointers only) |
2219 | // ::= 9 # far method (pointers only) |
2220 | // ::= _A <basis> # based function (pointers only) |
2221 | // ::= _B <basis> # based function (far?) (pointers only) |
2222 | // ::= _C <basis> # based method (pointers only) |
2223 | // ::= _D <basis> # based method (far?) (pointers only) |
2224 | // ::= _E # block (Clang) |
2225 | // <basis> ::= 0 # __based(void) |
2226 | // ::= 1 # __based(segment)? |
2227 | // ::= 2 <name> # __based(name) |
2228 | // ::= 3 # ? |
2229 | // ::= 4 # ? |
2230 | // ::= 5 # not really based |
2231 | bool HasConst = Quals.hasConst(), |
2232 | HasVolatile = Quals.hasVolatile(); |
2233 | |
2234 | if (!IsMember) { |
2235 | if (HasConst && HasVolatile) { |
2236 | Out << 'D'; |
2237 | } else if (HasVolatile) { |
2238 | Out << 'C'; |
2239 | } else if (HasConst) { |
2240 | Out << 'B'; |
2241 | } else { |
2242 | Out << 'A'; |
2243 | } |
2244 | } else { |
2245 | if (HasConst && HasVolatile) { |
2246 | Out << 'T'; |
2247 | } else if (HasVolatile) { |
2248 | Out << 'S'; |
2249 | } else if (HasConst) { |
2250 | Out << 'R'; |
2251 | } else { |
2252 | Out << 'Q'; |
2253 | } |
2254 | } |
2255 | |
2256 | // FIXME: For now, just drop all extension qualifiers on the floor. |
2257 | } |
2258 | |
2259 | void |
2260 | MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { |
2261 | // <ref-qualifier> ::= G # lvalue reference |
2262 | // ::= H # rvalue-reference |
2263 | switch (RefQualifier) { |
2264 | case RQ_None: |
2265 | break; |
2266 | |
2267 | case RQ_LValue: |
2268 | Out << 'G'; |
2269 | break; |
2270 | |
2271 | case RQ_RValue: |
2272 | Out << 'H'; |
2273 | break; |
2274 | } |
2275 | } |
2276 | |
2277 | void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals, |
2278 | QualType PointeeType) { |
2279 | // Check if this is a default 64-bit pointer or has __ptr64 qualifier. |
2280 | bool is64Bit = PointeeType.isNull() ? PointersAre64Bit : |
2281 | is64BitPointer(Quals: PointeeType.getQualifiers()); |
2282 | if (is64Bit && (PointeeType.isNull() || !PointeeType->isFunctionType())) |
2283 | Out << 'E'; |
2284 | |
2285 | if (Quals.hasRestrict()) |
2286 | Out << 'I'; |
2287 | |
2288 | if (Quals.hasUnaligned() || |
2289 | (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned())) |
2290 | Out << 'F'; |
2291 | } |
2292 | |
2293 | void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) { |
2294 | // <pointer-cv-qualifiers> ::= P # no qualifiers |
2295 | // ::= Q # const |
2296 | // ::= R # volatile |
2297 | // ::= S # const volatile |
2298 | bool HasConst = Quals.hasConst(), |
2299 | HasVolatile = Quals.hasVolatile(); |
2300 | |
2301 | if (HasConst && HasVolatile) { |
2302 | Out << 'S'; |
2303 | } else if (HasVolatile) { |
2304 | Out << 'R'; |
2305 | } else if (HasConst) { |
2306 | Out << 'Q'; |
2307 | } else { |
2308 | Out << 'P'; |
2309 | } |
2310 | } |
2311 | |
2312 | void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T, |
2313 | SourceRange Range) { |
2314 | // MSVC will backreference two canonically equivalent types that have slightly |
2315 | // different manglings when mangled alone. |
2316 | |
2317 | // Decayed types do not match up with non-decayed versions of the same type. |
2318 | // |
2319 | // e.g. |
2320 | // void (*x)(void) will not form a backreference with void x(void) |
2321 | void *TypePtr; |
2322 | if (const auto *DT = T->getAs<DecayedType>()) { |
2323 | QualType OriginalType = DT->getOriginalType(); |
2324 | // All decayed ArrayTypes should be treated identically; as-if they were |
2325 | // a decayed IncompleteArrayType. |
2326 | if (const auto *AT = getASTContext().getAsArrayType(T: OriginalType)) |
2327 | OriginalType = getASTContext().getIncompleteArrayType( |
2328 | EltTy: AT->getElementType(), ASM: AT->getSizeModifier(), |
2329 | IndexTypeQuals: AT->getIndexTypeCVRQualifiers()); |
2330 | |
2331 | TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr(); |
2332 | // If the original parameter was textually written as an array, |
2333 | // instead treat the decayed parameter like it's const. |
2334 | // |
2335 | // e.g. |
2336 | // int [] -> int * const |
2337 | if (OriginalType->isArrayType()) |
2338 | T = T.withConst(); |
2339 | } else { |
2340 | TypePtr = T.getCanonicalType().getAsOpaquePtr(); |
2341 | } |
2342 | |
2343 | ArgBackRefMap::iterator Found = FunArgBackReferences.find(Val: TypePtr); |
2344 | |
2345 | if (Found == FunArgBackReferences.end()) { |
2346 | size_t OutSizeBefore = Out.tell(); |
2347 | |
2348 | mangleType(T, Range, QMM: QMM_Drop); |
2349 | |
2350 | // See if it's worth creating a back reference. |
2351 | // Only types longer than 1 character are considered |
2352 | // and only 10 back references slots are available: |
2353 | bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1); |
2354 | if (LongerThanOneChar && FunArgBackReferences.size() < 10) { |
2355 | size_t Size = FunArgBackReferences.size(); |
2356 | FunArgBackReferences[TypePtr] = Size; |
2357 | } |
2358 | } else { |
2359 | Out << Found->second; |
2360 | } |
2361 | } |
2362 | |
2363 | void MicrosoftCXXNameMangler::manglePassObjectSizeArg( |
2364 | const PassObjectSizeAttr *POSA) { |
2365 | int Type = POSA->getType(); |
2366 | bool Dynamic = POSA->isDynamic(); |
2367 | |
2368 | auto Iter = PassObjectSizeArgs.insert(x: {Type, Dynamic}).first; |
2369 | auto *TypePtr = (const void *)&*Iter; |
2370 | ArgBackRefMap::iterator Found = FunArgBackReferences.find(Val: TypePtr); |
2371 | |
2372 | if (Found == FunArgBackReferences.end()) { |
2373 | std::string Name = |
2374 | Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size" ; |
2375 | mangleArtificialTagType(TK: TagTypeKind::Enum, UnqualifiedName: Name + llvm::utostr(X: Type), |
2376 | NestedNames: {"__clang" }); |
2377 | |
2378 | if (FunArgBackReferences.size() < 10) { |
2379 | size_t Size = FunArgBackReferences.size(); |
2380 | FunArgBackReferences[TypePtr] = Size; |
2381 | } |
2382 | } else { |
2383 | Out << Found->second; |
2384 | } |
2385 | } |
2386 | |
2387 | void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T, |
2388 | Qualifiers Quals, |
2389 | SourceRange Range) { |
2390 | // Address space is mangled as an unqualified templated type in the __clang |
2391 | // namespace. The demangled version of this is: |
2392 | // In the case of a language specific address space: |
2393 | // __clang::struct _AS[language_addr_space]<Type> |
2394 | // where: |
2395 | // <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace> |
2396 | // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | |
2397 | // "private"| "generic" | "device" | "host" ] |
2398 | // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] |
2399 | // Note that the above were chosen to match the Itanium mangling for this. |
2400 | // |
2401 | // In the case of a non-language specific address space: |
2402 | // __clang::struct _AS<TargetAS, Type> |
2403 | assert(Quals.hasAddressSpace() && "Not valid without address space" ); |
2404 | llvm::SmallString<32> ASMangling; |
2405 | llvm::raw_svector_ostream Stream(ASMangling); |
2406 | MicrosoftCXXNameMangler (Context, Stream); |
2407 | Stream << "?$" ; |
2408 | |
2409 | LangAS AS = Quals.getAddressSpace(); |
2410 | if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { |
2411 | unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); |
2412 | Extra.mangleSourceName(Name: "_AS" ); |
2413 | Extra.mangleIntegerLiteral(Value: llvm::APSInt::getUnsigned(X: TargetAS)); |
2414 | } else { |
2415 | switch (AS) { |
2416 | default: |
2417 | llvm_unreachable("Not a language specific address space" ); |
2418 | case LangAS::opencl_global: |
2419 | Extra.mangleSourceName(Name: "_ASCLglobal" ); |
2420 | break; |
2421 | case LangAS::opencl_global_device: |
2422 | Extra.mangleSourceName(Name: "_ASCLdevice" ); |
2423 | break; |
2424 | case LangAS::opencl_global_host: |
2425 | Extra.mangleSourceName(Name: "_ASCLhost" ); |
2426 | break; |
2427 | case LangAS::opencl_local: |
2428 | Extra.mangleSourceName(Name: "_ASCLlocal" ); |
2429 | break; |
2430 | case LangAS::opencl_constant: |
2431 | Extra.mangleSourceName(Name: "_ASCLconstant" ); |
2432 | break; |
2433 | case LangAS::opencl_private: |
2434 | Extra.mangleSourceName(Name: "_ASCLprivate" ); |
2435 | break; |
2436 | case LangAS::opencl_generic: |
2437 | Extra.mangleSourceName(Name: "_ASCLgeneric" ); |
2438 | break; |
2439 | case LangAS::cuda_device: |
2440 | Extra.mangleSourceName(Name: "_ASCUdevice" ); |
2441 | break; |
2442 | case LangAS::cuda_constant: |
2443 | Extra.mangleSourceName(Name: "_ASCUconstant" ); |
2444 | break; |
2445 | case LangAS::cuda_shared: |
2446 | Extra.mangleSourceName(Name: "_ASCUshared" ); |
2447 | break; |
2448 | case LangAS::ptr32_sptr: |
2449 | case LangAS::ptr32_uptr: |
2450 | case LangAS::ptr64: |
2451 | llvm_unreachable("don't mangle ptr address spaces with _AS" ); |
2452 | } |
2453 | } |
2454 | |
2455 | Extra.mangleType(T, Range, QMM: QMM_Escape); |
2456 | mangleQualifiers(Quals: Qualifiers(), IsMember: false); |
2457 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: ASMangling, NestedNames: {"__clang" }); |
2458 | } |
2459 | |
2460 | void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range, |
2461 | QualifierMangleMode QMM) { |
2462 | // Don't use the canonical types. MSVC includes things like 'const' on |
2463 | // pointer arguments to function pointers that canonicalization strips away. |
2464 | T = T.getDesugaredType(Context: getASTContext()); |
2465 | Qualifiers Quals = T.getLocalQualifiers(); |
2466 | |
2467 | if (const ArrayType *AT = getASTContext().getAsArrayType(T)) { |
2468 | // If there were any Quals, getAsArrayType() pushed them onto the array |
2469 | // element type. |
2470 | if (QMM == QMM_Mangle) |
2471 | Out << 'A'; |
2472 | else if (QMM == QMM_Escape || QMM == QMM_Result) |
2473 | Out << "$$B" ; |
2474 | mangleArrayType(T: AT); |
2475 | return; |
2476 | } |
2477 | |
2478 | bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() || |
2479 | T->isReferenceType() || T->isBlockPointerType(); |
2480 | |
2481 | switch (QMM) { |
2482 | case QMM_Drop: |
2483 | if (Quals.hasObjCLifetime()) |
2484 | Quals = Quals.withoutObjCLifetime(); |
2485 | break; |
2486 | case QMM_Mangle: |
2487 | if (const FunctionType *FT = dyn_cast<FunctionType>(Val&: T)) { |
2488 | Out << '6'; |
2489 | mangleFunctionType(T: FT); |
2490 | return; |
2491 | } |
2492 | mangleQualifiers(Quals, IsMember: false); |
2493 | break; |
2494 | case QMM_Escape: |
2495 | if (!IsPointer && Quals) { |
2496 | Out << "$$C" ; |
2497 | mangleQualifiers(Quals, IsMember: false); |
2498 | } |
2499 | break; |
2500 | case QMM_Result: |
2501 | // Presence of __unaligned qualifier shouldn't affect mangling here. |
2502 | Quals.removeUnaligned(); |
2503 | if (Quals.hasObjCLifetime()) |
2504 | Quals = Quals.withoutObjCLifetime(); |
2505 | if ((!IsPointer && Quals) || isa<TagType>(Val: T) || isArtificialTagType(T)) { |
2506 | Out << '?'; |
2507 | mangleQualifiers(Quals, IsMember: false); |
2508 | } |
2509 | break; |
2510 | } |
2511 | |
2512 | const Type *ty = T.getTypePtr(); |
2513 | |
2514 | switch (ty->getTypeClass()) { |
2515 | #define ABSTRACT_TYPE(CLASS, PARENT) |
2516 | #define NON_CANONICAL_TYPE(CLASS, PARENT) \ |
2517 | case Type::CLASS: \ |
2518 | llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ |
2519 | return; |
2520 | #define TYPE(CLASS, PARENT) \ |
2521 | case Type::CLASS: \ |
2522 | mangleType(cast<CLASS##Type>(ty), Quals, Range); \ |
2523 | break; |
2524 | #include "clang/AST/TypeNodes.inc" |
2525 | #undef ABSTRACT_TYPE |
2526 | #undef NON_CANONICAL_TYPE |
2527 | #undef TYPE |
2528 | } |
2529 | } |
2530 | |
2531 | void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers, |
2532 | SourceRange Range) { |
2533 | // <type> ::= <builtin-type> |
2534 | // <builtin-type> ::= X # void |
2535 | // ::= C # signed char |
2536 | // ::= D # char |
2537 | // ::= E # unsigned char |
2538 | // ::= F # short |
2539 | // ::= G # unsigned short (or wchar_t if it's not a builtin) |
2540 | // ::= H # int |
2541 | // ::= I # unsigned int |
2542 | // ::= J # long |
2543 | // ::= K # unsigned long |
2544 | // L # <none> |
2545 | // ::= M # float |
2546 | // ::= N # double |
2547 | // ::= O # long double (__float80 is mangled differently) |
2548 | // ::= _J # long long, __int64 |
2549 | // ::= _K # unsigned long long, __int64 |
2550 | // ::= _L # __int128 |
2551 | // ::= _M # unsigned __int128 |
2552 | // ::= _N # bool |
2553 | // _O # <array in parameter> |
2554 | // ::= _Q # char8_t |
2555 | // ::= _S # char16_t |
2556 | // ::= _T # __float80 (Intel) |
2557 | // ::= _U # char32_t |
2558 | // ::= _W # wchar_t |
2559 | // ::= _Z # __float80 (Digital Mars) |
2560 | switch (T->getKind()) { |
2561 | case BuiltinType::Void: |
2562 | Out << 'X'; |
2563 | break; |
2564 | case BuiltinType::SChar: |
2565 | Out << 'C'; |
2566 | break; |
2567 | case BuiltinType::Char_U: |
2568 | case BuiltinType::Char_S: |
2569 | Out << 'D'; |
2570 | break; |
2571 | case BuiltinType::UChar: |
2572 | Out << 'E'; |
2573 | break; |
2574 | case BuiltinType::Short: |
2575 | Out << 'F'; |
2576 | break; |
2577 | case BuiltinType::UShort: |
2578 | Out << 'G'; |
2579 | break; |
2580 | case BuiltinType::Int: |
2581 | Out << 'H'; |
2582 | break; |
2583 | case BuiltinType::UInt: |
2584 | Out << 'I'; |
2585 | break; |
2586 | case BuiltinType::Long: |
2587 | Out << 'J'; |
2588 | break; |
2589 | case BuiltinType::ULong: |
2590 | Out << 'K'; |
2591 | break; |
2592 | case BuiltinType::Float: |
2593 | Out << 'M'; |
2594 | break; |
2595 | case BuiltinType::Double: |
2596 | Out << 'N'; |
2597 | break; |
2598 | // TODO: Determine size and mangle accordingly |
2599 | case BuiltinType::LongDouble: |
2600 | Out << 'O'; |
2601 | break; |
2602 | case BuiltinType::LongLong: |
2603 | Out << "_J" ; |
2604 | break; |
2605 | case BuiltinType::ULongLong: |
2606 | Out << "_K" ; |
2607 | break; |
2608 | case BuiltinType::Int128: |
2609 | Out << "_L" ; |
2610 | break; |
2611 | case BuiltinType::UInt128: |
2612 | Out << "_M" ; |
2613 | break; |
2614 | case BuiltinType::Bool: |
2615 | Out << "_N" ; |
2616 | break; |
2617 | case BuiltinType::Char8: |
2618 | Out << "_Q" ; |
2619 | break; |
2620 | case BuiltinType::Char16: |
2621 | Out << "_S" ; |
2622 | break; |
2623 | case BuiltinType::Char32: |
2624 | Out << "_U" ; |
2625 | break; |
2626 | case BuiltinType::WChar_S: |
2627 | case BuiltinType::WChar_U: |
2628 | Out << "_W" ; |
2629 | break; |
2630 | |
2631 | #define BUILTIN_TYPE(Id, SingletonId) |
2632 | #define PLACEHOLDER_TYPE(Id, SingletonId) \ |
2633 | case BuiltinType::Id: |
2634 | #include "clang/AST/BuiltinTypes.def" |
2635 | case BuiltinType::Dependent: |
2636 | llvm_unreachable("placeholder types shouldn't get to name mangling" ); |
2637 | |
2638 | case BuiltinType::ObjCId: |
2639 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "objc_object" ); |
2640 | break; |
2641 | case BuiltinType::ObjCClass: |
2642 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "objc_class" ); |
2643 | break; |
2644 | case BuiltinType::ObjCSel: |
2645 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "objc_selector" ); |
2646 | break; |
2647 | |
2648 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
2649 | case BuiltinType::Id: \ |
2650 | Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \ |
2651 | break; |
2652 | #include "clang/Basic/OpenCLImageTypes.def" |
2653 | case BuiltinType::OCLSampler: |
2654 | Out << "PA" ; |
2655 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "ocl_sampler" ); |
2656 | break; |
2657 | case BuiltinType::OCLEvent: |
2658 | Out << "PA" ; |
2659 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "ocl_event" ); |
2660 | break; |
2661 | case BuiltinType::OCLClkEvent: |
2662 | Out << "PA" ; |
2663 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "ocl_clkevent" ); |
2664 | break; |
2665 | case BuiltinType::OCLQueue: |
2666 | Out << "PA" ; |
2667 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "ocl_queue" ); |
2668 | break; |
2669 | case BuiltinType::OCLReserveID: |
2670 | Out << "PA" ; |
2671 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "ocl_reserveid" ); |
2672 | break; |
2673 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
2674 | case BuiltinType::Id: \ |
2675 | mangleArtificialTagType(TagTypeKind::Struct, "ocl_" #ExtType); \ |
2676 | break; |
2677 | #include "clang/Basic/OpenCLExtensionTypes.def" |
2678 | |
2679 | case BuiltinType::NullPtr: |
2680 | Out << "$$T" ; |
2681 | break; |
2682 | |
2683 | case BuiltinType::Float16: |
2684 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "_Float16" , NestedNames: {"__clang" }); |
2685 | break; |
2686 | |
2687 | case BuiltinType::Half: |
2688 | if (!getASTContext().getLangOpts().HLSL) |
2689 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "_Half" , NestedNames: {"__clang" }); |
2690 | else if (getASTContext().getLangOpts().NativeHalfType) |
2691 | Out << "$f16@" ; |
2692 | else |
2693 | Out << "$halff@" ; |
2694 | break; |
2695 | |
2696 | case BuiltinType::BFloat16: |
2697 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "__bf16" , NestedNames: {"__clang" }); |
2698 | break; |
2699 | |
2700 | #define WASM_REF_TYPE(InternalName, MangledName, Id, SingletonId, AS) \ |
2701 | case BuiltinType::Id: \ |
2702 | mangleArtificialTagType(TagTypeKind::Struct, MangledName); \ |
2703 | mangleArtificialTagType(TagTypeKind::Struct, MangledName, {"__clang"}); \ |
2704 | break; |
2705 | |
2706 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
2707 | #define SVE_TYPE(Name, Id, SingletonId) \ |
2708 | case BuiltinType::Id: |
2709 | #include "clang/Basic/AArch64SVEACLETypes.def" |
2710 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
2711 | case BuiltinType::Id: |
2712 | #include "clang/Basic/PPCTypes.def" |
2713 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
2714 | #include "clang/Basic/RISCVVTypes.def" |
2715 | #define AMDGPU_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
2716 | #include "clang/Basic/AMDGPUTypes.def" |
2717 | case BuiltinType::ShortAccum: |
2718 | case BuiltinType::Accum: |
2719 | case BuiltinType::LongAccum: |
2720 | case BuiltinType::UShortAccum: |
2721 | case BuiltinType::UAccum: |
2722 | case BuiltinType::ULongAccum: |
2723 | case BuiltinType::ShortFract: |
2724 | case BuiltinType::Fract: |
2725 | case BuiltinType::LongFract: |
2726 | case BuiltinType::UShortFract: |
2727 | case BuiltinType::UFract: |
2728 | case BuiltinType::ULongFract: |
2729 | case BuiltinType::SatShortAccum: |
2730 | case BuiltinType::SatAccum: |
2731 | case BuiltinType::SatLongAccum: |
2732 | case BuiltinType::SatUShortAccum: |
2733 | case BuiltinType::SatUAccum: |
2734 | case BuiltinType::SatULongAccum: |
2735 | case BuiltinType::SatShortFract: |
2736 | case BuiltinType::SatFract: |
2737 | case BuiltinType::SatLongFract: |
2738 | case BuiltinType::SatUShortFract: |
2739 | case BuiltinType::SatUFract: |
2740 | case BuiltinType::SatULongFract: |
2741 | case BuiltinType::Ibm128: |
2742 | case BuiltinType::Float128: { |
2743 | DiagnosticsEngine &Diags = Context.getDiags(); |
2744 | unsigned DiagID = Diags.getCustomDiagID( |
2745 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle this built-in %0 type yet" ); |
2746 | Diags.Report(Loc: Range.getBegin(), DiagID) |
2747 | << T->getName(Policy: Context.getASTContext().getPrintingPolicy()) << Range; |
2748 | break; |
2749 | } |
2750 | } |
2751 | } |
2752 | |
2753 | // <type> ::= <function-type> |
2754 | void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers, |
2755 | SourceRange) { |
2756 | // Structors only appear in decls, so at this point we know it's not a |
2757 | // structor type. |
2758 | // FIXME: This may not be lambda-friendly. |
2759 | if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) { |
2760 | Out << "$$A8@@" ; |
2761 | mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true); |
2762 | } else { |
2763 | Out << "$$A6" ; |
2764 | mangleFunctionType(T); |
2765 | } |
2766 | } |
2767 | void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T, |
2768 | Qualifiers, SourceRange) { |
2769 | Out << "$$A6" ; |
2770 | mangleFunctionType(T); |
2771 | } |
2772 | |
2773 | void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T, |
2774 | const FunctionDecl *D, |
2775 | bool ForceThisQuals, |
2776 | bool MangleExceptionSpec) { |
2777 | // <function-type> ::= <this-cvr-qualifiers> <calling-convention> |
2778 | // <return-type> <argument-list> <throw-spec> |
2779 | const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(Val: T); |
2780 | |
2781 | SourceRange Range; |
2782 | if (D) Range = D->getSourceRange(); |
2783 | |
2784 | bool IsInLambda = false; |
2785 | bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false; |
2786 | CallingConv CC = T->getCallConv(); |
2787 | if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Val: D)) { |
2788 | if (MD->getParent()->isLambda()) |
2789 | IsInLambda = true; |
2790 | if (MD->isImplicitObjectMemberFunction()) |
2791 | HasThisQuals = true; |
2792 | if (isa<CXXDestructorDecl>(Val: MD)) { |
2793 | IsStructor = true; |
2794 | } else if (isa<CXXConstructorDecl>(Val: MD)) { |
2795 | IsStructor = true; |
2796 | IsCtorClosure = (StructorType == Ctor_CopyingClosure || |
2797 | StructorType == Ctor_DefaultClosure) && |
2798 | isStructorDecl(ND: MD); |
2799 | if (IsCtorClosure) |
2800 | CC = getASTContext().getDefaultCallingConvention( |
2801 | /*IsVariadic=*/false, /*IsCXXMethod=*/true); |
2802 | } |
2803 | } |
2804 | |
2805 | // If this is a C++ instance method, mangle the CVR qualifiers for the |
2806 | // this pointer. |
2807 | if (HasThisQuals) { |
2808 | Qualifiers Quals = Proto->getMethodQuals(); |
2809 | manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType()); |
2810 | mangleRefQualifier(RefQualifier: Proto->getRefQualifier()); |
2811 | mangleQualifiers(Quals, /*IsMember=*/false); |
2812 | } |
2813 | |
2814 | mangleCallingConvention(CC, Range); |
2815 | |
2816 | // <return-type> ::= <type> |
2817 | // ::= @ # structors (they have no declared return type) |
2818 | if (IsStructor) { |
2819 | if (isa<CXXDestructorDecl>(Val: D) && isStructorDecl(ND: D)) { |
2820 | // The scalar deleting destructor takes an extra int argument which is not |
2821 | // reflected in the AST. |
2822 | if (StructorType == Dtor_Deleting) { |
2823 | Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z" ); |
2824 | return; |
2825 | } |
2826 | // The vbase destructor returns void which is not reflected in the AST. |
2827 | if (StructorType == Dtor_Complete) { |
2828 | Out << "XXZ" ; |
2829 | return; |
2830 | } |
2831 | } |
2832 | if (IsCtorClosure) { |
2833 | // Default constructor closure and copy constructor closure both return |
2834 | // void. |
2835 | Out << 'X'; |
2836 | |
2837 | if (StructorType == Ctor_DefaultClosure) { |
2838 | // Default constructor closure always has no arguments. |
2839 | Out << 'X'; |
2840 | } else if (StructorType == Ctor_CopyingClosure) { |
2841 | // Copy constructor closure always takes an unqualified reference. |
2842 | mangleFunctionArgumentType(T: getASTContext().getLValueReferenceType( |
2843 | T: Proto->getParamType(i: 0) |
2844 | ->castAs<LValueReferenceType>() |
2845 | ->getPointeeType(), |
2846 | /*SpelledAsLValue=*/true), |
2847 | Range); |
2848 | Out << '@'; |
2849 | } else { |
2850 | llvm_unreachable("unexpected constructor closure!" ); |
2851 | } |
2852 | Out << 'Z'; |
2853 | return; |
2854 | } |
2855 | Out << '@'; |
2856 | } else if (IsInLambda && isa_and_nonnull<CXXConversionDecl>(Val: D)) { |
2857 | // The only lambda conversion operators are to function pointers, which |
2858 | // can differ by their calling convention and are typically deduced. So |
2859 | // we make sure that this type gets mangled properly. |
2860 | mangleType(T: T->getReturnType(), Range, QMM: QMM_Result); |
2861 | } else { |
2862 | QualType ResultType = T->getReturnType(); |
2863 | if (IsInLambda && isa<CXXConversionDecl>(Val: D)) { |
2864 | // The only lambda conversion operators are to function pointers, which |
2865 | // can differ by their calling convention and are typically deduced. So |
2866 | // we make sure that this type gets mangled properly. |
2867 | mangleType(T: ResultType, Range, QMM: QMM_Result); |
2868 | } else if (const auto *AT = dyn_cast_or_null<AutoType>( |
2869 | Val: ResultType->getContainedAutoType())) { |
2870 | Out << '?'; |
2871 | mangleQualifiers(Quals: ResultType.getLocalQualifiers(), /*IsMember=*/false); |
2872 | Out << '?'; |
2873 | assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType && |
2874 | "shouldn't need to mangle __auto_type!" ); |
2875 | mangleSourceName(Name: AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>" ); |
2876 | Out << '@'; |
2877 | } else if (IsInLambda) { |
2878 | Out << '@'; |
2879 | } else { |
2880 | if (ResultType->isVoidType()) |
2881 | ResultType = ResultType.getUnqualifiedType(); |
2882 | mangleType(T: ResultType, Range, QMM: QMM_Result); |
2883 | } |
2884 | } |
2885 | |
2886 | // <argument-list> ::= X # void |
2887 | // ::= <type>+ @ |
2888 | // ::= <type>* Z # varargs |
2889 | if (!Proto) { |
2890 | // Function types without prototypes can arise when mangling a function type |
2891 | // within an overloadable function in C. We mangle these as the absence of |
2892 | // any parameter types (not even an empty parameter list). |
2893 | Out << '@'; |
2894 | } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { |
2895 | Out << 'X'; |
2896 | } else { |
2897 | // Happens for function pointer type arguments for example. |
2898 | for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { |
2899 | // Explicit object parameters are prefixed by "_V". |
2900 | if (I == 0 && D && D->getParamDecl(i: I)->isExplicitObjectParameter()) |
2901 | Out << "_V" ; |
2902 | |
2903 | mangleFunctionArgumentType(T: Proto->getParamType(i: I), Range); |
2904 | // Mangle each pass_object_size parameter as if it's a parameter of enum |
2905 | // type passed directly after the parameter with the pass_object_size |
2906 | // attribute. The aforementioned enum's name is __pass_object_size, and we |
2907 | // pretend it resides in a top-level namespace called __clang. |
2908 | // |
2909 | // FIXME: Is there a defined extension notation for the MS ABI, or is it |
2910 | // necessary to just cross our fingers and hope this type+namespace |
2911 | // combination doesn't conflict with anything? |
2912 | if (D) |
2913 | if (const auto *P = D->getParamDecl(i: I)->getAttr<PassObjectSizeAttr>()) |
2914 | manglePassObjectSizeArg(POSA: P); |
2915 | } |
2916 | // <builtin-type> ::= Z # ellipsis |
2917 | if (Proto->isVariadic()) |
2918 | Out << 'Z'; |
2919 | else |
2920 | Out << '@'; |
2921 | } |
2922 | |
2923 | if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 && |
2924 | getASTContext().getLangOpts().isCompatibleWithMSVC( |
2925 | MajorVersion: LangOptions::MSVC2017_5)) |
2926 | mangleThrowSpecification(T: Proto); |
2927 | else |
2928 | Out << 'Z'; |
2929 | } |
2930 | |
2931 | void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) { |
2932 | // <function-class> ::= <member-function> E? # E designates a 64-bit 'this' |
2933 | // # pointer. in 64-bit mode *all* |
2934 | // # 'this' pointers are 64-bit. |
2935 | // ::= <global-function> |
2936 | // <member-function> ::= A # private: near |
2937 | // ::= B # private: far |
2938 | // ::= C # private: static near |
2939 | // ::= D # private: static far |
2940 | // ::= E # private: virtual near |
2941 | // ::= F # private: virtual far |
2942 | // ::= I # protected: near |
2943 | // ::= J # protected: far |
2944 | // ::= K # protected: static near |
2945 | // ::= L # protected: static far |
2946 | // ::= M # protected: virtual near |
2947 | // ::= N # protected: virtual far |
2948 | // ::= Q # public: near |
2949 | // ::= R # public: far |
2950 | // ::= S # public: static near |
2951 | // ::= T # public: static far |
2952 | // ::= U # public: virtual near |
2953 | // ::= V # public: virtual far |
2954 | // <global-function> ::= Y # global near |
2955 | // ::= Z # global far |
2956 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
2957 | bool IsVirtual = MD->isVirtual(); |
2958 | // When mangling vbase destructor variants, ignore whether or not the |
2959 | // underlying destructor was defined to be virtual. |
2960 | if (isa<CXXDestructorDecl>(Val: MD) && isStructorDecl(ND: MD) && |
2961 | StructorType == Dtor_Complete) { |
2962 | IsVirtual = false; |
2963 | } |
2964 | switch (MD->getAccess()) { |
2965 | case AS_none: |
2966 | llvm_unreachable("Unsupported access specifier" ); |
2967 | case AS_private: |
2968 | if (!MD->isImplicitObjectMemberFunction()) |
2969 | Out << 'C'; |
2970 | else if (IsVirtual) |
2971 | Out << 'E'; |
2972 | else |
2973 | Out << 'A'; |
2974 | break; |
2975 | case AS_protected: |
2976 | if (!MD->isImplicitObjectMemberFunction()) |
2977 | Out << 'K'; |
2978 | else if (IsVirtual) |
2979 | Out << 'M'; |
2980 | else |
2981 | Out << 'I'; |
2982 | break; |
2983 | case AS_public: |
2984 | if (!MD->isImplicitObjectMemberFunction()) |
2985 | Out << 'S'; |
2986 | else if (IsVirtual) |
2987 | Out << 'U'; |
2988 | else |
2989 | Out << 'Q'; |
2990 | } |
2991 | } else { |
2992 | Out << 'Y'; |
2993 | } |
2994 | } |
2995 | void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC, |
2996 | SourceRange Range) { |
2997 | // <calling-convention> ::= A # __cdecl |
2998 | // ::= B # __export __cdecl |
2999 | // ::= C # __pascal |
3000 | // ::= D # __export __pascal |
3001 | // ::= E # __thiscall |
3002 | // ::= F # __export __thiscall |
3003 | // ::= G # __stdcall |
3004 | // ::= H # __export __stdcall |
3005 | // ::= I # __fastcall |
3006 | // ::= J # __export __fastcall |
3007 | // ::= Q # __vectorcall |
3008 | // ::= S # __attribute__((__swiftcall__)) // Clang-only |
3009 | // ::= W # __attribute__((__swiftasynccall__)) |
3010 | // ::= U # __attribute__((__preserve_most__)) |
3011 | // ::= V # __attribute__((__preserve_none__)) // |
3012 | // Clang-only |
3013 | // // Clang-only |
3014 | // ::= w # __regcall |
3015 | // ::= x # __regcall4 |
3016 | // The 'export' calling conventions are from a bygone era |
3017 | // (*cough*Win16*cough*) when functions were declared for export with |
3018 | // that keyword. (It didn't actually export them, it just made them so |
3019 | // that they could be in a DLL and somebody from another module could call |
3020 | // them.) |
3021 | |
3022 | switch (CC) { |
3023 | default: |
3024 | break; |
3025 | case CC_Win64: |
3026 | case CC_X86_64SysV: |
3027 | case CC_C: |
3028 | Out << 'A'; |
3029 | return; |
3030 | case CC_X86Pascal: |
3031 | Out << 'C'; |
3032 | return; |
3033 | case CC_X86ThisCall: |
3034 | Out << 'E'; |
3035 | return; |
3036 | case CC_X86StdCall: |
3037 | Out << 'G'; |
3038 | return; |
3039 | case CC_X86FastCall: |
3040 | Out << 'I'; |
3041 | return; |
3042 | case CC_X86VectorCall: |
3043 | Out << 'Q'; |
3044 | return; |
3045 | case CC_Swift: |
3046 | Out << 'S'; |
3047 | return; |
3048 | case CC_SwiftAsync: |
3049 | Out << 'W'; |
3050 | return; |
3051 | case CC_PreserveMost: |
3052 | Out << 'U'; |
3053 | return; |
3054 | case CC_PreserveNone: |
3055 | Out << 'V'; |
3056 | return; |
3057 | case CC_X86RegCall: |
3058 | if (getASTContext().getLangOpts().RegCall4) |
3059 | Out << "x" ; |
3060 | else |
3061 | Out << "w" ; |
3062 | return; |
3063 | } |
3064 | |
3065 | DiagnosticsEngine &Diags = Context.getDiags(); |
3066 | unsigned DiagID = Diags.getCustomDiagID( |
3067 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle this calling convention yet" ); |
3068 | Diags.Report(Loc: Range.getBegin(), DiagID) << Range; |
3069 | } |
3070 | void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T, |
3071 | SourceRange Range) { |
3072 | mangleCallingConvention(CC: T->getCallConv(), Range); |
3073 | } |
3074 | |
3075 | void MicrosoftCXXNameMangler::mangleThrowSpecification( |
3076 | const FunctionProtoType *FT) { |
3077 | // <throw-spec> ::= Z # (default) |
3078 | // ::= _E # noexcept |
3079 | if (FT->canThrow()) |
3080 | Out << 'Z'; |
3081 | else |
3082 | Out << "_E" ; |
3083 | } |
3084 | |
3085 | void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T, |
3086 | Qualifiers, SourceRange Range) { |
3087 | // Probably should be mangled as a template instantiation; need to see what |
3088 | // VC does first. |
3089 | DiagnosticsEngine &Diags = Context.getDiags(); |
3090 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3091 | FormatString: "cannot mangle this unresolved dependent type yet" ); |
3092 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3093 | << Range; |
3094 | } |
3095 | |
3096 | // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type> |
3097 | // <union-type> ::= T <name> |
3098 | // <struct-type> ::= U <name> |
3099 | // <class-type> ::= V <name> |
3100 | // <enum-type> ::= W4 <name> |
3101 | void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) { |
3102 | switch (TTK) { |
3103 | case TagTypeKind::Union: |
3104 | Out << 'T'; |
3105 | break; |
3106 | case TagTypeKind::Struct: |
3107 | case TagTypeKind::Interface: |
3108 | Out << 'U'; |
3109 | break; |
3110 | case TagTypeKind::Class: |
3111 | Out << 'V'; |
3112 | break; |
3113 | case TagTypeKind::Enum: |
3114 | Out << "W4" ; |
3115 | break; |
3116 | } |
3117 | } |
3118 | void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers, |
3119 | SourceRange) { |
3120 | mangleType(TD: cast<TagType>(Val: T)->getDecl()); |
3121 | } |
3122 | void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers, |
3123 | SourceRange) { |
3124 | mangleType(TD: cast<TagType>(Val: T)->getDecl()); |
3125 | } |
3126 | void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) { |
3127 | mangleTagTypeKind(TTK: TD->getTagKind()); |
3128 | mangleName(GD: TD); |
3129 | } |
3130 | |
3131 | // If you add a call to this, consider updating isArtificialTagType() too. |
3132 | void MicrosoftCXXNameMangler::mangleArtificialTagType( |
3133 | TagTypeKind TK, StringRef UnqualifiedName, |
3134 | ArrayRef<StringRef> NestedNames) { |
3135 | // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ |
3136 | mangleTagTypeKind(TTK: TK); |
3137 | |
3138 | // Always start with the unqualified name. |
3139 | mangleSourceName(Name: UnqualifiedName); |
3140 | |
3141 | for (StringRef N : llvm::reverse(C&: NestedNames)) |
3142 | mangleSourceName(Name: N); |
3143 | |
3144 | // Terminate the whole name with an '@'. |
3145 | Out << '@'; |
3146 | } |
3147 | |
3148 | // <type> ::= <array-type> |
3149 | // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> |
3150 | // [Y <dimension-count> <dimension>+] |
3151 | // <element-type> # as global, E is never required |
3152 | // It's supposed to be the other way around, but for some strange reason, it |
3153 | // isn't. Today this behavior is retained for the sole purpose of backwards |
3154 | // compatibility. |
3155 | void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) { |
3156 | // This isn't a recursive mangling, so now we have to do it all in this |
3157 | // one call. |
3158 | manglePointerCVQualifiers(Quals: T->getElementType().getQualifiers()); |
3159 | mangleType(T: T->getElementType(), Range: SourceRange()); |
3160 | } |
3161 | void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers, |
3162 | SourceRange) { |
3163 | llvm_unreachable("Should have been special cased" ); |
3164 | } |
3165 | void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers, |
3166 | SourceRange) { |
3167 | llvm_unreachable("Should have been special cased" ); |
3168 | } |
3169 | void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T, |
3170 | Qualifiers, SourceRange) { |
3171 | llvm_unreachable("Should have been special cased" ); |
3172 | } |
3173 | void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T, |
3174 | Qualifiers, SourceRange) { |
3175 | llvm_unreachable("Should have been special cased" ); |
3176 | } |
3177 | void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) { |
3178 | QualType ElementTy(T, 0); |
3179 | SmallVector<llvm::APInt, 3> Dimensions; |
3180 | for (;;) { |
3181 | if (ElementTy->isConstantArrayType()) { |
3182 | const ConstantArrayType *CAT = |
3183 | getASTContext().getAsConstantArrayType(T: ElementTy); |
3184 | Dimensions.push_back(Elt: CAT->getSize()); |
3185 | ElementTy = CAT->getElementType(); |
3186 | } else if (ElementTy->isIncompleteArrayType()) { |
3187 | const IncompleteArrayType *IAT = |
3188 | getASTContext().getAsIncompleteArrayType(T: ElementTy); |
3189 | Dimensions.push_back(Elt: llvm::APInt(32, 0)); |
3190 | ElementTy = IAT->getElementType(); |
3191 | } else if (ElementTy->isVariableArrayType()) { |
3192 | const VariableArrayType *VAT = |
3193 | getASTContext().getAsVariableArrayType(T: ElementTy); |
3194 | Dimensions.push_back(Elt: llvm::APInt(32, 0)); |
3195 | ElementTy = VAT->getElementType(); |
3196 | } else if (ElementTy->isDependentSizedArrayType()) { |
3197 | // The dependent expression has to be folded into a constant (TODO). |
3198 | const DependentSizedArrayType *DSAT = |
3199 | getASTContext().getAsDependentSizedArrayType(T: ElementTy); |
3200 | DiagnosticsEngine &Diags = Context.getDiags(); |
3201 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3202 | FormatString: "cannot mangle this dependent-length array yet" ); |
3203 | Diags.Report(Loc: DSAT->getSizeExpr()->getExprLoc(), DiagID) |
3204 | << DSAT->getBracketsRange(); |
3205 | return; |
3206 | } else { |
3207 | break; |
3208 | } |
3209 | } |
3210 | Out << 'Y'; |
3211 | // <dimension-count> ::= <number> # number of extra dimensions |
3212 | mangleNumber(Number: Dimensions.size()); |
3213 | for (const llvm::APInt &Dimension : Dimensions) |
3214 | mangleNumber(Number: Dimension.getLimitedValue()); |
3215 | mangleType(T: ElementTy, Range: SourceRange(), QMM: QMM_Escape); |
3216 | } |
3217 | |
3218 | void MicrosoftCXXNameMangler::mangleType(const ArrayParameterType *T, |
3219 | Qualifiers, SourceRange) { |
3220 | mangleArrayType(T: cast<ConstantArrayType>(Val: T)); |
3221 | } |
3222 | |
3223 | // <type> ::= <pointer-to-member-type> |
3224 | // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> |
3225 | // <class name> <type> |
3226 | void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, |
3227 | Qualifiers Quals, SourceRange Range) { |
3228 | QualType PointeeType = T->getPointeeType(); |
3229 | manglePointerCVQualifiers(Quals); |
3230 | manglePointerExtQualifiers(Quals, PointeeType); |
3231 | if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) { |
3232 | Out << '8'; |
3233 | mangleName(GD: T->getClass()->castAs<RecordType>()->getDecl()); |
3234 | mangleFunctionType(T: FPT, D: nullptr, ForceThisQuals: true); |
3235 | } else { |
3236 | mangleQualifiers(Quals: PointeeType.getQualifiers(), IsMember: true); |
3237 | mangleName(GD: T->getClass()->castAs<RecordType>()->getDecl()); |
3238 | mangleType(T: PointeeType, Range, QMM: QMM_Drop); |
3239 | } |
3240 | } |
3241 | |
3242 | void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T, |
3243 | Qualifiers, SourceRange Range) { |
3244 | DiagnosticsEngine &Diags = Context.getDiags(); |
3245 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3246 | FormatString: "cannot mangle this template type parameter type yet" ); |
3247 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3248 | << Range; |
3249 | } |
3250 | |
3251 | void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T, |
3252 | Qualifiers, SourceRange Range) { |
3253 | DiagnosticsEngine &Diags = Context.getDiags(); |
3254 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3255 | FormatString: "cannot mangle this substituted parameter pack yet" ); |
3256 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3257 | << Range; |
3258 | } |
3259 | |
3260 | // <type> ::= <pointer-type> |
3261 | // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type> |
3262 | // # the E is required for 64-bit non-static pointers |
3263 | void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals, |
3264 | SourceRange Range) { |
3265 | QualType PointeeType = T->getPointeeType(); |
3266 | manglePointerCVQualifiers(Quals); |
3267 | manglePointerExtQualifiers(Quals, PointeeType); |
3268 | |
3269 | // For pointer size address spaces, go down the same type mangling path as |
3270 | // non address space types. |
3271 | LangAS AddrSpace = PointeeType.getQualifiers().getAddressSpace(); |
3272 | if (isPtrSizeAddressSpace(AS: AddrSpace) || AddrSpace == LangAS::Default) |
3273 | mangleType(T: PointeeType, Range); |
3274 | else |
3275 | mangleAddressSpaceType(T: PointeeType, Quals: PointeeType.getQualifiers(), Range); |
3276 | } |
3277 | |
3278 | void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T, |
3279 | Qualifiers Quals, SourceRange Range) { |
3280 | QualType PointeeType = T->getPointeeType(); |
3281 | switch (Quals.getObjCLifetime()) { |
3282 | case Qualifiers::OCL_None: |
3283 | case Qualifiers::OCL_ExplicitNone: |
3284 | break; |
3285 | case Qualifiers::OCL_Autoreleasing: |
3286 | case Qualifiers::OCL_Strong: |
3287 | case Qualifiers::OCL_Weak: |
3288 | return mangleObjCLifetime(Type: PointeeType, Quals, Range); |
3289 | } |
3290 | manglePointerCVQualifiers(Quals); |
3291 | manglePointerExtQualifiers(Quals, PointeeType); |
3292 | mangleType(T: PointeeType, Range); |
3293 | } |
3294 | |
3295 | // <type> ::= <reference-type> |
3296 | // <reference-type> ::= A E? <cvr-qualifiers> <type> |
3297 | // # the E is required for 64-bit non-static lvalue references |
3298 | void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T, |
3299 | Qualifiers Quals, SourceRange Range) { |
3300 | QualType PointeeType = T->getPointeeType(); |
3301 | assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!" ); |
3302 | Out << 'A'; |
3303 | manglePointerExtQualifiers(Quals, PointeeType); |
3304 | mangleType(T: PointeeType, Range); |
3305 | } |
3306 | |
3307 | // <type> ::= <r-value-reference-type> |
3308 | // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type> |
3309 | // # the E is required for 64-bit non-static rvalue references |
3310 | void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T, |
3311 | Qualifiers Quals, SourceRange Range) { |
3312 | QualType PointeeType = T->getPointeeType(); |
3313 | assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!" ); |
3314 | Out << "$$Q" ; |
3315 | manglePointerExtQualifiers(Quals, PointeeType); |
3316 | mangleType(T: PointeeType, Range); |
3317 | } |
3318 | |
3319 | void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers, |
3320 | SourceRange Range) { |
3321 | QualType ElementType = T->getElementType(); |
3322 | |
3323 | llvm::SmallString<64> TemplateMangling; |
3324 | llvm::raw_svector_ostream Stream(TemplateMangling); |
3325 | MicrosoftCXXNameMangler (Context, Stream); |
3326 | Stream << "?$" ; |
3327 | Extra.mangleSourceName(Name: "_Complex" ); |
3328 | Extra.mangleType(T: ElementType, Range, QMM: QMM_Escape); |
3329 | |
3330 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__clang" }); |
3331 | } |
3332 | |
3333 | // Returns true for types that mangleArtificialTagType() gets called for with |
3334 | // TagTypeKind Union, Struct, Class and where compatibility with MSVC's |
3335 | // mangling matters. |
3336 | // (It doesn't matter for Objective-C types and the like that cl.exe doesn't |
3337 | // support.) |
3338 | bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const { |
3339 | const Type *ty = T.getTypePtr(); |
3340 | switch (ty->getTypeClass()) { |
3341 | default: |
3342 | return false; |
3343 | |
3344 | case Type::Vector: { |
3345 | // For ABI compatibility only __m64, __m128(id), and __m256(id) matter, |
3346 | // but since mangleType(VectorType*) always calls mangleArtificialTagType() |
3347 | // just always return true (the other vector types are clang-only). |
3348 | return true; |
3349 | } |
3350 | } |
3351 | } |
3352 | |
3353 | void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals, |
3354 | SourceRange Range) { |
3355 | QualType EltTy = T->getElementType(); |
3356 | const BuiltinType *ET = EltTy->getAs<BuiltinType>(); |
3357 | const BitIntType *BitIntTy = EltTy->getAs<BitIntType>(); |
3358 | assert((ET || BitIntTy) && |
3359 | "vectors with non-builtin/_BitInt elements are unsupported" ); |
3360 | uint64_t Width = getASTContext().getTypeSize(T); |
3361 | // Pattern match exactly the typedefs in our intrinsic headers. Anything that |
3362 | // doesn't match the Intel types uses a custom mangling below. |
3363 | size_t OutSizeBefore = Out.tell(); |
3364 | if (!isa<ExtVectorType>(Val: T)) { |
3365 | if (getASTContext().getTargetInfo().getTriple().isX86() && ET) { |
3366 | if (Width == 64 && ET->getKind() == BuiltinType::LongLong) { |
3367 | mangleArtificialTagType(TK: TagTypeKind::Union, UnqualifiedName: "__m64" ); |
3368 | } else if (Width >= 128) { |
3369 | if (ET->getKind() == BuiltinType::Float) |
3370 | mangleArtificialTagType(TK: TagTypeKind::Union, |
3371 | UnqualifiedName: "__m" + llvm::utostr(X: Width)); |
3372 | else if (ET->getKind() == BuiltinType::LongLong) |
3373 | mangleArtificialTagType(TK: TagTypeKind::Union, |
3374 | UnqualifiedName: "__m" + llvm::utostr(X: Width) + 'i'); |
3375 | else if (ET->getKind() == BuiltinType::Double) |
3376 | mangleArtificialTagType(TK: TagTypeKind::Struct, |
3377 | UnqualifiedName: "__m" + llvm::utostr(X: Width) + 'd'); |
3378 | } |
3379 | } |
3380 | } |
3381 | |
3382 | bool IsBuiltin = Out.tell() != OutSizeBefore; |
3383 | if (!IsBuiltin) { |
3384 | // The MS ABI doesn't have a special mangling for vector types, so we define |
3385 | // our own mangling to handle uses of __vector_size__ on user-specified |
3386 | // types, and for extensions like __v4sf. |
3387 | |
3388 | llvm::SmallString<64> TemplateMangling; |
3389 | llvm::raw_svector_ostream Stream(TemplateMangling); |
3390 | MicrosoftCXXNameMangler (Context, Stream); |
3391 | Stream << "?$" ; |
3392 | Extra.mangleSourceName(Name: "__vector" ); |
3393 | Extra.mangleType(T: QualType(ET ? static_cast<const Type *>(ET) : BitIntTy, 0), |
3394 | Range, QMM: QMM_Escape); |
3395 | Extra.mangleIntegerLiteral(Value: llvm::APSInt::getUnsigned(X: T->getNumElements())); |
3396 | |
3397 | mangleArtificialTagType(TK: TagTypeKind::Union, UnqualifiedName: TemplateMangling, NestedNames: {"__clang" }); |
3398 | } |
3399 | } |
3400 | |
3401 | void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T, |
3402 | Qualifiers Quals, SourceRange Range) { |
3403 | mangleType(T: static_cast<const VectorType *>(T), Quals, Range); |
3404 | } |
3405 | |
3406 | void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T, |
3407 | Qualifiers, SourceRange Range) { |
3408 | DiagnosticsEngine &Diags = Context.getDiags(); |
3409 | unsigned DiagID = Diags.getCustomDiagID( |
3410 | L: DiagnosticsEngine::Error, |
3411 | FormatString: "cannot mangle this dependent-sized vector type yet" ); |
3412 | Diags.Report(Loc: Range.getBegin(), DiagID) << Range; |
3413 | } |
3414 | |
3415 | void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T, |
3416 | Qualifiers, SourceRange Range) { |
3417 | DiagnosticsEngine &Diags = Context.getDiags(); |
3418 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3419 | FormatString: "cannot mangle this dependent-sized extended vector type yet" ); |
3420 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3421 | << Range; |
3422 | } |
3423 | |
3424 | void MicrosoftCXXNameMangler::mangleType(const ConstantMatrixType *T, |
3425 | Qualifiers quals, SourceRange Range) { |
3426 | DiagnosticsEngine &Diags = Context.getDiags(); |
3427 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3428 | FormatString: "Cannot mangle this matrix type yet" ); |
3429 | Diags.Report(Loc: Range.getBegin(), DiagID) << Range; |
3430 | } |
3431 | |
3432 | void MicrosoftCXXNameMangler::mangleType(const DependentSizedMatrixType *T, |
3433 | Qualifiers quals, SourceRange Range) { |
3434 | DiagnosticsEngine &Diags = Context.getDiags(); |
3435 | unsigned DiagID = Diags.getCustomDiagID( |
3436 | L: DiagnosticsEngine::Error, |
3437 | FormatString: "Cannot mangle this dependent-sized matrix type yet" ); |
3438 | Diags.Report(Loc: Range.getBegin(), DiagID) << Range; |
3439 | } |
3440 | |
3441 | void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T, |
3442 | Qualifiers, SourceRange Range) { |
3443 | DiagnosticsEngine &Diags = Context.getDiags(); |
3444 | unsigned DiagID = Diags.getCustomDiagID( |
3445 | L: DiagnosticsEngine::Error, |
3446 | FormatString: "cannot mangle this dependent address space type yet" ); |
3447 | Diags.Report(Loc: Range.getBegin(), DiagID) << Range; |
3448 | } |
3449 | |
3450 | void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers, |
3451 | SourceRange) { |
3452 | // ObjC interfaces have structs underlying them. |
3453 | mangleTagTypeKind(TTK: TagTypeKind::Struct); |
3454 | mangleName(GD: T->getDecl()); |
3455 | } |
3456 | |
3457 | void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, |
3458 | Qualifiers Quals, SourceRange Range) { |
3459 | if (T->isKindOfType()) |
3460 | return mangleObjCKindOfType(T, Quals, Range); |
3461 | |
3462 | if (T->qual_empty() && !T->isSpecialized()) |
3463 | return mangleType(T: T->getBaseType(), Range, QMM: QMM_Drop); |
3464 | |
3465 | ArgBackRefMap OuterFunArgsContext; |
3466 | ArgBackRefMap OuterTemplateArgsContext; |
3467 | BackRefVec OuterTemplateContext; |
3468 | |
3469 | FunArgBackReferences.swap(RHS&: OuterFunArgsContext); |
3470 | TemplateArgBackReferences.swap(RHS&: OuterTemplateArgsContext); |
3471 | NameBackReferences.swap(RHS&: OuterTemplateContext); |
3472 | |
3473 | mangleTagTypeKind(TTK: TagTypeKind::Struct); |
3474 | |
3475 | Out << "?$" ; |
3476 | if (T->isObjCId()) |
3477 | mangleSourceName(Name: "objc_object" ); |
3478 | else if (T->isObjCClass()) |
3479 | mangleSourceName(Name: "objc_class" ); |
3480 | else |
3481 | mangleSourceName(Name: T->getInterface()->getName()); |
3482 | |
3483 | for (const auto &Q : T->quals()) |
3484 | mangleObjCProtocol(PD: Q); |
3485 | |
3486 | if (T->isSpecialized()) |
3487 | for (const auto &TA : T->getTypeArgs()) |
3488 | mangleType(T: TA, Range, QMM: QMM_Drop); |
3489 | |
3490 | Out << '@'; |
3491 | |
3492 | Out << '@'; |
3493 | |
3494 | FunArgBackReferences.swap(RHS&: OuterFunArgsContext); |
3495 | TemplateArgBackReferences.swap(RHS&: OuterTemplateArgsContext); |
3496 | NameBackReferences.swap(RHS&: OuterTemplateContext); |
3497 | } |
3498 | |
3499 | void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T, |
3500 | Qualifiers Quals, SourceRange Range) { |
3501 | QualType PointeeType = T->getPointeeType(); |
3502 | manglePointerCVQualifiers(Quals); |
3503 | manglePointerExtQualifiers(Quals, PointeeType); |
3504 | |
3505 | Out << "_E" ; |
3506 | |
3507 | mangleFunctionType(T: PointeeType->castAs<FunctionProtoType>()); |
3508 | } |
3509 | |
3510 | void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *, |
3511 | Qualifiers, SourceRange) { |
3512 | llvm_unreachable("Cannot mangle injected class name type." ); |
3513 | } |
3514 | |
3515 | void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T, |
3516 | Qualifiers, SourceRange Range) { |
3517 | DiagnosticsEngine &Diags = Context.getDiags(); |
3518 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3519 | FormatString: "cannot mangle this template specialization type yet" ); |
3520 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3521 | << Range; |
3522 | } |
3523 | |
3524 | void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers, |
3525 | SourceRange Range) { |
3526 | DiagnosticsEngine &Diags = Context.getDiags(); |
3527 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3528 | FormatString: "cannot mangle this dependent name type yet" ); |
3529 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3530 | << Range; |
3531 | } |
3532 | |
3533 | void MicrosoftCXXNameMangler::mangleType( |
3534 | const DependentTemplateSpecializationType *T, Qualifiers, |
3535 | SourceRange Range) { |
3536 | DiagnosticsEngine &Diags = Context.getDiags(); |
3537 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3538 | FormatString: "cannot mangle this dependent template specialization type yet" ); |
3539 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3540 | << Range; |
3541 | } |
3542 | |
3543 | void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers, |
3544 | SourceRange Range) { |
3545 | DiagnosticsEngine &Diags = Context.getDiags(); |
3546 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3547 | FormatString: "cannot mangle this pack expansion yet" ); |
3548 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3549 | << Range; |
3550 | } |
3551 | |
3552 | void MicrosoftCXXNameMangler::mangleType(const PackIndexingType *T, |
3553 | Qualifiers Quals, SourceRange Range) { |
3554 | manglePointerCVQualifiers(Quals); |
3555 | mangleType(T: T->getSelectedType(), Range); |
3556 | } |
3557 | |
3558 | void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers, |
3559 | SourceRange Range) { |
3560 | DiagnosticsEngine &Diags = Context.getDiags(); |
3561 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3562 | FormatString: "cannot mangle this typeof(type) yet" ); |
3563 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3564 | << Range; |
3565 | } |
3566 | |
3567 | void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers, |
3568 | SourceRange Range) { |
3569 | DiagnosticsEngine &Diags = Context.getDiags(); |
3570 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3571 | FormatString: "cannot mangle this typeof(expression) yet" ); |
3572 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3573 | << Range; |
3574 | } |
3575 | |
3576 | void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers, |
3577 | SourceRange Range) { |
3578 | DiagnosticsEngine &Diags = Context.getDiags(); |
3579 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3580 | FormatString: "cannot mangle this decltype() yet" ); |
3581 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3582 | << Range; |
3583 | } |
3584 | |
3585 | void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T, |
3586 | Qualifiers, SourceRange Range) { |
3587 | DiagnosticsEngine &Diags = Context.getDiags(); |
3588 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3589 | FormatString: "cannot mangle this unary transform type yet" ); |
3590 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3591 | << Range; |
3592 | } |
3593 | |
3594 | void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers, |
3595 | SourceRange Range) { |
3596 | assert(T->getDeducedType().isNull() && "expecting a dependent type!" ); |
3597 | |
3598 | DiagnosticsEngine &Diags = Context.getDiags(); |
3599 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3600 | FormatString: "cannot mangle this 'auto' type yet" ); |
3601 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3602 | << Range; |
3603 | } |
3604 | |
3605 | void MicrosoftCXXNameMangler::mangleType( |
3606 | const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) { |
3607 | assert(T->getDeducedType().isNull() && "expecting a dependent type!" ); |
3608 | |
3609 | DiagnosticsEngine &Diags = Context.getDiags(); |
3610 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3611 | FormatString: "cannot mangle this deduced class template specialization type yet" ); |
3612 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3613 | << Range; |
3614 | } |
3615 | |
3616 | void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers, |
3617 | SourceRange Range) { |
3618 | QualType ValueType = T->getValueType(); |
3619 | |
3620 | llvm::SmallString<64> TemplateMangling; |
3621 | llvm::raw_svector_ostream Stream(TemplateMangling); |
3622 | MicrosoftCXXNameMangler (Context, Stream); |
3623 | Stream << "?$" ; |
3624 | Extra.mangleSourceName(Name: "_Atomic" ); |
3625 | Extra.mangleType(T: ValueType, Range, QMM: QMM_Escape); |
3626 | |
3627 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__clang" }); |
3628 | } |
3629 | |
3630 | void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers, |
3631 | SourceRange Range) { |
3632 | QualType ElementType = T->getElementType(); |
3633 | |
3634 | llvm::SmallString<64> TemplateMangling; |
3635 | llvm::raw_svector_ostream Stream(TemplateMangling); |
3636 | MicrosoftCXXNameMangler (Context, Stream); |
3637 | Stream << "?$" ; |
3638 | Extra.mangleSourceName(Name: "ocl_pipe" ); |
3639 | Extra.mangleType(T: ElementType, Range, QMM: QMM_Escape); |
3640 | Extra.mangleIntegerLiteral(Value: llvm::APSInt::get(X: T->isReadOnly())); |
3641 | |
3642 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__clang" }); |
3643 | } |
3644 | |
3645 | void MicrosoftMangleContextImpl::mangleCXXName(GlobalDecl GD, |
3646 | raw_ostream &Out) { |
3647 | const NamedDecl *D = cast<NamedDecl>(Val: GD.getDecl()); |
3648 | PrettyStackTraceDecl CrashInfo(D, SourceLocation(), |
3649 | getASTContext().getSourceManager(), |
3650 | "Mangling declaration" ); |
3651 | |
3652 | msvc_hashing_ostream MHO(Out); |
3653 | |
3654 | if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: D)) { |
3655 | auto Type = GD.getCtorType(); |
3656 | MicrosoftCXXNameMangler mangler(*this, MHO, CD, Type); |
3657 | return mangler.mangle(GD); |
3658 | } |
3659 | |
3660 | if (auto *DD = dyn_cast<CXXDestructorDecl>(Val: D)) { |
3661 | auto Type = GD.getDtorType(); |
3662 | MicrosoftCXXNameMangler mangler(*this, MHO, DD, Type); |
3663 | return mangler.mangle(GD); |
3664 | } |
3665 | |
3666 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3667 | return Mangler.mangle(GD); |
3668 | } |
3669 | |
3670 | void MicrosoftCXXNameMangler::mangleType(const BitIntType *T, Qualifiers, |
3671 | SourceRange Range) { |
3672 | llvm::SmallString<64> TemplateMangling; |
3673 | llvm::raw_svector_ostream Stream(TemplateMangling); |
3674 | MicrosoftCXXNameMangler (Context, Stream); |
3675 | Stream << "?$" ; |
3676 | if (T->isUnsigned()) |
3677 | Extra.mangleSourceName(Name: "_UBitInt" ); |
3678 | else |
3679 | Extra.mangleSourceName(Name: "_BitInt" ); |
3680 | Extra.mangleIntegerLiteral(Value: llvm::APSInt::getUnsigned(X: T->getNumBits())); |
3681 | |
3682 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__clang" }); |
3683 | } |
3684 | |
3685 | void MicrosoftCXXNameMangler::mangleType(const DependentBitIntType *T, |
3686 | Qualifiers, SourceRange Range) { |
3687 | DiagnosticsEngine &Diags = Context.getDiags(); |
3688 | unsigned DiagID = Diags.getCustomDiagID( |
3689 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle this DependentBitInt type yet" ); |
3690 | Diags.Report(Loc: Range.getBegin(), DiagID) << Range; |
3691 | } |
3692 | |
3693 | // <this-adjustment> ::= <no-adjustment> | <static-adjustment> | |
3694 | // <virtual-adjustment> |
3695 | // <no-adjustment> ::= A # private near |
3696 | // ::= B # private far |
3697 | // ::= I # protected near |
3698 | // ::= J # protected far |
3699 | // ::= Q # public near |
3700 | // ::= R # public far |
3701 | // <static-adjustment> ::= G <static-offset> # private near |
3702 | // ::= H <static-offset> # private far |
3703 | // ::= O <static-offset> # protected near |
3704 | // ::= P <static-offset> # protected far |
3705 | // ::= W <static-offset> # public near |
3706 | // ::= X <static-offset> # public far |
3707 | // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near |
3708 | // ::= $1 <virtual-shift> <static-offset> # private far |
3709 | // ::= $2 <virtual-shift> <static-offset> # protected near |
3710 | // ::= $3 <virtual-shift> <static-offset> # protected far |
3711 | // ::= $4 <virtual-shift> <static-offset> # public near |
3712 | // ::= $5 <virtual-shift> <static-offset> # public far |
3713 | // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift> |
3714 | // <vtordisp-shift> ::= <offset-to-vtordisp> |
3715 | // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset> |
3716 | // <offset-to-vtordisp> |
3717 | static void mangleThunkThisAdjustment(AccessSpecifier AS, |
3718 | const ThisAdjustment &Adjustment, |
3719 | MicrosoftCXXNameMangler &Mangler, |
3720 | raw_ostream &Out) { |
3721 | if (!Adjustment.Virtual.isEmpty()) { |
3722 | Out << '$'; |
3723 | char AccessSpec; |
3724 | switch (AS) { |
3725 | case AS_none: |
3726 | llvm_unreachable("Unsupported access specifier" ); |
3727 | case AS_private: |
3728 | AccessSpec = '0'; |
3729 | break; |
3730 | case AS_protected: |
3731 | AccessSpec = '2'; |
3732 | break; |
3733 | case AS_public: |
3734 | AccessSpec = '4'; |
3735 | } |
3736 | if (Adjustment.Virtual.Microsoft.VBPtrOffset) { |
3737 | Out << 'R' << AccessSpec; |
3738 | Mangler.mangleNumber( |
3739 | Number: static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset)); |
3740 | Mangler.mangleNumber( |
3741 | Number: static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset)); |
3742 | Mangler.mangleNumber( |
3743 | Number: static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); |
3744 | Mangler.mangleNumber(Number: static_cast<uint32_t>(Adjustment.NonVirtual)); |
3745 | } else { |
3746 | Out << AccessSpec; |
3747 | Mangler.mangleNumber( |
3748 | Number: static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); |
3749 | Mangler.mangleNumber(Number: -static_cast<uint32_t>(Adjustment.NonVirtual)); |
3750 | } |
3751 | } else if (Adjustment.NonVirtual != 0) { |
3752 | switch (AS) { |
3753 | case AS_none: |
3754 | llvm_unreachable("Unsupported access specifier" ); |
3755 | case AS_private: |
3756 | Out << 'G'; |
3757 | break; |
3758 | case AS_protected: |
3759 | Out << 'O'; |
3760 | break; |
3761 | case AS_public: |
3762 | Out << 'W'; |
3763 | } |
3764 | Mangler.mangleNumber(Number: -static_cast<uint32_t>(Adjustment.NonVirtual)); |
3765 | } else { |
3766 | switch (AS) { |
3767 | case AS_none: |
3768 | llvm_unreachable("Unsupported access specifier" ); |
3769 | case AS_private: |
3770 | Out << 'A'; |
3771 | break; |
3772 | case AS_protected: |
3773 | Out << 'I'; |
3774 | break; |
3775 | case AS_public: |
3776 | Out << 'Q'; |
3777 | } |
3778 | } |
3779 | } |
3780 | |
3781 | void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk( |
3782 | const CXXMethodDecl *MD, const MethodVFTableLocation &ML, |
3783 | raw_ostream &Out) { |
3784 | msvc_hashing_ostream MHO(Out); |
3785 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3786 | Mangler.getStream() << '?'; |
3787 | Mangler.mangleVirtualMemPtrThunk(MD, ML); |
3788 | } |
3789 | |
3790 | void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, |
3791 | const ThunkInfo &Thunk, |
3792 | bool /*ElideOverrideInfo*/, |
3793 | raw_ostream &Out) { |
3794 | msvc_hashing_ostream MHO(Out); |
3795 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3796 | Mangler.getStream() << '?'; |
3797 | Mangler.mangleName(GD: MD); |
3798 | |
3799 | // Usually the thunk uses the access specifier of the new method, but if this |
3800 | // is a covariant return thunk, then MSVC always uses the public access |
3801 | // specifier, and we do the same. |
3802 | AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public; |
3803 | mangleThunkThisAdjustment(AS, Adjustment: Thunk.This, Mangler, Out&: MHO); |
3804 | |
3805 | if (!Thunk.Return.isEmpty()) |
3806 | assert(Thunk.Method != nullptr && |
3807 | "Thunk info should hold the overridee decl" ); |
3808 | |
3809 | const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD; |
3810 | Mangler.mangleFunctionType( |
3811 | T: DeclForFPT->getType()->castAs<FunctionProtoType>(), D: MD); |
3812 | } |
3813 | |
3814 | void MicrosoftMangleContextImpl::mangleCXXDtorThunk(const CXXDestructorDecl *DD, |
3815 | CXXDtorType Type, |
3816 | const ThunkInfo &Thunk, |
3817 | bool /*ElideOverrideInfo*/, |
3818 | raw_ostream &Out) { |
3819 | // FIXME: Actually, the dtor thunk should be emitted for vector deleting |
3820 | // dtors rather than scalar deleting dtors. Just use the vector deleting dtor |
3821 | // mangling manually until we support both deleting dtor types. |
3822 | assert(Type == Dtor_Deleting); |
3823 | msvc_hashing_ostream MHO(Out); |
3824 | MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type); |
3825 | Mangler.getStream() << "??_E" ; |
3826 | Mangler.mangleName(GD: DD->getParent()); |
3827 | auto &Adjustment = Thunk.This; |
3828 | mangleThunkThisAdjustment(AS: DD->getAccess(), Adjustment, Mangler, Out&: MHO); |
3829 | Mangler.mangleFunctionType(T: DD->getType()->castAs<FunctionProtoType>(), D: DD); |
3830 | } |
3831 | |
3832 | void MicrosoftMangleContextImpl::mangleCXXVFTable( |
3833 | const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, |
3834 | raw_ostream &Out) { |
3835 | // <mangled-name> ::= ?_7 <class-name> <storage-class> |
3836 | // <cvr-qualifiers> [<name>] @ |
3837 | // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> |
3838 | // is always '6' for vftables. |
3839 | msvc_hashing_ostream MHO(Out); |
3840 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3841 | if (Derived->hasAttr<DLLImportAttr>()) |
3842 | Mangler.getStream() << "??_S" ; |
3843 | else |
3844 | Mangler.getStream() << "??_7" ; |
3845 | Mangler.mangleName(GD: Derived); |
3846 | Mangler.getStream() << "6B" ; // '6' for vftable, 'B' for const. |
3847 | for (const CXXRecordDecl *RD : BasePath) |
3848 | Mangler.mangleName(GD: RD); |
3849 | Mangler.getStream() << '@'; |
3850 | } |
3851 | |
3852 | void MicrosoftMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *Derived, |
3853 | raw_ostream &Out) { |
3854 | // TODO: Determine appropriate mangling for MSABI |
3855 | mangleCXXVFTable(Derived, BasePath: {}, Out); |
3856 | } |
3857 | |
3858 | void MicrosoftMangleContextImpl::mangleCXXVBTable( |
3859 | const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, |
3860 | raw_ostream &Out) { |
3861 | // <mangled-name> ::= ?_8 <class-name> <storage-class> |
3862 | // <cvr-qualifiers> [<name>] @ |
3863 | // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> |
3864 | // is always '7' for vbtables. |
3865 | msvc_hashing_ostream MHO(Out); |
3866 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3867 | Mangler.getStream() << "??_8" ; |
3868 | Mangler.mangleName(GD: Derived); |
3869 | Mangler.getStream() << "7B" ; // '7' for vbtable, 'B' for const. |
3870 | for (const CXXRecordDecl *RD : BasePath) |
3871 | Mangler.mangleName(GD: RD); |
3872 | Mangler.getStream() << '@'; |
3873 | } |
3874 | |
3875 | void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) { |
3876 | msvc_hashing_ostream MHO(Out); |
3877 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3878 | Mangler.getStream() << "??_R0" ; |
3879 | Mangler.mangleType(T, Range: SourceRange(), QMM: MicrosoftCXXNameMangler::QMM_Result); |
3880 | Mangler.getStream() << "@8" ; |
3881 | } |
3882 | |
3883 | void MicrosoftMangleContextImpl::mangleCXXRTTIName( |
3884 | QualType T, raw_ostream &Out, bool NormalizeIntegers = false) { |
3885 | MicrosoftCXXNameMangler Mangler(*this, Out); |
3886 | Mangler.getStream() << '.'; |
3887 | Mangler.mangleType(T, Range: SourceRange(), QMM: MicrosoftCXXNameMangler::QMM_Result); |
3888 | } |
3889 | |
3890 | void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap( |
3891 | const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) { |
3892 | msvc_hashing_ostream MHO(Out); |
3893 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3894 | Mangler.getStream() << "??_K" ; |
3895 | Mangler.mangleName(GD: SrcRD); |
3896 | Mangler.getStream() << "$C" ; |
3897 | Mangler.mangleName(GD: DstRD); |
3898 | } |
3899 | |
3900 | void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst, |
3901 | bool IsVolatile, |
3902 | bool IsUnaligned, |
3903 | uint32_t NumEntries, |
3904 | raw_ostream &Out) { |
3905 | msvc_hashing_ostream MHO(Out); |
3906 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3907 | Mangler.getStream() << "_TI" ; |
3908 | if (IsConst) |
3909 | Mangler.getStream() << 'C'; |
3910 | if (IsVolatile) |
3911 | Mangler.getStream() << 'V'; |
3912 | if (IsUnaligned) |
3913 | Mangler.getStream() << 'U'; |
3914 | Mangler.getStream() << NumEntries; |
3915 | Mangler.mangleType(T, Range: SourceRange(), QMM: MicrosoftCXXNameMangler::QMM_Result); |
3916 | } |
3917 | |
3918 | void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray( |
3919 | QualType T, uint32_t NumEntries, raw_ostream &Out) { |
3920 | msvc_hashing_ostream MHO(Out); |
3921 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3922 | Mangler.getStream() << "_CTA" ; |
3923 | Mangler.getStream() << NumEntries; |
3924 | Mangler.mangleType(T, Range: SourceRange(), QMM: MicrosoftCXXNameMangler::QMM_Result); |
3925 | } |
3926 | |
3927 | void MicrosoftMangleContextImpl::mangleCXXCatchableType( |
3928 | QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size, |
3929 | uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex, |
3930 | raw_ostream &Out) { |
3931 | MicrosoftCXXNameMangler Mangler(*this, Out); |
3932 | Mangler.getStream() << "_CT" ; |
3933 | |
3934 | llvm::SmallString<64> RTTIMangling; |
3935 | { |
3936 | llvm::raw_svector_ostream Stream(RTTIMangling); |
3937 | msvc_hashing_ostream MHO(Stream); |
3938 | mangleCXXRTTI(T, Out&: MHO); |
3939 | } |
3940 | Mangler.getStream() << RTTIMangling; |
3941 | |
3942 | // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but |
3943 | // both older and newer versions include it. |
3944 | // FIXME: It is known that the Ctor is present in 2013, and in 2017.7 |
3945 | // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4 |
3946 | // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914? |
3947 | // Or 1912, 1913 already?). |
3948 | bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC( |
3949 | MajorVersion: LangOptions::MSVC2015) && |
3950 | !getASTContext().getLangOpts().isCompatibleWithMSVC( |
3951 | MajorVersion: LangOptions::MSVC2017_7); |
3952 | llvm::SmallString<64> CopyCtorMangling; |
3953 | if (!OmitCopyCtor && CD) { |
3954 | llvm::raw_svector_ostream Stream(CopyCtorMangling); |
3955 | msvc_hashing_ostream MHO(Stream); |
3956 | mangleCXXName(GD: GlobalDecl(CD, CT), Out&: MHO); |
3957 | } |
3958 | Mangler.getStream() << CopyCtorMangling; |
3959 | |
3960 | Mangler.getStream() << Size; |
3961 | if (VBPtrOffset == -1) { |
3962 | if (NVOffset) { |
3963 | Mangler.getStream() << NVOffset; |
3964 | } |
3965 | } else { |
3966 | Mangler.getStream() << NVOffset; |
3967 | Mangler.getStream() << VBPtrOffset; |
3968 | Mangler.getStream() << VBIndex; |
3969 | } |
3970 | } |
3971 | |
3972 | void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor( |
3973 | const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset, |
3974 | uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) { |
3975 | msvc_hashing_ostream MHO(Out); |
3976 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3977 | Mangler.getStream() << "??_R1" ; |
3978 | Mangler.mangleNumber(Number: NVOffset); |
3979 | Mangler.mangleNumber(Number: VBPtrOffset); |
3980 | Mangler.mangleNumber(Number: VBTableOffset); |
3981 | Mangler.mangleNumber(Number: Flags); |
3982 | Mangler.mangleName(GD: Derived); |
3983 | Mangler.getStream() << "8" ; |
3984 | } |
3985 | |
3986 | void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray( |
3987 | const CXXRecordDecl *Derived, raw_ostream &Out) { |
3988 | msvc_hashing_ostream MHO(Out); |
3989 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3990 | Mangler.getStream() << "??_R2" ; |
3991 | Mangler.mangleName(GD: Derived); |
3992 | Mangler.getStream() << "8" ; |
3993 | } |
3994 | |
3995 | void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor( |
3996 | const CXXRecordDecl *Derived, raw_ostream &Out) { |
3997 | msvc_hashing_ostream MHO(Out); |
3998 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3999 | Mangler.getStream() << "??_R3" ; |
4000 | Mangler.mangleName(GD: Derived); |
4001 | Mangler.getStream() << "8" ; |
4002 | } |
4003 | |
4004 | void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator( |
4005 | const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, |
4006 | raw_ostream &Out) { |
4007 | // <mangled-name> ::= ?_R4 <class-name> <storage-class> |
4008 | // <cvr-qualifiers> [<name>] @ |
4009 | // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> |
4010 | // is always '6' for vftables. |
4011 | llvm::SmallString<64> VFTableMangling; |
4012 | llvm::raw_svector_ostream Stream(VFTableMangling); |
4013 | mangleCXXVFTable(Derived, BasePath, Out&: Stream); |
4014 | |
4015 | if (VFTableMangling.starts_with(Prefix: "??@" )) { |
4016 | assert(VFTableMangling.ends_with("@" )); |
4017 | Out << VFTableMangling << "??_R4@" ; |
4018 | return; |
4019 | } |
4020 | |
4021 | assert(VFTableMangling.starts_with("??_7" ) || |
4022 | VFTableMangling.starts_with("??_S" )); |
4023 | |
4024 | Out << "??_R4" << VFTableMangling.str().drop_front(N: 4); |
4025 | } |
4026 | |
4027 | void MicrosoftMangleContextImpl::mangleSEHFilterExpression( |
4028 | GlobalDecl EnclosingDecl, raw_ostream &Out) { |
4029 | msvc_hashing_ostream MHO(Out); |
4030 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
4031 | // The function body is in the same comdat as the function with the handler, |
4032 | // so the numbering here doesn't have to be the same across TUs. |
4033 | // |
4034 | // <mangled-name> ::= ?filt$ <filter-number> @0 |
4035 | Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@" ; |
4036 | Mangler.mangleName(GD: EnclosingDecl); |
4037 | } |
4038 | |
4039 | void MicrosoftMangleContextImpl::mangleSEHFinallyBlock( |
4040 | GlobalDecl EnclosingDecl, raw_ostream &Out) { |
4041 | msvc_hashing_ostream MHO(Out); |
4042 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
4043 | // The function body is in the same comdat as the function with the handler, |
4044 | // so the numbering here doesn't have to be the same across TUs. |
4045 | // |
4046 | // <mangled-name> ::= ?fin$ <filter-number> @0 |
4047 | Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@" ; |
4048 | Mangler.mangleName(GD: EnclosingDecl); |
4049 | } |
4050 | |
4051 | void MicrosoftMangleContextImpl::mangleCanonicalTypeName( |
4052 | QualType T, raw_ostream &Out, bool NormalizeIntegers = false) { |
4053 | // This is just a made up unique string for the purposes of tbaa. undname |
4054 | // does *not* know how to demangle it. |
4055 | MicrosoftCXXNameMangler Mangler(*this, Out); |
4056 | Mangler.getStream() << '?'; |
4057 | Mangler.mangleType(T: T.getCanonicalType(), Range: SourceRange()); |
4058 | } |
4059 | |
4060 | void MicrosoftMangleContextImpl::mangleReferenceTemporary( |
4061 | const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) { |
4062 | msvc_hashing_ostream MHO(Out); |
4063 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
4064 | |
4065 | Mangler.getStream() << "?" ; |
4066 | Mangler.mangleSourceName(Name: "$RT" + llvm::utostr(X: ManglingNumber)); |
4067 | Mangler.mangle(GD: VD, Prefix: "" ); |
4068 | } |
4069 | |
4070 | void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable( |
4071 | const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) { |
4072 | msvc_hashing_ostream MHO(Out); |
4073 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
4074 | |
4075 | Mangler.getStream() << "?" ; |
4076 | Mangler.mangleSourceName(Name: "$TSS" + llvm::utostr(X: GuardNum)); |
4077 | Mangler.mangleNestedName(GD: VD); |
4078 | Mangler.getStream() << "@4HA" ; |
4079 | } |
4080 | |
4081 | void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD, |
4082 | raw_ostream &Out) { |
4083 | // <guard-name> ::= ?_B <postfix> @5 <scope-depth> |
4084 | // ::= ?__J <postfix> @5 <scope-depth> |
4085 | // ::= ?$S <guard-num> @ <postfix> @4IA |
4086 | |
4087 | // The first mangling is what MSVC uses to guard static locals in inline |
4088 | // functions. It uses a different mangling in external functions to support |
4089 | // guarding more than 32 variables. MSVC rejects inline functions with more |
4090 | // than 32 static locals. We don't fully implement the second mangling |
4091 | // because those guards are not externally visible, and instead use LLVM's |
4092 | // default renaming when creating a new guard variable. |
4093 | msvc_hashing_ostream MHO(Out); |
4094 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
4095 | |
4096 | bool Visible = VD->isExternallyVisible(); |
4097 | if (Visible) { |
4098 | Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B" ); |
4099 | } else { |
4100 | Mangler.getStream() << "?$S1@" ; |
4101 | } |
4102 | unsigned ScopeDepth = 0; |
4103 | if (Visible && !getNextDiscriminator(ND: VD, disc&: ScopeDepth)) |
4104 | // If we do not have a discriminator and are emitting a guard variable for |
4105 | // use at global scope, then mangling the nested name will not be enough to |
4106 | // remove ambiguities. |
4107 | Mangler.mangle(GD: VD, Prefix: "" ); |
4108 | else |
4109 | Mangler.mangleNestedName(GD: VD); |
4110 | Mangler.getStream() << (Visible ? "@5" : "@4IA" ); |
4111 | if (ScopeDepth) |
4112 | Mangler.mangleNumber(Number: ScopeDepth); |
4113 | } |
4114 | |
4115 | void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D, |
4116 | char CharCode, |
4117 | raw_ostream &Out) { |
4118 | msvc_hashing_ostream MHO(Out); |
4119 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
4120 | Mangler.getStream() << "??__" << CharCode; |
4121 | if (D->isStaticDataMember()) { |
4122 | Mangler.getStream() << '?'; |
4123 | Mangler.mangleName(GD: D); |
4124 | Mangler.mangleVariableEncoding(VD: D); |
4125 | Mangler.getStream() << "@@" ; |
4126 | } else { |
4127 | Mangler.mangleName(GD: D); |
4128 | } |
4129 | // This is the function class mangling. These stubs are global, non-variadic, |
4130 | // cdecl functions that return void and take no args. |
4131 | Mangler.getStream() << "YAXXZ" ; |
4132 | } |
4133 | |
4134 | void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D, |
4135 | raw_ostream &Out) { |
4136 | // <initializer-name> ::= ?__E <name> YAXXZ |
4137 | mangleInitFiniStub(D, CharCode: 'E', Out); |
4138 | } |
4139 | |
4140 | void |
4141 | MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, |
4142 | raw_ostream &Out) { |
4143 | // <destructor-name> ::= ?__F <name> YAXXZ |
4144 | mangleInitFiniStub(D, CharCode: 'F', Out); |
4145 | } |
4146 | |
4147 | void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL, |
4148 | raw_ostream &Out) { |
4149 | // <char-type> ::= 0 # char, char16_t, char32_t |
4150 | // # (little endian char data in mangling) |
4151 | // ::= 1 # wchar_t (big endian char data in mangling) |
4152 | // |
4153 | // <literal-length> ::= <non-negative integer> # the length of the literal |
4154 | // |
4155 | // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including |
4156 | // # trailing null bytes |
4157 | // |
4158 | // <encoded-string> ::= <simple character> # uninteresting character |
4159 | // ::= '?$' <hex digit> <hex digit> # these two nibbles |
4160 | // # encode the byte for the |
4161 | // # character |
4162 | // ::= '?' [a-z] # \xe1 - \xfa |
4163 | // ::= '?' [A-Z] # \xc1 - \xda |
4164 | // ::= '?' [0-9] # [,/\:. \n\t'-] |
4165 | // |
4166 | // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc> |
4167 | // <encoded-string> '@' |
4168 | MicrosoftCXXNameMangler Mangler(*this, Out); |
4169 | Mangler.getStream() << "??_C@_" ; |
4170 | |
4171 | // The actual string length might be different from that of the string literal |
4172 | // in cases like: |
4173 | // char foo[3] = "foobar"; |
4174 | // char bar[42] = "foobar"; |
4175 | // Where it is truncated or zero-padded to fit the array. This is the length |
4176 | // used for mangling, and any trailing null-bytes also need to be mangled. |
4177 | unsigned StringLength = |
4178 | getASTContext().getAsConstantArrayType(T: SL->getType())->getZExtSize(); |
4179 | unsigned StringByteLength = StringLength * SL->getCharByteWidth(); |
4180 | |
4181 | // <char-type>: The "kind" of string literal is encoded into the mangled name. |
4182 | if (SL->isWide()) |
4183 | Mangler.getStream() << '1'; |
4184 | else |
4185 | Mangler.getStream() << '0'; |
4186 | |
4187 | // <literal-length>: The next part of the mangled name consists of the length |
4188 | // of the string in bytes. |
4189 | Mangler.mangleNumber(Number: StringByteLength); |
4190 | |
4191 | auto GetLittleEndianByte = [&SL](unsigned Index) { |
4192 | unsigned CharByteWidth = SL->getCharByteWidth(); |
4193 | if (Index / CharByteWidth >= SL->getLength()) |
4194 | return static_cast<char>(0); |
4195 | uint32_t CodeUnit = SL->getCodeUnit(i: Index / CharByteWidth); |
4196 | unsigned OffsetInCodeUnit = Index % CharByteWidth; |
4197 | return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); |
4198 | }; |
4199 | |
4200 | auto GetBigEndianByte = [&SL](unsigned Index) { |
4201 | unsigned CharByteWidth = SL->getCharByteWidth(); |
4202 | if (Index / CharByteWidth >= SL->getLength()) |
4203 | return static_cast<char>(0); |
4204 | uint32_t CodeUnit = SL->getCodeUnit(i: Index / CharByteWidth); |
4205 | unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth); |
4206 | return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); |
4207 | }; |
4208 | |
4209 | // CRC all the bytes of the StringLiteral. |
4210 | llvm::JamCRC JC; |
4211 | for (unsigned I = 0, E = StringByteLength; I != E; ++I) |
4212 | JC.update(Data: GetLittleEndianByte(I)); |
4213 | |
4214 | // <encoded-crc>: The CRC is encoded utilizing the standard number mangling |
4215 | // scheme. |
4216 | Mangler.mangleNumber(Number: JC.getCRC()); |
4217 | |
4218 | // <encoded-string>: The mangled name also contains the first 32 bytes |
4219 | // (including null-terminator bytes) of the encoded StringLiteral. |
4220 | // Each character is encoded by splitting them into bytes and then encoding |
4221 | // the constituent bytes. |
4222 | auto MangleByte = [&Mangler](char Byte) { |
4223 | // There are five different manglings for characters: |
4224 | // - [a-zA-Z0-9_$]: A one-to-one mapping. |
4225 | // - ?[a-z]: The range from \xe1 to \xfa. |
4226 | // - ?[A-Z]: The range from \xc1 to \xda. |
4227 | // - ?[0-9]: The set of [,/\:. \n\t'-]. |
4228 | // - ?$XX: A fallback which maps nibbles. |
4229 | if (isAsciiIdentifierContinue(c: Byte, /*AllowDollar=*/true)) { |
4230 | Mangler.getStream() << Byte; |
4231 | } else if (isLetter(c: Byte & 0x7f)) { |
4232 | Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f); |
4233 | } else { |
4234 | const char SpecialChars[] = {',', '/', '\\', ':', '.', |
4235 | ' ', '\n', '\t', '\'', '-'}; |
4236 | const char *Pos = llvm::find(Range: SpecialChars, Val: Byte); |
4237 | if (Pos != std::end(arr: SpecialChars)) { |
4238 | Mangler.getStream() << '?' << (Pos - std::begin(arr: SpecialChars)); |
4239 | } else { |
4240 | Mangler.getStream() << "?$" ; |
4241 | Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf)); |
4242 | Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf)); |
4243 | } |
4244 | } |
4245 | }; |
4246 | |
4247 | // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead. |
4248 | unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U; |
4249 | unsigned NumBytesToMangle = std::min(a: MaxBytesToMangle, b: StringByteLength); |
4250 | for (unsigned I = 0; I != NumBytesToMangle; ++I) { |
4251 | if (SL->isWide()) |
4252 | MangleByte(GetBigEndianByte(I)); |
4253 | else |
4254 | MangleByte(GetLittleEndianByte(I)); |
4255 | } |
4256 | |
4257 | Mangler.getStream() << '@'; |
4258 | } |
4259 | |
4260 | MicrosoftMangleContext *MicrosoftMangleContext::create(ASTContext &Context, |
4261 | DiagnosticsEngine &Diags, |
4262 | bool IsAux) { |
4263 | return new MicrosoftMangleContextImpl(Context, Diags, IsAux); |
4264 | } |
4265 | |