1 | //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "clang/AST/ASTContext.h" |
10 | #include "clang/AST/ASTDiagnostic.h" |
11 | #include "clang/AST/Attr.h" |
12 | #include "clang/AST/CXXInheritance.h" |
13 | #include "clang/AST/Decl.h" |
14 | #include "clang/AST/DeclCXX.h" |
15 | #include "clang/AST/DeclObjC.h" |
16 | #include "clang/AST/Expr.h" |
17 | #include "clang/AST/VTableBuilder.h" |
18 | #include "clang/AST/RecordLayout.h" |
19 | #include "clang/Basic/TargetInfo.h" |
20 | #include "llvm/ADT/SmallSet.h" |
21 | #include "llvm/Support/Format.h" |
22 | #include "llvm/Support/MathExtras.h" |
23 | |
24 | using namespace clang; |
25 | |
26 | namespace { |
27 | |
28 | /// BaseSubobjectInfo - Represents a single base subobject in a complete class. |
29 | /// For a class hierarchy like |
30 | /// |
31 | /// class A { }; |
32 | /// class B : A { }; |
33 | /// class C : A, B { }; |
34 | /// |
35 | /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo |
36 | /// instances, one for B and two for A. |
37 | /// |
38 | /// If a base is virtual, it will only have one BaseSubobjectInfo allocated. |
39 | struct BaseSubobjectInfo { |
40 | /// Class - The class for this base info. |
41 | const CXXRecordDecl *Class; |
42 | |
43 | /// IsVirtual - Whether the BaseInfo represents a virtual base or not. |
44 | bool IsVirtual; |
45 | |
46 | /// Bases - Information about the base subobjects. |
47 | SmallVector<BaseSubobjectInfo*, 4> Bases; |
48 | |
49 | /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base |
50 | /// of this base info (if one exists). |
51 | BaseSubobjectInfo *PrimaryVirtualBaseInfo; |
52 | |
53 | // FIXME: Document. |
54 | const BaseSubobjectInfo *Derived; |
55 | }; |
56 | |
57 | /// Externally provided layout. Typically used when the AST source, such |
58 | /// as DWARF, lacks all the information that was available at compile time, such |
59 | /// as alignment attributes on fields and pragmas in effect. |
60 | struct ExternalLayout { |
61 | ExternalLayout() = default; |
62 | |
63 | /// Overall record size in bits. |
64 | uint64_t Size = 0; |
65 | |
66 | /// Overall record alignment in bits. |
67 | uint64_t Align = 0; |
68 | |
69 | /// Record field offsets in bits. |
70 | llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets; |
71 | |
72 | /// Direct, non-virtual base offsets. |
73 | llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets; |
74 | |
75 | /// Virtual base offsets. |
76 | llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets; |
77 | |
78 | /// Get the offset of the given field. The external source must provide |
79 | /// entries for all fields in the record. |
80 | uint64_t getExternalFieldOffset(const FieldDecl *FD) { |
81 | assert(FieldOffsets.count(FD) && |
82 | "Field does not have an external offset" ); |
83 | return FieldOffsets[FD]; |
84 | } |
85 | |
86 | bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { |
87 | auto Known = BaseOffsets.find(Val: RD); |
88 | if (Known == BaseOffsets.end()) |
89 | return false; |
90 | BaseOffset = Known->second; |
91 | return true; |
92 | } |
93 | |
94 | bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { |
95 | auto Known = VirtualBaseOffsets.find(Val: RD); |
96 | if (Known == VirtualBaseOffsets.end()) |
97 | return false; |
98 | BaseOffset = Known->second; |
99 | return true; |
100 | } |
101 | }; |
102 | |
103 | /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different |
104 | /// offsets while laying out a C++ class. |
105 | class EmptySubobjectMap { |
106 | const ASTContext &Context; |
107 | uint64_t CharWidth; |
108 | |
109 | /// Class - The class whose empty entries we're keeping track of. |
110 | const CXXRecordDecl *Class; |
111 | |
112 | /// EmptyClassOffsets - A map from offsets to empty record decls. |
113 | typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy; |
114 | typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy; |
115 | EmptyClassOffsetsMapTy EmptyClassOffsets; |
116 | |
117 | /// MaxEmptyClassOffset - The highest offset known to contain an empty |
118 | /// base subobject. |
119 | CharUnits MaxEmptyClassOffset; |
120 | |
121 | /// ComputeEmptySubobjectSizes - Compute the size of the largest base or |
122 | /// member subobject that is empty. |
123 | void ComputeEmptySubobjectSizes(); |
124 | |
125 | void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset); |
126 | |
127 | void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, |
128 | CharUnits Offset, bool PlacingEmptyBase); |
129 | |
130 | void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, |
131 | const CXXRecordDecl *Class, CharUnits Offset, |
132 | bool PlacingOverlappingField); |
133 | void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset, |
134 | bool PlacingOverlappingField); |
135 | |
136 | /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty |
137 | /// subobjects beyond the given offset. |
138 | bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const { |
139 | return Offset <= MaxEmptyClassOffset; |
140 | } |
141 | |
142 | CharUnits |
143 | getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const { |
144 | uint64_t FieldOffset = Layout.getFieldOffset(FieldNo); |
145 | assert(FieldOffset % CharWidth == 0 && |
146 | "Field offset not at char boundary!" ); |
147 | |
148 | return Context.toCharUnitsFromBits(BitSize: FieldOffset); |
149 | } |
150 | |
151 | protected: |
152 | bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, |
153 | CharUnits Offset) const; |
154 | |
155 | bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, |
156 | CharUnits Offset); |
157 | |
158 | bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, |
159 | const CXXRecordDecl *Class, |
160 | CharUnits Offset) const; |
161 | bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, |
162 | CharUnits Offset) const; |
163 | |
164 | public: |
165 | /// This holds the size of the largest empty subobject (either a base |
166 | /// or a member). Will be zero if the record being built doesn't contain |
167 | /// any empty classes. |
168 | CharUnits SizeOfLargestEmptySubobject; |
169 | |
170 | EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class) |
171 | : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) { |
172 | ComputeEmptySubobjectSizes(); |
173 | } |
174 | |
175 | /// CanPlaceBaseAtOffset - Return whether the given base class can be placed |
176 | /// at the given offset. |
177 | /// Returns false if placing the record will result in two components |
178 | /// (direct or indirect) of the same type having the same offset. |
179 | bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, |
180 | CharUnits Offset); |
181 | |
182 | /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given |
183 | /// offset. |
184 | bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset); |
185 | }; |
186 | |
187 | void EmptySubobjectMap::ComputeEmptySubobjectSizes() { |
188 | // Check the bases. |
189 | for (const CXXBaseSpecifier &Base : Class->bases()) { |
190 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
191 | |
192 | CharUnits EmptySize; |
193 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: BaseDecl); |
194 | if (BaseDecl->isEmpty()) { |
195 | // If the class decl is empty, get its size. |
196 | EmptySize = Layout.getSize(); |
197 | } else { |
198 | // Otherwise, we get the largest empty subobject for the decl. |
199 | EmptySize = Layout.getSizeOfLargestEmptySubobject(); |
200 | } |
201 | |
202 | if (EmptySize > SizeOfLargestEmptySubobject) |
203 | SizeOfLargestEmptySubobject = EmptySize; |
204 | } |
205 | |
206 | // Check the fields. |
207 | for (const FieldDecl *FD : Class->fields()) { |
208 | const RecordType *RT = |
209 | Context.getBaseElementType(QT: FD->getType())->getAs<RecordType>(); |
210 | |
211 | // We only care about record types. |
212 | if (!RT) |
213 | continue; |
214 | |
215 | CharUnits EmptySize; |
216 | const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl(); |
217 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: MemberDecl); |
218 | if (MemberDecl->isEmpty()) { |
219 | // If the class decl is empty, get its size. |
220 | EmptySize = Layout.getSize(); |
221 | } else { |
222 | // Otherwise, we get the largest empty subobject for the decl. |
223 | EmptySize = Layout.getSizeOfLargestEmptySubobject(); |
224 | } |
225 | |
226 | if (EmptySize > SizeOfLargestEmptySubobject) |
227 | SizeOfLargestEmptySubobject = EmptySize; |
228 | } |
229 | } |
230 | |
231 | bool |
232 | EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, |
233 | CharUnits Offset) const { |
234 | // We only need to check empty bases. |
235 | if (!RD->isEmpty()) |
236 | return true; |
237 | |
238 | EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Val: Offset); |
239 | if (I == EmptyClassOffsets.end()) |
240 | return true; |
241 | |
242 | const ClassVectorTy &Classes = I->second; |
243 | if (!llvm::is_contained(Range: Classes, Element: RD)) |
244 | return true; |
245 | |
246 | // There is already an empty class of the same type at this offset. |
247 | return false; |
248 | } |
249 | |
250 | void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD, |
251 | CharUnits Offset) { |
252 | // We only care about empty bases. |
253 | if (!RD->isEmpty()) |
254 | return; |
255 | |
256 | // If we have empty structures inside a union, we can assign both |
257 | // the same offset. Just avoid pushing them twice in the list. |
258 | ClassVectorTy &Classes = EmptyClassOffsets[Offset]; |
259 | if (llvm::is_contained(Range&: Classes, Element: RD)) |
260 | return; |
261 | |
262 | Classes.push_back(NewVal: RD); |
263 | |
264 | // Update the empty class offset. |
265 | if (Offset > MaxEmptyClassOffset) |
266 | MaxEmptyClassOffset = Offset; |
267 | } |
268 | |
269 | bool |
270 | EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, |
271 | CharUnits Offset) { |
272 | // We don't have to keep looking past the maximum offset that's known to |
273 | // contain an empty class. |
274 | if (!AnyEmptySubobjectsBeyondOffset(Offset)) |
275 | return true; |
276 | |
277 | if (!CanPlaceSubobjectAtOffset(RD: Info->Class, Offset)) |
278 | return false; |
279 | |
280 | // Traverse all non-virtual bases. |
281 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: Info->Class); |
282 | for (const BaseSubobjectInfo *Base : Info->Bases) { |
283 | if (Base->IsVirtual) |
284 | continue; |
285 | |
286 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base: Base->Class); |
287 | |
288 | if (!CanPlaceBaseSubobjectAtOffset(Info: Base, Offset: BaseOffset)) |
289 | return false; |
290 | } |
291 | |
292 | if (Info->PrimaryVirtualBaseInfo) { |
293 | BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; |
294 | |
295 | if (Info == PrimaryVirtualBaseInfo->Derived) { |
296 | if (!CanPlaceBaseSubobjectAtOffset(Info: PrimaryVirtualBaseInfo, Offset)) |
297 | return false; |
298 | } |
299 | } |
300 | |
301 | // Traverse all member variables. |
302 | unsigned FieldNo = 0; |
303 | for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), |
304 | E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { |
305 | if (I->isBitField()) |
306 | continue; |
307 | |
308 | CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); |
309 | if (!CanPlaceFieldSubobjectAtOffset(FD: *I, Offset: FieldOffset)) |
310 | return false; |
311 | } |
312 | |
313 | return true; |
314 | } |
315 | |
316 | void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, |
317 | CharUnits Offset, |
318 | bool PlacingEmptyBase) { |
319 | if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) { |
320 | // We know that the only empty subobjects that can conflict with empty |
321 | // subobject of non-empty bases, are empty bases that can be placed at |
322 | // offset zero. Because of this, we only need to keep track of empty base |
323 | // subobjects with offsets less than the size of the largest empty |
324 | // subobject for our class. |
325 | return; |
326 | } |
327 | |
328 | AddSubobjectAtOffset(RD: Info->Class, Offset); |
329 | |
330 | // Traverse all non-virtual bases. |
331 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: Info->Class); |
332 | for (const BaseSubobjectInfo *Base : Info->Bases) { |
333 | if (Base->IsVirtual) |
334 | continue; |
335 | |
336 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base: Base->Class); |
337 | UpdateEmptyBaseSubobjects(Info: Base, Offset: BaseOffset, PlacingEmptyBase); |
338 | } |
339 | |
340 | if (Info->PrimaryVirtualBaseInfo) { |
341 | BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; |
342 | |
343 | if (Info == PrimaryVirtualBaseInfo->Derived) |
344 | UpdateEmptyBaseSubobjects(Info: PrimaryVirtualBaseInfo, Offset, |
345 | PlacingEmptyBase); |
346 | } |
347 | |
348 | // Traverse all member variables. |
349 | unsigned FieldNo = 0; |
350 | for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), |
351 | E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { |
352 | if (I->isBitField()) |
353 | continue; |
354 | |
355 | CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); |
356 | UpdateEmptyFieldSubobjects(FD: *I, Offset: FieldOffset, PlacingOverlappingField: PlacingEmptyBase); |
357 | } |
358 | } |
359 | |
360 | bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, |
361 | CharUnits Offset) { |
362 | // If we know this class doesn't have any empty subobjects we don't need to |
363 | // bother checking. |
364 | if (SizeOfLargestEmptySubobject.isZero()) |
365 | return true; |
366 | |
367 | if (!CanPlaceBaseSubobjectAtOffset(Info, Offset)) |
368 | return false; |
369 | |
370 | // We are able to place the base at this offset. Make sure to update the |
371 | // empty base subobject map. |
372 | UpdateEmptyBaseSubobjects(Info, Offset, PlacingEmptyBase: Info->Class->isEmpty()); |
373 | return true; |
374 | } |
375 | |
376 | bool |
377 | EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, |
378 | const CXXRecordDecl *Class, |
379 | CharUnits Offset) const { |
380 | // We don't have to keep looking past the maximum offset that's known to |
381 | // contain an empty class. |
382 | if (!AnyEmptySubobjectsBeyondOffset(Offset)) |
383 | return true; |
384 | |
385 | if (!CanPlaceSubobjectAtOffset(RD, Offset)) |
386 | return false; |
387 | |
388 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
389 | |
390 | // Traverse all non-virtual bases. |
391 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
392 | if (Base.isVirtual()) |
393 | continue; |
394 | |
395 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
396 | |
397 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base: BaseDecl); |
398 | if (!CanPlaceFieldSubobjectAtOffset(RD: BaseDecl, Class, Offset: BaseOffset)) |
399 | return false; |
400 | } |
401 | |
402 | if (RD == Class) { |
403 | // This is the most derived class, traverse virtual bases as well. |
404 | for (const CXXBaseSpecifier &Base : RD->vbases()) { |
405 | const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); |
406 | |
407 | CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase: VBaseDecl); |
408 | if (!CanPlaceFieldSubobjectAtOffset(RD: VBaseDecl, Class, Offset: VBaseOffset)) |
409 | return false; |
410 | } |
411 | } |
412 | |
413 | // Traverse all member variables. |
414 | unsigned FieldNo = 0; |
415 | for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); |
416 | I != E; ++I, ++FieldNo) { |
417 | if (I->isBitField()) |
418 | continue; |
419 | |
420 | CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); |
421 | |
422 | if (!CanPlaceFieldSubobjectAtOffset(FD: *I, Offset: FieldOffset)) |
423 | return false; |
424 | } |
425 | |
426 | return true; |
427 | } |
428 | |
429 | bool |
430 | EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, |
431 | CharUnits Offset) const { |
432 | // We don't have to keep looking past the maximum offset that's known to |
433 | // contain an empty class. |
434 | if (!AnyEmptySubobjectsBeyondOffset(Offset)) |
435 | return true; |
436 | |
437 | QualType T = FD->getType(); |
438 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
439 | return CanPlaceFieldSubobjectAtOffset(RD, Class: RD, Offset); |
440 | |
441 | // If we have an array type we need to look at every element. |
442 | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { |
443 | QualType ElemTy = Context.getBaseElementType(VAT: AT); |
444 | const RecordType *RT = ElemTy->getAs<RecordType>(); |
445 | if (!RT) |
446 | return true; |
447 | |
448 | const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); |
449 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
450 | |
451 | uint64_t NumElements = Context.getConstantArrayElementCount(CA: AT); |
452 | CharUnits ElementOffset = Offset; |
453 | for (uint64_t I = 0; I != NumElements; ++I) { |
454 | // We don't have to keep looking past the maximum offset that's known to |
455 | // contain an empty class. |
456 | if (!AnyEmptySubobjectsBeyondOffset(Offset: ElementOffset)) |
457 | return true; |
458 | |
459 | if (!CanPlaceFieldSubobjectAtOffset(RD, Class: RD, Offset: ElementOffset)) |
460 | return false; |
461 | |
462 | ElementOffset += Layout.getSize(); |
463 | } |
464 | } |
465 | |
466 | return true; |
467 | } |
468 | |
469 | bool |
470 | EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD, |
471 | CharUnits Offset) { |
472 | if (!CanPlaceFieldSubobjectAtOffset(FD, Offset)) |
473 | return false; |
474 | |
475 | // We are able to place the member variable at this offset. |
476 | // Make sure to update the empty field subobject map. |
477 | UpdateEmptyFieldSubobjects(FD, Offset, PlacingOverlappingField: FD->hasAttr<NoUniqueAddressAttr>()); |
478 | return true; |
479 | } |
480 | |
481 | void EmptySubobjectMap::UpdateEmptyFieldSubobjects( |
482 | const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset, |
483 | bool PlacingOverlappingField) { |
484 | // We know that the only empty subobjects that can conflict with empty |
485 | // field subobjects are subobjects of empty bases and potentially-overlapping |
486 | // fields that can be placed at offset zero. Because of this, we only need to |
487 | // keep track of empty field subobjects with offsets less than the size of |
488 | // the largest empty subobject for our class. |
489 | // |
490 | // (Proof: we will only consider placing a subobject at offset zero or at |
491 | // >= the current dsize. The only cases where the earlier subobject can be |
492 | // placed beyond the end of dsize is if it's an empty base or a |
493 | // potentially-overlapping field.) |
494 | if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject) |
495 | return; |
496 | |
497 | AddSubobjectAtOffset(RD, Offset); |
498 | |
499 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
500 | |
501 | // Traverse all non-virtual bases. |
502 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
503 | if (Base.isVirtual()) |
504 | continue; |
505 | |
506 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
507 | |
508 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base: BaseDecl); |
509 | UpdateEmptyFieldSubobjects(RD: BaseDecl, Class, Offset: BaseOffset, |
510 | PlacingOverlappingField); |
511 | } |
512 | |
513 | if (RD == Class) { |
514 | // This is the most derived class, traverse virtual bases as well. |
515 | for (const CXXBaseSpecifier &Base : RD->vbases()) { |
516 | const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); |
517 | |
518 | CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase: VBaseDecl); |
519 | UpdateEmptyFieldSubobjects(RD: VBaseDecl, Class, Offset: VBaseOffset, |
520 | PlacingOverlappingField); |
521 | } |
522 | } |
523 | |
524 | // Traverse all member variables. |
525 | unsigned FieldNo = 0; |
526 | for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); |
527 | I != E; ++I, ++FieldNo) { |
528 | if (I->isBitField()) |
529 | continue; |
530 | |
531 | CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); |
532 | |
533 | UpdateEmptyFieldSubobjects(FD: *I, Offset: FieldOffset, PlacingOverlappingField); |
534 | } |
535 | } |
536 | |
537 | void EmptySubobjectMap::UpdateEmptyFieldSubobjects( |
538 | const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) { |
539 | QualType T = FD->getType(); |
540 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { |
541 | UpdateEmptyFieldSubobjects(RD, Class: RD, Offset, PlacingOverlappingField); |
542 | return; |
543 | } |
544 | |
545 | // If we have an array type we need to update every element. |
546 | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { |
547 | QualType ElemTy = Context.getBaseElementType(VAT: AT); |
548 | const RecordType *RT = ElemTy->getAs<RecordType>(); |
549 | if (!RT) |
550 | return; |
551 | |
552 | const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); |
553 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
554 | |
555 | uint64_t NumElements = Context.getConstantArrayElementCount(CA: AT); |
556 | CharUnits ElementOffset = Offset; |
557 | |
558 | for (uint64_t I = 0; I != NumElements; ++I) { |
559 | // We know that the only empty subobjects that can conflict with empty |
560 | // field subobjects are subobjects of empty bases that can be placed at |
561 | // offset zero. Because of this, we only need to keep track of empty field |
562 | // subobjects with offsets less than the size of the largest empty |
563 | // subobject for our class. |
564 | if (!PlacingOverlappingField && |
565 | ElementOffset >= SizeOfLargestEmptySubobject) |
566 | return; |
567 | |
568 | UpdateEmptyFieldSubobjects(RD, Class: RD, Offset: ElementOffset, |
569 | PlacingOverlappingField); |
570 | ElementOffset += Layout.getSize(); |
571 | } |
572 | } |
573 | } |
574 | |
575 | typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy; |
576 | |
577 | class ItaniumRecordLayoutBuilder { |
578 | protected: |
579 | // FIXME: Remove this and make the appropriate fields public. |
580 | friend class clang::ASTContext; |
581 | |
582 | const ASTContext &Context; |
583 | |
584 | EmptySubobjectMap *EmptySubobjects; |
585 | |
586 | /// Size - The current size of the record layout. |
587 | uint64_t Size; |
588 | |
589 | /// Alignment - The current alignment of the record layout. |
590 | CharUnits Alignment; |
591 | |
592 | /// PreferredAlignment - The preferred alignment of the record layout. |
593 | CharUnits PreferredAlignment; |
594 | |
595 | /// The alignment if attribute packed is not used. |
596 | CharUnits UnpackedAlignment; |
597 | |
598 | /// \brief The maximum of the alignments of top-level members. |
599 | CharUnits UnadjustedAlignment; |
600 | |
601 | SmallVector<uint64_t, 16> FieldOffsets; |
602 | |
603 | /// Whether the external AST source has provided a layout for this |
604 | /// record. |
605 | LLVM_PREFERRED_TYPE(bool) |
606 | unsigned UseExternalLayout : 1; |
607 | |
608 | /// Whether we need to infer alignment, even when we have an |
609 | /// externally-provided layout. |
610 | LLVM_PREFERRED_TYPE(bool) |
611 | unsigned InferAlignment : 1; |
612 | |
613 | /// Packed - Whether the record is packed or not. |
614 | LLVM_PREFERRED_TYPE(bool) |
615 | unsigned Packed : 1; |
616 | |
617 | LLVM_PREFERRED_TYPE(bool) |
618 | unsigned IsUnion : 1; |
619 | |
620 | LLVM_PREFERRED_TYPE(bool) |
621 | unsigned IsMac68kAlign : 1; |
622 | |
623 | LLVM_PREFERRED_TYPE(bool) |
624 | unsigned IsNaturalAlign : 1; |
625 | |
626 | LLVM_PREFERRED_TYPE(bool) |
627 | unsigned IsMsStruct : 1; |
628 | |
629 | /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield, |
630 | /// this contains the number of bits in the last unit that can be used for |
631 | /// an adjacent bitfield if necessary. The unit in question is usually |
632 | /// a byte, but larger units are used if IsMsStruct. |
633 | unsigned char UnfilledBitsInLastUnit; |
634 | |
635 | /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the |
636 | /// storage unit of the previous field if it was a bitfield. |
637 | unsigned char LastBitfieldStorageUnitSize; |
638 | |
639 | /// MaxFieldAlignment - The maximum allowed field alignment. This is set by |
640 | /// #pragma pack. |
641 | CharUnits MaxFieldAlignment; |
642 | |
643 | /// DataSize - The data size of the record being laid out. |
644 | uint64_t DataSize; |
645 | |
646 | CharUnits NonVirtualSize; |
647 | CharUnits NonVirtualAlignment; |
648 | CharUnits PreferredNVAlignment; |
649 | |
650 | /// If we've laid out a field but not included its tail padding in Size yet, |
651 | /// this is the size up to the end of that field. |
652 | CharUnits PaddedFieldSize; |
653 | |
654 | /// PrimaryBase - the primary base class (if one exists) of the class |
655 | /// we're laying out. |
656 | const CXXRecordDecl *PrimaryBase; |
657 | |
658 | /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying |
659 | /// out is virtual. |
660 | bool PrimaryBaseIsVirtual; |
661 | |
662 | /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl |
663 | /// pointer, as opposed to inheriting one from a primary base class. |
664 | bool HasOwnVFPtr; |
665 | |
666 | /// the flag of field offset changing due to packed attribute. |
667 | bool HasPackedField; |
668 | |
669 | /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX. |
670 | /// When there are OverlappingEmptyFields existing in the aggregate, the |
671 | /// flag shows if the following first non-empty or empty-but-non-overlapping |
672 | /// field has been handled, if any. |
673 | bool HandledFirstNonOverlappingEmptyField; |
674 | |
675 | typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; |
676 | |
677 | /// Bases - base classes and their offsets in the record. |
678 | BaseOffsetsMapTy Bases; |
679 | |
680 | // VBases - virtual base classes and their offsets in the record. |
681 | ASTRecordLayout::VBaseOffsetsMapTy VBases; |
682 | |
683 | /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are |
684 | /// primary base classes for some other direct or indirect base class. |
685 | CXXIndirectPrimaryBaseSet IndirectPrimaryBases; |
686 | |
687 | /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in |
688 | /// inheritance graph order. Used for determining the primary base class. |
689 | const CXXRecordDecl *FirstNearlyEmptyVBase; |
690 | |
691 | /// VisitedVirtualBases - A set of all the visited virtual bases, used to |
692 | /// avoid visiting virtual bases more than once. |
693 | llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; |
694 | |
695 | /// Valid if UseExternalLayout is true. |
696 | ExternalLayout External; |
697 | |
698 | ItaniumRecordLayoutBuilder(const ASTContext &Context, |
699 | EmptySubobjectMap *EmptySubobjects) |
700 | : Context(Context), EmptySubobjects(EmptySubobjects), Size(0), |
701 | Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()), |
702 | UnpackedAlignment(CharUnits::One()), |
703 | UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false), |
704 | InferAlignment(false), Packed(false), IsUnion(false), |
705 | IsMac68kAlign(false), |
706 | IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()), |
707 | IsMsStruct(false), UnfilledBitsInLastUnit(0), |
708 | LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()), |
709 | DataSize(0), NonVirtualSize(CharUnits::Zero()), |
710 | NonVirtualAlignment(CharUnits::One()), |
711 | PreferredNVAlignment(CharUnits::One()), |
712 | PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr), |
713 | PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false), |
714 | HandledFirstNonOverlappingEmptyField(false), |
715 | FirstNearlyEmptyVBase(nullptr) {} |
716 | |
717 | void Layout(const RecordDecl *D); |
718 | void Layout(const CXXRecordDecl *D); |
719 | void Layout(const ObjCInterfaceDecl *D); |
720 | |
721 | void LayoutFields(const RecordDecl *D); |
722 | void LayoutField(const FieldDecl *D, bool ); |
723 | void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize, |
724 | bool FieldPacked, const FieldDecl *D); |
725 | void LayoutBitField(const FieldDecl *D); |
726 | |
727 | TargetCXXABI getCXXABI() const { |
728 | return Context.getTargetInfo().getCXXABI(); |
729 | } |
730 | |
731 | /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects. |
732 | llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator; |
733 | |
734 | typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *> |
735 | BaseSubobjectInfoMapTy; |
736 | |
737 | /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases |
738 | /// of the class we're laying out to their base subobject info. |
739 | BaseSubobjectInfoMapTy VirtualBaseInfo; |
740 | |
741 | /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the |
742 | /// class we're laying out to their base subobject info. |
743 | BaseSubobjectInfoMapTy NonVirtualBaseInfo; |
744 | |
745 | /// ComputeBaseSubobjectInfo - Compute the base subobject information for the |
746 | /// bases of the given class. |
747 | void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD); |
748 | |
749 | /// ComputeBaseSubobjectInfo - Compute the base subobject information for a |
750 | /// single class and all of its base classes. |
751 | BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, |
752 | bool IsVirtual, |
753 | BaseSubobjectInfo *Derived); |
754 | |
755 | /// DeterminePrimaryBase - Determine the primary base of the given class. |
756 | void DeterminePrimaryBase(const CXXRecordDecl *RD); |
757 | |
758 | void SelectPrimaryVBase(const CXXRecordDecl *RD); |
759 | |
760 | void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign); |
761 | |
762 | /// LayoutNonVirtualBases - Determines the primary base class (if any) and |
763 | /// lays it out. Will then proceed to lay out all non-virtual base clasess. |
764 | void LayoutNonVirtualBases(const CXXRecordDecl *RD); |
765 | |
766 | /// LayoutNonVirtualBase - Lays out a single non-virtual base. |
767 | void LayoutNonVirtualBase(const BaseSubobjectInfo *Base); |
768 | |
769 | void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, |
770 | CharUnits Offset); |
771 | |
772 | /// LayoutVirtualBases - Lays out all the virtual bases. |
773 | void LayoutVirtualBases(const CXXRecordDecl *RD, |
774 | const CXXRecordDecl *MostDerivedClass); |
775 | |
776 | /// LayoutVirtualBase - Lays out a single virtual base. |
777 | void LayoutVirtualBase(const BaseSubobjectInfo *Base); |
778 | |
779 | /// LayoutBase - Will lay out a base and return the offset where it was |
780 | /// placed, in chars. |
781 | CharUnits LayoutBase(const BaseSubobjectInfo *Base); |
782 | |
783 | /// InitializeLayout - Initialize record layout for the given record decl. |
784 | void InitializeLayout(const Decl *D); |
785 | |
786 | /// FinishLayout - Finalize record layout. Adjust record size based on the |
787 | /// alignment. |
788 | void FinishLayout(const NamedDecl *D); |
789 | |
790 | void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment, |
791 | CharUnits PreferredAlignment); |
792 | void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) { |
793 | UpdateAlignment(NewAlignment, UnpackedNewAlignment, PreferredAlignment: NewAlignment); |
794 | } |
795 | void UpdateAlignment(CharUnits NewAlignment) { |
796 | UpdateAlignment(NewAlignment, UnpackedNewAlignment: NewAlignment, PreferredAlignment: NewAlignment); |
797 | } |
798 | |
799 | /// Retrieve the externally-supplied field offset for the given |
800 | /// field. |
801 | /// |
802 | /// \param Field The field whose offset is being queried. |
803 | /// \param ComputedOffset The offset that we've computed for this field. |
804 | uint64_t updateExternalFieldOffset(const FieldDecl *Field, |
805 | uint64_t ComputedOffset); |
806 | |
807 | void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset, |
808 | uint64_t UnpackedOffset, unsigned UnpackedAlign, |
809 | bool isPacked, const FieldDecl *D); |
810 | |
811 | DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID); |
812 | |
813 | CharUnits getSize() const { |
814 | assert(Size % Context.getCharWidth() == 0); |
815 | return Context.toCharUnitsFromBits(BitSize: Size); |
816 | } |
817 | uint64_t getSizeInBits() const { return Size; } |
818 | |
819 | void setSize(CharUnits NewSize) { Size = Context.toBits(CharSize: NewSize); } |
820 | void setSize(uint64_t NewSize) { Size = NewSize; } |
821 | |
822 | CharUnits getAligment() const { return Alignment; } |
823 | |
824 | CharUnits getDataSize() const { |
825 | assert(DataSize % Context.getCharWidth() == 0); |
826 | return Context.toCharUnitsFromBits(BitSize: DataSize); |
827 | } |
828 | uint64_t getDataSizeInBits() const { return DataSize; } |
829 | |
830 | void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(CharSize: NewSize); } |
831 | void setDataSize(uint64_t NewSize) { DataSize = NewSize; } |
832 | |
833 | ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete; |
834 | void operator=(const ItaniumRecordLayoutBuilder &) = delete; |
835 | }; |
836 | } // end anonymous namespace |
837 | |
838 | void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) { |
839 | for (const auto &I : RD->bases()) { |
840 | assert(!I.getType()->isDependentType() && |
841 | "Cannot layout class with dependent bases." ); |
842 | |
843 | const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); |
844 | |
845 | // Check if this is a nearly empty virtual base. |
846 | if (I.isVirtual() && Context.isNearlyEmpty(RD: Base)) { |
847 | // If it's not an indirect primary base, then we've found our primary |
848 | // base. |
849 | if (!IndirectPrimaryBases.count(Ptr: Base)) { |
850 | PrimaryBase = Base; |
851 | PrimaryBaseIsVirtual = true; |
852 | return; |
853 | } |
854 | |
855 | // Is this the first nearly empty virtual base? |
856 | if (!FirstNearlyEmptyVBase) |
857 | FirstNearlyEmptyVBase = Base; |
858 | } |
859 | |
860 | SelectPrimaryVBase(RD: Base); |
861 | if (PrimaryBase) |
862 | return; |
863 | } |
864 | } |
865 | |
866 | /// DeterminePrimaryBase - Determine the primary base of the given class. |
867 | void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) { |
868 | // If the class isn't dynamic, it won't have a primary base. |
869 | if (!RD->isDynamicClass()) |
870 | return; |
871 | |
872 | // Compute all the primary virtual bases for all of our direct and |
873 | // indirect bases, and record all their primary virtual base classes. |
874 | RD->getIndirectPrimaryBases(Bases&: IndirectPrimaryBases); |
875 | |
876 | // If the record has a dynamic base class, attempt to choose a primary base |
877 | // class. It is the first (in direct base class order) non-virtual dynamic |
878 | // base class, if one exists. |
879 | for (const auto &I : RD->bases()) { |
880 | // Ignore virtual bases. |
881 | if (I.isVirtual()) |
882 | continue; |
883 | |
884 | const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); |
885 | |
886 | if (Base->isDynamicClass()) { |
887 | // We found it. |
888 | PrimaryBase = Base; |
889 | PrimaryBaseIsVirtual = false; |
890 | return; |
891 | } |
892 | } |
893 | |
894 | // Under the Itanium ABI, if there is no non-virtual primary base class, |
895 | // try to compute the primary virtual base. The primary virtual base is |
896 | // the first nearly empty virtual base that is not an indirect primary |
897 | // virtual base class, if one exists. |
898 | if (RD->getNumVBases() != 0) { |
899 | SelectPrimaryVBase(RD); |
900 | if (PrimaryBase) |
901 | return; |
902 | } |
903 | |
904 | // Otherwise, it is the first indirect primary base class, if one exists. |
905 | if (FirstNearlyEmptyVBase) { |
906 | PrimaryBase = FirstNearlyEmptyVBase; |
907 | PrimaryBaseIsVirtual = true; |
908 | return; |
909 | } |
910 | |
911 | assert(!PrimaryBase && "Should not get here with a primary base!" ); |
912 | } |
913 | |
914 | BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( |
915 | const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) { |
916 | BaseSubobjectInfo *Info; |
917 | |
918 | if (IsVirtual) { |
919 | // Check if we already have info about this virtual base. |
920 | BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD]; |
921 | if (InfoSlot) { |
922 | assert(InfoSlot->Class == RD && "Wrong class for virtual base info!" ); |
923 | return InfoSlot; |
924 | } |
925 | |
926 | // We don't, create it. |
927 | InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; |
928 | Info = InfoSlot; |
929 | } else { |
930 | Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; |
931 | } |
932 | |
933 | Info->Class = RD; |
934 | Info->IsVirtual = IsVirtual; |
935 | Info->Derived = nullptr; |
936 | Info->PrimaryVirtualBaseInfo = nullptr; |
937 | |
938 | const CXXRecordDecl *PrimaryVirtualBase = nullptr; |
939 | BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr; |
940 | |
941 | // Check if this base has a primary virtual base. |
942 | if (RD->getNumVBases()) { |
943 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
944 | if (Layout.isPrimaryBaseVirtual()) { |
945 | // This base does have a primary virtual base. |
946 | PrimaryVirtualBase = Layout.getPrimaryBase(); |
947 | assert(PrimaryVirtualBase && "Didn't have a primary virtual base!" ); |
948 | |
949 | // Now check if we have base subobject info about this primary base. |
950 | PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(Val: PrimaryVirtualBase); |
951 | |
952 | if (PrimaryVirtualBaseInfo) { |
953 | if (PrimaryVirtualBaseInfo->Derived) { |
954 | // We did have info about this primary base, and it turns out that it |
955 | // has already been claimed as a primary virtual base for another |
956 | // base. |
957 | PrimaryVirtualBase = nullptr; |
958 | } else { |
959 | // We can claim this base as our primary base. |
960 | Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; |
961 | PrimaryVirtualBaseInfo->Derived = Info; |
962 | } |
963 | } |
964 | } |
965 | } |
966 | |
967 | // Now go through all direct bases. |
968 | for (const auto &I : RD->bases()) { |
969 | bool IsVirtual = I.isVirtual(); |
970 | |
971 | const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); |
972 | |
973 | Info->Bases.push_back(Elt: ComputeBaseSubobjectInfo(RD: BaseDecl, IsVirtual, Derived: Info)); |
974 | } |
975 | |
976 | if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) { |
977 | // Traversing the bases must have created the base info for our primary |
978 | // virtual base. |
979 | PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(Val: PrimaryVirtualBase); |
980 | assert(PrimaryVirtualBaseInfo && |
981 | "Did not create a primary virtual base!" ); |
982 | |
983 | // Claim the primary virtual base as our primary virtual base. |
984 | Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; |
985 | PrimaryVirtualBaseInfo->Derived = Info; |
986 | } |
987 | |
988 | return Info; |
989 | } |
990 | |
991 | void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( |
992 | const CXXRecordDecl *RD) { |
993 | for (const auto &I : RD->bases()) { |
994 | bool IsVirtual = I.isVirtual(); |
995 | |
996 | const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); |
997 | |
998 | // Compute the base subobject info for this base. |
999 | BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(RD: BaseDecl, IsVirtual, |
1000 | Derived: nullptr); |
1001 | |
1002 | if (IsVirtual) { |
1003 | // ComputeBaseInfo has already added this base for us. |
1004 | assert(VirtualBaseInfo.count(BaseDecl) && |
1005 | "Did not add virtual base!" ); |
1006 | } else { |
1007 | // Add the base info to the map of non-virtual bases. |
1008 | assert(!NonVirtualBaseInfo.count(BaseDecl) && |
1009 | "Non-virtual base already exists!" ); |
1010 | NonVirtualBaseInfo.insert(KV: std::make_pair(x&: BaseDecl, y&: Info)); |
1011 | } |
1012 | } |
1013 | } |
1014 | |
1015 | void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment( |
1016 | CharUnits UnpackedBaseAlign) { |
1017 | CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign; |
1018 | |
1019 | // The maximum field alignment overrides base align. |
1020 | if (!MaxFieldAlignment.isZero()) { |
1021 | BaseAlign = std::min(a: BaseAlign, b: MaxFieldAlignment); |
1022 | UnpackedBaseAlign = std::min(a: UnpackedBaseAlign, b: MaxFieldAlignment); |
1023 | } |
1024 | |
1025 | // Round up the current record size to pointer alignment. |
1026 | setSize(getSize().alignTo(Align: BaseAlign)); |
1027 | |
1028 | // Update the alignment. |
1029 | UpdateAlignment(NewAlignment: BaseAlign, UnpackedNewAlignment: UnpackedBaseAlign, PreferredAlignment: BaseAlign); |
1030 | } |
1031 | |
1032 | void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases( |
1033 | const CXXRecordDecl *RD) { |
1034 | // Then, determine the primary base class. |
1035 | DeterminePrimaryBase(RD); |
1036 | |
1037 | // Compute base subobject info. |
1038 | ComputeBaseSubobjectInfo(RD); |
1039 | |
1040 | // If we have a primary base class, lay it out. |
1041 | if (PrimaryBase) { |
1042 | if (PrimaryBaseIsVirtual) { |
1043 | // If the primary virtual base was a primary virtual base of some other |
1044 | // base class we'll have to steal it. |
1045 | BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(Val: PrimaryBase); |
1046 | PrimaryBaseInfo->Derived = nullptr; |
1047 | |
1048 | // We have a virtual primary base, insert it as an indirect primary base. |
1049 | IndirectPrimaryBases.insert(Ptr: PrimaryBase); |
1050 | |
1051 | assert(!VisitedVirtualBases.count(PrimaryBase) && |
1052 | "vbase already visited!" ); |
1053 | VisitedVirtualBases.insert(Ptr: PrimaryBase); |
1054 | |
1055 | LayoutVirtualBase(Base: PrimaryBaseInfo); |
1056 | } else { |
1057 | BaseSubobjectInfo *PrimaryBaseInfo = |
1058 | NonVirtualBaseInfo.lookup(Val: PrimaryBase); |
1059 | assert(PrimaryBaseInfo && |
1060 | "Did not find base info for non-virtual primary base!" ); |
1061 | |
1062 | LayoutNonVirtualBase(Base: PrimaryBaseInfo); |
1063 | } |
1064 | |
1065 | // If this class needs a vtable/vf-table and didn't get one from a |
1066 | // primary base, add it in now. |
1067 | } else if (RD->isDynamicClass()) { |
1068 | assert(DataSize == 0 && "Vtable pointer must be at offset zero!" ); |
1069 | CharUnits PtrWidth = Context.toCharUnitsFromBits( |
1070 | BitSize: Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default)); |
1071 | CharUnits PtrAlign = Context.toCharUnitsFromBits( |
1072 | BitSize: Context.getTargetInfo().getPointerAlign(AddrSpace: LangAS::Default)); |
1073 | EnsureVTablePointerAlignment(UnpackedBaseAlign: PtrAlign); |
1074 | HasOwnVFPtr = true; |
1075 | |
1076 | assert(!IsUnion && "Unions cannot be dynamic classes." ); |
1077 | HandledFirstNonOverlappingEmptyField = true; |
1078 | |
1079 | setSize(getSize() + PtrWidth); |
1080 | setDataSize(getSize()); |
1081 | } |
1082 | |
1083 | // Now lay out the non-virtual bases. |
1084 | for (const auto &I : RD->bases()) { |
1085 | |
1086 | // Ignore virtual bases. |
1087 | if (I.isVirtual()) |
1088 | continue; |
1089 | |
1090 | const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); |
1091 | |
1092 | // Skip the primary base, because we've already laid it out. The |
1093 | // !PrimaryBaseIsVirtual check is required because we might have a |
1094 | // non-virtual base of the same type as a primary virtual base. |
1095 | if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual) |
1096 | continue; |
1097 | |
1098 | // Lay out the base. |
1099 | BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(Val: BaseDecl); |
1100 | assert(BaseInfo && "Did not find base info for non-virtual base!" ); |
1101 | |
1102 | LayoutNonVirtualBase(Base: BaseInfo); |
1103 | } |
1104 | } |
1105 | |
1106 | void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase( |
1107 | const BaseSubobjectInfo *Base) { |
1108 | // Layout the base. |
1109 | CharUnits Offset = LayoutBase(Base); |
1110 | |
1111 | // Add its base class offset. |
1112 | assert(!Bases.count(Base->Class) && "base offset already exists!" ); |
1113 | Bases.insert(KV: std::make_pair(x: Base->Class, y&: Offset)); |
1114 | |
1115 | AddPrimaryVirtualBaseOffsets(Info: Base, Offset); |
1116 | } |
1117 | |
1118 | void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets( |
1119 | const BaseSubobjectInfo *Info, CharUnits Offset) { |
1120 | // This base isn't interesting, it has no virtual bases. |
1121 | if (!Info->Class->getNumVBases()) |
1122 | return; |
1123 | |
1124 | // First, check if we have a virtual primary base to add offsets for. |
1125 | if (Info->PrimaryVirtualBaseInfo) { |
1126 | assert(Info->PrimaryVirtualBaseInfo->IsVirtual && |
1127 | "Primary virtual base is not virtual!" ); |
1128 | if (Info->PrimaryVirtualBaseInfo->Derived == Info) { |
1129 | // Add the offset. |
1130 | assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && |
1131 | "primary vbase offset already exists!" ); |
1132 | VBases.insert(KV: std::make_pair(x&: Info->PrimaryVirtualBaseInfo->Class, |
1133 | y: ASTRecordLayout::VBaseInfo(Offset, false))); |
1134 | |
1135 | // Traverse the primary virtual base. |
1136 | AddPrimaryVirtualBaseOffsets(Info: Info->PrimaryVirtualBaseInfo, Offset); |
1137 | } |
1138 | } |
1139 | |
1140 | // Now go through all direct non-virtual bases. |
1141 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: Info->Class); |
1142 | for (const BaseSubobjectInfo *Base : Info->Bases) { |
1143 | if (Base->IsVirtual) |
1144 | continue; |
1145 | |
1146 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base: Base->Class); |
1147 | AddPrimaryVirtualBaseOffsets(Info: Base, Offset: BaseOffset); |
1148 | } |
1149 | } |
1150 | |
1151 | void ItaniumRecordLayoutBuilder::LayoutVirtualBases( |
1152 | const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) { |
1153 | const CXXRecordDecl *PrimaryBase; |
1154 | bool PrimaryBaseIsVirtual; |
1155 | |
1156 | if (MostDerivedClass == RD) { |
1157 | PrimaryBase = this->PrimaryBase; |
1158 | PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual; |
1159 | } else { |
1160 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
1161 | PrimaryBase = Layout.getPrimaryBase(); |
1162 | PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); |
1163 | } |
1164 | |
1165 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
1166 | assert(!Base.getType()->isDependentType() && |
1167 | "Cannot layout class with dependent bases." ); |
1168 | |
1169 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
1170 | |
1171 | if (Base.isVirtual()) { |
1172 | if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) { |
1173 | bool IndirectPrimaryBase = IndirectPrimaryBases.count(Ptr: BaseDecl); |
1174 | |
1175 | // Only lay out the virtual base if it's not an indirect primary base. |
1176 | if (!IndirectPrimaryBase) { |
1177 | // Only visit virtual bases once. |
1178 | if (!VisitedVirtualBases.insert(Ptr: BaseDecl).second) |
1179 | continue; |
1180 | |
1181 | const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(Val: BaseDecl); |
1182 | assert(BaseInfo && "Did not find virtual base info!" ); |
1183 | LayoutVirtualBase(Base: BaseInfo); |
1184 | } |
1185 | } |
1186 | } |
1187 | |
1188 | if (!BaseDecl->getNumVBases()) { |
1189 | // This base isn't interesting since it doesn't have any virtual bases. |
1190 | continue; |
1191 | } |
1192 | |
1193 | LayoutVirtualBases(RD: BaseDecl, MostDerivedClass); |
1194 | } |
1195 | } |
1196 | |
1197 | void ItaniumRecordLayoutBuilder::LayoutVirtualBase( |
1198 | const BaseSubobjectInfo *Base) { |
1199 | assert(!Base->Derived && "Trying to lay out a primary virtual base!" ); |
1200 | |
1201 | // Layout the base. |
1202 | CharUnits Offset = LayoutBase(Base); |
1203 | |
1204 | // Add its base class offset. |
1205 | assert(!VBases.count(Base->Class) && "vbase offset already exists!" ); |
1206 | VBases.insert(KV: std::make_pair(x: Base->Class, |
1207 | y: ASTRecordLayout::VBaseInfo(Offset, false))); |
1208 | |
1209 | AddPrimaryVirtualBaseOffsets(Info: Base, Offset); |
1210 | } |
1211 | |
1212 | CharUnits |
1213 | ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) { |
1214 | assert(!IsUnion && "Unions cannot have base classes." ); |
1215 | |
1216 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: Base->Class); |
1217 | CharUnits Offset; |
1218 | |
1219 | // Query the external layout to see if it provides an offset. |
1220 | bool HasExternalLayout = false; |
1221 | if (UseExternalLayout) { |
1222 | if (Base->IsVirtual) |
1223 | HasExternalLayout = External.getExternalVBaseOffset(RD: Base->Class, BaseOffset&: Offset); |
1224 | else |
1225 | HasExternalLayout = External.getExternalNVBaseOffset(RD: Base->Class, BaseOffset&: Offset); |
1226 | } |
1227 | |
1228 | auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) { |
1229 | // Clang <= 6 incorrectly applied the 'packed' attribute to base classes. |
1230 | // Per GCC's documentation, it only applies to non-static data members. |
1231 | return (Packed && ((Context.getLangOpts().getClangABICompat() <= |
1232 | LangOptions::ClangABI::Ver6) || |
1233 | Context.getTargetInfo().getTriple().isPS() || |
1234 | Context.getTargetInfo().getTriple().isOSAIX())) |
1235 | ? CharUnits::One() |
1236 | : UnpackedAlign; |
1237 | }; |
1238 | |
1239 | CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment(); |
1240 | CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment(); |
1241 | CharUnits BaseAlign = |
1242 | getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign); |
1243 | CharUnits PreferredBaseAlign = |
1244 | getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign); |
1245 | |
1246 | const bool DefaultsToAIXPowerAlignment = |
1247 | Context.getTargetInfo().defaultsToAIXPowerAlignment(); |
1248 | if (DefaultsToAIXPowerAlignment) { |
1249 | // AIX `power` alignment does not apply the preferred alignment for |
1250 | // non-union classes if the source of the alignment (the current base in |
1251 | // this context) follows introduction of the first subobject with |
1252 | // exclusively allocated space or zero-extent array. |
1253 | if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) { |
1254 | // By handling a base class that is not empty, we're handling the |
1255 | // "first (inherited) member". |
1256 | HandledFirstNonOverlappingEmptyField = true; |
1257 | } else if (!IsNaturalAlign) { |
1258 | UnpackedPreferredBaseAlign = UnpackedBaseAlign; |
1259 | PreferredBaseAlign = BaseAlign; |
1260 | } |
1261 | } |
1262 | |
1263 | CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment |
1264 | ? UnpackedBaseAlign |
1265 | : UnpackedPreferredBaseAlign; |
1266 | // If we have an empty base class, try to place it at offset 0. |
1267 | if (Base->Class->isEmpty() && |
1268 | (!HasExternalLayout || Offset == CharUnits::Zero()) && |
1269 | EmptySubobjects->CanPlaceBaseAtOffset(Info: Base, Offset: CharUnits::Zero())) { |
1270 | setSize(std::max(a: getSize(), b: Layout.getSize())); |
1271 | // On PS4/PS5, don't update the alignment, to preserve compatibility. |
1272 | if (!Context.getTargetInfo().getTriple().isPS()) |
1273 | UpdateAlignment(NewAlignment: BaseAlign, UnpackedNewAlignment: UnpackedAlignTo, PreferredAlignment: PreferredBaseAlign); |
1274 | |
1275 | return CharUnits::Zero(); |
1276 | } |
1277 | |
1278 | // The maximum field alignment overrides the base align/(AIX-only) preferred |
1279 | // base align. |
1280 | if (!MaxFieldAlignment.isZero()) { |
1281 | BaseAlign = std::min(a: BaseAlign, b: MaxFieldAlignment); |
1282 | PreferredBaseAlign = std::min(a: PreferredBaseAlign, b: MaxFieldAlignment); |
1283 | UnpackedAlignTo = std::min(a: UnpackedAlignTo, b: MaxFieldAlignment); |
1284 | } |
1285 | |
1286 | CharUnits AlignTo = |
1287 | !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign; |
1288 | if (!HasExternalLayout) { |
1289 | // Round up the current record size to the base's alignment boundary. |
1290 | Offset = getDataSize().alignTo(Align: AlignTo); |
1291 | |
1292 | // Try to place the base. |
1293 | while (!EmptySubobjects->CanPlaceBaseAtOffset(Info: Base, Offset)) |
1294 | Offset += AlignTo; |
1295 | } else { |
1296 | bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Info: Base, Offset); |
1297 | (void)Allowed; |
1298 | assert(Allowed && "Base subobject externally placed at overlapping offset" ); |
1299 | |
1300 | if (InferAlignment && Offset < getDataSize().alignTo(Align: AlignTo)) { |
1301 | // The externally-supplied base offset is before the base offset we |
1302 | // computed. Assume that the structure is packed. |
1303 | Alignment = CharUnits::One(); |
1304 | InferAlignment = false; |
1305 | } |
1306 | } |
1307 | |
1308 | if (!Base->Class->isEmpty()) { |
1309 | // Update the data size. |
1310 | setDataSize(Offset + Layout.getNonVirtualSize()); |
1311 | |
1312 | setSize(std::max(a: getSize(), b: getDataSize())); |
1313 | } else |
1314 | setSize(std::max(a: getSize(), b: Offset + Layout.getSize())); |
1315 | |
1316 | // Remember max struct/class alignment. |
1317 | UpdateAlignment(NewAlignment: BaseAlign, UnpackedNewAlignment: UnpackedAlignTo, PreferredAlignment: PreferredBaseAlign); |
1318 | |
1319 | return Offset; |
1320 | } |
1321 | |
1322 | void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) { |
1323 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(Val: D)) { |
1324 | IsUnion = RD->isUnion(); |
1325 | IsMsStruct = RD->isMsStruct(C: Context); |
1326 | } |
1327 | |
1328 | Packed = D->hasAttr<PackedAttr>(); |
1329 | |
1330 | // Honor the default struct packing maximum alignment flag. |
1331 | if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) { |
1332 | MaxFieldAlignment = CharUnits::fromQuantity(Quantity: DefaultMaxFieldAlignment); |
1333 | } |
1334 | |
1335 | // mac68k alignment supersedes maximum field alignment and attribute aligned, |
1336 | // and forces all structures to have 2-byte alignment. The IBM docs on it |
1337 | // allude to additional (more complicated) semantics, especially with regard |
1338 | // to bit-fields, but gcc appears not to follow that. |
1339 | if (D->hasAttr<AlignMac68kAttr>()) { |
1340 | assert( |
1341 | !D->hasAttr<AlignNaturalAttr>() && |
1342 | "Having both mac68k and natural alignment on a decl is not allowed." ); |
1343 | IsMac68kAlign = true; |
1344 | MaxFieldAlignment = CharUnits::fromQuantity(Quantity: 2); |
1345 | Alignment = CharUnits::fromQuantity(Quantity: 2); |
1346 | PreferredAlignment = CharUnits::fromQuantity(Quantity: 2); |
1347 | } else { |
1348 | if (D->hasAttr<AlignNaturalAttr>()) |
1349 | IsNaturalAlign = true; |
1350 | |
1351 | if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>()) |
1352 | MaxFieldAlignment = Context.toCharUnitsFromBits(BitSize: MFAA->getAlignment()); |
1353 | |
1354 | if (unsigned MaxAlign = D->getMaxAlignment()) |
1355 | UpdateAlignment(NewAlignment: Context.toCharUnitsFromBits(BitSize: MaxAlign)); |
1356 | } |
1357 | |
1358 | HandledFirstNonOverlappingEmptyField = |
1359 | !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign; |
1360 | |
1361 | // If there is an external AST source, ask it for the various offsets. |
1362 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(Val: D)) |
1363 | if (ExternalASTSource *Source = Context.getExternalSource()) { |
1364 | UseExternalLayout = Source->layoutRecordType( |
1365 | Record: RD, Size&: External.Size, Alignment&: External.Align, FieldOffsets&: External.FieldOffsets, |
1366 | BaseOffsets&: External.BaseOffsets, VirtualBaseOffsets&: External.VirtualBaseOffsets); |
1367 | |
1368 | // Update based on external alignment. |
1369 | if (UseExternalLayout) { |
1370 | if (External.Align > 0) { |
1371 | Alignment = Context.toCharUnitsFromBits(BitSize: External.Align); |
1372 | PreferredAlignment = Context.toCharUnitsFromBits(BitSize: External.Align); |
1373 | } else { |
1374 | // The external source didn't have alignment information; infer it. |
1375 | InferAlignment = true; |
1376 | } |
1377 | } |
1378 | } |
1379 | } |
1380 | |
1381 | void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) { |
1382 | InitializeLayout(D); |
1383 | LayoutFields(D); |
1384 | |
1385 | // Finally, round the size of the total struct up to the alignment of the |
1386 | // struct itself. |
1387 | FinishLayout(D); |
1388 | } |
1389 | |
1390 | void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) { |
1391 | InitializeLayout(D: RD); |
1392 | |
1393 | // Lay out the vtable and the non-virtual bases. |
1394 | LayoutNonVirtualBases(RD); |
1395 | |
1396 | LayoutFields(D: RD); |
1397 | |
1398 | NonVirtualSize = Context.toCharUnitsFromBits( |
1399 | BitSize: llvm::alignTo(Value: getSizeInBits(), Align: Context.getTargetInfo().getCharAlign())); |
1400 | NonVirtualAlignment = Alignment; |
1401 | PreferredNVAlignment = PreferredAlignment; |
1402 | |
1403 | // Lay out the virtual bases and add the primary virtual base offsets. |
1404 | LayoutVirtualBases(RD, MostDerivedClass: RD); |
1405 | |
1406 | // Finally, round the size of the total struct up to the alignment |
1407 | // of the struct itself. |
1408 | FinishLayout(D: RD); |
1409 | |
1410 | #ifndef NDEBUG |
1411 | // Check that we have base offsets for all bases. |
1412 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
1413 | if (Base.isVirtual()) |
1414 | continue; |
1415 | |
1416 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
1417 | |
1418 | assert(Bases.count(BaseDecl) && "Did not find base offset!" ); |
1419 | } |
1420 | |
1421 | // And all virtual bases. |
1422 | for (const CXXBaseSpecifier &Base : RD->vbases()) { |
1423 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
1424 | |
1425 | assert(VBases.count(BaseDecl) && "Did not find base offset!" ); |
1426 | } |
1427 | #endif |
1428 | } |
1429 | |
1430 | void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) { |
1431 | if (ObjCInterfaceDecl *SD = D->getSuperClass()) { |
1432 | const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(D: SD); |
1433 | |
1434 | UpdateAlignment(NewAlignment: SL.getAlignment()); |
1435 | |
1436 | // We start laying out ivars not at the end of the superclass |
1437 | // structure, but at the next byte following the last field. |
1438 | setDataSize(SL.getDataSize()); |
1439 | setSize(getDataSize()); |
1440 | } |
1441 | |
1442 | InitializeLayout(D); |
1443 | // Layout each ivar sequentially. |
1444 | for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD; |
1445 | IVD = IVD->getNextIvar()) |
1446 | LayoutField(D: IVD, InsertExtraPadding: false); |
1447 | |
1448 | // Finally, round the size of the total struct up to the alignment of the |
1449 | // struct itself. |
1450 | FinishLayout(D); |
1451 | } |
1452 | |
1453 | void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) { |
1454 | // Layout each field, for now, just sequentially, respecting alignment. In |
1455 | // the future, this will need to be tweakable by targets. |
1456 | bool = D->mayInsertExtraPadding(/*EmitRemark=*/true); |
1457 | bool HasFlexibleArrayMember = D->hasFlexibleArrayMember(); |
1458 | for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) { |
1459 | auto Next(I); |
1460 | ++Next; |
1461 | LayoutField(D: *I, |
1462 | InsertExtraPadding: InsertExtraPadding && (Next != End || !HasFlexibleArrayMember)); |
1463 | } |
1464 | } |
1465 | |
1466 | // Rounds the specified size to have it a multiple of the char size. |
1467 | static uint64_t |
1468 | roundUpSizeToCharAlignment(uint64_t Size, |
1469 | const ASTContext &Context) { |
1470 | uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); |
1471 | return llvm::alignTo(Value: Size, Align: CharAlignment); |
1472 | } |
1473 | |
1474 | void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize, |
1475 | uint64_t StorageUnitSize, |
1476 | bool FieldPacked, |
1477 | const FieldDecl *D) { |
1478 | assert(Context.getLangOpts().CPlusPlus && |
1479 | "Can only have wide bit-fields in C++!" ); |
1480 | |
1481 | // Itanium C++ ABI 2.4: |
1482 | // If sizeof(T)*8 < n, let T' be the largest integral POD type with |
1483 | // sizeof(T')*8 <= n. |
1484 | |
1485 | QualType IntegralPODTypes[] = { |
1486 | Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy, |
1487 | Context.UnsignedLongTy, Context.UnsignedLongLongTy |
1488 | }; |
1489 | |
1490 | QualType Type; |
1491 | for (const QualType &QT : IntegralPODTypes) { |
1492 | uint64_t Size = Context.getTypeSize(T: QT); |
1493 | |
1494 | if (Size > FieldSize) |
1495 | break; |
1496 | |
1497 | Type = QT; |
1498 | } |
1499 | assert(!Type.isNull() && "Did not find a type!" ); |
1500 | |
1501 | CharUnits TypeAlign = Context.getTypeAlignInChars(T: Type); |
1502 | |
1503 | // We're not going to use any of the unfilled bits in the last byte. |
1504 | UnfilledBitsInLastUnit = 0; |
1505 | LastBitfieldStorageUnitSize = 0; |
1506 | |
1507 | uint64_t FieldOffset; |
1508 | uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; |
1509 | |
1510 | if (IsUnion) { |
1511 | uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(Size: FieldSize, |
1512 | Context); |
1513 | setDataSize(std::max(a: getDataSizeInBits(), b: RoundedFieldSize)); |
1514 | FieldOffset = 0; |
1515 | } else { |
1516 | // The bitfield is allocated starting at the next offset aligned |
1517 | // appropriately for T', with length n bits. |
1518 | FieldOffset = llvm::alignTo(Value: getDataSizeInBits(), Align: Context.toBits(CharSize: TypeAlign)); |
1519 | |
1520 | uint64_t NewSizeInBits = FieldOffset + FieldSize; |
1521 | |
1522 | setDataSize( |
1523 | llvm::alignTo(Value: NewSizeInBits, Align: Context.getTargetInfo().getCharAlign())); |
1524 | UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; |
1525 | } |
1526 | |
1527 | // Place this field at the current location. |
1528 | FieldOffsets.push_back(Elt: FieldOffset); |
1529 | |
1530 | CheckFieldPadding(Offset: FieldOffset, UnpaddedOffset: UnpaddedFieldOffset, UnpackedOffset: FieldOffset, |
1531 | UnpackedAlign: Context.toBits(CharSize: TypeAlign), isPacked: FieldPacked, D); |
1532 | |
1533 | // Update the size. |
1534 | setSize(std::max(a: getSizeInBits(), b: getDataSizeInBits())); |
1535 | |
1536 | // Remember max struct/class alignment. |
1537 | UpdateAlignment(NewAlignment: TypeAlign); |
1538 | } |
1539 | |
1540 | static bool isAIXLayout(const ASTContext &Context) { |
1541 | return Context.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX; |
1542 | } |
1543 | |
1544 | void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) { |
1545 | bool FieldPacked = Packed || D->hasAttr<PackedAttr>(); |
1546 | uint64_t FieldSize = D->getBitWidthValue(Ctx: Context); |
1547 | TypeInfo FieldInfo = Context.getTypeInfo(T: D->getType()); |
1548 | uint64_t StorageUnitSize = FieldInfo.Width; |
1549 | unsigned FieldAlign = FieldInfo.Align; |
1550 | bool AlignIsRequired = FieldInfo.isAlignRequired(); |
1551 | |
1552 | // UnfilledBitsInLastUnit is the difference between the end of the |
1553 | // last allocated bitfield (i.e. the first bit offset available for |
1554 | // bitfields) and the end of the current data size in bits (i.e. the |
1555 | // first bit offset available for non-bitfields). The current data |
1556 | // size in bits is always a multiple of the char size; additionally, |
1557 | // for ms_struct records it's also a multiple of the |
1558 | // LastBitfieldStorageUnitSize (if set). |
1559 | |
1560 | // The struct-layout algorithm is dictated by the platform ABI, |
1561 | // which in principle could use almost any rules it likes. In |
1562 | // practice, UNIXy targets tend to inherit the algorithm described |
1563 | // in the System V generic ABI. The basic bitfield layout rule in |
1564 | // System V is to place bitfields at the next available bit offset |
1565 | // where the entire bitfield would fit in an aligned storage unit of |
1566 | // the declared type; it's okay if an earlier or later non-bitfield |
1567 | // is allocated in the same storage unit. However, some targets |
1568 | // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't |
1569 | // require this storage unit to be aligned, and therefore always put |
1570 | // the bitfield at the next available bit offset. |
1571 | |
1572 | // ms_struct basically requests a complete replacement of the |
1573 | // platform ABI's struct-layout algorithm, with the high-level goal |
1574 | // of duplicating MSVC's layout. For non-bitfields, this follows |
1575 | // the standard algorithm. The basic bitfield layout rule is to |
1576 | // allocate an entire unit of the bitfield's declared type |
1577 | // (e.g. 'unsigned long'), then parcel it up among successive |
1578 | // bitfields whose declared types have the same size, making a new |
1579 | // unit as soon as the last can no longer store the whole value. |
1580 | // Since it completely replaces the platform ABI's algorithm, |
1581 | // settings like !useBitFieldTypeAlignment() do not apply. |
1582 | |
1583 | // A zero-width bitfield forces the use of a new storage unit for |
1584 | // later bitfields. In general, this occurs by rounding up the |
1585 | // current size of the struct as if the algorithm were about to |
1586 | // place a non-bitfield of the field's formal type. Usually this |
1587 | // does not change the alignment of the struct itself, but it does |
1588 | // on some targets (those that useZeroLengthBitfieldAlignment(), |
1589 | // e.g. ARM). In ms_struct layout, zero-width bitfields are |
1590 | // ignored unless they follow a non-zero-width bitfield. |
1591 | |
1592 | // A field alignment restriction (e.g. from #pragma pack) or |
1593 | // specification (e.g. from __attribute__((aligned))) changes the |
1594 | // formal alignment of the field. For System V, this alters the |
1595 | // required alignment of the notional storage unit that must contain |
1596 | // the bitfield. For ms_struct, this only affects the placement of |
1597 | // new storage units. In both cases, the effect of #pragma pack is |
1598 | // ignored on zero-width bitfields. |
1599 | |
1600 | // On System V, a packed field (e.g. from #pragma pack or |
1601 | // __attribute__((packed))) always uses the next available bit |
1602 | // offset. |
1603 | |
1604 | // In an ms_struct struct, the alignment of a fundamental type is |
1605 | // always equal to its size. This is necessary in order to mimic |
1606 | // the i386 alignment rules on targets which might not fully align |
1607 | // all types (e.g. Darwin PPC32, where alignof(long long) == 4). |
1608 | |
1609 | // First, some simple bookkeeping to perform for ms_struct structs. |
1610 | if (IsMsStruct) { |
1611 | // The field alignment for integer types is always the size. |
1612 | FieldAlign = StorageUnitSize; |
1613 | |
1614 | // If the previous field was not a bitfield, or was a bitfield |
1615 | // with a different storage unit size, or if this field doesn't fit into |
1616 | // the current storage unit, we're done with that storage unit. |
1617 | if (LastBitfieldStorageUnitSize != StorageUnitSize || |
1618 | UnfilledBitsInLastUnit < FieldSize) { |
1619 | // Also, ignore zero-length bitfields after non-bitfields. |
1620 | if (!LastBitfieldStorageUnitSize && !FieldSize) |
1621 | FieldAlign = 1; |
1622 | |
1623 | UnfilledBitsInLastUnit = 0; |
1624 | LastBitfieldStorageUnitSize = 0; |
1625 | } |
1626 | } |
1627 | |
1628 | if (isAIXLayout(Context)) { |
1629 | if (StorageUnitSize < Context.getTypeSize(T: Context.UnsignedIntTy)) { |
1630 | // On AIX, [bool, char, short] bitfields have the same alignment |
1631 | // as [unsigned]. |
1632 | StorageUnitSize = Context.getTypeSize(T: Context.UnsignedIntTy); |
1633 | } else if (StorageUnitSize > Context.getTypeSize(T: Context.UnsignedIntTy) && |
1634 | Context.getTargetInfo().getTriple().isArch32Bit() && |
1635 | FieldSize <= 32) { |
1636 | // Under 32-bit compile mode, the bitcontainer is 32 bits if a single |
1637 | // long long bitfield has length no greater than 32 bits. |
1638 | StorageUnitSize = 32; |
1639 | |
1640 | if (!AlignIsRequired) |
1641 | FieldAlign = 32; |
1642 | } |
1643 | |
1644 | if (FieldAlign < StorageUnitSize) { |
1645 | // The bitfield alignment should always be greater than or equal to |
1646 | // bitcontainer size. |
1647 | FieldAlign = StorageUnitSize; |
1648 | } |
1649 | } |
1650 | |
1651 | // If the field is wider than its declared type, it follows |
1652 | // different rules in all cases, except on AIX. |
1653 | // On AIX, wide bitfield follows the same rules as normal bitfield. |
1654 | if (FieldSize > StorageUnitSize && !isAIXLayout(Context)) { |
1655 | LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D); |
1656 | return; |
1657 | } |
1658 | |
1659 | // Compute the next available bit offset. |
1660 | uint64_t FieldOffset = |
1661 | IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit); |
1662 | |
1663 | // Handle targets that don't honor bitfield type alignment. |
1664 | if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) { |
1665 | // Some such targets do honor it on zero-width bitfields. |
1666 | if (FieldSize == 0 && |
1667 | Context.getTargetInfo().useZeroLengthBitfieldAlignment()) { |
1668 | // Some targets don't honor leading zero-width bitfield. |
1669 | if (!IsUnion && FieldOffset == 0 && |
1670 | !Context.getTargetInfo().useLeadingZeroLengthBitfield()) |
1671 | FieldAlign = 1; |
1672 | else { |
1673 | // The alignment to round up to is the max of the field's natural |
1674 | // alignment and a target-specific fixed value (sometimes zero). |
1675 | unsigned ZeroLengthBitfieldBoundary = |
1676 | Context.getTargetInfo().getZeroLengthBitfieldBoundary(); |
1677 | FieldAlign = std::max(a: FieldAlign, b: ZeroLengthBitfieldBoundary); |
1678 | } |
1679 | // If that doesn't apply, just ignore the field alignment. |
1680 | } else { |
1681 | FieldAlign = 1; |
1682 | } |
1683 | } |
1684 | |
1685 | // Remember the alignment we would have used if the field were not packed. |
1686 | unsigned UnpackedFieldAlign = FieldAlign; |
1687 | |
1688 | // Ignore the field alignment if the field is packed unless it has zero-size. |
1689 | if (!IsMsStruct && FieldPacked && FieldSize != 0) |
1690 | FieldAlign = 1; |
1691 | |
1692 | // But, if there's an 'aligned' attribute on the field, honor that. |
1693 | unsigned ExplicitFieldAlign = D->getMaxAlignment(); |
1694 | if (ExplicitFieldAlign) { |
1695 | FieldAlign = std::max(a: FieldAlign, b: ExplicitFieldAlign); |
1696 | UnpackedFieldAlign = std::max(a: UnpackedFieldAlign, b: ExplicitFieldAlign); |
1697 | } |
1698 | |
1699 | // But, if there's a #pragma pack in play, that takes precedent over |
1700 | // even the 'aligned' attribute, for non-zero-width bitfields. |
1701 | unsigned MaxFieldAlignmentInBits = Context.toBits(CharSize: MaxFieldAlignment); |
1702 | if (!MaxFieldAlignment.isZero() && FieldSize) { |
1703 | UnpackedFieldAlign = std::min(a: UnpackedFieldAlign, b: MaxFieldAlignmentInBits); |
1704 | if (FieldPacked) |
1705 | FieldAlign = UnpackedFieldAlign; |
1706 | else |
1707 | FieldAlign = std::min(a: FieldAlign, b: MaxFieldAlignmentInBits); |
1708 | } |
1709 | |
1710 | // But, ms_struct just ignores all of that in unions, even explicit |
1711 | // alignment attributes. |
1712 | if (IsMsStruct && IsUnion) { |
1713 | FieldAlign = UnpackedFieldAlign = 1; |
1714 | } |
1715 | |
1716 | // For purposes of diagnostics, we're going to simultaneously |
1717 | // compute the field offsets that we would have used if we weren't |
1718 | // adding any alignment padding or if the field weren't packed. |
1719 | uint64_t UnpaddedFieldOffset = FieldOffset; |
1720 | uint64_t UnpackedFieldOffset = FieldOffset; |
1721 | |
1722 | // Check if we need to add padding to fit the bitfield within an |
1723 | // allocation unit with the right size and alignment. The rules are |
1724 | // somewhat different here for ms_struct structs. |
1725 | if (IsMsStruct) { |
1726 | // If it's not a zero-width bitfield, and we can fit the bitfield |
1727 | // into the active storage unit (and we haven't already decided to |
1728 | // start a new storage unit), just do so, regardless of any other |
1729 | // other consideration. Otherwise, round up to the right alignment. |
1730 | if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) { |
1731 | FieldOffset = llvm::alignTo(Value: FieldOffset, Align: FieldAlign); |
1732 | UnpackedFieldOffset = |
1733 | llvm::alignTo(Value: UnpackedFieldOffset, Align: UnpackedFieldAlign); |
1734 | UnfilledBitsInLastUnit = 0; |
1735 | } |
1736 | |
1737 | } else { |
1738 | // #pragma pack, with any value, suppresses the insertion of padding. |
1739 | bool AllowPadding = MaxFieldAlignment.isZero(); |
1740 | |
1741 | // Compute the real offset. |
1742 | if (FieldSize == 0 || |
1743 | (AllowPadding && |
1744 | (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) { |
1745 | FieldOffset = llvm::alignTo(Value: FieldOffset, Align: FieldAlign); |
1746 | } else if (ExplicitFieldAlign && |
1747 | (MaxFieldAlignmentInBits == 0 || |
1748 | ExplicitFieldAlign <= MaxFieldAlignmentInBits) && |
1749 | Context.getTargetInfo().useExplicitBitFieldAlignment()) { |
1750 | // TODO: figure it out what needs to be done on targets that don't honor |
1751 | // bit-field type alignment like ARM APCS ABI. |
1752 | FieldOffset = llvm::alignTo(Value: FieldOffset, Align: ExplicitFieldAlign); |
1753 | } |
1754 | |
1755 | // Repeat the computation for diagnostic purposes. |
1756 | if (FieldSize == 0 || |
1757 | (AllowPadding && |
1758 | (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize > |
1759 | StorageUnitSize)) |
1760 | UnpackedFieldOffset = |
1761 | llvm::alignTo(Value: UnpackedFieldOffset, Align: UnpackedFieldAlign); |
1762 | else if (ExplicitFieldAlign && |
1763 | (MaxFieldAlignmentInBits == 0 || |
1764 | ExplicitFieldAlign <= MaxFieldAlignmentInBits) && |
1765 | Context.getTargetInfo().useExplicitBitFieldAlignment()) |
1766 | UnpackedFieldOffset = |
1767 | llvm::alignTo(Value: UnpackedFieldOffset, Align: ExplicitFieldAlign); |
1768 | } |
1769 | |
1770 | // If we're using external layout, give the external layout a chance |
1771 | // to override this information. |
1772 | if (UseExternalLayout) |
1773 | FieldOffset = updateExternalFieldOffset(Field: D, ComputedOffset: FieldOffset); |
1774 | |
1775 | // Okay, place the bitfield at the calculated offset. |
1776 | FieldOffsets.push_back(Elt: FieldOffset); |
1777 | |
1778 | // Bookkeeping: |
1779 | |
1780 | // Anonymous members don't affect the overall record alignment, |
1781 | // except on targets where they do. |
1782 | if (!IsMsStruct && |
1783 | !Context.getTargetInfo().useZeroLengthBitfieldAlignment() && |
1784 | !D->getIdentifier()) |
1785 | FieldAlign = UnpackedFieldAlign = 1; |
1786 | |
1787 | // On AIX, zero-width bitfields pad out to the natural alignment boundary, |
1788 | // but do not increase the alignment greater than the MaxFieldAlignment, or 1 |
1789 | // if packed. |
1790 | if (isAIXLayout(Context) && !FieldSize) { |
1791 | if (FieldPacked) |
1792 | FieldAlign = 1; |
1793 | if (!MaxFieldAlignment.isZero()) { |
1794 | UnpackedFieldAlign = |
1795 | std::min(a: UnpackedFieldAlign, b: MaxFieldAlignmentInBits); |
1796 | FieldAlign = std::min(a: FieldAlign, b: MaxFieldAlignmentInBits); |
1797 | } |
1798 | } |
1799 | |
1800 | // Diagnose differences in layout due to padding or packing. |
1801 | if (!UseExternalLayout) |
1802 | CheckFieldPadding(Offset: FieldOffset, UnpaddedOffset: UnpaddedFieldOffset, UnpackedOffset: UnpackedFieldOffset, |
1803 | UnpackedAlign: UnpackedFieldAlign, isPacked: FieldPacked, D); |
1804 | |
1805 | // Update DataSize to include the last byte containing (part of) the bitfield. |
1806 | |
1807 | // For unions, this is just a max operation, as usual. |
1808 | if (IsUnion) { |
1809 | // For ms_struct, allocate the entire storage unit --- unless this |
1810 | // is a zero-width bitfield, in which case just use a size of 1. |
1811 | uint64_t RoundedFieldSize; |
1812 | if (IsMsStruct) { |
1813 | RoundedFieldSize = (FieldSize ? StorageUnitSize |
1814 | : Context.getTargetInfo().getCharWidth()); |
1815 | |
1816 | // Otherwise, allocate just the number of bytes required to store |
1817 | // the bitfield. |
1818 | } else { |
1819 | RoundedFieldSize = roundUpSizeToCharAlignment(Size: FieldSize, Context); |
1820 | } |
1821 | setDataSize(std::max(a: getDataSizeInBits(), b: RoundedFieldSize)); |
1822 | |
1823 | // For non-zero-width bitfields in ms_struct structs, allocate a new |
1824 | // storage unit if necessary. |
1825 | } else if (IsMsStruct && FieldSize) { |
1826 | // We should have cleared UnfilledBitsInLastUnit in every case |
1827 | // where we changed storage units. |
1828 | if (!UnfilledBitsInLastUnit) { |
1829 | setDataSize(FieldOffset + StorageUnitSize); |
1830 | UnfilledBitsInLastUnit = StorageUnitSize; |
1831 | } |
1832 | UnfilledBitsInLastUnit -= FieldSize; |
1833 | LastBitfieldStorageUnitSize = StorageUnitSize; |
1834 | |
1835 | // Otherwise, bump the data size up to include the bitfield, |
1836 | // including padding up to char alignment, and then remember how |
1837 | // bits we didn't use. |
1838 | } else { |
1839 | uint64_t NewSizeInBits = FieldOffset + FieldSize; |
1840 | uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); |
1841 | setDataSize(llvm::alignTo(Value: NewSizeInBits, Align: CharAlignment)); |
1842 | UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; |
1843 | |
1844 | // The only time we can get here for an ms_struct is if this is a |
1845 | // zero-width bitfield, which doesn't count as anything for the |
1846 | // purposes of unfilled bits. |
1847 | LastBitfieldStorageUnitSize = 0; |
1848 | } |
1849 | |
1850 | // Update the size. |
1851 | setSize(std::max(a: getSizeInBits(), b: getDataSizeInBits())); |
1852 | |
1853 | // Remember max struct/class alignment. |
1854 | UnadjustedAlignment = |
1855 | std::max(a: UnadjustedAlignment, b: Context.toCharUnitsFromBits(BitSize: FieldAlign)); |
1856 | UpdateAlignment(NewAlignment: Context.toCharUnitsFromBits(BitSize: FieldAlign), |
1857 | UnpackedNewAlignment: Context.toCharUnitsFromBits(BitSize: UnpackedFieldAlign)); |
1858 | } |
1859 | |
1860 | void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D, |
1861 | bool ) { |
1862 | auto *FieldClass = D->getType()->getAsCXXRecordDecl(); |
1863 | bool IsOverlappingEmptyField = |
1864 | D->isPotentiallyOverlapping() && FieldClass->isEmpty(); |
1865 | |
1866 | CharUnits FieldOffset = |
1867 | (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize(); |
1868 | |
1869 | const bool DefaultsToAIXPowerAlignment = |
1870 | Context.getTargetInfo().defaultsToAIXPowerAlignment(); |
1871 | bool FoundFirstNonOverlappingEmptyFieldForAIX = false; |
1872 | if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) { |
1873 | assert(FieldOffset == CharUnits::Zero() && |
1874 | "The first non-overlapping empty field should have been handled." ); |
1875 | |
1876 | if (!IsOverlappingEmptyField) { |
1877 | FoundFirstNonOverlappingEmptyFieldForAIX = true; |
1878 | |
1879 | // We're going to handle the "first member" based on |
1880 | // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current |
1881 | // invocation of this function; record it as handled for future |
1882 | // invocations (except for unions, because the current field does not |
1883 | // represent all "firsts"). |
1884 | HandledFirstNonOverlappingEmptyField = !IsUnion; |
1885 | } |
1886 | } |
1887 | |
1888 | if (D->isBitField()) { |
1889 | LayoutBitField(D); |
1890 | return; |
1891 | } |
1892 | |
1893 | uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; |
1894 | // Reset the unfilled bits. |
1895 | UnfilledBitsInLastUnit = 0; |
1896 | LastBitfieldStorageUnitSize = 0; |
1897 | |
1898 | llvm::Triple Target = Context.getTargetInfo().getTriple(); |
1899 | |
1900 | AlignRequirementKind AlignRequirement = AlignRequirementKind::None; |
1901 | CharUnits FieldSize; |
1902 | CharUnits FieldAlign; |
1903 | // The amount of this class's dsize occupied by the field. |
1904 | // This is equal to FieldSize unless we're permitted to pack |
1905 | // into the field's tail padding. |
1906 | CharUnits EffectiveFieldSize; |
1907 | |
1908 | auto setDeclInfo = [&](bool IsIncompleteArrayType) { |
1909 | auto TI = Context.getTypeInfoInChars(T: D->getType()); |
1910 | FieldAlign = TI.Align; |
1911 | // Flexible array members don't have any size, but they have to be |
1912 | // aligned appropriately for their element type. |
1913 | EffectiveFieldSize = FieldSize = |
1914 | IsIncompleteArrayType ? CharUnits::Zero() : TI.Width; |
1915 | AlignRequirement = TI.AlignRequirement; |
1916 | }; |
1917 | |
1918 | if (D->getType()->isIncompleteArrayType()) { |
1919 | setDeclInfo(true /* IsIncompleteArrayType */); |
1920 | } else { |
1921 | setDeclInfo(false /* IsIncompleteArrayType */); |
1922 | |
1923 | // A potentially-overlapping field occupies its dsize or nvsize, whichever |
1924 | // is larger. |
1925 | if (D->isPotentiallyOverlapping()) { |
1926 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: FieldClass); |
1927 | EffectiveFieldSize = |
1928 | std::max(a: Layout.getNonVirtualSize(), b: Layout.getDataSize()); |
1929 | } |
1930 | |
1931 | if (IsMsStruct) { |
1932 | // If MS bitfield layout is required, figure out what type is being |
1933 | // laid out and align the field to the width of that type. |
1934 | |
1935 | // Resolve all typedefs down to their base type and round up the field |
1936 | // alignment if necessary. |
1937 | QualType T = Context.getBaseElementType(QT: D->getType()); |
1938 | if (const BuiltinType *BTy = T->getAs<BuiltinType>()) { |
1939 | CharUnits TypeSize = Context.getTypeSizeInChars(T: BTy); |
1940 | |
1941 | if (!llvm::isPowerOf2_64(Value: TypeSize.getQuantity())) { |
1942 | assert( |
1943 | !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() && |
1944 | "Non PowerOf2 size in MSVC mode" ); |
1945 | // Base types with sizes that aren't a power of two don't work |
1946 | // with the layout rules for MS structs. This isn't an issue in |
1947 | // MSVC itself since there are no such base data types there. |
1948 | // On e.g. x86_32 mingw and linux, long double is 12 bytes though. |
1949 | // Any structs involving that data type obviously can't be ABI |
1950 | // compatible with MSVC regardless of how it is laid out. |
1951 | |
1952 | // Since ms_struct can be mass enabled (via a pragma or via the |
1953 | // -mms-bitfields command line parameter), this can trigger for |
1954 | // structs that don't actually need MSVC compatibility, so we |
1955 | // need to be able to sidestep the ms_struct layout for these types. |
1956 | |
1957 | // Since the combination of -mms-bitfields together with structs |
1958 | // like max_align_t (which contains a long double) for mingw is |
1959 | // quite common (and GCC handles it silently), just handle it |
1960 | // silently there. For other targets that have ms_struct enabled |
1961 | // (most probably via a pragma or attribute), trigger a diagnostic |
1962 | // that defaults to an error. |
1963 | if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) |
1964 | Diag(Loc: D->getLocation(), DiagID: diag::warn_npot_ms_struct); |
1965 | } |
1966 | if (TypeSize > FieldAlign && |
1967 | llvm::isPowerOf2_64(Value: TypeSize.getQuantity())) |
1968 | FieldAlign = TypeSize; |
1969 | } |
1970 | } |
1971 | } |
1972 | |
1973 | bool FieldPacked = (Packed && (!FieldClass || FieldClass->isPOD() || |
1974 | FieldClass->hasAttr<PackedAttr>() || |
1975 | Context.getLangOpts().getClangABICompat() <= |
1976 | LangOptions::ClangABI::Ver15 || |
1977 | Target.isPS() || Target.isOSDarwin() || |
1978 | Target.isOSAIX())) || |
1979 | D->hasAttr<PackedAttr>(); |
1980 | |
1981 | // When used as part of a typedef, or together with a 'packed' attribute, the |
1982 | // 'aligned' attribute can be used to decrease alignment. In that case, it |
1983 | // overrides any computed alignment we have, and there is no need to upgrade |
1984 | // the alignment. |
1985 | auto alignedAttrCanDecreaseAIXAlignment = [AlignRequirement, FieldPacked] { |
1986 | // Enum alignment sources can be safely ignored here, because this only |
1987 | // helps decide whether we need the AIX alignment upgrade, which only |
1988 | // applies to floating-point types. |
1989 | return AlignRequirement == AlignRequirementKind::RequiredByTypedef || |
1990 | (AlignRequirement == AlignRequirementKind::RequiredByRecord && |
1991 | FieldPacked); |
1992 | }; |
1993 | |
1994 | // The AIX `power` alignment rules apply the natural alignment of the |
1995 | // "first member" if it is of a floating-point data type (or is an aggregate |
1996 | // whose recursively "first" member or element is such a type). The alignment |
1997 | // associated with these types for subsequent members use an alignment value |
1998 | // where the floating-point data type is considered to have 4-byte alignment. |
1999 | // |
2000 | // For the purposes of the foregoing: vtable pointers, non-empty base classes, |
2001 | // and zero-width bit-fields count as prior members; members of empty class |
2002 | // types marked `no_unique_address` are not considered to be prior members. |
2003 | CharUnits PreferredAlign = FieldAlign; |
2004 | if (DefaultsToAIXPowerAlignment && !alignedAttrCanDecreaseAIXAlignment() && |
2005 | (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) { |
2006 | auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) { |
2007 | if (BTy->getKind() == BuiltinType::Double || |
2008 | BTy->getKind() == BuiltinType::LongDouble) { |
2009 | assert(PreferredAlign == CharUnits::fromQuantity(4) && |
2010 | "No need to upgrade the alignment value." ); |
2011 | PreferredAlign = CharUnits::fromQuantity(Quantity: 8); |
2012 | } |
2013 | }; |
2014 | |
2015 | const Type *BaseTy = D->getType()->getBaseElementTypeUnsafe(); |
2016 | if (const ComplexType *CTy = BaseTy->getAs<ComplexType>()) { |
2017 | performBuiltinTypeAlignmentUpgrade( |
2018 | CTy->getElementType()->castAs<BuiltinType>()); |
2019 | } else if (const BuiltinType *BTy = BaseTy->getAs<BuiltinType>()) { |
2020 | performBuiltinTypeAlignmentUpgrade(BTy); |
2021 | } else if (const RecordType *RT = BaseTy->getAs<RecordType>()) { |
2022 | const RecordDecl *RD = RT->getDecl(); |
2023 | assert(RD && "Expected non-null RecordDecl." ); |
2024 | const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(D: RD); |
2025 | PreferredAlign = FieldRecord.getPreferredAlignment(); |
2026 | } |
2027 | } |
2028 | |
2029 | // The align if the field is not packed. This is to check if the attribute |
2030 | // was unnecessary (-Wpacked). |
2031 | CharUnits UnpackedFieldAlign = FieldAlign; |
2032 | CharUnits PackedFieldAlign = CharUnits::One(); |
2033 | CharUnits UnpackedFieldOffset = FieldOffset; |
2034 | CharUnits OriginalFieldAlign = UnpackedFieldAlign; |
2035 | |
2036 | CharUnits MaxAlignmentInChars = |
2037 | Context.toCharUnitsFromBits(BitSize: D->getMaxAlignment()); |
2038 | PackedFieldAlign = std::max(a: PackedFieldAlign, b: MaxAlignmentInChars); |
2039 | PreferredAlign = std::max(a: PreferredAlign, b: MaxAlignmentInChars); |
2040 | UnpackedFieldAlign = std::max(a: UnpackedFieldAlign, b: MaxAlignmentInChars); |
2041 | |
2042 | // The maximum field alignment overrides the aligned attribute. |
2043 | if (!MaxFieldAlignment.isZero()) { |
2044 | PackedFieldAlign = std::min(a: PackedFieldAlign, b: MaxFieldAlignment); |
2045 | PreferredAlign = std::min(a: PreferredAlign, b: MaxFieldAlignment); |
2046 | UnpackedFieldAlign = std::min(a: UnpackedFieldAlign, b: MaxFieldAlignment); |
2047 | } |
2048 | |
2049 | |
2050 | if (!FieldPacked) |
2051 | FieldAlign = UnpackedFieldAlign; |
2052 | if (DefaultsToAIXPowerAlignment) |
2053 | UnpackedFieldAlign = PreferredAlign; |
2054 | if (FieldPacked) { |
2055 | PreferredAlign = PackedFieldAlign; |
2056 | FieldAlign = PackedFieldAlign; |
2057 | } |
2058 | |
2059 | CharUnits AlignTo = |
2060 | !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign; |
2061 | // Round up the current record size to the field's alignment boundary. |
2062 | FieldOffset = FieldOffset.alignTo(Align: AlignTo); |
2063 | UnpackedFieldOffset = UnpackedFieldOffset.alignTo(Align: UnpackedFieldAlign); |
2064 | |
2065 | if (UseExternalLayout) { |
2066 | FieldOffset = Context.toCharUnitsFromBits( |
2067 | BitSize: updateExternalFieldOffset(Field: D, ComputedOffset: Context.toBits(CharSize: FieldOffset))); |
2068 | |
2069 | if (!IsUnion && EmptySubobjects) { |
2070 | // Record the fact that we're placing a field at this offset. |
2071 | bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(FD: D, Offset: FieldOffset); |
2072 | (void)Allowed; |
2073 | assert(Allowed && "Externally-placed field cannot be placed here" ); |
2074 | } |
2075 | } else { |
2076 | if (!IsUnion && EmptySubobjects) { |
2077 | // Check if we can place the field at this offset. |
2078 | while (!EmptySubobjects->CanPlaceFieldAtOffset(FD: D, Offset: FieldOffset)) { |
2079 | // We couldn't place the field at the offset. Try again at a new offset. |
2080 | // We try offset 0 (for an empty field) and then dsize(C) onwards. |
2081 | if (FieldOffset == CharUnits::Zero() && |
2082 | getDataSize() != CharUnits::Zero()) |
2083 | FieldOffset = getDataSize().alignTo(Align: AlignTo); |
2084 | else |
2085 | FieldOffset += AlignTo; |
2086 | } |
2087 | } |
2088 | } |
2089 | |
2090 | // Place this field at the current location. |
2091 | FieldOffsets.push_back(Elt: Context.toBits(CharSize: FieldOffset)); |
2092 | |
2093 | if (!UseExternalLayout) |
2094 | CheckFieldPadding(Offset: Context.toBits(CharSize: FieldOffset), UnpaddedOffset: UnpaddedFieldOffset, |
2095 | UnpackedOffset: Context.toBits(CharSize: UnpackedFieldOffset), |
2096 | UnpackedAlign: Context.toBits(CharSize: UnpackedFieldAlign), isPacked: FieldPacked, D); |
2097 | |
2098 | if (InsertExtraPadding) { |
2099 | CharUnits ASanAlignment = CharUnits::fromQuantity(Quantity: 8); |
2100 | CharUnits = ASanAlignment; |
2101 | if (FieldSize % ASanAlignment) |
2102 | ExtraSizeForAsan += |
2103 | ASanAlignment - CharUnits::fromQuantity(Quantity: FieldSize % ASanAlignment); |
2104 | EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan; |
2105 | } |
2106 | |
2107 | // Reserve space for this field. |
2108 | if (!IsOverlappingEmptyField) { |
2109 | uint64_t EffectiveFieldSizeInBits = Context.toBits(CharSize: EffectiveFieldSize); |
2110 | if (IsUnion) |
2111 | setDataSize(std::max(a: getDataSizeInBits(), b: EffectiveFieldSizeInBits)); |
2112 | else |
2113 | setDataSize(FieldOffset + EffectiveFieldSize); |
2114 | |
2115 | PaddedFieldSize = std::max(a: PaddedFieldSize, b: FieldOffset + FieldSize); |
2116 | setSize(std::max(a: getSizeInBits(), b: getDataSizeInBits())); |
2117 | } else { |
2118 | setSize(std::max(a: getSizeInBits(), |
2119 | b: (uint64_t)Context.toBits(CharSize: FieldOffset + FieldSize))); |
2120 | } |
2121 | |
2122 | // Remember max struct/class ABI-specified alignment. |
2123 | UnadjustedAlignment = std::max(a: UnadjustedAlignment, b: FieldAlign); |
2124 | UpdateAlignment(NewAlignment: FieldAlign, UnpackedNewAlignment: UnpackedFieldAlign, PreferredAlignment: PreferredAlign); |
2125 | |
2126 | // For checking the alignment of inner fields against |
2127 | // the alignment of its parent record. |
2128 | if (const RecordDecl *RD = D->getParent()) { |
2129 | // Check if packed attribute or pragma pack is present. |
2130 | if (RD->hasAttr<PackedAttr>() || !MaxFieldAlignment.isZero()) |
2131 | if (FieldAlign < OriginalFieldAlign) |
2132 | if (D->getType()->isRecordType()) { |
2133 | // If the offset is a multiple of the alignment of |
2134 | // the type, raise the warning. |
2135 | // TODO: Takes no account the alignment of the outer struct |
2136 | if (FieldOffset % OriginalFieldAlign != 0) |
2137 | Diag(Loc: D->getLocation(), DiagID: diag::warn_unaligned_access) |
2138 | << Context.getTypeDeclType(Decl: RD) << D->getName() << D->getType(); |
2139 | } |
2140 | } |
2141 | |
2142 | if (Packed && !FieldPacked && PackedFieldAlign < FieldAlign) |
2143 | Diag(Loc: D->getLocation(), DiagID: diag::warn_unpacked_field) << D; |
2144 | } |
2145 | |
2146 | void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) { |
2147 | // In C++, records cannot be of size 0. |
2148 | if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) { |
2149 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: D)) { |
2150 | // Compatibility with gcc requires a class (pod or non-pod) |
2151 | // which is not empty but of size 0; such as having fields of |
2152 | // array of zero-length, remains of Size 0 |
2153 | if (RD->isEmpty()) |
2154 | setSize(CharUnits::One()); |
2155 | } |
2156 | else |
2157 | setSize(CharUnits::One()); |
2158 | } |
2159 | |
2160 | // If we have any remaining field tail padding, include that in the overall |
2161 | // size. |
2162 | setSize(std::max(a: getSizeInBits(), b: (uint64_t)Context.toBits(CharSize: PaddedFieldSize))); |
2163 | |
2164 | // Finally, round the size of the record up to the alignment of the |
2165 | // record itself. |
2166 | uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit; |
2167 | uint64_t UnpackedSizeInBits = |
2168 | llvm::alignTo(Value: getSizeInBits(), Align: Context.toBits(CharSize: UnpackedAlignment)); |
2169 | |
2170 | uint64_t RoundedSize = llvm::alignTo( |
2171 | Value: getSizeInBits(), |
2172 | Align: Context.toBits(CharSize: !Context.getTargetInfo().defaultsToAIXPowerAlignment() |
2173 | ? Alignment |
2174 | : PreferredAlignment)); |
2175 | |
2176 | if (UseExternalLayout) { |
2177 | // If we're inferring alignment, and the external size is smaller than |
2178 | // our size after we've rounded up to alignment, conservatively set the |
2179 | // alignment to 1. |
2180 | if (InferAlignment && External.Size < RoundedSize) { |
2181 | Alignment = CharUnits::One(); |
2182 | PreferredAlignment = CharUnits::One(); |
2183 | InferAlignment = false; |
2184 | } |
2185 | setSize(External.Size); |
2186 | return; |
2187 | } |
2188 | |
2189 | // Set the size to the final size. |
2190 | setSize(RoundedSize); |
2191 | |
2192 | unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); |
2193 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(Val: D)) { |
2194 | // Warn if padding was introduced to the struct/class/union. |
2195 | if (getSizeInBits() > UnpaddedSize) { |
2196 | unsigned PadSize = getSizeInBits() - UnpaddedSize; |
2197 | bool InBits = true; |
2198 | if (PadSize % CharBitNum == 0) { |
2199 | PadSize = PadSize / CharBitNum; |
2200 | InBits = false; |
2201 | } |
2202 | Diag(Loc: RD->getLocation(), DiagID: diag::warn_padded_struct_size) |
2203 | << Context.getTypeDeclType(Decl: RD) |
2204 | << PadSize |
2205 | << (InBits ? 1 : 0); // (byte|bit) |
2206 | } |
2207 | |
2208 | const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD); |
2209 | |
2210 | // Warn if we packed it unnecessarily, when the unpacked alignment is not |
2211 | // greater than the one after packing, the size in bits doesn't change and |
2212 | // the offset of each field is identical. |
2213 | // Unless the type is non-POD (for Clang ABI > 15), where the packed |
2214 | // attribute on such a type does allow the type to be packed into other |
2215 | // structures that use the packed attribute. |
2216 | if (Packed && UnpackedAlignment <= Alignment && |
2217 | UnpackedSizeInBits == getSizeInBits() && !HasPackedField && |
2218 | (!CXXRD || CXXRD->isPOD() || |
2219 | Context.getLangOpts().getClangABICompat() <= |
2220 | LangOptions::ClangABI::Ver15)) |
2221 | Diag(Loc: D->getLocation(), DiagID: diag::warn_unnecessary_packed) |
2222 | << Context.getTypeDeclType(Decl: RD); |
2223 | } |
2224 | } |
2225 | |
2226 | void ItaniumRecordLayoutBuilder::UpdateAlignment( |
2227 | CharUnits NewAlignment, CharUnits UnpackedNewAlignment, |
2228 | CharUnits PreferredNewAlignment) { |
2229 | // The alignment is not modified when using 'mac68k' alignment or when |
2230 | // we have an externally-supplied layout that also provides overall alignment. |
2231 | if (IsMac68kAlign || (UseExternalLayout && !InferAlignment)) |
2232 | return; |
2233 | |
2234 | if (NewAlignment > Alignment) { |
2235 | assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) && |
2236 | "Alignment not a power of 2" ); |
2237 | Alignment = NewAlignment; |
2238 | } |
2239 | |
2240 | if (UnpackedNewAlignment > UnpackedAlignment) { |
2241 | assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) && |
2242 | "Alignment not a power of 2" ); |
2243 | UnpackedAlignment = UnpackedNewAlignment; |
2244 | } |
2245 | |
2246 | if (PreferredNewAlignment > PreferredAlignment) { |
2247 | assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) && |
2248 | "Alignment not a power of 2" ); |
2249 | PreferredAlignment = PreferredNewAlignment; |
2250 | } |
2251 | } |
2252 | |
2253 | uint64_t |
2254 | ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field, |
2255 | uint64_t ComputedOffset) { |
2256 | uint64_t ExternalFieldOffset = External.getExternalFieldOffset(FD: Field); |
2257 | |
2258 | if (InferAlignment && ExternalFieldOffset < ComputedOffset) { |
2259 | // The externally-supplied field offset is before the field offset we |
2260 | // computed. Assume that the structure is packed. |
2261 | Alignment = CharUnits::One(); |
2262 | PreferredAlignment = CharUnits::One(); |
2263 | InferAlignment = false; |
2264 | } |
2265 | |
2266 | // Use the externally-supplied field offset. |
2267 | return ExternalFieldOffset; |
2268 | } |
2269 | |
2270 | /// Get diagnostic %select index for tag kind for |
2271 | /// field padding diagnostic message. |
2272 | /// WARNING: Indexes apply to particular diagnostics only! |
2273 | /// |
2274 | /// \returns diagnostic %select index. |
2275 | static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) { |
2276 | switch (Tag) { |
2277 | case TagTypeKind::Struct: |
2278 | return 0; |
2279 | case TagTypeKind::Interface: |
2280 | return 1; |
2281 | case TagTypeKind::Class: |
2282 | return 2; |
2283 | default: llvm_unreachable("Invalid tag kind for field padding diagnostic!" ); |
2284 | } |
2285 | } |
2286 | |
2287 | void ItaniumRecordLayoutBuilder::CheckFieldPadding( |
2288 | uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset, |
2289 | unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) { |
2290 | // We let objc ivars without warning, objc interfaces generally are not used |
2291 | // for padding tricks. |
2292 | if (isa<ObjCIvarDecl>(Val: D)) |
2293 | return; |
2294 | |
2295 | // Don't warn about structs created without a SourceLocation. This can |
2296 | // be done by clients of the AST, such as codegen. |
2297 | if (D->getLocation().isInvalid()) |
2298 | return; |
2299 | |
2300 | unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); |
2301 | |
2302 | // Warn if padding was introduced to the struct/class. |
2303 | if (!IsUnion && Offset > UnpaddedOffset) { |
2304 | unsigned PadSize = Offset - UnpaddedOffset; |
2305 | bool InBits = true; |
2306 | if (PadSize % CharBitNum == 0) { |
2307 | PadSize = PadSize / CharBitNum; |
2308 | InBits = false; |
2309 | } |
2310 | if (D->getIdentifier()) { |
2311 | auto Diagnostic = D->isBitField() ? diag::warn_padded_struct_bitfield |
2312 | : diag::warn_padded_struct_field; |
2313 | Diag(Loc: D->getLocation(), DiagID: Diagnostic) |
2314 | << getPaddingDiagFromTagKind(Tag: D->getParent()->getTagKind()) |
2315 | << Context.getTypeDeclType(Decl: D->getParent()) << PadSize |
2316 | << (InBits ? 1 : 0) // (byte|bit) |
2317 | << D->getIdentifier(); |
2318 | } else { |
2319 | auto Diagnostic = D->isBitField() ? diag::warn_padded_struct_anon_bitfield |
2320 | : diag::warn_padded_struct_anon_field; |
2321 | Diag(Loc: D->getLocation(), DiagID: Diagnostic) |
2322 | << getPaddingDiagFromTagKind(Tag: D->getParent()->getTagKind()) |
2323 | << Context.getTypeDeclType(Decl: D->getParent()) << PadSize |
2324 | << (InBits ? 1 : 0); // (byte|bit) |
2325 | } |
2326 | } |
2327 | if (isPacked && Offset != UnpackedOffset) { |
2328 | HasPackedField = true; |
2329 | } |
2330 | } |
2331 | |
2332 | static const CXXMethodDecl *computeKeyFunction(ASTContext &Context, |
2333 | const CXXRecordDecl *RD) { |
2334 | // If a class isn't polymorphic it doesn't have a key function. |
2335 | if (!RD->isPolymorphic()) |
2336 | return nullptr; |
2337 | |
2338 | // A class that is not externally visible doesn't have a key function. (Or |
2339 | // at least, there's no point to assigning a key function to such a class; |
2340 | // this doesn't affect the ABI.) |
2341 | if (!RD->isExternallyVisible()) |
2342 | return nullptr; |
2343 | |
2344 | // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6. |
2345 | // Same behavior as GCC. |
2346 | TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); |
2347 | if (TSK == TSK_ImplicitInstantiation || |
2348 | TSK == TSK_ExplicitInstantiationDeclaration || |
2349 | TSK == TSK_ExplicitInstantiationDefinition) |
2350 | return nullptr; |
2351 | |
2352 | bool allowInlineFunctions = |
2353 | Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline(); |
2354 | |
2355 | for (const CXXMethodDecl *MD : RD->methods()) { |
2356 | if (!MD->isVirtual()) |
2357 | continue; |
2358 | |
2359 | if (MD->isPureVirtual()) |
2360 | continue; |
2361 | |
2362 | // Ignore implicit member functions, they are always marked as inline, but |
2363 | // they don't have a body until they're defined. |
2364 | if (MD->isImplicit()) |
2365 | continue; |
2366 | |
2367 | if (MD->isInlineSpecified() || MD->isConstexpr()) |
2368 | continue; |
2369 | |
2370 | if (MD->hasInlineBody()) |
2371 | continue; |
2372 | |
2373 | // Ignore inline deleted or defaulted functions. |
2374 | if (!MD->isUserProvided()) |
2375 | continue; |
2376 | |
2377 | // In certain ABIs, ignore functions with out-of-line inline definitions. |
2378 | if (!allowInlineFunctions) { |
2379 | const FunctionDecl *Def; |
2380 | if (MD->hasBody(Definition&: Def) && Def->isInlineSpecified()) |
2381 | continue; |
2382 | } |
2383 | |
2384 | if (Context.getLangOpts().CUDA) { |
2385 | // While compiler may see key method in this TU, during CUDA |
2386 | // compilation we should ignore methods that are not accessible |
2387 | // on this side of compilation. |
2388 | if (Context.getLangOpts().CUDAIsDevice) { |
2389 | // In device mode ignore methods without __device__ attribute. |
2390 | if (!MD->hasAttr<CUDADeviceAttr>()) |
2391 | continue; |
2392 | } else { |
2393 | // In host mode ignore __device__-only methods. |
2394 | if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>()) |
2395 | continue; |
2396 | } |
2397 | } |
2398 | |
2399 | // If the key function is dllimport but the class isn't, then the class has |
2400 | // no key function. The DLL that exports the key function won't export the |
2401 | // vtable in this case. |
2402 | if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>() && |
2403 | !Context.getTargetInfo().hasPS4DLLImportExport()) |
2404 | return nullptr; |
2405 | |
2406 | // We found it. |
2407 | return MD; |
2408 | } |
2409 | |
2410 | return nullptr; |
2411 | } |
2412 | |
2413 | DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc, |
2414 | unsigned DiagID) { |
2415 | return Context.getDiagnostics().Report(Loc, DiagID); |
2416 | } |
2417 | |
2418 | /// Does the target C++ ABI require us to skip over the tail-padding |
2419 | /// of the given class (considering it as a base class) when allocating |
2420 | /// objects? |
2421 | static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) { |
2422 | switch (ABI.getTailPaddingUseRules()) { |
2423 | case TargetCXXABI::AlwaysUseTailPadding: |
2424 | return false; |
2425 | |
2426 | case TargetCXXABI::UseTailPaddingUnlessPOD03: |
2427 | // FIXME: To the extent that this is meant to cover the Itanium ABI |
2428 | // rules, we should implement the restrictions about over-sized |
2429 | // bitfields: |
2430 | // |
2431 | // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD : |
2432 | // In general, a type is considered a POD for the purposes of |
2433 | // layout if it is a POD type (in the sense of ISO C++ |
2434 | // [basic.types]). However, a POD-struct or POD-union (in the |
2435 | // sense of ISO C++ [class]) with a bitfield member whose |
2436 | // declared width is wider than the declared type of the |
2437 | // bitfield is not a POD for the purpose of layout. Similarly, |
2438 | // an array type is not a POD for the purpose of layout if the |
2439 | // element type of the array is not a POD for the purpose of |
2440 | // layout. |
2441 | // |
2442 | // Where references to the ISO C++ are made in this paragraph, |
2443 | // the Technical Corrigendum 1 version of the standard is |
2444 | // intended. |
2445 | return RD->isPOD(); |
2446 | |
2447 | case TargetCXXABI::UseTailPaddingUnlessPOD11: |
2448 | // This is equivalent to RD->getTypeForDecl().isCXX11PODType(), |
2449 | // but with a lot of abstraction penalty stripped off. This does |
2450 | // assume that these properties are set correctly even in C++98 |
2451 | // mode; fortunately, that is true because we want to assign |
2452 | // consistently semantics to the type-traits intrinsics (or at |
2453 | // least as many of them as possible). |
2454 | return RD->isTrivial() && RD->isCXX11StandardLayout(); |
2455 | } |
2456 | |
2457 | llvm_unreachable("bad tail-padding use kind" ); |
2458 | } |
2459 | |
2460 | static bool isMsLayout(const ASTContext &Context) { |
2461 | // Check if it's CUDA device compilation; ensure layout consistency with host. |
2462 | if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice && |
2463 | Context.getAuxTargetInfo()) |
2464 | return Context.getAuxTargetInfo()->getCXXABI().isMicrosoft(); |
2465 | |
2466 | return Context.getTargetInfo().getCXXABI().isMicrosoft(); |
2467 | } |
2468 | |
2469 | // This section contains an implementation of struct layout that is, up to the |
2470 | // included tests, compatible with cl.exe (2013). The layout produced is |
2471 | // significantly different than those produced by the Itanium ABI. Here we note |
2472 | // the most important differences. |
2473 | // |
2474 | // * The alignment of bitfields in unions is ignored when computing the |
2475 | // alignment of the union. |
2476 | // * The existence of zero-width bitfield that occurs after anything other than |
2477 | // a non-zero length bitfield is ignored. |
2478 | // * There is no explicit primary base for the purposes of layout. All bases |
2479 | // with vfptrs are laid out first, followed by all bases without vfptrs. |
2480 | // * The Itanium equivalent vtable pointers are split into a vfptr (virtual |
2481 | // function pointer) and a vbptr (virtual base pointer). They can each be |
2482 | // shared with a, non-virtual bases. These bases need not be the same. vfptrs |
2483 | // always occur at offset 0. vbptrs can occur at an arbitrary offset and are |
2484 | // placed after the lexicographically last non-virtual base. This placement |
2485 | // is always before fields but can be in the middle of the non-virtual bases |
2486 | // due to the two-pass layout scheme for non-virtual-bases. |
2487 | // * Virtual bases sometimes require a 'vtordisp' field that is laid out before |
2488 | // the virtual base and is used in conjunction with virtual overrides during |
2489 | // construction and destruction. This is always a 4 byte value and is used as |
2490 | // an alternative to constructor vtables. |
2491 | // * vtordisps are allocated in a block of memory with size and alignment equal |
2492 | // to the alignment of the completed structure (before applying __declspec( |
2493 | // align())). The vtordisp always occur at the end of the allocation block, |
2494 | // immediately prior to the virtual base. |
2495 | // * vfptrs are injected after all bases and fields have been laid out. In |
2496 | // order to guarantee proper alignment of all fields, the vfptr injection |
2497 | // pushes all bases and fields back by the alignment imposed by those bases |
2498 | // and fields. This can potentially add a significant amount of padding. |
2499 | // vfptrs are always injected at offset 0. |
2500 | // * vbptrs are injected after all bases and fields have been laid out. In |
2501 | // order to guarantee proper alignment of all fields, the vfptr injection |
2502 | // pushes all bases and fields back by the alignment imposed by those bases |
2503 | // and fields. This can potentially add a significant amount of padding. |
2504 | // vbptrs are injected immediately after the last non-virtual base as |
2505 | // lexicographically ordered in the code. If this site isn't pointer aligned |
2506 | // the vbptr is placed at the next properly aligned location. Enough padding |
2507 | // is added to guarantee a fit. |
2508 | // * The last zero sized non-virtual base can be placed at the end of the |
2509 | // struct (potentially aliasing another object), or may alias with the first |
2510 | // field, even if they are of the same type. |
2511 | // * The last zero size virtual base may be placed at the end of the struct |
2512 | // potentially aliasing another object. |
2513 | // * The ABI attempts to avoid aliasing of zero sized bases by adding padding |
2514 | // between bases or vbases with specific properties. The criteria for |
2515 | // additional padding between two bases is that the first base is zero sized |
2516 | // or ends with a zero sized subobject and the second base is zero sized or |
2517 | // trails with a zero sized base or field (sharing of vfptrs can reorder the |
2518 | // layout of the so the leading base is not always the first one declared). |
2519 | // This rule does take into account fields that are not records, so padding |
2520 | // will occur even if the last field is, e.g. an int. The padding added for |
2521 | // bases is 1 byte. The padding added between vbases depends on the alignment |
2522 | // of the object but is at least 4 bytes (in both 32 and 64 bit modes). |
2523 | // * There is no concept of non-virtual alignment, non-virtual alignment and |
2524 | // alignment are always identical. |
2525 | // * There is a distinction between alignment and required alignment. |
2526 | // __declspec(align) changes the required alignment of a struct. This |
2527 | // alignment is _always_ obeyed, even in the presence of #pragma pack. A |
2528 | // record inherits required alignment from all of its fields and bases. |
2529 | // * __declspec(align) on bitfields has the effect of changing the bitfield's |
2530 | // alignment instead of its required alignment. This is the only known way |
2531 | // to make the alignment of a struct bigger than 8. Interestingly enough |
2532 | // this alignment is also immune to the effects of #pragma pack and can be |
2533 | // used to create structures with large alignment under #pragma pack. |
2534 | // However, because it does not impact required alignment, such a structure, |
2535 | // when used as a field or base, will not be aligned if #pragma pack is |
2536 | // still active at the time of use. |
2537 | // |
2538 | // Known incompatibilities: |
2539 | // * all: #pragma pack between fields in a record |
2540 | // * 2010 and back: If the last field in a record is a bitfield, every object |
2541 | // laid out after the record will have extra padding inserted before it. The |
2542 | // extra padding will have size equal to the size of the storage class of the |
2543 | // bitfield. 0 sized bitfields don't exhibit this behavior and the extra |
2544 | // padding can be avoided by adding a 0 sized bitfield after the non-zero- |
2545 | // sized bitfield. |
2546 | // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or |
2547 | // greater due to __declspec(align()) then a second layout phase occurs after |
2548 | // The locations of the vf and vb pointers are known. This layout phase |
2549 | // suffers from the "last field is a bitfield" bug in 2010 and results in |
2550 | // _every_ field getting padding put in front of it, potentially including the |
2551 | // vfptr, leaving the vfprt at a non-zero location which results in a fault if |
2552 | // anything tries to read the vftbl. The second layout phase also treats |
2553 | // bitfields as separate entities and gives them each storage rather than |
2554 | // packing them. Additionally, because this phase appears to perform a |
2555 | // (an unstable) sort on the members before laying them out and because merged |
2556 | // bitfields have the same address, the bitfields end up in whatever order |
2557 | // the sort left them in, a behavior we could never hope to replicate. |
2558 | |
2559 | namespace { |
2560 | struct MicrosoftRecordLayoutBuilder { |
2561 | struct ElementInfo { |
2562 | CharUnits Size; |
2563 | CharUnits Alignment; |
2564 | }; |
2565 | typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; |
2566 | MicrosoftRecordLayoutBuilder(const ASTContext &Context, |
2567 | EmptySubobjectMap *EmptySubobjects) |
2568 | : Context(Context), EmptySubobjects(EmptySubobjects) {} |
2569 | |
2570 | private: |
2571 | MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete; |
2572 | void operator=(const MicrosoftRecordLayoutBuilder &) = delete; |
2573 | public: |
2574 | void layout(const RecordDecl *RD); |
2575 | void cxxLayout(const CXXRecordDecl *RD); |
2576 | /// Initializes size and alignment and honors some flags. |
2577 | void initializeLayout(const RecordDecl *RD); |
2578 | /// Initialized C++ layout, compute alignment and virtual alignment and |
2579 | /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is |
2580 | /// laid out. |
2581 | void initializeCXXLayout(const CXXRecordDecl *RD); |
2582 | void layoutNonVirtualBases(const CXXRecordDecl *RD); |
2583 | void layoutNonVirtualBase(const CXXRecordDecl *RD, |
2584 | const CXXRecordDecl *BaseDecl, |
2585 | const ASTRecordLayout &BaseLayout, |
2586 | const ASTRecordLayout *&PreviousBaseLayout); |
2587 | void injectVFPtr(const CXXRecordDecl *RD); |
2588 | void injectVBPtr(const CXXRecordDecl *RD); |
2589 | /// Lays out the fields of the record. Also rounds size up to |
2590 | /// alignment. |
2591 | void layoutFields(const RecordDecl *RD); |
2592 | void layoutField(const FieldDecl *FD); |
2593 | void layoutBitField(const FieldDecl *FD); |
2594 | /// Lays out a single zero-width bit-field in the record and handles |
2595 | /// special cases associated with zero-width bit-fields. |
2596 | void layoutZeroWidthBitField(const FieldDecl *FD); |
2597 | void layoutVirtualBases(const CXXRecordDecl *RD); |
2598 | void finalizeLayout(const RecordDecl *RD); |
2599 | /// Gets the size and alignment of a base taking pragma pack and |
2600 | /// __declspec(align) into account. |
2601 | ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout); |
2602 | /// Gets the size and alignment of a field taking pragma pack and |
2603 | /// __declspec(align) into account. It also updates RequiredAlignment as a |
2604 | /// side effect because it is most convenient to do so here. |
2605 | ElementInfo getAdjustedElementInfo(const FieldDecl *FD); |
2606 | /// Places a field at an offset in CharUnits. |
2607 | void placeFieldAtOffset(CharUnits FieldOffset) { |
2608 | FieldOffsets.push_back(Elt: Context.toBits(CharSize: FieldOffset)); |
2609 | } |
2610 | /// Places a bitfield at a bit offset. |
2611 | void placeFieldAtBitOffset(uint64_t FieldOffset) { |
2612 | FieldOffsets.push_back(Elt: FieldOffset); |
2613 | } |
2614 | /// Compute the set of virtual bases for which vtordisps are required. |
2615 | void computeVtorDispSet( |
2616 | llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet, |
2617 | const CXXRecordDecl *RD) const; |
2618 | const ASTContext &Context; |
2619 | EmptySubobjectMap *EmptySubobjects; |
2620 | |
2621 | /// The size of the record being laid out. |
2622 | CharUnits Size; |
2623 | /// The non-virtual size of the record layout. |
2624 | CharUnits NonVirtualSize; |
2625 | /// The data size of the record layout. |
2626 | CharUnits DataSize; |
2627 | /// The current alignment of the record layout. |
2628 | CharUnits Alignment; |
2629 | /// The maximum allowed field alignment. This is set by #pragma pack. |
2630 | CharUnits MaxFieldAlignment; |
2631 | /// The alignment that this record must obey. This is imposed by |
2632 | /// __declspec(align()) on the record itself or one of its fields or bases. |
2633 | CharUnits RequiredAlignment; |
2634 | /// The size of the allocation of the currently active bitfield. |
2635 | /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield |
2636 | /// is true. |
2637 | CharUnits CurrentBitfieldSize; |
2638 | /// Offset to the virtual base table pointer (if one exists). |
2639 | CharUnits VBPtrOffset; |
2640 | /// Minimum record size possible. |
2641 | CharUnits MinEmptyStructSize; |
2642 | /// The size and alignment info of a pointer. |
2643 | ElementInfo PointerInfo; |
2644 | /// The primary base class (if one exists). |
2645 | const CXXRecordDecl *PrimaryBase; |
2646 | /// The class we share our vb-pointer with. |
2647 | const CXXRecordDecl *SharedVBPtrBase; |
2648 | /// The collection of field offsets. |
2649 | SmallVector<uint64_t, 16> FieldOffsets; |
2650 | /// Base classes and their offsets in the record. |
2651 | BaseOffsetsMapTy Bases; |
2652 | /// virtual base classes and their offsets in the record. |
2653 | ASTRecordLayout::VBaseOffsetsMapTy VBases; |
2654 | /// The number of remaining bits in our last bitfield allocation. |
2655 | /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is |
2656 | /// true. |
2657 | unsigned RemainingBitsInField; |
2658 | bool IsUnion : 1; |
2659 | /// True if the last field laid out was a bitfield and was not 0 |
2660 | /// width. |
2661 | bool LastFieldIsNonZeroWidthBitfield : 1; |
2662 | /// True if the class has its own vftable pointer. |
2663 | bool HasOwnVFPtr : 1; |
2664 | /// True if the class has a vbtable pointer. |
2665 | bool HasVBPtr : 1; |
2666 | /// True if the last sub-object within the type is zero sized or the |
2667 | /// object itself is zero sized. This *does not* count members that are not |
2668 | /// records. Only used for MS-ABI. |
2669 | bool EndsWithZeroSizedObject : 1; |
2670 | /// True if this class is zero sized or first base is zero sized or |
2671 | /// has this property. Only used for MS-ABI. |
2672 | bool LeadsWithZeroSizedBase : 1; |
2673 | |
2674 | /// True if the external AST source provided a layout for this record. |
2675 | bool UseExternalLayout : 1; |
2676 | |
2677 | /// The layout provided by the external AST source. Only active if |
2678 | /// UseExternalLayout is true. |
2679 | ExternalLayout External; |
2680 | }; |
2681 | } // namespace |
2682 | |
2683 | MicrosoftRecordLayoutBuilder::ElementInfo |
2684 | MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( |
2685 | const ASTRecordLayout &Layout) { |
2686 | ElementInfo Info; |
2687 | Info.Alignment = Layout.getAlignment(); |
2688 | // Respect pragma pack. |
2689 | if (!MaxFieldAlignment.isZero()) |
2690 | Info.Alignment = std::min(a: Info.Alignment, b: MaxFieldAlignment); |
2691 | // Track zero-sized subobjects here where it's already available. |
2692 | EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); |
2693 | // Respect required alignment, this is necessary because we may have adjusted |
2694 | // the alignment in the case of pragma pack. Note that the required alignment |
2695 | // doesn't actually apply to the struct alignment at this point. |
2696 | Alignment = std::max(a: Alignment, b: Info.Alignment); |
2697 | RequiredAlignment = std::max(a: RequiredAlignment, b: Layout.getRequiredAlignment()); |
2698 | Info.Alignment = std::max(a: Info.Alignment, b: Layout.getRequiredAlignment()); |
2699 | Info.Size = Layout.getNonVirtualSize(); |
2700 | return Info; |
2701 | } |
2702 | |
2703 | MicrosoftRecordLayoutBuilder::ElementInfo |
2704 | MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( |
2705 | const FieldDecl *FD) { |
2706 | // Get the alignment of the field type's natural alignment, ignore any |
2707 | // alignment attributes. |
2708 | auto TInfo = |
2709 | Context.getTypeInfoInChars(T: FD->getType()->getUnqualifiedDesugaredType()); |
2710 | ElementInfo Info{.Size: TInfo.Width, .Alignment: TInfo.Align}; |
2711 | // Respect align attributes on the field. |
2712 | CharUnits FieldRequiredAlignment = |
2713 | Context.toCharUnitsFromBits(BitSize: FD->getMaxAlignment()); |
2714 | // Respect align attributes on the type. |
2715 | if (Context.isAlignmentRequired(T: FD->getType())) |
2716 | FieldRequiredAlignment = std::max( |
2717 | a: Context.getTypeAlignInChars(T: FD->getType()), b: FieldRequiredAlignment); |
2718 | // Respect attributes applied to subobjects of the field. |
2719 | if (FD->isBitField()) |
2720 | // For some reason __declspec align impacts alignment rather than required |
2721 | // alignment when it is applied to bitfields. |
2722 | Info.Alignment = std::max(a: Info.Alignment, b: FieldRequiredAlignment); |
2723 | else { |
2724 | if (auto RT = |
2725 | FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { |
2726 | auto const &Layout = Context.getASTRecordLayout(D: RT->getDecl()); |
2727 | EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); |
2728 | FieldRequiredAlignment = std::max(a: FieldRequiredAlignment, |
2729 | b: Layout.getRequiredAlignment()); |
2730 | } |
2731 | // Capture required alignment as a side-effect. |
2732 | RequiredAlignment = std::max(a: RequiredAlignment, b: FieldRequiredAlignment); |
2733 | } |
2734 | // Respect pragma pack, attribute pack and declspec align |
2735 | if (!MaxFieldAlignment.isZero()) |
2736 | Info.Alignment = std::min(a: Info.Alignment, b: MaxFieldAlignment); |
2737 | if (FD->hasAttr<PackedAttr>()) |
2738 | Info.Alignment = CharUnits::One(); |
2739 | Info.Alignment = std::max(a: Info.Alignment, b: FieldRequiredAlignment); |
2740 | return Info; |
2741 | } |
2742 | |
2743 | void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) { |
2744 | // For C record layout, zero-sized records always have size 4. |
2745 | MinEmptyStructSize = CharUnits::fromQuantity(Quantity: 4); |
2746 | initializeLayout(RD); |
2747 | layoutFields(RD); |
2748 | DataSize = Size = Size.alignTo(Align: Alignment); |
2749 | RequiredAlignment = std::max( |
2750 | a: RequiredAlignment, b: Context.toCharUnitsFromBits(BitSize: RD->getMaxAlignment())); |
2751 | finalizeLayout(RD); |
2752 | } |
2753 | |
2754 | void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) { |
2755 | // The C++ standard says that empty structs have size 1. |
2756 | MinEmptyStructSize = CharUnits::One(); |
2757 | initializeLayout(RD); |
2758 | initializeCXXLayout(RD); |
2759 | layoutNonVirtualBases(RD); |
2760 | layoutFields(RD); |
2761 | injectVBPtr(RD); |
2762 | injectVFPtr(RD); |
2763 | if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase)) |
2764 | Alignment = std::max(a: Alignment, b: PointerInfo.Alignment); |
2765 | auto RoundingAlignment = Alignment; |
2766 | if (!MaxFieldAlignment.isZero()) |
2767 | RoundingAlignment = std::min(a: RoundingAlignment, b: MaxFieldAlignment); |
2768 | if (!UseExternalLayout) |
2769 | Size = Size.alignTo(Align: RoundingAlignment); |
2770 | NonVirtualSize = Size; |
2771 | RequiredAlignment = std::max( |
2772 | a: RequiredAlignment, b: Context.toCharUnitsFromBits(BitSize: RD->getMaxAlignment())); |
2773 | layoutVirtualBases(RD); |
2774 | finalizeLayout(RD); |
2775 | } |
2776 | |
2777 | void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) { |
2778 | IsUnion = RD->isUnion(); |
2779 | Size = CharUnits::Zero(); |
2780 | Alignment = CharUnits::One(); |
2781 | // In 64-bit mode we always perform an alignment step after laying out vbases. |
2782 | // In 32-bit mode we do not. The check to see if we need to perform alignment |
2783 | // checks the RequiredAlignment field and performs alignment if it isn't 0. |
2784 | RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit() |
2785 | ? CharUnits::One() |
2786 | : CharUnits::Zero(); |
2787 | // Compute the maximum field alignment. |
2788 | MaxFieldAlignment = CharUnits::Zero(); |
2789 | // Honor the default struct packing maximum alignment flag. |
2790 | if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) |
2791 | MaxFieldAlignment = CharUnits::fromQuantity(Quantity: DefaultMaxFieldAlignment); |
2792 | // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger |
2793 | // than the pointer size. |
2794 | if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){ |
2795 | unsigned PackedAlignment = MFAA->getAlignment(); |
2796 | if (PackedAlignment <= |
2797 | Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default)) |
2798 | MaxFieldAlignment = Context.toCharUnitsFromBits(BitSize: PackedAlignment); |
2799 | } |
2800 | // Packed attribute forces max field alignment to be 1. |
2801 | if (RD->hasAttr<PackedAttr>()) |
2802 | MaxFieldAlignment = CharUnits::One(); |
2803 | |
2804 | // Try to respect the external layout if present. |
2805 | UseExternalLayout = false; |
2806 | if (ExternalASTSource *Source = Context.getExternalSource()) |
2807 | UseExternalLayout = Source->layoutRecordType( |
2808 | Record: RD, Size&: External.Size, Alignment&: External.Align, FieldOffsets&: External.FieldOffsets, |
2809 | BaseOffsets&: External.BaseOffsets, VirtualBaseOffsets&: External.VirtualBaseOffsets); |
2810 | } |
2811 | |
2812 | void |
2813 | MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) { |
2814 | EndsWithZeroSizedObject = false; |
2815 | LeadsWithZeroSizedBase = false; |
2816 | HasOwnVFPtr = false; |
2817 | HasVBPtr = false; |
2818 | PrimaryBase = nullptr; |
2819 | SharedVBPtrBase = nullptr; |
2820 | // Calculate pointer size and alignment. These are used for vfptr and vbprt |
2821 | // injection. |
2822 | PointerInfo.Size = Context.toCharUnitsFromBits( |
2823 | BitSize: Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default)); |
2824 | PointerInfo.Alignment = Context.toCharUnitsFromBits( |
2825 | BitSize: Context.getTargetInfo().getPointerAlign(AddrSpace: LangAS::Default)); |
2826 | // Respect pragma pack. |
2827 | if (!MaxFieldAlignment.isZero()) |
2828 | PointerInfo.Alignment = std::min(a: PointerInfo.Alignment, b: MaxFieldAlignment); |
2829 | } |
2830 | |
2831 | void |
2832 | MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) { |
2833 | // The MS-ABI lays out all bases that contain leading vfptrs before it lays |
2834 | // out any bases that do not contain vfptrs. We implement this as two passes |
2835 | // over the bases. This approach guarantees that the primary base is laid out |
2836 | // first. We use these passes to calculate some additional aggregated |
2837 | // information about the bases, such as required alignment and the presence of |
2838 | // zero sized members. |
2839 | const ASTRecordLayout *PreviousBaseLayout = nullptr; |
2840 | bool HasPolymorphicBaseClass = false; |
2841 | // Iterate through the bases and lay out the non-virtual ones. |
2842 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
2843 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
2844 | HasPolymorphicBaseClass |= BaseDecl->isPolymorphic(); |
2845 | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(D: BaseDecl); |
2846 | // Mark and skip virtual bases. |
2847 | if (Base.isVirtual()) { |
2848 | HasVBPtr = true; |
2849 | continue; |
2850 | } |
2851 | // Check for a base to share a VBPtr with. |
2852 | if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) { |
2853 | SharedVBPtrBase = BaseDecl; |
2854 | HasVBPtr = true; |
2855 | } |
2856 | // Only lay out bases with extendable VFPtrs on the first pass. |
2857 | if (!BaseLayout.hasExtendableVFPtr()) |
2858 | continue; |
2859 | // If we don't have a primary base, this one qualifies. |
2860 | if (!PrimaryBase) { |
2861 | PrimaryBase = BaseDecl; |
2862 | LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); |
2863 | } |
2864 | // Lay out the base. |
2865 | layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); |
2866 | } |
2867 | // Figure out if we need a fresh VFPtr for this class. |
2868 | if (RD->isPolymorphic()) { |
2869 | if (!HasPolymorphicBaseClass) |
2870 | // This class introduces polymorphism, so we need a vftable to store the |
2871 | // RTTI information. |
2872 | HasOwnVFPtr = true; |
2873 | else if (!PrimaryBase) { |
2874 | // We have a polymorphic base class but can't extend its vftable. Add a |
2875 | // new vfptr if we would use any vftable slots. |
2876 | for (CXXMethodDecl *M : RD->methods()) { |
2877 | if (MicrosoftVTableContext::hasVtableSlot(MD: M) && |
2878 | M->size_overridden_methods() == 0) { |
2879 | HasOwnVFPtr = true; |
2880 | break; |
2881 | } |
2882 | } |
2883 | } |
2884 | } |
2885 | // If we don't have a primary base then we have a leading object that could |
2886 | // itself lead with a zero-sized object, something we track. |
2887 | bool CheckLeadingLayout = !PrimaryBase; |
2888 | // Iterate through the bases and lay out the non-virtual ones. |
2889 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
2890 | if (Base.isVirtual()) |
2891 | continue; |
2892 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
2893 | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(D: BaseDecl); |
2894 | // Only lay out bases without extendable VFPtrs on the second pass. |
2895 | if (BaseLayout.hasExtendableVFPtr()) { |
2896 | VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); |
2897 | continue; |
2898 | } |
2899 | // If this is the first layout, check to see if it leads with a zero sized |
2900 | // object. If it does, so do we. |
2901 | if (CheckLeadingLayout) { |
2902 | CheckLeadingLayout = false; |
2903 | LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); |
2904 | } |
2905 | // Lay out the base. |
2906 | layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); |
2907 | VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); |
2908 | } |
2909 | // Set our VBPtroffset if we know it at this point. |
2910 | if (!HasVBPtr) |
2911 | VBPtrOffset = CharUnits::fromQuantity(Quantity: -1); |
2912 | else if (SharedVBPtrBase) { |
2913 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: SharedVBPtrBase); |
2914 | VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset(); |
2915 | } |
2916 | } |
2917 | |
2918 | static bool recordUsesEBO(const RecordDecl *RD) { |
2919 | if (!isa<CXXRecordDecl>(Val: RD)) |
2920 | return false; |
2921 | if (RD->hasAttr<EmptyBasesAttr>()) |
2922 | return true; |
2923 | if (auto *LVA = RD->getAttr<LayoutVersionAttr>()) |
2924 | // TODO: Double check with the next version of MSVC. |
2925 | if (LVA->getVersion() <= LangOptions::MSVC2015) |
2926 | return false; |
2927 | // TODO: Some later version of MSVC will change the default behavior of the |
2928 | // compiler to enable EBO by default. When this happens, we will need an |
2929 | // additional isCompatibleWithMSVC check. |
2930 | return false; |
2931 | } |
2932 | |
2933 | void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase( |
2934 | const CXXRecordDecl *RD, const CXXRecordDecl *BaseDecl, |
2935 | const ASTRecordLayout &BaseLayout, |
2936 | const ASTRecordLayout *&PreviousBaseLayout) { |
2937 | // Insert padding between two bases if the left first one is zero sized or |
2938 | // contains a zero sized subobject and the right is zero sized or one leads |
2939 | // with a zero sized base. |
2940 | bool MDCUsesEBO = recordUsesEBO(RD); |
2941 | if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && |
2942 | BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO) |
2943 | Size++; |
2944 | ElementInfo Info = getAdjustedElementInfo(Layout: BaseLayout); |
2945 | CharUnits BaseOffset; |
2946 | |
2947 | // Respect the external AST source base offset, if present. |
2948 | bool FoundBase = false; |
2949 | if (UseExternalLayout) { |
2950 | FoundBase = External.getExternalNVBaseOffset(RD: BaseDecl, BaseOffset); |
2951 | if (BaseOffset > Size) { |
2952 | Size = BaseOffset; |
2953 | } |
2954 | } |
2955 | |
2956 | if (!FoundBase) { |
2957 | if (MDCUsesEBO && BaseDecl->isEmpty() && |
2958 | (BaseLayout.getNonVirtualSize() == CharUnits::Zero())) { |
2959 | BaseOffset = CharUnits::Zero(); |
2960 | } else { |
2961 | // Otherwise, lay the base out at the end of the MDC. |
2962 | BaseOffset = Size = Size.alignTo(Align: Info.Alignment); |
2963 | } |
2964 | } |
2965 | Bases.insert(KV: std::make_pair(x&: BaseDecl, y&: BaseOffset)); |
2966 | Size += BaseLayout.getNonVirtualSize(); |
2967 | DataSize = Size; |
2968 | PreviousBaseLayout = &BaseLayout; |
2969 | } |
2970 | |
2971 | void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) { |
2972 | LastFieldIsNonZeroWidthBitfield = false; |
2973 | for (const FieldDecl *Field : RD->fields()) |
2974 | layoutField(FD: Field); |
2975 | } |
2976 | |
2977 | void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) { |
2978 | if (FD->isBitField()) { |
2979 | layoutBitField(FD); |
2980 | return; |
2981 | } |
2982 | LastFieldIsNonZeroWidthBitfield = false; |
2983 | ElementInfo Info = getAdjustedElementInfo(FD); |
2984 | Alignment = std::max(a: Alignment, b: Info.Alignment); |
2985 | |
2986 | const CXXRecordDecl *FieldClass = FD->getType()->getAsCXXRecordDecl(); |
2987 | bool IsOverlappingEmptyField = FD->isPotentiallyOverlapping() && |
2988 | FieldClass->isEmpty() && |
2989 | FieldClass->fields().empty(); |
2990 | CharUnits FieldOffset = CharUnits::Zero(); |
2991 | |
2992 | if (UseExternalLayout) { |
2993 | FieldOffset = |
2994 | Context.toCharUnitsFromBits(BitSize: External.getExternalFieldOffset(FD)); |
2995 | } else if (IsUnion) { |
2996 | FieldOffset = CharUnits::Zero(); |
2997 | } else if (EmptySubobjects) { |
2998 | if (!IsOverlappingEmptyField) |
2999 | FieldOffset = DataSize.alignTo(Align: Info.Alignment); |
3000 | |
3001 | while (!EmptySubobjects->CanPlaceFieldAtOffset(FD, Offset: FieldOffset)) { |
3002 | const CXXRecordDecl *ParentClass = cast<CXXRecordDecl>(Val: FD->getParent()); |
3003 | bool HasBases = ParentClass && (!ParentClass->bases().empty() || |
3004 | !ParentClass->vbases().empty()); |
3005 | if (FieldOffset == CharUnits::Zero() && DataSize != CharUnits::Zero() && |
3006 | HasBases) { |
3007 | // MSVC appears to only do this when there are base classes; |
3008 | // otherwise it overlaps no_unique_address fields in non-zero offsets. |
3009 | FieldOffset = DataSize.alignTo(Align: Info.Alignment); |
3010 | } else { |
3011 | FieldOffset += Info.Alignment; |
3012 | } |
3013 | } |
3014 | } else { |
3015 | FieldOffset = Size.alignTo(Align: Info.Alignment); |
3016 | } |
3017 | placeFieldAtOffset(FieldOffset); |
3018 | |
3019 | if (!IsOverlappingEmptyField) |
3020 | DataSize = std::max(a: DataSize, b: FieldOffset + Info.Size); |
3021 | |
3022 | Size = std::max(a: Size, b: FieldOffset + Info.Size); |
3023 | } |
3024 | |
3025 | void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) { |
3026 | unsigned Width = FD->getBitWidthValue(Ctx: Context); |
3027 | if (Width == 0) { |
3028 | layoutZeroWidthBitField(FD); |
3029 | return; |
3030 | } |
3031 | ElementInfo Info = getAdjustedElementInfo(FD); |
3032 | // Clamp the bitfield to a containable size for the sake of being able |
3033 | // to lay them out. Sema will throw an error. |
3034 | if (Width > Context.toBits(CharSize: Info.Size)) |
3035 | Width = Context.toBits(CharSize: Info.Size); |
3036 | // Check to see if this bitfield fits into an existing allocation. Note: |
3037 | // MSVC refuses to pack bitfields of formal types with different sizes |
3038 | // into the same allocation. |
3039 | if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield && |
3040 | CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) { |
3041 | placeFieldAtBitOffset(FieldOffset: Context.toBits(CharSize: Size) - RemainingBitsInField); |
3042 | RemainingBitsInField -= Width; |
3043 | return; |
3044 | } |
3045 | LastFieldIsNonZeroWidthBitfield = true; |
3046 | CurrentBitfieldSize = Info.Size; |
3047 | if (UseExternalLayout) { |
3048 | auto FieldBitOffset = External.getExternalFieldOffset(FD); |
3049 | placeFieldAtBitOffset(FieldOffset: FieldBitOffset); |
3050 | auto NewSize = Context.toCharUnitsFromBits( |
3051 | BitSize: llvm::alignDown(Value: FieldBitOffset, Align: Context.toBits(CharSize: Info.Alignment)) + |
3052 | Context.toBits(CharSize: Info.Size)); |
3053 | Size = std::max(a: Size, b: NewSize); |
3054 | Alignment = std::max(a: Alignment, b: Info.Alignment); |
3055 | } else if (IsUnion) { |
3056 | placeFieldAtOffset(FieldOffset: CharUnits::Zero()); |
3057 | Size = std::max(a: Size, b: Info.Size); |
3058 | // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. |
3059 | } else { |
3060 | // Allocate a new block of memory and place the bitfield in it. |
3061 | CharUnits FieldOffset = Size.alignTo(Align: Info.Alignment); |
3062 | placeFieldAtOffset(FieldOffset); |
3063 | Size = FieldOffset + Info.Size; |
3064 | Alignment = std::max(a: Alignment, b: Info.Alignment); |
3065 | RemainingBitsInField = Context.toBits(CharSize: Info.Size) - Width; |
3066 | } |
3067 | DataSize = Size; |
3068 | } |
3069 | |
3070 | void |
3071 | MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) { |
3072 | // Zero-width bitfields are ignored unless they follow a non-zero-width |
3073 | // bitfield. |
3074 | if (!LastFieldIsNonZeroWidthBitfield) { |
3075 | placeFieldAtOffset(FieldOffset: IsUnion ? CharUnits::Zero() : Size); |
3076 | // TODO: Add a Sema warning that MS ignores alignment for zero |
3077 | // sized bitfields that occur after zero-size bitfields or non-bitfields. |
3078 | return; |
3079 | } |
3080 | LastFieldIsNonZeroWidthBitfield = false; |
3081 | ElementInfo Info = getAdjustedElementInfo(FD); |
3082 | if (IsUnion) { |
3083 | placeFieldAtOffset(FieldOffset: CharUnits::Zero()); |
3084 | Size = std::max(a: Size, b: Info.Size); |
3085 | // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. |
3086 | } else { |
3087 | // Round up the current record size to the field's alignment boundary. |
3088 | CharUnits FieldOffset = Size.alignTo(Align: Info.Alignment); |
3089 | placeFieldAtOffset(FieldOffset); |
3090 | Size = FieldOffset; |
3091 | Alignment = std::max(a: Alignment, b: Info.Alignment); |
3092 | } |
3093 | DataSize = Size; |
3094 | } |
3095 | |
3096 | void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) { |
3097 | if (!HasVBPtr || SharedVBPtrBase) |
3098 | return; |
3099 | // Inject the VBPointer at the injection site. |
3100 | CharUnits InjectionSite = VBPtrOffset; |
3101 | // But before we do, make sure it's properly aligned. |
3102 | VBPtrOffset = VBPtrOffset.alignTo(Align: PointerInfo.Alignment); |
3103 | // Determine where the first field should be laid out after the vbptr. |
3104 | CharUnits FieldStart = VBPtrOffset + PointerInfo.Size; |
3105 | // Shift everything after the vbptr down, unless we're using an external |
3106 | // layout. |
3107 | if (UseExternalLayout) { |
3108 | // It is possible that there were no fields or bases located after vbptr, |
3109 | // so the size was not adjusted before. |
3110 | if (Size < FieldStart) |
3111 | Size = FieldStart; |
3112 | return; |
3113 | } |
3114 | // Make sure that the amount we push the fields back by is a multiple of the |
3115 | // alignment. |
3116 | CharUnits Offset = (FieldStart - InjectionSite) |
3117 | .alignTo(Align: std::max(a: RequiredAlignment, b: Alignment)); |
3118 | Size += Offset; |
3119 | for (uint64_t &FieldOffset : FieldOffsets) |
3120 | FieldOffset += Context.toBits(CharSize: Offset); |
3121 | for (BaseOffsetsMapTy::value_type &Base : Bases) |
3122 | if (Base.second >= InjectionSite) |
3123 | Base.second += Offset; |
3124 | } |
3125 | |
3126 | void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) { |
3127 | if (!HasOwnVFPtr) |
3128 | return; |
3129 | // Make sure that the amount we push the struct back by is a multiple of the |
3130 | // alignment. |
3131 | CharUnits Offset = |
3132 | PointerInfo.Size.alignTo(Align: std::max(a: RequiredAlignment, b: Alignment)); |
3133 | // Push back the vbptr, but increase the size of the object and push back |
3134 | // regular fields by the offset only if not using external record layout. |
3135 | if (HasVBPtr) |
3136 | VBPtrOffset += Offset; |
3137 | |
3138 | if (UseExternalLayout) { |
3139 | // The class may have size 0 and a vfptr (e.g. it's an interface class). The |
3140 | // size was not correctly set before in this case. |
3141 | if (Size.isZero()) |
3142 | Size += Offset; |
3143 | return; |
3144 | } |
3145 | |
3146 | Size += Offset; |
3147 | |
3148 | // If we're using an external layout, the fields offsets have already |
3149 | // accounted for this adjustment. |
3150 | for (uint64_t &FieldOffset : FieldOffsets) |
3151 | FieldOffset += Context.toBits(CharSize: Offset); |
3152 | for (BaseOffsetsMapTy::value_type &Base : Bases) |
3153 | Base.second += Offset; |
3154 | } |
3155 | |
3156 | void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) { |
3157 | if (!HasVBPtr) |
3158 | return; |
3159 | // Vtordisps are always 4 bytes (even in 64-bit mode) |
3160 | CharUnits VtorDispSize = CharUnits::fromQuantity(Quantity: 4); |
3161 | CharUnits VtorDispAlignment = VtorDispSize; |
3162 | // vtordisps respect pragma pack. |
3163 | if (!MaxFieldAlignment.isZero()) |
3164 | VtorDispAlignment = std::min(a: VtorDispAlignment, b: MaxFieldAlignment); |
3165 | // The alignment of the vtordisp is at least the required alignment of the |
3166 | // entire record. This requirement may be present to support vtordisp |
3167 | // injection. |
3168 | for (const CXXBaseSpecifier &VBase : RD->vbases()) { |
3169 | const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); |
3170 | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(D: BaseDecl); |
3171 | RequiredAlignment = |
3172 | std::max(a: RequiredAlignment, b: BaseLayout.getRequiredAlignment()); |
3173 | } |
3174 | VtorDispAlignment = std::max(a: VtorDispAlignment, b: RequiredAlignment); |
3175 | // Compute the vtordisp set. |
3176 | llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet; |
3177 | computeVtorDispSet(HasVtorDispSet, RD); |
3178 | // Iterate through the virtual bases and lay them out. |
3179 | const ASTRecordLayout *PreviousBaseLayout = nullptr; |
3180 | for (const CXXBaseSpecifier &VBase : RD->vbases()) { |
3181 | const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); |
3182 | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(D: BaseDecl); |
3183 | bool HasVtordisp = HasVtorDispSet.contains(Ptr: BaseDecl); |
3184 | // Insert padding between two bases if the left first one is zero sized or |
3185 | // contains a zero sized subobject and the right is zero sized or one leads |
3186 | // with a zero sized base. The padding between virtual bases is 4 |
3187 | // bytes (in both 32 and 64 bits modes) and always involves rounding up to |
3188 | // the required alignment, we don't know why. |
3189 | if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && |
3190 | BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) || |
3191 | HasVtordisp) { |
3192 | Size = Size.alignTo(Align: VtorDispAlignment) + VtorDispSize; |
3193 | Alignment = std::max(a: VtorDispAlignment, b: Alignment); |
3194 | } |
3195 | // Insert the virtual base. |
3196 | ElementInfo Info = getAdjustedElementInfo(Layout: BaseLayout); |
3197 | CharUnits BaseOffset; |
3198 | |
3199 | // Respect the external AST source base offset, if present. |
3200 | if (UseExternalLayout) { |
3201 | if (!External.getExternalVBaseOffset(RD: BaseDecl, BaseOffset)) |
3202 | BaseOffset = Size; |
3203 | } else |
3204 | BaseOffset = Size.alignTo(Align: Info.Alignment); |
3205 | |
3206 | assert(BaseOffset >= Size && "base offset already allocated" ); |
3207 | |
3208 | VBases.insert(KV: std::make_pair(x&: BaseDecl, |
3209 | y: ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp))); |
3210 | Size = BaseOffset + BaseLayout.getNonVirtualSize(); |
3211 | PreviousBaseLayout = &BaseLayout; |
3212 | } |
3213 | } |
3214 | |
3215 | void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) { |
3216 | // Respect required alignment. Note that in 32-bit mode Required alignment |
3217 | // may be 0 and cause size not to be updated. |
3218 | DataSize = Size; |
3219 | if (!RequiredAlignment.isZero()) { |
3220 | Alignment = std::max(a: Alignment, b: RequiredAlignment); |
3221 | auto RoundingAlignment = Alignment; |
3222 | if (!MaxFieldAlignment.isZero()) |
3223 | RoundingAlignment = std::min(a: RoundingAlignment, b: MaxFieldAlignment); |
3224 | RoundingAlignment = std::max(a: RoundingAlignment, b: RequiredAlignment); |
3225 | Size = Size.alignTo(Align: RoundingAlignment); |
3226 | } |
3227 | if (Size.isZero()) { |
3228 | if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(Val: RD)->isEmpty()) { |
3229 | EndsWithZeroSizedObject = true; |
3230 | LeadsWithZeroSizedBase = true; |
3231 | } |
3232 | // Zero-sized structures have size equal to their alignment if a |
3233 | // __declspec(align) came into play. |
3234 | if (RequiredAlignment >= MinEmptyStructSize) |
3235 | Size = Alignment; |
3236 | else |
3237 | Size = MinEmptyStructSize; |
3238 | } |
3239 | |
3240 | if (UseExternalLayout) { |
3241 | Size = Context.toCharUnitsFromBits(BitSize: External.Size); |
3242 | if (External.Align) |
3243 | Alignment = Context.toCharUnitsFromBits(BitSize: External.Align); |
3244 | } |
3245 | } |
3246 | |
3247 | // Recursively walks the non-virtual bases of a class and determines if any of |
3248 | // them are in the bases with overridden methods set. |
3249 | static bool |
3250 | RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> & |
3251 | BasesWithOverriddenMethods, |
3252 | const CXXRecordDecl *RD) { |
3253 | if (BasesWithOverriddenMethods.count(Ptr: RD)) |
3254 | return true; |
3255 | // If any of a virtual bases non-virtual bases (recursively) requires a |
3256 | // vtordisp than so does this virtual base. |
3257 | for (const CXXBaseSpecifier &Base : RD->bases()) |
3258 | if (!Base.isVirtual() && |
3259 | RequiresVtordisp(BasesWithOverriddenMethods, |
3260 | RD: Base.getType()->getAsCXXRecordDecl())) |
3261 | return true; |
3262 | return false; |
3263 | } |
3264 | |
3265 | void MicrosoftRecordLayoutBuilder::computeVtorDispSet( |
3266 | llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet, |
3267 | const CXXRecordDecl *RD) const { |
3268 | // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with |
3269 | // vftables. |
3270 | if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) { |
3271 | for (const CXXBaseSpecifier &Base : RD->vbases()) { |
3272 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
3273 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: BaseDecl); |
3274 | if (Layout.hasExtendableVFPtr()) |
3275 | HasVtordispSet.insert(Ptr: BaseDecl); |
3276 | } |
3277 | return; |
3278 | } |
3279 | |
3280 | // If any of our bases need a vtordisp for this type, so do we. Check our |
3281 | // direct bases for vtordisp requirements. |
3282 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
3283 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
3284 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: BaseDecl); |
3285 | for (const auto &bi : Layout.getVBaseOffsetsMap()) |
3286 | if (bi.second.hasVtorDisp()) |
3287 | HasVtordispSet.insert(Ptr: bi.first); |
3288 | } |
3289 | // We don't introduce any additional vtordisps if either: |
3290 | // * A user declared constructor or destructor aren't declared. |
3291 | // * #pragma vtordisp(0) or the /vd0 flag are in use. |
3292 | if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) || |
3293 | RD->getMSVtorDispMode() == MSVtorDispMode::Never) |
3294 | return; |
3295 | // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's |
3296 | // possible for a partially constructed object with virtual base overrides to |
3297 | // escape a non-trivial constructor. |
3298 | assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride); |
3299 | // Compute a set of base classes which define methods we override. A virtual |
3300 | // base in this set will require a vtordisp. A virtual base that transitively |
3301 | // contains one of these bases as a non-virtual base will also require a |
3302 | // vtordisp. |
3303 | llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work; |
3304 | llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods; |
3305 | // Seed the working set with our non-destructor, non-pure virtual methods. |
3306 | for (const CXXMethodDecl *MD : RD->methods()) |
3307 | if (MicrosoftVTableContext::hasVtableSlot(MD) && |
3308 | !isa<CXXDestructorDecl>(Val: MD) && !MD->isPureVirtual()) |
3309 | Work.insert(Ptr: MD); |
3310 | while (!Work.empty()) { |
3311 | const CXXMethodDecl *MD = *Work.begin(); |
3312 | auto MethodRange = MD->overridden_methods(); |
3313 | // If a virtual method has no-overrides it lives in its parent's vtable. |
3314 | if (MethodRange.begin() == MethodRange.end()) |
3315 | BasesWithOverriddenMethods.insert(Ptr: MD->getParent()); |
3316 | else |
3317 | Work.insert(I: MethodRange.begin(), E: MethodRange.end()); |
3318 | // We've finished processing this element, remove it from the working set. |
3319 | Work.erase(Ptr: MD); |
3320 | } |
3321 | // For each of our virtual bases, check if it is in the set of overridden |
3322 | // bases or if it transitively contains a non-virtual base that is. |
3323 | for (const CXXBaseSpecifier &Base : RD->vbases()) { |
3324 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
3325 | if (!HasVtordispSet.count(Ptr: BaseDecl) && |
3326 | RequiresVtordisp(BasesWithOverriddenMethods, RD: BaseDecl)) |
3327 | HasVtordispSet.insert(Ptr: BaseDecl); |
3328 | } |
3329 | } |
3330 | |
3331 | /// getASTRecordLayout - Get or compute information about the layout of the |
3332 | /// specified record (struct/union/class), which indicates its size and field |
3333 | /// position information. |
3334 | const ASTRecordLayout & |
3335 | ASTContext::getASTRecordLayout(const RecordDecl *D) const { |
3336 | // These asserts test different things. A record has a definition |
3337 | // as soon as we begin to parse the definition. That definition is |
3338 | // not a complete definition (which is what isDefinition() tests) |
3339 | // until we *finish* parsing the definition. |
3340 | |
3341 | if (D->hasExternalLexicalStorage() && !D->getDefinition()) |
3342 | getExternalSource()->CompleteType(Tag: const_cast<RecordDecl*>(D)); |
3343 | // Complete the redecl chain (if necessary). |
3344 | (void)D->getMostRecentDecl(); |
3345 | |
3346 | D = D->getDefinition(); |
3347 | assert(D && "Cannot get layout of forward declarations!" ); |
3348 | assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!" ); |
3349 | assert(D->isCompleteDefinition() && "Cannot layout type before complete!" ); |
3350 | |
3351 | // Look up this layout, if already laid out, return what we have. |
3352 | // Note that we can't save a reference to the entry because this function |
3353 | // is recursive. |
3354 | const ASTRecordLayout *Entry = ASTRecordLayouts[D]; |
3355 | if (Entry) return *Entry; |
3356 | |
3357 | const ASTRecordLayout *NewEntry = nullptr; |
3358 | |
3359 | if (isMsLayout(Context: *this)) { |
3360 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) { |
3361 | EmptySubobjectMap EmptySubobjects(*this, RD); |
3362 | MicrosoftRecordLayoutBuilder Builder(*this, &EmptySubobjects); |
3363 | Builder.cxxLayout(RD); |
3364 | NewEntry = new (*this) ASTRecordLayout( |
3365 | *this, Builder.Size, Builder.Alignment, Builder.Alignment, |
3366 | Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr, |
3367 | Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset, |
3368 | Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize, |
3369 | Builder.Alignment, Builder.Alignment, CharUnits::Zero(), |
3370 | Builder.PrimaryBase, false, Builder.SharedVBPtrBase, |
3371 | Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase, |
3372 | Builder.Bases, Builder.VBases); |
3373 | } else { |
3374 | MicrosoftRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); |
3375 | Builder.layout(RD: D); |
3376 | NewEntry = new (*this) ASTRecordLayout( |
3377 | *this, Builder.Size, Builder.Alignment, Builder.Alignment, |
3378 | Builder.Alignment, Builder.RequiredAlignment, Builder.Size, |
3379 | Builder.FieldOffsets); |
3380 | } |
3381 | } else { |
3382 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) { |
3383 | EmptySubobjectMap EmptySubobjects(*this, RD); |
3384 | ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects); |
3385 | Builder.Layout(RD); |
3386 | |
3387 | // In certain situations, we are allowed to lay out objects in the |
3388 | // tail-padding of base classes. This is ABI-dependent. |
3389 | // FIXME: this should be stored in the record layout. |
3390 | bool skipTailPadding = |
3391 | mustSkipTailPadding(ABI: getTargetInfo().getCXXABI(), RD); |
3392 | |
3393 | // FIXME: This should be done in FinalizeLayout. |
3394 | CharUnits DataSize = |
3395 | skipTailPadding ? Builder.getSize() : Builder.getDataSize(); |
3396 | CharUnits NonVirtualSize = |
3397 | skipTailPadding ? DataSize : Builder.NonVirtualSize; |
3398 | NewEntry = new (*this) ASTRecordLayout( |
3399 | *this, Builder.getSize(), Builder.Alignment, |
3400 | Builder.PreferredAlignment, Builder.UnadjustedAlignment, |
3401 | /*RequiredAlignment : used by MS-ABI)*/ |
3402 | Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(), |
3403 | CharUnits::fromQuantity(Quantity: -1), DataSize, Builder.FieldOffsets, |
3404 | NonVirtualSize, Builder.NonVirtualAlignment, |
3405 | Builder.PreferredNVAlignment, |
3406 | EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase, |
3407 | Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases, |
3408 | Builder.VBases); |
3409 | } else { |
3410 | ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); |
3411 | Builder.Layout(D); |
3412 | |
3413 | NewEntry = new (*this) ASTRecordLayout( |
3414 | *this, Builder.getSize(), Builder.Alignment, |
3415 | Builder.PreferredAlignment, Builder.UnadjustedAlignment, |
3416 | /*RequiredAlignment : used by MS-ABI)*/ |
3417 | Builder.Alignment, Builder.getSize(), Builder.FieldOffsets); |
3418 | } |
3419 | } |
3420 | |
3421 | ASTRecordLayouts[D] = NewEntry; |
3422 | |
3423 | if (getLangOpts().DumpRecordLayouts) { |
3424 | llvm::outs() << "\n*** Dumping AST Record Layout\n" ; |
3425 | DumpRecordLayout(RD: D, OS&: llvm::outs(), Simple: getLangOpts().DumpRecordLayoutsSimple); |
3426 | } |
3427 | |
3428 | return *NewEntry; |
3429 | } |
3430 | |
3431 | const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) { |
3432 | if (!getTargetInfo().getCXXABI().hasKeyFunctions()) |
3433 | return nullptr; |
3434 | |
3435 | assert(RD->getDefinition() && "Cannot get key function for forward decl!" ); |
3436 | RD = RD->getDefinition(); |
3437 | |
3438 | // Beware: |
3439 | // 1) computing the key function might trigger deserialization, which might |
3440 | // invalidate iterators into KeyFunctions |
3441 | // 2) 'get' on the LazyDeclPtr might also trigger deserialization and |
3442 | // invalidate the LazyDeclPtr within the map itself |
3443 | LazyDeclPtr Entry = KeyFunctions[RD]; |
3444 | const Decl *Result = |
3445 | Entry ? Entry.get(Source: getExternalSource()) : computeKeyFunction(Context&: *this, RD); |
3446 | |
3447 | // Store it back if it changed. |
3448 | if (Entry.isOffset() || Entry.isValid() != bool(Result)) |
3449 | KeyFunctions[RD] = const_cast<Decl*>(Result); |
3450 | |
3451 | return cast_or_null<CXXMethodDecl>(Val: Result); |
3452 | } |
3453 | |
3454 | void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) { |
3455 | assert(Method == Method->getFirstDecl() && |
3456 | "not working with method declaration from class definition" ); |
3457 | |
3458 | // Look up the cache entry. Since we're working with the first |
3459 | // declaration, its parent must be the class definition, which is |
3460 | // the correct key for the KeyFunctions hash. |
3461 | const auto &Map = KeyFunctions; |
3462 | auto I = Map.find(Val: Method->getParent()); |
3463 | |
3464 | // If it's not cached, there's nothing to do. |
3465 | if (I == Map.end()) return; |
3466 | |
3467 | // If it is cached, check whether it's the target method, and if so, |
3468 | // remove it from the cache. Note, the call to 'get' might invalidate |
3469 | // the iterator and the LazyDeclPtr object within the map. |
3470 | LazyDeclPtr Ptr = I->second; |
3471 | if (Ptr.get(Source: getExternalSource()) == Method) { |
3472 | // FIXME: remember that we did this for module / chained PCH state? |
3473 | KeyFunctions.erase(Val: Method->getParent()); |
3474 | } |
3475 | } |
3476 | |
3477 | static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) { |
3478 | const ASTRecordLayout &Layout = C.getASTRecordLayout(D: FD->getParent()); |
3479 | return Layout.getFieldOffset(FieldNo: FD->getFieldIndex()); |
3480 | } |
3481 | |
3482 | uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const { |
3483 | uint64_t OffsetInBits; |
3484 | if (const FieldDecl *FD = dyn_cast<FieldDecl>(Val: VD)) { |
3485 | OffsetInBits = ::getFieldOffset(C: *this, FD); |
3486 | } else { |
3487 | const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(Val: VD); |
3488 | |
3489 | OffsetInBits = 0; |
3490 | for (const NamedDecl *ND : IFD->chain()) |
3491 | OffsetInBits += ::getFieldOffset(C: *this, FD: cast<FieldDecl>(Val: ND)); |
3492 | } |
3493 | |
3494 | return OffsetInBits; |
3495 | } |
3496 | |
3497 | uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID, |
3498 | const ObjCImplementationDecl *ID, |
3499 | const ObjCIvarDecl *Ivar) const { |
3500 | Ivar = Ivar->getCanonicalDecl(); |
3501 | const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); |
3502 | |
3503 | // FIXME: We should eliminate the need to have ObjCImplementationDecl passed |
3504 | // in here; it should never be necessary because that should be the lexical |
3505 | // decl context for the ivar. |
3506 | |
3507 | // If we know have an implementation (and the ivar is in it) then |
3508 | // look up in the implementation layout. |
3509 | const ASTRecordLayout *RL; |
3510 | if (ID && declaresSameEntity(D1: ID->getClassInterface(), D2: Container)) |
3511 | RL = &getASTObjCImplementationLayout(D: ID); |
3512 | else |
3513 | RL = &getASTObjCInterfaceLayout(D: Container); |
3514 | |
3515 | // Compute field index. |
3516 | // |
3517 | // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is |
3518 | // implemented. This should be fixed to get the information from the layout |
3519 | // directly. |
3520 | unsigned Index = 0; |
3521 | |
3522 | for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin(); |
3523 | IVD; IVD = IVD->getNextIvar()) { |
3524 | if (Ivar == IVD) |
3525 | break; |
3526 | ++Index; |
3527 | } |
3528 | assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!" ); |
3529 | |
3530 | return RL->getFieldOffset(FieldNo: Index); |
3531 | } |
3532 | |
3533 | /// getObjCLayout - Get or compute information about the layout of the |
3534 | /// given interface. |
3535 | /// |
3536 | /// \param Impl - If given, also include the layout of the interface's |
3537 | /// implementation. This may differ by including synthesized ivars. |
3538 | const ASTRecordLayout & |
3539 | ASTContext::getObjCLayout(const ObjCInterfaceDecl *D, |
3540 | const ObjCImplementationDecl *Impl) const { |
3541 | // Retrieve the definition |
3542 | if (D->hasExternalLexicalStorage() && !D->getDefinition()) |
3543 | getExternalSource()->CompleteType(Class: const_cast<ObjCInterfaceDecl*>(D)); |
3544 | D = D->getDefinition(); |
3545 | assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() && |
3546 | "Invalid interface decl!" ); |
3547 | |
3548 | // Look up this layout, if already laid out, return what we have. |
3549 | const ObjCContainerDecl *Key = |
3550 | Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D; |
3551 | if (const ASTRecordLayout *Entry = ObjCLayouts[Key]) |
3552 | return *Entry; |
3553 | |
3554 | // Add in synthesized ivar count if laying out an implementation. |
3555 | if (Impl) { |
3556 | unsigned SynthCount = CountNonClassIvars(OI: D); |
3557 | // If there aren't any synthesized ivars then reuse the interface |
3558 | // entry. Note we can't cache this because we simply free all |
3559 | // entries later; however we shouldn't look up implementations |
3560 | // frequently. |
3561 | if (SynthCount == 0) |
3562 | return getObjCLayout(D, Impl: nullptr); |
3563 | } |
3564 | |
3565 | ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); |
3566 | Builder.Layout(D); |
3567 | |
3568 | const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout( |
3569 | *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment, |
3570 | Builder.UnadjustedAlignment, |
3571 | /*RequiredAlignment : used by MS-ABI)*/ |
3572 | Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets); |
3573 | |
3574 | ObjCLayouts[Key] = NewEntry; |
3575 | |
3576 | return *NewEntry; |
3577 | } |
3578 | |
3579 | static void PrintOffset(raw_ostream &OS, |
3580 | CharUnits Offset, unsigned IndentLevel) { |
3581 | OS << llvm::format(Fmt: "%10" PRId64 " | " , Vals: (int64_t)Offset.getQuantity()); |
3582 | OS.indent(NumSpaces: IndentLevel * 2); |
3583 | } |
3584 | |
3585 | static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset, |
3586 | unsigned Begin, unsigned Width, |
3587 | unsigned IndentLevel) { |
3588 | llvm::SmallString<10> Buffer; |
3589 | { |
3590 | llvm::raw_svector_ostream BufferOS(Buffer); |
3591 | BufferOS << Offset.getQuantity() << ':'; |
3592 | if (Width == 0) { |
3593 | BufferOS << '-'; |
3594 | } else { |
3595 | BufferOS << Begin << '-' << (Begin + Width - 1); |
3596 | } |
3597 | } |
3598 | |
3599 | OS << llvm::right_justify(Str: Buffer, Width: 10) << " | " ; |
3600 | OS.indent(NumSpaces: IndentLevel * 2); |
3601 | } |
3602 | |
3603 | static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) { |
3604 | OS << " | " ; |
3605 | OS.indent(NumSpaces: IndentLevel * 2); |
3606 | } |
3607 | |
3608 | static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD, |
3609 | const ASTContext &C, |
3610 | CharUnits Offset, |
3611 | unsigned IndentLevel, |
3612 | const char* Description, |
3613 | bool PrintSizeInfo, |
3614 | bool IncludeVirtualBases) { |
3615 | const ASTRecordLayout &Layout = C.getASTRecordLayout(D: RD); |
3616 | auto CXXRD = dyn_cast<CXXRecordDecl>(Val: RD); |
3617 | |
3618 | PrintOffset(OS, Offset, IndentLevel); |
3619 | OS << C.getTypeDeclType(Decl: const_cast<RecordDecl *>(RD)); |
3620 | if (Description) |
3621 | OS << ' ' << Description; |
3622 | if (CXXRD && CXXRD->isEmpty()) |
3623 | OS << " (empty)" ; |
3624 | OS << '\n'; |
3625 | |
3626 | IndentLevel++; |
3627 | |
3628 | // Dump bases. |
3629 | if (CXXRD) { |
3630 | const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); |
3631 | bool HasOwnVFPtr = Layout.hasOwnVFPtr(); |
3632 | bool HasOwnVBPtr = Layout.hasOwnVBPtr(); |
3633 | |
3634 | // Vtable pointer. |
3635 | if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(Context: C)) { |
3636 | PrintOffset(OS, Offset, IndentLevel); |
3637 | OS << '(' << *RD << " vtable pointer)\n" ; |
3638 | } else if (HasOwnVFPtr) { |
3639 | PrintOffset(OS, Offset, IndentLevel); |
3640 | // vfptr (for Microsoft C++ ABI) |
3641 | OS << '(' << *RD << " vftable pointer)\n" ; |
3642 | } |
3643 | |
3644 | // Collect nvbases. |
3645 | SmallVector<const CXXRecordDecl *, 4> Bases; |
3646 | for (const CXXBaseSpecifier &Base : CXXRD->bases()) { |
3647 | assert(!Base.getType()->isDependentType() && |
3648 | "Cannot layout class with dependent bases." ); |
3649 | if (!Base.isVirtual()) |
3650 | Bases.push_back(Elt: Base.getType()->getAsCXXRecordDecl()); |
3651 | } |
3652 | |
3653 | // Sort nvbases by offset. |
3654 | llvm::stable_sort( |
3655 | Range&: Bases, C: [&](const CXXRecordDecl *L, const CXXRecordDecl *R) { |
3656 | return Layout.getBaseClassOffset(Base: L) < Layout.getBaseClassOffset(Base: R); |
3657 | }); |
3658 | |
3659 | // Dump (non-virtual) bases |
3660 | for (const CXXRecordDecl *Base : Bases) { |
3661 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base); |
3662 | DumpRecordLayout(OS, RD: Base, C, Offset: BaseOffset, IndentLevel, |
3663 | Description: Base == PrimaryBase ? "(primary base)" : "(base)" , |
3664 | /*PrintSizeInfo=*/false, |
3665 | /*IncludeVirtualBases=*/false); |
3666 | } |
3667 | |
3668 | // vbptr (for Microsoft C++ ABI) |
3669 | if (HasOwnVBPtr) { |
3670 | PrintOffset(OS, Offset: Offset + Layout.getVBPtrOffset(), IndentLevel); |
3671 | OS << '(' << *RD << " vbtable pointer)\n" ; |
3672 | } |
3673 | } |
3674 | |
3675 | // Dump fields. |
3676 | uint64_t FieldNo = 0; |
3677 | for (RecordDecl::field_iterator I = RD->field_begin(), |
3678 | E = RD->field_end(); I != E; ++I, ++FieldNo) { |
3679 | const FieldDecl &Field = **I; |
3680 | uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo); |
3681 | CharUnits FieldOffset = |
3682 | Offset + C.toCharUnitsFromBits(BitSize: LocalFieldOffsetInBits); |
3683 | |
3684 | // Recursively dump fields of record type. |
3685 | if (auto RT = Field.getType()->getAs<RecordType>()) { |
3686 | DumpRecordLayout(OS, RD: RT->getDecl(), C, Offset: FieldOffset, IndentLevel, |
3687 | Description: Field.getName().data(), |
3688 | /*PrintSizeInfo=*/false, |
3689 | /*IncludeVirtualBases=*/true); |
3690 | continue; |
3691 | } |
3692 | |
3693 | if (Field.isBitField()) { |
3694 | uint64_t LocalFieldByteOffsetInBits = C.toBits(CharSize: FieldOffset - Offset); |
3695 | unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits; |
3696 | unsigned Width = Field.getBitWidthValue(Ctx: C); |
3697 | PrintBitFieldOffset(OS, Offset: FieldOffset, Begin, Width, IndentLevel); |
3698 | } else { |
3699 | PrintOffset(OS, Offset: FieldOffset, IndentLevel); |
3700 | } |
3701 | const QualType &FieldType = C.getLangOpts().DumpRecordLayoutsCanonical |
3702 | ? Field.getType().getCanonicalType() |
3703 | : Field.getType(); |
3704 | OS << FieldType << ' ' << Field << '\n'; |
3705 | } |
3706 | |
3707 | // Dump virtual bases. |
3708 | if (CXXRD && IncludeVirtualBases) { |
3709 | const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps = |
3710 | Layout.getVBaseOffsetsMap(); |
3711 | |
3712 | for (const CXXBaseSpecifier &Base : CXXRD->vbases()) { |
3713 | assert(Base.isVirtual() && "Found non-virtual class!" ); |
3714 | const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl(); |
3715 | |
3716 | CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase); |
3717 | |
3718 | if (VtorDisps.find(Val: VBase)->second.hasVtorDisp()) { |
3719 | PrintOffset(OS, Offset: VBaseOffset - CharUnits::fromQuantity(Quantity: 4), IndentLevel); |
3720 | OS << "(vtordisp for vbase " << *VBase << ")\n" ; |
3721 | } |
3722 | |
3723 | DumpRecordLayout(OS, RD: VBase, C, Offset: VBaseOffset, IndentLevel, |
3724 | Description: VBase == Layout.getPrimaryBase() ? |
3725 | "(primary virtual base)" : "(virtual base)" , |
3726 | /*PrintSizeInfo=*/false, |
3727 | /*IncludeVirtualBases=*/false); |
3728 | } |
3729 | } |
3730 | |
3731 | if (!PrintSizeInfo) return; |
3732 | |
3733 | PrintIndentNoOffset(OS, IndentLevel: IndentLevel - 1); |
3734 | OS << "[sizeof=" << Layout.getSize().getQuantity(); |
3735 | if (CXXRD && !isMsLayout(Context: C)) |
3736 | OS << ", dsize=" << Layout.getDataSize().getQuantity(); |
3737 | OS << ", align=" << Layout.getAlignment().getQuantity(); |
3738 | if (C.getTargetInfo().defaultsToAIXPowerAlignment()) |
3739 | OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity(); |
3740 | |
3741 | if (CXXRD) { |
3742 | OS << ",\n" ; |
3743 | PrintIndentNoOffset(OS, IndentLevel: IndentLevel - 1); |
3744 | OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity(); |
3745 | OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity(); |
3746 | if (C.getTargetInfo().defaultsToAIXPowerAlignment()) |
3747 | OS << ", preferrednvalign=" |
3748 | << Layout.getPreferredNVAlignment().getQuantity(); |
3749 | } |
3750 | OS << "]\n" ; |
3751 | } |
3752 | |
3753 | void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS, |
3754 | bool Simple) const { |
3755 | if (!Simple) { |
3756 | ::DumpRecordLayout(OS, RD, C: *this, Offset: CharUnits(), IndentLevel: 0, Description: nullptr, |
3757 | /*PrintSizeInfo*/ true, |
3758 | /*IncludeVirtualBases=*/true); |
3759 | return; |
3760 | } |
3761 | |
3762 | // The "simple" format is designed to be parsed by the |
3763 | // layout-override testing code. There shouldn't be any external |
3764 | // uses of this format --- when LLDB overrides a layout, it sets up |
3765 | // the data structures directly --- so feel free to adjust this as |
3766 | // you like as long as you also update the rudimentary parser for it |
3767 | // in libFrontend. |
3768 | |
3769 | const ASTRecordLayout &Info = getASTRecordLayout(D: RD); |
3770 | OS << "Type: " << getTypeDeclType(Decl: RD) << "\n" ; |
3771 | OS << "\nLayout: " ; |
3772 | OS << "<ASTRecordLayout\n" ; |
3773 | OS << " Size:" << toBits(CharSize: Info.getSize()) << "\n" ; |
3774 | if (!isMsLayout(Context: *this)) |
3775 | OS << " DataSize:" << toBits(CharSize: Info.getDataSize()) << "\n" ; |
3776 | OS << " Alignment:" << toBits(CharSize: Info.getAlignment()) << "\n" ; |
3777 | if (Target->defaultsToAIXPowerAlignment()) |
3778 | OS << " PreferredAlignment:" << toBits(CharSize: Info.getPreferredAlignment()) |
3779 | << "\n" ; |
3780 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
3781 | OS << " BaseOffsets: [" ; |
3782 | const CXXRecordDecl *Base = nullptr; |
3783 | for (auto I : CXXRD->bases()) { |
3784 | if (I.isVirtual()) |
3785 | continue; |
3786 | if (Base) |
3787 | OS << ", " ; |
3788 | Base = I.getType()->getAsCXXRecordDecl(); |
3789 | OS << Info.CXXInfo->BaseOffsets[Base].getQuantity(); |
3790 | } |
3791 | OS << "]>\n" ; |
3792 | OS << " VBaseOffsets: [" ; |
3793 | const CXXRecordDecl *VBase = nullptr; |
3794 | for (auto I : CXXRD->vbases()) { |
3795 | if (VBase) |
3796 | OS << ", " ; |
3797 | VBase = I.getType()->getAsCXXRecordDecl(); |
3798 | OS << Info.CXXInfo->VBaseOffsets[VBase].VBaseOffset.getQuantity(); |
3799 | } |
3800 | OS << "]>\n" ; |
3801 | } |
3802 | OS << " FieldOffsets: [" ; |
3803 | for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) { |
3804 | if (i) |
3805 | OS << ", " ; |
3806 | OS << Info.getFieldOffset(FieldNo: i); |
3807 | } |
3808 | OS << "]>\n" ; |
3809 | } |
3810 | |