1 | //===- Type.cpp - Type representation and manipulation --------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements type-related functionality. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/Type.h" |
14 | #include "Linkage.h" |
15 | #include "clang/AST/ASTContext.h" |
16 | #include "clang/AST/Attr.h" |
17 | #include "clang/AST/CharUnits.h" |
18 | #include "clang/AST/Decl.h" |
19 | #include "clang/AST/DeclBase.h" |
20 | #include "clang/AST/DeclCXX.h" |
21 | #include "clang/AST/DeclFriend.h" |
22 | #include "clang/AST/DeclObjC.h" |
23 | #include "clang/AST/DeclTemplate.h" |
24 | #include "clang/AST/DependenceFlags.h" |
25 | #include "clang/AST/Expr.h" |
26 | #include "clang/AST/NestedNameSpecifier.h" |
27 | #include "clang/AST/NonTrivialTypeVisitor.h" |
28 | #include "clang/AST/PrettyPrinter.h" |
29 | #include "clang/AST/TemplateBase.h" |
30 | #include "clang/AST/TemplateName.h" |
31 | #include "clang/AST/TypeVisitor.h" |
32 | #include "clang/Basic/AddressSpaces.h" |
33 | #include "clang/Basic/ExceptionSpecificationType.h" |
34 | #include "clang/Basic/IdentifierTable.h" |
35 | #include "clang/Basic/LLVM.h" |
36 | #include "clang/Basic/LangOptions.h" |
37 | #include "clang/Basic/Linkage.h" |
38 | #include "clang/Basic/Specifiers.h" |
39 | #include "clang/Basic/TargetCXXABI.h" |
40 | #include "clang/Basic/TargetInfo.h" |
41 | #include "clang/Basic/Visibility.h" |
42 | #include "llvm/ADT/APInt.h" |
43 | #include "llvm/ADT/APSInt.h" |
44 | #include "llvm/ADT/ArrayRef.h" |
45 | #include "llvm/ADT/FoldingSet.h" |
46 | #include "llvm/ADT/SmallVector.h" |
47 | #include "llvm/Support/Casting.h" |
48 | #include "llvm/Support/ErrorHandling.h" |
49 | #include "llvm/Support/MathExtras.h" |
50 | #include "llvm/TargetParser/RISCVTargetParser.h" |
51 | #include <algorithm> |
52 | #include <cassert> |
53 | #include <cstdint> |
54 | #include <cstring> |
55 | #include <optional> |
56 | #include <type_traits> |
57 | |
58 | using namespace clang; |
59 | |
60 | bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const { |
61 | return (*this != Other) && |
62 | // CVR qualifiers superset |
63 | (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) && |
64 | // ObjC GC qualifiers superset |
65 | ((getObjCGCAttr() == Other.getObjCGCAttr()) || |
66 | (hasObjCGCAttr() && !Other.hasObjCGCAttr())) && |
67 | // Address space superset. |
68 | ((getAddressSpace() == Other.getAddressSpace()) || |
69 | (hasAddressSpace()&& !Other.hasAddressSpace())) && |
70 | // Lifetime qualifier superset. |
71 | ((getObjCLifetime() == Other.getObjCLifetime()) || |
72 | (hasObjCLifetime() && !Other.hasObjCLifetime())); |
73 | } |
74 | |
75 | const IdentifierInfo* QualType::getBaseTypeIdentifier() const { |
76 | const Type* ty = getTypePtr(); |
77 | NamedDecl *ND = nullptr; |
78 | if (ty->isPointerType() || ty->isReferenceType()) |
79 | return ty->getPointeeType().getBaseTypeIdentifier(); |
80 | else if (ty->isRecordType()) |
81 | ND = ty->castAs<RecordType>()->getDecl(); |
82 | else if (ty->isEnumeralType()) |
83 | ND = ty->castAs<EnumType>()->getDecl(); |
84 | else if (ty->getTypeClass() == Type::Typedef) |
85 | ND = ty->castAs<TypedefType>()->getDecl(); |
86 | else if (ty->isArrayType()) |
87 | return ty->castAsArrayTypeUnsafe()-> |
88 | getElementType().getBaseTypeIdentifier(); |
89 | |
90 | if (ND) |
91 | return ND->getIdentifier(); |
92 | return nullptr; |
93 | } |
94 | |
95 | bool QualType::mayBeDynamicClass() const { |
96 | const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl(); |
97 | return ClassDecl && ClassDecl->mayBeDynamicClass(); |
98 | } |
99 | |
100 | bool QualType::mayBeNotDynamicClass() const { |
101 | const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl(); |
102 | return !ClassDecl || ClassDecl->mayBeNonDynamicClass(); |
103 | } |
104 | |
105 | bool QualType::isConstant(QualType T, const ASTContext &Ctx) { |
106 | if (T.isConstQualified()) |
107 | return true; |
108 | |
109 | if (const ArrayType *AT = Ctx.getAsArrayType(T)) |
110 | return AT->getElementType().isConstant(Ctx); |
111 | |
112 | return T.getAddressSpace() == LangAS::opencl_constant; |
113 | } |
114 | |
115 | std::optional<QualType::NonConstantStorageReason> |
116 | QualType::isNonConstantStorage(const ASTContext &Ctx, bool ExcludeCtor, |
117 | bool ExcludeDtor) { |
118 | if (!isConstant(Ctx) && !(*this)->isReferenceType()) |
119 | return NonConstantStorageReason::NonConstNonReferenceType; |
120 | if (!Ctx.getLangOpts().CPlusPlus) |
121 | return std::nullopt; |
122 | if (const CXXRecordDecl *Record = |
123 | Ctx.getBaseElementType(QT: *this)->getAsCXXRecordDecl()) { |
124 | if (!ExcludeCtor) |
125 | return NonConstantStorageReason::NonTrivialCtor; |
126 | if (Record->hasMutableFields()) |
127 | return NonConstantStorageReason::MutableField; |
128 | if (!Record->hasTrivialDestructor() && !ExcludeDtor) |
129 | return NonConstantStorageReason::NonTrivialDtor; |
130 | } |
131 | return std::nullopt; |
132 | } |
133 | |
134 | // C++ [temp.dep.type]p1: |
135 | // A type is dependent if it is... |
136 | // - an array type constructed from any dependent type or whose |
137 | // size is specified by a constant expression that is |
138 | // value-dependent, |
139 | ArrayType::ArrayType(TypeClass tc, QualType et, QualType can, |
140 | ArraySizeModifier sm, unsigned tq, const Expr *sz) |
141 | // Note, we need to check for DependentSizedArrayType explicitly here |
142 | // because we use a DependentSizedArrayType with no size expression as the |
143 | // type of a dependent array of unknown bound with a dependent braced |
144 | // initializer: |
145 | // |
146 | // template<int ...N> int arr[] = {N...}; |
147 | : Type(tc, can, |
148 | et->getDependence() | |
149 | (sz ? toTypeDependence( |
150 | D: turnValueToTypeDependence(D: sz->getDependence())) |
151 | : TypeDependence::None) | |
152 | (tc == VariableArray ? TypeDependence::VariablyModified |
153 | : TypeDependence::None) | |
154 | (tc == DependentSizedArray |
155 | ? TypeDependence::DependentInstantiation |
156 | : TypeDependence::None)), |
157 | ElementType(et) { |
158 | ArrayTypeBits.IndexTypeQuals = tq; |
159 | ArrayTypeBits.SizeModifier = llvm::to_underlying(E: sm); |
160 | } |
161 | |
162 | ConstantArrayType * |
163 | ConstantArrayType::Create(const ASTContext &Ctx, QualType ET, QualType Can, |
164 | const llvm::APInt &Sz, const Expr *SzExpr, |
165 | ArraySizeModifier SzMod, unsigned Qual) { |
166 | bool NeedsExternalSize = SzExpr != nullptr || Sz.ugt(RHS: 0x0FFFFFFFFFFFFFFF) || |
167 | Sz.getBitWidth() > 0xFF; |
168 | if (!NeedsExternalSize) |
169 | return new (Ctx, alignof(ConstantArrayType)) ConstantArrayType( |
170 | ET, Can, Sz.getBitWidth(), Sz.getZExtValue(), SzMod, Qual); |
171 | |
172 | auto *SzPtr = new (Ctx, alignof(ConstantArrayType::ExternalSize)) |
173 | ConstantArrayType::ExternalSize(Sz, SzExpr); |
174 | return new (Ctx, alignof(ConstantArrayType)) |
175 | ConstantArrayType(ET, Can, SzPtr, SzMod, Qual); |
176 | } |
177 | |
178 | unsigned ConstantArrayType::getNumAddressingBits(const ASTContext &Context, |
179 | QualType ElementType, |
180 | const llvm::APInt &NumElements) { |
181 | uint64_t ElementSize = Context.getTypeSizeInChars(T: ElementType).getQuantity(); |
182 | |
183 | // Fast path the common cases so we can avoid the conservative computation |
184 | // below, which in common cases allocates "large" APSInt values, which are |
185 | // slow. |
186 | |
187 | // If the element size is a power of 2, we can directly compute the additional |
188 | // number of addressing bits beyond those required for the element count. |
189 | if (llvm::isPowerOf2_64(Value: ElementSize)) { |
190 | return NumElements.getActiveBits() + llvm::Log2_64(Value: ElementSize); |
191 | } |
192 | |
193 | // If both the element count and element size fit in 32-bits, we can do the |
194 | // computation directly in 64-bits. |
195 | if ((ElementSize >> 32) == 0 && NumElements.getBitWidth() <= 64 && |
196 | (NumElements.getZExtValue() >> 32) == 0) { |
197 | uint64_t TotalSize = NumElements.getZExtValue() * ElementSize; |
198 | return llvm::bit_width(Value: TotalSize); |
199 | } |
200 | |
201 | // Otherwise, use APSInt to handle arbitrary sized values. |
202 | llvm::APSInt SizeExtended(NumElements, true); |
203 | unsigned SizeTypeBits = Context.getTypeSize(T: Context.getSizeType()); |
204 | SizeExtended = SizeExtended.extend(width: std::max(a: SizeTypeBits, |
205 | b: SizeExtended.getBitWidth()) * 2); |
206 | |
207 | llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize)); |
208 | TotalSize *= SizeExtended; |
209 | |
210 | return TotalSize.getActiveBits(); |
211 | } |
212 | |
213 | unsigned |
214 | ConstantArrayType::getNumAddressingBits(const ASTContext &Context) const { |
215 | return getNumAddressingBits(Context, ElementType: getElementType(), NumElements: getSize()); |
216 | } |
217 | |
218 | unsigned ConstantArrayType::getMaxSizeBits(const ASTContext &Context) { |
219 | unsigned Bits = Context.getTypeSize(T: Context.getSizeType()); |
220 | |
221 | // Limit the number of bits in size_t so that maximal bit size fits 64 bit |
222 | // integer (see PR8256). We can do this as currently there is no hardware |
223 | // that supports full 64-bit virtual space. |
224 | if (Bits > 61) |
225 | Bits = 61; |
226 | |
227 | return Bits; |
228 | } |
229 | |
230 | void ConstantArrayType::Profile(llvm::FoldingSetNodeID &ID, |
231 | const ASTContext &Context, QualType ET, |
232 | uint64_t ArraySize, const Expr *SizeExpr, |
233 | ArraySizeModifier SizeMod, unsigned TypeQuals) { |
234 | ID.AddPointer(Ptr: ET.getAsOpaquePtr()); |
235 | ID.AddInteger(I: ArraySize); |
236 | ID.AddInteger(I: llvm::to_underlying(E: SizeMod)); |
237 | ID.AddInteger(I: TypeQuals); |
238 | ID.AddBoolean(B: SizeExpr != nullptr); |
239 | if (SizeExpr) |
240 | SizeExpr->Profile(ID, Context, Canonical: true); |
241 | } |
242 | |
243 | DependentSizedArrayType::DependentSizedArrayType(QualType et, QualType can, |
244 | Expr *e, ArraySizeModifier sm, |
245 | unsigned tq, |
246 | SourceRange brackets) |
247 | : ArrayType(DependentSizedArray, et, can, sm, tq, e), SizeExpr((Stmt *)e), |
248 | Brackets(brackets) {} |
249 | |
250 | void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID, |
251 | const ASTContext &Context, |
252 | QualType ET, |
253 | ArraySizeModifier SizeMod, |
254 | unsigned TypeQuals, |
255 | Expr *E) { |
256 | ID.AddPointer(Ptr: ET.getAsOpaquePtr()); |
257 | ID.AddInteger(I: llvm::to_underlying(E: SizeMod)); |
258 | ID.AddInteger(I: TypeQuals); |
259 | if (E) |
260 | E->Profile(ID, Context, Canonical: true); |
261 | } |
262 | |
263 | DependentVectorType::DependentVectorType(QualType ElementType, |
264 | QualType CanonType, Expr *SizeExpr, |
265 | SourceLocation Loc, VectorKind VecKind) |
266 | : Type(DependentVector, CanonType, |
267 | TypeDependence::DependentInstantiation | |
268 | ElementType->getDependence() | |
269 | (SizeExpr ? toTypeDependence(D: SizeExpr->getDependence()) |
270 | : TypeDependence::None)), |
271 | ElementType(ElementType), SizeExpr(SizeExpr), Loc(Loc) { |
272 | VectorTypeBits.VecKind = llvm::to_underlying(E: VecKind); |
273 | } |
274 | |
275 | void DependentVectorType::Profile(llvm::FoldingSetNodeID &ID, |
276 | const ASTContext &Context, |
277 | QualType ElementType, const Expr *SizeExpr, |
278 | VectorKind VecKind) { |
279 | ID.AddPointer(Ptr: ElementType.getAsOpaquePtr()); |
280 | ID.AddInteger(I: llvm::to_underlying(E: VecKind)); |
281 | SizeExpr->Profile(ID, Context, Canonical: true); |
282 | } |
283 | |
284 | DependentSizedExtVectorType::DependentSizedExtVectorType(QualType ElementType, |
285 | QualType can, |
286 | Expr *SizeExpr, |
287 | SourceLocation loc) |
288 | : Type(DependentSizedExtVector, can, |
289 | TypeDependence::DependentInstantiation | |
290 | ElementType->getDependence() | |
291 | (SizeExpr ? toTypeDependence(D: SizeExpr->getDependence()) |
292 | : TypeDependence::None)), |
293 | SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) {} |
294 | |
295 | void |
296 | DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID, |
297 | const ASTContext &Context, |
298 | QualType ElementType, Expr *SizeExpr) { |
299 | ID.AddPointer(Ptr: ElementType.getAsOpaquePtr()); |
300 | SizeExpr->Profile(ID, Context, Canonical: true); |
301 | } |
302 | |
303 | DependentAddressSpaceType::DependentAddressSpaceType(QualType PointeeType, |
304 | QualType can, |
305 | Expr *AddrSpaceExpr, |
306 | SourceLocation loc) |
307 | : Type(DependentAddressSpace, can, |
308 | TypeDependence::DependentInstantiation | |
309 | PointeeType->getDependence() | |
310 | (AddrSpaceExpr ? toTypeDependence(D: AddrSpaceExpr->getDependence()) |
311 | : TypeDependence::None)), |
312 | AddrSpaceExpr(AddrSpaceExpr), PointeeType(PointeeType), loc(loc) {} |
313 | |
314 | void DependentAddressSpaceType::Profile(llvm::FoldingSetNodeID &ID, |
315 | const ASTContext &Context, |
316 | QualType PointeeType, |
317 | Expr *AddrSpaceExpr) { |
318 | ID.AddPointer(Ptr: PointeeType.getAsOpaquePtr()); |
319 | AddrSpaceExpr->Profile(ID, Context, Canonical: true); |
320 | } |
321 | |
322 | MatrixType::MatrixType(TypeClass tc, QualType matrixType, QualType canonType, |
323 | const Expr *RowExpr, const Expr *ColumnExpr) |
324 | : Type(tc, canonType, |
325 | (RowExpr ? (matrixType->getDependence() | TypeDependence::Dependent | |
326 | TypeDependence::Instantiation | |
327 | (matrixType->isVariablyModifiedType() |
328 | ? TypeDependence::VariablyModified |
329 | : TypeDependence::None) | |
330 | (matrixType->containsUnexpandedParameterPack() || |
331 | (RowExpr && |
332 | RowExpr->containsUnexpandedParameterPack()) || |
333 | (ColumnExpr && |
334 | ColumnExpr->containsUnexpandedParameterPack()) |
335 | ? TypeDependence::UnexpandedPack |
336 | : TypeDependence::None)) |
337 | : matrixType->getDependence())), |
338 | ElementType(matrixType) {} |
339 | |
340 | ConstantMatrixType::ConstantMatrixType(QualType matrixType, unsigned nRows, |
341 | unsigned nColumns, QualType canonType) |
342 | : ConstantMatrixType(ConstantMatrix, matrixType, nRows, nColumns, |
343 | canonType) {} |
344 | |
345 | ConstantMatrixType::ConstantMatrixType(TypeClass tc, QualType matrixType, |
346 | unsigned nRows, unsigned nColumns, |
347 | QualType canonType) |
348 | : MatrixType(tc, matrixType, canonType), NumRows(nRows), |
349 | NumColumns(nColumns) {} |
350 | |
351 | DependentSizedMatrixType::DependentSizedMatrixType(QualType ElementType, |
352 | QualType CanonicalType, |
353 | Expr *RowExpr, |
354 | Expr *ColumnExpr, |
355 | SourceLocation loc) |
356 | : MatrixType(DependentSizedMatrix, ElementType, CanonicalType, RowExpr, |
357 | ColumnExpr), |
358 | RowExpr(RowExpr), ColumnExpr(ColumnExpr), loc(loc) {} |
359 | |
360 | void DependentSizedMatrixType::Profile(llvm::FoldingSetNodeID &ID, |
361 | const ASTContext &CTX, |
362 | QualType ElementType, Expr *RowExpr, |
363 | Expr *ColumnExpr) { |
364 | ID.AddPointer(Ptr: ElementType.getAsOpaquePtr()); |
365 | RowExpr->Profile(ID, Context: CTX, Canonical: true); |
366 | ColumnExpr->Profile(ID, Context: CTX, Canonical: true); |
367 | } |
368 | |
369 | VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType, |
370 | VectorKind vecKind) |
371 | : VectorType(Vector, vecType, nElements, canonType, vecKind) {} |
372 | |
373 | VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements, |
374 | QualType canonType, VectorKind vecKind) |
375 | : Type(tc, canonType, vecType->getDependence()), ElementType(vecType) { |
376 | VectorTypeBits.VecKind = llvm::to_underlying(E: vecKind); |
377 | VectorTypeBits.NumElements = nElements; |
378 | } |
379 | |
380 | BitIntType::BitIntType(bool IsUnsigned, unsigned NumBits) |
381 | : Type(BitInt, QualType{}, TypeDependence::None), IsUnsigned(IsUnsigned), |
382 | NumBits(NumBits) {} |
383 | |
384 | DependentBitIntType::DependentBitIntType(bool IsUnsigned, Expr *NumBitsExpr) |
385 | : Type(DependentBitInt, QualType{}, |
386 | toTypeDependence(D: NumBitsExpr->getDependence())), |
387 | ExprAndUnsigned(NumBitsExpr, IsUnsigned) {} |
388 | |
389 | bool DependentBitIntType::isUnsigned() const { |
390 | return ExprAndUnsigned.getInt(); |
391 | } |
392 | |
393 | clang::Expr *DependentBitIntType::getNumBitsExpr() const { |
394 | return ExprAndUnsigned.getPointer(); |
395 | } |
396 | |
397 | void DependentBitIntType::Profile(llvm::FoldingSetNodeID &ID, |
398 | const ASTContext &Context, bool IsUnsigned, |
399 | Expr *NumBitsExpr) { |
400 | ID.AddBoolean(B: IsUnsigned); |
401 | NumBitsExpr->Profile(ID, Context, Canonical: true); |
402 | } |
403 | |
404 | bool BoundsAttributedType::referencesFieldDecls() const { |
405 | return llvm::any_of(Range: dependent_decls(), |
406 | P: [](const TypeCoupledDeclRefInfo &Info) { |
407 | return isa<FieldDecl>(Val: Info.getDecl()); |
408 | }); |
409 | } |
410 | |
411 | void CountAttributedType::Profile(llvm::FoldingSetNodeID &ID, |
412 | QualType WrappedTy, Expr *CountExpr, |
413 | bool CountInBytes, bool OrNull) { |
414 | ID.AddPointer(Ptr: WrappedTy.getAsOpaquePtr()); |
415 | ID.AddBoolean(B: CountInBytes); |
416 | ID.AddBoolean(B: OrNull); |
417 | // We profile it as a pointer as the StmtProfiler considers parameter |
418 | // expressions on function declaration and function definition as the |
419 | // same, resulting in count expression being evaluated with ParamDecl |
420 | // not in the function scope. |
421 | ID.AddPointer(Ptr: CountExpr); |
422 | } |
423 | |
424 | /// getArrayElementTypeNoTypeQual - If this is an array type, return the |
425 | /// element type of the array, potentially with type qualifiers missing. |
426 | /// This method should never be used when type qualifiers are meaningful. |
427 | const Type *Type::getArrayElementTypeNoTypeQual() const { |
428 | // If this is directly an array type, return it. |
429 | if (const auto *ATy = dyn_cast<ArrayType>(Val: this)) |
430 | return ATy->getElementType().getTypePtr(); |
431 | |
432 | // If the canonical form of this type isn't the right kind, reject it. |
433 | if (!isa<ArrayType>(Val: CanonicalType)) |
434 | return nullptr; |
435 | |
436 | // If this is a typedef for an array type, strip the typedef off without |
437 | // losing all typedef information. |
438 | return cast<ArrayType>(Val: getUnqualifiedDesugaredType()) |
439 | ->getElementType().getTypePtr(); |
440 | } |
441 | |
442 | /// getDesugaredType - Return the specified type with any "sugar" removed from |
443 | /// the type. This takes off typedefs, typeof's etc. If the outer level of |
444 | /// the type is already concrete, it returns it unmodified. This is similar |
445 | /// to getting the canonical type, but it doesn't remove *all* typedefs. For |
446 | /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is |
447 | /// concrete. |
448 | QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) { |
449 | SplitQualType split = getSplitDesugaredType(T); |
450 | return Context.getQualifiedType(T: split.Ty, Qs: split.Quals); |
451 | } |
452 | |
453 | QualType QualType::getSingleStepDesugaredTypeImpl(QualType type, |
454 | const ASTContext &Context) { |
455 | SplitQualType split = type.split(); |
456 | QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType(); |
457 | return Context.getQualifiedType(T: desugar, Qs: split.Quals); |
458 | } |
459 | |
460 | // Check that no type class is polymorphic. LLVM style RTTI should be used |
461 | // instead. If absolutely needed an exception can still be added here by |
462 | // defining the appropriate macro (but please don't do this). |
463 | #define TYPE(CLASS, BASE) \ |
464 | static_assert(!std::is_polymorphic<CLASS##Type>::value, \ |
465 | #CLASS "Type should not be polymorphic!"); |
466 | #include "clang/AST/TypeNodes.inc" |
467 | |
468 | // Check that no type class has a non-trival destructor. Types are |
469 | // allocated with the BumpPtrAllocator from ASTContext and therefore |
470 | // their destructor is not executed. |
471 | #define TYPE(CLASS, BASE) \ |
472 | static_assert(std::is_trivially_destructible<CLASS##Type>::value, \ |
473 | #CLASS "Type should be trivially destructible!"); |
474 | #include "clang/AST/TypeNodes.inc" |
475 | |
476 | QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const { |
477 | switch (getTypeClass()) { |
478 | #define ABSTRACT_TYPE(Class, Parent) |
479 | #define TYPE(Class, Parent) \ |
480 | case Type::Class: { \ |
481 | const auto *ty = cast<Class##Type>(this); \ |
482 | if (!ty->isSugared()) return QualType(ty, 0); \ |
483 | return ty->desugar(); \ |
484 | } |
485 | #include "clang/AST/TypeNodes.inc" |
486 | } |
487 | llvm_unreachable("bad type kind!" ); |
488 | } |
489 | |
490 | SplitQualType QualType::getSplitDesugaredType(QualType T) { |
491 | QualifierCollector Qs; |
492 | |
493 | QualType Cur = T; |
494 | while (true) { |
495 | const Type *CurTy = Qs.strip(type: Cur); |
496 | switch (CurTy->getTypeClass()) { |
497 | #define ABSTRACT_TYPE(Class, Parent) |
498 | #define TYPE(Class, Parent) \ |
499 | case Type::Class: { \ |
500 | const auto *Ty = cast<Class##Type>(CurTy); \ |
501 | if (!Ty->isSugared()) \ |
502 | return SplitQualType(Ty, Qs); \ |
503 | Cur = Ty->desugar(); \ |
504 | break; \ |
505 | } |
506 | #include "clang/AST/TypeNodes.inc" |
507 | } |
508 | } |
509 | } |
510 | |
511 | SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) { |
512 | SplitQualType split = type.split(); |
513 | |
514 | // All the qualifiers we've seen so far. |
515 | Qualifiers quals = split.Quals; |
516 | |
517 | // The last type node we saw with any nodes inside it. |
518 | const Type *lastTypeWithQuals = split.Ty; |
519 | |
520 | while (true) { |
521 | QualType next; |
522 | |
523 | // Do a single-step desugar, aborting the loop if the type isn't |
524 | // sugared. |
525 | switch (split.Ty->getTypeClass()) { |
526 | #define ABSTRACT_TYPE(Class, Parent) |
527 | #define TYPE(Class, Parent) \ |
528 | case Type::Class: { \ |
529 | const auto *ty = cast<Class##Type>(split.Ty); \ |
530 | if (!ty->isSugared()) goto done; \ |
531 | next = ty->desugar(); \ |
532 | break; \ |
533 | } |
534 | #include "clang/AST/TypeNodes.inc" |
535 | } |
536 | |
537 | // Otherwise, split the underlying type. If that yields qualifiers, |
538 | // update the information. |
539 | split = next.split(); |
540 | if (!split.Quals.empty()) { |
541 | lastTypeWithQuals = split.Ty; |
542 | quals.addConsistentQualifiers(qs: split.Quals); |
543 | } |
544 | } |
545 | |
546 | done: |
547 | return SplitQualType(lastTypeWithQuals, quals); |
548 | } |
549 | |
550 | QualType QualType::IgnoreParens(QualType T) { |
551 | // FIXME: this seems inherently un-qualifiers-safe. |
552 | while (const auto *PT = T->getAs<ParenType>()) |
553 | T = PT->getInnerType(); |
554 | return T; |
555 | } |
556 | |
557 | /// This will check for a T (which should be a Type which can act as |
558 | /// sugar, such as a TypedefType) by removing any existing sugar until it |
559 | /// reaches a T or a non-sugared type. |
560 | template<typename T> static const T *getAsSugar(const Type *Cur) { |
561 | while (true) { |
562 | if (const auto *Sugar = dyn_cast<T>(Cur)) |
563 | return Sugar; |
564 | switch (Cur->getTypeClass()) { |
565 | #define ABSTRACT_TYPE(Class, Parent) |
566 | #define TYPE(Class, Parent) \ |
567 | case Type::Class: { \ |
568 | const auto *Ty = cast<Class##Type>(Cur); \ |
569 | if (!Ty->isSugared()) return 0; \ |
570 | Cur = Ty->desugar().getTypePtr(); \ |
571 | break; \ |
572 | } |
573 | #include "clang/AST/TypeNodes.inc" |
574 | } |
575 | } |
576 | } |
577 | |
578 | template <> const TypedefType *Type::getAs() const { |
579 | return getAsSugar<TypedefType>(Cur: this); |
580 | } |
581 | |
582 | template <> const UsingType *Type::getAs() const { |
583 | return getAsSugar<UsingType>(Cur: this); |
584 | } |
585 | |
586 | template <> const TemplateSpecializationType *Type::getAs() const { |
587 | return getAsSugar<TemplateSpecializationType>(Cur: this); |
588 | } |
589 | |
590 | template <> const AttributedType *Type::getAs() const { |
591 | return getAsSugar<AttributedType>(Cur: this); |
592 | } |
593 | |
594 | template <> const BoundsAttributedType *Type::getAs() const { |
595 | return getAsSugar<BoundsAttributedType>(Cur: this); |
596 | } |
597 | |
598 | template <> const CountAttributedType *Type::getAs() const { |
599 | return getAsSugar<CountAttributedType>(Cur: this); |
600 | } |
601 | |
602 | /// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic |
603 | /// sugar off the given type. This should produce an object of the |
604 | /// same dynamic type as the canonical type. |
605 | const Type *Type::getUnqualifiedDesugaredType() const { |
606 | const Type *Cur = this; |
607 | |
608 | while (true) { |
609 | switch (Cur->getTypeClass()) { |
610 | #define ABSTRACT_TYPE(Class, Parent) |
611 | #define TYPE(Class, Parent) \ |
612 | case Class: { \ |
613 | const auto *Ty = cast<Class##Type>(Cur); \ |
614 | if (!Ty->isSugared()) return Cur; \ |
615 | Cur = Ty->desugar().getTypePtr(); \ |
616 | break; \ |
617 | } |
618 | #include "clang/AST/TypeNodes.inc" |
619 | } |
620 | } |
621 | } |
622 | |
623 | bool Type::isClassType() const { |
624 | if (const auto *RT = getAs<RecordType>()) |
625 | return RT->getDecl()->isClass(); |
626 | return false; |
627 | } |
628 | |
629 | bool Type::isStructureType() const { |
630 | if (const auto *RT = getAs<RecordType>()) |
631 | return RT->getDecl()->isStruct(); |
632 | return false; |
633 | } |
634 | |
635 | bool Type::isStructureTypeWithFlexibleArrayMember() const { |
636 | const auto *RT = getAs<RecordType>(); |
637 | if (!RT) |
638 | return false; |
639 | const auto *Decl = RT->getDecl(); |
640 | if (!Decl->isStruct()) |
641 | return false; |
642 | return Decl->hasFlexibleArrayMember(); |
643 | } |
644 | |
645 | bool Type::isObjCBoxableRecordType() const { |
646 | if (const auto *RT = getAs<RecordType>()) |
647 | return RT->getDecl()->hasAttr<ObjCBoxableAttr>(); |
648 | return false; |
649 | } |
650 | |
651 | bool Type::isInterfaceType() const { |
652 | if (const auto *RT = getAs<RecordType>()) |
653 | return RT->getDecl()->isInterface(); |
654 | return false; |
655 | } |
656 | |
657 | bool Type::isStructureOrClassType() const { |
658 | if (const auto *RT = getAs<RecordType>()) { |
659 | RecordDecl *RD = RT->getDecl(); |
660 | return RD->isStruct() || RD->isClass() || RD->isInterface(); |
661 | } |
662 | return false; |
663 | } |
664 | |
665 | bool Type::isVoidPointerType() const { |
666 | if (const auto *PT = getAs<PointerType>()) |
667 | return PT->getPointeeType()->isVoidType(); |
668 | return false; |
669 | } |
670 | |
671 | bool Type::isUnionType() const { |
672 | if (const auto *RT = getAs<RecordType>()) |
673 | return RT->getDecl()->isUnion(); |
674 | return false; |
675 | } |
676 | |
677 | bool Type::isComplexType() const { |
678 | if (const auto *CT = dyn_cast<ComplexType>(Val: CanonicalType)) |
679 | return CT->getElementType()->isFloatingType(); |
680 | return false; |
681 | } |
682 | |
683 | bool Type::isComplexIntegerType() const { |
684 | // Check for GCC complex integer extension. |
685 | return getAsComplexIntegerType(); |
686 | } |
687 | |
688 | bool Type::isScopedEnumeralType() const { |
689 | if (const auto *ET = getAs<EnumType>()) |
690 | return ET->getDecl()->isScoped(); |
691 | return false; |
692 | } |
693 | |
694 | bool Type::isCountAttributedType() const { |
695 | return getAs<CountAttributedType>(); |
696 | } |
697 | |
698 | const ComplexType *Type::getAsComplexIntegerType() const { |
699 | if (const auto *Complex = getAs<ComplexType>()) |
700 | if (Complex->getElementType()->isIntegerType()) |
701 | return Complex; |
702 | return nullptr; |
703 | } |
704 | |
705 | QualType Type::getPointeeType() const { |
706 | if (const auto *PT = getAs<PointerType>()) |
707 | return PT->getPointeeType(); |
708 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) |
709 | return OPT->getPointeeType(); |
710 | if (const auto *BPT = getAs<BlockPointerType>()) |
711 | return BPT->getPointeeType(); |
712 | if (const auto *RT = getAs<ReferenceType>()) |
713 | return RT->getPointeeType(); |
714 | if (const auto *MPT = getAs<MemberPointerType>()) |
715 | return MPT->getPointeeType(); |
716 | if (const auto *DT = getAs<DecayedType>()) |
717 | return DT->getPointeeType(); |
718 | return {}; |
719 | } |
720 | |
721 | const RecordType *Type::getAsStructureType() const { |
722 | // If this is directly a structure type, return it. |
723 | if (const auto *RT = dyn_cast<RecordType>(Val: this)) { |
724 | if (RT->getDecl()->isStruct()) |
725 | return RT; |
726 | } |
727 | |
728 | // If the canonical form of this type isn't the right kind, reject it. |
729 | if (const auto *RT = dyn_cast<RecordType>(Val: CanonicalType)) { |
730 | if (!RT->getDecl()->isStruct()) |
731 | return nullptr; |
732 | |
733 | // If this is a typedef for a structure type, strip the typedef off without |
734 | // losing all typedef information. |
735 | return cast<RecordType>(Val: getUnqualifiedDesugaredType()); |
736 | } |
737 | return nullptr; |
738 | } |
739 | |
740 | const RecordType *Type::getAsUnionType() const { |
741 | // If this is directly a union type, return it. |
742 | if (const auto *RT = dyn_cast<RecordType>(Val: this)) { |
743 | if (RT->getDecl()->isUnion()) |
744 | return RT; |
745 | } |
746 | |
747 | // If the canonical form of this type isn't the right kind, reject it. |
748 | if (const auto *RT = dyn_cast<RecordType>(Val: CanonicalType)) { |
749 | if (!RT->getDecl()->isUnion()) |
750 | return nullptr; |
751 | |
752 | // If this is a typedef for a union type, strip the typedef off without |
753 | // losing all typedef information. |
754 | return cast<RecordType>(Val: getUnqualifiedDesugaredType()); |
755 | } |
756 | |
757 | return nullptr; |
758 | } |
759 | |
760 | bool Type::isObjCIdOrObjectKindOfType(const ASTContext &ctx, |
761 | const ObjCObjectType *&bound) const { |
762 | bound = nullptr; |
763 | |
764 | const auto *OPT = getAs<ObjCObjectPointerType>(); |
765 | if (!OPT) |
766 | return false; |
767 | |
768 | // Easy case: id. |
769 | if (OPT->isObjCIdType()) |
770 | return true; |
771 | |
772 | // If it's not a __kindof type, reject it now. |
773 | if (!OPT->isKindOfType()) |
774 | return false; |
775 | |
776 | // If it's Class or qualified Class, it's not an object type. |
777 | if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) |
778 | return false; |
779 | |
780 | // Figure out the type bound for the __kindof type. |
781 | bound = OPT->getObjectType()->stripObjCKindOfTypeAndQuals(ctx) |
782 | ->getAs<ObjCObjectType>(); |
783 | return true; |
784 | } |
785 | |
786 | bool Type::isObjCClassOrClassKindOfType() const { |
787 | const auto *OPT = getAs<ObjCObjectPointerType>(); |
788 | if (!OPT) |
789 | return false; |
790 | |
791 | // Easy case: Class. |
792 | if (OPT->isObjCClassType()) |
793 | return true; |
794 | |
795 | // If it's not a __kindof type, reject it now. |
796 | if (!OPT->isKindOfType()) |
797 | return false; |
798 | |
799 | // If it's Class or qualified Class, it's a class __kindof type. |
800 | return OPT->isObjCClassType() || OPT->isObjCQualifiedClassType(); |
801 | } |
802 | |
803 | ObjCTypeParamType::ObjCTypeParamType(const ObjCTypeParamDecl *D, QualType can, |
804 | ArrayRef<ObjCProtocolDecl *> protocols) |
805 | : Type(ObjCTypeParam, can, toSemanticDependence(D: can->getDependence())), |
806 | OTPDecl(const_cast<ObjCTypeParamDecl *>(D)) { |
807 | initialize(protocols); |
808 | } |
809 | |
810 | ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base, |
811 | ArrayRef<QualType> typeArgs, |
812 | ArrayRef<ObjCProtocolDecl *> protocols, |
813 | bool isKindOf) |
814 | : Type(ObjCObject, Canonical, Base->getDependence()), BaseType(Base) { |
815 | ObjCObjectTypeBits.IsKindOf = isKindOf; |
816 | |
817 | ObjCObjectTypeBits.NumTypeArgs = typeArgs.size(); |
818 | assert(getTypeArgsAsWritten().size() == typeArgs.size() && |
819 | "bitfield overflow in type argument count" ); |
820 | if (!typeArgs.empty()) |
821 | memcpy(dest: getTypeArgStorage(), src: typeArgs.data(), |
822 | n: typeArgs.size() * sizeof(QualType)); |
823 | |
824 | for (auto typeArg : typeArgs) { |
825 | addDependence(D: typeArg->getDependence() & ~TypeDependence::VariablyModified); |
826 | } |
827 | // Initialize the protocol qualifiers. The protocol storage is known |
828 | // after we set number of type arguments. |
829 | initialize(protocols); |
830 | } |
831 | |
832 | bool ObjCObjectType::isSpecialized() const { |
833 | // If we have type arguments written here, the type is specialized. |
834 | if (ObjCObjectTypeBits.NumTypeArgs > 0) |
835 | return true; |
836 | |
837 | // Otherwise, check whether the base type is specialized. |
838 | if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) { |
839 | // Terminate when we reach an interface type. |
840 | if (isa<ObjCInterfaceType>(Val: objcObject)) |
841 | return false; |
842 | |
843 | return objcObject->isSpecialized(); |
844 | } |
845 | |
846 | // Not specialized. |
847 | return false; |
848 | } |
849 | |
850 | ArrayRef<QualType> ObjCObjectType::getTypeArgs() const { |
851 | // We have type arguments written on this type. |
852 | if (isSpecializedAsWritten()) |
853 | return getTypeArgsAsWritten(); |
854 | |
855 | // Look at the base type, which might have type arguments. |
856 | if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) { |
857 | // Terminate when we reach an interface type. |
858 | if (isa<ObjCInterfaceType>(Val: objcObject)) |
859 | return {}; |
860 | |
861 | return objcObject->getTypeArgs(); |
862 | } |
863 | |
864 | // No type arguments. |
865 | return {}; |
866 | } |
867 | |
868 | bool ObjCObjectType::isKindOfType() const { |
869 | if (isKindOfTypeAsWritten()) |
870 | return true; |
871 | |
872 | // Look at the base type, which might have type arguments. |
873 | if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) { |
874 | // Terminate when we reach an interface type. |
875 | if (isa<ObjCInterfaceType>(Val: objcObject)) |
876 | return false; |
877 | |
878 | return objcObject->isKindOfType(); |
879 | } |
880 | |
881 | // Not a "__kindof" type. |
882 | return false; |
883 | } |
884 | |
885 | QualType ObjCObjectType::stripObjCKindOfTypeAndQuals( |
886 | const ASTContext &ctx) const { |
887 | if (!isKindOfType() && qual_empty()) |
888 | return QualType(this, 0); |
889 | |
890 | // Recursively strip __kindof. |
891 | SplitQualType splitBaseType = getBaseType().split(); |
892 | QualType baseType(splitBaseType.Ty, 0); |
893 | if (const auto *baseObj = splitBaseType.Ty->getAs<ObjCObjectType>()) |
894 | baseType = baseObj->stripObjCKindOfTypeAndQuals(ctx); |
895 | |
896 | return ctx.getObjCObjectType(Base: ctx.getQualifiedType(T: baseType, |
897 | Qs: splitBaseType.Quals), |
898 | typeArgs: getTypeArgsAsWritten(), |
899 | /*protocols=*/{}, |
900 | /*isKindOf=*/false); |
901 | } |
902 | |
903 | ObjCInterfaceDecl *ObjCInterfaceType::getDecl() const { |
904 | ObjCInterfaceDecl *Canon = Decl->getCanonicalDecl(); |
905 | if (ObjCInterfaceDecl *Def = Canon->getDefinition()) |
906 | return Def; |
907 | return Canon; |
908 | } |
909 | |
910 | const ObjCObjectPointerType *ObjCObjectPointerType::stripObjCKindOfTypeAndQuals( |
911 | const ASTContext &ctx) const { |
912 | if (!isKindOfType() && qual_empty()) |
913 | return this; |
914 | |
915 | QualType obj = getObjectType()->stripObjCKindOfTypeAndQuals(ctx); |
916 | return ctx.getObjCObjectPointerType(OIT: obj)->castAs<ObjCObjectPointerType>(); |
917 | } |
918 | |
919 | namespace { |
920 | |
921 | /// Visitor used to perform a simple type transformation that does not change |
922 | /// the semantics of the type. |
923 | template <typename Derived> |
924 | struct SimpleTransformVisitor : public TypeVisitor<Derived, QualType> { |
925 | ASTContext &Ctx; |
926 | |
927 | QualType recurse(QualType type) { |
928 | // Split out the qualifiers from the type. |
929 | SplitQualType splitType = type.split(); |
930 | |
931 | // Visit the type itself. |
932 | QualType result = static_cast<Derived *>(this)->Visit(splitType.Ty); |
933 | if (result.isNull()) |
934 | return result; |
935 | |
936 | // Reconstruct the transformed type by applying the local qualifiers |
937 | // from the split type. |
938 | return Ctx.getQualifiedType(T: result, Qs: splitType.Quals); |
939 | } |
940 | |
941 | public: |
942 | explicit SimpleTransformVisitor(ASTContext &ctx) : Ctx(ctx) {} |
943 | |
944 | // None of the clients of this transformation can occur where |
945 | // there are dependent types, so skip dependent types. |
946 | #define TYPE(Class, Base) |
947 | #define DEPENDENT_TYPE(Class, Base) \ |
948 | QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); } |
949 | #include "clang/AST/TypeNodes.inc" |
950 | |
951 | #define TRIVIAL_TYPE_CLASS(Class) \ |
952 | QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); } |
953 | #define SUGARED_TYPE_CLASS(Class) \ |
954 | QualType Visit##Class##Type(const Class##Type *T) { \ |
955 | if (!T->isSugared()) \ |
956 | return QualType(T, 0); \ |
957 | QualType desugaredType = recurse(T->desugar()); \ |
958 | if (desugaredType.isNull()) \ |
959 | return {}; \ |
960 | if (desugaredType.getAsOpaquePtr() == T->desugar().getAsOpaquePtr()) \ |
961 | return QualType(T, 0); \ |
962 | return desugaredType; \ |
963 | } |
964 | |
965 | TRIVIAL_TYPE_CLASS(Builtin) |
966 | |
967 | QualType VisitComplexType(const ComplexType *T) { |
968 | QualType elementType = recurse(type: T->getElementType()); |
969 | if (elementType.isNull()) |
970 | return {}; |
971 | |
972 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
973 | return QualType(T, 0); |
974 | |
975 | return Ctx.getComplexType(T: elementType); |
976 | } |
977 | |
978 | QualType VisitPointerType(const PointerType *T) { |
979 | QualType pointeeType = recurse(type: T->getPointeeType()); |
980 | if (pointeeType.isNull()) |
981 | return {}; |
982 | |
983 | if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr()) |
984 | return QualType(T, 0); |
985 | |
986 | return Ctx.getPointerType(T: pointeeType); |
987 | } |
988 | |
989 | QualType VisitBlockPointerType(const BlockPointerType *T) { |
990 | QualType pointeeType = recurse(type: T->getPointeeType()); |
991 | if (pointeeType.isNull()) |
992 | return {}; |
993 | |
994 | if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr()) |
995 | return QualType(T, 0); |
996 | |
997 | return Ctx.getBlockPointerType(T: pointeeType); |
998 | } |
999 | |
1000 | QualType VisitLValueReferenceType(const LValueReferenceType *T) { |
1001 | QualType pointeeType = recurse(type: T->getPointeeTypeAsWritten()); |
1002 | if (pointeeType.isNull()) |
1003 | return {}; |
1004 | |
1005 | if (pointeeType.getAsOpaquePtr() |
1006 | == T->getPointeeTypeAsWritten().getAsOpaquePtr()) |
1007 | return QualType(T, 0); |
1008 | |
1009 | return Ctx.getLValueReferenceType(T: pointeeType, SpelledAsLValue: T->isSpelledAsLValue()); |
1010 | } |
1011 | |
1012 | QualType VisitRValueReferenceType(const RValueReferenceType *T) { |
1013 | QualType pointeeType = recurse(type: T->getPointeeTypeAsWritten()); |
1014 | if (pointeeType.isNull()) |
1015 | return {}; |
1016 | |
1017 | if (pointeeType.getAsOpaquePtr() |
1018 | == T->getPointeeTypeAsWritten().getAsOpaquePtr()) |
1019 | return QualType(T, 0); |
1020 | |
1021 | return Ctx.getRValueReferenceType(T: pointeeType); |
1022 | } |
1023 | |
1024 | QualType VisitMemberPointerType(const MemberPointerType *T) { |
1025 | QualType pointeeType = recurse(type: T->getPointeeType()); |
1026 | if (pointeeType.isNull()) |
1027 | return {}; |
1028 | |
1029 | if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr()) |
1030 | return QualType(T, 0); |
1031 | |
1032 | return Ctx.getMemberPointerType(T: pointeeType, Cls: T->getClass()); |
1033 | } |
1034 | |
1035 | QualType VisitConstantArrayType(const ConstantArrayType *T) { |
1036 | QualType elementType = recurse(type: T->getElementType()); |
1037 | if (elementType.isNull()) |
1038 | return {}; |
1039 | |
1040 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1041 | return QualType(T, 0); |
1042 | |
1043 | return Ctx.getConstantArrayType(EltTy: elementType, ArySize: T->getSize(), SizeExpr: T->getSizeExpr(), |
1044 | ASM: T->getSizeModifier(), |
1045 | IndexTypeQuals: T->getIndexTypeCVRQualifiers()); |
1046 | } |
1047 | |
1048 | QualType VisitVariableArrayType(const VariableArrayType *T) { |
1049 | QualType elementType = recurse(type: T->getElementType()); |
1050 | if (elementType.isNull()) |
1051 | return {}; |
1052 | |
1053 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1054 | return QualType(T, 0); |
1055 | |
1056 | return Ctx.getVariableArrayType(EltTy: elementType, NumElts: T->getSizeExpr(), |
1057 | ASM: T->getSizeModifier(), |
1058 | IndexTypeQuals: T->getIndexTypeCVRQualifiers(), |
1059 | Brackets: T->getBracketsRange()); |
1060 | } |
1061 | |
1062 | QualType VisitIncompleteArrayType(const IncompleteArrayType *T) { |
1063 | QualType elementType = recurse(type: T->getElementType()); |
1064 | if (elementType.isNull()) |
1065 | return {}; |
1066 | |
1067 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1068 | return QualType(T, 0); |
1069 | |
1070 | return Ctx.getIncompleteArrayType(EltTy: elementType, ASM: T->getSizeModifier(), |
1071 | IndexTypeQuals: T->getIndexTypeCVRQualifiers()); |
1072 | } |
1073 | |
1074 | QualType VisitVectorType(const VectorType *T) { |
1075 | QualType elementType = recurse(type: T->getElementType()); |
1076 | if (elementType.isNull()) |
1077 | return {}; |
1078 | |
1079 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1080 | return QualType(T, 0); |
1081 | |
1082 | return Ctx.getVectorType(VectorType: elementType, NumElts: T->getNumElements(), |
1083 | VecKind: T->getVectorKind()); |
1084 | } |
1085 | |
1086 | QualType VisitExtVectorType(const ExtVectorType *T) { |
1087 | QualType elementType = recurse(type: T->getElementType()); |
1088 | if (elementType.isNull()) |
1089 | return {}; |
1090 | |
1091 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1092 | return QualType(T, 0); |
1093 | |
1094 | return Ctx.getExtVectorType(VectorType: elementType, NumElts: T->getNumElements()); |
1095 | } |
1096 | |
1097 | QualType VisitConstantMatrixType(const ConstantMatrixType *T) { |
1098 | QualType elementType = recurse(type: T->getElementType()); |
1099 | if (elementType.isNull()) |
1100 | return {}; |
1101 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1102 | return QualType(T, 0); |
1103 | |
1104 | return Ctx.getConstantMatrixType(ElementType: elementType, NumRows: T->getNumRows(), |
1105 | NumColumns: T->getNumColumns()); |
1106 | } |
1107 | |
1108 | QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T) { |
1109 | QualType returnType = recurse(type: T->getReturnType()); |
1110 | if (returnType.isNull()) |
1111 | return {}; |
1112 | |
1113 | if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr()) |
1114 | return QualType(T, 0); |
1115 | |
1116 | return Ctx.getFunctionNoProtoType(ResultTy: returnType, Info: T->getExtInfo()); |
1117 | } |
1118 | |
1119 | QualType VisitFunctionProtoType(const FunctionProtoType *T) { |
1120 | QualType returnType = recurse(type: T->getReturnType()); |
1121 | if (returnType.isNull()) |
1122 | return {}; |
1123 | |
1124 | // Transform parameter types. |
1125 | SmallVector<QualType, 4> paramTypes; |
1126 | bool paramChanged = false; |
1127 | for (auto paramType : T->getParamTypes()) { |
1128 | QualType newParamType = recurse(type: paramType); |
1129 | if (newParamType.isNull()) |
1130 | return {}; |
1131 | |
1132 | if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr()) |
1133 | paramChanged = true; |
1134 | |
1135 | paramTypes.push_back(Elt: newParamType); |
1136 | } |
1137 | |
1138 | // Transform extended info. |
1139 | FunctionProtoType::ExtProtoInfo info = T->getExtProtoInfo(); |
1140 | bool exceptionChanged = false; |
1141 | if (info.ExceptionSpec.Type == EST_Dynamic) { |
1142 | SmallVector<QualType, 4> exceptionTypes; |
1143 | for (auto exceptionType : info.ExceptionSpec.Exceptions) { |
1144 | QualType newExceptionType = recurse(type: exceptionType); |
1145 | if (newExceptionType.isNull()) |
1146 | return {}; |
1147 | |
1148 | if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr()) |
1149 | exceptionChanged = true; |
1150 | |
1151 | exceptionTypes.push_back(Elt: newExceptionType); |
1152 | } |
1153 | |
1154 | if (exceptionChanged) { |
1155 | info.ExceptionSpec.Exceptions = |
1156 | llvm::ArrayRef(exceptionTypes).copy(A&: Ctx); |
1157 | } |
1158 | } |
1159 | |
1160 | if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr() && |
1161 | !paramChanged && !exceptionChanged) |
1162 | return QualType(T, 0); |
1163 | |
1164 | return Ctx.getFunctionType(ResultTy: returnType, Args: paramTypes, EPI: info); |
1165 | } |
1166 | |
1167 | QualType VisitParenType(const ParenType *T) { |
1168 | QualType innerType = recurse(type: T->getInnerType()); |
1169 | if (innerType.isNull()) |
1170 | return {}; |
1171 | |
1172 | if (innerType.getAsOpaquePtr() == T->getInnerType().getAsOpaquePtr()) |
1173 | return QualType(T, 0); |
1174 | |
1175 | return Ctx.getParenType(NamedType: innerType); |
1176 | } |
1177 | |
1178 | SUGARED_TYPE_CLASS(Typedef) |
1179 | SUGARED_TYPE_CLASS(ObjCTypeParam) |
1180 | SUGARED_TYPE_CLASS(MacroQualified) |
1181 | |
1182 | QualType VisitAdjustedType(const AdjustedType *T) { |
1183 | QualType originalType = recurse(type: T->getOriginalType()); |
1184 | if (originalType.isNull()) |
1185 | return {}; |
1186 | |
1187 | QualType adjustedType = recurse(type: T->getAdjustedType()); |
1188 | if (adjustedType.isNull()) |
1189 | return {}; |
1190 | |
1191 | if (originalType.getAsOpaquePtr() |
1192 | == T->getOriginalType().getAsOpaquePtr() && |
1193 | adjustedType.getAsOpaquePtr() == T->getAdjustedType().getAsOpaquePtr()) |
1194 | return QualType(T, 0); |
1195 | |
1196 | return Ctx.getAdjustedType(Orig: originalType, New: adjustedType); |
1197 | } |
1198 | |
1199 | QualType VisitDecayedType(const DecayedType *T) { |
1200 | QualType originalType = recurse(type: T->getOriginalType()); |
1201 | if (originalType.isNull()) |
1202 | return {}; |
1203 | |
1204 | if (originalType.getAsOpaquePtr() |
1205 | == T->getOriginalType().getAsOpaquePtr()) |
1206 | return QualType(T, 0); |
1207 | |
1208 | return Ctx.getDecayedType(T: originalType); |
1209 | } |
1210 | |
1211 | QualType VisitArrayParameterType(const ArrayParameterType *T) { |
1212 | QualType ArrTy = VisitConstantArrayType(T); |
1213 | if (ArrTy.isNull()) |
1214 | return {}; |
1215 | |
1216 | return Ctx.getArrayParameterType(Ty: ArrTy); |
1217 | } |
1218 | |
1219 | SUGARED_TYPE_CLASS(TypeOfExpr) |
1220 | SUGARED_TYPE_CLASS(TypeOf) |
1221 | SUGARED_TYPE_CLASS(Decltype) |
1222 | SUGARED_TYPE_CLASS(UnaryTransform) |
1223 | TRIVIAL_TYPE_CLASS(Record) |
1224 | TRIVIAL_TYPE_CLASS(Enum) |
1225 | |
1226 | // FIXME: Non-trivial to implement, but important for C++ |
1227 | SUGARED_TYPE_CLASS(Elaborated) |
1228 | |
1229 | QualType VisitAttributedType(const AttributedType *T) { |
1230 | QualType modifiedType = recurse(type: T->getModifiedType()); |
1231 | if (modifiedType.isNull()) |
1232 | return {}; |
1233 | |
1234 | QualType equivalentType = recurse(type: T->getEquivalentType()); |
1235 | if (equivalentType.isNull()) |
1236 | return {}; |
1237 | |
1238 | if (modifiedType.getAsOpaquePtr() |
1239 | == T->getModifiedType().getAsOpaquePtr() && |
1240 | equivalentType.getAsOpaquePtr() |
1241 | == T->getEquivalentType().getAsOpaquePtr()) |
1242 | return QualType(T, 0); |
1243 | |
1244 | return Ctx.getAttributedType(attrKind: T->getAttrKind(), modifiedType, |
1245 | equivalentType); |
1246 | } |
1247 | |
1248 | QualType VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { |
1249 | QualType replacementType = recurse(type: T->getReplacementType()); |
1250 | if (replacementType.isNull()) |
1251 | return {}; |
1252 | |
1253 | if (replacementType.getAsOpaquePtr() |
1254 | == T->getReplacementType().getAsOpaquePtr()) |
1255 | return QualType(T, 0); |
1256 | |
1257 | return Ctx.getSubstTemplateTypeParmType(Replacement: replacementType, |
1258 | AssociatedDecl: T->getAssociatedDecl(), |
1259 | Index: T->getIndex(), PackIndex: T->getPackIndex()); |
1260 | } |
1261 | |
1262 | // FIXME: Non-trivial to implement, but important for C++ |
1263 | SUGARED_TYPE_CLASS(TemplateSpecialization) |
1264 | |
1265 | QualType VisitAutoType(const AutoType *T) { |
1266 | if (!T->isDeduced()) |
1267 | return QualType(T, 0); |
1268 | |
1269 | QualType deducedType = recurse(type: T->getDeducedType()); |
1270 | if (deducedType.isNull()) |
1271 | return {}; |
1272 | |
1273 | if (deducedType.getAsOpaquePtr() |
1274 | == T->getDeducedType().getAsOpaquePtr()) |
1275 | return QualType(T, 0); |
1276 | |
1277 | return Ctx.getAutoType(DeducedType: deducedType, Keyword: T->getKeyword(), |
1278 | IsDependent: T->isDependentType(), /*IsPack=*/false, |
1279 | TypeConstraintConcept: T->getTypeConstraintConcept(), |
1280 | TypeConstraintArgs: T->getTypeConstraintArguments()); |
1281 | } |
1282 | |
1283 | QualType VisitObjCObjectType(const ObjCObjectType *T) { |
1284 | QualType baseType = recurse(type: T->getBaseType()); |
1285 | if (baseType.isNull()) |
1286 | return {}; |
1287 | |
1288 | // Transform type arguments. |
1289 | bool typeArgChanged = false; |
1290 | SmallVector<QualType, 4> typeArgs; |
1291 | for (auto typeArg : T->getTypeArgsAsWritten()) { |
1292 | QualType newTypeArg = recurse(type: typeArg); |
1293 | if (newTypeArg.isNull()) |
1294 | return {}; |
1295 | |
1296 | if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr()) |
1297 | typeArgChanged = true; |
1298 | |
1299 | typeArgs.push_back(Elt: newTypeArg); |
1300 | } |
1301 | |
1302 | if (baseType.getAsOpaquePtr() == T->getBaseType().getAsOpaquePtr() && |
1303 | !typeArgChanged) |
1304 | return QualType(T, 0); |
1305 | |
1306 | return Ctx.getObjCObjectType( |
1307 | Base: baseType, typeArgs, |
1308 | protocols: llvm::ArrayRef(T->qual_begin(), T->getNumProtocols()), |
1309 | isKindOf: T->isKindOfTypeAsWritten()); |
1310 | } |
1311 | |
1312 | TRIVIAL_TYPE_CLASS(ObjCInterface) |
1313 | |
1314 | QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T) { |
1315 | QualType pointeeType = recurse(type: T->getPointeeType()); |
1316 | if (pointeeType.isNull()) |
1317 | return {}; |
1318 | |
1319 | if (pointeeType.getAsOpaquePtr() |
1320 | == T->getPointeeType().getAsOpaquePtr()) |
1321 | return QualType(T, 0); |
1322 | |
1323 | return Ctx.getObjCObjectPointerType(OIT: pointeeType); |
1324 | } |
1325 | |
1326 | QualType VisitAtomicType(const AtomicType *T) { |
1327 | QualType valueType = recurse(type: T->getValueType()); |
1328 | if (valueType.isNull()) |
1329 | return {}; |
1330 | |
1331 | if (valueType.getAsOpaquePtr() |
1332 | == T->getValueType().getAsOpaquePtr()) |
1333 | return QualType(T, 0); |
1334 | |
1335 | return Ctx.getAtomicType(T: valueType); |
1336 | } |
1337 | |
1338 | #undef TRIVIAL_TYPE_CLASS |
1339 | #undef SUGARED_TYPE_CLASS |
1340 | }; |
1341 | |
1342 | struct SubstObjCTypeArgsVisitor |
1343 | : public SimpleTransformVisitor<SubstObjCTypeArgsVisitor> { |
1344 | using BaseType = SimpleTransformVisitor<SubstObjCTypeArgsVisitor>; |
1345 | |
1346 | ArrayRef<QualType> TypeArgs; |
1347 | ObjCSubstitutionContext SubstContext; |
1348 | |
1349 | SubstObjCTypeArgsVisitor(ASTContext &ctx, ArrayRef<QualType> typeArgs, |
1350 | ObjCSubstitutionContext context) |
1351 | : BaseType(ctx), TypeArgs(typeArgs), SubstContext(context) {} |
1352 | |
1353 | QualType VisitObjCTypeParamType(const ObjCTypeParamType *OTPTy) { |
1354 | // Replace an Objective-C type parameter reference with the corresponding |
1355 | // type argument. |
1356 | ObjCTypeParamDecl *typeParam = OTPTy->getDecl(); |
1357 | // If we have type arguments, use them. |
1358 | if (!TypeArgs.empty()) { |
1359 | QualType argType = TypeArgs[typeParam->getIndex()]; |
1360 | if (OTPTy->qual_empty()) |
1361 | return argType; |
1362 | |
1363 | // Apply protocol lists if exists. |
1364 | bool hasError; |
1365 | SmallVector<ObjCProtocolDecl *, 8> protocolsVec; |
1366 | protocolsVec.append(in_start: OTPTy->qual_begin(), in_end: OTPTy->qual_end()); |
1367 | ArrayRef<ObjCProtocolDecl *> protocolsToApply = protocolsVec; |
1368 | return Ctx.applyObjCProtocolQualifiers( |
1369 | type: argType, protocols: protocolsToApply, hasError, allowOnPointerType: true/*allowOnPointerType*/); |
1370 | } |
1371 | |
1372 | switch (SubstContext) { |
1373 | case ObjCSubstitutionContext::Ordinary: |
1374 | case ObjCSubstitutionContext::Parameter: |
1375 | case ObjCSubstitutionContext::Superclass: |
1376 | // Substitute the bound. |
1377 | return typeParam->getUnderlyingType(); |
1378 | |
1379 | case ObjCSubstitutionContext::Result: |
1380 | case ObjCSubstitutionContext::Property: { |
1381 | // Substitute the __kindof form of the underlying type. |
1382 | const auto *objPtr = |
1383 | typeParam->getUnderlyingType()->castAs<ObjCObjectPointerType>(); |
1384 | |
1385 | // __kindof types, id, and Class don't need an additional |
1386 | // __kindof. |
1387 | if (objPtr->isKindOfType() || objPtr->isObjCIdOrClassType()) |
1388 | return typeParam->getUnderlyingType(); |
1389 | |
1390 | // Add __kindof. |
1391 | const auto *obj = objPtr->getObjectType(); |
1392 | QualType resultTy = Ctx.getObjCObjectType( |
1393 | Base: obj->getBaseType(), typeArgs: obj->getTypeArgsAsWritten(), protocols: obj->getProtocols(), |
1394 | /*isKindOf=*/true); |
1395 | |
1396 | // Rebuild object pointer type. |
1397 | return Ctx.getObjCObjectPointerType(OIT: resultTy); |
1398 | } |
1399 | } |
1400 | llvm_unreachable("Unexpected ObjCSubstitutionContext!" ); |
1401 | } |
1402 | |
1403 | QualType VisitFunctionType(const FunctionType *funcType) { |
1404 | // If we have a function type, update the substitution context |
1405 | // appropriately. |
1406 | |
1407 | //Substitute result type. |
1408 | QualType returnType = funcType->getReturnType().substObjCTypeArgs( |
1409 | ctx&: Ctx, typeArgs: TypeArgs, context: ObjCSubstitutionContext::Result); |
1410 | if (returnType.isNull()) |
1411 | return {}; |
1412 | |
1413 | // Handle non-prototyped functions, which only substitute into the result |
1414 | // type. |
1415 | if (isa<FunctionNoProtoType>(Val: funcType)) { |
1416 | // If the return type was unchanged, do nothing. |
1417 | if (returnType.getAsOpaquePtr() == |
1418 | funcType->getReturnType().getAsOpaquePtr()) |
1419 | return BaseType::VisitFunctionType(T: funcType); |
1420 | |
1421 | // Otherwise, build a new type. |
1422 | return Ctx.getFunctionNoProtoType(ResultTy: returnType, Info: funcType->getExtInfo()); |
1423 | } |
1424 | |
1425 | const auto *funcProtoType = cast<FunctionProtoType>(Val: funcType); |
1426 | |
1427 | // Transform parameter types. |
1428 | SmallVector<QualType, 4> paramTypes; |
1429 | bool paramChanged = false; |
1430 | for (auto paramType : funcProtoType->getParamTypes()) { |
1431 | QualType newParamType = paramType.substObjCTypeArgs( |
1432 | ctx&: Ctx, typeArgs: TypeArgs, context: ObjCSubstitutionContext::Parameter); |
1433 | if (newParamType.isNull()) |
1434 | return {}; |
1435 | |
1436 | if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr()) |
1437 | paramChanged = true; |
1438 | |
1439 | paramTypes.push_back(Elt: newParamType); |
1440 | } |
1441 | |
1442 | // Transform extended info. |
1443 | FunctionProtoType::ExtProtoInfo info = funcProtoType->getExtProtoInfo(); |
1444 | bool exceptionChanged = false; |
1445 | if (info.ExceptionSpec.Type == EST_Dynamic) { |
1446 | SmallVector<QualType, 4> exceptionTypes; |
1447 | for (auto exceptionType : info.ExceptionSpec.Exceptions) { |
1448 | QualType newExceptionType = exceptionType.substObjCTypeArgs( |
1449 | ctx&: Ctx, typeArgs: TypeArgs, context: ObjCSubstitutionContext::Ordinary); |
1450 | if (newExceptionType.isNull()) |
1451 | return {}; |
1452 | |
1453 | if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr()) |
1454 | exceptionChanged = true; |
1455 | |
1456 | exceptionTypes.push_back(Elt: newExceptionType); |
1457 | } |
1458 | |
1459 | if (exceptionChanged) { |
1460 | info.ExceptionSpec.Exceptions = |
1461 | llvm::ArrayRef(exceptionTypes).copy(A&: Ctx); |
1462 | } |
1463 | } |
1464 | |
1465 | if (returnType.getAsOpaquePtr() == |
1466 | funcProtoType->getReturnType().getAsOpaquePtr() && |
1467 | !paramChanged && !exceptionChanged) |
1468 | return BaseType::VisitFunctionType(T: funcType); |
1469 | |
1470 | return Ctx.getFunctionType(ResultTy: returnType, Args: paramTypes, EPI: info); |
1471 | } |
1472 | |
1473 | QualType VisitObjCObjectType(const ObjCObjectType *objcObjectType) { |
1474 | // Substitute into the type arguments of a specialized Objective-C object |
1475 | // type. |
1476 | if (objcObjectType->isSpecializedAsWritten()) { |
1477 | SmallVector<QualType, 4> newTypeArgs; |
1478 | bool anyChanged = false; |
1479 | for (auto typeArg : objcObjectType->getTypeArgsAsWritten()) { |
1480 | QualType newTypeArg = typeArg.substObjCTypeArgs( |
1481 | ctx&: Ctx, typeArgs: TypeArgs, context: ObjCSubstitutionContext::Ordinary); |
1482 | if (newTypeArg.isNull()) |
1483 | return {}; |
1484 | |
1485 | if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr()) { |
1486 | // If we're substituting based on an unspecialized context type, |
1487 | // produce an unspecialized type. |
1488 | ArrayRef<ObjCProtocolDecl *> protocols( |
1489 | objcObjectType->qual_begin(), objcObjectType->getNumProtocols()); |
1490 | if (TypeArgs.empty() && |
1491 | SubstContext != ObjCSubstitutionContext::Superclass) { |
1492 | return Ctx.getObjCObjectType( |
1493 | Base: objcObjectType->getBaseType(), typeArgs: {}, protocols, |
1494 | isKindOf: objcObjectType->isKindOfTypeAsWritten()); |
1495 | } |
1496 | |
1497 | anyChanged = true; |
1498 | } |
1499 | |
1500 | newTypeArgs.push_back(Elt: newTypeArg); |
1501 | } |
1502 | |
1503 | if (anyChanged) { |
1504 | ArrayRef<ObjCProtocolDecl *> protocols( |
1505 | objcObjectType->qual_begin(), objcObjectType->getNumProtocols()); |
1506 | return Ctx.getObjCObjectType(Base: objcObjectType->getBaseType(), typeArgs: newTypeArgs, |
1507 | protocols, |
1508 | isKindOf: objcObjectType->isKindOfTypeAsWritten()); |
1509 | } |
1510 | } |
1511 | |
1512 | return BaseType::VisitObjCObjectType(T: objcObjectType); |
1513 | } |
1514 | |
1515 | QualType VisitAttributedType(const AttributedType *attrType) { |
1516 | QualType newType = BaseType::VisitAttributedType(T: attrType); |
1517 | if (newType.isNull()) |
1518 | return {}; |
1519 | |
1520 | const auto *newAttrType = dyn_cast<AttributedType>(Val: newType.getTypePtr()); |
1521 | if (!newAttrType || newAttrType->getAttrKind() != attr::ObjCKindOf) |
1522 | return newType; |
1523 | |
1524 | // Find out if it's an Objective-C object or object pointer type; |
1525 | QualType newEquivType = newAttrType->getEquivalentType(); |
1526 | const ObjCObjectPointerType *ptrType = |
1527 | newEquivType->getAs<ObjCObjectPointerType>(); |
1528 | const ObjCObjectType *objType = ptrType |
1529 | ? ptrType->getObjectType() |
1530 | : newEquivType->getAs<ObjCObjectType>(); |
1531 | if (!objType) |
1532 | return newType; |
1533 | |
1534 | // Rebuild the "equivalent" type, which pushes __kindof down into |
1535 | // the object type. |
1536 | newEquivType = Ctx.getObjCObjectType( |
1537 | Base: objType->getBaseType(), typeArgs: objType->getTypeArgsAsWritten(), |
1538 | protocols: objType->getProtocols(), |
1539 | // There is no need to apply kindof on an unqualified id type. |
1540 | /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true); |
1541 | |
1542 | // If we started with an object pointer type, rebuild it. |
1543 | if (ptrType) |
1544 | newEquivType = Ctx.getObjCObjectPointerType(OIT: newEquivType); |
1545 | |
1546 | // Rebuild the attributed type. |
1547 | return Ctx.getAttributedType(attrKind: newAttrType->getAttrKind(), |
1548 | modifiedType: newAttrType->getModifiedType(), equivalentType: newEquivType); |
1549 | } |
1550 | }; |
1551 | |
1552 | struct StripObjCKindOfTypeVisitor |
1553 | : public SimpleTransformVisitor<StripObjCKindOfTypeVisitor> { |
1554 | using BaseType = SimpleTransformVisitor<StripObjCKindOfTypeVisitor>; |
1555 | |
1556 | explicit StripObjCKindOfTypeVisitor(ASTContext &ctx) : BaseType(ctx) {} |
1557 | |
1558 | QualType VisitObjCObjectType(const ObjCObjectType *objType) { |
1559 | if (!objType->isKindOfType()) |
1560 | return BaseType::VisitObjCObjectType(T: objType); |
1561 | |
1562 | QualType baseType = objType->getBaseType().stripObjCKindOfType(ctx: Ctx); |
1563 | return Ctx.getObjCObjectType(Base: baseType, typeArgs: objType->getTypeArgsAsWritten(), |
1564 | protocols: objType->getProtocols(), |
1565 | /*isKindOf=*/false); |
1566 | } |
1567 | }; |
1568 | |
1569 | } // namespace |
1570 | |
1571 | bool QualType::UseExcessPrecision(const ASTContext &Ctx) { |
1572 | const BuiltinType *BT = getTypePtr()->getAs<BuiltinType>(); |
1573 | if (!BT) { |
1574 | const VectorType *VT = getTypePtr()->getAs<VectorType>(); |
1575 | if (VT) { |
1576 | QualType ElementType = VT->getElementType(); |
1577 | return ElementType.UseExcessPrecision(Ctx); |
1578 | } |
1579 | } else { |
1580 | switch (BT->getKind()) { |
1581 | case BuiltinType::Kind::Float16: { |
1582 | const TargetInfo &TI = Ctx.getTargetInfo(); |
1583 | if (TI.hasFloat16Type() && !TI.hasLegalHalfType() && |
1584 | Ctx.getLangOpts().getFloat16ExcessPrecision() != |
1585 | Ctx.getLangOpts().ExcessPrecisionKind::FPP_None) |
1586 | return true; |
1587 | break; |
1588 | } |
1589 | case BuiltinType::Kind::BFloat16: { |
1590 | const TargetInfo &TI = Ctx.getTargetInfo(); |
1591 | if (TI.hasBFloat16Type() && !TI.hasFullBFloat16Type() && |
1592 | Ctx.getLangOpts().getBFloat16ExcessPrecision() != |
1593 | Ctx.getLangOpts().ExcessPrecisionKind::FPP_None) |
1594 | return true; |
1595 | break; |
1596 | } |
1597 | default: |
1598 | return false; |
1599 | } |
1600 | } |
1601 | return false; |
1602 | } |
1603 | |
1604 | /// Substitute the given type arguments for Objective-C type |
1605 | /// parameters within the given type, recursively. |
1606 | QualType QualType::substObjCTypeArgs(ASTContext &ctx, |
1607 | ArrayRef<QualType> typeArgs, |
1608 | ObjCSubstitutionContext context) const { |
1609 | SubstObjCTypeArgsVisitor visitor(ctx, typeArgs, context); |
1610 | return visitor.recurse(type: *this); |
1611 | } |
1612 | |
1613 | QualType QualType::substObjCMemberType(QualType objectType, |
1614 | const DeclContext *dc, |
1615 | ObjCSubstitutionContext context) const { |
1616 | if (auto subs = objectType->getObjCSubstitutions(dc)) |
1617 | return substObjCTypeArgs(ctx&: dc->getParentASTContext(), typeArgs: *subs, context); |
1618 | |
1619 | return *this; |
1620 | } |
1621 | |
1622 | QualType QualType::stripObjCKindOfType(const ASTContext &constCtx) const { |
1623 | // FIXME: Because ASTContext::getAttributedType() is non-const. |
1624 | auto &ctx = const_cast<ASTContext &>(constCtx); |
1625 | StripObjCKindOfTypeVisitor visitor(ctx); |
1626 | return visitor.recurse(type: *this); |
1627 | } |
1628 | |
1629 | QualType QualType::getAtomicUnqualifiedType() const { |
1630 | QualType T = *this; |
1631 | if (const auto AT = T.getTypePtr()->getAs<AtomicType>()) |
1632 | T = AT->getValueType(); |
1633 | return T.getUnqualifiedType(); |
1634 | } |
1635 | |
1636 | std::optional<ArrayRef<QualType>> |
1637 | Type::getObjCSubstitutions(const DeclContext *dc) const { |
1638 | // Look through method scopes. |
1639 | if (const auto method = dyn_cast<ObjCMethodDecl>(Val: dc)) |
1640 | dc = method->getDeclContext(); |
1641 | |
1642 | // Find the class or category in which the type we're substituting |
1643 | // was declared. |
1644 | const auto *dcClassDecl = dyn_cast<ObjCInterfaceDecl>(Val: dc); |
1645 | const ObjCCategoryDecl *dcCategoryDecl = nullptr; |
1646 | ObjCTypeParamList *dcTypeParams = nullptr; |
1647 | if (dcClassDecl) { |
1648 | // If the class does not have any type parameters, there's no |
1649 | // substitution to do. |
1650 | dcTypeParams = dcClassDecl->getTypeParamList(); |
1651 | if (!dcTypeParams) |
1652 | return std::nullopt; |
1653 | } else { |
1654 | // If we are in neither a class nor a category, there's no |
1655 | // substitution to perform. |
1656 | dcCategoryDecl = dyn_cast<ObjCCategoryDecl>(Val: dc); |
1657 | if (!dcCategoryDecl) |
1658 | return std::nullopt; |
1659 | |
1660 | // If the category does not have any type parameters, there's no |
1661 | // substitution to do. |
1662 | dcTypeParams = dcCategoryDecl->getTypeParamList(); |
1663 | if (!dcTypeParams) |
1664 | return std::nullopt; |
1665 | |
1666 | dcClassDecl = dcCategoryDecl->getClassInterface(); |
1667 | if (!dcClassDecl) |
1668 | return std::nullopt; |
1669 | } |
1670 | assert(dcTypeParams && "No substitutions to perform" ); |
1671 | assert(dcClassDecl && "No class context" ); |
1672 | |
1673 | // Find the underlying object type. |
1674 | const ObjCObjectType *objectType; |
1675 | if (const auto *objectPointerType = getAs<ObjCObjectPointerType>()) { |
1676 | objectType = objectPointerType->getObjectType(); |
1677 | } else if (getAs<BlockPointerType>()) { |
1678 | ASTContext &ctx = dc->getParentASTContext(); |
1679 | objectType = ctx.getObjCObjectType(Base: ctx.ObjCBuiltinIdTy, Protocols: {}, NumProtocols: {}) |
1680 | ->castAs<ObjCObjectType>(); |
1681 | } else { |
1682 | objectType = getAs<ObjCObjectType>(); |
1683 | } |
1684 | |
1685 | /// Extract the class from the receiver object type. |
1686 | ObjCInterfaceDecl *curClassDecl = objectType ? objectType->getInterface() |
1687 | : nullptr; |
1688 | if (!curClassDecl) { |
1689 | // If we don't have a context type (e.g., this is "id" or some |
1690 | // variant thereof), substitute the bounds. |
1691 | return llvm::ArrayRef<QualType>(); |
1692 | } |
1693 | |
1694 | // Follow the superclass chain until we've mapped the receiver type |
1695 | // to the same class as the context. |
1696 | while (curClassDecl != dcClassDecl) { |
1697 | // Map to the superclass type. |
1698 | QualType superType = objectType->getSuperClassType(); |
1699 | if (superType.isNull()) { |
1700 | objectType = nullptr; |
1701 | break; |
1702 | } |
1703 | |
1704 | objectType = superType->castAs<ObjCObjectType>(); |
1705 | curClassDecl = objectType->getInterface(); |
1706 | } |
1707 | |
1708 | // If we don't have a receiver type, or the receiver type does not |
1709 | // have type arguments, substitute in the defaults. |
1710 | if (!objectType || objectType->isUnspecialized()) { |
1711 | return llvm::ArrayRef<QualType>(); |
1712 | } |
1713 | |
1714 | // The receiver type has the type arguments we want. |
1715 | return objectType->getTypeArgs(); |
1716 | } |
1717 | |
1718 | bool Type::acceptsObjCTypeParams() const { |
1719 | if (auto *IfaceT = getAsObjCInterfaceType()) { |
1720 | if (auto *ID = IfaceT->getInterface()) { |
1721 | if (ID->getTypeParamList()) |
1722 | return true; |
1723 | } |
1724 | } |
1725 | |
1726 | return false; |
1727 | } |
1728 | |
1729 | void ObjCObjectType::computeSuperClassTypeSlow() const { |
1730 | // Retrieve the class declaration for this type. If there isn't one |
1731 | // (e.g., this is some variant of "id" or "Class"), then there is no |
1732 | // superclass type. |
1733 | ObjCInterfaceDecl *classDecl = getInterface(); |
1734 | if (!classDecl) { |
1735 | CachedSuperClassType.setInt(true); |
1736 | return; |
1737 | } |
1738 | |
1739 | // Extract the superclass type. |
1740 | const ObjCObjectType *superClassObjTy = classDecl->getSuperClassType(); |
1741 | if (!superClassObjTy) { |
1742 | CachedSuperClassType.setInt(true); |
1743 | return; |
1744 | } |
1745 | |
1746 | ObjCInterfaceDecl *superClassDecl = superClassObjTy->getInterface(); |
1747 | if (!superClassDecl) { |
1748 | CachedSuperClassType.setInt(true); |
1749 | return; |
1750 | } |
1751 | |
1752 | // If the superclass doesn't have type parameters, then there is no |
1753 | // substitution to perform. |
1754 | QualType superClassType(superClassObjTy, 0); |
1755 | ObjCTypeParamList *superClassTypeParams = superClassDecl->getTypeParamList(); |
1756 | if (!superClassTypeParams) { |
1757 | CachedSuperClassType.setPointerAndInt( |
1758 | PtrVal: superClassType->castAs<ObjCObjectType>(), IntVal: true); |
1759 | return; |
1760 | } |
1761 | |
1762 | // If the superclass reference is unspecialized, return it. |
1763 | if (superClassObjTy->isUnspecialized()) { |
1764 | CachedSuperClassType.setPointerAndInt(PtrVal: superClassObjTy, IntVal: true); |
1765 | return; |
1766 | } |
1767 | |
1768 | // If the subclass is not parameterized, there aren't any type |
1769 | // parameters in the superclass reference to substitute. |
1770 | ObjCTypeParamList *typeParams = classDecl->getTypeParamList(); |
1771 | if (!typeParams) { |
1772 | CachedSuperClassType.setPointerAndInt( |
1773 | PtrVal: superClassType->castAs<ObjCObjectType>(), IntVal: true); |
1774 | return; |
1775 | } |
1776 | |
1777 | // If the subclass type isn't specialized, return the unspecialized |
1778 | // superclass. |
1779 | if (isUnspecialized()) { |
1780 | QualType unspecializedSuper |
1781 | = classDecl->getASTContext().getObjCInterfaceType( |
1782 | Decl: superClassObjTy->getInterface()); |
1783 | CachedSuperClassType.setPointerAndInt( |
1784 | PtrVal: unspecializedSuper->castAs<ObjCObjectType>(), |
1785 | IntVal: true); |
1786 | return; |
1787 | } |
1788 | |
1789 | // Substitute the provided type arguments into the superclass type. |
1790 | ArrayRef<QualType> typeArgs = getTypeArgs(); |
1791 | assert(typeArgs.size() == typeParams->size()); |
1792 | CachedSuperClassType.setPointerAndInt( |
1793 | PtrVal: superClassType.substObjCTypeArgs(ctx&: classDecl->getASTContext(), typeArgs, |
1794 | context: ObjCSubstitutionContext::Superclass) |
1795 | ->castAs<ObjCObjectType>(), |
1796 | IntVal: true); |
1797 | } |
1798 | |
1799 | const ObjCInterfaceType *ObjCObjectPointerType::getInterfaceType() const { |
1800 | if (auto interfaceDecl = getObjectType()->getInterface()) { |
1801 | return interfaceDecl->getASTContext().getObjCInterfaceType(Decl: interfaceDecl) |
1802 | ->castAs<ObjCInterfaceType>(); |
1803 | } |
1804 | |
1805 | return nullptr; |
1806 | } |
1807 | |
1808 | QualType ObjCObjectPointerType::getSuperClassType() const { |
1809 | QualType superObjectType = getObjectType()->getSuperClassType(); |
1810 | if (superObjectType.isNull()) |
1811 | return superObjectType; |
1812 | |
1813 | ASTContext &ctx = getInterfaceDecl()->getASTContext(); |
1814 | return ctx.getObjCObjectPointerType(OIT: superObjectType); |
1815 | } |
1816 | |
1817 | const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const { |
1818 | // There is no sugar for ObjCObjectType's, just return the canonical |
1819 | // type pointer if it is the right class. There is no typedef information to |
1820 | // return and these cannot be Address-space qualified. |
1821 | if (const auto *T = getAs<ObjCObjectType>()) |
1822 | if (T->getNumProtocols() && T->getInterface()) |
1823 | return T; |
1824 | return nullptr; |
1825 | } |
1826 | |
1827 | bool Type::isObjCQualifiedInterfaceType() const { |
1828 | return getAsObjCQualifiedInterfaceType() != nullptr; |
1829 | } |
1830 | |
1831 | const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const { |
1832 | // There is no sugar for ObjCQualifiedIdType's, just return the canonical |
1833 | // type pointer if it is the right class. |
1834 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) { |
1835 | if (OPT->isObjCQualifiedIdType()) |
1836 | return OPT; |
1837 | } |
1838 | return nullptr; |
1839 | } |
1840 | |
1841 | const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const { |
1842 | // There is no sugar for ObjCQualifiedClassType's, just return the canonical |
1843 | // type pointer if it is the right class. |
1844 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) { |
1845 | if (OPT->isObjCQualifiedClassType()) |
1846 | return OPT; |
1847 | } |
1848 | return nullptr; |
1849 | } |
1850 | |
1851 | const ObjCObjectType *Type::getAsObjCInterfaceType() const { |
1852 | if (const auto *OT = getAs<ObjCObjectType>()) { |
1853 | if (OT->getInterface()) |
1854 | return OT; |
1855 | } |
1856 | return nullptr; |
1857 | } |
1858 | |
1859 | const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const { |
1860 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) { |
1861 | if (OPT->getInterfaceType()) |
1862 | return OPT; |
1863 | } |
1864 | return nullptr; |
1865 | } |
1866 | |
1867 | const CXXRecordDecl *Type::getPointeeCXXRecordDecl() const { |
1868 | QualType PointeeType; |
1869 | if (const auto *PT = getAs<PointerType>()) |
1870 | PointeeType = PT->getPointeeType(); |
1871 | else if (const auto *RT = getAs<ReferenceType>()) |
1872 | PointeeType = RT->getPointeeType(); |
1873 | else |
1874 | return nullptr; |
1875 | |
1876 | if (const auto *RT = PointeeType->getAs<RecordType>()) |
1877 | return dyn_cast<CXXRecordDecl>(Val: RT->getDecl()); |
1878 | |
1879 | return nullptr; |
1880 | } |
1881 | |
1882 | CXXRecordDecl *Type::getAsCXXRecordDecl() const { |
1883 | return dyn_cast_or_null<CXXRecordDecl>(Val: getAsTagDecl()); |
1884 | } |
1885 | |
1886 | RecordDecl *Type::getAsRecordDecl() const { |
1887 | return dyn_cast_or_null<RecordDecl>(Val: getAsTagDecl()); |
1888 | } |
1889 | |
1890 | TagDecl *Type::getAsTagDecl() const { |
1891 | if (const auto *TT = getAs<TagType>()) |
1892 | return TT->getDecl(); |
1893 | if (const auto *Injected = getAs<InjectedClassNameType>()) |
1894 | return Injected->getDecl(); |
1895 | |
1896 | return nullptr; |
1897 | } |
1898 | |
1899 | bool Type::hasAttr(attr::Kind AK) const { |
1900 | const Type *Cur = this; |
1901 | while (const auto *AT = Cur->getAs<AttributedType>()) { |
1902 | if (AT->getAttrKind() == AK) |
1903 | return true; |
1904 | Cur = AT->getEquivalentType().getTypePtr(); |
1905 | } |
1906 | return false; |
1907 | } |
1908 | |
1909 | namespace { |
1910 | |
1911 | class GetContainedDeducedTypeVisitor : |
1912 | public TypeVisitor<GetContainedDeducedTypeVisitor, Type*> { |
1913 | bool Syntactic; |
1914 | |
1915 | public: |
1916 | GetContainedDeducedTypeVisitor(bool Syntactic = false) |
1917 | : Syntactic(Syntactic) {} |
1918 | |
1919 | using TypeVisitor<GetContainedDeducedTypeVisitor, Type*>::Visit; |
1920 | |
1921 | Type *Visit(QualType T) { |
1922 | if (T.isNull()) |
1923 | return nullptr; |
1924 | return Visit(T: T.getTypePtr()); |
1925 | } |
1926 | |
1927 | // The deduced type itself. |
1928 | Type *VisitDeducedType(const DeducedType *AT) { |
1929 | return const_cast<DeducedType*>(AT); |
1930 | } |
1931 | |
1932 | // Only these types can contain the desired 'auto' type. |
1933 | Type *VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { |
1934 | return Visit(T: T->getReplacementType()); |
1935 | } |
1936 | |
1937 | Type *VisitElaboratedType(const ElaboratedType *T) { |
1938 | return Visit(T: T->getNamedType()); |
1939 | } |
1940 | |
1941 | Type *VisitPointerType(const PointerType *T) { |
1942 | return Visit(T: T->getPointeeType()); |
1943 | } |
1944 | |
1945 | Type *VisitBlockPointerType(const BlockPointerType *T) { |
1946 | return Visit(T: T->getPointeeType()); |
1947 | } |
1948 | |
1949 | Type *VisitReferenceType(const ReferenceType *T) { |
1950 | return Visit(T: T->getPointeeTypeAsWritten()); |
1951 | } |
1952 | |
1953 | Type *VisitMemberPointerType(const MemberPointerType *T) { |
1954 | return Visit(T: T->getPointeeType()); |
1955 | } |
1956 | |
1957 | Type *VisitArrayType(const ArrayType *T) { |
1958 | return Visit(T: T->getElementType()); |
1959 | } |
1960 | |
1961 | Type *VisitDependentSizedExtVectorType( |
1962 | const DependentSizedExtVectorType *T) { |
1963 | return Visit(T: T->getElementType()); |
1964 | } |
1965 | |
1966 | Type *VisitVectorType(const VectorType *T) { |
1967 | return Visit(T: T->getElementType()); |
1968 | } |
1969 | |
1970 | Type *VisitDependentSizedMatrixType(const DependentSizedMatrixType *T) { |
1971 | return Visit(T: T->getElementType()); |
1972 | } |
1973 | |
1974 | Type *VisitConstantMatrixType(const ConstantMatrixType *T) { |
1975 | return Visit(T: T->getElementType()); |
1976 | } |
1977 | |
1978 | Type *VisitFunctionProtoType(const FunctionProtoType *T) { |
1979 | if (Syntactic && T->hasTrailingReturn()) |
1980 | return const_cast<FunctionProtoType*>(T); |
1981 | return VisitFunctionType(T); |
1982 | } |
1983 | |
1984 | Type *VisitFunctionType(const FunctionType *T) { |
1985 | return Visit(T: T->getReturnType()); |
1986 | } |
1987 | |
1988 | Type *VisitParenType(const ParenType *T) { |
1989 | return Visit(T: T->getInnerType()); |
1990 | } |
1991 | |
1992 | Type *VisitAttributedType(const AttributedType *T) { |
1993 | return Visit(T: T->getModifiedType()); |
1994 | } |
1995 | |
1996 | Type *VisitMacroQualifiedType(const MacroQualifiedType *T) { |
1997 | return Visit(T: T->getUnderlyingType()); |
1998 | } |
1999 | |
2000 | Type *VisitAdjustedType(const AdjustedType *T) { |
2001 | return Visit(T: T->getOriginalType()); |
2002 | } |
2003 | |
2004 | Type *VisitPackExpansionType(const PackExpansionType *T) { |
2005 | return Visit(T: T->getPattern()); |
2006 | } |
2007 | }; |
2008 | |
2009 | } // namespace |
2010 | |
2011 | DeducedType *Type::getContainedDeducedType() const { |
2012 | return cast_or_null<DeducedType>( |
2013 | Val: GetContainedDeducedTypeVisitor().Visit(T: this)); |
2014 | } |
2015 | |
2016 | bool Type::hasAutoForTrailingReturnType() const { |
2017 | return isa_and_nonnull<FunctionType>( |
2018 | Val: GetContainedDeducedTypeVisitor(true).Visit(T: this)); |
2019 | } |
2020 | |
2021 | bool Type::hasIntegerRepresentation() const { |
2022 | if (const auto *VT = dyn_cast<VectorType>(Val: CanonicalType)) |
2023 | return VT->getElementType()->isIntegerType(); |
2024 | if (CanonicalType->isSveVLSBuiltinType()) { |
2025 | const auto *VT = cast<BuiltinType>(Val: CanonicalType); |
2026 | return VT->getKind() == BuiltinType::SveBool || |
2027 | (VT->getKind() >= BuiltinType::SveInt8 && |
2028 | VT->getKind() <= BuiltinType::SveUint64); |
2029 | } |
2030 | if (CanonicalType->isRVVVLSBuiltinType()) { |
2031 | const auto *VT = cast<BuiltinType>(Val: CanonicalType); |
2032 | return (VT->getKind() >= BuiltinType::RvvInt8mf8 && |
2033 | VT->getKind() <= BuiltinType::RvvUint64m8); |
2034 | } |
2035 | |
2036 | return isIntegerType(); |
2037 | } |
2038 | |
2039 | /// Determine whether this type is an integral type. |
2040 | /// |
2041 | /// This routine determines whether the given type is an integral type per |
2042 | /// C++ [basic.fundamental]p7. Although the C standard does not define the |
2043 | /// term "integral type", it has a similar term "integer type", and in C++ |
2044 | /// the two terms are equivalent. However, C's "integer type" includes |
2045 | /// enumeration types, while C++'s "integer type" does not. The \c ASTContext |
2046 | /// parameter is used to determine whether we should be following the C or |
2047 | /// C++ rules when determining whether this type is an integral/integer type. |
2048 | /// |
2049 | /// For cases where C permits "an integer type" and C++ permits "an integral |
2050 | /// type", use this routine. |
2051 | /// |
2052 | /// For cases where C permits "an integer type" and C++ permits "an integral |
2053 | /// or enumeration type", use \c isIntegralOrEnumerationType() instead. |
2054 | /// |
2055 | /// \param Ctx The context in which this type occurs. |
2056 | /// |
2057 | /// \returns true if the type is considered an integral type, false otherwise. |
2058 | bool Type::isIntegralType(const ASTContext &Ctx) const { |
2059 | if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) |
2060 | return BT->getKind() >= BuiltinType::Bool && |
2061 | BT->getKind() <= BuiltinType::Int128; |
2062 | |
2063 | // Complete enum types are integral in C. |
2064 | if (!Ctx.getLangOpts().CPlusPlus) |
2065 | if (const auto *ET = dyn_cast<EnumType>(Val: CanonicalType)) |
2066 | return ET->getDecl()->isComplete(); |
2067 | |
2068 | return isBitIntType(); |
2069 | } |
2070 | |
2071 | bool Type::isIntegralOrUnscopedEnumerationType() const { |
2072 | if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) |
2073 | return BT->getKind() >= BuiltinType::Bool && |
2074 | BT->getKind() <= BuiltinType::Int128; |
2075 | |
2076 | if (isBitIntType()) |
2077 | return true; |
2078 | |
2079 | return isUnscopedEnumerationType(); |
2080 | } |
2081 | |
2082 | bool Type::isUnscopedEnumerationType() const { |
2083 | if (const auto *ET = dyn_cast<EnumType>(Val: CanonicalType)) |
2084 | return !ET->getDecl()->isScoped(); |
2085 | |
2086 | return false; |
2087 | } |
2088 | |
2089 | bool Type::isCharType() const { |
2090 | if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) |
2091 | return BT->getKind() == BuiltinType::Char_U || |
2092 | BT->getKind() == BuiltinType::UChar || |
2093 | BT->getKind() == BuiltinType::Char_S || |
2094 | BT->getKind() == BuiltinType::SChar; |
2095 | return false; |
2096 | } |
2097 | |
2098 | bool Type::isWideCharType() const { |
2099 | if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) |
2100 | return BT->getKind() == BuiltinType::WChar_S || |
2101 | BT->getKind() == BuiltinType::WChar_U; |
2102 | return false; |
2103 | } |
2104 | |
2105 | bool Type::isChar8Type() const { |
2106 | if (const BuiltinType *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) |
2107 | return BT->getKind() == BuiltinType::Char8; |
2108 | return false; |
2109 | } |
2110 | |
2111 | bool Type::isChar16Type() const { |
2112 | if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) |
2113 | return BT->getKind() == BuiltinType::Char16; |
2114 | return false; |
2115 | } |
2116 | |
2117 | bool Type::isChar32Type() const { |
2118 | if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) |
2119 | return BT->getKind() == BuiltinType::Char32; |
2120 | return false; |
2121 | } |
2122 | |
2123 | /// Determine whether this type is any of the built-in character |
2124 | /// types. |
2125 | bool Type::isAnyCharacterType() const { |
2126 | const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType); |
2127 | if (!BT) return false; |
2128 | switch (BT->getKind()) { |
2129 | default: return false; |
2130 | case BuiltinType::Char_U: |
2131 | case BuiltinType::UChar: |
2132 | case BuiltinType::WChar_U: |
2133 | case BuiltinType::Char8: |
2134 | case BuiltinType::Char16: |
2135 | case BuiltinType::Char32: |
2136 | case BuiltinType::Char_S: |
2137 | case BuiltinType::SChar: |
2138 | case BuiltinType::WChar_S: |
2139 | return true; |
2140 | } |
2141 | } |
2142 | |
2143 | /// isSignedIntegerType - Return true if this is an integer type that is |
2144 | /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..], |
2145 | /// an enum decl which has a signed representation |
2146 | bool Type::isSignedIntegerType() const { |
2147 | if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) { |
2148 | return BT->getKind() >= BuiltinType::Char_S && |
2149 | BT->getKind() <= BuiltinType::Int128; |
2150 | } |
2151 | |
2152 | if (const EnumType *ET = dyn_cast<EnumType>(Val: CanonicalType)) { |
2153 | // Incomplete enum types are not treated as integer types. |
2154 | // FIXME: In C++, enum types are never integer types. |
2155 | if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) |
2156 | return ET->getDecl()->getIntegerType()->isSignedIntegerType(); |
2157 | } |
2158 | |
2159 | if (const auto *IT = dyn_cast<BitIntType>(Val: CanonicalType)) |
2160 | return IT->isSigned(); |
2161 | if (const auto *IT = dyn_cast<DependentBitIntType>(Val: CanonicalType)) |
2162 | return IT->isSigned(); |
2163 | |
2164 | return false; |
2165 | } |
2166 | |
2167 | bool Type::isSignedIntegerOrEnumerationType() const { |
2168 | if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) { |
2169 | return BT->getKind() >= BuiltinType::Char_S && |
2170 | BT->getKind() <= BuiltinType::Int128; |
2171 | } |
2172 | |
2173 | if (const auto *ET = dyn_cast<EnumType>(Val: CanonicalType)) { |
2174 | if (ET->getDecl()->isComplete()) |
2175 | return ET->getDecl()->getIntegerType()->isSignedIntegerType(); |
2176 | } |
2177 | |
2178 | if (const auto *IT = dyn_cast<BitIntType>(Val: CanonicalType)) |
2179 | return IT->isSigned(); |
2180 | if (const auto *IT = dyn_cast<DependentBitIntType>(Val: CanonicalType)) |
2181 | return IT->isSigned(); |
2182 | |
2183 | return false; |
2184 | } |
2185 | |
2186 | bool Type::hasSignedIntegerRepresentation() const { |
2187 | if (const auto *VT = dyn_cast<VectorType>(Val: CanonicalType)) |
2188 | return VT->getElementType()->isSignedIntegerOrEnumerationType(); |
2189 | else |
2190 | return isSignedIntegerOrEnumerationType(); |
2191 | } |
2192 | |
2193 | /// isUnsignedIntegerType - Return true if this is an integer type that is |
2194 | /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum |
2195 | /// decl which has an unsigned representation |
2196 | bool Type::isUnsignedIntegerType() const { |
2197 | if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) { |
2198 | return BT->getKind() >= BuiltinType::Bool && |
2199 | BT->getKind() <= BuiltinType::UInt128; |
2200 | } |
2201 | |
2202 | if (const auto *ET = dyn_cast<EnumType>(Val: CanonicalType)) { |
2203 | // Incomplete enum types are not treated as integer types. |
2204 | // FIXME: In C++, enum types are never integer types. |
2205 | if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) |
2206 | return ET->getDecl()->getIntegerType()->isUnsignedIntegerType(); |
2207 | } |
2208 | |
2209 | if (const auto *IT = dyn_cast<BitIntType>(Val: CanonicalType)) |
2210 | return IT->isUnsigned(); |
2211 | if (const auto *IT = dyn_cast<DependentBitIntType>(Val: CanonicalType)) |
2212 | return IT->isUnsigned(); |
2213 | |
2214 | return false; |
2215 | } |
2216 | |
2217 | bool Type::isUnsignedIntegerOrEnumerationType() const { |
2218 | if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) { |
2219 | return BT->getKind() >= BuiltinType::Bool && |
2220 | BT->getKind() <= BuiltinType::UInt128; |
2221 | } |
2222 | |
2223 | if (const auto *ET = dyn_cast<EnumType>(Val: CanonicalType)) { |
2224 | if (ET->getDecl()->isComplete()) |
2225 | return ET->getDecl()->getIntegerType()->isUnsignedIntegerType(); |
2226 | } |
2227 | |
2228 | if (const auto *IT = dyn_cast<BitIntType>(Val: CanonicalType)) |
2229 | return IT->isUnsigned(); |
2230 | if (const auto *IT = dyn_cast<DependentBitIntType>(Val: CanonicalType)) |
2231 | return IT->isUnsigned(); |
2232 | |
2233 | return false; |
2234 | } |
2235 | |
2236 | bool Type::hasUnsignedIntegerRepresentation() const { |
2237 | if (const auto *VT = dyn_cast<VectorType>(Val: CanonicalType)) |
2238 | return VT->getElementType()->isUnsignedIntegerOrEnumerationType(); |
2239 | if (const auto *VT = dyn_cast<MatrixType>(Val: CanonicalType)) |
2240 | return VT->getElementType()->isUnsignedIntegerOrEnumerationType(); |
2241 | if (CanonicalType->isSveVLSBuiltinType()) { |
2242 | const auto *VT = cast<BuiltinType>(Val: CanonicalType); |
2243 | return VT->getKind() >= BuiltinType::SveUint8 && |
2244 | VT->getKind() <= BuiltinType::SveUint64; |
2245 | } |
2246 | return isUnsignedIntegerOrEnumerationType(); |
2247 | } |
2248 | |
2249 | bool Type::isFloatingType() const { |
2250 | if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) |
2251 | return BT->getKind() >= BuiltinType::Half && |
2252 | BT->getKind() <= BuiltinType::Ibm128; |
2253 | if (const auto *CT = dyn_cast<ComplexType>(Val: CanonicalType)) |
2254 | return CT->getElementType()->isFloatingType(); |
2255 | return false; |
2256 | } |
2257 | |
2258 | bool Type::hasFloatingRepresentation() const { |
2259 | if (const auto *VT = dyn_cast<VectorType>(Val: CanonicalType)) |
2260 | return VT->getElementType()->isFloatingType(); |
2261 | if (const auto *MT = dyn_cast<MatrixType>(Val: CanonicalType)) |
2262 | return MT->getElementType()->isFloatingType(); |
2263 | return isFloatingType(); |
2264 | } |
2265 | |
2266 | bool Type::isRealFloatingType() const { |
2267 | if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) |
2268 | return BT->isFloatingPoint(); |
2269 | return false; |
2270 | } |
2271 | |
2272 | bool Type::isRealType() const { |
2273 | if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) |
2274 | return BT->getKind() >= BuiltinType::Bool && |
2275 | BT->getKind() <= BuiltinType::Ibm128; |
2276 | if (const auto *ET = dyn_cast<EnumType>(Val: CanonicalType)) |
2277 | return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped(); |
2278 | return isBitIntType(); |
2279 | } |
2280 | |
2281 | bool Type::isArithmeticType() const { |
2282 | if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) |
2283 | return BT->getKind() >= BuiltinType::Bool && |
2284 | BT->getKind() <= BuiltinType::Ibm128; |
2285 | if (const auto *ET = dyn_cast<EnumType>(Val: CanonicalType)) |
2286 | // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2). |
2287 | // If a body isn't seen by the time we get here, return false. |
2288 | // |
2289 | // C++0x: Enumerations are not arithmetic types. For now, just return |
2290 | // false for scoped enumerations since that will disable any |
2291 | // unwanted implicit conversions. |
2292 | return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete(); |
2293 | return isa<ComplexType>(Val: CanonicalType) || isBitIntType(); |
2294 | } |
2295 | |
2296 | Type::ScalarTypeKind Type::getScalarTypeKind() const { |
2297 | assert(isScalarType()); |
2298 | |
2299 | const Type *T = CanonicalType.getTypePtr(); |
2300 | if (const auto *BT = dyn_cast<BuiltinType>(Val: T)) { |
2301 | if (BT->getKind() == BuiltinType::Bool) return STK_Bool; |
2302 | if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer; |
2303 | if (BT->isInteger()) return STK_Integral; |
2304 | if (BT->isFloatingPoint()) return STK_Floating; |
2305 | if (BT->isFixedPointType()) return STK_FixedPoint; |
2306 | llvm_unreachable("unknown scalar builtin type" ); |
2307 | } else if (isa<PointerType>(Val: T)) { |
2308 | return STK_CPointer; |
2309 | } else if (isa<BlockPointerType>(Val: T)) { |
2310 | return STK_BlockPointer; |
2311 | } else if (isa<ObjCObjectPointerType>(Val: T)) { |
2312 | return STK_ObjCObjectPointer; |
2313 | } else if (isa<MemberPointerType>(Val: T)) { |
2314 | return STK_MemberPointer; |
2315 | } else if (isa<EnumType>(Val: T)) { |
2316 | assert(cast<EnumType>(T)->getDecl()->isComplete()); |
2317 | return STK_Integral; |
2318 | } else if (const auto *CT = dyn_cast<ComplexType>(Val: T)) { |
2319 | if (CT->getElementType()->isRealFloatingType()) |
2320 | return STK_FloatingComplex; |
2321 | return STK_IntegralComplex; |
2322 | } else if (isBitIntType()) { |
2323 | return STK_Integral; |
2324 | } |
2325 | |
2326 | llvm_unreachable("unknown scalar type" ); |
2327 | } |
2328 | |
2329 | /// Determines whether the type is a C++ aggregate type or C |
2330 | /// aggregate or union type. |
2331 | /// |
2332 | /// An aggregate type is an array or a class type (struct, union, or |
2333 | /// class) that has no user-declared constructors, no private or |
2334 | /// protected non-static data members, no base classes, and no virtual |
2335 | /// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type |
2336 | /// subsumes the notion of C aggregates (C99 6.2.5p21) because it also |
2337 | /// includes union types. |
2338 | bool Type::isAggregateType() const { |
2339 | if (const auto *Record = dyn_cast<RecordType>(Val: CanonicalType)) { |
2340 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: Record->getDecl())) |
2341 | return ClassDecl->isAggregate(); |
2342 | |
2343 | return true; |
2344 | } |
2345 | |
2346 | return isa<ArrayType>(Val: CanonicalType); |
2347 | } |
2348 | |
2349 | /// isConstantSizeType - Return true if this is not a variable sized type, |
2350 | /// according to the rules of C99 6.7.5p3. It is not legal to call this on |
2351 | /// incomplete types or dependent types. |
2352 | bool Type::isConstantSizeType() const { |
2353 | assert(!isIncompleteType() && "This doesn't make sense for incomplete types" ); |
2354 | assert(!isDependentType() && "This doesn't make sense for dependent types" ); |
2355 | // The VAT must have a size, as it is known to be complete. |
2356 | return !isa<VariableArrayType>(Val: CanonicalType); |
2357 | } |
2358 | |
2359 | /// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1) |
2360 | /// - a type that can describe objects, but which lacks information needed to |
2361 | /// determine its size. |
2362 | bool Type::isIncompleteType(NamedDecl **Def) const { |
2363 | if (Def) |
2364 | *Def = nullptr; |
2365 | |
2366 | switch (CanonicalType->getTypeClass()) { |
2367 | default: return false; |
2368 | case Builtin: |
2369 | // Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never |
2370 | // be completed. |
2371 | return isVoidType(); |
2372 | case Enum: { |
2373 | EnumDecl *EnumD = cast<EnumType>(Val: CanonicalType)->getDecl(); |
2374 | if (Def) |
2375 | *Def = EnumD; |
2376 | return !EnumD->isComplete(); |
2377 | } |
2378 | case Record: { |
2379 | // A tagged type (struct/union/enum/class) is incomplete if the decl is a |
2380 | // forward declaration, but not a full definition (C99 6.2.5p22). |
2381 | RecordDecl *Rec = cast<RecordType>(Val: CanonicalType)->getDecl(); |
2382 | if (Def) |
2383 | *Def = Rec; |
2384 | return !Rec->isCompleteDefinition(); |
2385 | } |
2386 | case InjectedClassName: { |
2387 | CXXRecordDecl *Rec = cast<InjectedClassNameType>(Val: CanonicalType)->getDecl(); |
2388 | if (!Rec->isBeingDefined()) |
2389 | return false; |
2390 | if (Def) |
2391 | *Def = Rec; |
2392 | return true; |
2393 | } |
2394 | case ConstantArray: |
2395 | case VariableArray: |
2396 | // An array is incomplete if its element type is incomplete |
2397 | // (C++ [dcl.array]p1). |
2398 | // We don't handle dependent-sized arrays (dependent types are never treated |
2399 | // as incomplete). |
2400 | return cast<ArrayType>(Val: CanonicalType)->getElementType() |
2401 | ->isIncompleteType(Def); |
2402 | case IncompleteArray: |
2403 | // An array of unknown size is an incomplete type (C99 6.2.5p22). |
2404 | return true; |
2405 | case MemberPointer: { |
2406 | // Member pointers in the MS ABI have special behavior in |
2407 | // RequireCompleteType: they attach a MSInheritanceAttr to the CXXRecordDecl |
2408 | // to indicate which inheritance model to use. |
2409 | auto *MPTy = cast<MemberPointerType>(Val: CanonicalType); |
2410 | const Type *ClassTy = MPTy->getClass(); |
2411 | // Member pointers with dependent class types don't get special treatment. |
2412 | if (ClassTy->isDependentType()) |
2413 | return false; |
2414 | const CXXRecordDecl *RD = ClassTy->getAsCXXRecordDecl(); |
2415 | ASTContext &Context = RD->getASTContext(); |
2416 | // Member pointers not in the MS ABI don't get special treatment. |
2417 | if (!Context.getTargetInfo().getCXXABI().isMicrosoft()) |
2418 | return false; |
2419 | // The inheritance attribute might only be present on the most recent |
2420 | // CXXRecordDecl, use that one. |
2421 | RD = RD->getMostRecentNonInjectedDecl(); |
2422 | // Nothing interesting to do if the inheritance attribute is already set. |
2423 | if (RD->hasAttr<MSInheritanceAttr>()) |
2424 | return false; |
2425 | return true; |
2426 | } |
2427 | case ObjCObject: |
2428 | return cast<ObjCObjectType>(Val: CanonicalType)->getBaseType() |
2429 | ->isIncompleteType(Def); |
2430 | case ObjCInterface: { |
2431 | // ObjC interfaces are incomplete if they are @class, not @interface. |
2432 | ObjCInterfaceDecl *Interface |
2433 | = cast<ObjCInterfaceType>(Val: CanonicalType)->getDecl(); |
2434 | if (Def) |
2435 | *Def = Interface; |
2436 | return !Interface->hasDefinition(); |
2437 | } |
2438 | } |
2439 | } |
2440 | |
2441 | bool Type::isSizelessBuiltinType() const { |
2442 | if (isSizelessVectorType()) |
2443 | return true; |
2444 | |
2445 | if (const BuiltinType *BT = getAs<BuiltinType>()) { |
2446 | switch (BT->getKind()) { |
2447 | // WebAssembly reference types |
2448 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
2449 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
2450 | return true; |
2451 | default: |
2452 | return false; |
2453 | } |
2454 | } |
2455 | return false; |
2456 | } |
2457 | |
2458 | bool Type::isWebAssemblyExternrefType() const { |
2459 | if (const auto *BT = getAs<BuiltinType>()) |
2460 | return BT->getKind() == BuiltinType::WasmExternRef; |
2461 | return false; |
2462 | } |
2463 | |
2464 | bool Type::isWebAssemblyTableType() const { |
2465 | if (const auto *ATy = dyn_cast<ArrayType>(Val: this)) |
2466 | return ATy->getElementType().isWebAssemblyReferenceType(); |
2467 | |
2468 | if (const auto *PTy = dyn_cast<PointerType>(Val: this)) |
2469 | return PTy->getPointeeType().isWebAssemblyReferenceType(); |
2470 | |
2471 | return false; |
2472 | } |
2473 | |
2474 | bool Type::isSizelessType() const { return isSizelessBuiltinType(); } |
2475 | |
2476 | bool Type::isSizelessVectorType() const { |
2477 | return isSVESizelessBuiltinType() || isRVVSizelessBuiltinType(); |
2478 | } |
2479 | |
2480 | bool Type::isSVESizelessBuiltinType() const { |
2481 | if (const BuiltinType *BT = getAs<BuiltinType>()) { |
2482 | switch (BT->getKind()) { |
2483 | // SVE Types |
2484 | #define SVE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
2485 | #include "clang/Basic/AArch64SVEACLETypes.def" |
2486 | return true; |
2487 | default: |
2488 | return false; |
2489 | } |
2490 | } |
2491 | return false; |
2492 | } |
2493 | |
2494 | bool Type::isRVVSizelessBuiltinType() const { |
2495 | if (const BuiltinType *BT = getAs<BuiltinType>()) { |
2496 | switch (BT->getKind()) { |
2497 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
2498 | #include "clang/Basic/RISCVVTypes.def" |
2499 | return true; |
2500 | default: |
2501 | return false; |
2502 | } |
2503 | } |
2504 | return false; |
2505 | } |
2506 | |
2507 | bool Type::isSveVLSBuiltinType() const { |
2508 | if (const BuiltinType *BT = getAs<BuiltinType>()) { |
2509 | switch (BT->getKind()) { |
2510 | case BuiltinType::SveInt8: |
2511 | case BuiltinType::SveInt16: |
2512 | case BuiltinType::SveInt32: |
2513 | case BuiltinType::SveInt64: |
2514 | case BuiltinType::SveUint8: |
2515 | case BuiltinType::SveUint16: |
2516 | case BuiltinType::SveUint32: |
2517 | case BuiltinType::SveUint64: |
2518 | case BuiltinType::SveFloat16: |
2519 | case BuiltinType::SveFloat32: |
2520 | case BuiltinType::SveFloat64: |
2521 | case BuiltinType::SveBFloat16: |
2522 | case BuiltinType::SveBool: |
2523 | case BuiltinType::SveBoolx2: |
2524 | case BuiltinType::SveBoolx4: |
2525 | return true; |
2526 | default: |
2527 | return false; |
2528 | } |
2529 | } |
2530 | return false; |
2531 | } |
2532 | |
2533 | QualType Type::getSizelessVectorEltType(const ASTContext &Ctx) const { |
2534 | assert(isSizelessVectorType() && "Must be sizeless vector type" ); |
2535 | // Currently supports SVE and RVV |
2536 | if (isSVESizelessBuiltinType()) |
2537 | return getSveEltType(Ctx); |
2538 | |
2539 | if (isRVVSizelessBuiltinType()) |
2540 | return getRVVEltType(Ctx); |
2541 | |
2542 | llvm_unreachable("Unhandled type" ); |
2543 | } |
2544 | |
2545 | QualType Type::getSveEltType(const ASTContext &Ctx) const { |
2546 | assert(isSveVLSBuiltinType() && "unsupported type!" ); |
2547 | |
2548 | const BuiltinType *BTy = castAs<BuiltinType>(); |
2549 | if (BTy->getKind() == BuiltinType::SveBool) |
2550 | // Represent predicates as i8 rather than i1 to avoid any layout issues. |
2551 | // The type is bitcasted to a scalable predicate type when casting between |
2552 | // scalable and fixed-length vectors. |
2553 | return Ctx.UnsignedCharTy; |
2554 | else |
2555 | return Ctx.getBuiltinVectorTypeInfo(VecTy: BTy).ElementType; |
2556 | } |
2557 | |
2558 | bool Type::isRVVVLSBuiltinType() const { |
2559 | if (const BuiltinType *BT = getAs<BuiltinType>()) { |
2560 | switch (BT->getKind()) { |
2561 | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned, \ |
2562 | IsFP, IsBF) \ |
2563 | case BuiltinType::Id: \ |
2564 | return NF == 1; |
2565 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ |
2566 | case BuiltinType::Id: \ |
2567 | return true; |
2568 | #include "clang/Basic/RISCVVTypes.def" |
2569 | default: |
2570 | return false; |
2571 | } |
2572 | } |
2573 | return false; |
2574 | } |
2575 | |
2576 | QualType Type::getRVVEltType(const ASTContext &Ctx) const { |
2577 | assert(isRVVVLSBuiltinType() && "unsupported type!" ); |
2578 | |
2579 | const BuiltinType *BTy = castAs<BuiltinType>(); |
2580 | |
2581 | switch (BTy->getKind()) { |
2582 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ |
2583 | case BuiltinType::Id: \ |
2584 | return Ctx.UnsignedCharTy; |
2585 | default: |
2586 | return Ctx.getBuiltinVectorTypeInfo(VecTy: BTy).ElementType; |
2587 | #include "clang/Basic/RISCVVTypes.def" |
2588 | } |
2589 | |
2590 | llvm_unreachable("Unhandled type" ); |
2591 | } |
2592 | |
2593 | bool QualType::isPODType(const ASTContext &Context) const { |
2594 | // C++11 has a more relaxed definition of POD. |
2595 | if (Context.getLangOpts().CPlusPlus11) |
2596 | return isCXX11PODType(Context); |
2597 | |
2598 | return isCXX98PODType(Context); |
2599 | } |
2600 | |
2601 | bool QualType::isCXX98PODType(const ASTContext &Context) const { |
2602 | // The compiler shouldn't query this for incomplete types, but the user might. |
2603 | // We return false for that case. Except for incomplete arrays of PODs, which |
2604 | // are PODs according to the standard. |
2605 | if (isNull()) |
2606 | return false; |
2607 | |
2608 | if ((*this)->isIncompleteArrayType()) |
2609 | return Context.getBaseElementType(QT: *this).isCXX98PODType(Context); |
2610 | |
2611 | if ((*this)->isIncompleteType()) |
2612 | return false; |
2613 | |
2614 | if (hasNonTrivialObjCLifetime()) |
2615 | return false; |
2616 | |
2617 | QualType CanonicalType = getTypePtr()->CanonicalType; |
2618 | switch (CanonicalType->getTypeClass()) { |
2619 | // Everything not explicitly mentioned is not POD. |
2620 | default: return false; |
2621 | case Type::VariableArray: |
2622 | case Type::ConstantArray: |
2623 | // IncompleteArray is handled above. |
2624 | return Context.getBaseElementType(QT: *this).isCXX98PODType(Context); |
2625 | |
2626 | case Type::ObjCObjectPointer: |
2627 | case Type::BlockPointer: |
2628 | case Type::Builtin: |
2629 | case Type::Complex: |
2630 | case Type::Pointer: |
2631 | case Type::MemberPointer: |
2632 | case Type::Vector: |
2633 | case Type::ExtVector: |
2634 | case Type::BitInt: |
2635 | return true; |
2636 | |
2637 | case Type::Enum: |
2638 | return true; |
2639 | |
2640 | case Type::Record: |
2641 | if (const auto *ClassDecl = |
2642 | dyn_cast<CXXRecordDecl>(Val: cast<RecordType>(Val&: CanonicalType)->getDecl())) |
2643 | return ClassDecl->isPOD(); |
2644 | |
2645 | // C struct/union is POD. |
2646 | return true; |
2647 | } |
2648 | } |
2649 | |
2650 | bool QualType::isTrivialType(const ASTContext &Context) const { |
2651 | // The compiler shouldn't query this for incomplete types, but the user might. |
2652 | // We return false for that case. Except for incomplete arrays of PODs, which |
2653 | // are PODs according to the standard. |
2654 | if (isNull()) |
2655 | return false; |
2656 | |
2657 | if ((*this)->isArrayType()) |
2658 | return Context.getBaseElementType(QT: *this).isTrivialType(Context); |
2659 | |
2660 | if ((*this)->isSizelessBuiltinType()) |
2661 | return true; |
2662 | |
2663 | // Return false for incomplete types after skipping any incomplete array |
2664 | // types which are expressly allowed by the standard and thus our API. |
2665 | if ((*this)->isIncompleteType()) |
2666 | return false; |
2667 | |
2668 | if (hasNonTrivialObjCLifetime()) |
2669 | return false; |
2670 | |
2671 | QualType CanonicalType = getTypePtr()->CanonicalType; |
2672 | if (CanonicalType->isDependentType()) |
2673 | return false; |
2674 | |
2675 | // C++0x [basic.types]p9: |
2676 | // Scalar types, trivial class types, arrays of such types, and |
2677 | // cv-qualified versions of these types are collectively called trivial |
2678 | // types. |
2679 | |
2680 | // As an extension, Clang treats vector types as Scalar types. |
2681 | if (CanonicalType->isScalarType() || CanonicalType->isVectorType()) |
2682 | return true; |
2683 | if (const auto *RT = CanonicalType->getAs<RecordType>()) { |
2684 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) { |
2685 | // C++20 [class]p6: |
2686 | // A trivial class is a class that is trivially copyable, and |
2687 | // has one or more eligible default constructors such that each is |
2688 | // trivial. |
2689 | // FIXME: We should merge this definition of triviality into |
2690 | // CXXRecordDecl::isTrivial. Currently it computes the wrong thing. |
2691 | return ClassDecl->hasTrivialDefaultConstructor() && |
2692 | !ClassDecl->hasNonTrivialDefaultConstructor() && |
2693 | ClassDecl->isTriviallyCopyable(); |
2694 | } |
2695 | |
2696 | return true; |
2697 | } |
2698 | |
2699 | // No other types can match. |
2700 | return false; |
2701 | } |
2702 | |
2703 | static bool isTriviallyCopyableTypeImpl(const QualType &type, |
2704 | const ASTContext &Context, |
2705 | bool IsCopyConstructible) { |
2706 | if (type->isArrayType()) |
2707 | return isTriviallyCopyableTypeImpl(type: Context.getBaseElementType(QT: type), |
2708 | Context, IsCopyConstructible); |
2709 | |
2710 | if (type.hasNonTrivialObjCLifetime()) |
2711 | return false; |
2712 | |
2713 | // C++11 [basic.types]p9 - See Core 2094 |
2714 | // Scalar types, trivially copyable class types, arrays of such types, and |
2715 | // cv-qualified versions of these types are collectively |
2716 | // called trivially copy constructible types. |
2717 | |
2718 | QualType CanonicalType = type.getCanonicalType(); |
2719 | if (CanonicalType->isDependentType()) |
2720 | return false; |
2721 | |
2722 | if (CanonicalType->isSizelessBuiltinType()) |
2723 | return true; |
2724 | |
2725 | // Return false for incomplete types after skipping any incomplete array types |
2726 | // which are expressly allowed by the standard and thus our API. |
2727 | if (CanonicalType->isIncompleteType()) |
2728 | return false; |
2729 | |
2730 | // As an extension, Clang treats vector types as Scalar types. |
2731 | if (CanonicalType->isScalarType() || CanonicalType->isVectorType()) |
2732 | return true; |
2733 | |
2734 | if (const auto *RT = CanonicalType->getAs<RecordType>()) { |
2735 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) { |
2736 | if (IsCopyConstructible) { |
2737 | return ClassDecl->isTriviallyCopyConstructible(); |
2738 | } else { |
2739 | return ClassDecl->isTriviallyCopyable(); |
2740 | } |
2741 | } |
2742 | return true; |
2743 | } |
2744 | // No other types can match. |
2745 | return false; |
2746 | } |
2747 | |
2748 | bool QualType::isTriviallyCopyableType(const ASTContext &Context) const { |
2749 | return isTriviallyCopyableTypeImpl(type: *this, Context, |
2750 | /*IsCopyConstructible=*/false); |
2751 | } |
2752 | |
2753 | // FIXME: each call will trigger a full computation, cache the result. |
2754 | bool QualType::isBitwiseCloneableType(const ASTContext &Context) const { |
2755 | auto CanonicalType = getCanonicalType(); |
2756 | if (CanonicalType.hasNonTrivialObjCLifetime()) |
2757 | return false; |
2758 | if (CanonicalType->isArrayType()) |
2759 | return Context.getBaseElementType(QT: CanonicalType) |
2760 | .isBitwiseCloneableType(Context); |
2761 | |
2762 | if (CanonicalType->isIncompleteType()) |
2763 | return false; |
2764 | const auto *RD = CanonicalType->getAsRecordDecl(); // struct/union/class |
2765 | if (!RD) |
2766 | return true; |
2767 | |
2768 | // Never allow memcpy when we're adding poisoned padding bits to the struct. |
2769 | // Accessing these posioned bits will trigger false alarms on |
2770 | // SanitizeAddressFieldPadding etc. |
2771 | if (RD->mayInsertExtraPadding()) |
2772 | return false; |
2773 | |
2774 | for (auto *const Field : RD->fields()) { |
2775 | if (!Field->getType().isBitwiseCloneableType(Context)) |
2776 | return false; |
2777 | } |
2778 | |
2779 | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
2780 | for (auto Base : CXXRD->bases()) |
2781 | if (!Base.getType().isBitwiseCloneableType(Context)) |
2782 | return false; |
2783 | for (auto VBase : CXXRD->vbases()) |
2784 | if (!VBase.getType().isBitwiseCloneableType(Context)) |
2785 | return false; |
2786 | } |
2787 | return true; |
2788 | } |
2789 | |
2790 | bool QualType::isTriviallyCopyConstructibleType( |
2791 | const ASTContext &Context) const { |
2792 | return isTriviallyCopyableTypeImpl(type: *this, Context, |
2793 | /*IsCopyConstructible=*/true); |
2794 | } |
2795 | |
2796 | bool QualType::isTriviallyRelocatableType(const ASTContext &Context) const { |
2797 | QualType BaseElementType = Context.getBaseElementType(QT: *this); |
2798 | |
2799 | if (BaseElementType->isIncompleteType()) { |
2800 | return false; |
2801 | } else if (!BaseElementType->isObjectType()) { |
2802 | return false; |
2803 | } else if (const auto *RD = BaseElementType->getAsRecordDecl()) { |
2804 | return RD->canPassInRegisters(); |
2805 | } else if (BaseElementType.isTriviallyCopyableType(Context)) { |
2806 | return true; |
2807 | } else { |
2808 | switch (isNonTrivialToPrimitiveDestructiveMove()) { |
2809 | case PCK_Trivial: |
2810 | return !isDestructedType(); |
2811 | case PCK_ARCStrong: |
2812 | return true; |
2813 | default: |
2814 | return false; |
2815 | } |
2816 | } |
2817 | } |
2818 | |
2819 | bool QualType::isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const { |
2820 | return !Context.getLangOpts().ObjCAutoRefCount && |
2821 | Context.getLangOpts().ObjCWeak && |
2822 | getObjCLifetime() != Qualifiers::OCL_Weak; |
2823 | } |
2824 | |
2825 | bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD) { |
2826 | return RD->hasNonTrivialToPrimitiveDefaultInitializeCUnion(); |
2827 | } |
2828 | |
2829 | bool QualType::hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD) { |
2830 | return RD->hasNonTrivialToPrimitiveDestructCUnion(); |
2831 | } |
2832 | |
2833 | bool QualType::hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD) { |
2834 | return RD->hasNonTrivialToPrimitiveCopyCUnion(); |
2835 | } |
2836 | |
2837 | bool QualType::isWebAssemblyReferenceType() const { |
2838 | return isWebAssemblyExternrefType() || isWebAssemblyFuncrefType(); |
2839 | } |
2840 | |
2841 | bool QualType::isWebAssemblyExternrefType() const { |
2842 | return getTypePtr()->isWebAssemblyExternrefType(); |
2843 | } |
2844 | |
2845 | bool QualType::isWebAssemblyFuncrefType() const { |
2846 | return getTypePtr()->isFunctionPointerType() && |
2847 | getAddressSpace() == LangAS::wasm_funcref; |
2848 | } |
2849 | |
2850 | QualType::PrimitiveDefaultInitializeKind |
2851 | QualType::isNonTrivialToPrimitiveDefaultInitialize() const { |
2852 | if (const auto *RT = |
2853 | getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>()) |
2854 | if (RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) |
2855 | return PDIK_Struct; |
2856 | |
2857 | switch (getQualifiers().getObjCLifetime()) { |
2858 | case Qualifiers::OCL_Strong: |
2859 | return PDIK_ARCStrong; |
2860 | case Qualifiers::OCL_Weak: |
2861 | return PDIK_ARCWeak; |
2862 | default: |
2863 | return PDIK_Trivial; |
2864 | } |
2865 | } |
2866 | |
2867 | QualType::PrimitiveCopyKind QualType::isNonTrivialToPrimitiveCopy() const { |
2868 | if (const auto *RT = |
2869 | getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>()) |
2870 | if (RT->getDecl()->isNonTrivialToPrimitiveCopy()) |
2871 | return PCK_Struct; |
2872 | |
2873 | Qualifiers Qs = getQualifiers(); |
2874 | switch (Qs.getObjCLifetime()) { |
2875 | case Qualifiers::OCL_Strong: |
2876 | return PCK_ARCStrong; |
2877 | case Qualifiers::OCL_Weak: |
2878 | return PCK_ARCWeak; |
2879 | default: |
2880 | return Qs.hasVolatile() ? PCK_VolatileTrivial : PCK_Trivial; |
2881 | } |
2882 | } |
2883 | |
2884 | QualType::PrimitiveCopyKind |
2885 | QualType::isNonTrivialToPrimitiveDestructiveMove() const { |
2886 | return isNonTrivialToPrimitiveCopy(); |
2887 | } |
2888 | |
2889 | bool Type::isLiteralType(const ASTContext &Ctx) const { |
2890 | if (isDependentType()) |
2891 | return false; |
2892 | |
2893 | // C++1y [basic.types]p10: |
2894 | // A type is a literal type if it is: |
2895 | // -- cv void; or |
2896 | if (Ctx.getLangOpts().CPlusPlus14 && isVoidType()) |
2897 | return true; |
2898 | |
2899 | // C++11 [basic.types]p10: |
2900 | // A type is a literal type if it is: |
2901 | // [...] |
2902 | // -- an array of literal type other than an array of runtime bound; or |
2903 | if (isVariableArrayType()) |
2904 | return false; |
2905 | const Type *BaseTy = getBaseElementTypeUnsafe(); |
2906 | assert(BaseTy && "NULL element type" ); |
2907 | |
2908 | // Return false for incomplete types after skipping any incomplete array |
2909 | // types; those are expressly allowed by the standard and thus our API. |
2910 | if (BaseTy->isIncompleteType()) |
2911 | return false; |
2912 | |
2913 | // C++11 [basic.types]p10: |
2914 | // A type is a literal type if it is: |
2915 | // -- a scalar type; or |
2916 | // As an extension, Clang treats vector types and complex types as |
2917 | // literal types. |
2918 | if (BaseTy->isScalarType() || BaseTy->isVectorType() || |
2919 | BaseTy->isAnyComplexType()) |
2920 | return true; |
2921 | // -- a reference type; or |
2922 | if (BaseTy->isReferenceType()) |
2923 | return true; |
2924 | // -- a class type that has all of the following properties: |
2925 | if (const auto *RT = BaseTy->getAs<RecordType>()) { |
2926 | // -- a trivial destructor, |
2927 | // -- every constructor call and full-expression in the |
2928 | // brace-or-equal-initializers for non-static data members (if any) |
2929 | // is a constant expression, |
2930 | // -- it is an aggregate type or has at least one constexpr |
2931 | // constructor or constructor template that is not a copy or move |
2932 | // constructor, and |
2933 | // -- all non-static data members and base classes of literal types |
2934 | // |
2935 | // We resolve DR1361 by ignoring the second bullet. |
2936 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) |
2937 | return ClassDecl->isLiteral(); |
2938 | |
2939 | return true; |
2940 | } |
2941 | |
2942 | // We treat _Atomic T as a literal type if T is a literal type. |
2943 | if (const auto *AT = BaseTy->getAs<AtomicType>()) |
2944 | return AT->getValueType()->isLiteralType(Ctx); |
2945 | |
2946 | // If this type hasn't been deduced yet, then conservatively assume that |
2947 | // it'll work out to be a literal type. |
2948 | if (isa<AutoType>(Val: BaseTy->getCanonicalTypeInternal())) |
2949 | return true; |
2950 | |
2951 | return false; |
2952 | } |
2953 | |
2954 | bool Type::isStructuralType() const { |
2955 | // C++20 [temp.param]p6: |
2956 | // A structural type is one of the following: |
2957 | // -- a scalar type; or |
2958 | // -- a vector type [Clang extension]; or |
2959 | if (isScalarType() || isVectorType()) |
2960 | return true; |
2961 | // -- an lvalue reference type; or |
2962 | if (isLValueReferenceType()) |
2963 | return true; |
2964 | // -- a literal class type [...under some conditions] |
2965 | if (const CXXRecordDecl *RD = getAsCXXRecordDecl()) |
2966 | return RD->isStructural(); |
2967 | return false; |
2968 | } |
2969 | |
2970 | bool Type::isStandardLayoutType() const { |
2971 | if (isDependentType()) |
2972 | return false; |
2973 | |
2974 | // C++0x [basic.types]p9: |
2975 | // Scalar types, standard-layout class types, arrays of such types, and |
2976 | // cv-qualified versions of these types are collectively called |
2977 | // standard-layout types. |
2978 | const Type *BaseTy = getBaseElementTypeUnsafe(); |
2979 | assert(BaseTy && "NULL element type" ); |
2980 | |
2981 | // Return false for incomplete types after skipping any incomplete array |
2982 | // types which are expressly allowed by the standard and thus our API. |
2983 | if (BaseTy->isIncompleteType()) |
2984 | return false; |
2985 | |
2986 | // As an extension, Clang treats vector types as Scalar types. |
2987 | if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true; |
2988 | if (const auto *RT = BaseTy->getAs<RecordType>()) { |
2989 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) |
2990 | if (!ClassDecl->isStandardLayout()) |
2991 | return false; |
2992 | |
2993 | // Default to 'true' for non-C++ class types. |
2994 | // FIXME: This is a bit dubious, but plain C structs should trivially meet |
2995 | // all the requirements of standard layout classes. |
2996 | return true; |
2997 | } |
2998 | |
2999 | // No other types can match. |
3000 | return false; |
3001 | } |
3002 | |
3003 | // This is effectively the intersection of isTrivialType and |
3004 | // isStandardLayoutType. We implement it directly to avoid redundant |
3005 | // conversions from a type to a CXXRecordDecl. |
3006 | bool QualType::isCXX11PODType(const ASTContext &Context) const { |
3007 | const Type *ty = getTypePtr(); |
3008 | if (ty->isDependentType()) |
3009 | return false; |
3010 | |
3011 | if (hasNonTrivialObjCLifetime()) |
3012 | return false; |
3013 | |
3014 | // C++11 [basic.types]p9: |
3015 | // Scalar types, POD classes, arrays of such types, and cv-qualified |
3016 | // versions of these types are collectively called trivial types. |
3017 | const Type *BaseTy = ty->getBaseElementTypeUnsafe(); |
3018 | assert(BaseTy && "NULL element type" ); |
3019 | |
3020 | if (BaseTy->isSizelessBuiltinType()) |
3021 | return true; |
3022 | |
3023 | // Return false for incomplete types after skipping any incomplete array |
3024 | // types which are expressly allowed by the standard and thus our API. |
3025 | if (BaseTy->isIncompleteType()) |
3026 | return false; |
3027 | |
3028 | // As an extension, Clang treats vector types as Scalar types. |
3029 | if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true; |
3030 | if (const auto *RT = BaseTy->getAs<RecordType>()) { |
3031 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) { |
3032 | // C++11 [class]p10: |
3033 | // A POD struct is a non-union class that is both a trivial class [...] |
3034 | if (!ClassDecl->isTrivial()) return false; |
3035 | |
3036 | // C++11 [class]p10: |
3037 | // A POD struct is a non-union class that is both a trivial class and |
3038 | // a standard-layout class [...] |
3039 | if (!ClassDecl->isStandardLayout()) return false; |
3040 | |
3041 | // C++11 [class]p10: |
3042 | // A POD struct is a non-union class that is both a trivial class and |
3043 | // a standard-layout class, and has no non-static data members of type |
3044 | // non-POD struct, non-POD union (or array of such types). [...] |
3045 | // |
3046 | // We don't directly query the recursive aspect as the requirements for |
3047 | // both standard-layout classes and trivial classes apply recursively |
3048 | // already. |
3049 | } |
3050 | |
3051 | return true; |
3052 | } |
3053 | |
3054 | // No other types can match. |
3055 | return false; |
3056 | } |
3057 | |
3058 | bool Type::isNothrowT() const { |
3059 | if (const auto *RD = getAsCXXRecordDecl()) { |
3060 | IdentifierInfo *II = RD->getIdentifier(); |
3061 | if (II && II->isStr(Str: "nothrow_t" ) && RD->isInStdNamespace()) |
3062 | return true; |
3063 | } |
3064 | return false; |
3065 | } |
3066 | |
3067 | bool Type::isAlignValT() const { |
3068 | if (const auto *ET = getAs<EnumType>()) { |
3069 | IdentifierInfo *II = ET->getDecl()->getIdentifier(); |
3070 | if (II && II->isStr(Str: "align_val_t" ) && ET->getDecl()->isInStdNamespace()) |
3071 | return true; |
3072 | } |
3073 | return false; |
3074 | } |
3075 | |
3076 | bool Type::isStdByteType() const { |
3077 | if (const auto *ET = getAs<EnumType>()) { |
3078 | IdentifierInfo *II = ET->getDecl()->getIdentifier(); |
3079 | if (II && II->isStr(Str: "byte" ) && ET->getDecl()->isInStdNamespace()) |
3080 | return true; |
3081 | } |
3082 | return false; |
3083 | } |
3084 | |
3085 | bool Type::isSpecifierType() const { |
3086 | // Note that this intentionally does not use the canonical type. |
3087 | switch (getTypeClass()) { |
3088 | case Builtin: |
3089 | case Record: |
3090 | case Enum: |
3091 | case Typedef: |
3092 | case Complex: |
3093 | case TypeOfExpr: |
3094 | case TypeOf: |
3095 | case TemplateTypeParm: |
3096 | case SubstTemplateTypeParm: |
3097 | case TemplateSpecialization: |
3098 | case Elaborated: |
3099 | case DependentName: |
3100 | case DependentTemplateSpecialization: |
3101 | case ObjCInterface: |
3102 | case ObjCObject: |
3103 | return true; |
3104 | default: |
3105 | return false; |
3106 | } |
3107 | } |
3108 | |
3109 | ElaboratedTypeKeyword |
3110 | TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) { |
3111 | switch (TypeSpec) { |
3112 | default: |
3113 | return ElaboratedTypeKeyword::None; |
3114 | case TST_typename: |
3115 | return ElaboratedTypeKeyword::Typename; |
3116 | case TST_class: |
3117 | return ElaboratedTypeKeyword::Class; |
3118 | case TST_struct: |
3119 | return ElaboratedTypeKeyword::Struct; |
3120 | case TST_interface: |
3121 | return ElaboratedTypeKeyword::Interface; |
3122 | case TST_union: |
3123 | return ElaboratedTypeKeyword::Union; |
3124 | case TST_enum: |
3125 | return ElaboratedTypeKeyword::Enum; |
3126 | } |
3127 | } |
3128 | |
3129 | TagTypeKind |
3130 | TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) { |
3131 | switch(TypeSpec) { |
3132 | case TST_class: |
3133 | return TagTypeKind::Class; |
3134 | case TST_struct: |
3135 | return TagTypeKind::Struct; |
3136 | case TST_interface: |
3137 | return TagTypeKind::Interface; |
3138 | case TST_union: |
3139 | return TagTypeKind::Union; |
3140 | case TST_enum: |
3141 | return TagTypeKind::Enum; |
3142 | } |
3143 | |
3144 | llvm_unreachable("Type specifier is not a tag type kind." ); |
3145 | } |
3146 | |
3147 | ElaboratedTypeKeyword |
3148 | TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) { |
3149 | switch (Kind) { |
3150 | case TagTypeKind::Class: |
3151 | return ElaboratedTypeKeyword::Class; |
3152 | case TagTypeKind::Struct: |
3153 | return ElaboratedTypeKeyword::Struct; |
3154 | case TagTypeKind::Interface: |
3155 | return ElaboratedTypeKeyword::Interface; |
3156 | case TagTypeKind::Union: |
3157 | return ElaboratedTypeKeyword::Union; |
3158 | case TagTypeKind::Enum: |
3159 | return ElaboratedTypeKeyword::Enum; |
3160 | } |
3161 | llvm_unreachable("Unknown tag type kind." ); |
3162 | } |
3163 | |
3164 | TagTypeKind |
3165 | TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) { |
3166 | switch (Keyword) { |
3167 | case ElaboratedTypeKeyword::Class: |
3168 | return TagTypeKind::Class; |
3169 | case ElaboratedTypeKeyword::Struct: |
3170 | return TagTypeKind::Struct; |
3171 | case ElaboratedTypeKeyword::Interface: |
3172 | return TagTypeKind::Interface; |
3173 | case ElaboratedTypeKeyword::Union: |
3174 | return TagTypeKind::Union; |
3175 | case ElaboratedTypeKeyword::Enum: |
3176 | return TagTypeKind::Enum; |
3177 | case ElaboratedTypeKeyword::None: // Fall through. |
3178 | case ElaboratedTypeKeyword::Typename: |
3179 | llvm_unreachable("Elaborated type keyword is not a tag type kind." ); |
3180 | } |
3181 | llvm_unreachable("Unknown elaborated type keyword." ); |
3182 | } |
3183 | |
3184 | bool |
3185 | TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) { |
3186 | switch (Keyword) { |
3187 | case ElaboratedTypeKeyword::None: |
3188 | case ElaboratedTypeKeyword::Typename: |
3189 | return false; |
3190 | case ElaboratedTypeKeyword::Class: |
3191 | case ElaboratedTypeKeyword::Struct: |
3192 | case ElaboratedTypeKeyword::Interface: |
3193 | case ElaboratedTypeKeyword::Union: |
3194 | case ElaboratedTypeKeyword::Enum: |
3195 | return true; |
3196 | } |
3197 | llvm_unreachable("Unknown elaborated type keyword." ); |
3198 | } |
3199 | |
3200 | StringRef TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) { |
3201 | switch (Keyword) { |
3202 | case ElaboratedTypeKeyword::None: |
3203 | return {}; |
3204 | case ElaboratedTypeKeyword::Typename: |
3205 | return "typename" ; |
3206 | case ElaboratedTypeKeyword::Class: |
3207 | return "class" ; |
3208 | case ElaboratedTypeKeyword::Struct: |
3209 | return "struct" ; |
3210 | case ElaboratedTypeKeyword::Interface: |
3211 | return "__interface" ; |
3212 | case ElaboratedTypeKeyword::Union: |
3213 | return "union" ; |
3214 | case ElaboratedTypeKeyword::Enum: |
3215 | return "enum" ; |
3216 | } |
3217 | |
3218 | llvm_unreachable("Unknown elaborated type keyword." ); |
3219 | } |
3220 | |
3221 | DependentTemplateSpecializationType::DependentTemplateSpecializationType( |
3222 | ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, |
3223 | const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args, QualType Canon) |
3224 | : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, |
3225 | TypeDependence::DependentInstantiation | |
3226 | (NNS ? toTypeDependence(D: NNS->getDependence()) |
3227 | : TypeDependence::None)), |
3228 | NNS(NNS), Name(Name) { |
3229 | DependentTemplateSpecializationTypeBits.NumArgs = Args.size(); |
3230 | assert((!NNS || NNS->isDependent()) && |
3231 | "DependentTemplateSpecializatonType requires dependent qualifier" ); |
3232 | auto *ArgBuffer = const_cast<TemplateArgument *>(template_arguments().data()); |
3233 | for (const TemplateArgument &Arg : Args) { |
3234 | addDependence(D: toTypeDependence(D: Arg.getDependence() & |
3235 | TemplateArgumentDependence::UnexpandedPack)); |
3236 | |
3237 | new (ArgBuffer++) TemplateArgument(Arg); |
3238 | } |
3239 | } |
3240 | |
3241 | void |
3242 | DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID, |
3243 | const ASTContext &Context, |
3244 | ElaboratedTypeKeyword Keyword, |
3245 | NestedNameSpecifier *Qualifier, |
3246 | const IdentifierInfo *Name, |
3247 | ArrayRef<TemplateArgument> Args) { |
3248 | ID.AddInteger(I: llvm::to_underlying(E: Keyword)); |
3249 | ID.AddPointer(Ptr: Qualifier); |
3250 | ID.AddPointer(Ptr: Name); |
3251 | for (const TemplateArgument &Arg : Args) |
3252 | Arg.Profile(ID, Context); |
3253 | } |
3254 | |
3255 | bool Type::isElaboratedTypeSpecifier() const { |
3256 | ElaboratedTypeKeyword Keyword; |
3257 | if (const auto *Elab = dyn_cast<ElaboratedType>(Val: this)) |
3258 | Keyword = Elab->getKeyword(); |
3259 | else if (const auto *DepName = dyn_cast<DependentNameType>(Val: this)) |
3260 | Keyword = DepName->getKeyword(); |
3261 | else if (const auto *DepTST = |
3262 | dyn_cast<DependentTemplateSpecializationType>(Val: this)) |
3263 | Keyword = DepTST->getKeyword(); |
3264 | else |
3265 | return false; |
3266 | |
3267 | return TypeWithKeyword::KeywordIsTagTypeKind(Keyword); |
3268 | } |
3269 | |
3270 | const char *Type::getTypeClassName() const { |
3271 | switch (TypeBits.TC) { |
3272 | #define ABSTRACT_TYPE(Derived, Base) |
3273 | #define TYPE(Derived, Base) case Derived: return #Derived; |
3274 | #include "clang/AST/TypeNodes.inc" |
3275 | } |
3276 | |
3277 | llvm_unreachable("Invalid type class." ); |
3278 | } |
3279 | |
3280 | StringRef BuiltinType::getName(const PrintingPolicy &Policy) const { |
3281 | switch (getKind()) { |
3282 | case Void: |
3283 | return "void" ; |
3284 | case Bool: |
3285 | return Policy.Bool ? "bool" : "_Bool" ; |
3286 | case Char_S: |
3287 | return "char" ; |
3288 | case Char_U: |
3289 | return "char" ; |
3290 | case SChar: |
3291 | return "signed char" ; |
3292 | case Short: |
3293 | return "short" ; |
3294 | case Int: |
3295 | return "int" ; |
3296 | case Long: |
3297 | return "long" ; |
3298 | case LongLong: |
3299 | return "long long" ; |
3300 | case Int128: |
3301 | return "__int128" ; |
3302 | case UChar: |
3303 | return "unsigned char" ; |
3304 | case UShort: |
3305 | return "unsigned short" ; |
3306 | case UInt: |
3307 | return "unsigned int" ; |
3308 | case ULong: |
3309 | return "unsigned long" ; |
3310 | case ULongLong: |
3311 | return "unsigned long long" ; |
3312 | case UInt128: |
3313 | return "unsigned __int128" ; |
3314 | case Half: |
3315 | return Policy.Half ? "half" : "__fp16" ; |
3316 | case BFloat16: |
3317 | return "__bf16" ; |
3318 | case Float: |
3319 | return "float" ; |
3320 | case Double: |
3321 | return "double" ; |
3322 | case LongDouble: |
3323 | return "long double" ; |
3324 | case ShortAccum: |
3325 | return "short _Accum" ; |
3326 | case Accum: |
3327 | return "_Accum" ; |
3328 | case LongAccum: |
3329 | return "long _Accum" ; |
3330 | case UShortAccum: |
3331 | return "unsigned short _Accum" ; |
3332 | case UAccum: |
3333 | return "unsigned _Accum" ; |
3334 | case ULongAccum: |
3335 | return "unsigned long _Accum" ; |
3336 | case BuiltinType::ShortFract: |
3337 | return "short _Fract" ; |
3338 | case BuiltinType::Fract: |
3339 | return "_Fract" ; |
3340 | case BuiltinType::LongFract: |
3341 | return "long _Fract" ; |
3342 | case BuiltinType::UShortFract: |
3343 | return "unsigned short _Fract" ; |
3344 | case BuiltinType::UFract: |
3345 | return "unsigned _Fract" ; |
3346 | case BuiltinType::ULongFract: |
3347 | return "unsigned long _Fract" ; |
3348 | case BuiltinType::SatShortAccum: |
3349 | return "_Sat short _Accum" ; |
3350 | case BuiltinType::SatAccum: |
3351 | return "_Sat _Accum" ; |
3352 | case BuiltinType::SatLongAccum: |
3353 | return "_Sat long _Accum" ; |
3354 | case BuiltinType::SatUShortAccum: |
3355 | return "_Sat unsigned short _Accum" ; |
3356 | case BuiltinType::SatUAccum: |
3357 | return "_Sat unsigned _Accum" ; |
3358 | case BuiltinType::SatULongAccum: |
3359 | return "_Sat unsigned long _Accum" ; |
3360 | case BuiltinType::SatShortFract: |
3361 | return "_Sat short _Fract" ; |
3362 | case BuiltinType::SatFract: |
3363 | return "_Sat _Fract" ; |
3364 | case BuiltinType::SatLongFract: |
3365 | return "_Sat long _Fract" ; |
3366 | case BuiltinType::SatUShortFract: |
3367 | return "_Sat unsigned short _Fract" ; |
3368 | case BuiltinType::SatUFract: |
3369 | return "_Sat unsigned _Fract" ; |
3370 | case BuiltinType::SatULongFract: |
3371 | return "_Sat unsigned long _Fract" ; |
3372 | case Float16: |
3373 | return "_Float16" ; |
3374 | case Float128: |
3375 | return "__float128" ; |
3376 | case Ibm128: |
3377 | return "__ibm128" ; |
3378 | case WChar_S: |
3379 | case WChar_U: |
3380 | return Policy.MSWChar ? "__wchar_t" : "wchar_t" ; |
3381 | case Char8: |
3382 | return "char8_t" ; |
3383 | case Char16: |
3384 | return "char16_t" ; |
3385 | case Char32: |
3386 | return "char32_t" ; |
3387 | case NullPtr: |
3388 | return Policy.NullptrTypeInNamespace ? "std::nullptr_t" : "nullptr_t" ; |
3389 | case Overload: |
3390 | return "<overloaded function type>" ; |
3391 | case BoundMember: |
3392 | return "<bound member function type>" ; |
3393 | case UnresolvedTemplate: |
3394 | return "<unresolved template type>" ; |
3395 | case PseudoObject: |
3396 | return "<pseudo-object type>" ; |
3397 | case Dependent: |
3398 | return "<dependent type>" ; |
3399 | case UnknownAny: |
3400 | return "<unknown type>" ; |
3401 | case ARCUnbridgedCast: |
3402 | return "<ARC unbridged cast type>" ; |
3403 | case BuiltinFn: |
3404 | return "<builtin fn type>" ; |
3405 | case ObjCId: |
3406 | return "id" ; |
3407 | case ObjCClass: |
3408 | return "Class" ; |
3409 | case ObjCSel: |
3410 | return "SEL" ; |
3411 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
3412 | case Id: \ |
3413 | return "__" #Access " " #ImgType "_t"; |
3414 | #include "clang/Basic/OpenCLImageTypes.def" |
3415 | case OCLSampler: |
3416 | return "sampler_t" ; |
3417 | case OCLEvent: |
3418 | return "event_t" ; |
3419 | case OCLClkEvent: |
3420 | return "clk_event_t" ; |
3421 | case OCLQueue: |
3422 | return "queue_t" ; |
3423 | case OCLReserveID: |
3424 | return "reserve_id_t" ; |
3425 | case IncompleteMatrixIdx: |
3426 | return "<incomplete matrix index type>" ; |
3427 | case ArraySection: |
3428 | return "<array section type>" ; |
3429 | case OMPArrayShaping: |
3430 | return "<OpenMP array shaping type>" ; |
3431 | case OMPIterator: |
3432 | return "<OpenMP iterator type>" ; |
3433 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
3434 | case Id: \ |
3435 | return #ExtType; |
3436 | #include "clang/Basic/OpenCLExtensionTypes.def" |
3437 | #define SVE_TYPE(Name, Id, SingletonId) \ |
3438 | case Id: \ |
3439 | return Name; |
3440 | #include "clang/Basic/AArch64SVEACLETypes.def" |
3441 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
3442 | case Id: \ |
3443 | return #Name; |
3444 | #include "clang/Basic/PPCTypes.def" |
3445 | #define RVV_TYPE(Name, Id, SingletonId) \ |
3446 | case Id: \ |
3447 | return Name; |
3448 | #include "clang/Basic/RISCVVTypes.def" |
3449 | #define WASM_TYPE(Name, Id, SingletonId) \ |
3450 | case Id: \ |
3451 | return Name; |
3452 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
3453 | #define AMDGPU_TYPE(Name, Id, SingletonId) \ |
3454 | case Id: \ |
3455 | return Name; |
3456 | #include "clang/Basic/AMDGPUTypes.def" |
3457 | } |
3458 | |
3459 | llvm_unreachable("Invalid builtin type." ); |
3460 | } |
3461 | |
3462 | QualType QualType::getNonPackExpansionType() const { |
3463 | // We never wrap type sugar around a PackExpansionType. |
3464 | if (auto *PET = dyn_cast<PackExpansionType>(Val: getTypePtr())) |
3465 | return PET->getPattern(); |
3466 | return *this; |
3467 | } |
3468 | |
3469 | QualType QualType::getNonLValueExprType(const ASTContext &Context) const { |
3470 | if (const auto *RefType = getTypePtr()->getAs<ReferenceType>()) |
3471 | return RefType->getPointeeType(); |
3472 | |
3473 | // C++0x [basic.lval]: |
3474 | // Class prvalues can have cv-qualified types; non-class prvalues always |
3475 | // have cv-unqualified types. |
3476 | // |
3477 | // See also C99 6.3.2.1p2. |
3478 | if (!Context.getLangOpts().CPlusPlus || |
3479 | (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType())) |
3480 | return getUnqualifiedType(); |
3481 | |
3482 | return *this; |
3483 | } |
3484 | |
3485 | StringRef FunctionType::getNameForCallConv(CallingConv CC) { |
3486 | switch (CC) { |
3487 | case CC_C: return "cdecl" ; |
3488 | case CC_X86StdCall: return "stdcall" ; |
3489 | case CC_X86FastCall: return "fastcall" ; |
3490 | case CC_X86ThisCall: return "thiscall" ; |
3491 | case CC_X86Pascal: return "pascal" ; |
3492 | case CC_X86VectorCall: return "vectorcall" ; |
3493 | case CC_Win64: return "ms_abi" ; |
3494 | case CC_X86_64SysV: return "sysv_abi" ; |
3495 | case CC_X86RegCall : return "regcall" ; |
3496 | case CC_AAPCS: return "aapcs" ; |
3497 | case CC_AAPCS_VFP: return "aapcs-vfp" ; |
3498 | case CC_AArch64VectorCall: return "aarch64_vector_pcs" ; |
3499 | case CC_AArch64SVEPCS: return "aarch64_sve_pcs" ; |
3500 | case CC_AMDGPUKernelCall: return "amdgpu_kernel" ; |
3501 | case CC_IntelOclBicc: return "intel_ocl_bicc" ; |
3502 | case CC_SpirFunction: return "spir_function" ; |
3503 | case CC_OpenCLKernel: return "opencl_kernel" ; |
3504 | case CC_Swift: return "swiftcall" ; |
3505 | case CC_SwiftAsync: return "swiftasynccall" ; |
3506 | case CC_PreserveMost: return "preserve_most" ; |
3507 | case CC_PreserveAll: return "preserve_all" ; |
3508 | case CC_M68kRTD: return "m68k_rtd" ; |
3509 | case CC_PreserveNone: return "preserve_none" ; |
3510 | // clang-format off |
3511 | case CC_RISCVVectorCall: return "riscv_vector_cc" ; |
3512 | // clang-format on |
3513 | } |
3514 | |
3515 | llvm_unreachable("Invalid calling convention." ); |
3516 | } |
3517 | |
3518 | void FunctionProtoType::ExceptionSpecInfo::instantiate() { |
3519 | assert(Type == EST_Uninstantiated); |
3520 | NoexceptExpr = |
3521 | cast<FunctionProtoType>(Val: SourceTemplate->getType())->getNoexceptExpr(); |
3522 | Type = EST_DependentNoexcept; |
3523 | } |
3524 | |
3525 | FunctionProtoType::FunctionProtoType(QualType result, ArrayRef<QualType> params, |
3526 | QualType canonical, |
3527 | const ExtProtoInfo &epi) |
3528 | : FunctionType(FunctionProto, result, canonical, result->getDependence(), |
3529 | epi.ExtInfo) { |
3530 | FunctionTypeBits.FastTypeQuals = epi.TypeQuals.getFastQualifiers(); |
3531 | FunctionTypeBits.RefQualifier = epi.RefQualifier; |
3532 | FunctionTypeBits.NumParams = params.size(); |
3533 | assert(getNumParams() == params.size() && "NumParams overflow!" ); |
3534 | FunctionTypeBits.ExceptionSpecType = epi.ExceptionSpec.Type; |
3535 | FunctionTypeBits.HasExtParameterInfos = !!epi.ExtParameterInfos; |
3536 | FunctionTypeBits.Variadic = epi.Variadic; |
3537 | FunctionTypeBits.HasTrailingReturn = epi.HasTrailingReturn; |
3538 | |
3539 | if (epi.requiresFunctionProtoTypeExtraBitfields()) { |
3540 | FunctionTypeBits.HasExtraBitfields = true; |
3541 | auto & = *getTrailingObjects<FunctionTypeExtraBitfields>(); |
3542 | ExtraBits = FunctionTypeExtraBitfields(); |
3543 | } else { |
3544 | FunctionTypeBits.HasExtraBitfields = false; |
3545 | } |
3546 | |
3547 | if (epi.requiresFunctionProtoTypeArmAttributes()) { |
3548 | auto &ArmTypeAttrs = *getTrailingObjects<FunctionTypeArmAttributes>(); |
3549 | ArmTypeAttrs = FunctionTypeArmAttributes(); |
3550 | |
3551 | // Also set the bit in FunctionTypeExtraBitfields |
3552 | auto & = *getTrailingObjects<FunctionTypeExtraBitfields>(); |
3553 | ExtraBits.HasArmTypeAttributes = true; |
3554 | } |
3555 | |
3556 | // Fill in the trailing argument array. |
3557 | auto *argSlot = getTrailingObjects<QualType>(); |
3558 | for (unsigned i = 0; i != getNumParams(); ++i) { |
3559 | addDependence(D: params[i]->getDependence() & |
3560 | ~TypeDependence::VariablyModified); |
3561 | argSlot[i] = params[i]; |
3562 | } |
3563 | |
3564 | // Propagate the SME ACLE attributes. |
3565 | if (epi.AArch64SMEAttributes != SME_NormalFunction) { |
3566 | auto &ArmTypeAttrs = *getTrailingObjects<FunctionTypeArmAttributes>(); |
3567 | assert(epi.AArch64SMEAttributes <= SME_AttributeMask && |
3568 | "Not enough bits to encode SME attributes" ); |
3569 | ArmTypeAttrs.AArch64SMEAttributes = epi.AArch64SMEAttributes; |
3570 | } |
3571 | |
3572 | // Fill in the exception type array if present. |
3573 | if (getExceptionSpecType() == EST_Dynamic) { |
3574 | auto & = *getTrailingObjects<FunctionTypeExtraBitfields>(); |
3575 | size_t NumExceptions = epi.ExceptionSpec.Exceptions.size(); |
3576 | assert(NumExceptions <= 1023 && "Not enough bits to encode exceptions" ); |
3577 | ExtraBits.NumExceptionType = NumExceptions; |
3578 | |
3579 | assert(hasExtraBitfields() && "missing trailing extra bitfields!" ); |
3580 | auto *exnSlot = |
3581 | reinterpret_cast<QualType *>(getTrailingObjects<ExceptionType>()); |
3582 | unsigned I = 0; |
3583 | for (QualType ExceptionType : epi.ExceptionSpec.Exceptions) { |
3584 | // Note that, before C++17, a dependent exception specification does |
3585 | // *not* make a type dependent; it's not even part of the C++ type |
3586 | // system. |
3587 | addDependence( |
3588 | D: ExceptionType->getDependence() & |
3589 | (TypeDependence::Instantiation | TypeDependence::UnexpandedPack)); |
3590 | |
3591 | exnSlot[I++] = ExceptionType; |
3592 | } |
3593 | } |
3594 | // Fill in the Expr * in the exception specification if present. |
3595 | else if (isComputedNoexcept(ESpecType: getExceptionSpecType())) { |
3596 | assert(epi.ExceptionSpec.NoexceptExpr && "computed noexcept with no expr" ); |
3597 | assert((getExceptionSpecType() == EST_DependentNoexcept) == |
3598 | epi.ExceptionSpec.NoexceptExpr->isValueDependent()); |
3599 | |
3600 | // Store the noexcept expression and context. |
3601 | *getTrailingObjects<Expr *>() = epi.ExceptionSpec.NoexceptExpr; |
3602 | |
3603 | addDependence( |
3604 | D: toTypeDependence(D: epi.ExceptionSpec.NoexceptExpr->getDependence()) & |
3605 | (TypeDependence::Instantiation | TypeDependence::UnexpandedPack)); |
3606 | } |
3607 | // Fill in the FunctionDecl * in the exception specification if present. |
3608 | else if (getExceptionSpecType() == EST_Uninstantiated) { |
3609 | // Store the function decl from which we will resolve our |
3610 | // exception specification. |
3611 | auto **slot = getTrailingObjects<FunctionDecl *>(); |
3612 | slot[0] = epi.ExceptionSpec.SourceDecl; |
3613 | slot[1] = epi.ExceptionSpec.SourceTemplate; |
3614 | // This exception specification doesn't make the type dependent, because |
3615 | // it's not instantiated as part of instantiating the type. |
3616 | } else if (getExceptionSpecType() == EST_Unevaluated) { |
3617 | // Store the function decl from which we will resolve our |
3618 | // exception specification. |
3619 | auto **slot = getTrailingObjects<FunctionDecl *>(); |
3620 | slot[0] = epi.ExceptionSpec.SourceDecl; |
3621 | } |
3622 | |
3623 | // If this is a canonical type, and its exception specification is dependent, |
3624 | // then it's a dependent type. This only happens in C++17 onwards. |
3625 | if (isCanonicalUnqualified()) { |
3626 | if (getExceptionSpecType() == EST_Dynamic || |
3627 | getExceptionSpecType() == EST_DependentNoexcept) { |
3628 | assert(hasDependentExceptionSpec() && "type should not be canonical" ); |
3629 | addDependence(D: TypeDependence::DependentInstantiation); |
3630 | } |
3631 | } else if (getCanonicalTypeInternal()->isDependentType()) { |
3632 | // Ask our canonical type whether our exception specification was dependent. |
3633 | addDependence(D: TypeDependence::DependentInstantiation); |
3634 | } |
3635 | |
3636 | // Fill in the extra parameter info if present. |
3637 | if (epi.ExtParameterInfos) { |
3638 | auto *extParamInfos = getTrailingObjects<ExtParameterInfo>(); |
3639 | for (unsigned i = 0; i != getNumParams(); ++i) |
3640 | extParamInfos[i] = epi.ExtParameterInfos[i]; |
3641 | } |
3642 | |
3643 | if (epi.TypeQuals.hasNonFastQualifiers()) { |
3644 | FunctionTypeBits.HasExtQuals = 1; |
3645 | *getTrailingObjects<Qualifiers>() = epi.TypeQuals; |
3646 | } else { |
3647 | FunctionTypeBits.HasExtQuals = 0; |
3648 | } |
3649 | |
3650 | // Fill in the Ellipsis location info if present. |
3651 | if (epi.Variadic) { |
3652 | auto &EllipsisLoc = *getTrailingObjects<SourceLocation>(); |
3653 | EllipsisLoc = epi.EllipsisLoc; |
3654 | } |
3655 | |
3656 | if (!epi.FunctionEffects.empty()) { |
3657 | auto & = *getTrailingObjects<FunctionTypeExtraBitfields>(); |
3658 | size_t EffectsCount = epi.FunctionEffects.size(); |
3659 | ExtraBits.NumFunctionEffects = EffectsCount; |
3660 | assert(ExtraBits.NumFunctionEffects == EffectsCount && |
3661 | "effect bitfield overflow" ); |
3662 | |
3663 | ArrayRef<FunctionEffect> SrcFX = epi.FunctionEffects.effects(); |
3664 | auto *DestFX = getTrailingObjects<FunctionEffect>(); |
3665 | std::uninitialized_copy(first: SrcFX.begin(), last: SrcFX.end(), result: DestFX); |
3666 | |
3667 | ArrayRef<EffectConditionExpr> SrcConds = epi.FunctionEffects.conditions(); |
3668 | if (!SrcConds.empty()) { |
3669 | ExtraBits.EffectsHaveConditions = true; |
3670 | auto *DestConds = getTrailingObjects<EffectConditionExpr>(); |
3671 | std::uninitialized_copy(first: SrcConds.begin(), last: SrcConds.end(), result: DestConds); |
3672 | assert(std::any_of(SrcConds.begin(), SrcConds.end(), |
3673 | [](const EffectConditionExpr &EC) { |
3674 | if (const Expr *E = EC.getCondition()) |
3675 | return E->isTypeDependent() || |
3676 | E->isValueDependent(); |
3677 | return false; |
3678 | }) && |
3679 | "expected a dependent expression among the conditions" ); |
3680 | addDependence(D: TypeDependence::DependentInstantiation); |
3681 | } |
3682 | } |
3683 | } |
3684 | |
3685 | bool FunctionProtoType::hasDependentExceptionSpec() const { |
3686 | if (Expr *NE = getNoexceptExpr()) |
3687 | return NE->isValueDependent(); |
3688 | for (QualType ET : exceptions()) |
3689 | // A pack expansion with a non-dependent pattern is still dependent, |
3690 | // because we don't know whether the pattern is in the exception spec |
3691 | // or not (that depends on whether the pack has 0 expansions). |
3692 | if (ET->isDependentType() || ET->getAs<PackExpansionType>()) |
3693 | return true; |
3694 | return false; |
3695 | } |
3696 | |
3697 | bool FunctionProtoType::hasInstantiationDependentExceptionSpec() const { |
3698 | if (Expr *NE = getNoexceptExpr()) |
3699 | return NE->isInstantiationDependent(); |
3700 | for (QualType ET : exceptions()) |
3701 | if (ET->isInstantiationDependentType()) |
3702 | return true; |
3703 | return false; |
3704 | } |
3705 | |
3706 | CanThrowResult FunctionProtoType::canThrow() const { |
3707 | switch (getExceptionSpecType()) { |
3708 | case EST_Unparsed: |
3709 | case EST_Unevaluated: |
3710 | llvm_unreachable("should not call this with unresolved exception specs" ); |
3711 | |
3712 | case EST_DynamicNone: |
3713 | case EST_BasicNoexcept: |
3714 | case EST_NoexceptTrue: |
3715 | case EST_NoThrow: |
3716 | return CT_Cannot; |
3717 | |
3718 | case EST_None: |
3719 | case EST_MSAny: |
3720 | case EST_NoexceptFalse: |
3721 | return CT_Can; |
3722 | |
3723 | case EST_Dynamic: |
3724 | // A dynamic exception specification is throwing unless every exception |
3725 | // type is an (unexpanded) pack expansion type. |
3726 | for (unsigned I = 0; I != getNumExceptions(); ++I) |
3727 | if (!getExceptionType(i: I)->getAs<PackExpansionType>()) |
3728 | return CT_Can; |
3729 | return CT_Dependent; |
3730 | |
3731 | case EST_Uninstantiated: |
3732 | case EST_DependentNoexcept: |
3733 | return CT_Dependent; |
3734 | } |
3735 | |
3736 | llvm_unreachable("unexpected exception specification kind" ); |
3737 | } |
3738 | |
3739 | bool FunctionProtoType::isTemplateVariadic() const { |
3740 | for (unsigned ArgIdx = getNumParams(); ArgIdx; --ArgIdx) |
3741 | if (isa<PackExpansionType>(Val: getParamType(i: ArgIdx - 1))) |
3742 | return true; |
3743 | |
3744 | return false; |
3745 | } |
3746 | |
3747 | void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result, |
3748 | const QualType *ArgTys, unsigned NumParams, |
3749 | const ExtProtoInfo &epi, |
3750 | const ASTContext &Context, bool Canonical) { |
3751 | // We have to be careful not to get ambiguous profile encodings. |
3752 | // Note that valid type pointers are never ambiguous with anything else. |
3753 | // |
3754 | // The encoding grammar begins: |
3755 | // type type* bool int bool |
3756 | // If that final bool is true, then there is a section for the EH spec: |
3757 | // bool type* |
3758 | // This is followed by an optional "consumed argument" section of the |
3759 | // same length as the first type sequence: |
3760 | // bool* |
3761 | // This is followed by the ext info: |
3762 | // int |
3763 | // Finally we have a trailing return type flag (bool) |
3764 | // combined with AArch64 SME Attributes, to save space: |
3765 | // int |
3766 | // combined with any FunctionEffects |
3767 | // |
3768 | // There is no ambiguity between the consumed arguments and an empty EH |
3769 | // spec because of the leading 'bool' which unambiguously indicates |
3770 | // whether the following bool is the EH spec or part of the arguments. |
3771 | |
3772 | ID.AddPointer(Ptr: Result.getAsOpaquePtr()); |
3773 | for (unsigned i = 0; i != NumParams; ++i) |
3774 | ID.AddPointer(Ptr: ArgTys[i].getAsOpaquePtr()); |
3775 | // This method is relatively performance sensitive, so as a performance |
3776 | // shortcut, use one AddInteger call instead of four for the next four |
3777 | // fields. |
3778 | assert(!(unsigned(epi.Variadic) & ~1) && |
3779 | !(unsigned(epi.RefQualifier) & ~3) && |
3780 | !(unsigned(epi.ExceptionSpec.Type) & ~15) && |
3781 | "Values larger than expected." ); |
3782 | ID.AddInteger(I: unsigned(epi.Variadic) + |
3783 | (epi.RefQualifier << 1) + |
3784 | (epi.ExceptionSpec.Type << 3)); |
3785 | ID.Add(x: epi.TypeQuals); |
3786 | if (epi.ExceptionSpec.Type == EST_Dynamic) { |
3787 | for (QualType Ex : epi.ExceptionSpec.Exceptions) |
3788 | ID.AddPointer(Ptr: Ex.getAsOpaquePtr()); |
3789 | } else if (isComputedNoexcept(ESpecType: epi.ExceptionSpec.Type)) { |
3790 | epi.ExceptionSpec.NoexceptExpr->Profile(ID, Context, Canonical); |
3791 | } else if (epi.ExceptionSpec.Type == EST_Uninstantiated || |
3792 | epi.ExceptionSpec.Type == EST_Unevaluated) { |
3793 | ID.AddPointer(Ptr: epi.ExceptionSpec.SourceDecl->getCanonicalDecl()); |
3794 | } |
3795 | if (epi.ExtParameterInfos) { |
3796 | for (unsigned i = 0; i != NumParams; ++i) |
3797 | ID.AddInteger(I: epi.ExtParameterInfos[i].getOpaqueValue()); |
3798 | } |
3799 | |
3800 | epi.ExtInfo.Profile(ID); |
3801 | |
3802 | unsigned EffectCount = epi.FunctionEffects.size(); |
3803 | bool HasConds = !epi.FunctionEffects.Conditions.empty(); |
3804 | |
3805 | ID.AddInteger(I: (EffectCount << 3) | (HasConds << 2) | |
3806 | (epi.AArch64SMEAttributes << 1) | epi.HasTrailingReturn); |
3807 | |
3808 | for (unsigned Idx = 0; Idx != EffectCount; ++Idx) { |
3809 | ID.AddInteger(I: epi.FunctionEffects.Effects[Idx].toOpaqueInt32()); |
3810 | if (HasConds) |
3811 | ID.AddPointer(Ptr: epi.FunctionEffects.Conditions[Idx].getCondition()); |
3812 | } |
3813 | } |
3814 | |
3815 | void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, |
3816 | const ASTContext &Ctx) { |
3817 | Profile(ID, Result: getReturnType(), ArgTys: param_type_begin(), NumParams: getNumParams(), |
3818 | epi: getExtProtoInfo(), Context: Ctx, Canonical: isCanonicalUnqualified()); |
3819 | } |
3820 | |
3821 | TypeCoupledDeclRefInfo::TypeCoupledDeclRefInfo(ValueDecl *D, bool Deref) |
3822 | : Data(D, Deref << DerefShift) {} |
3823 | |
3824 | bool TypeCoupledDeclRefInfo::isDeref() const { |
3825 | return Data.getInt() & DerefMask; |
3826 | } |
3827 | ValueDecl *TypeCoupledDeclRefInfo::getDecl() const { return Data.getPointer(); } |
3828 | unsigned TypeCoupledDeclRefInfo::getInt() const { return Data.getInt(); } |
3829 | void *TypeCoupledDeclRefInfo::getOpaqueValue() const { |
3830 | return Data.getOpaqueValue(); |
3831 | } |
3832 | bool TypeCoupledDeclRefInfo::operator==( |
3833 | const TypeCoupledDeclRefInfo &Other) const { |
3834 | return getOpaqueValue() == Other.getOpaqueValue(); |
3835 | } |
3836 | void TypeCoupledDeclRefInfo::setFromOpaqueValue(void *V) { |
3837 | Data.setFromOpaqueValue(V); |
3838 | } |
3839 | |
3840 | BoundsAttributedType::BoundsAttributedType(TypeClass TC, QualType Wrapped, |
3841 | QualType Canon) |
3842 | : Type(TC, Canon, Wrapped->getDependence()), WrappedTy(Wrapped) {} |
3843 | |
3844 | CountAttributedType::CountAttributedType( |
3845 | QualType Wrapped, QualType Canon, Expr *CountExpr, bool CountInBytes, |
3846 | bool OrNull, ArrayRef<TypeCoupledDeclRefInfo> CoupledDecls) |
3847 | : BoundsAttributedType(CountAttributed, Wrapped, Canon), |
3848 | CountExpr(CountExpr) { |
3849 | CountAttributedTypeBits.NumCoupledDecls = CoupledDecls.size(); |
3850 | CountAttributedTypeBits.CountInBytes = CountInBytes; |
3851 | CountAttributedTypeBits.OrNull = OrNull; |
3852 | auto *DeclSlot = getTrailingObjects<TypeCoupledDeclRefInfo>(); |
3853 | Decls = llvm::ArrayRef(DeclSlot, CoupledDecls.size()); |
3854 | for (unsigned i = 0; i != CoupledDecls.size(); ++i) |
3855 | DeclSlot[i] = CoupledDecls[i]; |
3856 | } |
3857 | |
3858 | TypedefType::TypedefType(TypeClass tc, const TypedefNameDecl *D, |
3859 | QualType Underlying, QualType can) |
3860 | : Type(tc, can, toSemanticDependence(D: can->getDependence())), |
3861 | Decl(const_cast<TypedefNameDecl *>(D)) { |
3862 | assert(!isa<TypedefType>(can) && "Invalid canonical type" ); |
3863 | TypedefBits.hasTypeDifferentFromDecl = !Underlying.isNull(); |
3864 | if (!typeMatchesDecl()) |
3865 | *getTrailingObjects<QualType>() = Underlying; |
3866 | } |
3867 | |
3868 | QualType TypedefType::desugar() const { |
3869 | return typeMatchesDecl() ? Decl->getUnderlyingType() |
3870 | : *getTrailingObjects<QualType>(); |
3871 | } |
3872 | |
3873 | UsingType::UsingType(const UsingShadowDecl *Found, QualType Underlying, |
3874 | QualType Canon) |
3875 | : Type(Using, Canon, toSemanticDependence(D: Canon->getDependence())), |
3876 | Found(const_cast<UsingShadowDecl *>(Found)) { |
3877 | UsingBits.hasTypeDifferentFromDecl = !Underlying.isNull(); |
3878 | if (!typeMatchesDecl()) |
3879 | *getTrailingObjects<QualType>() = Underlying; |
3880 | } |
3881 | |
3882 | QualType UsingType::getUnderlyingType() const { |
3883 | return typeMatchesDecl() |
3884 | ? QualType( |
3885 | cast<TypeDecl>(Val: Found->getTargetDecl())->getTypeForDecl(), 0) |
3886 | : *getTrailingObjects<QualType>(); |
3887 | } |
3888 | |
3889 | QualType MacroQualifiedType::desugar() const { return getUnderlyingType(); } |
3890 | |
3891 | QualType MacroQualifiedType::getModifiedType() const { |
3892 | // Step over MacroQualifiedTypes from the same macro to find the type |
3893 | // ultimately qualified by the macro qualifier. |
3894 | QualType Inner = cast<AttributedType>(Val: getUnderlyingType())->getModifiedType(); |
3895 | while (auto *InnerMQT = dyn_cast<MacroQualifiedType>(Val&: Inner)) { |
3896 | if (InnerMQT->getMacroIdentifier() != getMacroIdentifier()) |
3897 | break; |
3898 | Inner = InnerMQT->getModifiedType(); |
3899 | } |
3900 | return Inner; |
3901 | } |
3902 | |
3903 | TypeOfExprType::TypeOfExprType(const ASTContext &Context, Expr *E, |
3904 | TypeOfKind Kind, QualType Can) |
3905 | : Type(TypeOfExpr, |
3906 | // We have to protect against 'Can' being invalid through its |
3907 | // default argument. |
3908 | Kind == TypeOfKind::Unqualified && !Can.isNull() |
3909 | ? Context.getUnqualifiedArrayType(T: Can).getAtomicUnqualifiedType() |
3910 | : Can, |
3911 | toTypeDependence(D: E->getDependence()) | |
3912 | (E->getType()->getDependence() & |
3913 | TypeDependence::VariablyModified)), |
3914 | TOExpr(E), Context(Context) { |
3915 | TypeOfBits.Kind = static_cast<unsigned>(Kind); |
3916 | } |
3917 | |
3918 | bool TypeOfExprType::isSugared() const { |
3919 | return !TOExpr->isTypeDependent(); |
3920 | } |
3921 | |
3922 | QualType TypeOfExprType::desugar() const { |
3923 | if (isSugared()) { |
3924 | QualType QT = getUnderlyingExpr()->getType(); |
3925 | return getKind() == TypeOfKind::Unqualified |
3926 | ? Context.getUnqualifiedArrayType(T: QT).getAtomicUnqualifiedType() |
3927 | : QT; |
3928 | } |
3929 | return QualType(this, 0); |
3930 | } |
3931 | |
3932 | void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID, |
3933 | const ASTContext &Context, Expr *E, |
3934 | bool IsUnqual) { |
3935 | E->Profile(ID, Context, Canonical: true); |
3936 | ID.AddBoolean(B: IsUnqual); |
3937 | } |
3938 | |
3939 | TypeOfType::TypeOfType(const ASTContext &Context, QualType T, QualType Can, |
3940 | TypeOfKind Kind) |
3941 | : Type(TypeOf, |
3942 | Kind == TypeOfKind::Unqualified |
3943 | ? Context.getUnqualifiedArrayType(T: Can).getAtomicUnqualifiedType() |
3944 | : Can, |
3945 | T->getDependence()), |
3946 | TOType(T), Context(Context) { |
3947 | TypeOfBits.Kind = static_cast<unsigned>(Kind); |
3948 | } |
3949 | |
3950 | QualType TypeOfType::desugar() const { |
3951 | QualType QT = getUnmodifiedType(); |
3952 | return getKind() == TypeOfKind::Unqualified |
3953 | ? Context.getUnqualifiedArrayType(T: QT).getAtomicUnqualifiedType() |
3954 | : QT; |
3955 | } |
3956 | |
3957 | DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can) |
3958 | // C++11 [temp.type]p2: "If an expression e involves a template parameter, |
3959 | // decltype(e) denotes a unique dependent type." Hence a decltype type is |
3960 | // type-dependent even if its expression is only instantiation-dependent. |
3961 | : Type(Decltype, can, |
3962 | toTypeDependence(D: E->getDependence()) | |
3963 | (E->isInstantiationDependent() ? TypeDependence::Dependent |
3964 | : TypeDependence::None) | |
3965 | (E->getType()->getDependence() & |
3966 | TypeDependence::VariablyModified)), |
3967 | E(E), UnderlyingType(underlyingType) {} |
3968 | |
3969 | bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); } |
3970 | |
3971 | QualType DecltypeType::desugar() const { |
3972 | if (isSugared()) |
3973 | return getUnderlyingType(); |
3974 | |
3975 | return QualType(this, 0); |
3976 | } |
3977 | |
3978 | DependentDecltypeType::DependentDecltypeType(Expr *E, QualType UnderlyingType) |
3979 | : DecltypeType(E, UnderlyingType) {} |
3980 | |
3981 | void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID, |
3982 | const ASTContext &Context, Expr *E) { |
3983 | E->Profile(ID, Context, Canonical: true); |
3984 | } |
3985 | |
3986 | PackIndexingType::PackIndexingType(const ASTContext &Context, |
3987 | QualType Canonical, QualType Pattern, |
3988 | Expr *IndexExpr, |
3989 | ArrayRef<QualType> Expansions) |
3990 | : Type(PackIndexing, Canonical, |
3991 | computeDependence(Pattern, IndexExpr, Expansions)), |
3992 | Context(Context), Pattern(Pattern), IndexExpr(IndexExpr), |
3993 | Size(Expansions.size()) { |
3994 | |
3995 | std::uninitialized_copy(first: Expansions.begin(), last: Expansions.end(), |
3996 | result: getTrailingObjects<QualType>()); |
3997 | } |
3998 | |
3999 | std::optional<unsigned> PackIndexingType::getSelectedIndex() const { |
4000 | if (isInstantiationDependentType()) |
4001 | return std::nullopt; |
4002 | // Should only be not a constant for error recovery. |
4003 | ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: getIndexExpr()); |
4004 | if (!CE) |
4005 | return std::nullopt; |
4006 | auto Index = CE->getResultAsAPSInt(); |
4007 | assert(Index.isNonNegative() && "Invalid index" ); |
4008 | return static_cast<unsigned>(Index.getExtValue()); |
4009 | } |
4010 | |
4011 | TypeDependence |
4012 | PackIndexingType::computeDependence(QualType Pattern, Expr *IndexExpr, |
4013 | ArrayRef<QualType> Expansions) { |
4014 | TypeDependence IndexD = toTypeDependence(D: IndexExpr->getDependence()); |
4015 | |
4016 | TypeDependence TD = IndexD | (IndexExpr->isInstantiationDependent() |
4017 | ? TypeDependence::DependentInstantiation |
4018 | : TypeDependence::None); |
4019 | if (Expansions.empty()) |
4020 | TD |= Pattern->getDependence() & TypeDependence::DependentInstantiation; |
4021 | else |
4022 | for (const QualType &T : Expansions) |
4023 | TD |= T->getDependence(); |
4024 | |
4025 | if (!(IndexD & TypeDependence::UnexpandedPack)) |
4026 | TD &= ~TypeDependence::UnexpandedPack; |
4027 | |
4028 | // If the pattern does not contain an unexpended pack, |
4029 | // the type is still dependent, and invalid |
4030 | if (!Pattern->containsUnexpandedParameterPack()) |
4031 | TD |= TypeDependence::Error | TypeDependence::DependentInstantiation; |
4032 | |
4033 | return TD; |
4034 | } |
4035 | |
4036 | void PackIndexingType::Profile(llvm::FoldingSetNodeID &ID, |
4037 | const ASTContext &Context, QualType Pattern, |
4038 | Expr *E) { |
4039 | Pattern.Profile(ID); |
4040 | E->Profile(ID, Context, Canonical: true); |
4041 | } |
4042 | |
4043 | UnaryTransformType::UnaryTransformType(QualType BaseType, |
4044 | QualType UnderlyingType, UTTKind UKind, |
4045 | QualType CanonicalType) |
4046 | : Type(UnaryTransform, CanonicalType, BaseType->getDependence()), |
4047 | BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind) {} |
4048 | |
4049 | DependentUnaryTransformType::DependentUnaryTransformType(const ASTContext &C, |
4050 | QualType BaseType, |
4051 | UTTKind UKind) |
4052 | : UnaryTransformType(BaseType, C.DependentTy, UKind, QualType()) {} |
4053 | |
4054 | TagType::TagType(TypeClass TC, const TagDecl *D, QualType can) |
4055 | : Type(TC, can, |
4056 | D->isDependentType() ? TypeDependence::DependentInstantiation |
4057 | : TypeDependence::None), |
4058 | decl(const_cast<TagDecl *>(D)) {} |
4059 | |
4060 | static TagDecl *getInterestingTagDecl(TagDecl *decl) { |
4061 | for (auto *I : decl->redecls()) { |
4062 | if (I->isCompleteDefinition() || I->isBeingDefined()) |
4063 | return I; |
4064 | } |
4065 | // If there's no definition (not even in progress), return what we have. |
4066 | return decl; |
4067 | } |
4068 | |
4069 | TagDecl *TagType::getDecl() const { |
4070 | return getInterestingTagDecl(decl); |
4071 | } |
4072 | |
4073 | bool TagType::isBeingDefined() const { |
4074 | return getDecl()->isBeingDefined(); |
4075 | } |
4076 | |
4077 | bool RecordType::hasConstFields() const { |
4078 | std::vector<const RecordType*> RecordTypeList; |
4079 | RecordTypeList.push_back(x: this); |
4080 | unsigned NextToCheckIndex = 0; |
4081 | |
4082 | while (RecordTypeList.size() > NextToCheckIndex) { |
4083 | for (FieldDecl *FD : |
4084 | RecordTypeList[NextToCheckIndex]->getDecl()->fields()) { |
4085 | QualType FieldTy = FD->getType(); |
4086 | if (FieldTy.isConstQualified()) |
4087 | return true; |
4088 | FieldTy = FieldTy.getCanonicalType(); |
4089 | if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) { |
4090 | if (!llvm::is_contained(Range&: RecordTypeList, Element: FieldRecTy)) |
4091 | RecordTypeList.push_back(x: FieldRecTy); |
4092 | } |
4093 | } |
4094 | ++NextToCheckIndex; |
4095 | } |
4096 | return false; |
4097 | } |
4098 | |
4099 | bool AttributedType::isQualifier() const { |
4100 | // FIXME: Generate this with TableGen. |
4101 | switch (getAttrKind()) { |
4102 | // These are type qualifiers in the traditional C sense: they annotate |
4103 | // something about a specific value/variable of a type. (They aren't |
4104 | // always part of the canonical type, though.) |
4105 | case attr::ObjCGC: |
4106 | case attr::ObjCOwnership: |
4107 | case attr::ObjCInertUnsafeUnretained: |
4108 | case attr::TypeNonNull: |
4109 | case attr::TypeNullable: |
4110 | case attr::TypeNullableResult: |
4111 | case attr::TypeNullUnspecified: |
4112 | case attr::LifetimeBound: |
4113 | case attr::AddressSpace: |
4114 | return true; |
4115 | |
4116 | // All other type attributes aren't qualifiers; they rewrite the modified |
4117 | // type to be a semantically different type. |
4118 | default: |
4119 | return false; |
4120 | } |
4121 | } |
4122 | |
4123 | bool AttributedType::isMSTypeSpec() const { |
4124 | // FIXME: Generate this with TableGen? |
4125 | switch (getAttrKind()) { |
4126 | default: return false; |
4127 | case attr::Ptr32: |
4128 | case attr::Ptr64: |
4129 | case attr::SPtr: |
4130 | case attr::UPtr: |
4131 | return true; |
4132 | } |
4133 | llvm_unreachable("invalid attr kind" ); |
4134 | } |
4135 | |
4136 | bool AttributedType::isWebAssemblyFuncrefSpec() const { |
4137 | return getAttrKind() == attr::WebAssemblyFuncref; |
4138 | } |
4139 | |
4140 | bool AttributedType::isCallingConv() const { |
4141 | // FIXME: Generate this with TableGen. |
4142 | switch (getAttrKind()) { |
4143 | default: return false; |
4144 | case attr::Pcs: |
4145 | case attr::CDecl: |
4146 | case attr::FastCall: |
4147 | case attr::StdCall: |
4148 | case attr::ThisCall: |
4149 | case attr::RegCall: |
4150 | case attr::SwiftCall: |
4151 | case attr::SwiftAsyncCall: |
4152 | case attr::VectorCall: |
4153 | case attr::AArch64VectorPcs: |
4154 | case attr::AArch64SVEPcs: |
4155 | case attr::AMDGPUKernelCall: |
4156 | case attr::Pascal: |
4157 | case attr::MSABI: |
4158 | case attr::SysVABI: |
4159 | case attr::IntelOclBicc: |
4160 | case attr::PreserveMost: |
4161 | case attr::PreserveAll: |
4162 | case attr::M68kRTD: |
4163 | case attr::PreserveNone: |
4164 | case attr::RISCVVectorCC: |
4165 | return true; |
4166 | } |
4167 | llvm_unreachable("invalid attr kind" ); |
4168 | } |
4169 | |
4170 | CXXRecordDecl *InjectedClassNameType::getDecl() const { |
4171 | return cast<CXXRecordDecl>(Val: getInterestingTagDecl(decl: Decl)); |
4172 | } |
4173 | |
4174 | IdentifierInfo *TemplateTypeParmType::getIdentifier() const { |
4175 | return isCanonicalUnqualified() ? nullptr : getDecl()->getIdentifier(); |
4176 | } |
4177 | |
4178 | static const TemplateTypeParmDecl *getReplacedParameter(Decl *D, |
4179 | unsigned Index) { |
4180 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: D)) |
4181 | return TTP; |
4182 | return cast<TemplateTypeParmDecl>( |
4183 | Val: getReplacedTemplateParameterList(D)->getParam(Idx: Index)); |
4184 | } |
4185 | |
4186 | SubstTemplateTypeParmType::SubstTemplateTypeParmType( |
4187 | QualType Replacement, Decl *AssociatedDecl, unsigned Index, |
4188 | std::optional<unsigned> PackIndex) |
4189 | : Type(SubstTemplateTypeParm, Replacement.getCanonicalType(), |
4190 | Replacement->getDependence()), |
4191 | AssociatedDecl(AssociatedDecl) { |
4192 | SubstTemplateTypeParmTypeBits.HasNonCanonicalUnderlyingType = |
4193 | Replacement != getCanonicalTypeInternal(); |
4194 | if (SubstTemplateTypeParmTypeBits.HasNonCanonicalUnderlyingType) |
4195 | *getTrailingObjects<QualType>() = Replacement; |
4196 | |
4197 | SubstTemplateTypeParmTypeBits.Index = Index; |
4198 | SubstTemplateTypeParmTypeBits.PackIndex = PackIndex ? *PackIndex + 1 : 0; |
4199 | assert(AssociatedDecl != nullptr); |
4200 | } |
4201 | |
4202 | const TemplateTypeParmDecl * |
4203 | SubstTemplateTypeParmType::getReplacedParameter() const { |
4204 | return ::getReplacedParameter(D: getAssociatedDecl(), Index: getIndex()); |
4205 | } |
4206 | |
4207 | SubstTemplateTypeParmPackType::SubstTemplateTypeParmPackType( |
4208 | QualType Canon, Decl *AssociatedDecl, unsigned Index, bool Final, |
4209 | const TemplateArgument &ArgPack) |
4210 | : Type(SubstTemplateTypeParmPack, Canon, |
4211 | TypeDependence::DependentInstantiation | |
4212 | TypeDependence::UnexpandedPack), |
4213 | Arguments(ArgPack.pack_begin()), |
4214 | AssociatedDeclAndFinal(AssociatedDecl, Final) { |
4215 | SubstTemplateTypeParmPackTypeBits.Index = Index; |
4216 | SubstTemplateTypeParmPackTypeBits.NumArgs = ArgPack.pack_size(); |
4217 | assert(AssociatedDecl != nullptr); |
4218 | } |
4219 | |
4220 | Decl *SubstTemplateTypeParmPackType::getAssociatedDecl() const { |
4221 | return AssociatedDeclAndFinal.getPointer(); |
4222 | } |
4223 | |
4224 | bool SubstTemplateTypeParmPackType::getFinal() const { |
4225 | return AssociatedDeclAndFinal.getInt(); |
4226 | } |
4227 | |
4228 | const TemplateTypeParmDecl * |
4229 | SubstTemplateTypeParmPackType::getReplacedParameter() const { |
4230 | return ::getReplacedParameter(D: getAssociatedDecl(), Index: getIndex()); |
4231 | } |
4232 | |
4233 | IdentifierInfo *SubstTemplateTypeParmPackType::getIdentifier() const { |
4234 | return getReplacedParameter()->getIdentifier(); |
4235 | } |
4236 | |
4237 | TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const { |
4238 | return TemplateArgument(llvm::ArrayRef(Arguments, getNumArgs())); |
4239 | } |
4240 | |
4241 | void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) { |
4242 | Profile(ID, AssociatedDecl: getAssociatedDecl(), Index: getIndex(), Final: getFinal(), ArgPack: getArgumentPack()); |
4243 | } |
4244 | |
4245 | void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID, |
4246 | const Decl *AssociatedDecl, |
4247 | unsigned Index, bool Final, |
4248 | const TemplateArgument &ArgPack) { |
4249 | ID.AddPointer(Ptr: AssociatedDecl); |
4250 | ID.AddInteger(I: Index); |
4251 | ID.AddBoolean(B: Final); |
4252 | ID.AddInteger(I: ArgPack.pack_size()); |
4253 | for (const auto &P : ArgPack.pack_elements()) |
4254 | ID.AddPointer(Ptr: P.getAsType().getAsOpaquePtr()); |
4255 | } |
4256 | |
4257 | bool TemplateSpecializationType::anyDependentTemplateArguments( |
4258 | const TemplateArgumentListInfo &Args, ArrayRef<TemplateArgument> Converted) { |
4259 | return anyDependentTemplateArguments(Args: Args.arguments(), Converted); |
4260 | } |
4261 | |
4262 | bool TemplateSpecializationType::anyDependentTemplateArguments( |
4263 | ArrayRef<TemplateArgumentLoc> Args, ArrayRef<TemplateArgument> Converted) { |
4264 | for (const TemplateArgument &Arg : Converted) |
4265 | if (Arg.isDependent()) |
4266 | return true; |
4267 | return false; |
4268 | } |
4269 | |
4270 | bool TemplateSpecializationType::anyInstantiationDependentTemplateArguments( |
4271 | ArrayRef<TemplateArgumentLoc> Args) { |
4272 | for (const TemplateArgumentLoc &ArgLoc : Args) { |
4273 | if (ArgLoc.getArgument().isInstantiationDependent()) |
4274 | return true; |
4275 | } |
4276 | return false; |
4277 | } |
4278 | |
4279 | TemplateSpecializationType::TemplateSpecializationType( |
4280 | TemplateName T, ArrayRef<TemplateArgument> Args, QualType Canon, |
4281 | QualType AliasedType) |
4282 | : Type(TemplateSpecialization, Canon.isNull() ? QualType(this, 0) : Canon, |
4283 | (Canon.isNull() |
4284 | ? TypeDependence::DependentInstantiation |
4285 | : toSemanticDependence(D: Canon->getDependence())) | |
4286 | (toTypeDependence(D: T.getDependence()) & |
4287 | TypeDependence::UnexpandedPack)), |
4288 | Template(T) { |
4289 | TemplateSpecializationTypeBits.NumArgs = Args.size(); |
4290 | TemplateSpecializationTypeBits.TypeAlias = !AliasedType.isNull(); |
4291 | |
4292 | assert(!T.getAsDependentTemplateName() && |
4293 | "Use DependentTemplateSpecializationType for dependent template-name" ); |
4294 | assert((T.getKind() == TemplateName::Template || |
4295 | T.getKind() == TemplateName::SubstTemplateTemplateParm || |
4296 | T.getKind() == TemplateName::SubstTemplateTemplateParmPack || |
4297 | T.getKind() == TemplateName::UsingTemplate || |
4298 | T.getKind() == TemplateName::QualifiedTemplate) && |
4299 | "Unexpected template name for TemplateSpecializationType" ); |
4300 | |
4301 | auto *TemplateArgs = reinterpret_cast<TemplateArgument *>(this + 1); |
4302 | for (const TemplateArgument &Arg : Args) { |
4303 | // Update instantiation-dependent, variably-modified, and error bits. |
4304 | // If the canonical type exists and is non-dependent, the template |
4305 | // specialization type can be non-dependent even if one of the type |
4306 | // arguments is. Given: |
4307 | // template<typename T> using U = int; |
4308 | // U<T> is always non-dependent, irrespective of the type T. |
4309 | // However, U<Ts> contains an unexpanded parameter pack, even though |
4310 | // its expansion (and thus its desugared type) doesn't. |
4311 | addDependence(D: toTypeDependence(D: Arg.getDependence()) & |
4312 | ~TypeDependence::Dependent); |
4313 | if (Arg.getKind() == TemplateArgument::Type) |
4314 | addDependence(D: Arg.getAsType()->getDependence() & |
4315 | TypeDependence::VariablyModified); |
4316 | new (TemplateArgs++) TemplateArgument(Arg); |
4317 | } |
4318 | |
4319 | // Store the aliased type if this is a type alias template specialization. |
4320 | if (isTypeAlias()) { |
4321 | auto *Begin = reinterpret_cast<TemplateArgument *>(this + 1); |
4322 | *reinterpret_cast<QualType *>(Begin + Args.size()) = AliasedType; |
4323 | } |
4324 | } |
4325 | |
4326 | QualType TemplateSpecializationType::getAliasedType() const { |
4327 | assert(isTypeAlias() && "not a type alias template specialization" ); |
4328 | return *reinterpret_cast<const QualType *>(template_arguments().end()); |
4329 | } |
4330 | |
4331 | void TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID, |
4332 | const ASTContext &Ctx) { |
4333 | Profile(ID, T: Template, Args: template_arguments(), Context: Ctx); |
4334 | if (isTypeAlias()) |
4335 | getAliasedType().Profile(ID); |
4336 | } |
4337 | |
4338 | void |
4339 | TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID, |
4340 | TemplateName T, |
4341 | ArrayRef<TemplateArgument> Args, |
4342 | const ASTContext &Context) { |
4343 | T.Profile(ID); |
4344 | for (const TemplateArgument &Arg : Args) |
4345 | Arg.Profile(ID, Context); |
4346 | } |
4347 | |
4348 | QualType |
4349 | QualifierCollector::apply(const ASTContext &Context, QualType QT) const { |
4350 | if (!hasNonFastQualifiers()) |
4351 | return QT.withFastQualifiers(TQs: getFastQualifiers()); |
4352 | |
4353 | return Context.getQualifiedType(T: QT, Qs: *this); |
4354 | } |
4355 | |
4356 | QualType |
4357 | QualifierCollector::apply(const ASTContext &Context, const Type *T) const { |
4358 | if (!hasNonFastQualifiers()) |
4359 | return QualType(T, getFastQualifiers()); |
4360 | |
4361 | return Context.getQualifiedType(T, Qs: *this); |
4362 | } |
4363 | |
4364 | void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID, |
4365 | QualType BaseType, |
4366 | ArrayRef<QualType> typeArgs, |
4367 | ArrayRef<ObjCProtocolDecl *> protocols, |
4368 | bool isKindOf) { |
4369 | ID.AddPointer(Ptr: BaseType.getAsOpaquePtr()); |
4370 | ID.AddInteger(I: typeArgs.size()); |
4371 | for (auto typeArg : typeArgs) |
4372 | ID.AddPointer(Ptr: typeArg.getAsOpaquePtr()); |
4373 | ID.AddInteger(I: protocols.size()); |
4374 | for (auto *proto : protocols) |
4375 | ID.AddPointer(Ptr: proto); |
4376 | ID.AddBoolean(B: isKindOf); |
4377 | } |
4378 | |
4379 | void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) { |
4380 | Profile(ID, BaseType: getBaseType(), typeArgs: getTypeArgsAsWritten(), |
4381 | protocols: llvm::ArrayRef(qual_begin(), getNumProtocols()), |
4382 | isKindOf: isKindOfTypeAsWritten()); |
4383 | } |
4384 | |
4385 | void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID, |
4386 | const ObjCTypeParamDecl *OTPDecl, |
4387 | QualType CanonicalType, |
4388 | ArrayRef<ObjCProtocolDecl *> protocols) { |
4389 | ID.AddPointer(Ptr: OTPDecl); |
4390 | ID.AddPointer(Ptr: CanonicalType.getAsOpaquePtr()); |
4391 | ID.AddInteger(I: protocols.size()); |
4392 | for (auto *proto : protocols) |
4393 | ID.AddPointer(Ptr: proto); |
4394 | } |
4395 | |
4396 | void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID) { |
4397 | Profile(ID, OTPDecl: getDecl(), CanonicalType: getCanonicalTypeInternal(), |
4398 | protocols: llvm::ArrayRef(qual_begin(), getNumProtocols())); |
4399 | } |
4400 | |
4401 | namespace { |
4402 | |
4403 | /// The cached properties of a type. |
4404 | class CachedProperties { |
4405 | Linkage L; |
4406 | bool local; |
4407 | |
4408 | public: |
4409 | CachedProperties(Linkage L, bool local) : L(L), local(local) {} |
4410 | |
4411 | Linkage getLinkage() const { return L; } |
4412 | bool hasLocalOrUnnamedType() const { return local; } |
4413 | |
4414 | friend CachedProperties merge(CachedProperties L, CachedProperties R) { |
4415 | Linkage MergedLinkage = minLinkage(L1: L.L, L2: R.L); |
4416 | return CachedProperties(MergedLinkage, L.hasLocalOrUnnamedType() || |
4417 | R.hasLocalOrUnnamedType()); |
4418 | } |
4419 | }; |
4420 | |
4421 | } // namespace |
4422 | |
4423 | static CachedProperties computeCachedProperties(const Type *T); |
4424 | |
4425 | namespace clang { |
4426 | |
4427 | /// The type-property cache. This is templated so as to be |
4428 | /// instantiated at an internal type to prevent unnecessary symbol |
4429 | /// leakage. |
4430 | template <class Private> class TypePropertyCache { |
4431 | public: |
4432 | static CachedProperties get(QualType T) { |
4433 | return get(T.getTypePtr()); |
4434 | } |
4435 | |
4436 | static CachedProperties get(const Type *T) { |
4437 | ensure(T); |
4438 | return CachedProperties(T->TypeBits.getLinkage(), |
4439 | T->TypeBits.hasLocalOrUnnamedType()); |
4440 | } |
4441 | |
4442 | static void ensure(const Type *T) { |
4443 | // If the cache is valid, we're okay. |
4444 | if (T->TypeBits.isCacheValid()) return; |
4445 | |
4446 | // If this type is non-canonical, ask its canonical type for the |
4447 | // relevant information. |
4448 | if (!T->isCanonicalUnqualified()) { |
4449 | const Type *CT = T->getCanonicalTypeInternal().getTypePtr(); |
4450 | ensure(T: CT); |
4451 | T->TypeBits.CacheValid = true; |
4452 | T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage; |
4453 | T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed; |
4454 | return; |
4455 | } |
4456 | |
4457 | // Compute the cached properties and then set the cache. |
4458 | CachedProperties Result = computeCachedProperties(T); |
4459 | T->TypeBits.CacheValid = true; |
4460 | T->TypeBits.CachedLinkage = llvm::to_underlying(E: Result.getLinkage()); |
4461 | T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType(); |
4462 | } |
4463 | }; |
4464 | |
4465 | } // namespace clang |
4466 | |
4467 | // Instantiate the friend template at a private class. In a |
4468 | // reasonable implementation, these symbols will be internal. |
4469 | // It is terrible that this is the best way to accomplish this. |
4470 | namespace { |
4471 | |
4472 | class Private {}; |
4473 | |
4474 | } // namespace |
4475 | |
4476 | using Cache = TypePropertyCache<Private>; |
4477 | |
4478 | static CachedProperties computeCachedProperties(const Type *T) { |
4479 | switch (T->getTypeClass()) { |
4480 | #define TYPE(Class,Base) |
4481 | #define NON_CANONICAL_TYPE(Class,Base) case Type::Class: |
4482 | #include "clang/AST/TypeNodes.inc" |
4483 | llvm_unreachable("didn't expect a non-canonical type here" ); |
4484 | |
4485 | #define TYPE(Class,Base) |
4486 | #define DEPENDENT_TYPE(Class,Base) case Type::Class: |
4487 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class: |
4488 | #include "clang/AST/TypeNodes.inc" |
4489 | // Treat instantiation-dependent types as external. |
4490 | assert(T->isInstantiationDependentType()); |
4491 | return CachedProperties(Linkage::External, false); |
4492 | |
4493 | case Type::Auto: |
4494 | case Type::DeducedTemplateSpecialization: |
4495 | // Give non-deduced 'auto' types external linkage. We should only see them |
4496 | // here in error recovery. |
4497 | return CachedProperties(Linkage::External, false); |
4498 | |
4499 | case Type::BitInt: |
4500 | case Type::Builtin: |
4501 | // C++ [basic.link]p8: |
4502 | // A type is said to have linkage if and only if: |
4503 | // - it is a fundamental type (3.9.1); or |
4504 | return CachedProperties(Linkage::External, false); |
4505 | |
4506 | case Type::Record: |
4507 | case Type::Enum: { |
4508 | const TagDecl *Tag = cast<TagType>(Val: T)->getDecl(); |
4509 | |
4510 | // C++ [basic.link]p8: |
4511 | // - it is a class or enumeration type that is named (or has a name |
4512 | // for linkage purposes (7.1.3)) and the name has linkage; or |
4513 | // - it is a specialization of a class template (14); or |
4514 | Linkage L = Tag->getLinkageInternal(); |
4515 | bool IsLocalOrUnnamed = |
4516 | Tag->getDeclContext()->isFunctionOrMethod() || |
4517 | !Tag->hasNameForLinkage(); |
4518 | return CachedProperties(L, IsLocalOrUnnamed); |
4519 | } |
4520 | |
4521 | // C++ [basic.link]p8: |
4522 | // - it is a compound type (3.9.2) other than a class or enumeration, |
4523 | // compounded exclusively from types that have linkage; or |
4524 | case Type::Complex: |
4525 | return Cache::get(T: cast<ComplexType>(Val: T)->getElementType()); |
4526 | case Type::Pointer: |
4527 | return Cache::get(T: cast<PointerType>(Val: T)->getPointeeType()); |
4528 | case Type::BlockPointer: |
4529 | return Cache::get(T: cast<BlockPointerType>(Val: T)->getPointeeType()); |
4530 | case Type::LValueReference: |
4531 | case Type::RValueReference: |
4532 | return Cache::get(T: cast<ReferenceType>(Val: T)->getPointeeType()); |
4533 | case Type::MemberPointer: { |
4534 | const auto *MPT = cast<MemberPointerType>(Val: T); |
4535 | return merge(L: Cache::get(T: MPT->getClass()), |
4536 | R: Cache::get(T: MPT->getPointeeType())); |
4537 | } |
4538 | case Type::ConstantArray: |
4539 | case Type::IncompleteArray: |
4540 | case Type::VariableArray: |
4541 | case Type::ArrayParameter: |
4542 | return Cache::get(T: cast<ArrayType>(Val: T)->getElementType()); |
4543 | case Type::Vector: |
4544 | case Type::ExtVector: |
4545 | return Cache::get(T: cast<VectorType>(Val: T)->getElementType()); |
4546 | case Type::ConstantMatrix: |
4547 | return Cache::get(T: cast<ConstantMatrixType>(Val: T)->getElementType()); |
4548 | case Type::FunctionNoProto: |
4549 | return Cache::get(T: cast<FunctionType>(Val: T)->getReturnType()); |
4550 | case Type::FunctionProto: { |
4551 | const auto *FPT = cast<FunctionProtoType>(Val: T); |
4552 | CachedProperties result = Cache::get(T: FPT->getReturnType()); |
4553 | for (const auto &ai : FPT->param_types()) |
4554 | result = merge(L: result, R: Cache::get(T: ai)); |
4555 | return result; |
4556 | } |
4557 | case Type::ObjCInterface: { |
4558 | Linkage L = cast<ObjCInterfaceType>(Val: T)->getDecl()->getLinkageInternal(); |
4559 | return CachedProperties(L, false); |
4560 | } |
4561 | case Type::ObjCObject: |
4562 | return Cache::get(T: cast<ObjCObjectType>(Val: T)->getBaseType()); |
4563 | case Type::ObjCObjectPointer: |
4564 | return Cache::get(T: cast<ObjCObjectPointerType>(Val: T)->getPointeeType()); |
4565 | case Type::Atomic: |
4566 | return Cache::get(T: cast<AtomicType>(Val: T)->getValueType()); |
4567 | case Type::Pipe: |
4568 | return Cache::get(T: cast<PipeType>(Val: T)->getElementType()); |
4569 | } |
4570 | |
4571 | llvm_unreachable("unhandled type class" ); |
4572 | } |
4573 | |
4574 | /// Determine the linkage of this type. |
4575 | Linkage Type::getLinkage() const { |
4576 | Cache::ensure(T: this); |
4577 | return TypeBits.getLinkage(); |
4578 | } |
4579 | |
4580 | bool Type::hasUnnamedOrLocalType() const { |
4581 | Cache::ensure(T: this); |
4582 | return TypeBits.hasLocalOrUnnamedType(); |
4583 | } |
4584 | |
4585 | LinkageInfo LinkageComputer::computeTypeLinkageInfo(const Type *T) { |
4586 | switch (T->getTypeClass()) { |
4587 | #define TYPE(Class,Base) |
4588 | #define NON_CANONICAL_TYPE(Class,Base) case Type::Class: |
4589 | #include "clang/AST/TypeNodes.inc" |
4590 | llvm_unreachable("didn't expect a non-canonical type here" ); |
4591 | |
4592 | #define TYPE(Class,Base) |
4593 | #define DEPENDENT_TYPE(Class,Base) case Type::Class: |
4594 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class: |
4595 | #include "clang/AST/TypeNodes.inc" |
4596 | // Treat instantiation-dependent types as external. |
4597 | assert(T->isInstantiationDependentType()); |
4598 | return LinkageInfo::external(); |
4599 | |
4600 | case Type::BitInt: |
4601 | case Type::Builtin: |
4602 | return LinkageInfo::external(); |
4603 | |
4604 | case Type::Auto: |
4605 | case Type::DeducedTemplateSpecialization: |
4606 | return LinkageInfo::external(); |
4607 | |
4608 | case Type::Record: |
4609 | case Type::Enum: |
4610 | return getDeclLinkageAndVisibility(D: cast<TagType>(Val: T)->getDecl()); |
4611 | |
4612 | case Type::Complex: |
4613 | return computeTypeLinkageInfo(T: cast<ComplexType>(Val: T)->getElementType()); |
4614 | case Type::Pointer: |
4615 | return computeTypeLinkageInfo(T: cast<PointerType>(Val: T)->getPointeeType()); |
4616 | case Type::BlockPointer: |
4617 | return computeTypeLinkageInfo(T: cast<BlockPointerType>(Val: T)->getPointeeType()); |
4618 | case Type::LValueReference: |
4619 | case Type::RValueReference: |
4620 | return computeTypeLinkageInfo(T: cast<ReferenceType>(Val: T)->getPointeeType()); |
4621 | case Type::MemberPointer: { |
4622 | const auto *MPT = cast<MemberPointerType>(Val: T); |
4623 | LinkageInfo LV = computeTypeLinkageInfo(T: MPT->getClass()); |
4624 | LV.merge(other: computeTypeLinkageInfo(T: MPT->getPointeeType())); |
4625 | return LV; |
4626 | } |
4627 | case Type::ConstantArray: |
4628 | case Type::IncompleteArray: |
4629 | case Type::VariableArray: |
4630 | case Type::ArrayParameter: |
4631 | return computeTypeLinkageInfo(T: cast<ArrayType>(Val: T)->getElementType()); |
4632 | case Type::Vector: |
4633 | case Type::ExtVector: |
4634 | return computeTypeLinkageInfo(T: cast<VectorType>(Val: T)->getElementType()); |
4635 | case Type::ConstantMatrix: |
4636 | return computeTypeLinkageInfo( |
4637 | T: cast<ConstantMatrixType>(Val: T)->getElementType()); |
4638 | case Type::FunctionNoProto: |
4639 | return computeTypeLinkageInfo(T: cast<FunctionType>(Val: T)->getReturnType()); |
4640 | case Type::FunctionProto: { |
4641 | const auto *FPT = cast<FunctionProtoType>(Val: T); |
4642 | LinkageInfo LV = computeTypeLinkageInfo(T: FPT->getReturnType()); |
4643 | for (const auto &ai : FPT->param_types()) |
4644 | LV.merge(other: computeTypeLinkageInfo(T: ai)); |
4645 | return LV; |
4646 | } |
4647 | case Type::ObjCInterface: |
4648 | return getDeclLinkageAndVisibility(D: cast<ObjCInterfaceType>(Val: T)->getDecl()); |
4649 | case Type::ObjCObject: |
4650 | return computeTypeLinkageInfo(T: cast<ObjCObjectType>(Val: T)->getBaseType()); |
4651 | case Type::ObjCObjectPointer: |
4652 | return computeTypeLinkageInfo( |
4653 | T: cast<ObjCObjectPointerType>(Val: T)->getPointeeType()); |
4654 | case Type::Atomic: |
4655 | return computeTypeLinkageInfo(T: cast<AtomicType>(Val: T)->getValueType()); |
4656 | case Type::Pipe: |
4657 | return computeTypeLinkageInfo(T: cast<PipeType>(Val: T)->getElementType()); |
4658 | } |
4659 | |
4660 | llvm_unreachable("unhandled type class" ); |
4661 | } |
4662 | |
4663 | bool Type::isLinkageValid() const { |
4664 | if (!TypeBits.isCacheValid()) |
4665 | return true; |
4666 | |
4667 | Linkage L = LinkageComputer{} |
4668 | .computeTypeLinkageInfo(T: getCanonicalTypeInternal()) |
4669 | .getLinkage(); |
4670 | return L == TypeBits.getLinkage(); |
4671 | } |
4672 | |
4673 | LinkageInfo LinkageComputer::getTypeLinkageAndVisibility(const Type *T) { |
4674 | if (!T->isCanonicalUnqualified()) |
4675 | return computeTypeLinkageInfo(T: T->getCanonicalTypeInternal()); |
4676 | |
4677 | LinkageInfo LV = computeTypeLinkageInfo(T); |
4678 | assert(LV.getLinkage() == T->getLinkage()); |
4679 | return LV; |
4680 | } |
4681 | |
4682 | LinkageInfo Type::getLinkageAndVisibility() const { |
4683 | return LinkageComputer{}.getTypeLinkageAndVisibility(T: this); |
4684 | } |
4685 | |
4686 | std::optional<NullabilityKind> Type::getNullability() const { |
4687 | QualType Type(this, 0); |
4688 | while (const auto *AT = Type->getAs<AttributedType>()) { |
4689 | // Check whether this is an attributed type with nullability |
4690 | // information. |
4691 | if (auto Nullability = AT->getImmediateNullability()) |
4692 | return Nullability; |
4693 | |
4694 | Type = AT->getEquivalentType(); |
4695 | } |
4696 | return std::nullopt; |
4697 | } |
4698 | |
4699 | bool Type::canHaveNullability(bool ResultIfUnknown) const { |
4700 | QualType type = getCanonicalTypeInternal(); |
4701 | |
4702 | switch (type->getTypeClass()) { |
4703 | // We'll only see canonical types here. |
4704 | #define NON_CANONICAL_TYPE(Class, Parent) \ |
4705 | case Type::Class: \ |
4706 | llvm_unreachable("non-canonical type"); |
4707 | #define TYPE(Class, Parent) |
4708 | #include "clang/AST/TypeNodes.inc" |
4709 | |
4710 | // Pointer types. |
4711 | case Type::Pointer: |
4712 | case Type::BlockPointer: |
4713 | case Type::MemberPointer: |
4714 | case Type::ObjCObjectPointer: |
4715 | return true; |
4716 | |
4717 | // Dependent types that could instantiate to pointer types. |
4718 | case Type::UnresolvedUsing: |
4719 | case Type::TypeOfExpr: |
4720 | case Type::TypeOf: |
4721 | case Type::Decltype: |
4722 | case Type::PackIndexing: |
4723 | case Type::UnaryTransform: |
4724 | case Type::TemplateTypeParm: |
4725 | case Type::SubstTemplateTypeParmPack: |
4726 | case Type::DependentName: |
4727 | case Type::DependentTemplateSpecialization: |
4728 | case Type::Auto: |
4729 | return ResultIfUnknown; |
4730 | |
4731 | // Dependent template specializations could instantiate to pointer types. |
4732 | case Type::TemplateSpecialization: |
4733 | // If it's a known class template, we can already check if it's nullable. |
4734 | if (TemplateDecl *templateDecl = |
4735 | cast<TemplateSpecializationType>(Val: type.getTypePtr()) |
4736 | ->getTemplateName() |
4737 | .getAsTemplateDecl()) |
4738 | if (auto *CTD = dyn_cast<ClassTemplateDecl>(Val: templateDecl)) |
4739 | return CTD->getTemplatedDecl()->hasAttr<TypeNullableAttr>(); |
4740 | return ResultIfUnknown; |
4741 | |
4742 | case Type::Builtin: |
4743 | switch (cast<BuiltinType>(Val: type.getTypePtr())->getKind()) { |
4744 | // Signed, unsigned, and floating-point types cannot have nullability. |
4745 | #define SIGNED_TYPE(Id, SingletonId) case BuiltinType::Id: |
4746 | #define UNSIGNED_TYPE(Id, SingletonId) case BuiltinType::Id: |
4747 | #define FLOATING_TYPE(Id, SingletonId) case BuiltinType::Id: |
4748 | #define BUILTIN_TYPE(Id, SingletonId) |
4749 | #include "clang/AST/BuiltinTypes.def" |
4750 | return false; |
4751 | |
4752 | case BuiltinType::UnresolvedTemplate: |
4753 | // Dependent types that could instantiate to a pointer type. |
4754 | case BuiltinType::Dependent: |
4755 | case BuiltinType::Overload: |
4756 | case BuiltinType::BoundMember: |
4757 | case BuiltinType::PseudoObject: |
4758 | case BuiltinType::UnknownAny: |
4759 | case BuiltinType::ARCUnbridgedCast: |
4760 | return ResultIfUnknown; |
4761 | |
4762 | case BuiltinType::Void: |
4763 | case BuiltinType::ObjCId: |
4764 | case BuiltinType::ObjCClass: |
4765 | case BuiltinType::ObjCSel: |
4766 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
4767 | case BuiltinType::Id: |
4768 | #include "clang/Basic/OpenCLImageTypes.def" |
4769 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
4770 | case BuiltinType::Id: |
4771 | #include "clang/Basic/OpenCLExtensionTypes.def" |
4772 | case BuiltinType::OCLSampler: |
4773 | case BuiltinType::OCLEvent: |
4774 | case BuiltinType::OCLClkEvent: |
4775 | case BuiltinType::OCLQueue: |
4776 | case BuiltinType::OCLReserveID: |
4777 | #define SVE_TYPE(Name, Id, SingletonId) \ |
4778 | case BuiltinType::Id: |
4779 | #include "clang/Basic/AArch64SVEACLETypes.def" |
4780 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
4781 | case BuiltinType::Id: |
4782 | #include "clang/Basic/PPCTypes.def" |
4783 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
4784 | #include "clang/Basic/RISCVVTypes.def" |
4785 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
4786 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
4787 | #define AMDGPU_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
4788 | #include "clang/Basic/AMDGPUTypes.def" |
4789 | case BuiltinType::BuiltinFn: |
4790 | case BuiltinType::NullPtr: |
4791 | case BuiltinType::IncompleteMatrixIdx: |
4792 | case BuiltinType::ArraySection: |
4793 | case BuiltinType::OMPArrayShaping: |
4794 | case BuiltinType::OMPIterator: |
4795 | return false; |
4796 | } |
4797 | llvm_unreachable("unknown builtin type" ); |
4798 | |
4799 | case Type::Record: { |
4800 | const RecordDecl *RD = cast<RecordType>(Val&: type)->getDecl(); |
4801 | // For template specializations, look only at primary template attributes. |
4802 | // This is a consistent regardless of whether the instantiation is known. |
4803 | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: RD)) |
4804 | return CTSD->getSpecializedTemplate() |
4805 | ->getTemplatedDecl() |
4806 | ->hasAttr<TypeNullableAttr>(); |
4807 | return RD->hasAttr<TypeNullableAttr>(); |
4808 | } |
4809 | |
4810 | // Non-pointer types. |
4811 | case Type::Complex: |
4812 | case Type::LValueReference: |
4813 | case Type::RValueReference: |
4814 | case Type::ConstantArray: |
4815 | case Type::IncompleteArray: |
4816 | case Type::VariableArray: |
4817 | case Type::DependentSizedArray: |
4818 | case Type::DependentVector: |
4819 | case Type::DependentSizedExtVector: |
4820 | case Type::Vector: |
4821 | case Type::ExtVector: |
4822 | case Type::ConstantMatrix: |
4823 | case Type::DependentSizedMatrix: |
4824 | case Type::DependentAddressSpace: |
4825 | case Type::FunctionProto: |
4826 | case Type::FunctionNoProto: |
4827 | case Type::DeducedTemplateSpecialization: |
4828 | case Type::Enum: |
4829 | case Type::InjectedClassName: |
4830 | case Type::PackExpansion: |
4831 | case Type::ObjCObject: |
4832 | case Type::ObjCInterface: |
4833 | case Type::Atomic: |
4834 | case Type::Pipe: |
4835 | case Type::BitInt: |
4836 | case Type::DependentBitInt: |
4837 | case Type::ArrayParameter: |
4838 | return false; |
4839 | } |
4840 | llvm_unreachable("bad type kind!" ); |
4841 | } |
4842 | |
4843 | std::optional<NullabilityKind> AttributedType::getImmediateNullability() const { |
4844 | if (getAttrKind() == attr::TypeNonNull) |
4845 | return NullabilityKind::NonNull; |
4846 | if (getAttrKind() == attr::TypeNullable) |
4847 | return NullabilityKind::Nullable; |
4848 | if (getAttrKind() == attr::TypeNullUnspecified) |
4849 | return NullabilityKind::Unspecified; |
4850 | if (getAttrKind() == attr::TypeNullableResult) |
4851 | return NullabilityKind::NullableResult; |
4852 | return std::nullopt; |
4853 | } |
4854 | |
4855 | std::optional<NullabilityKind> |
4856 | AttributedType::stripOuterNullability(QualType &T) { |
4857 | QualType AttrTy = T; |
4858 | if (auto MacroTy = dyn_cast<MacroQualifiedType>(Val&: T)) |
4859 | AttrTy = MacroTy->getUnderlyingType(); |
4860 | |
4861 | if (auto attributed = dyn_cast<AttributedType>(Val&: AttrTy)) { |
4862 | if (auto nullability = attributed->getImmediateNullability()) { |
4863 | T = attributed->getModifiedType(); |
4864 | return nullability; |
4865 | } |
4866 | } |
4867 | |
4868 | return std::nullopt; |
4869 | } |
4870 | |
4871 | bool Type::isBlockCompatibleObjCPointerType(ASTContext &ctx) const { |
4872 | const auto *objcPtr = getAs<ObjCObjectPointerType>(); |
4873 | if (!objcPtr) |
4874 | return false; |
4875 | |
4876 | if (objcPtr->isObjCIdType()) { |
4877 | // id is always okay. |
4878 | return true; |
4879 | } |
4880 | |
4881 | // Blocks are NSObjects. |
4882 | if (ObjCInterfaceDecl *iface = objcPtr->getInterfaceDecl()) { |
4883 | if (iface->getIdentifier() != ctx.getNSObjectName()) |
4884 | return false; |
4885 | |
4886 | // Continue to check qualifiers, below. |
4887 | } else if (objcPtr->isObjCQualifiedIdType()) { |
4888 | // Continue to check qualifiers, below. |
4889 | } else { |
4890 | return false; |
4891 | } |
4892 | |
4893 | // Check protocol qualifiers. |
4894 | for (ObjCProtocolDecl *proto : objcPtr->quals()) { |
4895 | // Blocks conform to NSObject and NSCopying. |
4896 | if (proto->getIdentifier() != ctx.getNSObjectName() && |
4897 | proto->getIdentifier() != ctx.getNSCopyingName()) |
4898 | return false; |
4899 | } |
4900 | |
4901 | return true; |
4902 | } |
4903 | |
4904 | Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const { |
4905 | if (isObjCARCImplicitlyUnretainedType()) |
4906 | return Qualifiers::OCL_ExplicitNone; |
4907 | return Qualifiers::OCL_Strong; |
4908 | } |
4909 | |
4910 | bool Type::isObjCARCImplicitlyUnretainedType() const { |
4911 | assert(isObjCLifetimeType() && |
4912 | "cannot query implicit lifetime for non-inferrable type" ); |
4913 | |
4914 | const Type *canon = getCanonicalTypeInternal().getTypePtr(); |
4915 | |
4916 | // Walk down to the base type. We don't care about qualifiers for this. |
4917 | while (const auto *array = dyn_cast<ArrayType>(Val: canon)) |
4918 | canon = array->getElementType().getTypePtr(); |
4919 | |
4920 | if (const auto *opt = dyn_cast<ObjCObjectPointerType>(Val: canon)) { |
4921 | // Class and Class<Protocol> don't require retention. |
4922 | if (opt->getObjectType()->isObjCClass()) |
4923 | return true; |
4924 | } |
4925 | |
4926 | return false; |
4927 | } |
4928 | |
4929 | bool Type::isObjCNSObjectType() const { |
4930 | if (const auto *typedefType = getAs<TypedefType>()) |
4931 | return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>(); |
4932 | return false; |
4933 | } |
4934 | |
4935 | bool Type::isObjCIndependentClassType() const { |
4936 | if (const auto *typedefType = getAs<TypedefType>()) |
4937 | return typedefType->getDecl()->hasAttr<ObjCIndependentClassAttr>(); |
4938 | return false; |
4939 | } |
4940 | |
4941 | bool Type::isObjCRetainableType() const { |
4942 | return isObjCObjectPointerType() || |
4943 | isBlockPointerType() || |
4944 | isObjCNSObjectType(); |
4945 | } |
4946 | |
4947 | bool Type::isObjCIndirectLifetimeType() const { |
4948 | if (isObjCLifetimeType()) |
4949 | return true; |
4950 | if (const auto *OPT = getAs<PointerType>()) |
4951 | return OPT->getPointeeType()->isObjCIndirectLifetimeType(); |
4952 | if (const auto *Ref = getAs<ReferenceType>()) |
4953 | return Ref->getPointeeType()->isObjCIndirectLifetimeType(); |
4954 | if (const auto *MemPtr = getAs<MemberPointerType>()) |
4955 | return MemPtr->getPointeeType()->isObjCIndirectLifetimeType(); |
4956 | return false; |
4957 | } |
4958 | |
4959 | /// Returns true if objects of this type have lifetime semantics under |
4960 | /// ARC. |
4961 | bool Type::isObjCLifetimeType() const { |
4962 | const Type *type = this; |
4963 | while (const ArrayType *array = type->getAsArrayTypeUnsafe()) |
4964 | type = array->getElementType().getTypePtr(); |
4965 | return type->isObjCRetainableType(); |
4966 | } |
4967 | |
4968 | /// Determine whether the given type T is a "bridgable" Objective-C type, |
4969 | /// which is either an Objective-C object pointer type or an |
4970 | bool Type::isObjCARCBridgableType() const { |
4971 | return isObjCObjectPointerType() || isBlockPointerType(); |
4972 | } |
4973 | |
4974 | /// Determine whether the given type T is a "bridgeable" C type. |
4975 | bool Type::isCARCBridgableType() const { |
4976 | const auto *Pointer = getAs<PointerType>(); |
4977 | if (!Pointer) |
4978 | return false; |
4979 | |
4980 | QualType Pointee = Pointer->getPointeeType(); |
4981 | return Pointee->isVoidType() || Pointee->isRecordType(); |
4982 | } |
4983 | |
4984 | /// Check if the specified type is the CUDA device builtin surface type. |
4985 | bool Type::isCUDADeviceBuiltinSurfaceType() const { |
4986 | if (const auto *RT = getAs<RecordType>()) |
4987 | return RT->getDecl()->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>(); |
4988 | return false; |
4989 | } |
4990 | |
4991 | /// Check if the specified type is the CUDA device builtin texture type. |
4992 | bool Type::isCUDADeviceBuiltinTextureType() const { |
4993 | if (const auto *RT = getAs<RecordType>()) |
4994 | return RT->getDecl()->hasAttr<CUDADeviceBuiltinTextureTypeAttr>(); |
4995 | return false; |
4996 | } |
4997 | |
4998 | bool Type::hasSizedVLAType() const { |
4999 | if (!isVariablyModifiedType()) return false; |
5000 | |
5001 | if (const auto *ptr = getAs<PointerType>()) |
5002 | return ptr->getPointeeType()->hasSizedVLAType(); |
5003 | if (const auto *ref = getAs<ReferenceType>()) |
5004 | return ref->getPointeeType()->hasSizedVLAType(); |
5005 | if (const ArrayType *arr = getAsArrayTypeUnsafe()) { |
5006 | if (isa<VariableArrayType>(Val: arr) && |
5007 | cast<VariableArrayType>(Val: arr)->getSizeExpr()) |
5008 | return true; |
5009 | |
5010 | return arr->getElementType()->hasSizedVLAType(); |
5011 | } |
5012 | |
5013 | return false; |
5014 | } |
5015 | |
5016 | QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) { |
5017 | switch (type.getObjCLifetime()) { |
5018 | case Qualifiers::OCL_None: |
5019 | case Qualifiers::OCL_ExplicitNone: |
5020 | case Qualifiers::OCL_Autoreleasing: |
5021 | break; |
5022 | |
5023 | case Qualifiers::OCL_Strong: |
5024 | return DK_objc_strong_lifetime; |
5025 | case Qualifiers::OCL_Weak: |
5026 | return DK_objc_weak_lifetime; |
5027 | } |
5028 | |
5029 | if (const auto *RT = |
5030 | type->getBaseElementTypeUnsafe()->getAs<RecordType>()) { |
5031 | const RecordDecl *RD = RT->getDecl(); |
5032 | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
5033 | /// Check if this is a C++ object with a non-trivial destructor. |
5034 | if (CXXRD->hasDefinition() && !CXXRD->hasTrivialDestructor()) |
5035 | return DK_cxx_destructor; |
5036 | } else { |
5037 | /// Check if this is a C struct that is non-trivial to destroy or an array |
5038 | /// that contains such a struct. |
5039 | if (RD->isNonTrivialToPrimitiveDestroy()) |
5040 | return DK_nontrivial_c_struct; |
5041 | } |
5042 | } |
5043 | |
5044 | return DK_none; |
5045 | } |
5046 | |
5047 | CXXRecordDecl *MemberPointerType::getMostRecentCXXRecordDecl() const { |
5048 | return getClass()->getAsCXXRecordDecl()->getMostRecentNonInjectedDecl(); |
5049 | } |
5050 | |
5051 | void clang::FixedPointValueToString(SmallVectorImpl<char> &Str, |
5052 | llvm::APSInt Val, unsigned Scale) { |
5053 | llvm::FixedPointSemantics FXSema(Val.getBitWidth(), Scale, Val.isSigned(), |
5054 | /*IsSaturated=*/false, |
5055 | /*HasUnsignedPadding=*/false); |
5056 | llvm::APFixedPoint(Val, FXSema).toString(Str); |
5057 | } |
5058 | |
5059 | AutoType::AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword, |
5060 | TypeDependence , QualType Canon, |
5061 | ConceptDecl *TypeConstraintConcept, |
5062 | ArrayRef<TemplateArgument> TypeConstraintArgs) |
5063 | : DeducedType(Auto, DeducedAsType, ExtraDependence, Canon) { |
5064 | AutoTypeBits.Keyword = llvm::to_underlying(E: Keyword); |
5065 | AutoTypeBits.NumArgs = TypeConstraintArgs.size(); |
5066 | this->TypeConstraintConcept = TypeConstraintConcept; |
5067 | assert(TypeConstraintConcept || AutoTypeBits.NumArgs == 0); |
5068 | if (TypeConstraintConcept) { |
5069 | auto *ArgBuffer = |
5070 | const_cast<TemplateArgument *>(getTypeConstraintArguments().data()); |
5071 | for (const TemplateArgument &Arg : TypeConstraintArgs) { |
5072 | // We only syntactically depend on the constraint arguments. They don't |
5073 | // affect the deduced type, only its validity. |
5074 | addDependence( |
5075 | D: toSyntacticDependence(D: toTypeDependence(D: Arg.getDependence()))); |
5076 | |
5077 | new (ArgBuffer++) TemplateArgument(Arg); |
5078 | } |
5079 | } |
5080 | } |
5081 | |
5082 | void AutoType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
5083 | QualType Deduced, AutoTypeKeyword Keyword, |
5084 | bool IsDependent, ConceptDecl *CD, |
5085 | ArrayRef<TemplateArgument> Arguments) { |
5086 | ID.AddPointer(Ptr: Deduced.getAsOpaquePtr()); |
5087 | ID.AddInteger(I: (unsigned)Keyword); |
5088 | ID.AddBoolean(B: IsDependent); |
5089 | ID.AddPointer(Ptr: CD); |
5090 | for (const TemplateArgument &Arg : Arguments) |
5091 | Arg.Profile(ID, Context); |
5092 | } |
5093 | |
5094 | void AutoType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) { |
5095 | Profile(ID, Context, Deduced: getDeducedType(), Keyword: getKeyword(), IsDependent: isDependentType(), |
5096 | CD: getTypeConstraintConcept(), Arguments: getTypeConstraintArguments()); |
5097 | } |
5098 | |
5099 | FunctionEffect::Kind FunctionEffect::oppositeKind() const { |
5100 | switch (kind()) { |
5101 | case Kind::NonBlocking: |
5102 | return Kind::Blocking; |
5103 | case Kind::Blocking: |
5104 | return Kind::NonBlocking; |
5105 | case Kind::NonAllocating: |
5106 | return Kind::Allocating; |
5107 | case Kind::Allocating: |
5108 | return Kind::NonAllocating; |
5109 | case Kind::None: |
5110 | return Kind::None; |
5111 | } |
5112 | llvm_unreachable("unknown effect kind" ); |
5113 | } |
5114 | |
5115 | StringRef FunctionEffect::name() const { |
5116 | switch (kind()) { |
5117 | case Kind::NonBlocking: |
5118 | return "nonblocking" ; |
5119 | case Kind::NonAllocating: |
5120 | return "nonallocating" ; |
5121 | case Kind::Blocking: |
5122 | return "blocking" ; |
5123 | case Kind::Allocating: |
5124 | return "allocating" ; |
5125 | case Kind::None: |
5126 | return "(none)" ; |
5127 | } |
5128 | llvm_unreachable("unknown effect kind" ); |
5129 | } |
5130 | |
5131 | bool FunctionEffect::canInferOnFunction(const Decl &Callee) const { |
5132 | switch (kind()) { |
5133 | case Kind::NonAllocating: |
5134 | case Kind::NonBlocking: { |
5135 | FunctionEffectsRef CalleeFX; |
5136 | if (auto *FD = Callee.getAsFunction()) |
5137 | CalleeFX = FD->getFunctionEffects(); |
5138 | else if (auto *BD = dyn_cast<BlockDecl>(Val: &Callee)) |
5139 | CalleeFX = BD->getFunctionEffects(); |
5140 | else |
5141 | return false; |
5142 | for (const FunctionEffectWithCondition &CalleeEC : CalleeFX) { |
5143 | // nonblocking/nonallocating cannot call allocating. |
5144 | if (CalleeEC.Effect.kind() == Kind::Allocating) |
5145 | return false; |
5146 | // nonblocking cannot call blocking. |
5147 | if (kind() == Kind::NonBlocking && |
5148 | CalleeEC.Effect.kind() == Kind::Blocking) |
5149 | return false; |
5150 | } |
5151 | return true; |
5152 | } |
5153 | |
5154 | case Kind::Allocating: |
5155 | case Kind::Blocking: |
5156 | return false; |
5157 | |
5158 | case Kind::None: |
5159 | assert(0 && "canInferOnFunction with None" ); |
5160 | break; |
5161 | } |
5162 | llvm_unreachable("unknown effect kind" ); |
5163 | } |
5164 | |
5165 | bool FunctionEffect::shouldDiagnoseFunctionCall( |
5166 | bool Direct, ArrayRef<FunctionEffect> CalleeFX) const { |
5167 | switch (kind()) { |
5168 | case Kind::NonAllocating: |
5169 | case Kind::NonBlocking: { |
5170 | const Kind CallerKind = kind(); |
5171 | for (const auto &Effect : CalleeFX) { |
5172 | const Kind EK = Effect.kind(); |
5173 | // Does callee have same or stronger constraint? |
5174 | if (EK == CallerKind || |
5175 | (CallerKind == Kind::NonAllocating && EK == Kind::NonBlocking)) { |
5176 | return false; // no diagnostic |
5177 | } |
5178 | } |
5179 | return true; // warning |
5180 | } |
5181 | case Kind::Allocating: |
5182 | case Kind::Blocking: |
5183 | return false; |
5184 | case Kind::None: |
5185 | assert(0 && "shouldDiagnoseFunctionCall with None" ); |
5186 | break; |
5187 | } |
5188 | llvm_unreachable("unknown effect kind" ); |
5189 | } |
5190 | |
5191 | // ===== |
5192 | |
5193 | bool FunctionEffectSet::insert(const FunctionEffectWithCondition &NewEC, |
5194 | Conflicts &Errs) { |
5195 | FunctionEffect::Kind NewOppositeKind = NewEC.Effect.oppositeKind(); |
5196 | Expr *NewCondition = NewEC.Cond.getCondition(); |
5197 | |
5198 | // The index at which insertion will take place; default is at end |
5199 | // but we might find an earlier insertion point. |
5200 | unsigned InsertIdx = Effects.size(); |
5201 | unsigned Idx = 0; |
5202 | for (const FunctionEffectWithCondition &EC : *this) { |
5203 | // Note about effects with conditions: They are considered distinct from |
5204 | // those without conditions; they are potentially unique, redundant, or |
5205 | // in conflict, but we can't tell which until the condition is evaluated. |
5206 | if (EC.Cond.getCondition() == nullptr && NewCondition == nullptr) { |
5207 | if (EC.Effect.kind() == NewEC.Effect.kind()) { |
5208 | // There is no condition, and the effect kind is already present, |
5209 | // so just fail to insert the new one (creating a duplicate), |
5210 | // and return success. |
5211 | return true; |
5212 | } |
5213 | |
5214 | if (EC.Effect.kind() == NewOppositeKind) { |
5215 | Errs.push_back(Elt: {.Kept: EC, .Rejected: NewEC}); |
5216 | return false; |
5217 | } |
5218 | } |
5219 | |
5220 | if (NewEC.Effect.kind() < EC.Effect.kind() && InsertIdx > Idx) |
5221 | InsertIdx = Idx; |
5222 | |
5223 | ++Idx; |
5224 | } |
5225 | |
5226 | if (NewCondition || !Conditions.empty()) { |
5227 | if (Conditions.empty() && !Effects.empty()) |
5228 | Conditions.resize(N: Effects.size()); |
5229 | Conditions.insert(I: Conditions.begin() + InsertIdx, |
5230 | Elt: NewEC.Cond.getCondition()); |
5231 | } |
5232 | Effects.insert(I: Effects.begin() + InsertIdx, Elt: NewEC.Effect); |
5233 | return true; |
5234 | } |
5235 | |
5236 | bool FunctionEffectSet::insert(const FunctionEffectsRef &Set, Conflicts &Errs) { |
5237 | for (const auto &Item : Set) |
5238 | insert(NewEC: Item, Errs); |
5239 | return Errs.empty(); |
5240 | } |
5241 | |
5242 | FunctionEffectSet FunctionEffectSet::getIntersection(FunctionEffectsRef LHS, |
5243 | FunctionEffectsRef RHS) { |
5244 | FunctionEffectSet Result; |
5245 | FunctionEffectSet::Conflicts Errs; |
5246 | |
5247 | // We could use std::set_intersection but that would require expanding the |
5248 | // container interface to include push_back, making it available to clients |
5249 | // who might fail to maintain invariants. |
5250 | auto IterA = LHS.begin(), EndA = LHS.end(); |
5251 | auto IterB = RHS.begin(), EndB = RHS.end(); |
5252 | |
5253 | auto FEWCLess = [](const FunctionEffectWithCondition &LHS, |
5254 | const FunctionEffectWithCondition &RHS) { |
5255 | return std::tuple(LHS.Effect, uintptr_t(LHS.Cond.getCondition())) < |
5256 | std::tuple(RHS.Effect, uintptr_t(RHS.Cond.getCondition())); |
5257 | }; |
5258 | |
5259 | while (IterA != EndA && IterB != EndB) { |
5260 | FunctionEffectWithCondition A = *IterA; |
5261 | FunctionEffectWithCondition B = *IterB; |
5262 | if (FEWCLess(A, B)) |
5263 | ++IterA; |
5264 | else if (FEWCLess(B, A)) |
5265 | ++IterB; |
5266 | else { |
5267 | Result.insert(NewEC: A, Errs); |
5268 | ++IterA; |
5269 | ++IterB; |
5270 | } |
5271 | } |
5272 | |
5273 | // Insertion shouldn't be able to fail; that would mean both input |
5274 | // sets contained conflicts. |
5275 | assert(Errs.empty() && "conflict shouldn't be possible in getIntersection" ); |
5276 | |
5277 | return Result; |
5278 | } |
5279 | |
5280 | FunctionEffectSet FunctionEffectSet::getUnion(FunctionEffectsRef LHS, |
5281 | FunctionEffectsRef RHS, |
5282 | Conflicts &Errs) { |
5283 | // Optimize for either of the two sets being empty (very common). |
5284 | if (LHS.empty()) |
5285 | return FunctionEffectSet(RHS); |
5286 | |
5287 | FunctionEffectSet Combined(LHS); |
5288 | Combined.insert(Set: RHS, Errs); |
5289 | return Combined; |
5290 | } |
5291 | |
5292 | LLVM_DUMP_METHOD void FunctionEffectsRef::dump(llvm::raw_ostream &OS) const { |
5293 | OS << "Effects{" ; |
5294 | bool First = true; |
5295 | for (const auto &CFE : *this) { |
5296 | if (!First) |
5297 | OS << ", " ; |
5298 | else |
5299 | First = false; |
5300 | OS << CFE.Effect.name(); |
5301 | if (Expr *E = CFE.Cond.getCondition()) { |
5302 | OS << '('; |
5303 | E->dump(); |
5304 | OS << ')'; |
5305 | } |
5306 | } |
5307 | OS << "}" ; |
5308 | } |
5309 | |
5310 | LLVM_DUMP_METHOD void FunctionEffectSet::dump(llvm::raw_ostream &OS) const { |
5311 | FunctionEffectsRef(*this).dump(OS); |
5312 | } |
5313 | |
5314 | FunctionEffectsRef |
5315 | FunctionEffectsRef::create(ArrayRef<FunctionEffect> FX, |
5316 | ArrayRef<EffectConditionExpr> Conds) { |
5317 | assert(std::is_sorted(FX.begin(), FX.end()) && "effects should be sorted" ); |
5318 | assert((Conds.empty() || Conds.size() == FX.size()) && |
5319 | "effects size should match conditions size" ); |
5320 | return FunctionEffectsRef(FX, Conds); |
5321 | } |
5322 | |
5323 | std::string FunctionEffectWithCondition::description() const { |
5324 | std::string Result(Effect.name().str()); |
5325 | if (Cond.getCondition() != nullptr) |
5326 | Result += "(expr)" ; |
5327 | return Result; |
5328 | } |
5329 | |