1//===- Type.cpp - Type representation and manipulation --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements type-related functionality.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Type.h"
14#include "Linkage.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclBase.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/DependenceFlags.h"
25#include "clang/AST/Expr.h"
26#include "clang/AST/NestedNameSpecifier.h"
27#include "clang/AST/NonTrivialTypeVisitor.h"
28#include "clang/AST/PrettyPrinter.h"
29#include "clang/AST/TemplateBase.h"
30#include "clang/AST/TemplateName.h"
31#include "clang/AST/TypeVisitor.h"
32#include "clang/Basic/AddressSpaces.h"
33#include "clang/Basic/ExceptionSpecificationType.h"
34#include "clang/Basic/IdentifierTable.h"
35#include "clang/Basic/LLVM.h"
36#include "clang/Basic/LangOptions.h"
37#include "clang/Basic/Linkage.h"
38#include "clang/Basic/Specifiers.h"
39#include "clang/Basic/TargetCXXABI.h"
40#include "clang/Basic/TargetInfo.h"
41#include "clang/Basic/Visibility.h"
42#include "llvm/ADT/APInt.h"
43#include "llvm/ADT/APSInt.h"
44#include "llvm/ADT/ArrayRef.h"
45#include "llvm/ADT/FoldingSet.h"
46#include "llvm/ADT/SmallVector.h"
47#include "llvm/Support/Casting.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/TargetParser/RISCVTargetParser.h"
51#include <algorithm>
52#include <cassert>
53#include <cstdint>
54#include <cstring>
55#include <optional>
56#include <type_traits>
57
58using namespace clang;
59
60bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
61 return (*this != Other) &&
62 // CVR qualifiers superset
63 (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
64 // ObjC GC qualifiers superset
65 ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
66 (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
67 // Address space superset.
68 ((getAddressSpace() == Other.getAddressSpace()) ||
69 (hasAddressSpace()&& !Other.hasAddressSpace())) &&
70 // Lifetime qualifier superset.
71 ((getObjCLifetime() == Other.getObjCLifetime()) ||
72 (hasObjCLifetime() && !Other.hasObjCLifetime()));
73}
74
75const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
76 const Type* ty = getTypePtr();
77 NamedDecl *ND = nullptr;
78 if (ty->isPointerType() || ty->isReferenceType())
79 return ty->getPointeeType().getBaseTypeIdentifier();
80 else if (ty->isRecordType())
81 ND = ty->castAs<RecordType>()->getDecl();
82 else if (ty->isEnumeralType())
83 ND = ty->castAs<EnumType>()->getDecl();
84 else if (ty->getTypeClass() == Type::Typedef)
85 ND = ty->castAs<TypedefType>()->getDecl();
86 else if (ty->isArrayType())
87 return ty->castAsArrayTypeUnsafe()->
88 getElementType().getBaseTypeIdentifier();
89
90 if (ND)
91 return ND->getIdentifier();
92 return nullptr;
93}
94
95bool QualType::mayBeDynamicClass() const {
96 const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl();
97 return ClassDecl && ClassDecl->mayBeDynamicClass();
98}
99
100bool QualType::mayBeNotDynamicClass() const {
101 const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl();
102 return !ClassDecl || ClassDecl->mayBeNonDynamicClass();
103}
104
105bool QualType::isConstant(QualType T, const ASTContext &Ctx) {
106 if (T.isConstQualified())
107 return true;
108
109 if (const ArrayType *AT = Ctx.getAsArrayType(T))
110 return AT->getElementType().isConstant(Ctx);
111
112 return T.getAddressSpace() == LangAS::opencl_constant;
113}
114
115std::optional<QualType::NonConstantStorageReason>
116QualType::isNonConstantStorage(const ASTContext &Ctx, bool ExcludeCtor,
117 bool ExcludeDtor) {
118 if (!isConstant(Ctx) && !(*this)->isReferenceType())
119 return NonConstantStorageReason::NonConstNonReferenceType;
120 if (!Ctx.getLangOpts().CPlusPlus)
121 return std::nullopt;
122 if (const CXXRecordDecl *Record =
123 Ctx.getBaseElementType(QT: *this)->getAsCXXRecordDecl()) {
124 if (!ExcludeCtor)
125 return NonConstantStorageReason::NonTrivialCtor;
126 if (Record->hasMutableFields())
127 return NonConstantStorageReason::MutableField;
128 if (!Record->hasTrivialDestructor() && !ExcludeDtor)
129 return NonConstantStorageReason::NonTrivialDtor;
130 }
131 return std::nullopt;
132}
133
134// C++ [temp.dep.type]p1:
135// A type is dependent if it is...
136// - an array type constructed from any dependent type or whose
137// size is specified by a constant expression that is
138// value-dependent,
139ArrayType::ArrayType(TypeClass tc, QualType et, QualType can,
140 ArraySizeModifier sm, unsigned tq, const Expr *sz)
141 // Note, we need to check for DependentSizedArrayType explicitly here
142 // because we use a DependentSizedArrayType with no size expression as the
143 // type of a dependent array of unknown bound with a dependent braced
144 // initializer:
145 //
146 // template<int ...N> int arr[] = {N...};
147 : Type(tc, can,
148 et->getDependence() |
149 (sz ? toTypeDependence(
150 D: turnValueToTypeDependence(D: sz->getDependence()))
151 : TypeDependence::None) |
152 (tc == VariableArray ? TypeDependence::VariablyModified
153 : TypeDependence::None) |
154 (tc == DependentSizedArray
155 ? TypeDependence::DependentInstantiation
156 : TypeDependence::None)),
157 ElementType(et) {
158 ArrayTypeBits.IndexTypeQuals = tq;
159 ArrayTypeBits.SizeModifier = llvm::to_underlying(E: sm);
160}
161
162ConstantArrayType *
163ConstantArrayType::Create(const ASTContext &Ctx, QualType ET, QualType Can,
164 const llvm::APInt &Sz, const Expr *SzExpr,
165 ArraySizeModifier SzMod, unsigned Qual) {
166 bool NeedsExternalSize = SzExpr != nullptr || Sz.ugt(RHS: 0x0FFFFFFFFFFFFFFF) ||
167 Sz.getBitWidth() > 0xFF;
168 if (!NeedsExternalSize)
169 return new (Ctx, alignof(ConstantArrayType)) ConstantArrayType(
170 ET, Can, Sz.getBitWidth(), Sz.getZExtValue(), SzMod, Qual);
171
172 auto *SzPtr = new (Ctx, alignof(ConstantArrayType::ExternalSize))
173 ConstantArrayType::ExternalSize(Sz, SzExpr);
174 return new (Ctx, alignof(ConstantArrayType))
175 ConstantArrayType(ET, Can, SzPtr, SzMod, Qual);
176}
177
178unsigned ConstantArrayType::getNumAddressingBits(const ASTContext &Context,
179 QualType ElementType,
180 const llvm::APInt &NumElements) {
181 uint64_t ElementSize = Context.getTypeSizeInChars(T: ElementType).getQuantity();
182
183 // Fast path the common cases so we can avoid the conservative computation
184 // below, which in common cases allocates "large" APSInt values, which are
185 // slow.
186
187 // If the element size is a power of 2, we can directly compute the additional
188 // number of addressing bits beyond those required for the element count.
189 if (llvm::isPowerOf2_64(Value: ElementSize)) {
190 return NumElements.getActiveBits() + llvm::Log2_64(Value: ElementSize);
191 }
192
193 // If both the element count and element size fit in 32-bits, we can do the
194 // computation directly in 64-bits.
195 if ((ElementSize >> 32) == 0 && NumElements.getBitWidth() <= 64 &&
196 (NumElements.getZExtValue() >> 32) == 0) {
197 uint64_t TotalSize = NumElements.getZExtValue() * ElementSize;
198 return llvm::bit_width(Value: TotalSize);
199 }
200
201 // Otherwise, use APSInt to handle arbitrary sized values.
202 llvm::APSInt SizeExtended(NumElements, true);
203 unsigned SizeTypeBits = Context.getTypeSize(T: Context.getSizeType());
204 SizeExtended = SizeExtended.extend(width: std::max(a: SizeTypeBits,
205 b: SizeExtended.getBitWidth()) * 2);
206
207 llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
208 TotalSize *= SizeExtended;
209
210 return TotalSize.getActiveBits();
211}
212
213unsigned
214ConstantArrayType::getNumAddressingBits(const ASTContext &Context) const {
215 return getNumAddressingBits(Context, ElementType: getElementType(), NumElements: getSize());
216}
217
218unsigned ConstantArrayType::getMaxSizeBits(const ASTContext &Context) {
219 unsigned Bits = Context.getTypeSize(T: Context.getSizeType());
220
221 // Limit the number of bits in size_t so that maximal bit size fits 64 bit
222 // integer (see PR8256). We can do this as currently there is no hardware
223 // that supports full 64-bit virtual space.
224 if (Bits > 61)
225 Bits = 61;
226
227 return Bits;
228}
229
230void ConstantArrayType::Profile(llvm::FoldingSetNodeID &ID,
231 const ASTContext &Context, QualType ET,
232 uint64_t ArraySize, const Expr *SizeExpr,
233 ArraySizeModifier SizeMod, unsigned TypeQuals) {
234 ID.AddPointer(Ptr: ET.getAsOpaquePtr());
235 ID.AddInteger(I: ArraySize);
236 ID.AddInteger(I: llvm::to_underlying(E: SizeMod));
237 ID.AddInteger(I: TypeQuals);
238 ID.AddBoolean(B: SizeExpr != nullptr);
239 if (SizeExpr)
240 SizeExpr->Profile(ID, Context, Canonical: true);
241}
242
243DependentSizedArrayType::DependentSizedArrayType(QualType et, QualType can,
244 Expr *e, ArraySizeModifier sm,
245 unsigned tq,
246 SourceRange brackets)
247 : ArrayType(DependentSizedArray, et, can, sm, tq, e), SizeExpr((Stmt *)e),
248 Brackets(brackets) {}
249
250void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
251 const ASTContext &Context,
252 QualType ET,
253 ArraySizeModifier SizeMod,
254 unsigned TypeQuals,
255 Expr *E) {
256 ID.AddPointer(Ptr: ET.getAsOpaquePtr());
257 ID.AddInteger(I: llvm::to_underlying(E: SizeMod));
258 ID.AddInteger(I: TypeQuals);
259 if (E)
260 E->Profile(ID, Context, Canonical: true);
261}
262
263DependentVectorType::DependentVectorType(QualType ElementType,
264 QualType CanonType, Expr *SizeExpr,
265 SourceLocation Loc, VectorKind VecKind)
266 : Type(DependentVector, CanonType,
267 TypeDependence::DependentInstantiation |
268 ElementType->getDependence() |
269 (SizeExpr ? toTypeDependence(D: SizeExpr->getDependence())
270 : TypeDependence::None)),
271 ElementType(ElementType), SizeExpr(SizeExpr), Loc(Loc) {
272 VectorTypeBits.VecKind = llvm::to_underlying(E: VecKind);
273}
274
275void DependentVectorType::Profile(llvm::FoldingSetNodeID &ID,
276 const ASTContext &Context,
277 QualType ElementType, const Expr *SizeExpr,
278 VectorKind VecKind) {
279 ID.AddPointer(Ptr: ElementType.getAsOpaquePtr());
280 ID.AddInteger(I: llvm::to_underlying(E: VecKind));
281 SizeExpr->Profile(ID, Context, Canonical: true);
282}
283
284DependentSizedExtVectorType::DependentSizedExtVectorType(QualType ElementType,
285 QualType can,
286 Expr *SizeExpr,
287 SourceLocation loc)
288 : Type(DependentSizedExtVector, can,
289 TypeDependence::DependentInstantiation |
290 ElementType->getDependence() |
291 (SizeExpr ? toTypeDependence(D: SizeExpr->getDependence())
292 : TypeDependence::None)),
293 SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) {}
294
295void
296DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
297 const ASTContext &Context,
298 QualType ElementType, Expr *SizeExpr) {
299 ID.AddPointer(Ptr: ElementType.getAsOpaquePtr());
300 SizeExpr->Profile(ID, Context, Canonical: true);
301}
302
303DependentAddressSpaceType::DependentAddressSpaceType(QualType PointeeType,
304 QualType can,
305 Expr *AddrSpaceExpr,
306 SourceLocation loc)
307 : Type(DependentAddressSpace, can,
308 TypeDependence::DependentInstantiation |
309 PointeeType->getDependence() |
310 (AddrSpaceExpr ? toTypeDependence(D: AddrSpaceExpr->getDependence())
311 : TypeDependence::None)),
312 AddrSpaceExpr(AddrSpaceExpr), PointeeType(PointeeType), loc(loc) {}
313
314void DependentAddressSpaceType::Profile(llvm::FoldingSetNodeID &ID,
315 const ASTContext &Context,
316 QualType PointeeType,
317 Expr *AddrSpaceExpr) {
318 ID.AddPointer(Ptr: PointeeType.getAsOpaquePtr());
319 AddrSpaceExpr->Profile(ID, Context, Canonical: true);
320}
321
322MatrixType::MatrixType(TypeClass tc, QualType matrixType, QualType canonType,
323 const Expr *RowExpr, const Expr *ColumnExpr)
324 : Type(tc, canonType,
325 (RowExpr ? (matrixType->getDependence() | TypeDependence::Dependent |
326 TypeDependence::Instantiation |
327 (matrixType->isVariablyModifiedType()
328 ? TypeDependence::VariablyModified
329 : TypeDependence::None) |
330 (matrixType->containsUnexpandedParameterPack() ||
331 (RowExpr &&
332 RowExpr->containsUnexpandedParameterPack()) ||
333 (ColumnExpr &&
334 ColumnExpr->containsUnexpandedParameterPack())
335 ? TypeDependence::UnexpandedPack
336 : TypeDependence::None))
337 : matrixType->getDependence())),
338 ElementType(matrixType) {}
339
340ConstantMatrixType::ConstantMatrixType(QualType matrixType, unsigned nRows,
341 unsigned nColumns, QualType canonType)
342 : ConstantMatrixType(ConstantMatrix, matrixType, nRows, nColumns,
343 canonType) {}
344
345ConstantMatrixType::ConstantMatrixType(TypeClass tc, QualType matrixType,
346 unsigned nRows, unsigned nColumns,
347 QualType canonType)
348 : MatrixType(tc, matrixType, canonType), NumRows(nRows),
349 NumColumns(nColumns) {}
350
351DependentSizedMatrixType::DependentSizedMatrixType(QualType ElementType,
352 QualType CanonicalType,
353 Expr *RowExpr,
354 Expr *ColumnExpr,
355 SourceLocation loc)
356 : MatrixType(DependentSizedMatrix, ElementType, CanonicalType, RowExpr,
357 ColumnExpr),
358 RowExpr(RowExpr), ColumnExpr(ColumnExpr), loc(loc) {}
359
360void DependentSizedMatrixType::Profile(llvm::FoldingSetNodeID &ID,
361 const ASTContext &CTX,
362 QualType ElementType, Expr *RowExpr,
363 Expr *ColumnExpr) {
364 ID.AddPointer(Ptr: ElementType.getAsOpaquePtr());
365 RowExpr->Profile(ID, Context: CTX, Canonical: true);
366 ColumnExpr->Profile(ID, Context: CTX, Canonical: true);
367}
368
369VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
370 VectorKind vecKind)
371 : VectorType(Vector, vecType, nElements, canonType, vecKind) {}
372
373VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
374 QualType canonType, VectorKind vecKind)
375 : Type(tc, canonType, vecType->getDependence()), ElementType(vecType) {
376 VectorTypeBits.VecKind = llvm::to_underlying(E: vecKind);
377 VectorTypeBits.NumElements = nElements;
378}
379
380BitIntType::BitIntType(bool IsUnsigned, unsigned NumBits)
381 : Type(BitInt, QualType{}, TypeDependence::None), IsUnsigned(IsUnsigned),
382 NumBits(NumBits) {}
383
384DependentBitIntType::DependentBitIntType(bool IsUnsigned, Expr *NumBitsExpr)
385 : Type(DependentBitInt, QualType{},
386 toTypeDependence(D: NumBitsExpr->getDependence())),
387 ExprAndUnsigned(NumBitsExpr, IsUnsigned) {}
388
389bool DependentBitIntType::isUnsigned() const {
390 return ExprAndUnsigned.getInt();
391}
392
393clang::Expr *DependentBitIntType::getNumBitsExpr() const {
394 return ExprAndUnsigned.getPointer();
395}
396
397void DependentBitIntType::Profile(llvm::FoldingSetNodeID &ID,
398 const ASTContext &Context, bool IsUnsigned,
399 Expr *NumBitsExpr) {
400 ID.AddBoolean(B: IsUnsigned);
401 NumBitsExpr->Profile(ID, Context, Canonical: true);
402}
403
404bool BoundsAttributedType::referencesFieldDecls() const {
405 return llvm::any_of(Range: dependent_decls(),
406 P: [](const TypeCoupledDeclRefInfo &Info) {
407 return isa<FieldDecl>(Val: Info.getDecl());
408 });
409}
410
411void CountAttributedType::Profile(llvm::FoldingSetNodeID &ID,
412 QualType WrappedTy, Expr *CountExpr,
413 bool CountInBytes, bool OrNull) {
414 ID.AddPointer(Ptr: WrappedTy.getAsOpaquePtr());
415 ID.AddBoolean(B: CountInBytes);
416 ID.AddBoolean(B: OrNull);
417 // We profile it as a pointer as the StmtProfiler considers parameter
418 // expressions on function declaration and function definition as the
419 // same, resulting in count expression being evaluated with ParamDecl
420 // not in the function scope.
421 ID.AddPointer(Ptr: CountExpr);
422}
423
424/// getArrayElementTypeNoTypeQual - If this is an array type, return the
425/// element type of the array, potentially with type qualifiers missing.
426/// This method should never be used when type qualifiers are meaningful.
427const Type *Type::getArrayElementTypeNoTypeQual() const {
428 // If this is directly an array type, return it.
429 if (const auto *ATy = dyn_cast<ArrayType>(Val: this))
430 return ATy->getElementType().getTypePtr();
431
432 // If the canonical form of this type isn't the right kind, reject it.
433 if (!isa<ArrayType>(Val: CanonicalType))
434 return nullptr;
435
436 // If this is a typedef for an array type, strip the typedef off without
437 // losing all typedef information.
438 return cast<ArrayType>(Val: getUnqualifiedDesugaredType())
439 ->getElementType().getTypePtr();
440}
441
442/// getDesugaredType - Return the specified type with any "sugar" removed from
443/// the type. This takes off typedefs, typeof's etc. If the outer level of
444/// the type is already concrete, it returns it unmodified. This is similar
445/// to getting the canonical type, but it doesn't remove *all* typedefs. For
446/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
447/// concrete.
448QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
449 SplitQualType split = getSplitDesugaredType(T);
450 return Context.getQualifiedType(T: split.Ty, Qs: split.Quals);
451}
452
453QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
454 const ASTContext &Context) {
455 SplitQualType split = type.split();
456 QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
457 return Context.getQualifiedType(T: desugar, Qs: split.Quals);
458}
459
460// Check that no type class is polymorphic. LLVM style RTTI should be used
461// instead. If absolutely needed an exception can still be added here by
462// defining the appropriate macro (but please don't do this).
463#define TYPE(CLASS, BASE) \
464 static_assert(!std::is_polymorphic<CLASS##Type>::value, \
465 #CLASS "Type should not be polymorphic!");
466#include "clang/AST/TypeNodes.inc"
467
468// Check that no type class has a non-trival destructor. Types are
469// allocated with the BumpPtrAllocator from ASTContext and therefore
470// their destructor is not executed.
471#define TYPE(CLASS, BASE) \
472 static_assert(std::is_trivially_destructible<CLASS##Type>::value, \
473 #CLASS "Type should be trivially destructible!");
474#include "clang/AST/TypeNodes.inc"
475
476QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const {
477 switch (getTypeClass()) {
478#define ABSTRACT_TYPE(Class, Parent)
479#define TYPE(Class, Parent) \
480 case Type::Class: { \
481 const auto *ty = cast<Class##Type>(this); \
482 if (!ty->isSugared()) return QualType(ty, 0); \
483 return ty->desugar(); \
484 }
485#include "clang/AST/TypeNodes.inc"
486 }
487 llvm_unreachable("bad type kind!");
488}
489
490SplitQualType QualType::getSplitDesugaredType(QualType T) {
491 QualifierCollector Qs;
492
493 QualType Cur = T;
494 while (true) {
495 const Type *CurTy = Qs.strip(type: Cur);
496 switch (CurTy->getTypeClass()) {
497#define ABSTRACT_TYPE(Class, Parent)
498#define TYPE(Class, Parent) \
499 case Type::Class: { \
500 const auto *Ty = cast<Class##Type>(CurTy); \
501 if (!Ty->isSugared()) \
502 return SplitQualType(Ty, Qs); \
503 Cur = Ty->desugar(); \
504 break; \
505 }
506#include "clang/AST/TypeNodes.inc"
507 }
508 }
509}
510
511SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
512 SplitQualType split = type.split();
513
514 // All the qualifiers we've seen so far.
515 Qualifiers quals = split.Quals;
516
517 // The last type node we saw with any nodes inside it.
518 const Type *lastTypeWithQuals = split.Ty;
519
520 while (true) {
521 QualType next;
522
523 // Do a single-step desugar, aborting the loop if the type isn't
524 // sugared.
525 switch (split.Ty->getTypeClass()) {
526#define ABSTRACT_TYPE(Class, Parent)
527#define TYPE(Class, Parent) \
528 case Type::Class: { \
529 const auto *ty = cast<Class##Type>(split.Ty); \
530 if (!ty->isSugared()) goto done; \
531 next = ty->desugar(); \
532 break; \
533 }
534#include "clang/AST/TypeNodes.inc"
535 }
536
537 // Otherwise, split the underlying type. If that yields qualifiers,
538 // update the information.
539 split = next.split();
540 if (!split.Quals.empty()) {
541 lastTypeWithQuals = split.Ty;
542 quals.addConsistentQualifiers(qs: split.Quals);
543 }
544 }
545
546 done:
547 return SplitQualType(lastTypeWithQuals, quals);
548}
549
550QualType QualType::IgnoreParens(QualType T) {
551 // FIXME: this seems inherently un-qualifiers-safe.
552 while (const auto *PT = T->getAs<ParenType>())
553 T = PT->getInnerType();
554 return T;
555}
556
557/// This will check for a T (which should be a Type which can act as
558/// sugar, such as a TypedefType) by removing any existing sugar until it
559/// reaches a T or a non-sugared type.
560template<typename T> static const T *getAsSugar(const Type *Cur) {
561 while (true) {
562 if (const auto *Sugar = dyn_cast<T>(Cur))
563 return Sugar;
564 switch (Cur->getTypeClass()) {
565#define ABSTRACT_TYPE(Class, Parent)
566#define TYPE(Class, Parent) \
567 case Type::Class: { \
568 const auto *Ty = cast<Class##Type>(Cur); \
569 if (!Ty->isSugared()) return 0; \
570 Cur = Ty->desugar().getTypePtr(); \
571 break; \
572 }
573#include "clang/AST/TypeNodes.inc"
574 }
575 }
576}
577
578template <> const TypedefType *Type::getAs() const {
579 return getAsSugar<TypedefType>(Cur: this);
580}
581
582template <> const UsingType *Type::getAs() const {
583 return getAsSugar<UsingType>(Cur: this);
584}
585
586template <> const TemplateSpecializationType *Type::getAs() const {
587 return getAsSugar<TemplateSpecializationType>(Cur: this);
588}
589
590template <> const AttributedType *Type::getAs() const {
591 return getAsSugar<AttributedType>(Cur: this);
592}
593
594template <> const BoundsAttributedType *Type::getAs() const {
595 return getAsSugar<BoundsAttributedType>(Cur: this);
596}
597
598template <> const CountAttributedType *Type::getAs() const {
599 return getAsSugar<CountAttributedType>(Cur: this);
600}
601
602/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
603/// sugar off the given type. This should produce an object of the
604/// same dynamic type as the canonical type.
605const Type *Type::getUnqualifiedDesugaredType() const {
606 const Type *Cur = this;
607
608 while (true) {
609 switch (Cur->getTypeClass()) {
610#define ABSTRACT_TYPE(Class, Parent)
611#define TYPE(Class, Parent) \
612 case Class: { \
613 const auto *Ty = cast<Class##Type>(Cur); \
614 if (!Ty->isSugared()) return Cur; \
615 Cur = Ty->desugar().getTypePtr(); \
616 break; \
617 }
618#include "clang/AST/TypeNodes.inc"
619 }
620 }
621}
622
623bool Type::isClassType() const {
624 if (const auto *RT = getAs<RecordType>())
625 return RT->getDecl()->isClass();
626 return false;
627}
628
629bool Type::isStructureType() const {
630 if (const auto *RT = getAs<RecordType>())
631 return RT->getDecl()->isStruct();
632 return false;
633}
634
635bool Type::isStructureTypeWithFlexibleArrayMember() const {
636 const auto *RT = getAs<RecordType>();
637 if (!RT)
638 return false;
639 const auto *Decl = RT->getDecl();
640 if (!Decl->isStruct())
641 return false;
642 return Decl->hasFlexibleArrayMember();
643}
644
645bool Type::isObjCBoxableRecordType() const {
646 if (const auto *RT = getAs<RecordType>())
647 return RT->getDecl()->hasAttr<ObjCBoxableAttr>();
648 return false;
649}
650
651bool Type::isInterfaceType() const {
652 if (const auto *RT = getAs<RecordType>())
653 return RT->getDecl()->isInterface();
654 return false;
655}
656
657bool Type::isStructureOrClassType() const {
658 if (const auto *RT = getAs<RecordType>()) {
659 RecordDecl *RD = RT->getDecl();
660 return RD->isStruct() || RD->isClass() || RD->isInterface();
661 }
662 return false;
663}
664
665bool Type::isVoidPointerType() const {
666 if (const auto *PT = getAs<PointerType>())
667 return PT->getPointeeType()->isVoidType();
668 return false;
669}
670
671bool Type::isUnionType() const {
672 if (const auto *RT = getAs<RecordType>())
673 return RT->getDecl()->isUnion();
674 return false;
675}
676
677bool Type::isComplexType() const {
678 if (const auto *CT = dyn_cast<ComplexType>(Val: CanonicalType))
679 return CT->getElementType()->isFloatingType();
680 return false;
681}
682
683bool Type::isComplexIntegerType() const {
684 // Check for GCC complex integer extension.
685 return getAsComplexIntegerType();
686}
687
688bool Type::isScopedEnumeralType() const {
689 if (const auto *ET = getAs<EnumType>())
690 return ET->getDecl()->isScoped();
691 return false;
692}
693
694bool Type::isCountAttributedType() const {
695 return getAs<CountAttributedType>();
696}
697
698const ComplexType *Type::getAsComplexIntegerType() const {
699 if (const auto *Complex = getAs<ComplexType>())
700 if (Complex->getElementType()->isIntegerType())
701 return Complex;
702 return nullptr;
703}
704
705QualType Type::getPointeeType() const {
706 if (const auto *PT = getAs<PointerType>())
707 return PT->getPointeeType();
708 if (const auto *OPT = getAs<ObjCObjectPointerType>())
709 return OPT->getPointeeType();
710 if (const auto *BPT = getAs<BlockPointerType>())
711 return BPT->getPointeeType();
712 if (const auto *RT = getAs<ReferenceType>())
713 return RT->getPointeeType();
714 if (const auto *MPT = getAs<MemberPointerType>())
715 return MPT->getPointeeType();
716 if (const auto *DT = getAs<DecayedType>())
717 return DT->getPointeeType();
718 return {};
719}
720
721const RecordType *Type::getAsStructureType() const {
722 // If this is directly a structure type, return it.
723 if (const auto *RT = dyn_cast<RecordType>(Val: this)) {
724 if (RT->getDecl()->isStruct())
725 return RT;
726 }
727
728 // If the canonical form of this type isn't the right kind, reject it.
729 if (const auto *RT = dyn_cast<RecordType>(Val: CanonicalType)) {
730 if (!RT->getDecl()->isStruct())
731 return nullptr;
732
733 // If this is a typedef for a structure type, strip the typedef off without
734 // losing all typedef information.
735 return cast<RecordType>(Val: getUnqualifiedDesugaredType());
736 }
737 return nullptr;
738}
739
740const RecordType *Type::getAsUnionType() const {
741 // If this is directly a union type, return it.
742 if (const auto *RT = dyn_cast<RecordType>(Val: this)) {
743 if (RT->getDecl()->isUnion())
744 return RT;
745 }
746
747 // If the canonical form of this type isn't the right kind, reject it.
748 if (const auto *RT = dyn_cast<RecordType>(Val: CanonicalType)) {
749 if (!RT->getDecl()->isUnion())
750 return nullptr;
751
752 // If this is a typedef for a union type, strip the typedef off without
753 // losing all typedef information.
754 return cast<RecordType>(Val: getUnqualifiedDesugaredType());
755 }
756
757 return nullptr;
758}
759
760bool Type::isObjCIdOrObjectKindOfType(const ASTContext &ctx,
761 const ObjCObjectType *&bound) const {
762 bound = nullptr;
763
764 const auto *OPT = getAs<ObjCObjectPointerType>();
765 if (!OPT)
766 return false;
767
768 // Easy case: id.
769 if (OPT->isObjCIdType())
770 return true;
771
772 // If it's not a __kindof type, reject it now.
773 if (!OPT->isKindOfType())
774 return false;
775
776 // If it's Class or qualified Class, it's not an object type.
777 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType())
778 return false;
779
780 // Figure out the type bound for the __kindof type.
781 bound = OPT->getObjectType()->stripObjCKindOfTypeAndQuals(ctx)
782 ->getAs<ObjCObjectType>();
783 return true;
784}
785
786bool Type::isObjCClassOrClassKindOfType() const {
787 const auto *OPT = getAs<ObjCObjectPointerType>();
788 if (!OPT)
789 return false;
790
791 // Easy case: Class.
792 if (OPT->isObjCClassType())
793 return true;
794
795 // If it's not a __kindof type, reject it now.
796 if (!OPT->isKindOfType())
797 return false;
798
799 // If it's Class or qualified Class, it's a class __kindof type.
800 return OPT->isObjCClassType() || OPT->isObjCQualifiedClassType();
801}
802
803ObjCTypeParamType::ObjCTypeParamType(const ObjCTypeParamDecl *D, QualType can,
804 ArrayRef<ObjCProtocolDecl *> protocols)
805 : Type(ObjCTypeParam, can, toSemanticDependence(D: can->getDependence())),
806 OTPDecl(const_cast<ObjCTypeParamDecl *>(D)) {
807 initialize(protocols);
808}
809
810ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
811 ArrayRef<QualType> typeArgs,
812 ArrayRef<ObjCProtocolDecl *> protocols,
813 bool isKindOf)
814 : Type(ObjCObject, Canonical, Base->getDependence()), BaseType(Base) {
815 ObjCObjectTypeBits.IsKindOf = isKindOf;
816
817 ObjCObjectTypeBits.NumTypeArgs = typeArgs.size();
818 assert(getTypeArgsAsWritten().size() == typeArgs.size() &&
819 "bitfield overflow in type argument count");
820 if (!typeArgs.empty())
821 memcpy(dest: getTypeArgStorage(), src: typeArgs.data(),
822 n: typeArgs.size() * sizeof(QualType));
823
824 for (auto typeArg : typeArgs) {
825 addDependence(D: typeArg->getDependence() & ~TypeDependence::VariablyModified);
826 }
827 // Initialize the protocol qualifiers. The protocol storage is known
828 // after we set number of type arguments.
829 initialize(protocols);
830}
831
832bool ObjCObjectType::isSpecialized() const {
833 // If we have type arguments written here, the type is specialized.
834 if (ObjCObjectTypeBits.NumTypeArgs > 0)
835 return true;
836
837 // Otherwise, check whether the base type is specialized.
838 if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
839 // Terminate when we reach an interface type.
840 if (isa<ObjCInterfaceType>(Val: objcObject))
841 return false;
842
843 return objcObject->isSpecialized();
844 }
845
846 // Not specialized.
847 return false;
848}
849
850ArrayRef<QualType> ObjCObjectType::getTypeArgs() const {
851 // We have type arguments written on this type.
852 if (isSpecializedAsWritten())
853 return getTypeArgsAsWritten();
854
855 // Look at the base type, which might have type arguments.
856 if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
857 // Terminate when we reach an interface type.
858 if (isa<ObjCInterfaceType>(Val: objcObject))
859 return {};
860
861 return objcObject->getTypeArgs();
862 }
863
864 // No type arguments.
865 return {};
866}
867
868bool ObjCObjectType::isKindOfType() const {
869 if (isKindOfTypeAsWritten())
870 return true;
871
872 // Look at the base type, which might have type arguments.
873 if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
874 // Terminate when we reach an interface type.
875 if (isa<ObjCInterfaceType>(Val: objcObject))
876 return false;
877
878 return objcObject->isKindOfType();
879 }
880
881 // Not a "__kindof" type.
882 return false;
883}
884
885QualType ObjCObjectType::stripObjCKindOfTypeAndQuals(
886 const ASTContext &ctx) const {
887 if (!isKindOfType() && qual_empty())
888 return QualType(this, 0);
889
890 // Recursively strip __kindof.
891 SplitQualType splitBaseType = getBaseType().split();
892 QualType baseType(splitBaseType.Ty, 0);
893 if (const auto *baseObj = splitBaseType.Ty->getAs<ObjCObjectType>())
894 baseType = baseObj->stripObjCKindOfTypeAndQuals(ctx);
895
896 return ctx.getObjCObjectType(Base: ctx.getQualifiedType(T: baseType,
897 Qs: splitBaseType.Quals),
898 typeArgs: getTypeArgsAsWritten(),
899 /*protocols=*/{},
900 /*isKindOf=*/false);
901}
902
903ObjCInterfaceDecl *ObjCInterfaceType::getDecl() const {
904 ObjCInterfaceDecl *Canon = Decl->getCanonicalDecl();
905 if (ObjCInterfaceDecl *Def = Canon->getDefinition())
906 return Def;
907 return Canon;
908}
909
910const ObjCObjectPointerType *ObjCObjectPointerType::stripObjCKindOfTypeAndQuals(
911 const ASTContext &ctx) const {
912 if (!isKindOfType() && qual_empty())
913 return this;
914
915 QualType obj = getObjectType()->stripObjCKindOfTypeAndQuals(ctx);
916 return ctx.getObjCObjectPointerType(OIT: obj)->castAs<ObjCObjectPointerType>();
917}
918
919namespace {
920
921/// Visitor used to perform a simple type transformation that does not change
922/// the semantics of the type.
923template <typename Derived>
924struct SimpleTransformVisitor : public TypeVisitor<Derived, QualType> {
925 ASTContext &Ctx;
926
927 QualType recurse(QualType type) {
928 // Split out the qualifiers from the type.
929 SplitQualType splitType = type.split();
930
931 // Visit the type itself.
932 QualType result = static_cast<Derived *>(this)->Visit(splitType.Ty);
933 if (result.isNull())
934 return result;
935
936 // Reconstruct the transformed type by applying the local qualifiers
937 // from the split type.
938 return Ctx.getQualifiedType(T: result, Qs: splitType.Quals);
939 }
940
941public:
942 explicit SimpleTransformVisitor(ASTContext &ctx) : Ctx(ctx) {}
943
944 // None of the clients of this transformation can occur where
945 // there are dependent types, so skip dependent types.
946#define TYPE(Class, Base)
947#define DEPENDENT_TYPE(Class, Base) \
948 QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
949#include "clang/AST/TypeNodes.inc"
950
951#define TRIVIAL_TYPE_CLASS(Class) \
952 QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
953#define SUGARED_TYPE_CLASS(Class) \
954 QualType Visit##Class##Type(const Class##Type *T) { \
955 if (!T->isSugared()) \
956 return QualType(T, 0); \
957 QualType desugaredType = recurse(T->desugar()); \
958 if (desugaredType.isNull()) \
959 return {}; \
960 if (desugaredType.getAsOpaquePtr() == T->desugar().getAsOpaquePtr()) \
961 return QualType(T, 0); \
962 return desugaredType; \
963 }
964
965 TRIVIAL_TYPE_CLASS(Builtin)
966
967 QualType VisitComplexType(const ComplexType *T) {
968 QualType elementType = recurse(type: T->getElementType());
969 if (elementType.isNull())
970 return {};
971
972 if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
973 return QualType(T, 0);
974
975 return Ctx.getComplexType(T: elementType);
976 }
977
978 QualType VisitPointerType(const PointerType *T) {
979 QualType pointeeType = recurse(type: T->getPointeeType());
980 if (pointeeType.isNull())
981 return {};
982
983 if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
984 return QualType(T, 0);
985
986 return Ctx.getPointerType(T: pointeeType);
987 }
988
989 QualType VisitBlockPointerType(const BlockPointerType *T) {
990 QualType pointeeType = recurse(type: T->getPointeeType());
991 if (pointeeType.isNull())
992 return {};
993
994 if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
995 return QualType(T, 0);
996
997 return Ctx.getBlockPointerType(T: pointeeType);
998 }
999
1000 QualType VisitLValueReferenceType(const LValueReferenceType *T) {
1001 QualType pointeeType = recurse(type: T->getPointeeTypeAsWritten());
1002 if (pointeeType.isNull())
1003 return {};
1004
1005 if (pointeeType.getAsOpaquePtr()
1006 == T->getPointeeTypeAsWritten().getAsOpaquePtr())
1007 return QualType(T, 0);
1008
1009 return Ctx.getLValueReferenceType(T: pointeeType, SpelledAsLValue: T->isSpelledAsLValue());
1010 }
1011
1012 QualType VisitRValueReferenceType(const RValueReferenceType *T) {
1013 QualType pointeeType = recurse(type: T->getPointeeTypeAsWritten());
1014 if (pointeeType.isNull())
1015 return {};
1016
1017 if (pointeeType.getAsOpaquePtr()
1018 == T->getPointeeTypeAsWritten().getAsOpaquePtr())
1019 return QualType(T, 0);
1020
1021 return Ctx.getRValueReferenceType(T: pointeeType);
1022 }
1023
1024 QualType VisitMemberPointerType(const MemberPointerType *T) {
1025 QualType pointeeType = recurse(type: T->getPointeeType());
1026 if (pointeeType.isNull())
1027 return {};
1028
1029 if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
1030 return QualType(T, 0);
1031
1032 return Ctx.getMemberPointerType(T: pointeeType, Cls: T->getClass());
1033 }
1034
1035 QualType VisitConstantArrayType(const ConstantArrayType *T) {
1036 QualType elementType = recurse(type: T->getElementType());
1037 if (elementType.isNull())
1038 return {};
1039
1040 if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
1041 return QualType(T, 0);
1042
1043 return Ctx.getConstantArrayType(EltTy: elementType, ArySize: T->getSize(), SizeExpr: T->getSizeExpr(),
1044 ASM: T->getSizeModifier(),
1045 IndexTypeQuals: T->getIndexTypeCVRQualifiers());
1046 }
1047
1048 QualType VisitVariableArrayType(const VariableArrayType *T) {
1049 QualType elementType = recurse(type: T->getElementType());
1050 if (elementType.isNull())
1051 return {};
1052
1053 if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
1054 return QualType(T, 0);
1055
1056 return Ctx.getVariableArrayType(EltTy: elementType, NumElts: T->getSizeExpr(),
1057 ASM: T->getSizeModifier(),
1058 IndexTypeQuals: T->getIndexTypeCVRQualifiers(),
1059 Brackets: T->getBracketsRange());
1060 }
1061
1062 QualType VisitIncompleteArrayType(const IncompleteArrayType *T) {
1063 QualType elementType = recurse(type: T->getElementType());
1064 if (elementType.isNull())
1065 return {};
1066
1067 if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
1068 return QualType(T, 0);
1069
1070 return Ctx.getIncompleteArrayType(EltTy: elementType, ASM: T->getSizeModifier(),
1071 IndexTypeQuals: T->getIndexTypeCVRQualifiers());
1072 }
1073
1074 QualType VisitVectorType(const VectorType *T) {
1075 QualType elementType = recurse(type: T->getElementType());
1076 if (elementType.isNull())
1077 return {};
1078
1079 if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
1080 return QualType(T, 0);
1081
1082 return Ctx.getVectorType(VectorType: elementType, NumElts: T->getNumElements(),
1083 VecKind: T->getVectorKind());
1084 }
1085
1086 QualType VisitExtVectorType(const ExtVectorType *T) {
1087 QualType elementType = recurse(type: T->getElementType());
1088 if (elementType.isNull())
1089 return {};
1090
1091 if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
1092 return QualType(T, 0);
1093
1094 return Ctx.getExtVectorType(VectorType: elementType, NumElts: T->getNumElements());
1095 }
1096
1097 QualType VisitConstantMatrixType(const ConstantMatrixType *T) {
1098 QualType elementType = recurse(type: T->getElementType());
1099 if (elementType.isNull())
1100 return {};
1101 if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
1102 return QualType(T, 0);
1103
1104 return Ctx.getConstantMatrixType(ElementType: elementType, NumRows: T->getNumRows(),
1105 NumColumns: T->getNumColumns());
1106 }
1107
1108 QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
1109 QualType returnType = recurse(type: T->getReturnType());
1110 if (returnType.isNull())
1111 return {};
1112
1113 if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr())
1114 return QualType(T, 0);
1115
1116 return Ctx.getFunctionNoProtoType(ResultTy: returnType, Info: T->getExtInfo());
1117 }
1118
1119 QualType VisitFunctionProtoType(const FunctionProtoType *T) {
1120 QualType returnType = recurse(type: T->getReturnType());
1121 if (returnType.isNull())
1122 return {};
1123
1124 // Transform parameter types.
1125 SmallVector<QualType, 4> paramTypes;
1126 bool paramChanged = false;
1127 for (auto paramType : T->getParamTypes()) {
1128 QualType newParamType = recurse(type: paramType);
1129 if (newParamType.isNull())
1130 return {};
1131
1132 if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
1133 paramChanged = true;
1134
1135 paramTypes.push_back(Elt: newParamType);
1136 }
1137
1138 // Transform extended info.
1139 FunctionProtoType::ExtProtoInfo info = T->getExtProtoInfo();
1140 bool exceptionChanged = false;
1141 if (info.ExceptionSpec.Type == EST_Dynamic) {
1142 SmallVector<QualType, 4> exceptionTypes;
1143 for (auto exceptionType : info.ExceptionSpec.Exceptions) {
1144 QualType newExceptionType = recurse(type: exceptionType);
1145 if (newExceptionType.isNull())
1146 return {};
1147
1148 if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr())
1149 exceptionChanged = true;
1150
1151 exceptionTypes.push_back(Elt: newExceptionType);
1152 }
1153
1154 if (exceptionChanged) {
1155 info.ExceptionSpec.Exceptions =
1156 llvm::ArrayRef(exceptionTypes).copy(A&: Ctx);
1157 }
1158 }
1159
1160 if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr() &&
1161 !paramChanged && !exceptionChanged)
1162 return QualType(T, 0);
1163
1164 return Ctx.getFunctionType(ResultTy: returnType, Args: paramTypes, EPI: info);
1165 }
1166
1167 QualType VisitParenType(const ParenType *T) {
1168 QualType innerType = recurse(type: T->getInnerType());
1169 if (innerType.isNull())
1170 return {};
1171
1172 if (innerType.getAsOpaquePtr() == T->getInnerType().getAsOpaquePtr())
1173 return QualType(T, 0);
1174
1175 return Ctx.getParenType(NamedType: innerType);
1176 }
1177
1178 SUGARED_TYPE_CLASS(Typedef)
1179 SUGARED_TYPE_CLASS(ObjCTypeParam)
1180 SUGARED_TYPE_CLASS(MacroQualified)
1181
1182 QualType VisitAdjustedType(const AdjustedType *T) {
1183 QualType originalType = recurse(type: T->getOriginalType());
1184 if (originalType.isNull())
1185 return {};
1186
1187 QualType adjustedType = recurse(type: T->getAdjustedType());
1188 if (adjustedType.isNull())
1189 return {};
1190
1191 if (originalType.getAsOpaquePtr()
1192 == T->getOriginalType().getAsOpaquePtr() &&
1193 adjustedType.getAsOpaquePtr() == T->getAdjustedType().getAsOpaquePtr())
1194 return QualType(T, 0);
1195
1196 return Ctx.getAdjustedType(Orig: originalType, New: adjustedType);
1197 }
1198
1199 QualType VisitDecayedType(const DecayedType *T) {
1200 QualType originalType = recurse(type: T->getOriginalType());
1201 if (originalType.isNull())
1202 return {};
1203
1204 if (originalType.getAsOpaquePtr()
1205 == T->getOriginalType().getAsOpaquePtr())
1206 return QualType(T, 0);
1207
1208 return Ctx.getDecayedType(T: originalType);
1209 }
1210
1211 QualType VisitArrayParameterType(const ArrayParameterType *T) {
1212 QualType ArrTy = VisitConstantArrayType(T);
1213 if (ArrTy.isNull())
1214 return {};
1215
1216 return Ctx.getArrayParameterType(Ty: ArrTy);
1217 }
1218
1219 SUGARED_TYPE_CLASS(TypeOfExpr)
1220 SUGARED_TYPE_CLASS(TypeOf)
1221 SUGARED_TYPE_CLASS(Decltype)
1222 SUGARED_TYPE_CLASS(UnaryTransform)
1223 TRIVIAL_TYPE_CLASS(Record)
1224 TRIVIAL_TYPE_CLASS(Enum)
1225
1226 // FIXME: Non-trivial to implement, but important for C++
1227 SUGARED_TYPE_CLASS(Elaborated)
1228
1229 QualType VisitAttributedType(const AttributedType *T) {
1230 QualType modifiedType = recurse(type: T->getModifiedType());
1231 if (modifiedType.isNull())
1232 return {};
1233
1234 QualType equivalentType = recurse(type: T->getEquivalentType());
1235 if (equivalentType.isNull())
1236 return {};
1237
1238 if (modifiedType.getAsOpaquePtr()
1239 == T->getModifiedType().getAsOpaquePtr() &&
1240 equivalentType.getAsOpaquePtr()
1241 == T->getEquivalentType().getAsOpaquePtr())
1242 return QualType(T, 0);
1243
1244 return Ctx.getAttributedType(attrKind: T->getAttrKind(), modifiedType,
1245 equivalentType);
1246 }
1247
1248 QualType VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
1249 QualType replacementType = recurse(type: T->getReplacementType());
1250 if (replacementType.isNull())
1251 return {};
1252
1253 if (replacementType.getAsOpaquePtr()
1254 == T->getReplacementType().getAsOpaquePtr())
1255 return QualType(T, 0);
1256
1257 return Ctx.getSubstTemplateTypeParmType(Replacement: replacementType,
1258 AssociatedDecl: T->getAssociatedDecl(),
1259 Index: T->getIndex(), PackIndex: T->getPackIndex());
1260 }
1261
1262 // FIXME: Non-trivial to implement, but important for C++
1263 SUGARED_TYPE_CLASS(TemplateSpecialization)
1264
1265 QualType VisitAutoType(const AutoType *T) {
1266 if (!T->isDeduced())
1267 return QualType(T, 0);
1268
1269 QualType deducedType = recurse(type: T->getDeducedType());
1270 if (deducedType.isNull())
1271 return {};
1272
1273 if (deducedType.getAsOpaquePtr()
1274 == T->getDeducedType().getAsOpaquePtr())
1275 return QualType(T, 0);
1276
1277 return Ctx.getAutoType(DeducedType: deducedType, Keyword: T->getKeyword(),
1278 IsDependent: T->isDependentType(), /*IsPack=*/false,
1279 TypeConstraintConcept: T->getTypeConstraintConcept(),
1280 TypeConstraintArgs: T->getTypeConstraintArguments());
1281 }
1282
1283 QualType VisitObjCObjectType(const ObjCObjectType *T) {
1284 QualType baseType = recurse(type: T->getBaseType());
1285 if (baseType.isNull())
1286 return {};
1287
1288 // Transform type arguments.
1289 bool typeArgChanged = false;
1290 SmallVector<QualType, 4> typeArgs;
1291 for (auto typeArg : T->getTypeArgsAsWritten()) {
1292 QualType newTypeArg = recurse(type: typeArg);
1293 if (newTypeArg.isNull())
1294 return {};
1295
1296 if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr())
1297 typeArgChanged = true;
1298
1299 typeArgs.push_back(Elt: newTypeArg);
1300 }
1301
1302 if (baseType.getAsOpaquePtr() == T->getBaseType().getAsOpaquePtr() &&
1303 !typeArgChanged)
1304 return QualType(T, 0);
1305
1306 return Ctx.getObjCObjectType(
1307 Base: baseType, typeArgs,
1308 protocols: llvm::ArrayRef(T->qual_begin(), T->getNumProtocols()),
1309 isKindOf: T->isKindOfTypeAsWritten());
1310 }
1311
1312 TRIVIAL_TYPE_CLASS(ObjCInterface)
1313
1314 QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
1315 QualType pointeeType = recurse(type: T->getPointeeType());
1316 if (pointeeType.isNull())
1317 return {};
1318
1319 if (pointeeType.getAsOpaquePtr()
1320 == T->getPointeeType().getAsOpaquePtr())
1321 return QualType(T, 0);
1322
1323 return Ctx.getObjCObjectPointerType(OIT: pointeeType);
1324 }
1325
1326 QualType VisitAtomicType(const AtomicType *T) {
1327 QualType valueType = recurse(type: T->getValueType());
1328 if (valueType.isNull())
1329 return {};
1330
1331 if (valueType.getAsOpaquePtr()
1332 == T->getValueType().getAsOpaquePtr())
1333 return QualType(T, 0);
1334
1335 return Ctx.getAtomicType(T: valueType);
1336 }
1337
1338#undef TRIVIAL_TYPE_CLASS
1339#undef SUGARED_TYPE_CLASS
1340};
1341
1342struct SubstObjCTypeArgsVisitor
1343 : public SimpleTransformVisitor<SubstObjCTypeArgsVisitor> {
1344 using BaseType = SimpleTransformVisitor<SubstObjCTypeArgsVisitor>;
1345
1346 ArrayRef<QualType> TypeArgs;
1347 ObjCSubstitutionContext SubstContext;
1348
1349 SubstObjCTypeArgsVisitor(ASTContext &ctx, ArrayRef<QualType> typeArgs,
1350 ObjCSubstitutionContext context)
1351 : BaseType(ctx), TypeArgs(typeArgs), SubstContext(context) {}
1352
1353 QualType VisitObjCTypeParamType(const ObjCTypeParamType *OTPTy) {
1354 // Replace an Objective-C type parameter reference with the corresponding
1355 // type argument.
1356 ObjCTypeParamDecl *typeParam = OTPTy->getDecl();
1357 // If we have type arguments, use them.
1358 if (!TypeArgs.empty()) {
1359 QualType argType = TypeArgs[typeParam->getIndex()];
1360 if (OTPTy->qual_empty())
1361 return argType;
1362
1363 // Apply protocol lists if exists.
1364 bool hasError;
1365 SmallVector<ObjCProtocolDecl *, 8> protocolsVec;
1366 protocolsVec.append(in_start: OTPTy->qual_begin(), in_end: OTPTy->qual_end());
1367 ArrayRef<ObjCProtocolDecl *> protocolsToApply = protocolsVec;
1368 return Ctx.applyObjCProtocolQualifiers(
1369 type: argType, protocols: protocolsToApply, hasError, allowOnPointerType: true/*allowOnPointerType*/);
1370 }
1371
1372 switch (SubstContext) {
1373 case ObjCSubstitutionContext::Ordinary:
1374 case ObjCSubstitutionContext::Parameter:
1375 case ObjCSubstitutionContext::Superclass:
1376 // Substitute the bound.
1377 return typeParam->getUnderlyingType();
1378
1379 case ObjCSubstitutionContext::Result:
1380 case ObjCSubstitutionContext::Property: {
1381 // Substitute the __kindof form of the underlying type.
1382 const auto *objPtr =
1383 typeParam->getUnderlyingType()->castAs<ObjCObjectPointerType>();
1384
1385 // __kindof types, id, and Class don't need an additional
1386 // __kindof.
1387 if (objPtr->isKindOfType() || objPtr->isObjCIdOrClassType())
1388 return typeParam->getUnderlyingType();
1389
1390 // Add __kindof.
1391 const auto *obj = objPtr->getObjectType();
1392 QualType resultTy = Ctx.getObjCObjectType(
1393 Base: obj->getBaseType(), typeArgs: obj->getTypeArgsAsWritten(), protocols: obj->getProtocols(),
1394 /*isKindOf=*/true);
1395
1396 // Rebuild object pointer type.
1397 return Ctx.getObjCObjectPointerType(OIT: resultTy);
1398 }
1399 }
1400 llvm_unreachable("Unexpected ObjCSubstitutionContext!");
1401 }
1402
1403 QualType VisitFunctionType(const FunctionType *funcType) {
1404 // If we have a function type, update the substitution context
1405 // appropriately.
1406
1407 //Substitute result type.
1408 QualType returnType = funcType->getReturnType().substObjCTypeArgs(
1409 ctx&: Ctx, typeArgs: TypeArgs, context: ObjCSubstitutionContext::Result);
1410 if (returnType.isNull())
1411 return {};
1412
1413 // Handle non-prototyped functions, which only substitute into the result
1414 // type.
1415 if (isa<FunctionNoProtoType>(Val: funcType)) {
1416 // If the return type was unchanged, do nothing.
1417 if (returnType.getAsOpaquePtr() ==
1418 funcType->getReturnType().getAsOpaquePtr())
1419 return BaseType::VisitFunctionType(T: funcType);
1420
1421 // Otherwise, build a new type.
1422 return Ctx.getFunctionNoProtoType(ResultTy: returnType, Info: funcType->getExtInfo());
1423 }
1424
1425 const auto *funcProtoType = cast<FunctionProtoType>(Val: funcType);
1426
1427 // Transform parameter types.
1428 SmallVector<QualType, 4> paramTypes;
1429 bool paramChanged = false;
1430 for (auto paramType : funcProtoType->getParamTypes()) {
1431 QualType newParamType = paramType.substObjCTypeArgs(
1432 ctx&: Ctx, typeArgs: TypeArgs, context: ObjCSubstitutionContext::Parameter);
1433 if (newParamType.isNull())
1434 return {};
1435
1436 if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
1437 paramChanged = true;
1438
1439 paramTypes.push_back(Elt: newParamType);
1440 }
1441
1442 // Transform extended info.
1443 FunctionProtoType::ExtProtoInfo info = funcProtoType->getExtProtoInfo();
1444 bool exceptionChanged = false;
1445 if (info.ExceptionSpec.Type == EST_Dynamic) {
1446 SmallVector<QualType, 4> exceptionTypes;
1447 for (auto exceptionType : info.ExceptionSpec.Exceptions) {
1448 QualType newExceptionType = exceptionType.substObjCTypeArgs(
1449 ctx&: Ctx, typeArgs: TypeArgs, context: ObjCSubstitutionContext::Ordinary);
1450 if (newExceptionType.isNull())
1451 return {};
1452
1453 if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr())
1454 exceptionChanged = true;
1455
1456 exceptionTypes.push_back(Elt: newExceptionType);
1457 }
1458
1459 if (exceptionChanged) {
1460 info.ExceptionSpec.Exceptions =
1461 llvm::ArrayRef(exceptionTypes).copy(A&: Ctx);
1462 }
1463 }
1464
1465 if (returnType.getAsOpaquePtr() ==
1466 funcProtoType->getReturnType().getAsOpaquePtr() &&
1467 !paramChanged && !exceptionChanged)
1468 return BaseType::VisitFunctionType(T: funcType);
1469
1470 return Ctx.getFunctionType(ResultTy: returnType, Args: paramTypes, EPI: info);
1471 }
1472
1473 QualType VisitObjCObjectType(const ObjCObjectType *objcObjectType) {
1474 // Substitute into the type arguments of a specialized Objective-C object
1475 // type.
1476 if (objcObjectType->isSpecializedAsWritten()) {
1477 SmallVector<QualType, 4> newTypeArgs;
1478 bool anyChanged = false;
1479 for (auto typeArg : objcObjectType->getTypeArgsAsWritten()) {
1480 QualType newTypeArg = typeArg.substObjCTypeArgs(
1481 ctx&: Ctx, typeArgs: TypeArgs, context: ObjCSubstitutionContext::Ordinary);
1482 if (newTypeArg.isNull())
1483 return {};
1484
1485 if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr()) {
1486 // If we're substituting based on an unspecialized context type,
1487 // produce an unspecialized type.
1488 ArrayRef<ObjCProtocolDecl *> protocols(
1489 objcObjectType->qual_begin(), objcObjectType->getNumProtocols());
1490 if (TypeArgs.empty() &&
1491 SubstContext != ObjCSubstitutionContext::Superclass) {
1492 return Ctx.getObjCObjectType(
1493 Base: objcObjectType->getBaseType(), typeArgs: {}, protocols,
1494 isKindOf: objcObjectType->isKindOfTypeAsWritten());
1495 }
1496
1497 anyChanged = true;
1498 }
1499
1500 newTypeArgs.push_back(Elt: newTypeArg);
1501 }
1502
1503 if (anyChanged) {
1504 ArrayRef<ObjCProtocolDecl *> protocols(
1505 objcObjectType->qual_begin(), objcObjectType->getNumProtocols());
1506 return Ctx.getObjCObjectType(Base: objcObjectType->getBaseType(), typeArgs: newTypeArgs,
1507 protocols,
1508 isKindOf: objcObjectType->isKindOfTypeAsWritten());
1509 }
1510 }
1511
1512 return BaseType::VisitObjCObjectType(T: objcObjectType);
1513 }
1514
1515 QualType VisitAttributedType(const AttributedType *attrType) {
1516 QualType newType = BaseType::VisitAttributedType(T: attrType);
1517 if (newType.isNull())
1518 return {};
1519
1520 const auto *newAttrType = dyn_cast<AttributedType>(Val: newType.getTypePtr());
1521 if (!newAttrType || newAttrType->getAttrKind() != attr::ObjCKindOf)
1522 return newType;
1523
1524 // Find out if it's an Objective-C object or object pointer type;
1525 QualType newEquivType = newAttrType->getEquivalentType();
1526 const ObjCObjectPointerType *ptrType =
1527 newEquivType->getAs<ObjCObjectPointerType>();
1528 const ObjCObjectType *objType = ptrType
1529 ? ptrType->getObjectType()
1530 : newEquivType->getAs<ObjCObjectType>();
1531 if (!objType)
1532 return newType;
1533
1534 // Rebuild the "equivalent" type, which pushes __kindof down into
1535 // the object type.
1536 newEquivType = Ctx.getObjCObjectType(
1537 Base: objType->getBaseType(), typeArgs: objType->getTypeArgsAsWritten(),
1538 protocols: objType->getProtocols(),
1539 // There is no need to apply kindof on an unqualified id type.
1540 /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
1541
1542 // If we started with an object pointer type, rebuild it.
1543 if (ptrType)
1544 newEquivType = Ctx.getObjCObjectPointerType(OIT: newEquivType);
1545
1546 // Rebuild the attributed type.
1547 return Ctx.getAttributedType(attrKind: newAttrType->getAttrKind(),
1548 modifiedType: newAttrType->getModifiedType(), equivalentType: newEquivType);
1549 }
1550};
1551
1552struct StripObjCKindOfTypeVisitor
1553 : public SimpleTransformVisitor<StripObjCKindOfTypeVisitor> {
1554 using BaseType = SimpleTransformVisitor<StripObjCKindOfTypeVisitor>;
1555
1556 explicit StripObjCKindOfTypeVisitor(ASTContext &ctx) : BaseType(ctx) {}
1557
1558 QualType VisitObjCObjectType(const ObjCObjectType *objType) {
1559 if (!objType->isKindOfType())
1560 return BaseType::VisitObjCObjectType(T: objType);
1561
1562 QualType baseType = objType->getBaseType().stripObjCKindOfType(ctx: Ctx);
1563 return Ctx.getObjCObjectType(Base: baseType, typeArgs: objType->getTypeArgsAsWritten(),
1564 protocols: objType->getProtocols(),
1565 /*isKindOf=*/false);
1566 }
1567};
1568
1569} // namespace
1570
1571bool QualType::UseExcessPrecision(const ASTContext &Ctx) {
1572 const BuiltinType *BT = getTypePtr()->getAs<BuiltinType>();
1573 if (!BT) {
1574 const VectorType *VT = getTypePtr()->getAs<VectorType>();
1575 if (VT) {
1576 QualType ElementType = VT->getElementType();
1577 return ElementType.UseExcessPrecision(Ctx);
1578 }
1579 } else {
1580 switch (BT->getKind()) {
1581 case BuiltinType::Kind::Float16: {
1582 const TargetInfo &TI = Ctx.getTargetInfo();
1583 if (TI.hasFloat16Type() && !TI.hasLegalHalfType() &&
1584 Ctx.getLangOpts().getFloat16ExcessPrecision() !=
1585 Ctx.getLangOpts().ExcessPrecisionKind::FPP_None)
1586 return true;
1587 break;
1588 }
1589 case BuiltinType::Kind::BFloat16: {
1590 const TargetInfo &TI = Ctx.getTargetInfo();
1591 if (TI.hasBFloat16Type() && !TI.hasFullBFloat16Type() &&
1592 Ctx.getLangOpts().getBFloat16ExcessPrecision() !=
1593 Ctx.getLangOpts().ExcessPrecisionKind::FPP_None)
1594 return true;
1595 break;
1596 }
1597 default:
1598 return false;
1599 }
1600 }
1601 return false;
1602}
1603
1604/// Substitute the given type arguments for Objective-C type
1605/// parameters within the given type, recursively.
1606QualType QualType::substObjCTypeArgs(ASTContext &ctx,
1607 ArrayRef<QualType> typeArgs,
1608 ObjCSubstitutionContext context) const {
1609 SubstObjCTypeArgsVisitor visitor(ctx, typeArgs, context);
1610 return visitor.recurse(type: *this);
1611}
1612
1613QualType QualType::substObjCMemberType(QualType objectType,
1614 const DeclContext *dc,
1615 ObjCSubstitutionContext context) const {
1616 if (auto subs = objectType->getObjCSubstitutions(dc))
1617 return substObjCTypeArgs(ctx&: dc->getParentASTContext(), typeArgs: *subs, context);
1618
1619 return *this;
1620}
1621
1622QualType QualType::stripObjCKindOfType(const ASTContext &constCtx) const {
1623 // FIXME: Because ASTContext::getAttributedType() is non-const.
1624 auto &ctx = const_cast<ASTContext &>(constCtx);
1625 StripObjCKindOfTypeVisitor visitor(ctx);
1626 return visitor.recurse(type: *this);
1627}
1628
1629QualType QualType::getAtomicUnqualifiedType() const {
1630 QualType T = *this;
1631 if (const auto AT = T.getTypePtr()->getAs<AtomicType>())
1632 T = AT->getValueType();
1633 return T.getUnqualifiedType();
1634}
1635
1636std::optional<ArrayRef<QualType>>
1637Type::getObjCSubstitutions(const DeclContext *dc) const {
1638 // Look through method scopes.
1639 if (const auto method = dyn_cast<ObjCMethodDecl>(Val: dc))
1640 dc = method->getDeclContext();
1641
1642 // Find the class or category in which the type we're substituting
1643 // was declared.
1644 const auto *dcClassDecl = dyn_cast<ObjCInterfaceDecl>(Val: dc);
1645 const ObjCCategoryDecl *dcCategoryDecl = nullptr;
1646 ObjCTypeParamList *dcTypeParams = nullptr;
1647 if (dcClassDecl) {
1648 // If the class does not have any type parameters, there's no
1649 // substitution to do.
1650 dcTypeParams = dcClassDecl->getTypeParamList();
1651 if (!dcTypeParams)
1652 return std::nullopt;
1653 } else {
1654 // If we are in neither a class nor a category, there's no
1655 // substitution to perform.
1656 dcCategoryDecl = dyn_cast<ObjCCategoryDecl>(Val: dc);
1657 if (!dcCategoryDecl)
1658 return std::nullopt;
1659
1660 // If the category does not have any type parameters, there's no
1661 // substitution to do.
1662 dcTypeParams = dcCategoryDecl->getTypeParamList();
1663 if (!dcTypeParams)
1664 return std::nullopt;
1665
1666 dcClassDecl = dcCategoryDecl->getClassInterface();
1667 if (!dcClassDecl)
1668 return std::nullopt;
1669 }
1670 assert(dcTypeParams && "No substitutions to perform");
1671 assert(dcClassDecl && "No class context");
1672
1673 // Find the underlying object type.
1674 const ObjCObjectType *objectType;
1675 if (const auto *objectPointerType = getAs<ObjCObjectPointerType>()) {
1676 objectType = objectPointerType->getObjectType();
1677 } else if (getAs<BlockPointerType>()) {
1678 ASTContext &ctx = dc->getParentASTContext();
1679 objectType = ctx.getObjCObjectType(Base: ctx.ObjCBuiltinIdTy, Protocols: {}, NumProtocols: {})
1680 ->castAs<ObjCObjectType>();
1681 } else {
1682 objectType = getAs<ObjCObjectType>();
1683 }
1684
1685 /// Extract the class from the receiver object type.
1686 ObjCInterfaceDecl *curClassDecl = objectType ? objectType->getInterface()
1687 : nullptr;
1688 if (!curClassDecl) {
1689 // If we don't have a context type (e.g., this is "id" or some
1690 // variant thereof), substitute the bounds.
1691 return llvm::ArrayRef<QualType>();
1692 }
1693
1694 // Follow the superclass chain until we've mapped the receiver type
1695 // to the same class as the context.
1696 while (curClassDecl != dcClassDecl) {
1697 // Map to the superclass type.
1698 QualType superType = objectType->getSuperClassType();
1699 if (superType.isNull()) {
1700 objectType = nullptr;
1701 break;
1702 }
1703
1704 objectType = superType->castAs<ObjCObjectType>();
1705 curClassDecl = objectType->getInterface();
1706 }
1707
1708 // If we don't have a receiver type, or the receiver type does not
1709 // have type arguments, substitute in the defaults.
1710 if (!objectType || objectType->isUnspecialized()) {
1711 return llvm::ArrayRef<QualType>();
1712 }
1713
1714 // The receiver type has the type arguments we want.
1715 return objectType->getTypeArgs();
1716}
1717
1718bool Type::acceptsObjCTypeParams() const {
1719 if (auto *IfaceT = getAsObjCInterfaceType()) {
1720 if (auto *ID = IfaceT->getInterface()) {
1721 if (ID->getTypeParamList())
1722 return true;
1723 }
1724 }
1725
1726 return false;
1727}
1728
1729void ObjCObjectType::computeSuperClassTypeSlow() const {
1730 // Retrieve the class declaration for this type. If there isn't one
1731 // (e.g., this is some variant of "id" or "Class"), then there is no
1732 // superclass type.
1733 ObjCInterfaceDecl *classDecl = getInterface();
1734 if (!classDecl) {
1735 CachedSuperClassType.setInt(true);
1736 return;
1737 }
1738
1739 // Extract the superclass type.
1740 const ObjCObjectType *superClassObjTy = classDecl->getSuperClassType();
1741 if (!superClassObjTy) {
1742 CachedSuperClassType.setInt(true);
1743 return;
1744 }
1745
1746 ObjCInterfaceDecl *superClassDecl = superClassObjTy->getInterface();
1747 if (!superClassDecl) {
1748 CachedSuperClassType.setInt(true);
1749 return;
1750 }
1751
1752 // If the superclass doesn't have type parameters, then there is no
1753 // substitution to perform.
1754 QualType superClassType(superClassObjTy, 0);
1755 ObjCTypeParamList *superClassTypeParams = superClassDecl->getTypeParamList();
1756 if (!superClassTypeParams) {
1757 CachedSuperClassType.setPointerAndInt(
1758 PtrVal: superClassType->castAs<ObjCObjectType>(), IntVal: true);
1759 return;
1760 }
1761
1762 // If the superclass reference is unspecialized, return it.
1763 if (superClassObjTy->isUnspecialized()) {
1764 CachedSuperClassType.setPointerAndInt(PtrVal: superClassObjTy, IntVal: true);
1765 return;
1766 }
1767
1768 // If the subclass is not parameterized, there aren't any type
1769 // parameters in the superclass reference to substitute.
1770 ObjCTypeParamList *typeParams = classDecl->getTypeParamList();
1771 if (!typeParams) {
1772 CachedSuperClassType.setPointerAndInt(
1773 PtrVal: superClassType->castAs<ObjCObjectType>(), IntVal: true);
1774 return;
1775 }
1776
1777 // If the subclass type isn't specialized, return the unspecialized
1778 // superclass.
1779 if (isUnspecialized()) {
1780 QualType unspecializedSuper
1781 = classDecl->getASTContext().getObjCInterfaceType(
1782 Decl: superClassObjTy->getInterface());
1783 CachedSuperClassType.setPointerAndInt(
1784 PtrVal: unspecializedSuper->castAs<ObjCObjectType>(),
1785 IntVal: true);
1786 return;
1787 }
1788
1789 // Substitute the provided type arguments into the superclass type.
1790 ArrayRef<QualType> typeArgs = getTypeArgs();
1791 assert(typeArgs.size() == typeParams->size());
1792 CachedSuperClassType.setPointerAndInt(
1793 PtrVal: superClassType.substObjCTypeArgs(ctx&: classDecl->getASTContext(), typeArgs,
1794 context: ObjCSubstitutionContext::Superclass)
1795 ->castAs<ObjCObjectType>(),
1796 IntVal: true);
1797}
1798
1799const ObjCInterfaceType *ObjCObjectPointerType::getInterfaceType() const {
1800 if (auto interfaceDecl = getObjectType()->getInterface()) {
1801 return interfaceDecl->getASTContext().getObjCInterfaceType(Decl: interfaceDecl)
1802 ->castAs<ObjCInterfaceType>();
1803 }
1804
1805 return nullptr;
1806}
1807
1808QualType ObjCObjectPointerType::getSuperClassType() const {
1809 QualType superObjectType = getObjectType()->getSuperClassType();
1810 if (superObjectType.isNull())
1811 return superObjectType;
1812
1813 ASTContext &ctx = getInterfaceDecl()->getASTContext();
1814 return ctx.getObjCObjectPointerType(OIT: superObjectType);
1815}
1816
1817const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
1818 // There is no sugar for ObjCObjectType's, just return the canonical
1819 // type pointer if it is the right class. There is no typedef information to
1820 // return and these cannot be Address-space qualified.
1821 if (const auto *T = getAs<ObjCObjectType>())
1822 if (T->getNumProtocols() && T->getInterface())
1823 return T;
1824 return nullptr;
1825}
1826
1827bool Type::isObjCQualifiedInterfaceType() const {
1828 return getAsObjCQualifiedInterfaceType() != nullptr;
1829}
1830
1831const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
1832 // There is no sugar for ObjCQualifiedIdType's, just return the canonical
1833 // type pointer if it is the right class.
1834 if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1835 if (OPT->isObjCQualifiedIdType())
1836 return OPT;
1837 }
1838 return nullptr;
1839}
1840
1841const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
1842 // There is no sugar for ObjCQualifiedClassType's, just return the canonical
1843 // type pointer if it is the right class.
1844 if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1845 if (OPT->isObjCQualifiedClassType())
1846 return OPT;
1847 }
1848 return nullptr;
1849}
1850
1851const ObjCObjectType *Type::getAsObjCInterfaceType() const {
1852 if (const auto *OT = getAs<ObjCObjectType>()) {
1853 if (OT->getInterface())
1854 return OT;
1855 }
1856 return nullptr;
1857}
1858
1859const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
1860 if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1861 if (OPT->getInterfaceType())
1862 return OPT;
1863 }
1864 return nullptr;
1865}
1866
1867const CXXRecordDecl *Type::getPointeeCXXRecordDecl() const {
1868 QualType PointeeType;
1869 if (const auto *PT = getAs<PointerType>())
1870 PointeeType = PT->getPointeeType();
1871 else if (const auto *RT = getAs<ReferenceType>())
1872 PointeeType = RT->getPointeeType();
1873 else
1874 return nullptr;
1875
1876 if (const auto *RT = PointeeType->getAs<RecordType>())
1877 return dyn_cast<CXXRecordDecl>(Val: RT->getDecl());
1878
1879 return nullptr;
1880}
1881
1882CXXRecordDecl *Type::getAsCXXRecordDecl() const {
1883 return dyn_cast_or_null<CXXRecordDecl>(Val: getAsTagDecl());
1884}
1885
1886RecordDecl *Type::getAsRecordDecl() const {
1887 return dyn_cast_or_null<RecordDecl>(Val: getAsTagDecl());
1888}
1889
1890TagDecl *Type::getAsTagDecl() const {
1891 if (const auto *TT = getAs<TagType>())
1892 return TT->getDecl();
1893 if (const auto *Injected = getAs<InjectedClassNameType>())
1894 return Injected->getDecl();
1895
1896 return nullptr;
1897}
1898
1899bool Type::hasAttr(attr::Kind AK) const {
1900 const Type *Cur = this;
1901 while (const auto *AT = Cur->getAs<AttributedType>()) {
1902 if (AT->getAttrKind() == AK)
1903 return true;
1904 Cur = AT->getEquivalentType().getTypePtr();
1905 }
1906 return false;
1907}
1908
1909namespace {
1910
1911 class GetContainedDeducedTypeVisitor :
1912 public TypeVisitor<GetContainedDeducedTypeVisitor, Type*> {
1913 bool Syntactic;
1914
1915 public:
1916 GetContainedDeducedTypeVisitor(bool Syntactic = false)
1917 : Syntactic(Syntactic) {}
1918
1919 using TypeVisitor<GetContainedDeducedTypeVisitor, Type*>::Visit;
1920
1921 Type *Visit(QualType T) {
1922 if (T.isNull())
1923 return nullptr;
1924 return Visit(T: T.getTypePtr());
1925 }
1926
1927 // The deduced type itself.
1928 Type *VisitDeducedType(const DeducedType *AT) {
1929 return const_cast<DeducedType*>(AT);
1930 }
1931
1932 // Only these types can contain the desired 'auto' type.
1933 Type *VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
1934 return Visit(T: T->getReplacementType());
1935 }
1936
1937 Type *VisitElaboratedType(const ElaboratedType *T) {
1938 return Visit(T: T->getNamedType());
1939 }
1940
1941 Type *VisitPointerType(const PointerType *T) {
1942 return Visit(T: T->getPointeeType());
1943 }
1944
1945 Type *VisitBlockPointerType(const BlockPointerType *T) {
1946 return Visit(T: T->getPointeeType());
1947 }
1948
1949 Type *VisitReferenceType(const ReferenceType *T) {
1950 return Visit(T: T->getPointeeTypeAsWritten());
1951 }
1952
1953 Type *VisitMemberPointerType(const MemberPointerType *T) {
1954 return Visit(T: T->getPointeeType());
1955 }
1956
1957 Type *VisitArrayType(const ArrayType *T) {
1958 return Visit(T: T->getElementType());
1959 }
1960
1961 Type *VisitDependentSizedExtVectorType(
1962 const DependentSizedExtVectorType *T) {
1963 return Visit(T: T->getElementType());
1964 }
1965
1966 Type *VisitVectorType(const VectorType *T) {
1967 return Visit(T: T->getElementType());
1968 }
1969
1970 Type *VisitDependentSizedMatrixType(const DependentSizedMatrixType *T) {
1971 return Visit(T: T->getElementType());
1972 }
1973
1974 Type *VisitConstantMatrixType(const ConstantMatrixType *T) {
1975 return Visit(T: T->getElementType());
1976 }
1977
1978 Type *VisitFunctionProtoType(const FunctionProtoType *T) {
1979 if (Syntactic && T->hasTrailingReturn())
1980 return const_cast<FunctionProtoType*>(T);
1981 return VisitFunctionType(T);
1982 }
1983
1984 Type *VisitFunctionType(const FunctionType *T) {
1985 return Visit(T: T->getReturnType());
1986 }
1987
1988 Type *VisitParenType(const ParenType *T) {
1989 return Visit(T: T->getInnerType());
1990 }
1991
1992 Type *VisitAttributedType(const AttributedType *T) {
1993 return Visit(T: T->getModifiedType());
1994 }
1995
1996 Type *VisitMacroQualifiedType(const MacroQualifiedType *T) {
1997 return Visit(T: T->getUnderlyingType());
1998 }
1999
2000 Type *VisitAdjustedType(const AdjustedType *T) {
2001 return Visit(T: T->getOriginalType());
2002 }
2003
2004 Type *VisitPackExpansionType(const PackExpansionType *T) {
2005 return Visit(T: T->getPattern());
2006 }
2007 };
2008
2009} // namespace
2010
2011DeducedType *Type::getContainedDeducedType() const {
2012 return cast_or_null<DeducedType>(
2013 Val: GetContainedDeducedTypeVisitor().Visit(T: this));
2014}
2015
2016bool Type::hasAutoForTrailingReturnType() const {
2017 return isa_and_nonnull<FunctionType>(
2018 Val: GetContainedDeducedTypeVisitor(true).Visit(T: this));
2019}
2020
2021bool Type::hasIntegerRepresentation() const {
2022 if (const auto *VT = dyn_cast<VectorType>(Val: CanonicalType))
2023 return VT->getElementType()->isIntegerType();
2024 if (CanonicalType->isSveVLSBuiltinType()) {
2025 const auto *VT = cast<BuiltinType>(Val: CanonicalType);
2026 return VT->getKind() == BuiltinType::SveBool ||
2027 (VT->getKind() >= BuiltinType::SveInt8 &&
2028 VT->getKind() <= BuiltinType::SveUint64);
2029 }
2030 if (CanonicalType->isRVVVLSBuiltinType()) {
2031 const auto *VT = cast<BuiltinType>(Val: CanonicalType);
2032 return (VT->getKind() >= BuiltinType::RvvInt8mf8 &&
2033 VT->getKind() <= BuiltinType::RvvUint64m8);
2034 }
2035
2036 return isIntegerType();
2037}
2038
2039/// Determine whether this type is an integral type.
2040///
2041/// This routine determines whether the given type is an integral type per
2042/// C++ [basic.fundamental]p7. Although the C standard does not define the
2043/// term "integral type", it has a similar term "integer type", and in C++
2044/// the two terms are equivalent. However, C's "integer type" includes
2045/// enumeration types, while C++'s "integer type" does not. The \c ASTContext
2046/// parameter is used to determine whether we should be following the C or
2047/// C++ rules when determining whether this type is an integral/integer type.
2048///
2049/// For cases where C permits "an integer type" and C++ permits "an integral
2050/// type", use this routine.
2051///
2052/// For cases where C permits "an integer type" and C++ permits "an integral
2053/// or enumeration type", use \c isIntegralOrEnumerationType() instead.
2054///
2055/// \param Ctx The context in which this type occurs.
2056///
2057/// \returns true if the type is considered an integral type, false otherwise.
2058bool Type::isIntegralType(const ASTContext &Ctx) const {
2059 if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType))
2060 return BT->getKind() >= BuiltinType::Bool &&
2061 BT->getKind() <= BuiltinType::Int128;
2062
2063 // Complete enum types are integral in C.
2064 if (!Ctx.getLangOpts().CPlusPlus)
2065 if (const auto *ET = dyn_cast<EnumType>(Val: CanonicalType))
2066 return ET->getDecl()->isComplete();
2067
2068 return isBitIntType();
2069}
2070
2071bool Type::isIntegralOrUnscopedEnumerationType() const {
2072 if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType))
2073 return BT->getKind() >= BuiltinType::Bool &&
2074 BT->getKind() <= BuiltinType::Int128;
2075
2076 if (isBitIntType())
2077 return true;
2078
2079 return isUnscopedEnumerationType();
2080}
2081
2082bool Type::isUnscopedEnumerationType() const {
2083 if (const auto *ET = dyn_cast<EnumType>(Val: CanonicalType))
2084 return !ET->getDecl()->isScoped();
2085
2086 return false;
2087}
2088
2089bool Type::isCharType() const {
2090 if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType))
2091 return BT->getKind() == BuiltinType::Char_U ||
2092 BT->getKind() == BuiltinType::UChar ||
2093 BT->getKind() == BuiltinType::Char_S ||
2094 BT->getKind() == BuiltinType::SChar;
2095 return false;
2096}
2097
2098bool Type::isWideCharType() const {
2099 if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType))
2100 return BT->getKind() == BuiltinType::WChar_S ||
2101 BT->getKind() == BuiltinType::WChar_U;
2102 return false;
2103}
2104
2105bool Type::isChar8Type() const {
2106 if (const BuiltinType *BT = dyn_cast<BuiltinType>(Val: CanonicalType))
2107 return BT->getKind() == BuiltinType::Char8;
2108 return false;
2109}
2110
2111bool Type::isChar16Type() const {
2112 if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType))
2113 return BT->getKind() == BuiltinType::Char16;
2114 return false;
2115}
2116
2117bool Type::isChar32Type() const {
2118 if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType))
2119 return BT->getKind() == BuiltinType::Char32;
2120 return false;
2121}
2122
2123/// Determine whether this type is any of the built-in character
2124/// types.
2125bool Type::isAnyCharacterType() const {
2126 const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType);
2127 if (!BT) return false;
2128 switch (BT->getKind()) {
2129 default: return false;
2130 case BuiltinType::Char_U:
2131 case BuiltinType::UChar:
2132 case BuiltinType::WChar_U:
2133 case BuiltinType::Char8:
2134 case BuiltinType::Char16:
2135 case BuiltinType::Char32:
2136 case BuiltinType::Char_S:
2137 case BuiltinType::SChar:
2138 case BuiltinType::WChar_S:
2139 return true;
2140 }
2141}
2142
2143/// isSignedIntegerType - Return true if this is an integer type that is
2144/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2145/// an enum decl which has a signed representation
2146bool Type::isSignedIntegerType() const {
2147 if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) {
2148 return BT->getKind() >= BuiltinType::Char_S &&
2149 BT->getKind() <= BuiltinType::Int128;
2150 }
2151
2152 if (const EnumType *ET = dyn_cast<EnumType>(Val: CanonicalType)) {
2153 // Incomplete enum types are not treated as integer types.
2154 // FIXME: In C++, enum types are never integer types.
2155 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
2156 return ET->getDecl()->getIntegerType()->isSignedIntegerType();
2157 }
2158
2159 if (const auto *IT = dyn_cast<BitIntType>(Val: CanonicalType))
2160 return IT->isSigned();
2161 if (const auto *IT = dyn_cast<DependentBitIntType>(Val: CanonicalType))
2162 return IT->isSigned();
2163
2164 return false;
2165}
2166
2167bool Type::isSignedIntegerOrEnumerationType() const {
2168 if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) {
2169 return BT->getKind() >= BuiltinType::Char_S &&
2170 BT->getKind() <= BuiltinType::Int128;
2171 }
2172
2173 if (const auto *ET = dyn_cast<EnumType>(Val: CanonicalType)) {
2174 if (ET->getDecl()->isComplete())
2175 return ET->getDecl()->getIntegerType()->isSignedIntegerType();
2176 }
2177
2178 if (const auto *IT = dyn_cast<BitIntType>(Val: CanonicalType))
2179 return IT->isSigned();
2180 if (const auto *IT = dyn_cast<DependentBitIntType>(Val: CanonicalType))
2181 return IT->isSigned();
2182
2183 return false;
2184}
2185
2186bool Type::hasSignedIntegerRepresentation() const {
2187 if (const auto *VT = dyn_cast<VectorType>(Val: CanonicalType))
2188 return VT->getElementType()->isSignedIntegerOrEnumerationType();
2189 else
2190 return isSignedIntegerOrEnumerationType();
2191}
2192
2193/// isUnsignedIntegerType - Return true if this is an integer type that is
2194/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
2195/// decl which has an unsigned representation
2196bool Type::isUnsignedIntegerType() const {
2197 if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) {
2198 return BT->getKind() >= BuiltinType::Bool &&
2199 BT->getKind() <= BuiltinType::UInt128;
2200 }
2201
2202 if (const auto *ET = dyn_cast<EnumType>(Val: CanonicalType)) {
2203 // Incomplete enum types are not treated as integer types.
2204 // FIXME: In C++, enum types are never integer types.
2205 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
2206 return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
2207 }
2208
2209 if (const auto *IT = dyn_cast<BitIntType>(Val: CanonicalType))
2210 return IT->isUnsigned();
2211 if (const auto *IT = dyn_cast<DependentBitIntType>(Val: CanonicalType))
2212 return IT->isUnsigned();
2213
2214 return false;
2215}
2216
2217bool Type::isUnsignedIntegerOrEnumerationType() const {
2218 if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType)) {
2219 return BT->getKind() >= BuiltinType::Bool &&
2220 BT->getKind() <= BuiltinType::UInt128;
2221 }
2222
2223 if (const auto *ET = dyn_cast<EnumType>(Val: CanonicalType)) {
2224 if (ET->getDecl()->isComplete())
2225 return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
2226 }
2227
2228 if (const auto *IT = dyn_cast<BitIntType>(Val: CanonicalType))
2229 return IT->isUnsigned();
2230 if (const auto *IT = dyn_cast<DependentBitIntType>(Val: CanonicalType))
2231 return IT->isUnsigned();
2232
2233 return false;
2234}
2235
2236bool Type::hasUnsignedIntegerRepresentation() const {
2237 if (const auto *VT = dyn_cast<VectorType>(Val: CanonicalType))
2238 return VT->getElementType()->isUnsignedIntegerOrEnumerationType();
2239 if (const auto *VT = dyn_cast<MatrixType>(Val: CanonicalType))
2240 return VT->getElementType()->isUnsignedIntegerOrEnumerationType();
2241 if (CanonicalType->isSveVLSBuiltinType()) {
2242 const auto *VT = cast<BuiltinType>(Val: CanonicalType);
2243 return VT->getKind() >= BuiltinType::SveUint8 &&
2244 VT->getKind() <= BuiltinType::SveUint64;
2245 }
2246 return isUnsignedIntegerOrEnumerationType();
2247}
2248
2249bool Type::isFloatingType() const {
2250 if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType))
2251 return BT->getKind() >= BuiltinType::Half &&
2252 BT->getKind() <= BuiltinType::Ibm128;
2253 if (const auto *CT = dyn_cast<ComplexType>(Val: CanonicalType))
2254 return CT->getElementType()->isFloatingType();
2255 return false;
2256}
2257
2258bool Type::hasFloatingRepresentation() const {
2259 if (const auto *VT = dyn_cast<VectorType>(Val: CanonicalType))
2260 return VT->getElementType()->isFloatingType();
2261 if (const auto *MT = dyn_cast<MatrixType>(Val: CanonicalType))
2262 return MT->getElementType()->isFloatingType();
2263 return isFloatingType();
2264}
2265
2266bool Type::isRealFloatingType() const {
2267 if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType))
2268 return BT->isFloatingPoint();
2269 return false;
2270}
2271
2272bool Type::isRealType() const {
2273 if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType))
2274 return BT->getKind() >= BuiltinType::Bool &&
2275 BT->getKind() <= BuiltinType::Ibm128;
2276 if (const auto *ET = dyn_cast<EnumType>(Val: CanonicalType))
2277 return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
2278 return isBitIntType();
2279}
2280
2281bool Type::isArithmeticType() const {
2282 if (const auto *BT = dyn_cast<BuiltinType>(Val: CanonicalType))
2283 return BT->getKind() >= BuiltinType::Bool &&
2284 BT->getKind() <= BuiltinType::Ibm128;
2285 if (const auto *ET = dyn_cast<EnumType>(Val: CanonicalType))
2286 // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
2287 // If a body isn't seen by the time we get here, return false.
2288 //
2289 // C++0x: Enumerations are not arithmetic types. For now, just return
2290 // false for scoped enumerations since that will disable any
2291 // unwanted implicit conversions.
2292 return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
2293 return isa<ComplexType>(Val: CanonicalType) || isBitIntType();
2294}
2295
2296Type::ScalarTypeKind Type::getScalarTypeKind() const {
2297 assert(isScalarType());
2298
2299 const Type *T = CanonicalType.getTypePtr();
2300 if (const auto *BT = dyn_cast<BuiltinType>(Val: T)) {
2301 if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
2302 if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
2303 if (BT->isInteger()) return STK_Integral;
2304 if (BT->isFloatingPoint()) return STK_Floating;
2305 if (BT->isFixedPointType()) return STK_FixedPoint;
2306 llvm_unreachable("unknown scalar builtin type");
2307 } else if (isa<PointerType>(Val: T)) {
2308 return STK_CPointer;
2309 } else if (isa<BlockPointerType>(Val: T)) {
2310 return STK_BlockPointer;
2311 } else if (isa<ObjCObjectPointerType>(Val: T)) {
2312 return STK_ObjCObjectPointer;
2313 } else if (isa<MemberPointerType>(Val: T)) {
2314 return STK_MemberPointer;
2315 } else if (isa<EnumType>(Val: T)) {
2316 assert(cast<EnumType>(T)->getDecl()->isComplete());
2317 return STK_Integral;
2318 } else if (const auto *CT = dyn_cast<ComplexType>(Val: T)) {
2319 if (CT->getElementType()->isRealFloatingType())
2320 return STK_FloatingComplex;
2321 return STK_IntegralComplex;
2322 } else if (isBitIntType()) {
2323 return STK_Integral;
2324 }
2325
2326 llvm_unreachable("unknown scalar type");
2327}
2328
2329/// Determines whether the type is a C++ aggregate type or C
2330/// aggregate or union type.
2331///
2332/// An aggregate type is an array or a class type (struct, union, or
2333/// class) that has no user-declared constructors, no private or
2334/// protected non-static data members, no base classes, and no virtual
2335/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
2336/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
2337/// includes union types.
2338bool Type::isAggregateType() const {
2339 if (const auto *Record = dyn_cast<RecordType>(Val: CanonicalType)) {
2340 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: Record->getDecl()))
2341 return ClassDecl->isAggregate();
2342
2343 return true;
2344 }
2345
2346 return isa<ArrayType>(Val: CanonicalType);
2347}
2348
2349/// isConstantSizeType - Return true if this is not a variable sized type,
2350/// according to the rules of C99 6.7.5p3. It is not legal to call this on
2351/// incomplete types or dependent types.
2352bool Type::isConstantSizeType() const {
2353 assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
2354 assert(!isDependentType() && "This doesn't make sense for dependent types");
2355 // The VAT must have a size, as it is known to be complete.
2356 return !isa<VariableArrayType>(Val: CanonicalType);
2357}
2358
2359/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
2360/// - a type that can describe objects, but which lacks information needed to
2361/// determine its size.
2362bool Type::isIncompleteType(NamedDecl **Def) const {
2363 if (Def)
2364 *Def = nullptr;
2365
2366 switch (CanonicalType->getTypeClass()) {
2367 default: return false;
2368 case Builtin:
2369 // Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
2370 // be completed.
2371 return isVoidType();
2372 case Enum: {
2373 EnumDecl *EnumD = cast<EnumType>(Val: CanonicalType)->getDecl();
2374 if (Def)
2375 *Def = EnumD;
2376 return !EnumD->isComplete();
2377 }
2378 case Record: {
2379 // A tagged type (struct/union/enum/class) is incomplete if the decl is a
2380 // forward declaration, but not a full definition (C99 6.2.5p22).
2381 RecordDecl *Rec = cast<RecordType>(Val: CanonicalType)->getDecl();
2382 if (Def)
2383 *Def = Rec;
2384 return !Rec->isCompleteDefinition();
2385 }
2386 case InjectedClassName: {
2387 CXXRecordDecl *Rec = cast<InjectedClassNameType>(Val: CanonicalType)->getDecl();
2388 if (!Rec->isBeingDefined())
2389 return false;
2390 if (Def)
2391 *Def = Rec;
2392 return true;
2393 }
2394 case ConstantArray:
2395 case VariableArray:
2396 // An array is incomplete if its element type is incomplete
2397 // (C++ [dcl.array]p1).
2398 // We don't handle dependent-sized arrays (dependent types are never treated
2399 // as incomplete).
2400 return cast<ArrayType>(Val: CanonicalType)->getElementType()
2401 ->isIncompleteType(Def);
2402 case IncompleteArray:
2403 // An array of unknown size is an incomplete type (C99 6.2.5p22).
2404 return true;
2405 case MemberPointer: {
2406 // Member pointers in the MS ABI have special behavior in
2407 // RequireCompleteType: they attach a MSInheritanceAttr to the CXXRecordDecl
2408 // to indicate which inheritance model to use.
2409 auto *MPTy = cast<MemberPointerType>(Val: CanonicalType);
2410 const Type *ClassTy = MPTy->getClass();
2411 // Member pointers with dependent class types don't get special treatment.
2412 if (ClassTy->isDependentType())
2413 return false;
2414 const CXXRecordDecl *RD = ClassTy->getAsCXXRecordDecl();
2415 ASTContext &Context = RD->getASTContext();
2416 // Member pointers not in the MS ABI don't get special treatment.
2417 if (!Context.getTargetInfo().getCXXABI().isMicrosoft())
2418 return false;
2419 // The inheritance attribute might only be present on the most recent
2420 // CXXRecordDecl, use that one.
2421 RD = RD->getMostRecentNonInjectedDecl();
2422 // Nothing interesting to do if the inheritance attribute is already set.
2423 if (RD->hasAttr<MSInheritanceAttr>())
2424 return false;
2425 return true;
2426 }
2427 case ObjCObject:
2428 return cast<ObjCObjectType>(Val: CanonicalType)->getBaseType()
2429 ->isIncompleteType(Def);
2430 case ObjCInterface: {
2431 // ObjC interfaces are incomplete if they are @class, not @interface.
2432 ObjCInterfaceDecl *Interface
2433 = cast<ObjCInterfaceType>(Val: CanonicalType)->getDecl();
2434 if (Def)
2435 *Def = Interface;
2436 return !Interface->hasDefinition();
2437 }
2438 }
2439}
2440
2441bool Type::isSizelessBuiltinType() const {
2442 if (isSizelessVectorType())
2443 return true;
2444
2445 if (const BuiltinType *BT = getAs<BuiltinType>()) {
2446 switch (BT->getKind()) {
2447 // WebAssembly reference types
2448#define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
2449#include "clang/Basic/WebAssemblyReferenceTypes.def"
2450 return true;
2451 default:
2452 return false;
2453 }
2454 }
2455 return false;
2456}
2457
2458bool Type::isWebAssemblyExternrefType() const {
2459 if (const auto *BT = getAs<BuiltinType>())
2460 return BT->getKind() == BuiltinType::WasmExternRef;
2461 return false;
2462}
2463
2464bool Type::isWebAssemblyTableType() const {
2465 if (const auto *ATy = dyn_cast<ArrayType>(Val: this))
2466 return ATy->getElementType().isWebAssemblyReferenceType();
2467
2468 if (const auto *PTy = dyn_cast<PointerType>(Val: this))
2469 return PTy->getPointeeType().isWebAssemblyReferenceType();
2470
2471 return false;
2472}
2473
2474bool Type::isSizelessType() const { return isSizelessBuiltinType(); }
2475
2476bool Type::isSizelessVectorType() const {
2477 return isSVESizelessBuiltinType() || isRVVSizelessBuiltinType();
2478}
2479
2480bool Type::isSVESizelessBuiltinType() const {
2481 if (const BuiltinType *BT = getAs<BuiltinType>()) {
2482 switch (BT->getKind()) {
2483 // SVE Types
2484#define SVE_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
2485#include "clang/Basic/AArch64SVEACLETypes.def"
2486 return true;
2487 default:
2488 return false;
2489 }
2490 }
2491 return false;
2492}
2493
2494bool Type::isRVVSizelessBuiltinType() const {
2495 if (const BuiltinType *BT = getAs<BuiltinType>()) {
2496 switch (BT->getKind()) {
2497#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
2498#include "clang/Basic/RISCVVTypes.def"
2499 return true;
2500 default:
2501 return false;
2502 }
2503 }
2504 return false;
2505}
2506
2507bool Type::isSveVLSBuiltinType() const {
2508 if (const BuiltinType *BT = getAs<BuiltinType>()) {
2509 switch (BT->getKind()) {
2510 case BuiltinType::SveInt8:
2511 case BuiltinType::SveInt16:
2512 case BuiltinType::SveInt32:
2513 case BuiltinType::SveInt64:
2514 case BuiltinType::SveUint8:
2515 case BuiltinType::SveUint16:
2516 case BuiltinType::SveUint32:
2517 case BuiltinType::SveUint64:
2518 case BuiltinType::SveFloat16:
2519 case BuiltinType::SveFloat32:
2520 case BuiltinType::SveFloat64:
2521 case BuiltinType::SveBFloat16:
2522 case BuiltinType::SveBool:
2523 case BuiltinType::SveBoolx2:
2524 case BuiltinType::SveBoolx4:
2525 return true;
2526 default:
2527 return false;
2528 }
2529 }
2530 return false;
2531}
2532
2533QualType Type::getSizelessVectorEltType(const ASTContext &Ctx) const {
2534 assert(isSizelessVectorType() && "Must be sizeless vector type");
2535 // Currently supports SVE and RVV
2536 if (isSVESizelessBuiltinType())
2537 return getSveEltType(Ctx);
2538
2539 if (isRVVSizelessBuiltinType())
2540 return getRVVEltType(Ctx);
2541
2542 llvm_unreachable("Unhandled type");
2543}
2544
2545QualType Type::getSveEltType(const ASTContext &Ctx) const {
2546 assert(isSveVLSBuiltinType() && "unsupported type!");
2547
2548 const BuiltinType *BTy = castAs<BuiltinType>();
2549 if (BTy->getKind() == BuiltinType::SveBool)
2550 // Represent predicates as i8 rather than i1 to avoid any layout issues.
2551 // The type is bitcasted to a scalable predicate type when casting between
2552 // scalable and fixed-length vectors.
2553 return Ctx.UnsignedCharTy;
2554 else
2555 return Ctx.getBuiltinVectorTypeInfo(VecTy: BTy).ElementType;
2556}
2557
2558bool Type::isRVVVLSBuiltinType() const {
2559 if (const BuiltinType *BT = getAs<BuiltinType>()) {
2560 switch (BT->getKind()) {
2561#define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned, \
2562 IsFP, IsBF) \
2563 case BuiltinType::Id: \
2564 return NF == 1;
2565#define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \
2566 case BuiltinType::Id: \
2567 return true;
2568#include "clang/Basic/RISCVVTypes.def"
2569 default:
2570 return false;
2571 }
2572 }
2573 return false;
2574}
2575
2576QualType Type::getRVVEltType(const ASTContext &Ctx) const {
2577 assert(isRVVVLSBuiltinType() && "unsupported type!");
2578
2579 const BuiltinType *BTy = castAs<BuiltinType>();
2580
2581 switch (BTy->getKind()) {
2582#define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \
2583 case BuiltinType::Id: \
2584 return Ctx.UnsignedCharTy;
2585 default:
2586 return Ctx.getBuiltinVectorTypeInfo(VecTy: BTy).ElementType;
2587#include "clang/Basic/RISCVVTypes.def"
2588 }
2589
2590 llvm_unreachable("Unhandled type");
2591}
2592
2593bool QualType::isPODType(const ASTContext &Context) const {
2594 // C++11 has a more relaxed definition of POD.
2595 if (Context.getLangOpts().CPlusPlus11)
2596 return isCXX11PODType(Context);
2597
2598 return isCXX98PODType(Context);
2599}
2600
2601bool QualType::isCXX98PODType(const ASTContext &Context) const {
2602 // The compiler shouldn't query this for incomplete types, but the user might.
2603 // We return false for that case. Except for incomplete arrays of PODs, which
2604 // are PODs according to the standard.
2605 if (isNull())
2606 return false;
2607
2608 if ((*this)->isIncompleteArrayType())
2609 return Context.getBaseElementType(QT: *this).isCXX98PODType(Context);
2610
2611 if ((*this)->isIncompleteType())
2612 return false;
2613
2614 if (hasNonTrivialObjCLifetime())
2615 return false;
2616
2617 QualType CanonicalType = getTypePtr()->CanonicalType;
2618 switch (CanonicalType->getTypeClass()) {
2619 // Everything not explicitly mentioned is not POD.
2620 default: return false;
2621 case Type::VariableArray:
2622 case Type::ConstantArray:
2623 // IncompleteArray is handled above.
2624 return Context.getBaseElementType(QT: *this).isCXX98PODType(Context);
2625
2626 case Type::ObjCObjectPointer:
2627 case Type::BlockPointer:
2628 case Type::Builtin:
2629 case Type::Complex:
2630 case Type::Pointer:
2631 case Type::MemberPointer:
2632 case Type::Vector:
2633 case Type::ExtVector:
2634 case Type::BitInt:
2635 return true;
2636
2637 case Type::Enum:
2638 return true;
2639
2640 case Type::Record:
2641 if (const auto *ClassDecl =
2642 dyn_cast<CXXRecordDecl>(Val: cast<RecordType>(Val&: CanonicalType)->getDecl()))
2643 return ClassDecl->isPOD();
2644
2645 // C struct/union is POD.
2646 return true;
2647 }
2648}
2649
2650bool QualType::isTrivialType(const ASTContext &Context) const {
2651 // The compiler shouldn't query this for incomplete types, but the user might.
2652 // We return false for that case. Except for incomplete arrays of PODs, which
2653 // are PODs according to the standard.
2654 if (isNull())
2655 return false;
2656
2657 if ((*this)->isArrayType())
2658 return Context.getBaseElementType(QT: *this).isTrivialType(Context);
2659
2660 if ((*this)->isSizelessBuiltinType())
2661 return true;
2662
2663 // Return false for incomplete types after skipping any incomplete array
2664 // types which are expressly allowed by the standard and thus our API.
2665 if ((*this)->isIncompleteType())
2666 return false;
2667
2668 if (hasNonTrivialObjCLifetime())
2669 return false;
2670
2671 QualType CanonicalType = getTypePtr()->CanonicalType;
2672 if (CanonicalType->isDependentType())
2673 return false;
2674
2675 // C++0x [basic.types]p9:
2676 // Scalar types, trivial class types, arrays of such types, and
2677 // cv-qualified versions of these types are collectively called trivial
2678 // types.
2679
2680 // As an extension, Clang treats vector types as Scalar types.
2681 if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
2682 return true;
2683 if (const auto *RT = CanonicalType->getAs<RecordType>()) {
2684 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) {
2685 // C++20 [class]p6:
2686 // A trivial class is a class that is trivially copyable, and
2687 // has one or more eligible default constructors such that each is
2688 // trivial.
2689 // FIXME: We should merge this definition of triviality into
2690 // CXXRecordDecl::isTrivial. Currently it computes the wrong thing.
2691 return ClassDecl->hasTrivialDefaultConstructor() &&
2692 !ClassDecl->hasNonTrivialDefaultConstructor() &&
2693 ClassDecl->isTriviallyCopyable();
2694 }
2695
2696 return true;
2697 }
2698
2699 // No other types can match.
2700 return false;
2701}
2702
2703static bool isTriviallyCopyableTypeImpl(const QualType &type,
2704 const ASTContext &Context,
2705 bool IsCopyConstructible) {
2706 if (type->isArrayType())
2707 return isTriviallyCopyableTypeImpl(type: Context.getBaseElementType(QT: type),
2708 Context, IsCopyConstructible);
2709
2710 if (type.hasNonTrivialObjCLifetime())
2711 return false;
2712
2713 // C++11 [basic.types]p9 - See Core 2094
2714 // Scalar types, trivially copyable class types, arrays of such types, and
2715 // cv-qualified versions of these types are collectively
2716 // called trivially copy constructible types.
2717
2718 QualType CanonicalType = type.getCanonicalType();
2719 if (CanonicalType->isDependentType())
2720 return false;
2721
2722 if (CanonicalType->isSizelessBuiltinType())
2723 return true;
2724
2725 // Return false for incomplete types after skipping any incomplete array types
2726 // which are expressly allowed by the standard and thus our API.
2727 if (CanonicalType->isIncompleteType())
2728 return false;
2729
2730 // As an extension, Clang treats vector types as Scalar types.
2731 if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
2732 return true;
2733
2734 if (const auto *RT = CanonicalType->getAs<RecordType>()) {
2735 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) {
2736 if (IsCopyConstructible) {
2737 return ClassDecl->isTriviallyCopyConstructible();
2738 } else {
2739 return ClassDecl->isTriviallyCopyable();
2740 }
2741 }
2742 return true;
2743 }
2744 // No other types can match.
2745 return false;
2746}
2747
2748bool QualType::isTriviallyCopyableType(const ASTContext &Context) const {
2749 return isTriviallyCopyableTypeImpl(type: *this, Context,
2750 /*IsCopyConstructible=*/false);
2751}
2752
2753// FIXME: each call will trigger a full computation, cache the result.
2754bool QualType::isBitwiseCloneableType(const ASTContext &Context) const {
2755 auto CanonicalType = getCanonicalType();
2756 if (CanonicalType.hasNonTrivialObjCLifetime())
2757 return false;
2758 if (CanonicalType->isArrayType())
2759 return Context.getBaseElementType(QT: CanonicalType)
2760 .isBitwiseCloneableType(Context);
2761
2762 if (CanonicalType->isIncompleteType())
2763 return false;
2764 const auto *RD = CanonicalType->getAsRecordDecl(); // struct/union/class
2765 if (!RD)
2766 return true;
2767
2768 // Never allow memcpy when we're adding poisoned padding bits to the struct.
2769 // Accessing these posioned bits will trigger false alarms on
2770 // SanitizeAddressFieldPadding etc.
2771 if (RD->mayInsertExtraPadding())
2772 return false;
2773
2774 for (auto *const Field : RD->fields()) {
2775 if (!Field->getType().isBitwiseCloneableType(Context))
2776 return false;
2777 }
2778
2779 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) {
2780 for (auto Base : CXXRD->bases())
2781 if (!Base.getType().isBitwiseCloneableType(Context))
2782 return false;
2783 for (auto VBase : CXXRD->vbases())
2784 if (!VBase.getType().isBitwiseCloneableType(Context))
2785 return false;
2786 }
2787 return true;
2788}
2789
2790bool QualType::isTriviallyCopyConstructibleType(
2791 const ASTContext &Context) const {
2792 return isTriviallyCopyableTypeImpl(type: *this, Context,
2793 /*IsCopyConstructible=*/true);
2794}
2795
2796bool QualType::isTriviallyRelocatableType(const ASTContext &Context) const {
2797 QualType BaseElementType = Context.getBaseElementType(QT: *this);
2798
2799 if (BaseElementType->isIncompleteType()) {
2800 return false;
2801 } else if (!BaseElementType->isObjectType()) {
2802 return false;
2803 } else if (const auto *RD = BaseElementType->getAsRecordDecl()) {
2804 return RD->canPassInRegisters();
2805 } else if (BaseElementType.isTriviallyCopyableType(Context)) {
2806 return true;
2807 } else {
2808 switch (isNonTrivialToPrimitiveDestructiveMove()) {
2809 case PCK_Trivial:
2810 return !isDestructedType();
2811 case PCK_ARCStrong:
2812 return true;
2813 default:
2814 return false;
2815 }
2816 }
2817}
2818
2819bool QualType::isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const {
2820 return !Context.getLangOpts().ObjCAutoRefCount &&
2821 Context.getLangOpts().ObjCWeak &&
2822 getObjCLifetime() != Qualifiers::OCL_Weak;
2823}
2824
2825bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD) {
2826 return RD->hasNonTrivialToPrimitiveDefaultInitializeCUnion();
2827}
2828
2829bool QualType::hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD) {
2830 return RD->hasNonTrivialToPrimitiveDestructCUnion();
2831}
2832
2833bool QualType::hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD) {
2834 return RD->hasNonTrivialToPrimitiveCopyCUnion();
2835}
2836
2837bool QualType::isWebAssemblyReferenceType() const {
2838 return isWebAssemblyExternrefType() || isWebAssemblyFuncrefType();
2839}
2840
2841bool QualType::isWebAssemblyExternrefType() const {
2842 return getTypePtr()->isWebAssemblyExternrefType();
2843}
2844
2845bool QualType::isWebAssemblyFuncrefType() const {
2846 return getTypePtr()->isFunctionPointerType() &&
2847 getAddressSpace() == LangAS::wasm_funcref;
2848}
2849
2850QualType::PrimitiveDefaultInitializeKind
2851QualType::isNonTrivialToPrimitiveDefaultInitialize() const {
2852 if (const auto *RT =
2853 getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>())
2854 if (RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize())
2855 return PDIK_Struct;
2856
2857 switch (getQualifiers().getObjCLifetime()) {
2858 case Qualifiers::OCL_Strong:
2859 return PDIK_ARCStrong;
2860 case Qualifiers::OCL_Weak:
2861 return PDIK_ARCWeak;
2862 default:
2863 return PDIK_Trivial;
2864 }
2865}
2866
2867QualType::PrimitiveCopyKind QualType::isNonTrivialToPrimitiveCopy() const {
2868 if (const auto *RT =
2869 getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>())
2870 if (RT->getDecl()->isNonTrivialToPrimitiveCopy())
2871 return PCK_Struct;
2872
2873 Qualifiers Qs = getQualifiers();
2874 switch (Qs.getObjCLifetime()) {
2875 case Qualifiers::OCL_Strong:
2876 return PCK_ARCStrong;
2877 case Qualifiers::OCL_Weak:
2878 return PCK_ARCWeak;
2879 default:
2880 return Qs.hasVolatile() ? PCK_VolatileTrivial : PCK_Trivial;
2881 }
2882}
2883
2884QualType::PrimitiveCopyKind
2885QualType::isNonTrivialToPrimitiveDestructiveMove() const {
2886 return isNonTrivialToPrimitiveCopy();
2887}
2888
2889bool Type::isLiteralType(const ASTContext &Ctx) const {
2890 if (isDependentType())
2891 return false;
2892
2893 // C++1y [basic.types]p10:
2894 // A type is a literal type if it is:
2895 // -- cv void; or
2896 if (Ctx.getLangOpts().CPlusPlus14 && isVoidType())
2897 return true;
2898
2899 // C++11 [basic.types]p10:
2900 // A type is a literal type if it is:
2901 // [...]
2902 // -- an array of literal type other than an array of runtime bound; or
2903 if (isVariableArrayType())
2904 return false;
2905 const Type *BaseTy = getBaseElementTypeUnsafe();
2906 assert(BaseTy && "NULL element type");
2907
2908 // Return false for incomplete types after skipping any incomplete array
2909 // types; those are expressly allowed by the standard and thus our API.
2910 if (BaseTy->isIncompleteType())
2911 return false;
2912
2913 // C++11 [basic.types]p10:
2914 // A type is a literal type if it is:
2915 // -- a scalar type; or
2916 // As an extension, Clang treats vector types and complex types as
2917 // literal types.
2918 if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
2919 BaseTy->isAnyComplexType())
2920 return true;
2921 // -- a reference type; or
2922 if (BaseTy->isReferenceType())
2923 return true;
2924 // -- a class type that has all of the following properties:
2925 if (const auto *RT = BaseTy->getAs<RecordType>()) {
2926 // -- a trivial destructor,
2927 // -- every constructor call and full-expression in the
2928 // brace-or-equal-initializers for non-static data members (if any)
2929 // is a constant expression,
2930 // -- it is an aggregate type or has at least one constexpr
2931 // constructor or constructor template that is not a copy or move
2932 // constructor, and
2933 // -- all non-static data members and base classes of literal types
2934 //
2935 // We resolve DR1361 by ignoring the second bullet.
2936 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl()))
2937 return ClassDecl->isLiteral();
2938
2939 return true;
2940 }
2941
2942 // We treat _Atomic T as a literal type if T is a literal type.
2943 if (const auto *AT = BaseTy->getAs<AtomicType>())
2944 return AT->getValueType()->isLiteralType(Ctx);
2945
2946 // If this type hasn't been deduced yet, then conservatively assume that
2947 // it'll work out to be a literal type.
2948 if (isa<AutoType>(Val: BaseTy->getCanonicalTypeInternal()))
2949 return true;
2950
2951 return false;
2952}
2953
2954bool Type::isStructuralType() const {
2955 // C++20 [temp.param]p6:
2956 // A structural type is one of the following:
2957 // -- a scalar type; or
2958 // -- a vector type [Clang extension]; or
2959 if (isScalarType() || isVectorType())
2960 return true;
2961 // -- an lvalue reference type; or
2962 if (isLValueReferenceType())
2963 return true;
2964 // -- a literal class type [...under some conditions]
2965 if (const CXXRecordDecl *RD = getAsCXXRecordDecl())
2966 return RD->isStructural();
2967 return false;
2968}
2969
2970bool Type::isStandardLayoutType() const {
2971 if (isDependentType())
2972 return false;
2973
2974 // C++0x [basic.types]p9:
2975 // Scalar types, standard-layout class types, arrays of such types, and
2976 // cv-qualified versions of these types are collectively called
2977 // standard-layout types.
2978 const Type *BaseTy = getBaseElementTypeUnsafe();
2979 assert(BaseTy && "NULL element type");
2980
2981 // Return false for incomplete types after skipping any incomplete array
2982 // types which are expressly allowed by the standard and thus our API.
2983 if (BaseTy->isIncompleteType())
2984 return false;
2985
2986 // As an extension, Clang treats vector types as Scalar types.
2987 if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
2988 if (const auto *RT = BaseTy->getAs<RecordType>()) {
2989 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl()))
2990 if (!ClassDecl->isStandardLayout())
2991 return false;
2992
2993 // Default to 'true' for non-C++ class types.
2994 // FIXME: This is a bit dubious, but plain C structs should trivially meet
2995 // all the requirements of standard layout classes.
2996 return true;
2997 }
2998
2999 // No other types can match.
3000 return false;
3001}
3002
3003// This is effectively the intersection of isTrivialType and
3004// isStandardLayoutType. We implement it directly to avoid redundant
3005// conversions from a type to a CXXRecordDecl.
3006bool QualType::isCXX11PODType(const ASTContext &Context) const {
3007 const Type *ty = getTypePtr();
3008 if (ty->isDependentType())
3009 return false;
3010
3011 if (hasNonTrivialObjCLifetime())
3012 return false;
3013
3014 // C++11 [basic.types]p9:
3015 // Scalar types, POD classes, arrays of such types, and cv-qualified
3016 // versions of these types are collectively called trivial types.
3017 const Type *BaseTy = ty->getBaseElementTypeUnsafe();
3018 assert(BaseTy && "NULL element type");
3019
3020 if (BaseTy->isSizelessBuiltinType())
3021 return true;
3022
3023 // Return false for incomplete types after skipping any incomplete array
3024 // types which are expressly allowed by the standard and thus our API.
3025 if (BaseTy->isIncompleteType())
3026 return false;
3027
3028 // As an extension, Clang treats vector types as Scalar types.
3029 if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
3030 if (const auto *RT = BaseTy->getAs<RecordType>()) {
3031 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) {
3032 // C++11 [class]p10:
3033 // A POD struct is a non-union class that is both a trivial class [...]
3034 if (!ClassDecl->isTrivial()) return false;
3035
3036 // C++11 [class]p10:
3037 // A POD struct is a non-union class that is both a trivial class and
3038 // a standard-layout class [...]
3039 if (!ClassDecl->isStandardLayout()) return false;
3040
3041 // C++11 [class]p10:
3042 // A POD struct is a non-union class that is both a trivial class and
3043 // a standard-layout class, and has no non-static data members of type
3044 // non-POD struct, non-POD union (or array of such types). [...]
3045 //
3046 // We don't directly query the recursive aspect as the requirements for
3047 // both standard-layout classes and trivial classes apply recursively
3048 // already.
3049 }
3050
3051 return true;
3052 }
3053
3054 // No other types can match.
3055 return false;
3056}
3057
3058bool Type::isNothrowT() const {
3059 if (const auto *RD = getAsCXXRecordDecl()) {
3060 IdentifierInfo *II = RD->getIdentifier();
3061 if (II && II->isStr(Str: "nothrow_t") && RD->isInStdNamespace())
3062 return true;
3063 }
3064 return false;
3065}
3066
3067bool Type::isAlignValT() const {
3068 if (const auto *ET = getAs<EnumType>()) {
3069 IdentifierInfo *II = ET->getDecl()->getIdentifier();
3070 if (II && II->isStr(Str: "align_val_t") && ET->getDecl()->isInStdNamespace())
3071 return true;
3072 }
3073 return false;
3074}
3075
3076bool Type::isStdByteType() const {
3077 if (const auto *ET = getAs<EnumType>()) {
3078 IdentifierInfo *II = ET->getDecl()->getIdentifier();
3079 if (II && II->isStr(Str: "byte") && ET->getDecl()->isInStdNamespace())
3080 return true;
3081 }
3082 return false;
3083}
3084
3085bool Type::isSpecifierType() const {
3086 // Note that this intentionally does not use the canonical type.
3087 switch (getTypeClass()) {
3088 case Builtin:
3089 case Record:
3090 case Enum:
3091 case Typedef:
3092 case Complex:
3093 case TypeOfExpr:
3094 case TypeOf:
3095 case TemplateTypeParm:
3096 case SubstTemplateTypeParm:
3097 case TemplateSpecialization:
3098 case Elaborated:
3099 case DependentName:
3100 case DependentTemplateSpecialization:
3101 case ObjCInterface:
3102 case ObjCObject:
3103 return true;
3104 default:
3105 return false;
3106 }
3107}
3108
3109ElaboratedTypeKeyword
3110TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
3111 switch (TypeSpec) {
3112 default:
3113 return ElaboratedTypeKeyword::None;
3114 case TST_typename:
3115 return ElaboratedTypeKeyword::Typename;
3116 case TST_class:
3117 return ElaboratedTypeKeyword::Class;
3118 case TST_struct:
3119 return ElaboratedTypeKeyword::Struct;
3120 case TST_interface:
3121 return ElaboratedTypeKeyword::Interface;
3122 case TST_union:
3123 return ElaboratedTypeKeyword::Union;
3124 case TST_enum:
3125 return ElaboratedTypeKeyword::Enum;
3126 }
3127}
3128
3129TagTypeKind
3130TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
3131 switch(TypeSpec) {
3132 case TST_class:
3133 return TagTypeKind::Class;
3134 case TST_struct:
3135 return TagTypeKind::Struct;
3136 case TST_interface:
3137 return TagTypeKind::Interface;
3138 case TST_union:
3139 return TagTypeKind::Union;
3140 case TST_enum:
3141 return TagTypeKind::Enum;
3142 }
3143
3144 llvm_unreachable("Type specifier is not a tag type kind.");
3145}
3146
3147ElaboratedTypeKeyword
3148TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
3149 switch (Kind) {
3150 case TagTypeKind::Class:
3151 return ElaboratedTypeKeyword::Class;
3152 case TagTypeKind::Struct:
3153 return ElaboratedTypeKeyword::Struct;
3154 case TagTypeKind::Interface:
3155 return ElaboratedTypeKeyword::Interface;
3156 case TagTypeKind::Union:
3157 return ElaboratedTypeKeyword::Union;
3158 case TagTypeKind::Enum:
3159 return ElaboratedTypeKeyword::Enum;
3160 }
3161 llvm_unreachable("Unknown tag type kind.");
3162}
3163
3164TagTypeKind
3165TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
3166 switch (Keyword) {
3167 case ElaboratedTypeKeyword::Class:
3168 return TagTypeKind::Class;
3169 case ElaboratedTypeKeyword::Struct:
3170 return TagTypeKind::Struct;
3171 case ElaboratedTypeKeyword::Interface:
3172 return TagTypeKind::Interface;
3173 case ElaboratedTypeKeyword::Union:
3174 return TagTypeKind::Union;
3175 case ElaboratedTypeKeyword::Enum:
3176 return TagTypeKind::Enum;
3177 case ElaboratedTypeKeyword::None: // Fall through.
3178 case ElaboratedTypeKeyword::Typename:
3179 llvm_unreachable("Elaborated type keyword is not a tag type kind.");
3180 }
3181 llvm_unreachable("Unknown elaborated type keyword.");
3182}
3183
3184bool
3185TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
3186 switch (Keyword) {
3187 case ElaboratedTypeKeyword::None:
3188 case ElaboratedTypeKeyword::Typename:
3189 return false;
3190 case ElaboratedTypeKeyword::Class:
3191 case ElaboratedTypeKeyword::Struct:
3192 case ElaboratedTypeKeyword::Interface:
3193 case ElaboratedTypeKeyword::Union:
3194 case ElaboratedTypeKeyword::Enum:
3195 return true;
3196 }
3197 llvm_unreachable("Unknown elaborated type keyword.");
3198}
3199
3200StringRef TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
3201 switch (Keyword) {
3202 case ElaboratedTypeKeyword::None:
3203 return {};
3204 case ElaboratedTypeKeyword::Typename:
3205 return "typename";
3206 case ElaboratedTypeKeyword::Class:
3207 return "class";
3208 case ElaboratedTypeKeyword::Struct:
3209 return "struct";
3210 case ElaboratedTypeKeyword::Interface:
3211 return "__interface";
3212 case ElaboratedTypeKeyword::Union:
3213 return "union";
3214 case ElaboratedTypeKeyword::Enum:
3215 return "enum";
3216 }
3217
3218 llvm_unreachable("Unknown elaborated type keyword.");
3219}
3220
3221DependentTemplateSpecializationType::DependentTemplateSpecializationType(
3222 ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3223 const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args, QualType Canon)
3224 : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon,
3225 TypeDependence::DependentInstantiation |
3226 (NNS ? toTypeDependence(D: NNS->getDependence())
3227 : TypeDependence::None)),
3228 NNS(NNS), Name(Name) {
3229 DependentTemplateSpecializationTypeBits.NumArgs = Args.size();
3230 assert((!NNS || NNS->isDependent()) &&
3231 "DependentTemplateSpecializatonType requires dependent qualifier");
3232 auto *ArgBuffer = const_cast<TemplateArgument *>(template_arguments().data());
3233 for (const TemplateArgument &Arg : Args) {
3234 addDependence(D: toTypeDependence(D: Arg.getDependence() &
3235 TemplateArgumentDependence::UnexpandedPack));
3236
3237 new (ArgBuffer++) TemplateArgument(Arg);
3238 }
3239}
3240
3241void
3242DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
3243 const ASTContext &Context,
3244 ElaboratedTypeKeyword Keyword,
3245 NestedNameSpecifier *Qualifier,
3246 const IdentifierInfo *Name,
3247 ArrayRef<TemplateArgument> Args) {
3248 ID.AddInteger(I: llvm::to_underlying(E: Keyword));
3249 ID.AddPointer(Ptr: Qualifier);
3250 ID.AddPointer(Ptr: Name);
3251 for (const TemplateArgument &Arg : Args)
3252 Arg.Profile(ID, Context);
3253}
3254
3255bool Type::isElaboratedTypeSpecifier() const {
3256 ElaboratedTypeKeyword Keyword;
3257 if (const auto *Elab = dyn_cast<ElaboratedType>(Val: this))
3258 Keyword = Elab->getKeyword();
3259 else if (const auto *DepName = dyn_cast<DependentNameType>(Val: this))
3260 Keyword = DepName->getKeyword();
3261 else if (const auto *DepTST =
3262 dyn_cast<DependentTemplateSpecializationType>(Val: this))
3263 Keyword = DepTST->getKeyword();
3264 else
3265 return false;
3266
3267 return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
3268}
3269
3270const char *Type::getTypeClassName() const {
3271 switch (TypeBits.TC) {
3272#define ABSTRACT_TYPE(Derived, Base)
3273#define TYPE(Derived, Base) case Derived: return #Derived;
3274#include "clang/AST/TypeNodes.inc"
3275 }
3276
3277 llvm_unreachable("Invalid type class.");
3278}
3279
3280StringRef BuiltinType::getName(const PrintingPolicy &Policy) const {
3281 switch (getKind()) {
3282 case Void:
3283 return "void";
3284 case Bool:
3285 return Policy.Bool ? "bool" : "_Bool";
3286 case Char_S:
3287 return "char";
3288 case Char_U:
3289 return "char";
3290 case SChar:
3291 return "signed char";
3292 case Short:
3293 return "short";
3294 case Int:
3295 return "int";
3296 case Long:
3297 return "long";
3298 case LongLong:
3299 return "long long";
3300 case Int128:
3301 return "__int128";
3302 case UChar:
3303 return "unsigned char";
3304 case UShort:
3305 return "unsigned short";
3306 case UInt:
3307 return "unsigned int";
3308 case ULong:
3309 return "unsigned long";
3310 case ULongLong:
3311 return "unsigned long long";
3312 case UInt128:
3313 return "unsigned __int128";
3314 case Half:
3315 return Policy.Half ? "half" : "__fp16";
3316 case BFloat16:
3317 return "__bf16";
3318 case Float:
3319 return "float";
3320 case Double:
3321 return "double";
3322 case LongDouble:
3323 return "long double";
3324 case ShortAccum:
3325 return "short _Accum";
3326 case Accum:
3327 return "_Accum";
3328 case LongAccum:
3329 return "long _Accum";
3330 case UShortAccum:
3331 return "unsigned short _Accum";
3332 case UAccum:
3333 return "unsigned _Accum";
3334 case ULongAccum:
3335 return "unsigned long _Accum";
3336 case BuiltinType::ShortFract:
3337 return "short _Fract";
3338 case BuiltinType::Fract:
3339 return "_Fract";
3340 case BuiltinType::LongFract:
3341 return "long _Fract";
3342 case BuiltinType::UShortFract:
3343 return "unsigned short _Fract";
3344 case BuiltinType::UFract:
3345 return "unsigned _Fract";
3346 case BuiltinType::ULongFract:
3347 return "unsigned long _Fract";
3348 case BuiltinType::SatShortAccum:
3349 return "_Sat short _Accum";
3350 case BuiltinType::SatAccum:
3351 return "_Sat _Accum";
3352 case BuiltinType::SatLongAccum:
3353 return "_Sat long _Accum";
3354 case BuiltinType::SatUShortAccum:
3355 return "_Sat unsigned short _Accum";
3356 case BuiltinType::SatUAccum:
3357 return "_Sat unsigned _Accum";
3358 case BuiltinType::SatULongAccum:
3359 return "_Sat unsigned long _Accum";
3360 case BuiltinType::SatShortFract:
3361 return "_Sat short _Fract";
3362 case BuiltinType::SatFract:
3363 return "_Sat _Fract";
3364 case BuiltinType::SatLongFract:
3365 return "_Sat long _Fract";
3366 case BuiltinType::SatUShortFract:
3367 return "_Sat unsigned short _Fract";
3368 case BuiltinType::SatUFract:
3369 return "_Sat unsigned _Fract";
3370 case BuiltinType::SatULongFract:
3371 return "_Sat unsigned long _Fract";
3372 case Float16:
3373 return "_Float16";
3374 case Float128:
3375 return "__float128";
3376 case Ibm128:
3377 return "__ibm128";
3378 case WChar_S:
3379 case WChar_U:
3380 return Policy.MSWChar ? "__wchar_t" : "wchar_t";
3381 case Char8:
3382 return "char8_t";
3383 case Char16:
3384 return "char16_t";
3385 case Char32:
3386 return "char32_t";
3387 case NullPtr:
3388 return Policy.NullptrTypeInNamespace ? "std::nullptr_t" : "nullptr_t";
3389 case Overload:
3390 return "<overloaded function type>";
3391 case BoundMember:
3392 return "<bound member function type>";
3393 case UnresolvedTemplate:
3394 return "<unresolved template type>";
3395 case PseudoObject:
3396 return "<pseudo-object type>";
3397 case Dependent:
3398 return "<dependent type>";
3399 case UnknownAny:
3400 return "<unknown type>";
3401 case ARCUnbridgedCast:
3402 return "<ARC unbridged cast type>";
3403 case BuiltinFn:
3404 return "<builtin fn type>";
3405 case ObjCId:
3406 return "id";
3407 case ObjCClass:
3408 return "Class";
3409 case ObjCSel:
3410 return "SEL";
3411#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
3412 case Id: \
3413 return "__" #Access " " #ImgType "_t";
3414#include "clang/Basic/OpenCLImageTypes.def"
3415 case OCLSampler:
3416 return "sampler_t";
3417 case OCLEvent:
3418 return "event_t";
3419 case OCLClkEvent:
3420 return "clk_event_t";
3421 case OCLQueue:
3422 return "queue_t";
3423 case OCLReserveID:
3424 return "reserve_id_t";
3425 case IncompleteMatrixIdx:
3426 return "<incomplete matrix index type>";
3427 case ArraySection:
3428 return "<array section type>";
3429 case OMPArrayShaping:
3430 return "<OpenMP array shaping type>";
3431 case OMPIterator:
3432 return "<OpenMP iterator type>";
3433#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
3434 case Id: \
3435 return #ExtType;
3436#include "clang/Basic/OpenCLExtensionTypes.def"
3437#define SVE_TYPE(Name, Id, SingletonId) \
3438 case Id: \
3439 return Name;
3440#include "clang/Basic/AArch64SVEACLETypes.def"
3441#define PPC_VECTOR_TYPE(Name, Id, Size) \
3442 case Id: \
3443 return #Name;
3444#include "clang/Basic/PPCTypes.def"
3445#define RVV_TYPE(Name, Id, SingletonId) \
3446 case Id: \
3447 return Name;
3448#include "clang/Basic/RISCVVTypes.def"
3449#define WASM_TYPE(Name, Id, SingletonId) \
3450 case Id: \
3451 return Name;
3452#include "clang/Basic/WebAssemblyReferenceTypes.def"
3453#define AMDGPU_TYPE(Name, Id, SingletonId) \
3454 case Id: \
3455 return Name;
3456#include "clang/Basic/AMDGPUTypes.def"
3457 }
3458
3459 llvm_unreachable("Invalid builtin type.");
3460}
3461
3462QualType QualType::getNonPackExpansionType() const {
3463 // We never wrap type sugar around a PackExpansionType.
3464 if (auto *PET = dyn_cast<PackExpansionType>(Val: getTypePtr()))
3465 return PET->getPattern();
3466 return *this;
3467}
3468
3469QualType QualType::getNonLValueExprType(const ASTContext &Context) const {
3470 if (const auto *RefType = getTypePtr()->getAs<ReferenceType>())
3471 return RefType->getPointeeType();
3472
3473 // C++0x [basic.lval]:
3474 // Class prvalues can have cv-qualified types; non-class prvalues always
3475 // have cv-unqualified types.
3476 //
3477 // See also C99 6.3.2.1p2.
3478 if (!Context.getLangOpts().CPlusPlus ||
3479 (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
3480 return getUnqualifiedType();
3481
3482 return *this;
3483}
3484
3485StringRef FunctionType::getNameForCallConv(CallingConv CC) {
3486 switch (CC) {
3487 case CC_C: return "cdecl";
3488 case CC_X86StdCall: return "stdcall";
3489 case CC_X86FastCall: return "fastcall";
3490 case CC_X86ThisCall: return "thiscall";
3491 case CC_X86Pascal: return "pascal";
3492 case CC_X86VectorCall: return "vectorcall";
3493 case CC_Win64: return "ms_abi";
3494 case CC_X86_64SysV: return "sysv_abi";
3495 case CC_X86RegCall : return "regcall";
3496 case CC_AAPCS: return "aapcs";
3497 case CC_AAPCS_VFP: return "aapcs-vfp";
3498 case CC_AArch64VectorCall: return "aarch64_vector_pcs";
3499 case CC_AArch64SVEPCS: return "aarch64_sve_pcs";
3500 case CC_AMDGPUKernelCall: return "amdgpu_kernel";
3501 case CC_IntelOclBicc: return "intel_ocl_bicc";
3502 case CC_SpirFunction: return "spir_function";
3503 case CC_OpenCLKernel: return "opencl_kernel";
3504 case CC_Swift: return "swiftcall";
3505 case CC_SwiftAsync: return "swiftasynccall";
3506 case CC_PreserveMost: return "preserve_most";
3507 case CC_PreserveAll: return "preserve_all";
3508 case CC_M68kRTD: return "m68k_rtd";
3509 case CC_PreserveNone: return "preserve_none";
3510 // clang-format off
3511 case CC_RISCVVectorCall: return "riscv_vector_cc";
3512 // clang-format on
3513 }
3514
3515 llvm_unreachable("Invalid calling convention.");
3516}
3517
3518void FunctionProtoType::ExceptionSpecInfo::instantiate() {
3519 assert(Type == EST_Uninstantiated);
3520 NoexceptExpr =
3521 cast<FunctionProtoType>(Val: SourceTemplate->getType())->getNoexceptExpr();
3522 Type = EST_DependentNoexcept;
3523}
3524
3525FunctionProtoType::FunctionProtoType(QualType result, ArrayRef<QualType> params,
3526 QualType canonical,
3527 const ExtProtoInfo &epi)
3528 : FunctionType(FunctionProto, result, canonical, result->getDependence(),
3529 epi.ExtInfo) {
3530 FunctionTypeBits.FastTypeQuals = epi.TypeQuals.getFastQualifiers();
3531 FunctionTypeBits.RefQualifier = epi.RefQualifier;
3532 FunctionTypeBits.NumParams = params.size();
3533 assert(getNumParams() == params.size() && "NumParams overflow!");
3534 FunctionTypeBits.ExceptionSpecType = epi.ExceptionSpec.Type;
3535 FunctionTypeBits.HasExtParameterInfos = !!epi.ExtParameterInfos;
3536 FunctionTypeBits.Variadic = epi.Variadic;
3537 FunctionTypeBits.HasTrailingReturn = epi.HasTrailingReturn;
3538
3539 if (epi.requiresFunctionProtoTypeExtraBitfields()) {
3540 FunctionTypeBits.HasExtraBitfields = true;
3541 auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>();
3542 ExtraBits = FunctionTypeExtraBitfields();
3543 } else {
3544 FunctionTypeBits.HasExtraBitfields = false;
3545 }
3546
3547 if (epi.requiresFunctionProtoTypeArmAttributes()) {
3548 auto &ArmTypeAttrs = *getTrailingObjects<FunctionTypeArmAttributes>();
3549 ArmTypeAttrs = FunctionTypeArmAttributes();
3550
3551 // Also set the bit in FunctionTypeExtraBitfields
3552 auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>();
3553 ExtraBits.HasArmTypeAttributes = true;
3554 }
3555
3556 // Fill in the trailing argument array.
3557 auto *argSlot = getTrailingObjects<QualType>();
3558 for (unsigned i = 0; i != getNumParams(); ++i) {
3559 addDependence(D: params[i]->getDependence() &
3560 ~TypeDependence::VariablyModified);
3561 argSlot[i] = params[i];
3562 }
3563
3564 // Propagate the SME ACLE attributes.
3565 if (epi.AArch64SMEAttributes != SME_NormalFunction) {
3566 auto &ArmTypeAttrs = *getTrailingObjects<FunctionTypeArmAttributes>();
3567 assert(epi.AArch64SMEAttributes <= SME_AttributeMask &&
3568 "Not enough bits to encode SME attributes");
3569 ArmTypeAttrs.AArch64SMEAttributes = epi.AArch64SMEAttributes;
3570 }
3571
3572 // Fill in the exception type array if present.
3573 if (getExceptionSpecType() == EST_Dynamic) {
3574 auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>();
3575 size_t NumExceptions = epi.ExceptionSpec.Exceptions.size();
3576 assert(NumExceptions <= 1023 && "Not enough bits to encode exceptions");
3577 ExtraBits.NumExceptionType = NumExceptions;
3578
3579 assert(hasExtraBitfields() && "missing trailing extra bitfields!");
3580 auto *exnSlot =
3581 reinterpret_cast<QualType *>(getTrailingObjects<ExceptionType>());
3582 unsigned I = 0;
3583 for (QualType ExceptionType : epi.ExceptionSpec.Exceptions) {
3584 // Note that, before C++17, a dependent exception specification does
3585 // *not* make a type dependent; it's not even part of the C++ type
3586 // system.
3587 addDependence(
3588 D: ExceptionType->getDependence() &
3589 (TypeDependence::Instantiation | TypeDependence::UnexpandedPack));
3590
3591 exnSlot[I++] = ExceptionType;
3592 }
3593 }
3594 // Fill in the Expr * in the exception specification if present.
3595 else if (isComputedNoexcept(ESpecType: getExceptionSpecType())) {
3596 assert(epi.ExceptionSpec.NoexceptExpr && "computed noexcept with no expr");
3597 assert((getExceptionSpecType() == EST_DependentNoexcept) ==
3598 epi.ExceptionSpec.NoexceptExpr->isValueDependent());
3599
3600 // Store the noexcept expression and context.
3601 *getTrailingObjects<Expr *>() = epi.ExceptionSpec.NoexceptExpr;
3602
3603 addDependence(
3604 D: toTypeDependence(D: epi.ExceptionSpec.NoexceptExpr->getDependence()) &
3605 (TypeDependence::Instantiation | TypeDependence::UnexpandedPack));
3606 }
3607 // Fill in the FunctionDecl * in the exception specification if present.
3608 else if (getExceptionSpecType() == EST_Uninstantiated) {
3609 // Store the function decl from which we will resolve our
3610 // exception specification.
3611 auto **slot = getTrailingObjects<FunctionDecl *>();
3612 slot[0] = epi.ExceptionSpec.SourceDecl;
3613 slot[1] = epi.ExceptionSpec.SourceTemplate;
3614 // This exception specification doesn't make the type dependent, because
3615 // it's not instantiated as part of instantiating the type.
3616 } else if (getExceptionSpecType() == EST_Unevaluated) {
3617 // Store the function decl from which we will resolve our
3618 // exception specification.
3619 auto **slot = getTrailingObjects<FunctionDecl *>();
3620 slot[0] = epi.ExceptionSpec.SourceDecl;
3621 }
3622
3623 // If this is a canonical type, and its exception specification is dependent,
3624 // then it's a dependent type. This only happens in C++17 onwards.
3625 if (isCanonicalUnqualified()) {
3626 if (getExceptionSpecType() == EST_Dynamic ||
3627 getExceptionSpecType() == EST_DependentNoexcept) {
3628 assert(hasDependentExceptionSpec() && "type should not be canonical");
3629 addDependence(D: TypeDependence::DependentInstantiation);
3630 }
3631 } else if (getCanonicalTypeInternal()->isDependentType()) {
3632 // Ask our canonical type whether our exception specification was dependent.
3633 addDependence(D: TypeDependence::DependentInstantiation);
3634 }
3635
3636 // Fill in the extra parameter info if present.
3637 if (epi.ExtParameterInfos) {
3638 auto *extParamInfos = getTrailingObjects<ExtParameterInfo>();
3639 for (unsigned i = 0; i != getNumParams(); ++i)
3640 extParamInfos[i] = epi.ExtParameterInfos[i];
3641 }
3642
3643 if (epi.TypeQuals.hasNonFastQualifiers()) {
3644 FunctionTypeBits.HasExtQuals = 1;
3645 *getTrailingObjects<Qualifiers>() = epi.TypeQuals;
3646 } else {
3647 FunctionTypeBits.HasExtQuals = 0;
3648 }
3649
3650 // Fill in the Ellipsis location info if present.
3651 if (epi.Variadic) {
3652 auto &EllipsisLoc = *getTrailingObjects<SourceLocation>();
3653 EllipsisLoc = epi.EllipsisLoc;
3654 }
3655
3656 if (!epi.FunctionEffects.empty()) {
3657 auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>();
3658 size_t EffectsCount = epi.FunctionEffects.size();
3659 ExtraBits.NumFunctionEffects = EffectsCount;
3660 assert(ExtraBits.NumFunctionEffects == EffectsCount &&
3661 "effect bitfield overflow");
3662
3663 ArrayRef<FunctionEffect> SrcFX = epi.FunctionEffects.effects();
3664 auto *DestFX = getTrailingObjects<FunctionEffect>();
3665 std::uninitialized_copy(first: SrcFX.begin(), last: SrcFX.end(), result: DestFX);
3666
3667 ArrayRef<EffectConditionExpr> SrcConds = epi.FunctionEffects.conditions();
3668 if (!SrcConds.empty()) {
3669 ExtraBits.EffectsHaveConditions = true;
3670 auto *DestConds = getTrailingObjects<EffectConditionExpr>();
3671 std::uninitialized_copy(first: SrcConds.begin(), last: SrcConds.end(), result: DestConds);
3672 assert(std::any_of(SrcConds.begin(), SrcConds.end(),
3673 [](const EffectConditionExpr &EC) {
3674 if (const Expr *E = EC.getCondition())
3675 return E->isTypeDependent() ||
3676 E->isValueDependent();
3677 return false;
3678 }) &&
3679 "expected a dependent expression among the conditions");
3680 addDependence(D: TypeDependence::DependentInstantiation);
3681 }
3682 }
3683}
3684
3685bool FunctionProtoType::hasDependentExceptionSpec() const {
3686 if (Expr *NE = getNoexceptExpr())
3687 return NE->isValueDependent();
3688 for (QualType ET : exceptions())
3689 // A pack expansion with a non-dependent pattern is still dependent,
3690 // because we don't know whether the pattern is in the exception spec
3691 // or not (that depends on whether the pack has 0 expansions).
3692 if (ET->isDependentType() || ET->getAs<PackExpansionType>())
3693 return true;
3694 return false;
3695}
3696
3697bool FunctionProtoType::hasInstantiationDependentExceptionSpec() const {
3698 if (Expr *NE = getNoexceptExpr())
3699 return NE->isInstantiationDependent();
3700 for (QualType ET : exceptions())
3701 if (ET->isInstantiationDependentType())
3702 return true;
3703 return false;
3704}
3705
3706CanThrowResult FunctionProtoType::canThrow() const {
3707 switch (getExceptionSpecType()) {
3708 case EST_Unparsed:
3709 case EST_Unevaluated:
3710 llvm_unreachable("should not call this with unresolved exception specs");
3711
3712 case EST_DynamicNone:
3713 case EST_BasicNoexcept:
3714 case EST_NoexceptTrue:
3715 case EST_NoThrow:
3716 return CT_Cannot;
3717
3718 case EST_None:
3719 case EST_MSAny:
3720 case EST_NoexceptFalse:
3721 return CT_Can;
3722
3723 case EST_Dynamic:
3724 // A dynamic exception specification is throwing unless every exception
3725 // type is an (unexpanded) pack expansion type.
3726 for (unsigned I = 0; I != getNumExceptions(); ++I)
3727 if (!getExceptionType(i: I)->getAs<PackExpansionType>())
3728 return CT_Can;
3729 return CT_Dependent;
3730
3731 case EST_Uninstantiated:
3732 case EST_DependentNoexcept:
3733 return CT_Dependent;
3734 }
3735
3736 llvm_unreachable("unexpected exception specification kind");
3737}
3738
3739bool FunctionProtoType::isTemplateVariadic() const {
3740 for (unsigned ArgIdx = getNumParams(); ArgIdx; --ArgIdx)
3741 if (isa<PackExpansionType>(Val: getParamType(i: ArgIdx - 1)))
3742 return true;
3743
3744 return false;
3745}
3746
3747void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3748 const QualType *ArgTys, unsigned NumParams,
3749 const ExtProtoInfo &epi,
3750 const ASTContext &Context, bool Canonical) {
3751 // We have to be careful not to get ambiguous profile encodings.
3752 // Note that valid type pointers are never ambiguous with anything else.
3753 //
3754 // The encoding grammar begins:
3755 // type type* bool int bool
3756 // If that final bool is true, then there is a section for the EH spec:
3757 // bool type*
3758 // This is followed by an optional "consumed argument" section of the
3759 // same length as the first type sequence:
3760 // bool*
3761 // This is followed by the ext info:
3762 // int
3763 // Finally we have a trailing return type flag (bool)
3764 // combined with AArch64 SME Attributes, to save space:
3765 // int
3766 // combined with any FunctionEffects
3767 //
3768 // There is no ambiguity between the consumed arguments and an empty EH
3769 // spec because of the leading 'bool' which unambiguously indicates
3770 // whether the following bool is the EH spec or part of the arguments.
3771
3772 ID.AddPointer(Ptr: Result.getAsOpaquePtr());
3773 for (unsigned i = 0; i != NumParams; ++i)
3774 ID.AddPointer(Ptr: ArgTys[i].getAsOpaquePtr());
3775 // This method is relatively performance sensitive, so as a performance
3776 // shortcut, use one AddInteger call instead of four for the next four
3777 // fields.
3778 assert(!(unsigned(epi.Variadic) & ~1) &&
3779 !(unsigned(epi.RefQualifier) & ~3) &&
3780 !(unsigned(epi.ExceptionSpec.Type) & ~15) &&
3781 "Values larger than expected.");
3782 ID.AddInteger(I: unsigned(epi.Variadic) +
3783 (epi.RefQualifier << 1) +
3784 (epi.ExceptionSpec.Type << 3));
3785 ID.Add(x: epi.TypeQuals);
3786 if (epi.ExceptionSpec.Type == EST_Dynamic) {
3787 for (QualType Ex : epi.ExceptionSpec.Exceptions)
3788 ID.AddPointer(Ptr: Ex.getAsOpaquePtr());
3789 } else if (isComputedNoexcept(ESpecType: epi.ExceptionSpec.Type)) {
3790 epi.ExceptionSpec.NoexceptExpr->Profile(ID, Context, Canonical);
3791 } else if (epi.ExceptionSpec.Type == EST_Uninstantiated ||
3792 epi.ExceptionSpec.Type == EST_Unevaluated) {
3793 ID.AddPointer(Ptr: epi.ExceptionSpec.SourceDecl->getCanonicalDecl());
3794 }
3795 if (epi.ExtParameterInfos) {
3796 for (unsigned i = 0; i != NumParams; ++i)
3797 ID.AddInteger(I: epi.ExtParameterInfos[i].getOpaqueValue());
3798 }
3799
3800 epi.ExtInfo.Profile(ID);
3801
3802 unsigned EffectCount = epi.FunctionEffects.size();
3803 bool HasConds = !epi.FunctionEffects.Conditions.empty();
3804
3805 ID.AddInteger(I: (EffectCount << 3) | (HasConds << 2) |
3806 (epi.AArch64SMEAttributes << 1) | epi.HasTrailingReturn);
3807
3808 for (unsigned Idx = 0; Idx != EffectCount; ++Idx) {
3809 ID.AddInteger(I: epi.FunctionEffects.Effects[Idx].toOpaqueInt32());
3810 if (HasConds)
3811 ID.AddPointer(Ptr: epi.FunctionEffects.Conditions[Idx].getCondition());
3812 }
3813}
3814
3815void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
3816 const ASTContext &Ctx) {
3817 Profile(ID, Result: getReturnType(), ArgTys: param_type_begin(), NumParams: getNumParams(),
3818 epi: getExtProtoInfo(), Context: Ctx, Canonical: isCanonicalUnqualified());
3819}
3820
3821TypeCoupledDeclRefInfo::TypeCoupledDeclRefInfo(ValueDecl *D, bool Deref)
3822 : Data(D, Deref << DerefShift) {}
3823
3824bool TypeCoupledDeclRefInfo::isDeref() const {
3825 return Data.getInt() & DerefMask;
3826}
3827ValueDecl *TypeCoupledDeclRefInfo::getDecl() const { return Data.getPointer(); }
3828unsigned TypeCoupledDeclRefInfo::getInt() const { return Data.getInt(); }
3829void *TypeCoupledDeclRefInfo::getOpaqueValue() const {
3830 return Data.getOpaqueValue();
3831}
3832bool TypeCoupledDeclRefInfo::operator==(
3833 const TypeCoupledDeclRefInfo &Other) const {
3834 return getOpaqueValue() == Other.getOpaqueValue();
3835}
3836void TypeCoupledDeclRefInfo::setFromOpaqueValue(void *V) {
3837 Data.setFromOpaqueValue(V);
3838}
3839
3840BoundsAttributedType::BoundsAttributedType(TypeClass TC, QualType Wrapped,
3841 QualType Canon)
3842 : Type(TC, Canon, Wrapped->getDependence()), WrappedTy(Wrapped) {}
3843
3844CountAttributedType::CountAttributedType(
3845 QualType Wrapped, QualType Canon, Expr *CountExpr, bool CountInBytes,
3846 bool OrNull, ArrayRef<TypeCoupledDeclRefInfo> CoupledDecls)
3847 : BoundsAttributedType(CountAttributed, Wrapped, Canon),
3848 CountExpr(CountExpr) {
3849 CountAttributedTypeBits.NumCoupledDecls = CoupledDecls.size();
3850 CountAttributedTypeBits.CountInBytes = CountInBytes;
3851 CountAttributedTypeBits.OrNull = OrNull;
3852 auto *DeclSlot = getTrailingObjects<TypeCoupledDeclRefInfo>();
3853 Decls = llvm::ArrayRef(DeclSlot, CoupledDecls.size());
3854 for (unsigned i = 0; i != CoupledDecls.size(); ++i)
3855 DeclSlot[i] = CoupledDecls[i];
3856}
3857
3858TypedefType::TypedefType(TypeClass tc, const TypedefNameDecl *D,
3859 QualType Underlying, QualType can)
3860 : Type(tc, can, toSemanticDependence(D: can->getDependence())),
3861 Decl(const_cast<TypedefNameDecl *>(D)) {
3862 assert(!isa<TypedefType>(can) && "Invalid canonical type");
3863 TypedefBits.hasTypeDifferentFromDecl = !Underlying.isNull();
3864 if (!typeMatchesDecl())
3865 *getTrailingObjects<QualType>() = Underlying;
3866}
3867
3868QualType TypedefType::desugar() const {
3869 return typeMatchesDecl() ? Decl->getUnderlyingType()
3870 : *getTrailingObjects<QualType>();
3871}
3872
3873UsingType::UsingType(const UsingShadowDecl *Found, QualType Underlying,
3874 QualType Canon)
3875 : Type(Using, Canon, toSemanticDependence(D: Canon->getDependence())),
3876 Found(const_cast<UsingShadowDecl *>(Found)) {
3877 UsingBits.hasTypeDifferentFromDecl = !Underlying.isNull();
3878 if (!typeMatchesDecl())
3879 *getTrailingObjects<QualType>() = Underlying;
3880}
3881
3882QualType UsingType::getUnderlyingType() const {
3883 return typeMatchesDecl()
3884 ? QualType(
3885 cast<TypeDecl>(Val: Found->getTargetDecl())->getTypeForDecl(), 0)
3886 : *getTrailingObjects<QualType>();
3887}
3888
3889QualType MacroQualifiedType::desugar() const { return getUnderlyingType(); }
3890
3891QualType MacroQualifiedType::getModifiedType() const {
3892 // Step over MacroQualifiedTypes from the same macro to find the type
3893 // ultimately qualified by the macro qualifier.
3894 QualType Inner = cast<AttributedType>(Val: getUnderlyingType())->getModifiedType();
3895 while (auto *InnerMQT = dyn_cast<MacroQualifiedType>(Val&: Inner)) {
3896 if (InnerMQT->getMacroIdentifier() != getMacroIdentifier())
3897 break;
3898 Inner = InnerMQT->getModifiedType();
3899 }
3900 return Inner;
3901}
3902
3903TypeOfExprType::TypeOfExprType(const ASTContext &Context, Expr *E,
3904 TypeOfKind Kind, QualType Can)
3905 : Type(TypeOfExpr,
3906 // We have to protect against 'Can' being invalid through its
3907 // default argument.
3908 Kind == TypeOfKind::Unqualified && !Can.isNull()
3909 ? Context.getUnqualifiedArrayType(T: Can).getAtomicUnqualifiedType()
3910 : Can,
3911 toTypeDependence(D: E->getDependence()) |
3912 (E->getType()->getDependence() &
3913 TypeDependence::VariablyModified)),
3914 TOExpr(E), Context(Context) {
3915 TypeOfBits.Kind = static_cast<unsigned>(Kind);
3916}
3917
3918bool TypeOfExprType::isSugared() const {
3919 return !TOExpr->isTypeDependent();
3920}
3921
3922QualType TypeOfExprType::desugar() const {
3923 if (isSugared()) {
3924 QualType QT = getUnderlyingExpr()->getType();
3925 return getKind() == TypeOfKind::Unqualified
3926 ? Context.getUnqualifiedArrayType(T: QT).getAtomicUnqualifiedType()
3927 : QT;
3928 }
3929 return QualType(this, 0);
3930}
3931
3932void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
3933 const ASTContext &Context, Expr *E,
3934 bool IsUnqual) {
3935 E->Profile(ID, Context, Canonical: true);
3936 ID.AddBoolean(B: IsUnqual);
3937}
3938
3939TypeOfType::TypeOfType(const ASTContext &Context, QualType T, QualType Can,
3940 TypeOfKind Kind)
3941 : Type(TypeOf,
3942 Kind == TypeOfKind::Unqualified
3943 ? Context.getUnqualifiedArrayType(T: Can).getAtomicUnqualifiedType()
3944 : Can,
3945 T->getDependence()),
3946 TOType(T), Context(Context) {
3947 TypeOfBits.Kind = static_cast<unsigned>(Kind);
3948}
3949
3950QualType TypeOfType::desugar() const {
3951 QualType QT = getUnmodifiedType();
3952 return getKind() == TypeOfKind::Unqualified
3953 ? Context.getUnqualifiedArrayType(T: QT).getAtomicUnqualifiedType()
3954 : QT;
3955}
3956
3957DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
3958 // C++11 [temp.type]p2: "If an expression e involves a template parameter,
3959 // decltype(e) denotes a unique dependent type." Hence a decltype type is
3960 // type-dependent even if its expression is only instantiation-dependent.
3961 : Type(Decltype, can,
3962 toTypeDependence(D: E->getDependence()) |
3963 (E->isInstantiationDependent() ? TypeDependence::Dependent
3964 : TypeDependence::None) |
3965 (E->getType()->getDependence() &
3966 TypeDependence::VariablyModified)),
3967 E(E), UnderlyingType(underlyingType) {}
3968
3969bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
3970
3971QualType DecltypeType::desugar() const {
3972 if (isSugared())
3973 return getUnderlyingType();
3974
3975 return QualType(this, 0);
3976}
3977
3978DependentDecltypeType::DependentDecltypeType(Expr *E, QualType UnderlyingType)
3979 : DecltypeType(E, UnderlyingType) {}
3980
3981void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
3982 const ASTContext &Context, Expr *E) {
3983 E->Profile(ID, Context, Canonical: true);
3984}
3985
3986PackIndexingType::PackIndexingType(const ASTContext &Context,
3987 QualType Canonical, QualType Pattern,
3988 Expr *IndexExpr,
3989 ArrayRef<QualType> Expansions)
3990 : Type(PackIndexing, Canonical,
3991 computeDependence(Pattern, IndexExpr, Expansions)),
3992 Context(Context), Pattern(Pattern), IndexExpr(IndexExpr),
3993 Size(Expansions.size()) {
3994
3995 std::uninitialized_copy(first: Expansions.begin(), last: Expansions.end(),
3996 result: getTrailingObjects<QualType>());
3997}
3998
3999std::optional<unsigned> PackIndexingType::getSelectedIndex() const {
4000 if (isInstantiationDependentType())
4001 return std::nullopt;
4002 // Should only be not a constant for error recovery.
4003 ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: getIndexExpr());
4004 if (!CE)
4005 return std::nullopt;
4006 auto Index = CE->getResultAsAPSInt();
4007 assert(Index.isNonNegative() && "Invalid index");
4008 return static_cast<unsigned>(Index.getExtValue());
4009}
4010
4011TypeDependence
4012PackIndexingType::computeDependence(QualType Pattern, Expr *IndexExpr,
4013 ArrayRef<QualType> Expansions) {
4014 TypeDependence IndexD = toTypeDependence(D: IndexExpr->getDependence());
4015
4016 TypeDependence TD = IndexD | (IndexExpr->isInstantiationDependent()
4017 ? TypeDependence::DependentInstantiation
4018 : TypeDependence::None);
4019 if (Expansions.empty())
4020 TD |= Pattern->getDependence() & TypeDependence::DependentInstantiation;
4021 else
4022 for (const QualType &T : Expansions)
4023 TD |= T->getDependence();
4024
4025 if (!(IndexD & TypeDependence::UnexpandedPack))
4026 TD &= ~TypeDependence::UnexpandedPack;
4027
4028 // If the pattern does not contain an unexpended pack,
4029 // the type is still dependent, and invalid
4030 if (!Pattern->containsUnexpandedParameterPack())
4031 TD |= TypeDependence::Error | TypeDependence::DependentInstantiation;
4032
4033 return TD;
4034}
4035
4036void PackIndexingType::Profile(llvm::FoldingSetNodeID &ID,
4037 const ASTContext &Context, QualType Pattern,
4038 Expr *E) {
4039 Pattern.Profile(ID);
4040 E->Profile(ID, Context, Canonical: true);
4041}
4042
4043UnaryTransformType::UnaryTransformType(QualType BaseType,
4044 QualType UnderlyingType, UTTKind UKind,
4045 QualType CanonicalType)
4046 : Type(UnaryTransform, CanonicalType, BaseType->getDependence()),
4047 BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind) {}
4048
4049DependentUnaryTransformType::DependentUnaryTransformType(const ASTContext &C,
4050 QualType BaseType,
4051 UTTKind UKind)
4052 : UnaryTransformType(BaseType, C.DependentTy, UKind, QualType()) {}
4053
4054TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
4055 : Type(TC, can,
4056 D->isDependentType() ? TypeDependence::DependentInstantiation
4057 : TypeDependence::None),
4058 decl(const_cast<TagDecl *>(D)) {}
4059
4060static TagDecl *getInterestingTagDecl(TagDecl *decl) {
4061 for (auto *I : decl->redecls()) {
4062 if (I->isCompleteDefinition() || I->isBeingDefined())
4063 return I;
4064 }
4065 // If there's no definition (not even in progress), return what we have.
4066 return decl;
4067}
4068
4069TagDecl *TagType::getDecl() const {
4070 return getInterestingTagDecl(decl);
4071}
4072
4073bool TagType::isBeingDefined() const {
4074 return getDecl()->isBeingDefined();
4075}
4076
4077bool RecordType::hasConstFields() const {
4078 std::vector<const RecordType*> RecordTypeList;
4079 RecordTypeList.push_back(x: this);
4080 unsigned NextToCheckIndex = 0;
4081
4082 while (RecordTypeList.size() > NextToCheckIndex) {
4083 for (FieldDecl *FD :
4084 RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
4085 QualType FieldTy = FD->getType();
4086 if (FieldTy.isConstQualified())
4087 return true;
4088 FieldTy = FieldTy.getCanonicalType();
4089 if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
4090 if (!llvm::is_contained(Range&: RecordTypeList, Element: FieldRecTy))
4091 RecordTypeList.push_back(x: FieldRecTy);
4092 }
4093 }
4094 ++NextToCheckIndex;
4095 }
4096 return false;
4097}
4098
4099bool AttributedType::isQualifier() const {
4100 // FIXME: Generate this with TableGen.
4101 switch (getAttrKind()) {
4102 // These are type qualifiers in the traditional C sense: they annotate
4103 // something about a specific value/variable of a type. (They aren't
4104 // always part of the canonical type, though.)
4105 case attr::ObjCGC:
4106 case attr::ObjCOwnership:
4107 case attr::ObjCInertUnsafeUnretained:
4108 case attr::TypeNonNull:
4109 case attr::TypeNullable:
4110 case attr::TypeNullableResult:
4111 case attr::TypeNullUnspecified:
4112 case attr::LifetimeBound:
4113 case attr::AddressSpace:
4114 return true;
4115
4116 // All other type attributes aren't qualifiers; they rewrite the modified
4117 // type to be a semantically different type.
4118 default:
4119 return false;
4120 }
4121}
4122
4123bool AttributedType::isMSTypeSpec() const {
4124 // FIXME: Generate this with TableGen?
4125 switch (getAttrKind()) {
4126 default: return false;
4127 case attr::Ptr32:
4128 case attr::Ptr64:
4129 case attr::SPtr:
4130 case attr::UPtr:
4131 return true;
4132 }
4133 llvm_unreachable("invalid attr kind");
4134}
4135
4136bool AttributedType::isWebAssemblyFuncrefSpec() const {
4137 return getAttrKind() == attr::WebAssemblyFuncref;
4138}
4139
4140bool AttributedType::isCallingConv() const {
4141 // FIXME: Generate this with TableGen.
4142 switch (getAttrKind()) {
4143 default: return false;
4144 case attr::Pcs:
4145 case attr::CDecl:
4146 case attr::FastCall:
4147 case attr::StdCall:
4148 case attr::ThisCall:
4149 case attr::RegCall:
4150 case attr::SwiftCall:
4151 case attr::SwiftAsyncCall:
4152 case attr::VectorCall:
4153 case attr::AArch64VectorPcs:
4154 case attr::AArch64SVEPcs:
4155 case attr::AMDGPUKernelCall:
4156 case attr::Pascal:
4157 case attr::MSABI:
4158 case attr::SysVABI:
4159 case attr::IntelOclBicc:
4160 case attr::PreserveMost:
4161 case attr::PreserveAll:
4162 case attr::M68kRTD:
4163 case attr::PreserveNone:
4164 case attr::RISCVVectorCC:
4165 return true;
4166 }
4167 llvm_unreachable("invalid attr kind");
4168}
4169
4170CXXRecordDecl *InjectedClassNameType::getDecl() const {
4171 return cast<CXXRecordDecl>(Val: getInterestingTagDecl(decl: Decl));
4172}
4173
4174IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
4175 return isCanonicalUnqualified() ? nullptr : getDecl()->getIdentifier();
4176}
4177
4178static const TemplateTypeParmDecl *getReplacedParameter(Decl *D,
4179 unsigned Index) {
4180 if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: D))
4181 return TTP;
4182 return cast<TemplateTypeParmDecl>(
4183 Val: getReplacedTemplateParameterList(D)->getParam(Idx: Index));
4184}
4185
4186SubstTemplateTypeParmType::SubstTemplateTypeParmType(
4187 QualType Replacement, Decl *AssociatedDecl, unsigned Index,
4188 std::optional<unsigned> PackIndex)
4189 : Type(SubstTemplateTypeParm, Replacement.getCanonicalType(),
4190 Replacement->getDependence()),
4191 AssociatedDecl(AssociatedDecl) {
4192 SubstTemplateTypeParmTypeBits.HasNonCanonicalUnderlyingType =
4193 Replacement != getCanonicalTypeInternal();
4194 if (SubstTemplateTypeParmTypeBits.HasNonCanonicalUnderlyingType)
4195 *getTrailingObjects<QualType>() = Replacement;
4196
4197 SubstTemplateTypeParmTypeBits.Index = Index;
4198 SubstTemplateTypeParmTypeBits.PackIndex = PackIndex ? *PackIndex + 1 : 0;
4199 assert(AssociatedDecl != nullptr);
4200}
4201
4202const TemplateTypeParmDecl *
4203SubstTemplateTypeParmType::getReplacedParameter() const {
4204 return ::getReplacedParameter(D: getAssociatedDecl(), Index: getIndex());
4205}
4206
4207SubstTemplateTypeParmPackType::SubstTemplateTypeParmPackType(
4208 QualType Canon, Decl *AssociatedDecl, unsigned Index, bool Final,
4209 const TemplateArgument &ArgPack)
4210 : Type(SubstTemplateTypeParmPack, Canon,
4211 TypeDependence::DependentInstantiation |
4212 TypeDependence::UnexpandedPack),
4213 Arguments(ArgPack.pack_begin()),
4214 AssociatedDeclAndFinal(AssociatedDecl, Final) {
4215 SubstTemplateTypeParmPackTypeBits.Index = Index;
4216 SubstTemplateTypeParmPackTypeBits.NumArgs = ArgPack.pack_size();
4217 assert(AssociatedDecl != nullptr);
4218}
4219
4220Decl *SubstTemplateTypeParmPackType::getAssociatedDecl() const {
4221 return AssociatedDeclAndFinal.getPointer();
4222}
4223
4224bool SubstTemplateTypeParmPackType::getFinal() const {
4225 return AssociatedDeclAndFinal.getInt();
4226}
4227
4228const TemplateTypeParmDecl *
4229SubstTemplateTypeParmPackType::getReplacedParameter() const {
4230 return ::getReplacedParameter(D: getAssociatedDecl(), Index: getIndex());
4231}
4232
4233IdentifierInfo *SubstTemplateTypeParmPackType::getIdentifier() const {
4234 return getReplacedParameter()->getIdentifier();
4235}
4236
4237TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
4238 return TemplateArgument(llvm::ArrayRef(Arguments, getNumArgs()));
4239}
4240
4241void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
4242 Profile(ID, AssociatedDecl: getAssociatedDecl(), Index: getIndex(), Final: getFinal(), ArgPack: getArgumentPack());
4243}
4244
4245void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
4246 const Decl *AssociatedDecl,
4247 unsigned Index, bool Final,
4248 const TemplateArgument &ArgPack) {
4249 ID.AddPointer(Ptr: AssociatedDecl);
4250 ID.AddInteger(I: Index);
4251 ID.AddBoolean(B: Final);
4252 ID.AddInteger(I: ArgPack.pack_size());
4253 for (const auto &P : ArgPack.pack_elements())
4254 ID.AddPointer(Ptr: P.getAsType().getAsOpaquePtr());
4255}
4256
4257bool TemplateSpecializationType::anyDependentTemplateArguments(
4258 const TemplateArgumentListInfo &Args, ArrayRef<TemplateArgument> Converted) {
4259 return anyDependentTemplateArguments(Args: Args.arguments(), Converted);
4260}
4261
4262bool TemplateSpecializationType::anyDependentTemplateArguments(
4263 ArrayRef<TemplateArgumentLoc> Args, ArrayRef<TemplateArgument> Converted) {
4264 for (const TemplateArgument &Arg : Converted)
4265 if (Arg.isDependent())
4266 return true;
4267 return false;
4268}
4269
4270bool TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
4271 ArrayRef<TemplateArgumentLoc> Args) {
4272 for (const TemplateArgumentLoc &ArgLoc : Args) {
4273 if (ArgLoc.getArgument().isInstantiationDependent())
4274 return true;
4275 }
4276 return false;
4277}
4278
4279TemplateSpecializationType::TemplateSpecializationType(
4280 TemplateName T, ArrayRef<TemplateArgument> Args, QualType Canon,
4281 QualType AliasedType)
4282 : Type(TemplateSpecialization, Canon.isNull() ? QualType(this, 0) : Canon,
4283 (Canon.isNull()
4284 ? TypeDependence::DependentInstantiation
4285 : toSemanticDependence(D: Canon->getDependence())) |
4286 (toTypeDependence(D: T.getDependence()) &
4287 TypeDependence::UnexpandedPack)),
4288 Template(T) {
4289 TemplateSpecializationTypeBits.NumArgs = Args.size();
4290 TemplateSpecializationTypeBits.TypeAlias = !AliasedType.isNull();
4291
4292 assert(!T.getAsDependentTemplateName() &&
4293 "Use DependentTemplateSpecializationType for dependent template-name");
4294 assert((T.getKind() == TemplateName::Template ||
4295 T.getKind() == TemplateName::SubstTemplateTemplateParm ||
4296 T.getKind() == TemplateName::SubstTemplateTemplateParmPack ||
4297 T.getKind() == TemplateName::UsingTemplate ||
4298 T.getKind() == TemplateName::QualifiedTemplate) &&
4299 "Unexpected template name for TemplateSpecializationType");
4300
4301 auto *TemplateArgs = reinterpret_cast<TemplateArgument *>(this + 1);
4302 for (const TemplateArgument &Arg : Args) {
4303 // Update instantiation-dependent, variably-modified, and error bits.
4304 // If the canonical type exists and is non-dependent, the template
4305 // specialization type can be non-dependent even if one of the type
4306 // arguments is. Given:
4307 // template<typename T> using U = int;
4308 // U<T> is always non-dependent, irrespective of the type T.
4309 // However, U<Ts> contains an unexpanded parameter pack, even though
4310 // its expansion (and thus its desugared type) doesn't.
4311 addDependence(D: toTypeDependence(D: Arg.getDependence()) &
4312 ~TypeDependence::Dependent);
4313 if (Arg.getKind() == TemplateArgument::Type)
4314 addDependence(D: Arg.getAsType()->getDependence() &
4315 TypeDependence::VariablyModified);
4316 new (TemplateArgs++) TemplateArgument(Arg);
4317 }
4318
4319 // Store the aliased type if this is a type alias template specialization.
4320 if (isTypeAlias()) {
4321 auto *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
4322 *reinterpret_cast<QualType *>(Begin + Args.size()) = AliasedType;
4323 }
4324}
4325
4326QualType TemplateSpecializationType::getAliasedType() const {
4327 assert(isTypeAlias() && "not a type alias template specialization");
4328 return *reinterpret_cast<const QualType *>(template_arguments().end());
4329}
4330
4331void TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
4332 const ASTContext &Ctx) {
4333 Profile(ID, T: Template, Args: template_arguments(), Context: Ctx);
4334 if (isTypeAlias())
4335 getAliasedType().Profile(ID);
4336}
4337
4338void
4339TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
4340 TemplateName T,
4341 ArrayRef<TemplateArgument> Args,
4342 const ASTContext &Context) {
4343 T.Profile(ID);
4344 for (const TemplateArgument &Arg : Args)
4345 Arg.Profile(ID, Context);
4346}
4347
4348QualType
4349QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
4350 if (!hasNonFastQualifiers())
4351 return QT.withFastQualifiers(TQs: getFastQualifiers());
4352
4353 return Context.getQualifiedType(T: QT, Qs: *this);
4354}
4355
4356QualType
4357QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
4358 if (!hasNonFastQualifiers())
4359 return QualType(T, getFastQualifiers());
4360
4361 return Context.getQualifiedType(T, Qs: *this);
4362}
4363
4364void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
4365 QualType BaseType,
4366 ArrayRef<QualType> typeArgs,
4367 ArrayRef<ObjCProtocolDecl *> protocols,
4368 bool isKindOf) {
4369 ID.AddPointer(Ptr: BaseType.getAsOpaquePtr());
4370 ID.AddInteger(I: typeArgs.size());
4371 for (auto typeArg : typeArgs)
4372 ID.AddPointer(Ptr: typeArg.getAsOpaquePtr());
4373 ID.AddInteger(I: protocols.size());
4374 for (auto *proto : protocols)
4375 ID.AddPointer(Ptr: proto);
4376 ID.AddBoolean(B: isKindOf);
4377}
4378
4379void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
4380 Profile(ID, BaseType: getBaseType(), typeArgs: getTypeArgsAsWritten(),
4381 protocols: llvm::ArrayRef(qual_begin(), getNumProtocols()),
4382 isKindOf: isKindOfTypeAsWritten());
4383}
4384
4385void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID,
4386 const ObjCTypeParamDecl *OTPDecl,
4387 QualType CanonicalType,
4388 ArrayRef<ObjCProtocolDecl *> protocols) {
4389 ID.AddPointer(Ptr: OTPDecl);
4390 ID.AddPointer(Ptr: CanonicalType.getAsOpaquePtr());
4391 ID.AddInteger(I: protocols.size());
4392 for (auto *proto : protocols)
4393 ID.AddPointer(Ptr: proto);
4394}
4395
4396void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID) {
4397 Profile(ID, OTPDecl: getDecl(), CanonicalType: getCanonicalTypeInternal(),
4398 protocols: llvm::ArrayRef(qual_begin(), getNumProtocols()));
4399}
4400
4401namespace {
4402
4403/// The cached properties of a type.
4404class CachedProperties {
4405 Linkage L;
4406 bool local;
4407
4408public:
4409 CachedProperties(Linkage L, bool local) : L(L), local(local) {}
4410
4411 Linkage getLinkage() const { return L; }
4412 bool hasLocalOrUnnamedType() const { return local; }
4413
4414 friend CachedProperties merge(CachedProperties L, CachedProperties R) {
4415 Linkage MergedLinkage = minLinkage(L1: L.L, L2: R.L);
4416 return CachedProperties(MergedLinkage, L.hasLocalOrUnnamedType() ||
4417 R.hasLocalOrUnnamedType());
4418 }
4419};
4420
4421} // namespace
4422
4423static CachedProperties computeCachedProperties(const Type *T);
4424
4425namespace clang {
4426
4427/// The type-property cache. This is templated so as to be
4428/// instantiated at an internal type to prevent unnecessary symbol
4429/// leakage.
4430template <class Private> class TypePropertyCache {
4431public:
4432 static CachedProperties get(QualType T) {
4433 return get(T.getTypePtr());
4434 }
4435
4436 static CachedProperties get(const Type *T) {
4437 ensure(T);
4438 return CachedProperties(T->TypeBits.getLinkage(),
4439 T->TypeBits.hasLocalOrUnnamedType());
4440 }
4441
4442 static void ensure(const Type *T) {
4443 // If the cache is valid, we're okay.
4444 if (T->TypeBits.isCacheValid()) return;
4445
4446 // If this type is non-canonical, ask its canonical type for the
4447 // relevant information.
4448 if (!T->isCanonicalUnqualified()) {
4449 const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
4450 ensure(T: CT);
4451 T->TypeBits.CacheValid = true;
4452 T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
4453 T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
4454 return;
4455 }
4456
4457 // Compute the cached properties and then set the cache.
4458 CachedProperties Result = computeCachedProperties(T);
4459 T->TypeBits.CacheValid = true;
4460 T->TypeBits.CachedLinkage = llvm::to_underlying(E: Result.getLinkage());
4461 T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
4462 }
4463};
4464
4465} // namespace clang
4466
4467// Instantiate the friend template at a private class. In a
4468// reasonable implementation, these symbols will be internal.
4469// It is terrible that this is the best way to accomplish this.
4470namespace {
4471
4472class Private {};
4473
4474} // namespace
4475
4476using Cache = TypePropertyCache<Private>;
4477
4478static CachedProperties computeCachedProperties(const Type *T) {
4479 switch (T->getTypeClass()) {
4480#define TYPE(Class,Base)
4481#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
4482#include "clang/AST/TypeNodes.inc"
4483 llvm_unreachable("didn't expect a non-canonical type here");
4484
4485#define TYPE(Class,Base)
4486#define DEPENDENT_TYPE(Class,Base) case Type::Class:
4487#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
4488#include "clang/AST/TypeNodes.inc"
4489 // Treat instantiation-dependent types as external.
4490 assert(T->isInstantiationDependentType());
4491 return CachedProperties(Linkage::External, false);
4492
4493 case Type::Auto:
4494 case Type::DeducedTemplateSpecialization:
4495 // Give non-deduced 'auto' types external linkage. We should only see them
4496 // here in error recovery.
4497 return CachedProperties(Linkage::External, false);
4498
4499 case Type::BitInt:
4500 case Type::Builtin:
4501 // C++ [basic.link]p8:
4502 // A type is said to have linkage if and only if:
4503 // - it is a fundamental type (3.9.1); or
4504 return CachedProperties(Linkage::External, false);
4505
4506 case Type::Record:
4507 case Type::Enum: {
4508 const TagDecl *Tag = cast<TagType>(Val: T)->getDecl();
4509
4510 // C++ [basic.link]p8:
4511 // - it is a class or enumeration type that is named (or has a name
4512 // for linkage purposes (7.1.3)) and the name has linkage; or
4513 // - it is a specialization of a class template (14); or
4514 Linkage L = Tag->getLinkageInternal();
4515 bool IsLocalOrUnnamed =
4516 Tag->getDeclContext()->isFunctionOrMethod() ||
4517 !Tag->hasNameForLinkage();
4518 return CachedProperties(L, IsLocalOrUnnamed);
4519 }
4520
4521 // C++ [basic.link]p8:
4522 // - it is a compound type (3.9.2) other than a class or enumeration,
4523 // compounded exclusively from types that have linkage; or
4524 case Type::Complex:
4525 return Cache::get(T: cast<ComplexType>(Val: T)->getElementType());
4526 case Type::Pointer:
4527 return Cache::get(T: cast<PointerType>(Val: T)->getPointeeType());
4528 case Type::BlockPointer:
4529 return Cache::get(T: cast<BlockPointerType>(Val: T)->getPointeeType());
4530 case Type::LValueReference:
4531 case Type::RValueReference:
4532 return Cache::get(T: cast<ReferenceType>(Val: T)->getPointeeType());
4533 case Type::MemberPointer: {
4534 const auto *MPT = cast<MemberPointerType>(Val: T);
4535 return merge(L: Cache::get(T: MPT->getClass()),
4536 R: Cache::get(T: MPT->getPointeeType()));
4537 }
4538 case Type::ConstantArray:
4539 case Type::IncompleteArray:
4540 case Type::VariableArray:
4541 case Type::ArrayParameter:
4542 return Cache::get(T: cast<ArrayType>(Val: T)->getElementType());
4543 case Type::Vector:
4544 case Type::ExtVector:
4545 return Cache::get(T: cast<VectorType>(Val: T)->getElementType());
4546 case Type::ConstantMatrix:
4547 return Cache::get(T: cast<ConstantMatrixType>(Val: T)->getElementType());
4548 case Type::FunctionNoProto:
4549 return Cache::get(T: cast<FunctionType>(Val: T)->getReturnType());
4550 case Type::FunctionProto: {
4551 const auto *FPT = cast<FunctionProtoType>(Val: T);
4552 CachedProperties result = Cache::get(T: FPT->getReturnType());
4553 for (const auto &ai : FPT->param_types())
4554 result = merge(L: result, R: Cache::get(T: ai));
4555 return result;
4556 }
4557 case Type::ObjCInterface: {
4558 Linkage L = cast<ObjCInterfaceType>(Val: T)->getDecl()->getLinkageInternal();
4559 return CachedProperties(L, false);
4560 }
4561 case Type::ObjCObject:
4562 return Cache::get(T: cast<ObjCObjectType>(Val: T)->getBaseType());
4563 case Type::ObjCObjectPointer:
4564 return Cache::get(T: cast<ObjCObjectPointerType>(Val: T)->getPointeeType());
4565 case Type::Atomic:
4566 return Cache::get(T: cast<AtomicType>(Val: T)->getValueType());
4567 case Type::Pipe:
4568 return Cache::get(T: cast<PipeType>(Val: T)->getElementType());
4569 }
4570
4571 llvm_unreachable("unhandled type class");
4572}
4573
4574/// Determine the linkage of this type.
4575Linkage Type::getLinkage() const {
4576 Cache::ensure(T: this);
4577 return TypeBits.getLinkage();
4578}
4579
4580bool Type::hasUnnamedOrLocalType() const {
4581 Cache::ensure(T: this);
4582 return TypeBits.hasLocalOrUnnamedType();
4583}
4584
4585LinkageInfo LinkageComputer::computeTypeLinkageInfo(const Type *T) {
4586 switch (T->getTypeClass()) {
4587#define TYPE(Class,Base)
4588#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
4589#include "clang/AST/TypeNodes.inc"
4590 llvm_unreachable("didn't expect a non-canonical type here");
4591
4592#define TYPE(Class,Base)
4593#define DEPENDENT_TYPE(Class,Base) case Type::Class:
4594#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
4595#include "clang/AST/TypeNodes.inc"
4596 // Treat instantiation-dependent types as external.
4597 assert(T->isInstantiationDependentType());
4598 return LinkageInfo::external();
4599
4600 case Type::BitInt:
4601 case Type::Builtin:
4602 return LinkageInfo::external();
4603
4604 case Type::Auto:
4605 case Type::DeducedTemplateSpecialization:
4606 return LinkageInfo::external();
4607
4608 case Type::Record:
4609 case Type::Enum:
4610 return getDeclLinkageAndVisibility(D: cast<TagType>(Val: T)->getDecl());
4611
4612 case Type::Complex:
4613 return computeTypeLinkageInfo(T: cast<ComplexType>(Val: T)->getElementType());
4614 case Type::Pointer:
4615 return computeTypeLinkageInfo(T: cast<PointerType>(Val: T)->getPointeeType());
4616 case Type::BlockPointer:
4617 return computeTypeLinkageInfo(T: cast<BlockPointerType>(Val: T)->getPointeeType());
4618 case Type::LValueReference:
4619 case Type::RValueReference:
4620 return computeTypeLinkageInfo(T: cast<ReferenceType>(Val: T)->getPointeeType());
4621 case Type::MemberPointer: {
4622 const auto *MPT = cast<MemberPointerType>(Val: T);
4623 LinkageInfo LV = computeTypeLinkageInfo(T: MPT->getClass());
4624 LV.merge(other: computeTypeLinkageInfo(T: MPT->getPointeeType()));
4625 return LV;
4626 }
4627 case Type::ConstantArray:
4628 case Type::IncompleteArray:
4629 case Type::VariableArray:
4630 case Type::ArrayParameter:
4631 return computeTypeLinkageInfo(T: cast<ArrayType>(Val: T)->getElementType());
4632 case Type::Vector:
4633 case Type::ExtVector:
4634 return computeTypeLinkageInfo(T: cast<VectorType>(Val: T)->getElementType());
4635 case Type::ConstantMatrix:
4636 return computeTypeLinkageInfo(
4637 T: cast<ConstantMatrixType>(Val: T)->getElementType());
4638 case Type::FunctionNoProto:
4639 return computeTypeLinkageInfo(T: cast<FunctionType>(Val: T)->getReturnType());
4640 case Type::FunctionProto: {
4641 const auto *FPT = cast<FunctionProtoType>(Val: T);
4642 LinkageInfo LV = computeTypeLinkageInfo(T: FPT->getReturnType());
4643 for (const auto &ai : FPT->param_types())
4644 LV.merge(other: computeTypeLinkageInfo(T: ai));
4645 return LV;
4646 }
4647 case Type::ObjCInterface:
4648 return getDeclLinkageAndVisibility(D: cast<ObjCInterfaceType>(Val: T)->getDecl());
4649 case Type::ObjCObject:
4650 return computeTypeLinkageInfo(T: cast<ObjCObjectType>(Val: T)->getBaseType());
4651 case Type::ObjCObjectPointer:
4652 return computeTypeLinkageInfo(
4653 T: cast<ObjCObjectPointerType>(Val: T)->getPointeeType());
4654 case Type::Atomic:
4655 return computeTypeLinkageInfo(T: cast<AtomicType>(Val: T)->getValueType());
4656 case Type::Pipe:
4657 return computeTypeLinkageInfo(T: cast<PipeType>(Val: T)->getElementType());
4658 }
4659
4660 llvm_unreachable("unhandled type class");
4661}
4662
4663bool Type::isLinkageValid() const {
4664 if (!TypeBits.isCacheValid())
4665 return true;
4666
4667 Linkage L = LinkageComputer{}
4668 .computeTypeLinkageInfo(T: getCanonicalTypeInternal())
4669 .getLinkage();
4670 return L == TypeBits.getLinkage();
4671}
4672
4673LinkageInfo LinkageComputer::getTypeLinkageAndVisibility(const Type *T) {
4674 if (!T->isCanonicalUnqualified())
4675 return computeTypeLinkageInfo(T: T->getCanonicalTypeInternal());
4676
4677 LinkageInfo LV = computeTypeLinkageInfo(T);
4678 assert(LV.getLinkage() == T->getLinkage());
4679 return LV;
4680}
4681
4682LinkageInfo Type::getLinkageAndVisibility() const {
4683 return LinkageComputer{}.getTypeLinkageAndVisibility(T: this);
4684}
4685
4686std::optional<NullabilityKind> Type::getNullability() const {
4687 QualType Type(this, 0);
4688 while (const auto *AT = Type->getAs<AttributedType>()) {
4689 // Check whether this is an attributed type with nullability
4690 // information.
4691 if (auto Nullability = AT->getImmediateNullability())
4692 return Nullability;
4693
4694 Type = AT->getEquivalentType();
4695 }
4696 return std::nullopt;
4697}
4698
4699bool Type::canHaveNullability(bool ResultIfUnknown) const {
4700 QualType type = getCanonicalTypeInternal();
4701
4702 switch (type->getTypeClass()) {
4703 // We'll only see canonical types here.
4704#define NON_CANONICAL_TYPE(Class, Parent) \
4705 case Type::Class: \
4706 llvm_unreachable("non-canonical type");
4707#define TYPE(Class, Parent)
4708#include "clang/AST/TypeNodes.inc"
4709
4710 // Pointer types.
4711 case Type::Pointer:
4712 case Type::BlockPointer:
4713 case Type::MemberPointer:
4714 case Type::ObjCObjectPointer:
4715 return true;
4716
4717 // Dependent types that could instantiate to pointer types.
4718 case Type::UnresolvedUsing:
4719 case Type::TypeOfExpr:
4720 case Type::TypeOf:
4721 case Type::Decltype:
4722 case Type::PackIndexing:
4723 case Type::UnaryTransform:
4724 case Type::TemplateTypeParm:
4725 case Type::SubstTemplateTypeParmPack:
4726 case Type::DependentName:
4727 case Type::DependentTemplateSpecialization:
4728 case Type::Auto:
4729 return ResultIfUnknown;
4730
4731 // Dependent template specializations could instantiate to pointer types.
4732 case Type::TemplateSpecialization:
4733 // If it's a known class template, we can already check if it's nullable.
4734 if (TemplateDecl *templateDecl =
4735 cast<TemplateSpecializationType>(Val: type.getTypePtr())
4736 ->getTemplateName()
4737 .getAsTemplateDecl())
4738 if (auto *CTD = dyn_cast<ClassTemplateDecl>(Val: templateDecl))
4739 return CTD->getTemplatedDecl()->hasAttr<TypeNullableAttr>();
4740 return ResultIfUnknown;
4741
4742 case Type::Builtin:
4743 switch (cast<BuiltinType>(Val: type.getTypePtr())->getKind()) {
4744 // Signed, unsigned, and floating-point types cannot have nullability.
4745#define SIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
4746#define UNSIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
4747#define FLOATING_TYPE(Id, SingletonId) case BuiltinType::Id:
4748#define BUILTIN_TYPE(Id, SingletonId)
4749#include "clang/AST/BuiltinTypes.def"
4750 return false;
4751
4752 case BuiltinType::UnresolvedTemplate:
4753 // Dependent types that could instantiate to a pointer type.
4754 case BuiltinType::Dependent:
4755 case BuiltinType::Overload:
4756 case BuiltinType::BoundMember:
4757 case BuiltinType::PseudoObject:
4758 case BuiltinType::UnknownAny:
4759 case BuiltinType::ARCUnbridgedCast:
4760 return ResultIfUnknown;
4761
4762 case BuiltinType::Void:
4763 case BuiltinType::ObjCId:
4764 case BuiltinType::ObjCClass:
4765 case BuiltinType::ObjCSel:
4766#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
4767 case BuiltinType::Id:
4768#include "clang/Basic/OpenCLImageTypes.def"
4769#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
4770 case BuiltinType::Id:
4771#include "clang/Basic/OpenCLExtensionTypes.def"
4772 case BuiltinType::OCLSampler:
4773 case BuiltinType::OCLEvent:
4774 case BuiltinType::OCLClkEvent:
4775 case BuiltinType::OCLQueue:
4776 case BuiltinType::OCLReserveID:
4777#define SVE_TYPE(Name, Id, SingletonId) \
4778 case BuiltinType::Id:
4779#include "clang/Basic/AArch64SVEACLETypes.def"
4780#define PPC_VECTOR_TYPE(Name, Id, Size) \
4781 case BuiltinType::Id:
4782#include "clang/Basic/PPCTypes.def"
4783#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
4784#include "clang/Basic/RISCVVTypes.def"
4785#define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
4786#include "clang/Basic/WebAssemblyReferenceTypes.def"
4787#define AMDGPU_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
4788#include "clang/Basic/AMDGPUTypes.def"
4789 case BuiltinType::BuiltinFn:
4790 case BuiltinType::NullPtr:
4791 case BuiltinType::IncompleteMatrixIdx:
4792 case BuiltinType::ArraySection:
4793 case BuiltinType::OMPArrayShaping:
4794 case BuiltinType::OMPIterator:
4795 return false;
4796 }
4797 llvm_unreachable("unknown builtin type");
4798
4799 case Type::Record: {
4800 const RecordDecl *RD = cast<RecordType>(Val&: type)->getDecl();
4801 // For template specializations, look only at primary template attributes.
4802 // This is a consistent regardless of whether the instantiation is known.
4803 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: RD))
4804 return CTSD->getSpecializedTemplate()
4805 ->getTemplatedDecl()
4806 ->hasAttr<TypeNullableAttr>();
4807 return RD->hasAttr<TypeNullableAttr>();
4808 }
4809
4810 // Non-pointer types.
4811 case Type::Complex:
4812 case Type::LValueReference:
4813 case Type::RValueReference:
4814 case Type::ConstantArray:
4815 case Type::IncompleteArray:
4816 case Type::VariableArray:
4817 case Type::DependentSizedArray:
4818 case Type::DependentVector:
4819 case Type::DependentSizedExtVector:
4820 case Type::Vector:
4821 case Type::ExtVector:
4822 case Type::ConstantMatrix:
4823 case Type::DependentSizedMatrix:
4824 case Type::DependentAddressSpace:
4825 case Type::FunctionProto:
4826 case Type::FunctionNoProto:
4827 case Type::DeducedTemplateSpecialization:
4828 case Type::Enum:
4829 case Type::InjectedClassName:
4830 case Type::PackExpansion:
4831 case Type::ObjCObject:
4832 case Type::ObjCInterface:
4833 case Type::Atomic:
4834 case Type::Pipe:
4835 case Type::BitInt:
4836 case Type::DependentBitInt:
4837 case Type::ArrayParameter:
4838 return false;
4839 }
4840 llvm_unreachable("bad type kind!");
4841}
4842
4843std::optional<NullabilityKind> AttributedType::getImmediateNullability() const {
4844 if (getAttrKind() == attr::TypeNonNull)
4845 return NullabilityKind::NonNull;
4846 if (getAttrKind() == attr::TypeNullable)
4847 return NullabilityKind::Nullable;
4848 if (getAttrKind() == attr::TypeNullUnspecified)
4849 return NullabilityKind::Unspecified;
4850 if (getAttrKind() == attr::TypeNullableResult)
4851 return NullabilityKind::NullableResult;
4852 return std::nullopt;
4853}
4854
4855std::optional<NullabilityKind>
4856AttributedType::stripOuterNullability(QualType &T) {
4857 QualType AttrTy = T;
4858 if (auto MacroTy = dyn_cast<MacroQualifiedType>(Val&: T))
4859 AttrTy = MacroTy->getUnderlyingType();
4860
4861 if (auto attributed = dyn_cast<AttributedType>(Val&: AttrTy)) {
4862 if (auto nullability = attributed->getImmediateNullability()) {
4863 T = attributed->getModifiedType();
4864 return nullability;
4865 }
4866 }
4867
4868 return std::nullopt;
4869}
4870
4871bool Type::isBlockCompatibleObjCPointerType(ASTContext &ctx) const {
4872 const auto *objcPtr = getAs<ObjCObjectPointerType>();
4873 if (!objcPtr)
4874 return false;
4875
4876 if (objcPtr->isObjCIdType()) {
4877 // id is always okay.
4878 return true;
4879 }
4880
4881 // Blocks are NSObjects.
4882 if (ObjCInterfaceDecl *iface = objcPtr->getInterfaceDecl()) {
4883 if (iface->getIdentifier() != ctx.getNSObjectName())
4884 return false;
4885
4886 // Continue to check qualifiers, below.
4887 } else if (objcPtr->isObjCQualifiedIdType()) {
4888 // Continue to check qualifiers, below.
4889 } else {
4890 return false;
4891 }
4892
4893 // Check protocol qualifiers.
4894 for (ObjCProtocolDecl *proto : objcPtr->quals()) {
4895 // Blocks conform to NSObject and NSCopying.
4896 if (proto->getIdentifier() != ctx.getNSObjectName() &&
4897 proto->getIdentifier() != ctx.getNSCopyingName())
4898 return false;
4899 }
4900
4901 return true;
4902}
4903
4904Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
4905 if (isObjCARCImplicitlyUnretainedType())
4906 return Qualifiers::OCL_ExplicitNone;
4907 return Qualifiers::OCL_Strong;
4908}
4909
4910bool Type::isObjCARCImplicitlyUnretainedType() const {
4911 assert(isObjCLifetimeType() &&
4912 "cannot query implicit lifetime for non-inferrable type");
4913
4914 const Type *canon = getCanonicalTypeInternal().getTypePtr();
4915
4916 // Walk down to the base type. We don't care about qualifiers for this.
4917 while (const auto *array = dyn_cast<ArrayType>(Val: canon))
4918 canon = array->getElementType().getTypePtr();
4919
4920 if (const auto *opt = dyn_cast<ObjCObjectPointerType>(Val: canon)) {
4921 // Class and Class<Protocol> don't require retention.
4922 if (opt->getObjectType()->isObjCClass())
4923 return true;
4924 }
4925
4926 return false;
4927}
4928
4929bool Type::isObjCNSObjectType() const {
4930 if (const auto *typedefType = getAs<TypedefType>())
4931 return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
4932 return false;
4933}
4934
4935bool Type::isObjCIndependentClassType() const {
4936 if (const auto *typedefType = getAs<TypedefType>())
4937 return typedefType->getDecl()->hasAttr<ObjCIndependentClassAttr>();
4938 return false;
4939}
4940
4941bool Type::isObjCRetainableType() const {
4942 return isObjCObjectPointerType() ||
4943 isBlockPointerType() ||
4944 isObjCNSObjectType();
4945}
4946
4947bool Type::isObjCIndirectLifetimeType() const {
4948 if (isObjCLifetimeType())
4949 return true;
4950 if (const auto *OPT = getAs<PointerType>())
4951 return OPT->getPointeeType()->isObjCIndirectLifetimeType();
4952 if (const auto *Ref = getAs<ReferenceType>())
4953 return Ref->getPointeeType()->isObjCIndirectLifetimeType();
4954 if (const auto *MemPtr = getAs<MemberPointerType>())
4955 return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
4956 return false;
4957}
4958
4959/// Returns true if objects of this type have lifetime semantics under
4960/// ARC.
4961bool Type::isObjCLifetimeType() const {
4962 const Type *type = this;
4963 while (const ArrayType *array = type->getAsArrayTypeUnsafe())
4964 type = array->getElementType().getTypePtr();
4965 return type->isObjCRetainableType();
4966}
4967
4968/// Determine whether the given type T is a "bridgable" Objective-C type,
4969/// which is either an Objective-C object pointer type or an
4970bool Type::isObjCARCBridgableType() const {
4971 return isObjCObjectPointerType() || isBlockPointerType();
4972}
4973
4974/// Determine whether the given type T is a "bridgeable" C type.
4975bool Type::isCARCBridgableType() const {
4976 const auto *Pointer = getAs<PointerType>();
4977 if (!Pointer)
4978 return false;
4979
4980 QualType Pointee = Pointer->getPointeeType();
4981 return Pointee->isVoidType() || Pointee->isRecordType();
4982}
4983
4984/// Check if the specified type is the CUDA device builtin surface type.
4985bool Type::isCUDADeviceBuiltinSurfaceType() const {
4986 if (const auto *RT = getAs<RecordType>())
4987 return RT->getDecl()->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>();
4988 return false;
4989}
4990
4991/// Check if the specified type is the CUDA device builtin texture type.
4992bool Type::isCUDADeviceBuiltinTextureType() const {
4993 if (const auto *RT = getAs<RecordType>())
4994 return RT->getDecl()->hasAttr<CUDADeviceBuiltinTextureTypeAttr>();
4995 return false;
4996}
4997
4998bool Type::hasSizedVLAType() const {
4999 if (!isVariablyModifiedType()) return false;
5000
5001 if (const auto *ptr = getAs<PointerType>())
5002 return ptr->getPointeeType()->hasSizedVLAType();
5003 if (const auto *ref = getAs<ReferenceType>())
5004 return ref->getPointeeType()->hasSizedVLAType();
5005 if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
5006 if (isa<VariableArrayType>(Val: arr) &&
5007 cast<VariableArrayType>(Val: arr)->getSizeExpr())
5008 return true;
5009
5010 return arr->getElementType()->hasSizedVLAType();
5011 }
5012
5013 return false;
5014}
5015
5016QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
5017 switch (type.getObjCLifetime()) {
5018 case Qualifiers::OCL_None:
5019 case Qualifiers::OCL_ExplicitNone:
5020 case Qualifiers::OCL_Autoreleasing:
5021 break;
5022
5023 case Qualifiers::OCL_Strong:
5024 return DK_objc_strong_lifetime;
5025 case Qualifiers::OCL_Weak:
5026 return DK_objc_weak_lifetime;
5027 }
5028
5029 if (const auto *RT =
5030 type->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
5031 const RecordDecl *RD = RT->getDecl();
5032 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) {
5033 /// Check if this is a C++ object with a non-trivial destructor.
5034 if (CXXRD->hasDefinition() && !CXXRD->hasTrivialDestructor())
5035 return DK_cxx_destructor;
5036 } else {
5037 /// Check if this is a C struct that is non-trivial to destroy or an array
5038 /// that contains such a struct.
5039 if (RD->isNonTrivialToPrimitiveDestroy())
5040 return DK_nontrivial_c_struct;
5041 }
5042 }
5043
5044 return DK_none;
5045}
5046
5047CXXRecordDecl *MemberPointerType::getMostRecentCXXRecordDecl() const {
5048 return getClass()->getAsCXXRecordDecl()->getMostRecentNonInjectedDecl();
5049}
5050
5051void clang::FixedPointValueToString(SmallVectorImpl<char> &Str,
5052 llvm::APSInt Val, unsigned Scale) {
5053 llvm::FixedPointSemantics FXSema(Val.getBitWidth(), Scale, Val.isSigned(),
5054 /*IsSaturated=*/false,
5055 /*HasUnsignedPadding=*/false);
5056 llvm::APFixedPoint(Val, FXSema).toString(Str);
5057}
5058
5059AutoType::AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
5060 TypeDependence ExtraDependence, QualType Canon,
5061 ConceptDecl *TypeConstraintConcept,
5062 ArrayRef<TemplateArgument> TypeConstraintArgs)
5063 : DeducedType(Auto, DeducedAsType, ExtraDependence, Canon) {
5064 AutoTypeBits.Keyword = llvm::to_underlying(E: Keyword);
5065 AutoTypeBits.NumArgs = TypeConstraintArgs.size();
5066 this->TypeConstraintConcept = TypeConstraintConcept;
5067 assert(TypeConstraintConcept || AutoTypeBits.NumArgs == 0);
5068 if (TypeConstraintConcept) {
5069 auto *ArgBuffer =
5070 const_cast<TemplateArgument *>(getTypeConstraintArguments().data());
5071 for (const TemplateArgument &Arg : TypeConstraintArgs) {
5072 // We only syntactically depend on the constraint arguments. They don't
5073 // affect the deduced type, only its validity.
5074 addDependence(
5075 D: toSyntacticDependence(D: toTypeDependence(D: Arg.getDependence())));
5076
5077 new (ArgBuffer++) TemplateArgument(Arg);
5078 }
5079 }
5080}
5081
5082void AutoType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
5083 QualType Deduced, AutoTypeKeyword Keyword,
5084 bool IsDependent, ConceptDecl *CD,
5085 ArrayRef<TemplateArgument> Arguments) {
5086 ID.AddPointer(Ptr: Deduced.getAsOpaquePtr());
5087 ID.AddInteger(I: (unsigned)Keyword);
5088 ID.AddBoolean(B: IsDependent);
5089 ID.AddPointer(Ptr: CD);
5090 for (const TemplateArgument &Arg : Arguments)
5091 Arg.Profile(ID, Context);
5092}
5093
5094void AutoType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5095 Profile(ID, Context, Deduced: getDeducedType(), Keyword: getKeyword(), IsDependent: isDependentType(),
5096 CD: getTypeConstraintConcept(), Arguments: getTypeConstraintArguments());
5097}
5098
5099FunctionEffect::Kind FunctionEffect::oppositeKind() const {
5100 switch (kind()) {
5101 case Kind::NonBlocking:
5102 return Kind::Blocking;
5103 case Kind::Blocking:
5104 return Kind::NonBlocking;
5105 case Kind::NonAllocating:
5106 return Kind::Allocating;
5107 case Kind::Allocating:
5108 return Kind::NonAllocating;
5109 case Kind::None:
5110 return Kind::None;
5111 }
5112 llvm_unreachable("unknown effect kind");
5113}
5114
5115StringRef FunctionEffect::name() const {
5116 switch (kind()) {
5117 case Kind::NonBlocking:
5118 return "nonblocking";
5119 case Kind::NonAllocating:
5120 return "nonallocating";
5121 case Kind::Blocking:
5122 return "blocking";
5123 case Kind::Allocating:
5124 return "allocating";
5125 case Kind::None:
5126 return "(none)";
5127 }
5128 llvm_unreachable("unknown effect kind");
5129}
5130
5131bool FunctionEffect::canInferOnFunction(const Decl &Callee) const {
5132 switch (kind()) {
5133 case Kind::NonAllocating:
5134 case Kind::NonBlocking: {
5135 FunctionEffectsRef CalleeFX;
5136 if (auto *FD = Callee.getAsFunction())
5137 CalleeFX = FD->getFunctionEffects();
5138 else if (auto *BD = dyn_cast<BlockDecl>(Val: &Callee))
5139 CalleeFX = BD->getFunctionEffects();
5140 else
5141 return false;
5142 for (const FunctionEffectWithCondition &CalleeEC : CalleeFX) {
5143 // nonblocking/nonallocating cannot call allocating.
5144 if (CalleeEC.Effect.kind() == Kind::Allocating)
5145 return false;
5146 // nonblocking cannot call blocking.
5147 if (kind() == Kind::NonBlocking &&
5148 CalleeEC.Effect.kind() == Kind::Blocking)
5149 return false;
5150 }
5151 return true;
5152 }
5153
5154 case Kind::Allocating:
5155 case Kind::Blocking:
5156 return false;
5157
5158 case Kind::None:
5159 assert(0 && "canInferOnFunction with None");
5160 break;
5161 }
5162 llvm_unreachable("unknown effect kind");
5163}
5164
5165bool FunctionEffect::shouldDiagnoseFunctionCall(
5166 bool Direct, ArrayRef<FunctionEffect> CalleeFX) const {
5167 switch (kind()) {
5168 case Kind::NonAllocating:
5169 case Kind::NonBlocking: {
5170 const Kind CallerKind = kind();
5171 for (const auto &Effect : CalleeFX) {
5172 const Kind EK = Effect.kind();
5173 // Does callee have same or stronger constraint?
5174 if (EK == CallerKind ||
5175 (CallerKind == Kind::NonAllocating && EK == Kind::NonBlocking)) {
5176 return false; // no diagnostic
5177 }
5178 }
5179 return true; // warning
5180 }
5181 case Kind::Allocating:
5182 case Kind::Blocking:
5183 return false;
5184 case Kind::None:
5185 assert(0 && "shouldDiagnoseFunctionCall with None");
5186 break;
5187 }
5188 llvm_unreachable("unknown effect kind");
5189}
5190
5191// =====
5192
5193bool FunctionEffectSet::insert(const FunctionEffectWithCondition &NewEC,
5194 Conflicts &Errs) {
5195 FunctionEffect::Kind NewOppositeKind = NewEC.Effect.oppositeKind();
5196 Expr *NewCondition = NewEC.Cond.getCondition();
5197
5198 // The index at which insertion will take place; default is at end
5199 // but we might find an earlier insertion point.
5200 unsigned InsertIdx = Effects.size();
5201 unsigned Idx = 0;
5202 for (const FunctionEffectWithCondition &EC : *this) {
5203 // Note about effects with conditions: They are considered distinct from
5204 // those without conditions; they are potentially unique, redundant, or
5205 // in conflict, but we can't tell which until the condition is evaluated.
5206 if (EC.Cond.getCondition() == nullptr && NewCondition == nullptr) {
5207 if (EC.Effect.kind() == NewEC.Effect.kind()) {
5208 // There is no condition, and the effect kind is already present,
5209 // so just fail to insert the new one (creating a duplicate),
5210 // and return success.
5211 return true;
5212 }
5213
5214 if (EC.Effect.kind() == NewOppositeKind) {
5215 Errs.push_back(Elt: {.Kept: EC, .Rejected: NewEC});
5216 return false;
5217 }
5218 }
5219
5220 if (NewEC.Effect.kind() < EC.Effect.kind() && InsertIdx > Idx)
5221 InsertIdx = Idx;
5222
5223 ++Idx;
5224 }
5225
5226 if (NewCondition || !Conditions.empty()) {
5227 if (Conditions.empty() && !Effects.empty())
5228 Conditions.resize(N: Effects.size());
5229 Conditions.insert(I: Conditions.begin() + InsertIdx,
5230 Elt: NewEC.Cond.getCondition());
5231 }
5232 Effects.insert(I: Effects.begin() + InsertIdx, Elt: NewEC.Effect);
5233 return true;
5234}
5235
5236bool FunctionEffectSet::insert(const FunctionEffectsRef &Set, Conflicts &Errs) {
5237 for (const auto &Item : Set)
5238 insert(NewEC: Item, Errs);
5239 return Errs.empty();
5240}
5241
5242FunctionEffectSet FunctionEffectSet::getIntersection(FunctionEffectsRef LHS,
5243 FunctionEffectsRef RHS) {
5244 FunctionEffectSet Result;
5245 FunctionEffectSet::Conflicts Errs;
5246
5247 // We could use std::set_intersection but that would require expanding the
5248 // container interface to include push_back, making it available to clients
5249 // who might fail to maintain invariants.
5250 auto IterA = LHS.begin(), EndA = LHS.end();
5251 auto IterB = RHS.begin(), EndB = RHS.end();
5252
5253 auto FEWCLess = [](const FunctionEffectWithCondition &LHS,
5254 const FunctionEffectWithCondition &RHS) {
5255 return std::tuple(LHS.Effect, uintptr_t(LHS.Cond.getCondition())) <
5256 std::tuple(RHS.Effect, uintptr_t(RHS.Cond.getCondition()));
5257 };
5258
5259 while (IterA != EndA && IterB != EndB) {
5260 FunctionEffectWithCondition A = *IterA;
5261 FunctionEffectWithCondition B = *IterB;
5262 if (FEWCLess(A, B))
5263 ++IterA;
5264 else if (FEWCLess(B, A))
5265 ++IterB;
5266 else {
5267 Result.insert(NewEC: A, Errs);
5268 ++IterA;
5269 ++IterB;
5270 }
5271 }
5272
5273 // Insertion shouldn't be able to fail; that would mean both input
5274 // sets contained conflicts.
5275 assert(Errs.empty() && "conflict shouldn't be possible in getIntersection");
5276
5277 return Result;
5278}
5279
5280FunctionEffectSet FunctionEffectSet::getUnion(FunctionEffectsRef LHS,
5281 FunctionEffectsRef RHS,
5282 Conflicts &Errs) {
5283 // Optimize for either of the two sets being empty (very common).
5284 if (LHS.empty())
5285 return FunctionEffectSet(RHS);
5286
5287 FunctionEffectSet Combined(LHS);
5288 Combined.insert(Set: RHS, Errs);
5289 return Combined;
5290}
5291
5292LLVM_DUMP_METHOD void FunctionEffectsRef::dump(llvm::raw_ostream &OS) const {
5293 OS << "Effects{";
5294 bool First = true;
5295 for (const auto &CFE : *this) {
5296 if (!First)
5297 OS << ", ";
5298 else
5299 First = false;
5300 OS << CFE.Effect.name();
5301 if (Expr *E = CFE.Cond.getCondition()) {
5302 OS << '(';
5303 E->dump();
5304 OS << ')';
5305 }
5306 }
5307 OS << "}";
5308}
5309
5310LLVM_DUMP_METHOD void FunctionEffectSet::dump(llvm::raw_ostream &OS) const {
5311 FunctionEffectsRef(*this).dump(OS);
5312}
5313
5314FunctionEffectsRef
5315FunctionEffectsRef::create(ArrayRef<FunctionEffect> FX,
5316 ArrayRef<EffectConditionExpr> Conds) {
5317 assert(std::is_sorted(FX.begin(), FX.end()) && "effects should be sorted");
5318 assert((Conds.empty() || Conds.size() == FX.size()) &&
5319 "effects size should match conditions size");
5320 return FunctionEffectsRef(FX, Conds);
5321}
5322
5323std::string FunctionEffectWithCondition::description() const {
5324 std::string Result(Effect.name().str());
5325 if (Cond.getCondition() != nullptr)
5326 Result += "(expr)";
5327 return Result;
5328}
5329