1 | //===- CFG.cpp - Classes for representing and building CFGs ---------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the CFG and CFGBuilder classes for representing and |
10 | // building Control-Flow Graphs (CFGs) from ASTs. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "clang/Analysis/CFG.h" |
15 | #include "clang/AST/ASTContext.h" |
16 | #include "clang/AST/Attr.h" |
17 | #include "clang/AST/Decl.h" |
18 | #include "clang/AST/DeclBase.h" |
19 | #include "clang/AST/DeclCXX.h" |
20 | #include "clang/AST/DeclGroup.h" |
21 | #include "clang/AST/Expr.h" |
22 | #include "clang/AST/ExprCXX.h" |
23 | #include "clang/AST/OperationKinds.h" |
24 | #include "clang/AST/PrettyPrinter.h" |
25 | #include "clang/AST/Stmt.h" |
26 | #include "clang/AST/StmtCXX.h" |
27 | #include "clang/AST/StmtObjC.h" |
28 | #include "clang/AST/StmtVisitor.h" |
29 | #include "clang/AST/Type.h" |
30 | #include "clang/Analysis/ConstructionContext.h" |
31 | #include "clang/Analysis/Support/BumpVector.h" |
32 | #include "clang/Basic/Builtins.h" |
33 | #include "clang/Basic/ExceptionSpecificationType.h" |
34 | #include "clang/Basic/JsonSupport.h" |
35 | #include "clang/Basic/LLVM.h" |
36 | #include "clang/Basic/LangOptions.h" |
37 | #include "clang/Basic/SourceLocation.h" |
38 | #include "clang/Basic/Specifiers.h" |
39 | #include "llvm/ADT/APInt.h" |
40 | #include "llvm/ADT/APSInt.h" |
41 | #include "llvm/ADT/ArrayRef.h" |
42 | #include "llvm/ADT/DenseMap.h" |
43 | #include "llvm/ADT/STLExtras.h" |
44 | #include "llvm/ADT/SetVector.h" |
45 | #include "llvm/ADT/SmallPtrSet.h" |
46 | #include "llvm/ADT/SmallVector.h" |
47 | #include "llvm/Support/Allocator.h" |
48 | #include "llvm/Support/Casting.h" |
49 | #include "llvm/Support/Compiler.h" |
50 | #include "llvm/Support/DOTGraphTraits.h" |
51 | #include "llvm/Support/ErrorHandling.h" |
52 | #include "llvm/Support/Format.h" |
53 | #include "llvm/Support/GraphWriter.h" |
54 | #include "llvm/Support/SaveAndRestore.h" |
55 | #include "llvm/Support/raw_ostream.h" |
56 | #include <cassert> |
57 | #include <memory> |
58 | #include <optional> |
59 | #include <string> |
60 | #include <tuple> |
61 | #include <utility> |
62 | #include <vector> |
63 | |
64 | using namespace clang; |
65 | |
66 | static SourceLocation GetEndLoc(Decl *D) { |
67 | if (VarDecl *VD = dyn_cast<VarDecl>(Val: D)) |
68 | if (Expr *Ex = VD->getInit()) |
69 | return Ex->getSourceRange().getEnd(); |
70 | return D->getLocation(); |
71 | } |
72 | |
73 | /// Returns true on constant values based around a single IntegerLiteral. |
74 | /// Allow for use of parentheses, integer casts, and negative signs. |
75 | /// FIXME: it would be good to unify this function with |
76 | /// getIntegerLiteralSubexpressionValue at some point given the similarity |
77 | /// between the functions. |
78 | |
79 | static bool IsIntegerLiteralConstantExpr(const Expr *E) { |
80 | // Allow parentheses |
81 | E = E->IgnoreParens(); |
82 | |
83 | // Allow conversions to different integer kind. |
84 | if (const auto *CE = dyn_cast<CastExpr>(Val: E)) { |
85 | if (CE->getCastKind() != CK_IntegralCast) |
86 | return false; |
87 | E = CE->getSubExpr(); |
88 | } |
89 | |
90 | // Allow negative numbers. |
91 | if (const auto *UO = dyn_cast<UnaryOperator>(Val: E)) { |
92 | if (UO->getOpcode() != UO_Minus) |
93 | return false; |
94 | E = UO->getSubExpr(); |
95 | } |
96 | |
97 | return isa<IntegerLiteral>(Val: E); |
98 | } |
99 | |
100 | /// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral |
101 | /// constant expression or EnumConstantDecl from the given Expr. If it fails, |
102 | /// returns nullptr. |
103 | static const Expr *tryTransformToIntOrEnumConstant(const Expr *E) { |
104 | E = E->IgnoreParens(); |
105 | if (IsIntegerLiteralConstantExpr(E)) |
106 | return E; |
107 | if (auto *DR = dyn_cast<DeclRefExpr>(Val: E->IgnoreParenImpCasts())) |
108 | return isa<EnumConstantDecl>(Val: DR->getDecl()) ? DR : nullptr; |
109 | return nullptr; |
110 | } |
111 | |
112 | /// Tries to interpret a binary operator into `Expr Op NumExpr` form, if |
113 | /// NumExpr is an integer literal or an enum constant. |
114 | /// |
115 | /// If this fails, at least one of the returned DeclRefExpr or Expr will be |
116 | /// null. |
117 | static std::tuple<const Expr *, BinaryOperatorKind, const Expr *> |
118 | tryNormalizeBinaryOperator(const BinaryOperator *B) { |
119 | BinaryOperatorKind Op = B->getOpcode(); |
120 | |
121 | const Expr *MaybeDecl = B->getLHS(); |
122 | const Expr *Constant = tryTransformToIntOrEnumConstant(E: B->getRHS()); |
123 | // Expr looked like `0 == Foo` instead of `Foo == 0` |
124 | if (Constant == nullptr) { |
125 | // Flip the operator |
126 | if (Op == BO_GT) |
127 | Op = BO_LT; |
128 | else if (Op == BO_GE) |
129 | Op = BO_LE; |
130 | else if (Op == BO_LT) |
131 | Op = BO_GT; |
132 | else if (Op == BO_LE) |
133 | Op = BO_GE; |
134 | |
135 | MaybeDecl = B->getRHS(); |
136 | Constant = tryTransformToIntOrEnumConstant(E: B->getLHS()); |
137 | } |
138 | |
139 | return std::make_tuple(args&: MaybeDecl, args&: Op, args&: Constant); |
140 | } |
141 | |
142 | /// For an expression `x == Foo && x == Bar`, this determines whether the |
143 | /// `Foo` and `Bar` are either of the same enumeration type, or both integer |
144 | /// literals. |
145 | /// |
146 | /// It's an error to pass this arguments that are not either IntegerLiterals |
147 | /// or DeclRefExprs (that have decls of type EnumConstantDecl) |
148 | static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) { |
149 | // User intent isn't clear if they're mixing int literals with enum |
150 | // constants. |
151 | if (isa<DeclRefExpr>(Val: E1) != isa<DeclRefExpr>(Val: E2)) |
152 | return false; |
153 | |
154 | // Integer literal comparisons, regardless of literal type, are acceptable. |
155 | if (!isa<DeclRefExpr>(Val: E1)) |
156 | return true; |
157 | |
158 | // IntegerLiterals are handled above and only EnumConstantDecls are expected |
159 | // beyond this point |
160 | assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2)); |
161 | auto *Decl1 = cast<DeclRefExpr>(Val: E1)->getDecl(); |
162 | auto *Decl2 = cast<DeclRefExpr>(Val: E2)->getDecl(); |
163 | |
164 | assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2)); |
165 | const DeclContext *DC1 = Decl1->getDeclContext(); |
166 | const DeclContext *DC2 = Decl2->getDeclContext(); |
167 | |
168 | assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2)); |
169 | return DC1 == DC2; |
170 | } |
171 | |
172 | namespace { |
173 | |
174 | class CFGBuilder; |
175 | |
176 | /// The CFG builder uses a recursive algorithm to build the CFG. When |
177 | /// we process an expression, sometimes we know that we must add the |
178 | /// subexpressions as block-level expressions. For example: |
179 | /// |
180 | /// exp1 || exp2 |
181 | /// |
182 | /// When processing the '||' expression, we know that exp1 and exp2 |
183 | /// need to be added as block-level expressions, even though they |
184 | /// might not normally need to be. AddStmtChoice records this |
185 | /// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then |
186 | /// the builder has an option not to add a subexpression as a |
187 | /// block-level expression. |
188 | class AddStmtChoice { |
189 | public: |
190 | enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 }; |
191 | |
192 | AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {} |
193 | |
194 | bool alwaysAdd(CFGBuilder &builder, |
195 | const Stmt *stmt) const; |
196 | |
197 | /// Return a copy of this object, except with the 'always-add' bit |
198 | /// set as specified. |
199 | AddStmtChoice withAlwaysAdd(bool alwaysAdd) const { |
200 | return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd); |
201 | } |
202 | |
203 | private: |
204 | Kind kind; |
205 | }; |
206 | |
207 | /// LocalScope - Node in tree of local scopes created for C++ implicit |
208 | /// destructor calls generation. It contains list of automatic variables |
209 | /// declared in the scope and link to position in previous scope this scope |
210 | /// began in. |
211 | /// |
212 | /// The process of creating local scopes is as follows: |
213 | /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null), |
214 | /// - Before processing statements in scope (e.g. CompoundStmt) create |
215 | /// LocalScope object using CFGBuilder::ScopePos as link to previous scope |
216 | /// and set CFGBuilder::ScopePos to the end of new scope, |
217 | /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points |
218 | /// at this VarDecl, |
219 | /// - For every normal (without jump) end of scope add to CFGBlock destructors |
220 | /// for objects in the current scope, |
221 | /// - For every jump add to CFGBlock destructors for objects |
222 | /// between CFGBuilder::ScopePos and local scope position saved for jump |
223 | /// target. Thanks to C++ restrictions on goto jumps we can be sure that |
224 | /// jump target position will be on the path to root from CFGBuilder::ScopePos |
225 | /// (adding any variable that doesn't need constructor to be called to |
226 | /// LocalScope can break this assumption), |
227 | /// |
228 | class LocalScope { |
229 | public: |
230 | using AutomaticVarsTy = BumpVector<VarDecl *>; |
231 | |
232 | /// const_iterator - Iterates local scope backwards and jumps to previous |
233 | /// scope on reaching the beginning of currently iterated scope. |
234 | class const_iterator { |
235 | const LocalScope* Scope = nullptr; |
236 | |
237 | /// VarIter is guaranteed to be greater then 0 for every valid iterator. |
238 | /// Invalid iterator (with null Scope) has VarIter equal to 0. |
239 | unsigned VarIter = 0; |
240 | |
241 | public: |
242 | /// Create invalid iterator. Dereferencing invalid iterator is not allowed. |
243 | /// Incrementing invalid iterator is allowed and will result in invalid |
244 | /// iterator. |
245 | const_iterator() = default; |
246 | |
247 | /// Create valid iterator. In case when S.Prev is an invalid iterator and |
248 | /// I is equal to 0, this will create invalid iterator. |
249 | const_iterator(const LocalScope& S, unsigned I) |
250 | : Scope(&S), VarIter(I) { |
251 | // Iterator to "end" of scope is not allowed. Handle it by going up |
252 | // in scopes tree possibly up to invalid iterator in the root. |
253 | if (VarIter == 0 && Scope) |
254 | *this = Scope->Prev; |
255 | } |
256 | |
257 | VarDecl *const* operator->() const { |
258 | assert(Scope && "Dereferencing invalid iterator is not allowed" ); |
259 | assert(VarIter != 0 && "Iterator has invalid value of VarIter member" ); |
260 | return &Scope->Vars[VarIter - 1]; |
261 | } |
262 | |
263 | const VarDecl *getFirstVarInScope() const { |
264 | assert(Scope && "Dereferencing invalid iterator is not allowed" ); |
265 | assert(VarIter != 0 && "Iterator has invalid value of VarIter member" ); |
266 | return Scope->Vars[0]; |
267 | } |
268 | |
269 | VarDecl *operator*() const { |
270 | return *this->operator->(); |
271 | } |
272 | |
273 | const_iterator &operator++() { |
274 | if (!Scope) |
275 | return *this; |
276 | |
277 | assert(VarIter != 0 && "Iterator has invalid value of VarIter member" ); |
278 | --VarIter; |
279 | if (VarIter == 0) |
280 | *this = Scope->Prev; |
281 | return *this; |
282 | } |
283 | const_iterator operator++(int) { |
284 | const_iterator P = *this; |
285 | ++*this; |
286 | return P; |
287 | } |
288 | |
289 | bool operator==(const const_iterator &rhs) const { |
290 | return Scope == rhs.Scope && VarIter == rhs.VarIter; |
291 | } |
292 | bool operator!=(const const_iterator &rhs) const { |
293 | return !(*this == rhs); |
294 | } |
295 | |
296 | explicit operator bool() const { |
297 | return *this != const_iterator(); |
298 | } |
299 | |
300 | int distance(const_iterator L); |
301 | const_iterator shared_parent(const_iterator L); |
302 | bool pointsToFirstDeclaredVar() { return VarIter == 1; } |
303 | bool inSameLocalScope(const_iterator rhs) { return Scope == rhs.Scope; } |
304 | }; |
305 | |
306 | private: |
307 | BumpVectorContext ctx; |
308 | |
309 | /// Automatic variables in order of declaration. |
310 | AutomaticVarsTy Vars; |
311 | |
312 | /// Iterator to variable in previous scope that was declared just before |
313 | /// begin of this scope. |
314 | const_iterator Prev; |
315 | |
316 | public: |
317 | /// Constructs empty scope linked to previous scope in specified place. |
318 | LocalScope(BumpVectorContext ctx, const_iterator P) |
319 | : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {} |
320 | |
321 | /// Begin of scope in direction of CFG building (backwards). |
322 | const_iterator begin() const { return const_iterator(*this, Vars.size()); } |
323 | |
324 | void addVar(VarDecl *VD) { |
325 | Vars.push_back(Elt: VD, C&: ctx); |
326 | } |
327 | }; |
328 | |
329 | } // namespace |
330 | |
331 | /// distance - Calculates distance from this to L. L must be reachable from this |
332 | /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t. |
333 | /// number of scopes between this and L. |
334 | int LocalScope::const_iterator::distance(LocalScope::const_iterator L) { |
335 | int D = 0; |
336 | const_iterator F = *this; |
337 | while (F.Scope != L.Scope) { |
338 | assert(F != const_iterator() && |
339 | "L iterator is not reachable from F iterator." ); |
340 | D += F.VarIter; |
341 | F = F.Scope->Prev; |
342 | } |
343 | D += F.VarIter - L.VarIter; |
344 | return D; |
345 | } |
346 | |
347 | /// Calculates the closest parent of this iterator |
348 | /// that is in a scope reachable through the parents of L. |
349 | /// I.e. when using 'goto' from this to L, the lifetime of all variables |
350 | /// between this and shared_parent(L) end. |
351 | LocalScope::const_iterator |
352 | LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L) { |
353 | // one of iterators is not valid (we are not in scope), so common |
354 | // parent is const_iterator() (i.e. sentinel). |
355 | if ((*this == const_iterator()) || (L == const_iterator())) { |
356 | return const_iterator(); |
357 | } |
358 | |
359 | const_iterator F = *this; |
360 | if (F.inSameLocalScope(rhs: L)) { |
361 | // Iterators are in the same scope, get common subset of variables. |
362 | F.VarIter = std::min(a: F.VarIter, b: L.VarIter); |
363 | return F; |
364 | } |
365 | |
366 | llvm::SmallDenseMap<const LocalScope *, unsigned, 4> ScopesOfL; |
367 | while (true) { |
368 | ScopesOfL.try_emplace(Key: L.Scope, Args&: L.VarIter); |
369 | if (L == const_iterator()) |
370 | break; |
371 | L = L.Scope->Prev; |
372 | } |
373 | |
374 | while (true) { |
375 | if (auto LIt = ScopesOfL.find(Val: F.Scope); LIt != ScopesOfL.end()) { |
376 | // Get common subset of variables in given scope |
377 | F.VarIter = std::min(a: F.VarIter, b: LIt->getSecond()); |
378 | return F; |
379 | } |
380 | assert(F != const_iterator() && |
381 | "L iterator is not reachable from F iterator." ); |
382 | F = F.Scope->Prev; |
383 | } |
384 | } |
385 | |
386 | namespace { |
387 | |
388 | /// Structure for specifying position in CFG during its build process. It |
389 | /// consists of CFGBlock that specifies position in CFG and |
390 | /// LocalScope::const_iterator that specifies position in LocalScope graph. |
391 | struct BlockScopePosPair { |
392 | CFGBlock *block = nullptr; |
393 | LocalScope::const_iterator scopePosition; |
394 | |
395 | BlockScopePosPair() = default; |
396 | BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos) |
397 | : block(b), scopePosition(scopePos) {} |
398 | }; |
399 | |
400 | /// TryResult - a class representing a variant over the values |
401 | /// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool, |
402 | /// and is used by the CFGBuilder to decide if a branch condition |
403 | /// can be decided up front during CFG construction. |
404 | class TryResult { |
405 | int X = -1; |
406 | |
407 | public: |
408 | TryResult() = default; |
409 | TryResult(bool b) : X(b ? 1 : 0) {} |
410 | |
411 | bool isTrue() const { return X == 1; } |
412 | bool isFalse() const { return X == 0; } |
413 | bool isKnown() const { return X >= 0; } |
414 | |
415 | void negate() { |
416 | assert(isKnown()); |
417 | X ^= 0x1; |
418 | } |
419 | }; |
420 | |
421 | } // namespace |
422 | |
423 | static TryResult bothKnownTrue(TryResult R1, TryResult R2) { |
424 | if (!R1.isKnown() || !R2.isKnown()) |
425 | return TryResult(); |
426 | return TryResult(R1.isTrue() && R2.isTrue()); |
427 | } |
428 | |
429 | namespace { |
430 | |
431 | class reverse_children { |
432 | llvm::SmallVector<Stmt *, 12> childrenBuf; |
433 | ArrayRef<Stmt *> children; |
434 | |
435 | public: |
436 | reverse_children(Stmt *S); |
437 | |
438 | using iterator = ArrayRef<Stmt *>::reverse_iterator; |
439 | |
440 | iterator begin() const { return children.rbegin(); } |
441 | iterator end() const { return children.rend(); } |
442 | }; |
443 | |
444 | } // namespace |
445 | |
446 | reverse_children::reverse_children(Stmt *S) { |
447 | if (CallExpr *CE = dyn_cast<CallExpr>(Val: S)) { |
448 | children = CE->getRawSubExprs(); |
449 | return; |
450 | } |
451 | switch (S->getStmtClass()) { |
452 | // Note: Fill in this switch with more cases we want to optimize. |
453 | case Stmt::InitListExprClass: { |
454 | InitListExpr *IE = cast<InitListExpr>(Val: S); |
455 | children = llvm::ArrayRef(reinterpret_cast<Stmt **>(IE->getInits()), |
456 | IE->getNumInits()); |
457 | return; |
458 | } |
459 | default: |
460 | break; |
461 | } |
462 | |
463 | // Default case for all other statements. |
464 | llvm::append_range(C&: childrenBuf, R: S->children()); |
465 | |
466 | // This needs to be done *after* childrenBuf has been populated. |
467 | children = childrenBuf; |
468 | } |
469 | |
470 | namespace { |
471 | |
472 | /// CFGBuilder - This class implements CFG construction from an AST. |
473 | /// The builder is stateful: an instance of the builder should be used to only |
474 | /// construct a single CFG. |
475 | /// |
476 | /// Example usage: |
477 | /// |
478 | /// CFGBuilder builder; |
479 | /// std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1); |
480 | /// |
481 | /// CFG construction is done via a recursive walk of an AST. We actually parse |
482 | /// the AST in reverse order so that the successor of a basic block is |
483 | /// constructed prior to its predecessor. This allows us to nicely capture |
484 | /// implicit fall-throughs without extra basic blocks. |
485 | class CFGBuilder { |
486 | using JumpTarget = BlockScopePosPair; |
487 | using JumpSource = BlockScopePosPair; |
488 | |
489 | ASTContext *Context; |
490 | std::unique_ptr<CFG> cfg; |
491 | |
492 | // Current block. |
493 | CFGBlock *Block = nullptr; |
494 | |
495 | // Block after the current block. |
496 | CFGBlock *Succ = nullptr; |
497 | |
498 | JumpTarget ContinueJumpTarget; |
499 | JumpTarget BreakJumpTarget; |
500 | JumpTarget SEHLeaveJumpTarget; |
501 | CFGBlock *SwitchTerminatedBlock = nullptr; |
502 | CFGBlock *DefaultCaseBlock = nullptr; |
503 | |
504 | // This can point to either a C++ try, an Objective-C @try, or an SEH __try. |
505 | // try and @try can be mixed and generally work the same. |
506 | // The frontend forbids mixing SEH __try with either try or @try. |
507 | // So having one for all three is enough. |
508 | CFGBlock *TryTerminatedBlock = nullptr; |
509 | |
510 | // Current position in local scope. |
511 | LocalScope::const_iterator ScopePos; |
512 | |
513 | // LabelMap records the mapping from Label expressions to their jump targets. |
514 | using LabelMapTy = llvm::DenseMap<LabelDecl *, JumpTarget>; |
515 | LabelMapTy LabelMap; |
516 | |
517 | // A list of blocks that end with a "goto" that must be backpatched to their |
518 | // resolved targets upon completion of CFG construction. |
519 | using BackpatchBlocksTy = std::vector<JumpSource>; |
520 | BackpatchBlocksTy BackpatchBlocks; |
521 | |
522 | // A list of labels whose address has been taken (for indirect gotos). |
523 | using LabelSetTy = llvm::SmallSetVector<LabelDecl *, 8>; |
524 | LabelSetTy AddressTakenLabels; |
525 | |
526 | // Information about the currently visited C++ object construction site. |
527 | // This is set in the construction trigger and read when the constructor |
528 | // or a function that returns an object by value is being visited. |
529 | llvm::DenseMap<Expr *, const ConstructionContextLayer *> |
530 | ConstructionContextMap; |
531 | |
532 | bool badCFG = false; |
533 | const CFG::BuildOptions &BuildOpts; |
534 | |
535 | // State to track for building switch statements. |
536 | bool switchExclusivelyCovered = false; |
537 | Expr::EvalResult *switchCond = nullptr; |
538 | |
539 | CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry = nullptr; |
540 | const Stmt *lastLookup = nullptr; |
541 | |
542 | // Caches boolean evaluations of expressions to avoid multiple re-evaluations |
543 | // during construction of branches for chained logical operators. |
544 | using CachedBoolEvalsTy = llvm::DenseMap<Expr *, TryResult>; |
545 | CachedBoolEvalsTy CachedBoolEvals; |
546 | |
547 | public: |
548 | explicit CFGBuilder(ASTContext *astContext, |
549 | const CFG::BuildOptions &buildOpts) |
550 | : Context(astContext), cfg(new CFG()), BuildOpts(buildOpts) {} |
551 | |
552 | // buildCFG - Used by external clients to construct the CFG. |
553 | std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement); |
554 | |
555 | bool alwaysAdd(const Stmt *stmt); |
556 | |
557 | private: |
558 | // Visitors to walk an AST and construct the CFG. |
559 | CFGBlock *VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc); |
560 | CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc); |
561 | CFGBlock *VisitAttributedStmt(AttributedStmt *A, AddStmtChoice asc); |
562 | CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc); |
563 | CFGBlock *VisitBreakStmt(BreakStmt *B); |
564 | CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc); |
565 | CFGBlock *VisitCaseStmt(CaseStmt *C); |
566 | CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc); |
567 | CFGBlock *VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed); |
568 | CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C, |
569 | AddStmtChoice asc); |
570 | CFGBlock *VisitContinueStmt(ContinueStmt *C); |
571 | CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E, |
572 | AddStmtChoice asc); |
573 | CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S); |
574 | CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc); |
575 | CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc); |
576 | CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc); |
577 | CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S); |
578 | CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E, |
579 | AddStmtChoice asc); |
580 | CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C, |
581 | AddStmtChoice asc); |
582 | CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T); |
583 | CFGBlock *VisitCXXTryStmt(CXXTryStmt *S); |
584 | CFGBlock *VisitCXXTypeidExpr(CXXTypeidExpr *S, AddStmtChoice asc); |
585 | CFGBlock *VisitDeclStmt(DeclStmt *DS); |
586 | CFGBlock *VisitDeclSubExpr(DeclStmt *DS); |
587 | CFGBlock *VisitDefaultStmt(DefaultStmt *D); |
588 | CFGBlock *VisitDoStmt(DoStmt *D); |
589 | CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, |
590 | AddStmtChoice asc, bool ExternallyDestructed); |
591 | CFGBlock *VisitForStmt(ForStmt *F); |
592 | CFGBlock *VisitGotoStmt(GotoStmt *G); |
593 | CFGBlock *VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc); |
594 | CFGBlock *VisitIfStmt(IfStmt *I); |
595 | CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc); |
596 | CFGBlock *VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc); |
597 | CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I); |
598 | CFGBlock *VisitLabelStmt(LabelStmt *L); |
599 | CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc); |
600 | CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc); |
601 | CFGBlock *VisitLogicalOperator(BinaryOperator *B); |
602 | std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B, |
603 | Stmt *Term, |
604 | CFGBlock *TrueBlock, |
605 | CFGBlock *FalseBlock); |
606 | CFGBlock *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE, |
607 | AddStmtChoice asc); |
608 | CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc); |
609 | CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S); |
610 | CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S); |
611 | CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S); |
612 | CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S); |
613 | CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S); |
614 | CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S); |
615 | CFGBlock *VisitObjCMessageExpr(ObjCMessageExpr *E, AddStmtChoice asc); |
616 | CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E); |
617 | CFGBlock *VisitReturnStmt(Stmt *S); |
618 | CFGBlock *VisitCoroutineSuspendExpr(CoroutineSuspendExpr *S, |
619 | AddStmtChoice asc); |
620 | CFGBlock *VisitSEHExceptStmt(SEHExceptStmt *S); |
621 | CFGBlock *VisitSEHFinallyStmt(SEHFinallyStmt *S); |
622 | CFGBlock *VisitSEHLeaveStmt(SEHLeaveStmt *S); |
623 | CFGBlock *VisitSEHTryStmt(SEHTryStmt *S); |
624 | CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc); |
625 | CFGBlock *VisitSwitchStmt(SwitchStmt *S); |
626 | CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E, |
627 | AddStmtChoice asc); |
628 | CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc); |
629 | CFGBlock *VisitWhileStmt(WhileStmt *W); |
630 | CFGBlock *VisitArrayInitLoopExpr(ArrayInitLoopExpr *A, AddStmtChoice asc); |
631 | |
632 | CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd, |
633 | bool ExternallyDestructed = false); |
634 | CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc); |
635 | CFGBlock *VisitChildren(Stmt *S); |
636 | CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc); |
637 | CFGBlock *VisitOMPExecutableDirective(OMPExecutableDirective *D, |
638 | AddStmtChoice asc); |
639 | |
640 | void maybeAddScopeBeginForVarDecl(CFGBlock *B, const VarDecl *VD, |
641 | const Stmt *S) { |
642 | if (ScopePos && (VD == ScopePos.getFirstVarInScope())) |
643 | appendScopeBegin(B, VD, S); |
644 | } |
645 | |
646 | /// When creating the CFG for temporary destructors, we want to mirror the |
647 | /// branch structure of the corresponding constructor calls. |
648 | /// Thus, while visiting a statement for temporary destructors, we keep a |
649 | /// context to keep track of the following information: |
650 | /// - whether a subexpression is executed unconditionally |
651 | /// - if a subexpression is executed conditionally, the first |
652 | /// CXXBindTemporaryExpr we encounter in that subexpression (which |
653 | /// corresponds to the last temporary destructor we have to call for this |
654 | /// subexpression) and the CFG block at that point (which will become the |
655 | /// successor block when inserting the decision point). |
656 | /// |
657 | /// That way, we can build the branch structure for temporary destructors as |
658 | /// follows: |
659 | /// 1. If a subexpression is executed unconditionally, we add the temporary |
660 | /// destructor calls to the current block. |
661 | /// 2. If a subexpression is executed conditionally, when we encounter a |
662 | /// CXXBindTemporaryExpr: |
663 | /// a) If it is the first temporary destructor call in the subexpression, |
664 | /// we remember the CXXBindTemporaryExpr and the current block in the |
665 | /// TempDtorContext; we start a new block, and insert the temporary |
666 | /// destructor call. |
667 | /// b) Otherwise, add the temporary destructor call to the current block. |
668 | /// 3. When we finished visiting a conditionally executed subexpression, |
669 | /// and we found at least one temporary constructor during the visitation |
670 | /// (2.a has executed), we insert a decision block that uses the |
671 | /// CXXBindTemporaryExpr as terminator, and branches to the current block |
672 | /// if the CXXBindTemporaryExpr was marked executed, and otherwise |
673 | /// branches to the stored successor. |
674 | struct TempDtorContext { |
675 | TempDtorContext() = default; |
676 | TempDtorContext(TryResult KnownExecuted) |
677 | : IsConditional(true), KnownExecuted(KnownExecuted) {} |
678 | |
679 | /// Returns whether we need to start a new branch for a temporary destructor |
680 | /// call. This is the case when the temporary destructor is |
681 | /// conditionally executed, and it is the first one we encounter while |
682 | /// visiting a subexpression - other temporary destructors at the same level |
683 | /// will be added to the same block and are executed under the same |
684 | /// condition. |
685 | bool needsTempDtorBranch() const { |
686 | return IsConditional && !TerminatorExpr; |
687 | } |
688 | |
689 | /// Remember the successor S of a temporary destructor decision branch for |
690 | /// the corresponding CXXBindTemporaryExpr E. |
691 | void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) { |
692 | Succ = S; |
693 | TerminatorExpr = E; |
694 | } |
695 | |
696 | const bool IsConditional = false; |
697 | const TryResult KnownExecuted = true; |
698 | CFGBlock *Succ = nullptr; |
699 | CXXBindTemporaryExpr *TerminatorExpr = nullptr; |
700 | }; |
701 | |
702 | // Visitors to walk an AST and generate destructors of temporaries in |
703 | // full expression. |
704 | CFGBlock *VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed, |
705 | TempDtorContext &Context); |
706 | CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E, bool ExternallyDestructed, |
707 | TempDtorContext &Context); |
708 | CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E, |
709 | bool ExternallyDestructed, |
710 | TempDtorContext &Context); |
711 | CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors( |
712 | CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context); |
713 | CFGBlock *VisitConditionalOperatorForTemporaryDtors( |
714 | AbstractConditionalOperator *E, bool ExternallyDestructed, |
715 | TempDtorContext &Context); |
716 | void InsertTempDtorDecisionBlock(const TempDtorContext &Context, |
717 | CFGBlock *FalseSucc = nullptr); |
718 | |
719 | // NYS == Not Yet Supported |
720 | CFGBlock *NYS() { |
721 | badCFG = true; |
722 | return Block; |
723 | } |
724 | |
725 | // Remember to apply the construction context based on the current \p Layer |
726 | // when constructing the CFG element for \p CE. |
727 | void consumeConstructionContext(const ConstructionContextLayer *Layer, |
728 | Expr *E); |
729 | |
730 | // Scan \p Child statement to find constructors in it, while keeping in mind |
731 | // that its parent statement is providing a partial construction context |
732 | // described by \p Layer. If a constructor is found, it would be assigned |
733 | // the context based on the layer. If an additional construction context layer |
734 | // is found, the function recurses into that. |
735 | void findConstructionContexts(const ConstructionContextLayer *Layer, |
736 | Stmt *Child); |
737 | |
738 | // Scan all arguments of a call expression for a construction context. |
739 | // These sorts of call expressions don't have a common superclass, |
740 | // hence strict duck-typing. |
741 | template <typename CallLikeExpr, |
742 | typename = std::enable_if_t< |
743 | std::is_base_of_v<CallExpr, CallLikeExpr> || |
744 | std::is_base_of_v<CXXConstructExpr, CallLikeExpr> || |
745 | std::is_base_of_v<ObjCMessageExpr, CallLikeExpr>>> |
746 | void findConstructionContextsForArguments(CallLikeExpr *E) { |
747 | for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { |
748 | Expr *Arg = E->getArg(i); |
749 | if (Arg->getType()->getAsCXXRecordDecl() && !Arg->isGLValue()) |
750 | findConstructionContexts( |
751 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), |
752 | Item: ConstructionContextItem(E, i)), |
753 | Child: Arg); |
754 | } |
755 | } |
756 | |
757 | // Unset the construction context after consuming it. This is done immediately |
758 | // after adding the CFGConstructor or CFGCXXRecordTypedCall element, so |
759 | // there's no need to do this manually in every Visit... function. |
760 | void cleanupConstructionContext(Expr *E); |
761 | |
762 | void autoCreateBlock() { if (!Block) Block = createBlock(); } |
763 | CFGBlock *createBlock(bool add_successor = true); |
764 | CFGBlock *createNoReturnBlock(); |
765 | |
766 | CFGBlock *addStmt(Stmt *S) { |
767 | return Visit(S, asc: AddStmtChoice::AlwaysAdd); |
768 | } |
769 | |
770 | CFGBlock *addInitializer(CXXCtorInitializer *I); |
771 | void addLoopExit(const Stmt *LoopStmt); |
772 | void addAutomaticObjHandling(LocalScope::const_iterator B, |
773 | LocalScope::const_iterator E, Stmt *S); |
774 | void addAutomaticObjDestruction(LocalScope::const_iterator B, |
775 | LocalScope::const_iterator E, Stmt *S); |
776 | void addScopeExitHandling(LocalScope::const_iterator B, |
777 | LocalScope::const_iterator E, Stmt *S); |
778 | void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD); |
779 | void addScopeChangesHandling(LocalScope::const_iterator SrcPos, |
780 | LocalScope::const_iterator DstPos, |
781 | Stmt *S); |
782 | CFGBlock *createScopeChangesHandlingBlock(LocalScope::const_iterator SrcPos, |
783 | CFGBlock *SrcBlk, |
784 | LocalScope::const_iterator DstPost, |
785 | CFGBlock *DstBlk); |
786 | |
787 | // Local scopes creation. |
788 | LocalScope* createOrReuseLocalScope(LocalScope* Scope); |
789 | |
790 | void addLocalScopeForStmt(Stmt *S); |
791 | LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, |
792 | LocalScope* Scope = nullptr); |
793 | LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr); |
794 | |
795 | void addLocalScopeAndDtors(Stmt *S); |
796 | |
797 | const ConstructionContext *retrieveAndCleanupConstructionContext(Expr *E) { |
798 | if (!BuildOpts.AddRichCXXConstructors) |
799 | return nullptr; |
800 | |
801 | const ConstructionContextLayer *Layer = ConstructionContextMap.lookup(Val: E); |
802 | if (!Layer) |
803 | return nullptr; |
804 | |
805 | cleanupConstructionContext(E); |
806 | return ConstructionContext::createFromLayers(C&: cfg->getBumpVectorContext(), |
807 | TopLayer: Layer); |
808 | } |
809 | |
810 | // Interface to CFGBlock - adding CFGElements. |
811 | |
812 | void appendStmt(CFGBlock *B, const Stmt *S) { |
813 | if (alwaysAdd(stmt: S) && cachedEntry) |
814 | cachedEntry->second = B; |
815 | |
816 | // All block-level expressions should have already been IgnoreParens()ed. |
817 | assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S); |
818 | B->appendStmt(statement: const_cast<Stmt*>(S), C&: cfg->getBumpVectorContext()); |
819 | } |
820 | |
821 | void appendConstructor(CFGBlock *B, CXXConstructExpr *CE) { |
822 | if (const ConstructionContext *CC = |
823 | retrieveAndCleanupConstructionContext(E: CE)) { |
824 | B->appendConstructor(CE, CC, C&: cfg->getBumpVectorContext()); |
825 | return; |
826 | } |
827 | |
828 | // No valid construction context found. Fall back to statement. |
829 | B->appendStmt(statement: CE, C&: cfg->getBumpVectorContext()); |
830 | } |
831 | |
832 | void appendCall(CFGBlock *B, CallExpr *CE) { |
833 | if (alwaysAdd(stmt: CE) && cachedEntry) |
834 | cachedEntry->second = B; |
835 | |
836 | if (const ConstructionContext *CC = |
837 | retrieveAndCleanupConstructionContext(E: CE)) { |
838 | B->appendCXXRecordTypedCall(E: CE, CC, C&: cfg->getBumpVectorContext()); |
839 | return; |
840 | } |
841 | |
842 | // No valid construction context found. Fall back to statement. |
843 | B->appendStmt(statement: CE, C&: cfg->getBumpVectorContext()); |
844 | } |
845 | |
846 | void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) { |
847 | B->appendInitializer(initializer: I, C&: cfg->getBumpVectorContext()); |
848 | } |
849 | |
850 | void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) { |
851 | B->appendNewAllocator(NE, C&: cfg->getBumpVectorContext()); |
852 | } |
853 | |
854 | void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) { |
855 | B->appendBaseDtor(BS, C&: cfg->getBumpVectorContext()); |
856 | } |
857 | |
858 | void appendMemberDtor(CFGBlock *B, FieldDecl *FD) { |
859 | B->appendMemberDtor(FD, C&: cfg->getBumpVectorContext()); |
860 | } |
861 | |
862 | void appendObjCMessage(CFGBlock *B, ObjCMessageExpr *ME) { |
863 | if (alwaysAdd(stmt: ME) && cachedEntry) |
864 | cachedEntry->second = B; |
865 | |
866 | if (const ConstructionContext *CC = |
867 | retrieveAndCleanupConstructionContext(E: ME)) { |
868 | B->appendCXXRecordTypedCall(E: ME, CC, C&: cfg->getBumpVectorContext()); |
869 | return; |
870 | } |
871 | |
872 | B->appendStmt(statement: const_cast<ObjCMessageExpr *>(ME), |
873 | C&: cfg->getBumpVectorContext()); |
874 | } |
875 | |
876 | void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) { |
877 | B->appendTemporaryDtor(E, C&: cfg->getBumpVectorContext()); |
878 | } |
879 | |
880 | void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) { |
881 | B->appendAutomaticObjDtor(VD, S, C&: cfg->getBumpVectorContext()); |
882 | } |
883 | |
884 | void appendCleanupFunction(CFGBlock *B, VarDecl *VD) { |
885 | B->appendCleanupFunction(VD, C&: cfg->getBumpVectorContext()); |
886 | } |
887 | |
888 | void appendLifetimeEnds(CFGBlock *B, VarDecl *VD, Stmt *S) { |
889 | B->appendLifetimeEnds(VD, S, C&: cfg->getBumpVectorContext()); |
890 | } |
891 | |
892 | void appendLoopExit(CFGBlock *B, const Stmt *LoopStmt) { |
893 | B->appendLoopExit(LoopStmt, C&: cfg->getBumpVectorContext()); |
894 | } |
895 | |
896 | void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) { |
897 | B->appendDeleteDtor(RD, DE, C&: cfg->getBumpVectorContext()); |
898 | } |
899 | |
900 | void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) { |
901 | B->addSuccessor(Succ: CFGBlock::AdjacentBlock(S, IsReachable), |
902 | C&: cfg->getBumpVectorContext()); |
903 | } |
904 | |
905 | /// Add a reachable successor to a block, with the alternate variant that is |
906 | /// unreachable. |
907 | void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) { |
908 | B->addSuccessor(Succ: CFGBlock::AdjacentBlock(ReachableBlock, AltBlock), |
909 | C&: cfg->getBumpVectorContext()); |
910 | } |
911 | |
912 | void appendScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) { |
913 | if (BuildOpts.AddScopes) |
914 | B->appendScopeBegin(VD, S, C&: cfg->getBumpVectorContext()); |
915 | } |
916 | |
917 | void appendScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) { |
918 | if (BuildOpts.AddScopes) |
919 | B->appendScopeEnd(VD, S, C&: cfg->getBumpVectorContext()); |
920 | } |
921 | |
922 | /// Find a relational comparison with an expression evaluating to a |
923 | /// boolean and a constant other than 0 and 1. |
924 | /// e.g. if ((x < y) == 10) |
925 | TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) { |
926 | const Expr *LHSExpr = B->getLHS()->IgnoreParens(); |
927 | const Expr *RHSExpr = B->getRHS()->IgnoreParens(); |
928 | |
929 | const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(Val: LHSExpr); |
930 | const Expr *BoolExpr = RHSExpr; |
931 | bool IntFirst = true; |
932 | if (!IntLiteral) { |
933 | IntLiteral = dyn_cast<IntegerLiteral>(Val: RHSExpr); |
934 | BoolExpr = LHSExpr; |
935 | IntFirst = false; |
936 | } |
937 | |
938 | if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue()) |
939 | return TryResult(); |
940 | |
941 | llvm::APInt IntValue = IntLiteral->getValue(); |
942 | if ((IntValue == 1) || (IntValue == 0)) |
943 | return TryResult(); |
944 | |
945 | bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() || |
946 | !IntValue.isNegative(); |
947 | |
948 | BinaryOperatorKind Bok = B->getOpcode(); |
949 | if (Bok == BO_GT || Bok == BO_GE) { |
950 | // Always true for 10 > bool and bool > -1 |
951 | // Always false for -1 > bool and bool > 10 |
952 | return TryResult(IntFirst == IntLarger); |
953 | } else { |
954 | // Always true for -1 < bool and bool < 10 |
955 | // Always false for 10 < bool and bool < -1 |
956 | return TryResult(IntFirst != IntLarger); |
957 | } |
958 | } |
959 | |
960 | /// Find an incorrect equality comparison. Either with an expression |
961 | /// evaluating to a boolean and a constant other than 0 and 1. |
962 | /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to |
963 | /// true/false e.q. (x & 8) == 4. |
964 | TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) { |
965 | const Expr *LHSExpr = B->getLHS()->IgnoreParens(); |
966 | const Expr *RHSExpr = B->getRHS()->IgnoreParens(); |
967 | |
968 | std::optional<llvm::APInt> IntLiteral1 = |
969 | getIntegerLiteralSubexpressionValue(E: LHSExpr); |
970 | const Expr *BoolExpr = RHSExpr; |
971 | |
972 | if (!IntLiteral1) { |
973 | IntLiteral1 = getIntegerLiteralSubexpressionValue(E: RHSExpr); |
974 | BoolExpr = LHSExpr; |
975 | } |
976 | |
977 | if (!IntLiteral1) |
978 | return TryResult(); |
979 | |
980 | const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(Val: BoolExpr); |
981 | if (BitOp && (BitOp->getOpcode() == BO_And || |
982 | BitOp->getOpcode() == BO_Or)) { |
983 | const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens(); |
984 | const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens(); |
985 | |
986 | std::optional<llvm::APInt> IntLiteral2 = |
987 | getIntegerLiteralSubexpressionValue(E: LHSExpr2); |
988 | |
989 | if (!IntLiteral2) |
990 | IntLiteral2 = getIntegerLiteralSubexpressionValue(E: RHSExpr2); |
991 | |
992 | if (!IntLiteral2) |
993 | return TryResult(); |
994 | |
995 | if ((BitOp->getOpcode() == BO_And && |
996 | (*IntLiteral2 & *IntLiteral1) != *IntLiteral1) || |
997 | (BitOp->getOpcode() == BO_Or && |
998 | (*IntLiteral2 | *IntLiteral1) != *IntLiteral1)) { |
999 | if (BuildOpts.Observer) |
1000 | BuildOpts.Observer->compareBitwiseEquality(B, |
1001 | isAlwaysTrue: B->getOpcode() != BO_EQ); |
1002 | return TryResult(B->getOpcode() != BO_EQ); |
1003 | } |
1004 | } else if (BoolExpr->isKnownToHaveBooleanValue()) { |
1005 | if ((*IntLiteral1 == 1) || (*IntLiteral1 == 0)) { |
1006 | return TryResult(); |
1007 | } |
1008 | return TryResult(B->getOpcode() != BO_EQ); |
1009 | } |
1010 | |
1011 | return TryResult(); |
1012 | } |
1013 | |
1014 | // Helper function to get an APInt from an expression. Supports expressions |
1015 | // which are an IntegerLiteral or a UnaryOperator and returns the value with |
1016 | // all operations performed on it. |
1017 | // FIXME: it would be good to unify this function with |
1018 | // IsIntegerLiteralConstantExpr at some point given the similarity between the |
1019 | // functions. |
1020 | std::optional<llvm::APInt> |
1021 | getIntegerLiteralSubexpressionValue(const Expr *E) { |
1022 | |
1023 | // If unary. |
1024 | if (const auto *UnOp = dyn_cast<UnaryOperator>(Val: E->IgnoreParens())) { |
1025 | // Get the sub expression of the unary expression and get the Integer |
1026 | // Literal. |
1027 | const Expr *SubExpr = UnOp->getSubExpr()->IgnoreParens(); |
1028 | |
1029 | if (const auto *IntLiteral = dyn_cast<IntegerLiteral>(Val: SubExpr)) { |
1030 | |
1031 | llvm::APInt Value = IntLiteral->getValue(); |
1032 | |
1033 | // Perform the operation manually. |
1034 | switch (UnOp->getOpcode()) { |
1035 | case UO_Plus: |
1036 | return Value; |
1037 | case UO_Minus: |
1038 | return -Value; |
1039 | case UO_Not: |
1040 | return ~Value; |
1041 | case UO_LNot: |
1042 | return llvm::APInt(Context->getTypeSize(T: Context->IntTy), !Value); |
1043 | default: |
1044 | assert(false && "Unexpected unary operator!" ); |
1045 | return std::nullopt; |
1046 | } |
1047 | } |
1048 | } else if (const auto *IntLiteral = |
1049 | dyn_cast<IntegerLiteral>(Val: E->IgnoreParens())) |
1050 | return IntLiteral->getValue(); |
1051 | |
1052 | return std::nullopt; |
1053 | } |
1054 | |
1055 | TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation, |
1056 | const llvm::APSInt &Value1, |
1057 | const llvm::APSInt &Value2) { |
1058 | assert(Value1.isSigned() == Value2.isSigned()); |
1059 | switch (Relation) { |
1060 | default: |
1061 | return TryResult(); |
1062 | case BO_EQ: |
1063 | return TryResult(Value1 == Value2); |
1064 | case BO_NE: |
1065 | return TryResult(Value1 != Value2); |
1066 | case BO_LT: |
1067 | return TryResult(Value1 < Value2); |
1068 | case BO_LE: |
1069 | return TryResult(Value1 <= Value2); |
1070 | case BO_GT: |
1071 | return TryResult(Value1 > Value2); |
1072 | case BO_GE: |
1073 | return TryResult(Value1 >= Value2); |
1074 | } |
1075 | } |
1076 | |
1077 | /// There are two checks handled by this function: |
1078 | /// 1. Find a law-of-excluded-middle or law-of-noncontradiction expression |
1079 | /// e.g. if (x || !x), if (x && !x) |
1080 | /// 2. Find a pair of comparison expressions with or without parentheses |
1081 | /// with a shared variable and constants and a logical operator between them |
1082 | /// that always evaluates to either true or false. |
1083 | /// e.g. if (x != 3 || x != 4) |
1084 | TryResult checkIncorrectLogicOperator(const BinaryOperator *B) { |
1085 | assert(B->isLogicalOp()); |
1086 | const Expr *LHSExpr = B->getLHS()->IgnoreParens(); |
1087 | const Expr *RHSExpr = B->getRHS()->IgnoreParens(); |
1088 | |
1089 | auto CheckLogicalOpWithNegatedVariable = [this, B](const Expr *E1, |
1090 | const Expr *E2) { |
1091 | if (const auto *Negate = dyn_cast<UnaryOperator>(Val: E1)) { |
1092 | if (Negate->getOpcode() == UO_LNot && |
1093 | Expr::isSameComparisonOperand(E1: Negate->getSubExpr(), E2)) { |
1094 | bool AlwaysTrue = B->getOpcode() == BO_LOr; |
1095 | if (BuildOpts.Observer) |
1096 | BuildOpts.Observer->logicAlwaysTrue(B, isAlwaysTrue: AlwaysTrue); |
1097 | return TryResult(AlwaysTrue); |
1098 | } |
1099 | } |
1100 | return TryResult(); |
1101 | }; |
1102 | |
1103 | TryResult Result = CheckLogicalOpWithNegatedVariable(LHSExpr, RHSExpr); |
1104 | if (Result.isKnown()) |
1105 | return Result; |
1106 | Result = CheckLogicalOpWithNegatedVariable(RHSExpr, LHSExpr); |
1107 | if (Result.isKnown()) |
1108 | return Result; |
1109 | |
1110 | const auto *LHS = dyn_cast<BinaryOperator>(Val: LHSExpr); |
1111 | const auto *RHS = dyn_cast<BinaryOperator>(Val: RHSExpr); |
1112 | if (!LHS || !RHS) |
1113 | return {}; |
1114 | |
1115 | if (!LHS->isComparisonOp() || !RHS->isComparisonOp()) |
1116 | return {}; |
1117 | |
1118 | const Expr *DeclExpr1; |
1119 | const Expr *NumExpr1; |
1120 | BinaryOperatorKind BO1; |
1121 | std::tie(args&: DeclExpr1, args&: BO1, args&: NumExpr1) = tryNormalizeBinaryOperator(B: LHS); |
1122 | |
1123 | if (!DeclExpr1 || !NumExpr1) |
1124 | return {}; |
1125 | |
1126 | const Expr *DeclExpr2; |
1127 | const Expr *NumExpr2; |
1128 | BinaryOperatorKind BO2; |
1129 | std::tie(args&: DeclExpr2, args&: BO2, args&: NumExpr2) = tryNormalizeBinaryOperator(B: RHS); |
1130 | |
1131 | if (!DeclExpr2 || !NumExpr2) |
1132 | return {}; |
1133 | |
1134 | // Check that it is the same variable on both sides. |
1135 | if (!Expr::isSameComparisonOperand(E1: DeclExpr1, E2: DeclExpr2)) |
1136 | return {}; |
1137 | |
1138 | // Make sure the user's intent is clear (e.g. they're comparing against two |
1139 | // int literals, or two things from the same enum) |
1140 | if (!areExprTypesCompatible(E1: NumExpr1, E2: NumExpr2)) |
1141 | return {}; |
1142 | |
1143 | Expr::EvalResult L1Result, L2Result; |
1144 | if (!NumExpr1->EvaluateAsInt(Result&: L1Result, Ctx: *Context) || |
1145 | !NumExpr2->EvaluateAsInt(Result&: L2Result, Ctx: *Context)) |
1146 | return {}; |
1147 | |
1148 | llvm::APSInt L1 = L1Result.Val.getInt(); |
1149 | llvm::APSInt L2 = L2Result.Val.getInt(); |
1150 | |
1151 | // Can't compare signed with unsigned or with different bit width. |
1152 | if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth()) |
1153 | return {}; |
1154 | |
1155 | // Values that will be used to determine if result of logical |
1156 | // operator is always true/false |
1157 | const llvm::APSInt Values[] = { |
1158 | // Value less than both Value1 and Value2 |
1159 | llvm::APSInt::getMinValue(numBits: L1.getBitWidth(), Unsigned: L1.isUnsigned()), |
1160 | // L1 |
1161 | L1, |
1162 | // Value between Value1 and Value2 |
1163 | ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1), |
1164 | L1.isUnsigned()), |
1165 | // L2 |
1166 | L2, |
1167 | // Value greater than both Value1 and Value2 |
1168 | llvm::APSInt::getMaxValue(numBits: L1.getBitWidth(), Unsigned: L1.isUnsigned()), |
1169 | }; |
1170 | |
1171 | // Check whether expression is always true/false by evaluating the following |
1172 | // * variable x is less than the smallest literal. |
1173 | // * variable x is equal to the smallest literal. |
1174 | // * Variable x is between smallest and largest literal. |
1175 | // * Variable x is equal to the largest literal. |
1176 | // * Variable x is greater than largest literal. |
1177 | bool AlwaysTrue = true, AlwaysFalse = true; |
1178 | // Track value of both subexpressions. If either side is always |
1179 | // true/false, another warning should have already been emitted. |
1180 | bool LHSAlwaysTrue = true, LHSAlwaysFalse = true; |
1181 | bool RHSAlwaysTrue = true, RHSAlwaysFalse = true; |
1182 | for (const llvm::APSInt &Value : Values) { |
1183 | TryResult Res1, Res2; |
1184 | Res1 = analyzeLogicOperatorCondition(Relation: BO1, Value1: Value, Value2: L1); |
1185 | Res2 = analyzeLogicOperatorCondition(Relation: BO2, Value1: Value, Value2: L2); |
1186 | |
1187 | if (!Res1.isKnown() || !Res2.isKnown()) |
1188 | return {}; |
1189 | |
1190 | if (B->getOpcode() == BO_LAnd) { |
1191 | AlwaysTrue &= (Res1.isTrue() && Res2.isTrue()); |
1192 | AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue()); |
1193 | } else { |
1194 | AlwaysTrue &= (Res1.isTrue() || Res2.isTrue()); |
1195 | AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue()); |
1196 | } |
1197 | |
1198 | LHSAlwaysTrue &= Res1.isTrue(); |
1199 | LHSAlwaysFalse &= Res1.isFalse(); |
1200 | RHSAlwaysTrue &= Res2.isTrue(); |
1201 | RHSAlwaysFalse &= Res2.isFalse(); |
1202 | } |
1203 | |
1204 | if (AlwaysTrue || AlwaysFalse) { |
1205 | if (!LHSAlwaysTrue && !LHSAlwaysFalse && !RHSAlwaysTrue && |
1206 | !RHSAlwaysFalse && BuildOpts.Observer) |
1207 | BuildOpts.Observer->compareAlwaysTrue(B, isAlwaysTrue: AlwaysTrue); |
1208 | return TryResult(AlwaysTrue); |
1209 | } |
1210 | return {}; |
1211 | } |
1212 | |
1213 | /// A bitwise-or with a non-zero constant always evaluates to true. |
1214 | TryResult checkIncorrectBitwiseOrOperator(const BinaryOperator *B) { |
1215 | const Expr *LHSConstant = |
1216 | tryTransformToIntOrEnumConstant(E: B->getLHS()->IgnoreParenImpCasts()); |
1217 | const Expr *RHSConstant = |
1218 | tryTransformToIntOrEnumConstant(E: B->getRHS()->IgnoreParenImpCasts()); |
1219 | |
1220 | if ((LHSConstant && RHSConstant) || (!LHSConstant && !RHSConstant)) |
1221 | return {}; |
1222 | |
1223 | const Expr *Constant = LHSConstant ? LHSConstant : RHSConstant; |
1224 | |
1225 | Expr::EvalResult Result; |
1226 | if (!Constant->EvaluateAsInt(Result, Ctx: *Context)) |
1227 | return {}; |
1228 | |
1229 | if (Result.Val.getInt() == 0) |
1230 | return {}; |
1231 | |
1232 | if (BuildOpts.Observer) |
1233 | BuildOpts.Observer->compareBitwiseOr(B); |
1234 | |
1235 | return TryResult(true); |
1236 | } |
1237 | |
1238 | /// Try and evaluate an expression to an integer constant. |
1239 | bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) { |
1240 | if (!BuildOpts.PruneTriviallyFalseEdges) |
1241 | return false; |
1242 | return !S->isTypeDependent() && |
1243 | !S->isValueDependent() && |
1244 | S->EvaluateAsRValue(Result&: outResult, Ctx: *Context); |
1245 | } |
1246 | |
1247 | /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1 |
1248 | /// if we can evaluate to a known value, otherwise return -1. |
1249 | TryResult tryEvaluateBool(Expr *S) { |
1250 | if (!BuildOpts.PruneTriviallyFalseEdges || |
1251 | S->isTypeDependent() || S->isValueDependent()) |
1252 | return {}; |
1253 | |
1254 | if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: S)) { |
1255 | if (Bop->isLogicalOp() || Bop->isEqualityOp()) { |
1256 | // Check the cache first. |
1257 | CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(Val: S); |
1258 | if (I != CachedBoolEvals.end()) |
1259 | return I->second; // already in map; |
1260 | |
1261 | // Retrieve result at first, or the map might be updated. |
1262 | TryResult Result = evaluateAsBooleanConditionNoCache(E: S); |
1263 | CachedBoolEvals[S] = Result; // update or insert |
1264 | return Result; |
1265 | } |
1266 | else { |
1267 | switch (Bop->getOpcode()) { |
1268 | default: break; |
1269 | // For 'x & 0' and 'x * 0', we can determine that |
1270 | // the value is always false. |
1271 | case BO_Mul: |
1272 | case BO_And: { |
1273 | // If either operand is zero, we know the value |
1274 | // must be false. |
1275 | Expr::EvalResult LHSResult; |
1276 | if (Bop->getLHS()->EvaluateAsInt(Result&: LHSResult, Ctx: *Context)) { |
1277 | llvm::APSInt IntVal = LHSResult.Val.getInt(); |
1278 | if (!IntVal.getBoolValue()) { |
1279 | return TryResult(false); |
1280 | } |
1281 | } |
1282 | Expr::EvalResult RHSResult; |
1283 | if (Bop->getRHS()->EvaluateAsInt(Result&: RHSResult, Ctx: *Context)) { |
1284 | llvm::APSInt IntVal = RHSResult.Val.getInt(); |
1285 | if (!IntVal.getBoolValue()) { |
1286 | return TryResult(false); |
1287 | } |
1288 | } |
1289 | } |
1290 | break; |
1291 | } |
1292 | } |
1293 | } |
1294 | |
1295 | return evaluateAsBooleanConditionNoCache(E: S); |
1296 | } |
1297 | |
1298 | /// Evaluate as boolean \param E without using the cache. |
1299 | TryResult evaluateAsBooleanConditionNoCache(Expr *E) { |
1300 | if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: E)) { |
1301 | if (Bop->isLogicalOp()) { |
1302 | TryResult LHS = tryEvaluateBool(S: Bop->getLHS()); |
1303 | if (LHS.isKnown()) { |
1304 | // We were able to evaluate the LHS, see if we can get away with not |
1305 | // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 |
1306 | if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr)) |
1307 | return LHS.isTrue(); |
1308 | |
1309 | TryResult RHS = tryEvaluateBool(S: Bop->getRHS()); |
1310 | if (RHS.isKnown()) { |
1311 | if (Bop->getOpcode() == BO_LOr) |
1312 | return LHS.isTrue() || RHS.isTrue(); |
1313 | else |
1314 | return LHS.isTrue() && RHS.isTrue(); |
1315 | } |
1316 | } else { |
1317 | TryResult RHS = tryEvaluateBool(S: Bop->getRHS()); |
1318 | if (RHS.isKnown()) { |
1319 | // We can't evaluate the LHS; however, sometimes the result |
1320 | // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. |
1321 | if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr)) |
1322 | return RHS.isTrue(); |
1323 | } else { |
1324 | TryResult BopRes = checkIncorrectLogicOperator(B: Bop); |
1325 | if (BopRes.isKnown()) |
1326 | return BopRes.isTrue(); |
1327 | } |
1328 | } |
1329 | |
1330 | return {}; |
1331 | } else if (Bop->isEqualityOp()) { |
1332 | TryResult BopRes = checkIncorrectEqualityOperator(B: Bop); |
1333 | if (BopRes.isKnown()) |
1334 | return BopRes.isTrue(); |
1335 | } else if (Bop->isRelationalOp()) { |
1336 | TryResult BopRes = checkIncorrectRelationalOperator(B: Bop); |
1337 | if (BopRes.isKnown()) |
1338 | return BopRes.isTrue(); |
1339 | } else if (Bop->getOpcode() == BO_Or) { |
1340 | TryResult BopRes = checkIncorrectBitwiseOrOperator(B: Bop); |
1341 | if (BopRes.isKnown()) |
1342 | return BopRes.isTrue(); |
1343 | } |
1344 | } |
1345 | |
1346 | bool Result; |
1347 | if (E->EvaluateAsBooleanCondition(Result, Ctx: *Context)) |
1348 | return Result; |
1349 | |
1350 | return {}; |
1351 | } |
1352 | |
1353 | bool hasTrivialDestructor(const VarDecl *VD) const; |
1354 | bool needsAutomaticDestruction(const VarDecl *VD) const; |
1355 | }; |
1356 | |
1357 | } // namespace |
1358 | |
1359 | Expr * |
1360 | clang::(const ArrayInitLoopExpr *AILE) { |
1361 | if (!AILE) |
1362 | return nullptr; |
1363 | |
1364 | Expr *AILEInit = AILE->getSubExpr(); |
1365 | while (const auto *E = dyn_cast<ArrayInitLoopExpr>(Val: AILEInit)) |
1366 | AILEInit = E->getSubExpr(); |
1367 | |
1368 | return AILEInit; |
1369 | } |
1370 | |
1371 | inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder, |
1372 | const Stmt *stmt) const { |
1373 | return builder.alwaysAdd(stmt) || kind == AlwaysAdd; |
1374 | } |
1375 | |
1376 | bool CFGBuilder::alwaysAdd(const Stmt *stmt) { |
1377 | bool shouldAdd = BuildOpts.alwaysAdd(stmt); |
1378 | |
1379 | if (!BuildOpts.forcedBlkExprs) |
1380 | return shouldAdd; |
1381 | |
1382 | if (lastLookup == stmt) { |
1383 | if (cachedEntry) { |
1384 | assert(cachedEntry->first == stmt); |
1385 | return true; |
1386 | } |
1387 | return shouldAdd; |
1388 | } |
1389 | |
1390 | lastLookup = stmt; |
1391 | |
1392 | // Perform the lookup! |
1393 | CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs; |
1394 | |
1395 | if (!fb) { |
1396 | // No need to update 'cachedEntry', since it will always be null. |
1397 | assert(!cachedEntry); |
1398 | return shouldAdd; |
1399 | } |
1400 | |
1401 | CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(Val: stmt); |
1402 | if (itr == fb->end()) { |
1403 | cachedEntry = nullptr; |
1404 | return shouldAdd; |
1405 | } |
1406 | |
1407 | cachedEntry = &*itr; |
1408 | return true; |
1409 | } |
1410 | |
1411 | // FIXME: Add support for dependent-sized array types in C++? |
1412 | // Does it even make sense to build a CFG for an uninstantiated template? |
1413 | static const VariableArrayType *FindVA(const Type *t) { |
1414 | while (const ArrayType *vt = dyn_cast<ArrayType>(Val: t)) { |
1415 | if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(Val: vt)) |
1416 | if (vat->getSizeExpr()) |
1417 | return vat; |
1418 | |
1419 | t = vt->getElementType().getTypePtr(); |
1420 | } |
1421 | |
1422 | return nullptr; |
1423 | } |
1424 | |
1425 | void CFGBuilder::consumeConstructionContext( |
1426 | const ConstructionContextLayer *Layer, Expr *E) { |
1427 | assert((isa<CXXConstructExpr>(E) || isa<CallExpr>(E) || |
1428 | isa<ObjCMessageExpr>(E)) && "Expression cannot construct an object!" ); |
1429 | if (const ConstructionContextLayer *PreviouslyStoredLayer = |
1430 | ConstructionContextMap.lookup(Val: E)) { |
1431 | (void)PreviouslyStoredLayer; |
1432 | // We might have visited this child when we were finding construction |
1433 | // contexts within its parents. |
1434 | assert(PreviouslyStoredLayer->isStrictlyMoreSpecificThan(Layer) && |
1435 | "Already within a different construction context!" ); |
1436 | } else { |
1437 | ConstructionContextMap[E] = Layer; |
1438 | } |
1439 | } |
1440 | |
1441 | void CFGBuilder::findConstructionContexts( |
1442 | const ConstructionContextLayer *Layer, Stmt *Child) { |
1443 | if (!BuildOpts.AddRichCXXConstructors) |
1444 | return; |
1445 | |
1446 | if (!Child) |
1447 | return; |
1448 | |
1449 | auto = [this, Layer](const ConstructionContextItem &Item) { |
1450 | return ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), Item, |
1451 | Parent: Layer); |
1452 | }; |
1453 | |
1454 | switch(Child->getStmtClass()) { |
1455 | case Stmt::CXXConstructExprClass: |
1456 | case Stmt::CXXTemporaryObjectExprClass: { |
1457 | // Support pre-C++17 copy elision AST. |
1458 | auto *CE = cast<CXXConstructExpr>(Val: Child); |
1459 | if (BuildOpts.MarkElidedCXXConstructors && CE->isElidable()) { |
1460 | findConstructionContexts(Layer: withExtraLayer(CE), Child: CE->getArg(Arg: 0)); |
1461 | } |
1462 | |
1463 | consumeConstructionContext(Layer, E: CE); |
1464 | break; |
1465 | } |
1466 | // FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr. |
1467 | // FIXME: An isa<> would look much better but this whole switch is a |
1468 | // workaround for an internal compiler error in MSVC 2015 (see r326021). |
1469 | case Stmt::CallExprClass: |
1470 | case Stmt::CXXMemberCallExprClass: |
1471 | case Stmt::CXXOperatorCallExprClass: |
1472 | case Stmt::UserDefinedLiteralClass: |
1473 | case Stmt::ObjCMessageExprClass: { |
1474 | auto *E = cast<Expr>(Val: Child); |
1475 | if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E)) |
1476 | consumeConstructionContext(Layer, E); |
1477 | break; |
1478 | } |
1479 | case Stmt::ExprWithCleanupsClass: { |
1480 | auto *Cleanups = cast<ExprWithCleanups>(Val: Child); |
1481 | findConstructionContexts(Layer, Child: Cleanups->getSubExpr()); |
1482 | break; |
1483 | } |
1484 | case Stmt::CXXFunctionalCastExprClass: { |
1485 | auto *Cast = cast<CXXFunctionalCastExpr>(Val: Child); |
1486 | findConstructionContexts(Layer, Child: Cast->getSubExpr()); |
1487 | break; |
1488 | } |
1489 | case Stmt::ImplicitCastExprClass: { |
1490 | auto *Cast = cast<ImplicitCastExpr>(Val: Child); |
1491 | // Should we support other implicit cast kinds? |
1492 | switch (Cast->getCastKind()) { |
1493 | case CK_NoOp: |
1494 | case CK_ConstructorConversion: |
1495 | findConstructionContexts(Layer, Child: Cast->getSubExpr()); |
1496 | break; |
1497 | default: |
1498 | break; |
1499 | } |
1500 | break; |
1501 | } |
1502 | case Stmt::CXXBindTemporaryExprClass: { |
1503 | auto *BTE = cast<CXXBindTemporaryExpr>(Val: Child); |
1504 | findConstructionContexts(Layer: withExtraLayer(BTE), Child: BTE->getSubExpr()); |
1505 | break; |
1506 | } |
1507 | case Stmt::MaterializeTemporaryExprClass: { |
1508 | // Normally we don't want to search in MaterializeTemporaryExpr because |
1509 | // it indicates the beginning of a temporary object construction context, |
1510 | // so it shouldn't be found in the middle. However, if it is the beginning |
1511 | // of an elidable copy or move construction context, we need to include it. |
1512 | if (Layer->getItem().getKind() == |
1513 | ConstructionContextItem::ElidableConstructorKind) { |
1514 | auto *MTE = cast<MaterializeTemporaryExpr>(Val: Child); |
1515 | findConstructionContexts(Layer: withExtraLayer(MTE), Child: MTE->getSubExpr()); |
1516 | } |
1517 | break; |
1518 | } |
1519 | case Stmt::ConditionalOperatorClass: { |
1520 | auto *CO = cast<ConditionalOperator>(Val: Child); |
1521 | if (Layer->getItem().getKind() != |
1522 | ConstructionContextItem::MaterializationKind) { |
1523 | // If the object returned by the conditional operator is not going to be a |
1524 | // temporary object that needs to be immediately materialized, then |
1525 | // it must be C++17 with its mandatory copy elision. Do not yet promise |
1526 | // to support this case. |
1527 | assert(!CO->getType()->getAsCXXRecordDecl() || CO->isGLValue() || |
1528 | Context->getLangOpts().CPlusPlus17); |
1529 | break; |
1530 | } |
1531 | findConstructionContexts(Layer, Child: CO->getLHS()); |
1532 | findConstructionContexts(Layer, Child: CO->getRHS()); |
1533 | break; |
1534 | } |
1535 | case Stmt::InitListExprClass: { |
1536 | auto *ILE = cast<InitListExpr>(Val: Child); |
1537 | if (ILE->isTransparent()) { |
1538 | findConstructionContexts(Layer, Child: ILE->getInit(Init: 0)); |
1539 | break; |
1540 | } |
1541 | // TODO: Handle other cases. For now, fail to find construction contexts. |
1542 | break; |
1543 | } |
1544 | case Stmt::ParenExprClass: { |
1545 | // If expression is placed into parenthesis we should propagate the parent |
1546 | // construction context to subexpressions. |
1547 | auto *PE = cast<ParenExpr>(Val: Child); |
1548 | findConstructionContexts(Layer, Child: PE->getSubExpr()); |
1549 | break; |
1550 | } |
1551 | default: |
1552 | break; |
1553 | } |
1554 | } |
1555 | |
1556 | void CFGBuilder::cleanupConstructionContext(Expr *E) { |
1557 | assert(BuildOpts.AddRichCXXConstructors && |
1558 | "We should not be managing construction contexts!" ); |
1559 | assert(ConstructionContextMap.count(E) && |
1560 | "Cannot exit construction context without the context!" ); |
1561 | ConstructionContextMap.erase(Val: E); |
1562 | } |
1563 | |
1564 | /// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an |
1565 | /// arbitrary statement. Examples include a single expression or a function |
1566 | /// body (compound statement). The ownership of the returned CFG is |
1567 | /// transferred to the caller. If CFG construction fails, this method returns |
1568 | /// NULL. |
1569 | std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) { |
1570 | assert(cfg.get()); |
1571 | if (!Statement) |
1572 | return nullptr; |
1573 | |
1574 | // Create an empty block that will serve as the exit block for the CFG. Since |
1575 | // this is the first block added to the CFG, it will be implicitly registered |
1576 | // as the exit block. |
1577 | Succ = createBlock(); |
1578 | assert(Succ == &cfg->getExit()); |
1579 | Block = nullptr; // the EXIT block is empty. Create all other blocks lazily. |
1580 | |
1581 | if (BuildOpts.AddImplicitDtors) |
1582 | if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(Val: D)) |
1583 | addImplicitDtorsForDestructor(DD); |
1584 | |
1585 | // Visit the statements and create the CFG. |
1586 | CFGBlock *B = addStmt(S: Statement); |
1587 | |
1588 | if (badCFG) |
1589 | return nullptr; |
1590 | |
1591 | // For C++ constructor add initializers to CFG. Constructors of virtual bases |
1592 | // are ignored unless the object is of the most derived class. |
1593 | // class VBase { VBase() = default; VBase(int) {} }; |
1594 | // class A : virtual public VBase { A() : VBase(0) {} }; |
1595 | // class B : public A {}; |
1596 | // B b; // Constructor calls in order: VBase(), A(), B(). |
1597 | // // VBase(0) is ignored because A isn't the most derived class. |
1598 | // This may result in the virtual base(s) being already initialized at this |
1599 | // point, in which case we should jump right onto non-virtual bases and |
1600 | // fields. To handle this, make a CFG branch. We only need to add one such |
1601 | // branch per constructor, since the Standard states that all virtual bases |
1602 | // shall be initialized before non-virtual bases and direct data members. |
1603 | if (const auto *CD = dyn_cast_or_null<CXXConstructorDecl>(Val: D)) { |
1604 | CFGBlock *VBaseSucc = nullptr; |
1605 | for (auto *I : llvm::reverse(C: CD->inits())) { |
1606 | if (BuildOpts.AddVirtualBaseBranches && !VBaseSucc && |
1607 | I->isBaseInitializer() && I->isBaseVirtual()) { |
1608 | // We've reached the first virtual base init while iterating in reverse |
1609 | // order. Make a new block for virtual base initializers so that we |
1610 | // could skip them. |
1611 | VBaseSucc = Succ = B ? B : &cfg->getExit(); |
1612 | Block = createBlock(); |
1613 | } |
1614 | B = addInitializer(I); |
1615 | if (badCFG) |
1616 | return nullptr; |
1617 | } |
1618 | if (VBaseSucc) { |
1619 | // Make a branch block for potentially skipping virtual base initializers. |
1620 | Succ = VBaseSucc; |
1621 | B = createBlock(); |
1622 | B->setTerminator( |
1623 | CFGTerminator(nullptr, CFGTerminator::VirtualBaseBranch)); |
1624 | addSuccessor(B, S: Block, IsReachable: true); |
1625 | } |
1626 | } |
1627 | |
1628 | if (B) |
1629 | Succ = B; |
1630 | |
1631 | // Backpatch the gotos whose label -> block mappings we didn't know when we |
1632 | // encountered them. |
1633 | for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(), |
1634 | E = BackpatchBlocks.end(); I != E; ++I ) { |
1635 | |
1636 | CFGBlock *B = I->block; |
1637 | if (auto *G = dyn_cast<GotoStmt>(Val: B->getTerminator())) { |
1638 | LabelMapTy::iterator LI = LabelMap.find(Val: G->getLabel()); |
1639 | // If there is no target for the goto, then we are looking at an |
1640 | // incomplete AST. Handle this by not registering a successor. |
1641 | if (LI == LabelMap.end()) |
1642 | continue; |
1643 | JumpTarget JT = LI->second; |
1644 | |
1645 | CFGBlock *SuccBlk = createScopeChangesHandlingBlock( |
1646 | SrcPos: I->scopePosition, SrcBlk: B, DstPost: JT.scopePosition, DstBlk: JT.block); |
1647 | addSuccessor(B, S: SuccBlk); |
1648 | } else if (auto *G = dyn_cast<GCCAsmStmt>(Val: B->getTerminator())) { |
1649 | CFGBlock *Successor = (I+1)->block; |
1650 | for (auto *L : G->labels()) { |
1651 | LabelMapTy::iterator LI = LabelMap.find(Val: L->getLabel()); |
1652 | // If there is no target for the goto, then we are looking at an |
1653 | // incomplete AST. Handle this by not registering a successor. |
1654 | if (LI == LabelMap.end()) |
1655 | continue; |
1656 | JumpTarget JT = LI->second; |
1657 | // Successor has been added, so skip it. |
1658 | if (JT.block == Successor) |
1659 | continue; |
1660 | addSuccessor(B, S: JT.block); |
1661 | } |
1662 | I++; |
1663 | } |
1664 | } |
1665 | |
1666 | // Add successors to the Indirect Goto Dispatch block (if we have one). |
1667 | if (CFGBlock *B = cfg->getIndirectGotoBlock()) |
1668 | for (LabelSetTy::iterator I = AddressTakenLabels.begin(), |
1669 | E = AddressTakenLabels.end(); I != E; ++I ) { |
1670 | // Lookup the target block. |
1671 | LabelMapTy::iterator LI = LabelMap.find(Val: *I); |
1672 | |
1673 | // If there is no target block that contains label, then we are looking |
1674 | // at an incomplete AST. Handle this by not registering a successor. |
1675 | if (LI == LabelMap.end()) continue; |
1676 | |
1677 | addSuccessor(B, S: LI->second.block); |
1678 | } |
1679 | |
1680 | // Create an empty entry block that has no predecessors. |
1681 | cfg->setEntry(createBlock()); |
1682 | |
1683 | if (BuildOpts.AddRichCXXConstructors) |
1684 | assert(ConstructionContextMap.empty() && |
1685 | "Not all construction contexts were cleaned up!" ); |
1686 | |
1687 | return std::move(cfg); |
1688 | } |
1689 | |
1690 | /// createBlock - Used to lazily create blocks that are connected |
1691 | /// to the current (global) successor. |
1692 | CFGBlock *CFGBuilder::createBlock(bool add_successor) { |
1693 | CFGBlock *B = cfg->createBlock(); |
1694 | if (add_successor && Succ) |
1695 | addSuccessor(B, S: Succ); |
1696 | return B; |
1697 | } |
1698 | |
1699 | /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the |
1700 | /// CFG. It is *not* connected to the current (global) successor, and instead |
1701 | /// directly tied to the exit block in order to be reachable. |
1702 | CFGBlock *CFGBuilder::createNoReturnBlock() { |
1703 | CFGBlock *B = createBlock(add_successor: false); |
1704 | B->setHasNoReturnElement(); |
1705 | addSuccessor(B, ReachableBlock: &cfg->getExit(), AltBlock: Succ); |
1706 | return B; |
1707 | } |
1708 | |
1709 | /// addInitializer - Add C++ base or member initializer element to CFG. |
1710 | CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) { |
1711 | if (!BuildOpts.AddInitializers) |
1712 | return Block; |
1713 | |
1714 | bool HasTemporaries = false; |
1715 | |
1716 | // Destructors of temporaries in initialization expression should be called |
1717 | // after initialization finishes. |
1718 | Expr *Init = I->getInit(); |
1719 | if (Init) { |
1720 | HasTemporaries = isa<ExprWithCleanups>(Val: Init); |
1721 | |
1722 | if (BuildOpts.AddTemporaryDtors && HasTemporaries) { |
1723 | // Generate destructors for temporaries in initialization expression. |
1724 | TempDtorContext Context; |
1725 | VisitForTemporaryDtors(E: cast<ExprWithCleanups>(Val: Init)->getSubExpr(), |
1726 | /*ExternallyDestructed=*/false, Context); |
1727 | } |
1728 | } |
1729 | |
1730 | autoCreateBlock(); |
1731 | appendInitializer(B: Block, I); |
1732 | |
1733 | if (Init) { |
1734 | // If the initializer is an ArrayInitLoopExpr, we want to extract the |
1735 | // initializer, that's used for each element. |
1736 | auto *AILEInit = extractElementInitializerFromNestedAILE( |
1737 | AILE: dyn_cast<ArrayInitLoopExpr>(Val: Init)); |
1738 | |
1739 | findConstructionContexts( |
1740 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), Item: I), |
1741 | Child: AILEInit ? AILEInit : Init); |
1742 | |
1743 | if (HasTemporaries) { |
1744 | // For expression with temporaries go directly to subexpression to omit |
1745 | // generating destructors for the second time. |
1746 | return Visit(S: cast<ExprWithCleanups>(Val: Init)->getSubExpr()); |
1747 | } |
1748 | if (BuildOpts.AddCXXDefaultInitExprInCtors) { |
1749 | if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Val: Init)) { |
1750 | // In general, appending the expression wrapped by a CXXDefaultInitExpr |
1751 | // may cause the same Expr to appear more than once in the CFG. Doing it |
1752 | // here is safe because there's only one initializer per field. |
1753 | autoCreateBlock(); |
1754 | appendStmt(B: Block, S: Default); |
1755 | if (Stmt *Child = Default->getExpr()) |
1756 | if (CFGBlock *R = Visit(S: Child)) |
1757 | Block = R; |
1758 | return Block; |
1759 | } |
1760 | } |
1761 | return Visit(S: Init); |
1762 | } |
1763 | |
1764 | return Block; |
1765 | } |
1766 | |
1767 | /// Retrieve the type of the temporary object whose lifetime was |
1768 | /// extended by a local reference with the given initializer. |
1769 | static QualType getReferenceInitTemporaryType(const Expr *Init, |
1770 | bool *FoundMTE = nullptr) { |
1771 | while (true) { |
1772 | // Skip parentheses. |
1773 | Init = Init->IgnoreParens(); |
1774 | |
1775 | // Skip through cleanups. |
1776 | if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Val: Init)) { |
1777 | Init = EWC->getSubExpr(); |
1778 | continue; |
1779 | } |
1780 | |
1781 | // Skip through the temporary-materialization expression. |
1782 | if (const MaterializeTemporaryExpr *MTE |
1783 | = dyn_cast<MaterializeTemporaryExpr>(Val: Init)) { |
1784 | Init = MTE->getSubExpr(); |
1785 | if (FoundMTE) |
1786 | *FoundMTE = true; |
1787 | continue; |
1788 | } |
1789 | |
1790 | // Skip sub-object accesses into rvalues. |
1791 | const Expr *SkippedInit = Init->skipRValueSubobjectAdjustments(); |
1792 | if (SkippedInit != Init) { |
1793 | Init = SkippedInit; |
1794 | continue; |
1795 | } |
1796 | |
1797 | break; |
1798 | } |
1799 | |
1800 | return Init->getType(); |
1801 | } |
1802 | |
1803 | // TODO: Support adding LoopExit element to the CFG in case where the loop is |
1804 | // ended by ReturnStmt, GotoStmt or ThrowExpr. |
1805 | void CFGBuilder::addLoopExit(const Stmt *LoopStmt){ |
1806 | if(!BuildOpts.AddLoopExit) |
1807 | return; |
1808 | autoCreateBlock(); |
1809 | appendLoopExit(B: Block, LoopStmt); |
1810 | } |
1811 | |
1812 | /// Adds the CFG elements for leaving the scope of automatic objects in |
1813 | /// range [B, E). This include following: |
1814 | /// * AutomaticObjectDtor for variables with non-trivial destructor |
1815 | /// * LifetimeEnds for all variables |
1816 | /// * ScopeEnd for each scope left |
1817 | void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B, |
1818 | LocalScope::const_iterator E, |
1819 | Stmt *S) { |
1820 | if (!BuildOpts.AddScopes && !BuildOpts.AddImplicitDtors && |
1821 | !BuildOpts.AddLifetime) |
1822 | return; |
1823 | |
1824 | if (B == E) |
1825 | return; |
1826 | |
1827 | // Not leaving the scope, only need to handle destruction and lifetime |
1828 | if (B.inSameLocalScope(rhs: E)) { |
1829 | addAutomaticObjDestruction(B, E, S); |
1830 | return; |
1831 | } |
1832 | |
1833 | // Extract information about all local scopes that are left |
1834 | SmallVector<LocalScope::const_iterator, 10> LocalScopeEndMarkers; |
1835 | LocalScopeEndMarkers.push_back(Elt: B); |
1836 | for (LocalScope::const_iterator I = B; I != E; ++I) { |
1837 | if (!I.inSameLocalScope(rhs: LocalScopeEndMarkers.back())) |
1838 | LocalScopeEndMarkers.push_back(Elt: I); |
1839 | } |
1840 | LocalScopeEndMarkers.push_back(Elt: E); |
1841 | |
1842 | // We need to leave the scope in reverse order, so we reverse the end |
1843 | // markers |
1844 | std::reverse(first: LocalScopeEndMarkers.begin(), last: LocalScopeEndMarkers.end()); |
1845 | auto Pairwise = |
1846 | llvm::zip(t&: LocalScopeEndMarkers, u: llvm::drop_begin(RangeOrContainer&: LocalScopeEndMarkers)); |
1847 | for (auto [E, B] : Pairwise) { |
1848 | if (!B.inSameLocalScope(rhs: E)) |
1849 | addScopeExitHandling(B, E, S); |
1850 | addAutomaticObjDestruction(B, E, S); |
1851 | } |
1852 | } |
1853 | |
1854 | /// Add CFG elements corresponding to call destructor and end of lifetime |
1855 | /// of all automatic variables with non-trivial destructor in range [B, E). |
1856 | /// This include AutomaticObjectDtor and LifetimeEnds elements. |
1857 | void CFGBuilder::addAutomaticObjDestruction(LocalScope::const_iterator B, |
1858 | LocalScope::const_iterator E, |
1859 | Stmt *S) { |
1860 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime) |
1861 | return; |
1862 | |
1863 | if (B == E) |
1864 | return; |
1865 | |
1866 | SmallVector<VarDecl *, 10> DeclsNeedDestruction; |
1867 | DeclsNeedDestruction.reserve(N: B.distance(L: E)); |
1868 | |
1869 | for (VarDecl* D : llvm::make_range(x: B, y: E)) |
1870 | if (needsAutomaticDestruction(VD: D)) |
1871 | DeclsNeedDestruction.push_back(Elt: D); |
1872 | |
1873 | for (VarDecl *VD : llvm::reverse(C&: DeclsNeedDestruction)) { |
1874 | if (BuildOpts.AddImplicitDtors) { |
1875 | // If this destructor is marked as a no-return destructor, we need to |
1876 | // create a new block for the destructor which does not have as a |
1877 | // successor anything built thus far: control won't flow out of this |
1878 | // block. |
1879 | QualType Ty = VD->getType(); |
1880 | if (Ty->isReferenceType()) |
1881 | Ty = getReferenceInitTemporaryType(Init: VD->getInit()); |
1882 | Ty = Context->getBaseElementType(QT: Ty); |
1883 | |
1884 | const CXXRecordDecl *CRD = Ty->getAsCXXRecordDecl(); |
1885 | if (CRD && CRD->isAnyDestructorNoReturn()) |
1886 | Block = createNoReturnBlock(); |
1887 | } |
1888 | |
1889 | autoCreateBlock(); |
1890 | |
1891 | // Add LifetimeEnd after automatic obj with non-trivial destructors, |
1892 | // as they end their lifetime when the destructor returns. For trivial |
1893 | // objects, we end lifetime with scope end. |
1894 | if (BuildOpts.AddLifetime) |
1895 | appendLifetimeEnds(B: Block, VD, S); |
1896 | if (BuildOpts.AddImplicitDtors && !hasTrivialDestructor(VD)) |
1897 | appendAutomaticObjDtor(B: Block, VD, S); |
1898 | if (VD->hasAttr<CleanupAttr>()) |
1899 | appendCleanupFunction(B: Block, VD); |
1900 | } |
1901 | } |
1902 | |
1903 | /// Add CFG elements corresponding to leaving a scope. |
1904 | /// Assumes that range [B, E) corresponds to single scope. |
1905 | /// This add following elements: |
1906 | /// * LifetimeEnds for all variables with non-trivial destructor |
1907 | /// * ScopeEnd for each scope left |
1908 | void CFGBuilder::addScopeExitHandling(LocalScope::const_iterator B, |
1909 | LocalScope::const_iterator E, Stmt *S) { |
1910 | assert(!B.inSameLocalScope(E)); |
1911 | if (!BuildOpts.AddLifetime && !BuildOpts.AddScopes) |
1912 | return; |
1913 | |
1914 | if (BuildOpts.AddScopes) { |
1915 | autoCreateBlock(); |
1916 | appendScopeEnd(B: Block, VD: B.getFirstVarInScope(), S); |
1917 | } |
1918 | |
1919 | if (!BuildOpts.AddLifetime) |
1920 | return; |
1921 | |
1922 | // We need to perform the scope leaving in reverse order |
1923 | SmallVector<VarDecl *, 10> DeclsTrivial; |
1924 | DeclsTrivial.reserve(N: B.distance(L: E)); |
1925 | |
1926 | // Objects with trivial destructor ends their lifetime when their storage |
1927 | // is destroyed, for automatic variables, this happens when the end of the |
1928 | // scope is added. |
1929 | for (VarDecl* D : llvm::make_range(x: B, y: E)) |
1930 | if (!needsAutomaticDestruction(VD: D)) |
1931 | DeclsTrivial.push_back(Elt: D); |
1932 | |
1933 | if (DeclsTrivial.empty()) |
1934 | return; |
1935 | |
1936 | autoCreateBlock(); |
1937 | for (VarDecl *VD : llvm::reverse(C&: DeclsTrivial)) |
1938 | appendLifetimeEnds(B: Block, VD, S); |
1939 | } |
1940 | |
1941 | /// addScopeChangesHandling - appends information about destruction, lifetime |
1942 | /// and cfgScopeEnd for variables in the scope that was left by the jump, and |
1943 | /// appends cfgScopeBegin for all scopes that where entered. |
1944 | /// We insert the cfgScopeBegin at the end of the jump node, as depending on |
1945 | /// the sourceBlock, each goto, may enter different amount of scopes. |
1946 | void CFGBuilder::addScopeChangesHandling(LocalScope::const_iterator SrcPos, |
1947 | LocalScope::const_iterator DstPos, |
1948 | Stmt *S) { |
1949 | assert(Block && "Source block should be always crated" ); |
1950 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && |
1951 | !BuildOpts.AddScopes) { |
1952 | return; |
1953 | } |
1954 | |
1955 | if (SrcPos == DstPos) |
1956 | return; |
1957 | |
1958 | // Get common scope, the jump leaves all scopes [SrcPos, BasePos), and |
1959 | // enter all scopes between [DstPos, BasePos) |
1960 | LocalScope::const_iterator BasePos = SrcPos.shared_parent(L: DstPos); |
1961 | |
1962 | // Append scope begins for scopes entered by goto |
1963 | if (BuildOpts.AddScopes && !DstPos.inSameLocalScope(rhs: BasePos)) { |
1964 | for (LocalScope::const_iterator I = DstPos; I != BasePos; ++I) |
1965 | if (I.pointsToFirstDeclaredVar()) |
1966 | appendScopeBegin(B: Block, VD: *I, S); |
1967 | } |
1968 | |
1969 | // Append scopeEnds, destructor and lifetime with the terminator for |
1970 | // block left by goto. |
1971 | addAutomaticObjHandling(B: SrcPos, E: BasePos, S); |
1972 | } |
1973 | |
1974 | /// createScopeChangesHandlingBlock - Creates a block with cfgElements |
1975 | /// corresponding to changing the scope from the source scope of the GotoStmt, |
1976 | /// to destination scope. Add destructor, lifetime and cfgScopeEnd |
1977 | /// CFGElements to newly created CFGBlock, that will have the CFG terminator |
1978 | /// transferred. |
1979 | CFGBlock *CFGBuilder::createScopeChangesHandlingBlock( |
1980 | LocalScope::const_iterator SrcPos, CFGBlock *SrcBlk, |
1981 | LocalScope::const_iterator DstPos, CFGBlock *DstBlk) { |
1982 | if (SrcPos == DstPos) |
1983 | return DstBlk; |
1984 | |
1985 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && |
1986 | (!BuildOpts.AddScopes || SrcPos.inSameLocalScope(rhs: DstPos))) |
1987 | return DstBlk; |
1988 | |
1989 | // We will update CFBBuilder when creating new block, restore the |
1990 | // previous state at exit. |
1991 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
1992 | |
1993 | // Create a new block, and transfer terminator |
1994 | Block = createBlock(add_successor: false); |
1995 | Block->setTerminator(SrcBlk->getTerminator()); |
1996 | SrcBlk->setTerminator(CFGTerminator()); |
1997 | addSuccessor(B: Block, S: DstBlk); |
1998 | |
1999 | // Fill the created Block with the required elements. |
2000 | addScopeChangesHandling(SrcPos, DstPos, S: Block->getTerminatorStmt()); |
2001 | |
2002 | assert(Block && "There should be at least one scope changing Block" ); |
2003 | return Block; |
2004 | } |
2005 | |
2006 | /// addImplicitDtorsForDestructor - Add implicit destructors generated for |
2007 | /// base and member objects in destructor. |
2008 | void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) { |
2009 | assert(BuildOpts.AddImplicitDtors && |
2010 | "Can be called only when dtors should be added" ); |
2011 | const CXXRecordDecl *RD = DD->getParent(); |
2012 | |
2013 | // At the end destroy virtual base objects. |
2014 | for (const auto &VI : RD->vbases()) { |
2015 | // TODO: Add a VirtualBaseBranch to see if the most derived class |
2016 | // (which is different from the current class) is responsible for |
2017 | // destroying them. |
2018 | const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl(); |
2019 | if (CD && !CD->hasTrivialDestructor()) { |
2020 | autoCreateBlock(); |
2021 | appendBaseDtor(B: Block, BS: &VI); |
2022 | } |
2023 | } |
2024 | |
2025 | // Before virtual bases destroy direct base objects. |
2026 | for (const auto &BI : RD->bases()) { |
2027 | if (!BI.isVirtual()) { |
2028 | const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl(); |
2029 | if (CD && !CD->hasTrivialDestructor()) { |
2030 | autoCreateBlock(); |
2031 | appendBaseDtor(B: Block, BS: &BI); |
2032 | } |
2033 | } |
2034 | } |
2035 | |
2036 | // First destroy member objects. |
2037 | for (auto *FI : RD->fields()) { |
2038 | // Check for constant size array. Set type to array element type. |
2039 | QualType QT = FI->getType(); |
2040 | // It may be a multidimensional array. |
2041 | while (const ConstantArrayType *AT = Context->getAsConstantArrayType(T: QT)) { |
2042 | if (AT->isZeroSize()) |
2043 | break; |
2044 | QT = AT->getElementType(); |
2045 | } |
2046 | |
2047 | if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl()) |
2048 | if (!CD->hasTrivialDestructor()) { |
2049 | autoCreateBlock(); |
2050 | appendMemberDtor(B: Block, FD: FI); |
2051 | } |
2052 | } |
2053 | } |
2054 | |
2055 | /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either |
2056 | /// way return valid LocalScope object. |
2057 | LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) { |
2058 | if (Scope) |
2059 | return Scope; |
2060 | llvm::BumpPtrAllocator &alloc = cfg->getAllocator(); |
2061 | return new (alloc) LocalScope(BumpVectorContext(alloc), ScopePos); |
2062 | } |
2063 | |
2064 | /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement |
2065 | /// that should create implicit scope (e.g. if/else substatements). |
2066 | void CFGBuilder::addLocalScopeForStmt(Stmt *S) { |
2067 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && |
2068 | !BuildOpts.AddScopes) |
2069 | return; |
2070 | |
2071 | LocalScope *Scope = nullptr; |
2072 | |
2073 | // For compound statement we will be creating explicit scope. |
2074 | if (CompoundStmt *CS = dyn_cast<CompoundStmt>(Val: S)) { |
2075 | for (auto *BI : CS->body()) { |
2076 | Stmt *SI = BI->stripLabelLikeStatements(); |
2077 | if (DeclStmt *DS = dyn_cast<DeclStmt>(Val: SI)) |
2078 | Scope = addLocalScopeForDeclStmt(DS, Scope); |
2079 | } |
2080 | return; |
2081 | } |
2082 | |
2083 | // For any other statement scope will be implicit and as such will be |
2084 | // interesting only for DeclStmt. |
2085 | if (DeclStmt *DS = dyn_cast<DeclStmt>(Val: S->stripLabelLikeStatements())) |
2086 | addLocalScopeForDeclStmt(DS); |
2087 | } |
2088 | |
2089 | /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will |
2090 | /// reuse Scope if not NULL. |
2091 | LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS, |
2092 | LocalScope* Scope) { |
2093 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && |
2094 | !BuildOpts.AddScopes) |
2095 | return Scope; |
2096 | |
2097 | for (auto *DI : DS->decls()) |
2098 | if (VarDecl *VD = dyn_cast<VarDecl>(Val: DI)) |
2099 | Scope = addLocalScopeForVarDecl(VD, Scope); |
2100 | return Scope; |
2101 | } |
2102 | |
2103 | bool CFGBuilder::needsAutomaticDestruction(const VarDecl *VD) const { |
2104 | return !hasTrivialDestructor(VD) || VD->hasAttr<CleanupAttr>(); |
2105 | } |
2106 | |
2107 | bool CFGBuilder::hasTrivialDestructor(const VarDecl *VD) const { |
2108 | // Check for const references bound to temporary. Set type to pointee. |
2109 | QualType QT = VD->getType(); |
2110 | if (QT->isReferenceType()) { |
2111 | // Attempt to determine whether this declaration lifetime-extends a |
2112 | // temporary. |
2113 | // |
2114 | // FIXME: This is incorrect. Non-reference declarations can lifetime-extend |
2115 | // temporaries, and a single declaration can extend multiple temporaries. |
2116 | // We should look at the storage duration on each nested |
2117 | // MaterializeTemporaryExpr instead. |
2118 | |
2119 | const Expr *Init = VD->getInit(); |
2120 | if (!Init) { |
2121 | // Probably an exception catch-by-reference variable. |
2122 | // FIXME: It doesn't really mean that the object has a trivial destructor. |
2123 | // Also are there other cases? |
2124 | return true; |
2125 | } |
2126 | |
2127 | // Lifetime-extending a temporary? |
2128 | bool FoundMTE = false; |
2129 | QT = getReferenceInitTemporaryType(Init, FoundMTE: &FoundMTE); |
2130 | if (!FoundMTE) |
2131 | return true; |
2132 | } |
2133 | |
2134 | // Check for constant size array. Set type to array element type. |
2135 | while (const ConstantArrayType *AT = Context->getAsConstantArrayType(T: QT)) { |
2136 | if (AT->isZeroSize()) |
2137 | return true; |
2138 | QT = AT->getElementType(); |
2139 | } |
2140 | |
2141 | // Check if type is a C++ class with non-trivial destructor. |
2142 | if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl()) |
2143 | return !CD->hasDefinition() || CD->hasTrivialDestructor(); |
2144 | return true; |
2145 | } |
2146 | |
2147 | /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will |
2148 | /// create add scope for automatic objects and temporary objects bound to |
2149 | /// const reference. Will reuse Scope if not NULL. |
2150 | LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD, |
2151 | LocalScope* Scope) { |
2152 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && |
2153 | !BuildOpts.AddScopes) |
2154 | return Scope; |
2155 | |
2156 | // Check if variable is local. |
2157 | if (!VD->hasLocalStorage()) |
2158 | return Scope; |
2159 | |
2160 | if (!BuildOpts.AddLifetime && !BuildOpts.AddScopes && |
2161 | !needsAutomaticDestruction(VD)) { |
2162 | assert(BuildOpts.AddImplicitDtors); |
2163 | return Scope; |
2164 | } |
2165 | |
2166 | // Add the variable to scope |
2167 | Scope = createOrReuseLocalScope(Scope); |
2168 | Scope->addVar(VD); |
2169 | ScopePos = Scope->begin(); |
2170 | return Scope; |
2171 | } |
2172 | |
2173 | /// addLocalScopeAndDtors - For given statement add local scope for it and |
2174 | /// add destructors that will cleanup the scope. Will reuse Scope if not NULL. |
2175 | void CFGBuilder::addLocalScopeAndDtors(Stmt *S) { |
2176 | LocalScope::const_iterator scopeBeginPos = ScopePos; |
2177 | addLocalScopeForStmt(S); |
2178 | addAutomaticObjHandling(B: ScopePos, E: scopeBeginPos, S); |
2179 | } |
2180 | |
2181 | /// Visit - Walk the subtree of a statement and add extra |
2182 | /// blocks for ternary operators, &&, and ||. We also process "," and |
2183 | /// DeclStmts (which may contain nested control-flow). |
2184 | CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc, |
2185 | bool ExternallyDestructed) { |
2186 | if (!S) { |
2187 | badCFG = true; |
2188 | return nullptr; |
2189 | } |
2190 | |
2191 | if (Expr *E = dyn_cast<Expr>(Val: S)) |
2192 | S = E->IgnoreParens(); |
2193 | |
2194 | if (Context->getLangOpts().OpenMP) |
2195 | if (auto *D = dyn_cast<OMPExecutableDirective>(Val: S)) |
2196 | return VisitOMPExecutableDirective(D, asc); |
2197 | |
2198 | switch (S->getStmtClass()) { |
2199 | default: |
2200 | return VisitStmt(S, asc); |
2201 | |
2202 | case Stmt::ImplicitValueInitExprClass: |
2203 | if (BuildOpts.OmitImplicitValueInitializers) |
2204 | return Block; |
2205 | return VisitStmt(S, asc); |
2206 | |
2207 | case Stmt::InitListExprClass: |
2208 | return VisitInitListExpr(ILE: cast<InitListExpr>(Val: S), asc); |
2209 | |
2210 | case Stmt::AttributedStmtClass: |
2211 | return VisitAttributedStmt(A: cast<AttributedStmt>(Val: S), asc); |
2212 | |
2213 | case Stmt::AddrLabelExprClass: |
2214 | return VisitAddrLabelExpr(A: cast<AddrLabelExpr>(Val: S), asc); |
2215 | |
2216 | case Stmt::BinaryConditionalOperatorClass: |
2217 | return VisitConditionalOperator(C: cast<BinaryConditionalOperator>(Val: S), asc); |
2218 | |
2219 | case Stmt::BinaryOperatorClass: |
2220 | return VisitBinaryOperator(B: cast<BinaryOperator>(Val: S), asc); |
2221 | |
2222 | case Stmt::BlockExprClass: |
2223 | return VisitBlockExpr(E: cast<BlockExpr>(Val: S), asc); |
2224 | |
2225 | case Stmt::BreakStmtClass: |
2226 | return VisitBreakStmt(B: cast<BreakStmt>(Val: S)); |
2227 | |
2228 | case Stmt::CallExprClass: |
2229 | case Stmt::CXXOperatorCallExprClass: |
2230 | case Stmt::CXXMemberCallExprClass: |
2231 | case Stmt::UserDefinedLiteralClass: |
2232 | return VisitCallExpr(C: cast<CallExpr>(Val: S), asc); |
2233 | |
2234 | case Stmt::CaseStmtClass: |
2235 | return VisitCaseStmt(C: cast<CaseStmt>(Val: S)); |
2236 | |
2237 | case Stmt::ChooseExprClass: |
2238 | return VisitChooseExpr(C: cast<ChooseExpr>(Val: S), asc); |
2239 | |
2240 | case Stmt::CompoundStmtClass: |
2241 | return VisitCompoundStmt(C: cast<CompoundStmt>(Val: S), ExternallyDestructed); |
2242 | |
2243 | case Stmt::ConditionalOperatorClass: |
2244 | return VisitConditionalOperator(C: cast<ConditionalOperator>(Val: S), asc); |
2245 | |
2246 | case Stmt::ContinueStmtClass: |
2247 | return VisitContinueStmt(C: cast<ContinueStmt>(Val: S)); |
2248 | |
2249 | case Stmt::CXXCatchStmtClass: |
2250 | return VisitCXXCatchStmt(S: cast<CXXCatchStmt>(Val: S)); |
2251 | |
2252 | case Stmt::ExprWithCleanupsClass: |
2253 | return VisitExprWithCleanups(E: cast<ExprWithCleanups>(Val: S), |
2254 | asc, ExternallyDestructed); |
2255 | |
2256 | case Stmt::CXXDefaultArgExprClass: |
2257 | case Stmt::CXXDefaultInitExprClass: |
2258 | // FIXME: The expression inside a CXXDefaultArgExpr is owned by the |
2259 | // called function's declaration, not by the caller. If we simply add |
2260 | // this expression to the CFG, we could end up with the same Expr |
2261 | // appearing multiple times (PR13385). |
2262 | // |
2263 | // It's likewise possible for multiple CXXDefaultInitExprs for the same |
2264 | // expression to be used in the same function (through aggregate |
2265 | // initialization). |
2266 | return VisitStmt(S, asc); |
2267 | |
2268 | case Stmt::CXXBindTemporaryExprClass: |
2269 | return VisitCXXBindTemporaryExpr(E: cast<CXXBindTemporaryExpr>(Val: S), asc); |
2270 | |
2271 | case Stmt::CXXConstructExprClass: |
2272 | return VisitCXXConstructExpr(C: cast<CXXConstructExpr>(Val: S), asc); |
2273 | |
2274 | case Stmt::CXXNewExprClass: |
2275 | return VisitCXXNewExpr(DE: cast<CXXNewExpr>(Val: S), asc); |
2276 | |
2277 | case Stmt::CXXDeleteExprClass: |
2278 | return VisitCXXDeleteExpr(DE: cast<CXXDeleteExpr>(Val: S), asc); |
2279 | |
2280 | case Stmt::CXXFunctionalCastExprClass: |
2281 | return VisitCXXFunctionalCastExpr(E: cast<CXXFunctionalCastExpr>(Val: S), asc); |
2282 | |
2283 | case Stmt::CXXTemporaryObjectExprClass: |
2284 | return VisitCXXTemporaryObjectExpr(C: cast<CXXTemporaryObjectExpr>(Val: S), asc); |
2285 | |
2286 | case Stmt::CXXThrowExprClass: |
2287 | return VisitCXXThrowExpr(T: cast<CXXThrowExpr>(Val: S)); |
2288 | |
2289 | case Stmt::CXXTryStmtClass: |
2290 | return VisitCXXTryStmt(S: cast<CXXTryStmt>(Val: S)); |
2291 | |
2292 | case Stmt::CXXTypeidExprClass: |
2293 | return VisitCXXTypeidExpr(S: cast<CXXTypeidExpr>(Val: S), asc); |
2294 | |
2295 | case Stmt::CXXForRangeStmtClass: |
2296 | return VisitCXXForRangeStmt(S: cast<CXXForRangeStmt>(Val: S)); |
2297 | |
2298 | case Stmt::DeclStmtClass: |
2299 | return VisitDeclStmt(DS: cast<DeclStmt>(Val: S)); |
2300 | |
2301 | case Stmt::DefaultStmtClass: |
2302 | return VisitDefaultStmt(D: cast<DefaultStmt>(Val: S)); |
2303 | |
2304 | case Stmt::DoStmtClass: |
2305 | return VisitDoStmt(D: cast<DoStmt>(Val: S)); |
2306 | |
2307 | case Stmt::ForStmtClass: |
2308 | return VisitForStmt(F: cast<ForStmt>(Val: S)); |
2309 | |
2310 | case Stmt::GotoStmtClass: |
2311 | return VisitGotoStmt(G: cast<GotoStmt>(Val: S)); |
2312 | |
2313 | case Stmt::GCCAsmStmtClass: |
2314 | return VisitGCCAsmStmt(G: cast<GCCAsmStmt>(Val: S), asc); |
2315 | |
2316 | case Stmt::IfStmtClass: |
2317 | return VisitIfStmt(I: cast<IfStmt>(Val: S)); |
2318 | |
2319 | case Stmt::ImplicitCastExprClass: |
2320 | return VisitImplicitCastExpr(E: cast<ImplicitCastExpr>(Val: S), asc); |
2321 | |
2322 | case Stmt::ConstantExprClass: |
2323 | return VisitConstantExpr(E: cast<ConstantExpr>(Val: S), asc); |
2324 | |
2325 | case Stmt::IndirectGotoStmtClass: |
2326 | return VisitIndirectGotoStmt(I: cast<IndirectGotoStmt>(Val: S)); |
2327 | |
2328 | case Stmt::LabelStmtClass: |
2329 | return VisitLabelStmt(L: cast<LabelStmt>(Val: S)); |
2330 | |
2331 | case Stmt::LambdaExprClass: |
2332 | return VisitLambdaExpr(E: cast<LambdaExpr>(Val: S), asc); |
2333 | |
2334 | case Stmt::MaterializeTemporaryExprClass: |
2335 | return VisitMaterializeTemporaryExpr(MTE: cast<MaterializeTemporaryExpr>(Val: S), |
2336 | asc); |
2337 | |
2338 | case Stmt::MemberExprClass: |
2339 | return VisitMemberExpr(M: cast<MemberExpr>(Val: S), asc); |
2340 | |
2341 | case Stmt::NullStmtClass: |
2342 | return Block; |
2343 | |
2344 | case Stmt::ObjCAtCatchStmtClass: |
2345 | return VisitObjCAtCatchStmt(S: cast<ObjCAtCatchStmt>(Val: S)); |
2346 | |
2347 | case Stmt::ObjCAutoreleasePoolStmtClass: |
2348 | return VisitObjCAutoreleasePoolStmt(S: cast<ObjCAutoreleasePoolStmt>(Val: S)); |
2349 | |
2350 | case Stmt::ObjCAtSynchronizedStmtClass: |
2351 | return VisitObjCAtSynchronizedStmt(S: cast<ObjCAtSynchronizedStmt>(Val: S)); |
2352 | |
2353 | case Stmt::ObjCAtThrowStmtClass: |
2354 | return VisitObjCAtThrowStmt(S: cast<ObjCAtThrowStmt>(Val: S)); |
2355 | |
2356 | case Stmt::ObjCAtTryStmtClass: |
2357 | return VisitObjCAtTryStmt(S: cast<ObjCAtTryStmt>(Val: S)); |
2358 | |
2359 | case Stmt::ObjCForCollectionStmtClass: |
2360 | return VisitObjCForCollectionStmt(S: cast<ObjCForCollectionStmt>(Val: S)); |
2361 | |
2362 | case Stmt::ObjCMessageExprClass: |
2363 | return VisitObjCMessageExpr(E: cast<ObjCMessageExpr>(Val: S), asc); |
2364 | |
2365 | case Stmt::OpaqueValueExprClass: |
2366 | return Block; |
2367 | |
2368 | case Stmt::PseudoObjectExprClass: |
2369 | return VisitPseudoObjectExpr(E: cast<PseudoObjectExpr>(Val: S)); |
2370 | |
2371 | case Stmt::ReturnStmtClass: |
2372 | case Stmt::CoreturnStmtClass: |
2373 | return VisitReturnStmt(S); |
2374 | |
2375 | case Stmt::CoyieldExprClass: |
2376 | case Stmt::CoawaitExprClass: |
2377 | return VisitCoroutineSuspendExpr(S: cast<CoroutineSuspendExpr>(Val: S), asc); |
2378 | |
2379 | case Stmt::SEHExceptStmtClass: |
2380 | return VisitSEHExceptStmt(S: cast<SEHExceptStmt>(Val: S)); |
2381 | |
2382 | case Stmt::SEHFinallyStmtClass: |
2383 | return VisitSEHFinallyStmt(S: cast<SEHFinallyStmt>(Val: S)); |
2384 | |
2385 | case Stmt::SEHLeaveStmtClass: |
2386 | return VisitSEHLeaveStmt(S: cast<SEHLeaveStmt>(Val: S)); |
2387 | |
2388 | case Stmt::SEHTryStmtClass: |
2389 | return VisitSEHTryStmt(S: cast<SEHTryStmt>(Val: S)); |
2390 | |
2391 | case Stmt::UnaryExprOrTypeTraitExprClass: |
2392 | return VisitUnaryExprOrTypeTraitExpr(E: cast<UnaryExprOrTypeTraitExpr>(Val: S), |
2393 | asc); |
2394 | |
2395 | case Stmt::StmtExprClass: |
2396 | return VisitStmtExpr(S: cast<StmtExpr>(Val: S), asc); |
2397 | |
2398 | case Stmt::SwitchStmtClass: |
2399 | return VisitSwitchStmt(S: cast<SwitchStmt>(Val: S)); |
2400 | |
2401 | case Stmt::UnaryOperatorClass: |
2402 | return VisitUnaryOperator(U: cast<UnaryOperator>(Val: S), asc); |
2403 | |
2404 | case Stmt::WhileStmtClass: |
2405 | return VisitWhileStmt(W: cast<WhileStmt>(Val: S)); |
2406 | |
2407 | case Stmt::ArrayInitLoopExprClass: |
2408 | return VisitArrayInitLoopExpr(A: cast<ArrayInitLoopExpr>(Val: S), asc); |
2409 | } |
2410 | } |
2411 | |
2412 | CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) { |
2413 | if (asc.alwaysAdd(builder&: *this, stmt: S)) { |
2414 | autoCreateBlock(); |
2415 | appendStmt(B: Block, S); |
2416 | } |
2417 | |
2418 | return VisitChildren(S); |
2419 | } |
2420 | |
2421 | /// VisitChildren - Visit the children of a Stmt. |
2422 | CFGBlock *CFGBuilder::VisitChildren(Stmt *S) { |
2423 | CFGBlock *B = Block; |
2424 | |
2425 | // Visit the children in their reverse order so that they appear in |
2426 | // left-to-right (natural) order in the CFG. |
2427 | reverse_children RChildren(S); |
2428 | for (Stmt *Child : RChildren) { |
2429 | if (Child) |
2430 | if (CFGBlock *R = Visit(S: Child)) |
2431 | B = R; |
2432 | } |
2433 | return B; |
2434 | } |
2435 | |
2436 | CFGBlock *CFGBuilder::VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc) { |
2437 | if (asc.alwaysAdd(builder&: *this, stmt: ILE)) { |
2438 | autoCreateBlock(); |
2439 | appendStmt(B: Block, S: ILE); |
2440 | } |
2441 | CFGBlock *B = Block; |
2442 | |
2443 | reverse_children RChildren(ILE); |
2444 | for (Stmt *Child : RChildren) { |
2445 | if (!Child) |
2446 | continue; |
2447 | if (CFGBlock *R = Visit(S: Child)) |
2448 | B = R; |
2449 | if (BuildOpts.AddCXXDefaultInitExprInAggregates) { |
2450 | if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Val: Child)) |
2451 | if (Stmt *Child = DIE->getExpr()) |
2452 | if (CFGBlock *R = Visit(S: Child)) |
2453 | B = R; |
2454 | } |
2455 | } |
2456 | return B; |
2457 | } |
2458 | |
2459 | CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A, |
2460 | AddStmtChoice asc) { |
2461 | AddressTakenLabels.insert(X: A->getLabel()); |
2462 | |
2463 | if (asc.alwaysAdd(builder&: *this, stmt: A)) { |
2464 | autoCreateBlock(); |
2465 | appendStmt(B: Block, S: A); |
2466 | } |
2467 | |
2468 | return Block; |
2469 | } |
2470 | |
2471 | static bool isFallthroughStatement(const AttributedStmt *A) { |
2472 | bool isFallthrough = hasSpecificAttr<FallThroughAttr>(container: A->getAttrs()); |
2473 | assert((!isFallthrough || isa<NullStmt>(A->getSubStmt())) && |
2474 | "expected fallthrough not to have children" ); |
2475 | return isFallthrough; |
2476 | } |
2477 | |
2478 | CFGBlock *CFGBuilder::VisitAttributedStmt(AttributedStmt *A, |
2479 | AddStmtChoice asc) { |
2480 | // AttributedStmts for [[likely]] can have arbitrary statements as children, |
2481 | // and the current visitation order here would add the AttributedStmts |
2482 | // for [[likely]] after the child nodes, which is undesirable: For example, |
2483 | // if the child contains an unconditional return, the [[likely]] would be |
2484 | // considered unreachable. |
2485 | // So only add the AttributedStmt for FallThrough, which has CFG effects and |
2486 | // also no children, and omit the others. None of the other current StmtAttrs |
2487 | // have semantic meaning for the CFG. |
2488 | if (isFallthroughStatement(A) && asc.alwaysAdd(builder&: *this, stmt: A)) { |
2489 | autoCreateBlock(); |
2490 | appendStmt(B: Block, S: A); |
2491 | } |
2492 | |
2493 | return VisitChildren(S: A); |
2494 | } |
2495 | |
2496 | CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc) { |
2497 | if (asc.alwaysAdd(builder&: *this, stmt: U)) { |
2498 | autoCreateBlock(); |
2499 | appendStmt(B: Block, S: U); |
2500 | } |
2501 | |
2502 | if (U->getOpcode() == UO_LNot) |
2503 | tryEvaluateBool(S: U->getSubExpr()->IgnoreParens()); |
2504 | |
2505 | return Visit(S: U->getSubExpr(), asc: AddStmtChoice()); |
2506 | } |
2507 | |
2508 | CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) { |
2509 | CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); |
2510 | appendStmt(B: ConfluenceBlock, S: B); |
2511 | |
2512 | if (badCFG) |
2513 | return nullptr; |
2514 | |
2515 | return VisitLogicalOperator(B, Term: nullptr, TrueBlock: ConfluenceBlock, |
2516 | FalseBlock: ConfluenceBlock).first; |
2517 | } |
2518 | |
2519 | std::pair<CFGBlock*, CFGBlock*> |
2520 | CFGBuilder::VisitLogicalOperator(BinaryOperator *B, |
2521 | Stmt *Term, |
2522 | CFGBlock *TrueBlock, |
2523 | CFGBlock *FalseBlock) { |
2524 | // Introspect the RHS. If it is a nested logical operation, we recursively |
2525 | // build the CFG using this function. Otherwise, resort to default |
2526 | // CFG construction behavior. |
2527 | Expr *RHS = B->getRHS()->IgnoreParens(); |
2528 | CFGBlock *RHSBlock, *ExitBlock; |
2529 | |
2530 | do { |
2531 | if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(Val: RHS)) |
2532 | if (B_RHS->isLogicalOp()) { |
2533 | std::tie(args&: RHSBlock, args&: ExitBlock) = |
2534 | VisitLogicalOperator(B: B_RHS, Term, TrueBlock, FalseBlock); |
2535 | break; |
2536 | } |
2537 | |
2538 | // The RHS is not a nested logical operation. Don't push the terminator |
2539 | // down further, but instead visit RHS and construct the respective |
2540 | // pieces of the CFG, and link up the RHSBlock with the terminator |
2541 | // we have been provided. |
2542 | ExitBlock = RHSBlock = createBlock(add_successor: false); |
2543 | |
2544 | // Even though KnownVal is only used in the else branch of the next |
2545 | // conditional, tryEvaluateBool performs additional checking on the |
2546 | // Expr, so it should be called unconditionally. |
2547 | TryResult KnownVal = tryEvaluateBool(S: RHS); |
2548 | if (!KnownVal.isKnown()) |
2549 | KnownVal = tryEvaluateBool(S: B); |
2550 | |
2551 | if (!Term) { |
2552 | assert(TrueBlock == FalseBlock); |
2553 | addSuccessor(B: RHSBlock, S: TrueBlock); |
2554 | } |
2555 | else { |
2556 | RHSBlock->setTerminator(Term); |
2557 | addSuccessor(B: RHSBlock, S: TrueBlock, IsReachable: !KnownVal.isFalse()); |
2558 | addSuccessor(B: RHSBlock, S: FalseBlock, IsReachable: !KnownVal.isTrue()); |
2559 | } |
2560 | |
2561 | Block = RHSBlock; |
2562 | RHSBlock = addStmt(S: RHS); |
2563 | } |
2564 | while (false); |
2565 | |
2566 | if (badCFG) |
2567 | return std::make_pair(x: nullptr, y: nullptr); |
2568 | |
2569 | // Generate the blocks for evaluating the LHS. |
2570 | Expr *LHS = B->getLHS()->IgnoreParens(); |
2571 | |
2572 | if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(Val: LHS)) |
2573 | if (B_LHS->isLogicalOp()) { |
2574 | if (B->getOpcode() == BO_LOr) |
2575 | FalseBlock = RHSBlock; |
2576 | else |
2577 | TrueBlock = RHSBlock; |
2578 | |
2579 | // For the LHS, treat 'B' as the terminator that we want to sink |
2580 | // into the nested branch. The RHS always gets the top-most |
2581 | // terminator. |
2582 | return VisitLogicalOperator(B: B_LHS, Term: B, TrueBlock, FalseBlock); |
2583 | } |
2584 | |
2585 | // Create the block evaluating the LHS. |
2586 | // This contains the '&&' or '||' as the terminator. |
2587 | CFGBlock *LHSBlock = createBlock(add_successor: false); |
2588 | LHSBlock->setTerminator(B); |
2589 | |
2590 | Block = LHSBlock; |
2591 | CFGBlock *EntryLHSBlock = addStmt(S: LHS); |
2592 | |
2593 | if (badCFG) |
2594 | return std::make_pair(x: nullptr, y: nullptr); |
2595 | |
2596 | // See if this is a known constant. |
2597 | TryResult KnownVal = tryEvaluateBool(S: LHS); |
2598 | |
2599 | // Now link the LHSBlock with RHSBlock. |
2600 | if (B->getOpcode() == BO_LOr) { |
2601 | addSuccessor(B: LHSBlock, S: TrueBlock, IsReachable: !KnownVal.isFalse()); |
2602 | addSuccessor(B: LHSBlock, S: RHSBlock, IsReachable: !KnownVal.isTrue()); |
2603 | } else { |
2604 | assert(B->getOpcode() == BO_LAnd); |
2605 | addSuccessor(B: LHSBlock, S: RHSBlock, IsReachable: !KnownVal.isFalse()); |
2606 | addSuccessor(B: LHSBlock, S: FalseBlock, IsReachable: !KnownVal.isTrue()); |
2607 | } |
2608 | |
2609 | return std::make_pair(x&: EntryLHSBlock, y&: ExitBlock); |
2610 | } |
2611 | |
2612 | CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B, |
2613 | AddStmtChoice asc) { |
2614 | // && or || |
2615 | if (B->isLogicalOp()) |
2616 | return VisitLogicalOperator(B); |
2617 | |
2618 | if (B->getOpcode() == BO_Comma) { // , |
2619 | autoCreateBlock(); |
2620 | appendStmt(B: Block, S: B); |
2621 | addStmt(S: B->getRHS()); |
2622 | return addStmt(S: B->getLHS()); |
2623 | } |
2624 | |
2625 | if (B->isAssignmentOp()) { |
2626 | if (asc.alwaysAdd(builder&: *this, stmt: B)) { |
2627 | autoCreateBlock(); |
2628 | appendStmt(B: Block, S: B); |
2629 | } |
2630 | Visit(S: B->getLHS()); |
2631 | return Visit(S: B->getRHS()); |
2632 | } |
2633 | |
2634 | if (asc.alwaysAdd(builder&: *this, stmt: B)) { |
2635 | autoCreateBlock(); |
2636 | appendStmt(B: Block, S: B); |
2637 | } |
2638 | |
2639 | if (B->isEqualityOp() || B->isRelationalOp()) |
2640 | tryEvaluateBool(S: B); |
2641 | |
2642 | CFGBlock *RBlock = Visit(S: B->getRHS()); |
2643 | CFGBlock *LBlock = Visit(S: B->getLHS()); |
2644 | // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr |
2645 | // containing a DoStmt, and the LHS doesn't create a new block, then we should |
2646 | // return RBlock. Otherwise we'll incorrectly return NULL. |
2647 | return (LBlock ? LBlock : RBlock); |
2648 | } |
2649 | |
2650 | CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) { |
2651 | if (asc.alwaysAdd(builder&: *this, stmt: E)) { |
2652 | autoCreateBlock(); |
2653 | appendStmt(B: Block, S: E); |
2654 | } |
2655 | return Block; |
2656 | } |
2657 | |
2658 | CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) { |
2659 | // "break" is a control-flow statement. Thus we stop processing the current |
2660 | // block. |
2661 | if (badCFG) |
2662 | return nullptr; |
2663 | |
2664 | // Now create a new block that ends with the break statement. |
2665 | Block = createBlock(add_successor: false); |
2666 | Block->setTerminator(B); |
2667 | |
2668 | // If there is no target for the break, then we are looking at an incomplete |
2669 | // AST. This means that the CFG cannot be constructed. |
2670 | if (BreakJumpTarget.block) { |
2671 | addAutomaticObjHandling(B: ScopePos, E: BreakJumpTarget.scopePosition, S: B); |
2672 | addSuccessor(B: Block, S: BreakJumpTarget.block); |
2673 | } else |
2674 | badCFG = true; |
2675 | |
2676 | return Block; |
2677 | } |
2678 | |
2679 | static bool CanThrow(Expr *E, ASTContext &Ctx) { |
2680 | QualType Ty = E->getType(); |
2681 | if (Ty->isFunctionPointerType() || Ty->isBlockPointerType()) |
2682 | Ty = Ty->getPointeeType(); |
2683 | |
2684 | const FunctionType *FT = Ty->getAs<FunctionType>(); |
2685 | if (FT) { |
2686 | if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(Val: FT)) |
2687 | if (!isUnresolvedExceptionSpec(ESpecType: Proto->getExceptionSpecType()) && |
2688 | Proto->isNothrow()) |
2689 | return false; |
2690 | } |
2691 | return true; |
2692 | } |
2693 | |
2694 | CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) { |
2695 | // Compute the callee type. |
2696 | QualType calleeType = C->getCallee()->getType(); |
2697 | if (calleeType == Context->BoundMemberTy) { |
2698 | QualType boundType = Expr::findBoundMemberType(expr: C->getCallee()); |
2699 | |
2700 | // We should only get a null bound type if processing a dependent |
2701 | // CFG. Recover by assuming nothing. |
2702 | if (!boundType.isNull()) calleeType = boundType; |
2703 | } |
2704 | |
2705 | // If this is a call to a no-return function, this stops the block here. |
2706 | bool NoReturn = getFunctionExtInfo(t: *calleeType).getNoReturn(); |
2707 | |
2708 | bool AddEHEdge = false; |
2709 | |
2710 | // Languages without exceptions are assumed to not throw. |
2711 | if (Context->getLangOpts().Exceptions) { |
2712 | if (BuildOpts.AddEHEdges) |
2713 | AddEHEdge = true; |
2714 | } |
2715 | |
2716 | // If this is a call to a builtin function, it might not actually evaluate |
2717 | // its arguments. Don't add them to the CFG if this is the case. |
2718 | bool OmitArguments = false; |
2719 | |
2720 | if (FunctionDecl *FD = C->getDirectCallee()) { |
2721 | // TODO: Support construction contexts for variadic function arguments. |
2722 | // These are a bit problematic and not very useful because passing |
2723 | // C++ objects as C-style variadic arguments doesn't work in general |
2724 | // (see [expr.call]). |
2725 | if (!FD->isVariadic()) |
2726 | findConstructionContextsForArguments(E: C); |
2727 | |
2728 | if (FD->isNoReturn() || C->isBuiltinAssumeFalse(Ctx: *Context)) |
2729 | NoReturn = true; |
2730 | if (FD->hasAttr<NoThrowAttr>()) |
2731 | AddEHEdge = false; |
2732 | if (FD->getBuiltinID() == Builtin::BI__builtin_object_size || |
2733 | FD->getBuiltinID() == Builtin::BI__builtin_dynamic_object_size) |
2734 | OmitArguments = true; |
2735 | } |
2736 | |
2737 | if (!CanThrow(E: C->getCallee(), Ctx&: *Context)) |
2738 | AddEHEdge = false; |
2739 | |
2740 | if (OmitArguments) { |
2741 | assert(!NoReturn && "noreturn calls with unevaluated args not implemented" ); |
2742 | assert(!AddEHEdge && "EH calls with unevaluated args not implemented" ); |
2743 | autoCreateBlock(); |
2744 | appendStmt(B: Block, S: C); |
2745 | return Visit(S: C->getCallee()); |
2746 | } |
2747 | |
2748 | if (!NoReturn && !AddEHEdge) { |
2749 | autoCreateBlock(); |
2750 | appendCall(B: Block, CE: C); |
2751 | |
2752 | return VisitChildren(S: C); |
2753 | } |
2754 | |
2755 | if (Block) { |
2756 | Succ = Block; |
2757 | if (badCFG) |
2758 | return nullptr; |
2759 | } |
2760 | |
2761 | if (NoReturn) |
2762 | Block = createNoReturnBlock(); |
2763 | else |
2764 | Block = createBlock(); |
2765 | |
2766 | appendCall(B: Block, CE: C); |
2767 | |
2768 | if (AddEHEdge) { |
2769 | // Add exceptional edges. |
2770 | if (TryTerminatedBlock) |
2771 | addSuccessor(B: Block, S: TryTerminatedBlock); |
2772 | else |
2773 | addSuccessor(B: Block, S: &cfg->getExit()); |
2774 | } |
2775 | |
2776 | return VisitChildren(S: C); |
2777 | } |
2778 | |
2779 | CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C, |
2780 | AddStmtChoice asc) { |
2781 | CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); |
2782 | appendStmt(B: ConfluenceBlock, S: C); |
2783 | if (badCFG) |
2784 | return nullptr; |
2785 | |
2786 | AddStmtChoice alwaysAdd = asc.withAlwaysAdd(alwaysAdd: true); |
2787 | Succ = ConfluenceBlock; |
2788 | Block = nullptr; |
2789 | CFGBlock *LHSBlock = Visit(S: C->getLHS(), asc: alwaysAdd); |
2790 | if (badCFG) |
2791 | return nullptr; |
2792 | |
2793 | Succ = ConfluenceBlock; |
2794 | Block = nullptr; |
2795 | CFGBlock *RHSBlock = Visit(S: C->getRHS(), asc: alwaysAdd); |
2796 | if (badCFG) |
2797 | return nullptr; |
2798 | |
2799 | Block = createBlock(add_successor: false); |
2800 | // See if this is a known constant. |
2801 | const TryResult& KnownVal = tryEvaluateBool(S: C->getCond()); |
2802 | addSuccessor(B: Block, S: KnownVal.isFalse() ? nullptr : LHSBlock); |
2803 | addSuccessor(B: Block, S: KnownVal.isTrue() ? nullptr : RHSBlock); |
2804 | Block->setTerminator(C); |
2805 | return addStmt(S: C->getCond()); |
2806 | } |
2807 | |
2808 | CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C, |
2809 | bool ExternallyDestructed) { |
2810 | LocalScope::const_iterator scopeBeginPos = ScopePos; |
2811 | addLocalScopeForStmt(S: C); |
2812 | |
2813 | if (!C->body_empty() && !isa<ReturnStmt>(Val: *C->body_rbegin())) { |
2814 | // If the body ends with a ReturnStmt, the dtors will be added in |
2815 | // VisitReturnStmt. |
2816 | addAutomaticObjHandling(B: ScopePos, E: scopeBeginPos, S: C); |
2817 | } |
2818 | |
2819 | CFGBlock *LastBlock = Block; |
2820 | |
2821 | for (Stmt *S : llvm::reverse(C: C->body())) { |
2822 | // If we hit a segment of code just containing ';' (NullStmts), we can |
2823 | // get a null block back. In such cases, just use the LastBlock |
2824 | CFGBlock *newBlock = Visit(S, asc: AddStmtChoice::AlwaysAdd, |
2825 | ExternallyDestructed); |
2826 | |
2827 | if (newBlock) |
2828 | LastBlock = newBlock; |
2829 | |
2830 | if (badCFG) |
2831 | return nullptr; |
2832 | |
2833 | ExternallyDestructed = false; |
2834 | } |
2835 | |
2836 | return LastBlock; |
2837 | } |
2838 | |
2839 | CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C, |
2840 | AddStmtChoice asc) { |
2841 | const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(Val: C); |
2842 | const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr); |
2843 | |
2844 | // Create the confluence block that will "merge" the results of the ternary |
2845 | // expression. |
2846 | CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); |
2847 | appendStmt(B: ConfluenceBlock, S: C); |
2848 | if (badCFG) |
2849 | return nullptr; |
2850 | |
2851 | AddStmtChoice alwaysAdd = asc.withAlwaysAdd(alwaysAdd: true); |
2852 | |
2853 | // Create a block for the LHS expression if there is an LHS expression. A |
2854 | // GCC extension allows LHS to be NULL, causing the condition to be the |
2855 | // value that is returned instead. |
2856 | // e.g: x ?: y is shorthand for: x ? x : y; |
2857 | Succ = ConfluenceBlock; |
2858 | Block = nullptr; |
2859 | CFGBlock *LHSBlock = nullptr; |
2860 | const Expr *trueExpr = C->getTrueExpr(); |
2861 | if (trueExpr != opaqueValue) { |
2862 | LHSBlock = Visit(S: C->getTrueExpr(), asc: alwaysAdd); |
2863 | if (badCFG) |
2864 | return nullptr; |
2865 | Block = nullptr; |
2866 | } |
2867 | else |
2868 | LHSBlock = ConfluenceBlock; |
2869 | |
2870 | // Create the block for the RHS expression. |
2871 | Succ = ConfluenceBlock; |
2872 | CFGBlock *RHSBlock = Visit(S: C->getFalseExpr(), asc: alwaysAdd); |
2873 | if (badCFG) |
2874 | return nullptr; |
2875 | |
2876 | // If the condition is a logical '&&' or '||', build a more accurate CFG. |
2877 | if (BinaryOperator *Cond = |
2878 | dyn_cast<BinaryOperator>(Val: C->getCond()->IgnoreParens())) |
2879 | if (Cond->isLogicalOp()) |
2880 | return VisitLogicalOperator(B: Cond, Term: C, TrueBlock: LHSBlock, FalseBlock: RHSBlock).first; |
2881 | |
2882 | // Create the block that will contain the condition. |
2883 | Block = createBlock(add_successor: false); |
2884 | |
2885 | // See if this is a known constant. |
2886 | const TryResult& KnownVal = tryEvaluateBool(S: C->getCond()); |
2887 | addSuccessor(B: Block, S: LHSBlock, IsReachable: !KnownVal.isFalse()); |
2888 | addSuccessor(B: Block, S: RHSBlock, IsReachable: !KnownVal.isTrue()); |
2889 | Block->setTerminator(C); |
2890 | Expr *condExpr = C->getCond(); |
2891 | |
2892 | if (opaqueValue) { |
2893 | // Run the condition expression if it's not trivially expressed in |
2894 | // terms of the opaque value (or if there is no opaque value). |
2895 | if (condExpr != opaqueValue) |
2896 | addStmt(S: condExpr); |
2897 | |
2898 | // Before that, run the common subexpression if there was one. |
2899 | // At least one of this or the above will be run. |
2900 | return addStmt(S: BCO->getCommon()); |
2901 | } |
2902 | |
2903 | return addStmt(S: condExpr); |
2904 | } |
2905 | |
2906 | CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) { |
2907 | // Check if the Decl is for an __label__. If so, elide it from the |
2908 | // CFG entirely. |
2909 | if (isa<LabelDecl>(Val: *DS->decl_begin())) |
2910 | return Block; |
2911 | |
2912 | // This case also handles static_asserts. |
2913 | if (DS->isSingleDecl()) |
2914 | return VisitDeclSubExpr(DS); |
2915 | |
2916 | CFGBlock *B = nullptr; |
2917 | |
2918 | // Build an individual DeclStmt for each decl. |
2919 | for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(), |
2920 | E = DS->decl_rend(); |
2921 | I != E; ++I) { |
2922 | |
2923 | // Allocate the DeclStmt using the BumpPtrAllocator. It will get |
2924 | // automatically freed with the CFG. |
2925 | DeclGroupRef DG(*I); |
2926 | Decl *D = *I; |
2927 | DeclStmt *DSNew = new (Context) DeclStmt(DG, D->getLocation(), GetEndLoc(D)); |
2928 | cfg->addSyntheticDeclStmt(Synthetic: DSNew, Source: DS); |
2929 | |
2930 | // Append the fake DeclStmt to block. |
2931 | B = VisitDeclSubExpr(DS: DSNew); |
2932 | } |
2933 | |
2934 | return B; |
2935 | } |
2936 | |
2937 | /// VisitDeclSubExpr - Utility method to add block-level expressions for |
2938 | /// DeclStmts and initializers in them. |
2939 | CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) { |
2940 | assert(DS->isSingleDecl() && "Can handle single declarations only." ); |
2941 | |
2942 | if (const auto *TND = dyn_cast<TypedefNameDecl>(Val: DS->getSingleDecl())) { |
2943 | // If we encounter a VLA, process its size expressions. |
2944 | const Type *T = TND->getUnderlyingType().getTypePtr(); |
2945 | if (!T->isVariablyModifiedType()) |
2946 | return Block; |
2947 | |
2948 | autoCreateBlock(); |
2949 | appendStmt(B: Block, S: DS); |
2950 | |
2951 | CFGBlock *LastBlock = Block; |
2952 | for (const VariableArrayType *VA = FindVA(t: T); VA != nullptr; |
2953 | VA = FindVA(t: VA->getElementType().getTypePtr())) { |
2954 | if (CFGBlock *NewBlock = addStmt(S: VA->getSizeExpr())) |
2955 | LastBlock = NewBlock; |
2956 | } |
2957 | return LastBlock; |
2958 | } |
2959 | |
2960 | VarDecl *VD = dyn_cast<VarDecl>(Val: DS->getSingleDecl()); |
2961 | |
2962 | if (!VD) { |
2963 | // Of everything that can be declared in a DeclStmt, only VarDecls and the |
2964 | // exceptions above impact runtime semantics. |
2965 | return Block; |
2966 | } |
2967 | |
2968 | bool HasTemporaries = false; |
2969 | |
2970 | // Guard static initializers under a branch. |
2971 | CFGBlock *blockAfterStaticInit = nullptr; |
2972 | |
2973 | if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) { |
2974 | // For static variables, we need to create a branch to track |
2975 | // whether or not they are initialized. |
2976 | if (Block) { |
2977 | Succ = Block; |
2978 | Block = nullptr; |
2979 | if (badCFG) |
2980 | return nullptr; |
2981 | } |
2982 | blockAfterStaticInit = Succ; |
2983 | } |
2984 | |
2985 | // Destructors of temporaries in initialization expression should be called |
2986 | // after initialization finishes. |
2987 | Expr *Init = VD->getInit(); |
2988 | if (Init) { |
2989 | HasTemporaries = isa<ExprWithCleanups>(Val: Init); |
2990 | |
2991 | if (BuildOpts.AddTemporaryDtors && HasTemporaries) { |
2992 | // Generate destructors for temporaries in initialization expression. |
2993 | TempDtorContext Context; |
2994 | VisitForTemporaryDtors(E: cast<ExprWithCleanups>(Val: Init)->getSubExpr(), |
2995 | /*ExternallyDestructed=*/true, Context); |
2996 | } |
2997 | } |
2998 | |
2999 | // If we bind to a tuple-like type, we iterate over the HoldingVars, and |
3000 | // create a DeclStmt for each of them. |
3001 | if (const auto *DD = dyn_cast<DecompositionDecl>(Val: VD)) { |
3002 | for (auto *BD : llvm::reverse(C: DD->bindings())) { |
3003 | if (auto *VD = BD->getHoldingVar()) { |
3004 | DeclGroupRef DG(VD); |
3005 | DeclStmt *DSNew = |
3006 | new (Context) DeclStmt(DG, VD->getLocation(), GetEndLoc(D: VD)); |
3007 | cfg->addSyntheticDeclStmt(Synthetic: DSNew, Source: DS); |
3008 | Block = VisitDeclSubExpr(DS: DSNew); |
3009 | } |
3010 | } |
3011 | } |
3012 | |
3013 | autoCreateBlock(); |
3014 | appendStmt(B: Block, S: DS); |
3015 | |
3016 | // If the initializer is an ArrayInitLoopExpr, we want to extract the |
3017 | // initializer, that's used for each element. |
3018 | const auto *AILE = dyn_cast_or_null<ArrayInitLoopExpr>(Val: Init); |
3019 | |
3020 | findConstructionContexts( |
3021 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), Item: DS), |
3022 | Child: AILE ? AILE->getSubExpr() : Init); |
3023 | |
3024 | // Keep track of the last non-null block, as 'Block' can be nulled out |
3025 | // if the initializer expression is something like a 'while' in a |
3026 | // statement-expression. |
3027 | CFGBlock *LastBlock = Block; |
3028 | |
3029 | if (Init) { |
3030 | if (HasTemporaries) { |
3031 | // For expression with temporaries go directly to subexpression to omit |
3032 | // generating destructors for the second time. |
3033 | ExprWithCleanups *EC = cast<ExprWithCleanups>(Val: Init); |
3034 | if (CFGBlock *newBlock = Visit(S: EC->getSubExpr())) |
3035 | LastBlock = newBlock; |
3036 | } |
3037 | else { |
3038 | if (CFGBlock *newBlock = Visit(S: Init)) |
3039 | LastBlock = newBlock; |
3040 | } |
3041 | } |
3042 | |
3043 | // If the type of VD is a VLA, then we must process its size expressions. |
3044 | // FIXME: This does not find the VLA if it is embedded in other types, |
3045 | // like here: `int (*p_vla)[x];` |
3046 | for (const VariableArrayType* VA = FindVA(t: VD->getType().getTypePtr()); |
3047 | VA != nullptr; VA = FindVA(t: VA->getElementType().getTypePtr())) { |
3048 | if (CFGBlock *newBlock = addStmt(S: VA->getSizeExpr())) |
3049 | LastBlock = newBlock; |
3050 | } |
3051 | |
3052 | maybeAddScopeBeginForVarDecl(B: Block, VD, S: DS); |
3053 | |
3054 | // Remove variable from local scope. |
3055 | if (ScopePos && VD == *ScopePos) |
3056 | ++ScopePos; |
3057 | |
3058 | CFGBlock *B = LastBlock; |
3059 | if (blockAfterStaticInit) { |
3060 | Succ = B; |
3061 | Block = createBlock(add_successor: false); |
3062 | Block->setTerminator(DS); |
3063 | addSuccessor(B: Block, S: blockAfterStaticInit); |
3064 | addSuccessor(B: Block, S: B); |
3065 | B = Block; |
3066 | } |
3067 | |
3068 | return B; |
3069 | } |
3070 | |
3071 | CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) { |
3072 | // We may see an if statement in the middle of a basic block, or it may be the |
3073 | // first statement we are processing. In either case, we create a new basic |
3074 | // block. First, we create the blocks for the then...else statements, and |
3075 | // then we create the block containing the if statement. If we were in the |
3076 | // middle of a block, we stop processing that block. That block is then the |
3077 | // implicit successor for the "then" and "else" clauses. |
3078 | |
3079 | // Save local scope position because in case of condition variable ScopePos |
3080 | // won't be restored when traversing AST. |
3081 | SaveAndRestore save_scope_pos(ScopePos); |
3082 | |
3083 | // Create local scope for C++17 if init-stmt if one exists. |
3084 | if (Stmt *Init = I->getInit()) |
3085 | addLocalScopeForStmt(S: Init); |
3086 | |
3087 | // Create local scope for possible condition variable. |
3088 | // Store scope position. Add implicit destructor. |
3089 | if (VarDecl *VD = I->getConditionVariable()) |
3090 | addLocalScopeForVarDecl(VD); |
3091 | |
3092 | addAutomaticObjHandling(B: ScopePos, E: save_scope_pos.get(), S: I); |
3093 | |
3094 | // The block we were processing is now finished. Make it the successor |
3095 | // block. |
3096 | if (Block) { |
3097 | Succ = Block; |
3098 | if (badCFG) |
3099 | return nullptr; |
3100 | } |
3101 | |
3102 | // Process the false branch. |
3103 | CFGBlock *ElseBlock = Succ; |
3104 | |
3105 | if (Stmt *Else = I->getElse()) { |
3106 | SaveAndRestore sv(Succ); |
3107 | |
3108 | // NULL out Block so that the recursive call to Visit will |
3109 | // create a new basic block. |
3110 | Block = nullptr; |
3111 | |
3112 | // If branch is not a compound statement create implicit scope |
3113 | // and add destructors. |
3114 | if (!isa<CompoundStmt>(Val: Else)) |
3115 | addLocalScopeAndDtors(S: Else); |
3116 | |
3117 | ElseBlock = addStmt(S: Else); |
3118 | |
3119 | if (!ElseBlock) // Can occur when the Else body has all NullStmts. |
3120 | ElseBlock = sv.get(); |
3121 | else if (Block) { |
3122 | if (badCFG) |
3123 | return nullptr; |
3124 | } |
3125 | } |
3126 | |
3127 | // Process the true branch. |
3128 | CFGBlock *ThenBlock; |
3129 | { |
3130 | Stmt *Then = I->getThen(); |
3131 | assert(Then); |
3132 | SaveAndRestore sv(Succ); |
3133 | Block = nullptr; |
3134 | |
3135 | // If branch is not a compound statement create implicit scope |
3136 | // and add destructors. |
3137 | if (!isa<CompoundStmt>(Val: Then)) |
3138 | addLocalScopeAndDtors(S: Then); |
3139 | |
3140 | ThenBlock = addStmt(S: Then); |
3141 | |
3142 | if (!ThenBlock) { |
3143 | // We can reach here if the "then" body has all NullStmts. |
3144 | // Create an empty block so we can distinguish between true and false |
3145 | // branches in path-sensitive analyses. |
3146 | ThenBlock = createBlock(add_successor: false); |
3147 | addSuccessor(B: ThenBlock, S: sv.get()); |
3148 | } else if (Block) { |
3149 | if (badCFG) |
3150 | return nullptr; |
3151 | } |
3152 | } |
3153 | |
3154 | // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by |
3155 | // having these handle the actual control-flow jump. Note that |
3156 | // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)" |
3157 | // we resort to the old control-flow behavior. This special handling |
3158 | // removes infeasible paths from the control-flow graph by having the |
3159 | // control-flow transfer of '&&' or '||' go directly into the then/else |
3160 | // blocks directly. |
3161 | BinaryOperator *Cond = |
3162 | (I->isConsteval() || I->getConditionVariable()) |
3163 | ? nullptr |
3164 | : dyn_cast<BinaryOperator>(Val: I->getCond()->IgnoreParens()); |
3165 | CFGBlock *LastBlock; |
3166 | if (Cond && Cond->isLogicalOp()) |
3167 | LastBlock = VisitLogicalOperator(B: Cond, Term: I, TrueBlock: ThenBlock, FalseBlock: ElseBlock).first; |
3168 | else { |
3169 | // Now create a new block containing the if statement. |
3170 | Block = createBlock(add_successor: false); |
3171 | |
3172 | // Set the terminator of the new block to the If statement. |
3173 | Block->setTerminator(I); |
3174 | |
3175 | // See if this is a known constant. |
3176 | TryResult KnownVal; |
3177 | if (!I->isConsteval()) |
3178 | KnownVal = tryEvaluateBool(S: I->getCond()); |
3179 | |
3180 | // Add the successors. If we know that specific branches are |
3181 | // unreachable, inform addSuccessor() of that knowledge. |
3182 | addSuccessor(B: Block, S: ThenBlock, /* IsReachable = */ !KnownVal.isFalse()); |
3183 | addSuccessor(B: Block, S: ElseBlock, /* IsReachable = */ !KnownVal.isTrue()); |
3184 | |
3185 | // Add the condition as the last statement in the new block. This may |
3186 | // create new blocks as the condition may contain control-flow. Any newly |
3187 | // created blocks will be pointed to be "Block". |
3188 | LastBlock = addStmt(S: I->getCond()); |
3189 | |
3190 | // If the IfStmt contains a condition variable, add it and its |
3191 | // initializer to the CFG. |
3192 | if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) { |
3193 | autoCreateBlock(); |
3194 | LastBlock = addStmt(S: const_cast<DeclStmt *>(DS)); |
3195 | } |
3196 | } |
3197 | |
3198 | // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG. |
3199 | if (Stmt *Init = I->getInit()) { |
3200 | autoCreateBlock(); |
3201 | LastBlock = addStmt(S: Init); |
3202 | } |
3203 | |
3204 | return LastBlock; |
3205 | } |
3206 | |
3207 | CFGBlock *CFGBuilder::VisitReturnStmt(Stmt *S) { |
3208 | // If we were in the middle of a block we stop processing that block. |
3209 | // |
3210 | // NOTE: If a "return" or "co_return" appears in the middle of a block, this |
3211 | // means that the code afterwards is DEAD (unreachable). We still keep |
3212 | // a basic block for that code; a simple "mark-and-sweep" from the entry |
3213 | // block will be able to report such dead blocks. |
3214 | assert(isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)); |
3215 | |
3216 | // Create the new block. |
3217 | Block = createBlock(add_successor: false); |
3218 | |
3219 | addAutomaticObjHandling(B: ScopePos, E: LocalScope::const_iterator(), S); |
3220 | |
3221 | if (auto *R = dyn_cast<ReturnStmt>(Val: S)) |
3222 | findConstructionContexts( |
3223 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), Item: R), |
3224 | Child: R->getRetValue()); |
3225 | |
3226 | // If the one of the destructors does not return, we already have the Exit |
3227 | // block as a successor. |
3228 | if (!Block->hasNoReturnElement()) |
3229 | addSuccessor(B: Block, S: &cfg->getExit()); |
3230 | |
3231 | // Add the return statement to the block. |
3232 | appendStmt(B: Block, S); |
3233 | |
3234 | // Visit children |
3235 | if (ReturnStmt *RS = dyn_cast<ReturnStmt>(Val: S)) { |
3236 | if (Expr *O = RS->getRetValue()) |
3237 | return Visit(S: O, asc: AddStmtChoice::AlwaysAdd, /*ExternallyDestructed=*/true); |
3238 | return Block; |
3239 | } |
3240 | |
3241 | CoreturnStmt *CRS = cast<CoreturnStmt>(Val: S); |
3242 | auto *B = Block; |
3243 | if (CFGBlock *R = Visit(S: CRS->getPromiseCall())) |
3244 | B = R; |
3245 | |
3246 | if (Expr *RV = CRS->getOperand()) |
3247 | if (RV->getType()->isVoidType() && !isa<InitListExpr>(Val: RV)) |
3248 | // A non-initlist void expression. |
3249 | if (CFGBlock *R = Visit(S: RV)) |
3250 | B = R; |
3251 | |
3252 | return B; |
3253 | } |
3254 | |
3255 | CFGBlock *CFGBuilder::VisitCoroutineSuspendExpr(CoroutineSuspendExpr *E, |
3256 | AddStmtChoice asc) { |
3257 | // We're modelling the pre-coro-xform CFG. Thus just evalate the various |
3258 | // active components of the co_await or co_yield. Note we do not model the |
3259 | // edge from the builtin_suspend to the exit node. |
3260 | if (asc.alwaysAdd(builder&: *this, stmt: E)) { |
3261 | autoCreateBlock(); |
3262 | appendStmt(B: Block, S: E); |
3263 | } |
3264 | CFGBlock *B = Block; |
3265 | if (auto *R = Visit(S: E->getResumeExpr())) |
3266 | B = R; |
3267 | if (auto *R = Visit(S: E->getSuspendExpr())) |
3268 | B = R; |
3269 | if (auto *R = Visit(S: E->getReadyExpr())) |
3270 | B = R; |
3271 | if (auto *R = Visit(S: E->getCommonExpr())) |
3272 | B = R; |
3273 | return B; |
3274 | } |
3275 | |
3276 | CFGBlock *CFGBuilder::VisitSEHExceptStmt(SEHExceptStmt *ES) { |
3277 | // SEHExceptStmt are treated like labels, so they are the first statement in a |
3278 | // block. |
3279 | |
3280 | // Save local scope position because in case of exception variable ScopePos |
3281 | // won't be restored when traversing AST. |
3282 | SaveAndRestore save_scope_pos(ScopePos); |
3283 | |
3284 | addStmt(S: ES->getBlock()); |
3285 | CFGBlock *SEHExceptBlock = Block; |
3286 | if (!SEHExceptBlock) |
3287 | SEHExceptBlock = createBlock(); |
3288 | |
3289 | appendStmt(B: SEHExceptBlock, S: ES); |
3290 | |
3291 | // Also add the SEHExceptBlock as a label, like with regular labels. |
3292 | SEHExceptBlock->setLabel(ES); |
3293 | |
3294 | // Bail out if the CFG is bad. |
3295 | if (badCFG) |
3296 | return nullptr; |
3297 | |
3298 | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
3299 | Block = nullptr; |
3300 | |
3301 | return SEHExceptBlock; |
3302 | } |
3303 | |
3304 | CFGBlock *CFGBuilder::VisitSEHFinallyStmt(SEHFinallyStmt *FS) { |
3305 | return VisitCompoundStmt(C: FS->getBlock(), /*ExternallyDestructed=*/false); |
3306 | } |
3307 | |
3308 | CFGBlock *CFGBuilder::VisitSEHLeaveStmt(SEHLeaveStmt *LS) { |
3309 | // "__leave" is a control-flow statement. Thus we stop processing the current |
3310 | // block. |
3311 | if (badCFG) |
3312 | return nullptr; |
3313 | |
3314 | // Now create a new block that ends with the __leave statement. |
3315 | Block = createBlock(add_successor: false); |
3316 | Block->setTerminator(LS); |
3317 | |
3318 | // If there is no target for the __leave, then we are looking at an incomplete |
3319 | // AST. This means that the CFG cannot be constructed. |
3320 | if (SEHLeaveJumpTarget.block) { |
3321 | addAutomaticObjHandling(B: ScopePos, E: SEHLeaveJumpTarget.scopePosition, S: LS); |
3322 | addSuccessor(B: Block, S: SEHLeaveJumpTarget.block); |
3323 | } else |
3324 | badCFG = true; |
3325 | |
3326 | return Block; |
3327 | } |
3328 | |
3329 | CFGBlock *CFGBuilder::VisitSEHTryStmt(SEHTryStmt *Terminator) { |
3330 | // "__try"/"__except"/"__finally" is a control-flow statement. Thus we stop |
3331 | // processing the current block. |
3332 | CFGBlock *SEHTrySuccessor = nullptr; |
3333 | |
3334 | if (Block) { |
3335 | if (badCFG) |
3336 | return nullptr; |
3337 | SEHTrySuccessor = Block; |
3338 | } else SEHTrySuccessor = Succ; |
3339 | |
3340 | // FIXME: Implement __finally support. |
3341 | if (Terminator->getFinallyHandler()) |
3342 | return NYS(); |
3343 | |
3344 | CFGBlock *PrevSEHTryTerminatedBlock = TryTerminatedBlock; |
3345 | |
3346 | // Create a new block that will contain the __try statement. |
3347 | CFGBlock *NewTryTerminatedBlock = createBlock(add_successor: false); |
3348 | |
3349 | // Add the terminator in the __try block. |
3350 | NewTryTerminatedBlock->setTerminator(Terminator); |
3351 | |
3352 | if (SEHExceptStmt *Except = Terminator->getExceptHandler()) { |
3353 | // The code after the try is the implicit successor if there's an __except. |
3354 | Succ = SEHTrySuccessor; |
3355 | Block = nullptr; |
3356 | CFGBlock *ExceptBlock = VisitSEHExceptStmt(ES: Except); |
3357 | if (!ExceptBlock) |
3358 | return nullptr; |
3359 | // Add this block to the list of successors for the block with the try |
3360 | // statement. |
3361 | addSuccessor(B: NewTryTerminatedBlock, S: ExceptBlock); |
3362 | } |
3363 | if (PrevSEHTryTerminatedBlock) |
3364 | addSuccessor(B: NewTryTerminatedBlock, S: PrevSEHTryTerminatedBlock); |
3365 | else |
3366 | addSuccessor(B: NewTryTerminatedBlock, S: &cfg->getExit()); |
3367 | |
3368 | // The code after the try is the implicit successor. |
3369 | Succ = SEHTrySuccessor; |
3370 | |
3371 | // Save the current "__try" context. |
3372 | SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock); |
3373 | cfg->addTryDispatchBlock(block: TryTerminatedBlock); |
3374 | |
3375 | // Save the current value for the __leave target. |
3376 | // All __leaves should go to the code following the __try |
3377 | // (FIXME: or if the __try has a __finally, to the __finally.) |
3378 | SaveAndRestore save_break(SEHLeaveJumpTarget); |
3379 | SEHLeaveJumpTarget = JumpTarget(SEHTrySuccessor, ScopePos); |
3380 | |
3381 | assert(Terminator->getTryBlock() && "__try must contain a non-NULL body" ); |
3382 | Block = nullptr; |
3383 | return addStmt(S: Terminator->getTryBlock()); |
3384 | } |
3385 | |
3386 | CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) { |
3387 | // Get the block of the labeled statement. Add it to our map. |
3388 | addStmt(S: L->getSubStmt()); |
3389 | CFGBlock *LabelBlock = Block; |
3390 | |
3391 | if (!LabelBlock) // This can happen when the body is empty, i.e. |
3392 | LabelBlock = createBlock(); // scopes that only contains NullStmts. |
3393 | |
3394 | assert(!LabelMap.contains(L->getDecl()) && "label already in map" ); |
3395 | LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos); |
3396 | |
3397 | // Labels partition blocks, so this is the end of the basic block we were |
3398 | // processing (L is the block's label). Because this is label (and we have |
3399 | // already processed the substatement) there is no extra control-flow to worry |
3400 | // about. |
3401 | LabelBlock->setLabel(L); |
3402 | if (badCFG) |
3403 | return nullptr; |
3404 | |
3405 | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
3406 | Block = nullptr; |
3407 | |
3408 | // This block is now the implicit successor of other blocks. |
3409 | Succ = LabelBlock; |
3410 | |
3411 | return LabelBlock; |
3412 | } |
3413 | |
3414 | CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) { |
3415 | CFGBlock *LastBlock = VisitNoRecurse(E, asc); |
3416 | for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) { |
3417 | if (Expr *CopyExpr = CI.getCopyExpr()) { |
3418 | CFGBlock *Tmp = Visit(S: CopyExpr); |
3419 | if (Tmp) |
3420 | LastBlock = Tmp; |
3421 | } |
3422 | } |
3423 | return LastBlock; |
3424 | } |
3425 | |
3426 | CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) { |
3427 | CFGBlock *LastBlock = VisitNoRecurse(E, asc); |
3428 | |
3429 | unsigned Idx = 0; |
3430 | for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(), |
3431 | et = E->capture_init_end(); |
3432 | it != et; ++it, ++Idx) { |
3433 | if (Expr *Init = *it) { |
3434 | // If the initializer is an ArrayInitLoopExpr, we want to extract the |
3435 | // initializer, that's used for each element. |
3436 | auto *AILEInit = extractElementInitializerFromNestedAILE( |
3437 | AILE: dyn_cast<ArrayInitLoopExpr>(Val: Init)); |
3438 | |
3439 | findConstructionContexts(Layer: ConstructionContextLayer::create( |
3440 | C&: cfg->getBumpVectorContext(), Item: {E, Idx}), |
3441 | Child: AILEInit ? AILEInit : Init); |
3442 | |
3443 | CFGBlock *Tmp = Visit(S: Init); |
3444 | if (Tmp) |
3445 | LastBlock = Tmp; |
3446 | } |
3447 | } |
3448 | return LastBlock; |
3449 | } |
3450 | |
3451 | CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) { |
3452 | // Goto is a control-flow statement. Thus we stop processing the current |
3453 | // block and create a new one. |
3454 | |
3455 | Block = createBlock(add_successor: false); |
3456 | Block->setTerminator(G); |
3457 | |
3458 | // If we already know the mapping to the label block add the successor now. |
3459 | LabelMapTy::iterator I = LabelMap.find(Val: G->getLabel()); |
3460 | |
3461 | if (I == LabelMap.end()) |
3462 | // We will need to backpatch this block later. |
3463 | BackpatchBlocks.push_back(x: JumpSource(Block, ScopePos)); |
3464 | else { |
3465 | JumpTarget JT = I->second; |
3466 | addSuccessor(B: Block, S: JT.block); |
3467 | addScopeChangesHandling(SrcPos: ScopePos, DstPos: JT.scopePosition, S: G); |
3468 | } |
3469 | |
3470 | return Block; |
3471 | } |
3472 | |
3473 | CFGBlock *CFGBuilder::VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc) { |
3474 | // Goto is a control-flow statement. Thus we stop processing the current |
3475 | // block and create a new one. |
3476 | |
3477 | if (!G->isAsmGoto()) |
3478 | return VisitStmt(S: G, asc); |
3479 | |
3480 | if (Block) { |
3481 | Succ = Block; |
3482 | if (badCFG) |
3483 | return nullptr; |
3484 | } |
3485 | Block = createBlock(); |
3486 | Block->setTerminator(G); |
3487 | // We will backpatch this block later for all the labels. |
3488 | BackpatchBlocks.push_back(x: JumpSource(Block, ScopePos)); |
3489 | // Save "Succ" in BackpatchBlocks. In the backpatch processing, "Succ" is |
3490 | // used to avoid adding "Succ" again. |
3491 | BackpatchBlocks.push_back(x: JumpSource(Succ, ScopePos)); |
3492 | return VisitChildren(S: G); |
3493 | } |
3494 | |
3495 | CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) { |
3496 | CFGBlock *LoopSuccessor = nullptr; |
3497 | |
3498 | // Save local scope position because in case of condition variable ScopePos |
3499 | // won't be restored when traversing AST. |
3500 | SaveAndRestore save_scope_pos(ScopePos); |
3501 | |
3502 | // Create local scope for init statement and possible condition variable. |
3503 | // Add destructor for init statement and condition variable. |
3504 | // Store scope position for continue statement. |
3505 | if (Stmt *Init = F->getInit()) |
3506 | addLocalScopeForStmt(S: Init); |
3507 | LocalScope::const_iterator LoopBeginScopePos = ScopePos; |
3508 | |
3509 | if (VarDecl *VD = F->getConditionVariable()) |
3510 | addLocalScopeForVarDecl(VD); |
3511 | LocalScope::const_iterator ContinueScopePos = ScopePos; |
3512 | |
3513 | addAutomaticObjHandling(B: ScopePos, E: save_scope_pos.get(), S: F); |
3514 | |
3515 | addLoopExit(LoopStmt: F); |
3516 | |
3517 | // "for" is a control-flow statement. Thus we stop processing the current |
3518 | // block. |
3519 | if (Block) { |
3520 | if (badCFG) |
3521 | return nullptr; |
3522 | LoopSuccessor = Block; |
3523 | } else |
3524 | LoopSuccessor = Succ; |
3525 | |
3526 | // Save the current value for the break targets. |
3527 | // All breaks should go to the code following the loop. |
3528 | SaveAndRestore save_break(BreakJumpTarget); |
3529 | BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); |
3530 | |
3531 | CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr; |
3532 | |
3533 | // Now create the loop body. |
3534 | { |
3535 | assert(F->getBody()); |
3536 | |
3537 | // Save the current values for Block, Succ, continue and break targets. |
3538 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
3539 | SaveAndRestore save_continue(ContinueJumpTarget); |
3540 | |
3541 | // Create an empty block to represent the transition block for looping back |
3542 | // to the head of the loop. If we have increment code, it will |
3543 | // go in this block as well. |
3544 | Block = Succ = TransitionBlock = createBlock(add_successor: false); |
3545 | TransitionBlock->setLoopTarget(F); |
3546 | |
3547 | |
3548 | // Loop iteration (after increment) should end with destructor of Condition |
3549 | // variable (if any). |
3550 | addAutomaticObjHandling(B: ScopePos, E: LoopBeginScopePos, S: F); |
3551 | |
3552 | if (Stmt *I = F->getInc()) { |
3553 | // Generate increment code in its own basic block. This is the target of |
3554 | // continue statements. |
3555 | Succ = addStmt(S: I); |
3556 | } |
3557 | |
3558 | // Finish up the increment (or empty) block if it hasn't been already. |
3559 | if (Block) { |
3560 | assert(Block == Succ); |
3561 | if (badCFG) |
3562 | return nullptr; |
3563 | Block = nullptr; |
3564 | } |
3565 | |
3566 | // The starting block for the loop increment is the block that should |
3567 | // represent the 'loop target' for looping back to the start of the loop. |
3568 | ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos); |
3569 | ContinueJumpTarget.block->setLoopTarget(F); |
3570 | |
3571 | |
3572 | // If body is not a compound statement create implicit scope |
3573 | // and add destructors. |
3574 | if (!isa<CompoundStmt>(Val: F->getBody())) |
3575 | addLocalScopeAndDtors(S: F->getBody()); |
3576 | |
3577 | // Now populate the body block, and in the process create new blocks as we |
3578 | // walk the body of the loop. |
3579 | BodyBlock = addStmt(S: F->getBody()); |
3580 | |
3581 | if (!BodyBlock) { |
3582 | // In the case of "for (...;...;...);" we can have a null BodyBlock. |
3583 | // Use the continue jump target as the proxy for the body. |
3584 | BodyBlock = ContinueJumpTarget.block; |
3585 | } |
3586 | else if (badCFG) |
3587 | return nullptr; |
3588 | } |
3589 | |
3590 | // Because of short-circuit evaluation, the condition of the loop can span |
3591 | // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that |
3592 | // evaluate the condition. |
3593 | CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr; |
3594 | |
3595 | do { |
3596 | Expr *C = F->getCond(); |
3597 | SaveAndRestore save_scope_pos(ScopePos); |
3598 | |
3599 | // Specially handle logical operators, which have a slightly |
3600 | // more optimal CFG representation. |
3601 | if (BinaryOperator *Cond = |
3602 | dyn_cast_or_null<BinaryOperator>(Val: C ? C->IgnoreParens() : nullptr)) |
3603 | if (Cond->isLogicalOp()) { |
3604 | std::tie(args&: EntryConditionBlock, args&: ExitConditionBlock) = |
3605 | VisitLogicalOperator(B: Cond, Term: F, TrueBlock: BodyBlock, FalseBlock: LoopSuccessor); |
3606 | break; |
3607 | } |
3608 | |
3609 | // The default case when not handling logical operators. |
3610 | EntryConditionBlock = ExitConditionBlock = createBlock(add_successor: false); |
3611 | ExitConditionBlock->setTerminator(F); |
3612 | |
3613 | // See if this is a known constant. |
3614 | TryResult KnownVal(true); |
3615 | |
3616 | if (C) { |
3617 | // Now add the actual condition to the condition block. |
3618 | // Because the condition itself may contain control-flow, new blocks may |
3619 | // be created. Thus we update "Succ" after adding the condition. |
3620 | Block = ExitConditionBlock; |
3621 | EntryConditionBlock = addStmt(S: C); |
3622 | |
3623 | // If this block contains a condition variable, add both the condition |
3624 | // variable and initializer to the CFG. |
3625 | if (VarDecl *VD = F->getConditionVariable()) { |
3626 | if (Expr *Init = VD->getInit()) { |
3627 | autoCreateBlock(); |
3628 | const DeclStmt *DS = F->getConditionVariableDeclStmt(); |
3629 | assert(DS->isSingleDecl()); |
3630 | findConstructionContexts( |
3631 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), Item: DS), |
3632 | Child: Init); |
3633 | appendStmt(B: Block, S: DS); |
3634 | EntryConditionBlock = addStmt(S: Init); |
3635 | assert(Block == EntryConditionBlock); |
3636 | maybeAddScopeBeginForVarDecl(B: EntryConditionBlock, VD, S: C); |
3637 | } |
3638 | } |
3639 | |
3640 | if (Block && badCFG) |
3641 | return nullptr; |
3642 | |
3643 | KnownVal = tryEvaluateBool(S: C); |
3644 | } |
3645 | |
3646 | // Add the loop body entry as a successor to the condition. |
3647 | addSuccessor(B: ExitConditionBlock, S: KnownVal.isFalse() ? nullptr : BodyBlock); |
3648 | // Link up the condition block with the code that follows the loop. (the |
3649 | // false branch). |
3650 | addSuccessor(B: ExitConditionBlock, |
3651 | S: KnownVal.isTrue() ? nullptr : LoopSuccessor); |
3652 | } while (false); |
3653 | |
3654 | // Link up the loop-back block to the entry condition block. |
3655 | addSuccessor(B: TransitionBlock, S: EntryConditionBlock); |
3656 | |
3657 | // The condition block is the implicit successor for any code above the loop. |
3658 | Succ = EntryConditionBlock; |
3659 | |
3660 | // If the loop contains initialization, create a new block for those |
3661 | // statements. This block can also contain statements that precede the loop. |
3662 | if (Stmt *I = F->getInit()) { |
3663 | SaveAndRestore save_scope_pos(ScopePos); |
3664 | ScopePos = LoopBeginScopePos; |
3665 | Block = createBlock(); |
3666 | return addStmt(S: I); |
3667 | } |
3668 | |
3669 | // There is no loop initialization. We are thus basically a while loop. |
3670 | // NULL out Block to force lazy block construction. |
3671 | Block = nullptr; |
3672 | Succ = EntryConditionBlock; |
3673 | return EntryConditionBlock; |
3674 | } |
3675 | |
3676 | CFGBlock * |
3677 | CFGBuilder::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE, |
3678 | AddStmtChoice asc) { |
3679 | findConstructionContexts( |
3680 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), Item: MTE), |
3681 | Child: MTE->getSubExpr()); |
3682 | |
3683 | return VisitStmt(S: MTE, asc); |
3684 | } |
3685 | |
3686 | CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) { |
3687 | if (asc.alwaysAdd(builder&: *this, stmt: M)) { |
3688 | autoCreateBlock(); |
3689 | appendStmt(B: Block, S: M); |
3690 | } |
3691 | return Visit(S: M->getBase()); |
3692 | } |
3693 | |
3694 | CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) { |
3695 | // Objective-C fast enumeration 'for' statements: |
3696 | // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC |
3697 | // |
3698 | // for ( Type newVariable in collection_expression ) { statements } |
3699 | // |
3700 | // becomes: |
3701 | // |
3702 | // prologue: |
3703 | // 1. collection_expression |
3704 | // T. jump to loop_entry |
3705 | // loop_entry: |
3706 | // 1. side-effects of element expression |
3707 | // 1. ObjCForCollectionStmt [performs binding to newVariable] |
3708 | // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil] |
3709 | // TB: |
3710 | // statements |
3711 | // T. jump to loop_entry |
3712 | // FB: |
3713 | // what comes after |
3714 | // |
3715 | // and |
3716 | // |
3717 | // Type existingItem; |
3718 | // for ( existingItem in expression ) { statements } |
3719 | // |
3720 | // becomes: |
3721 | // |
3722 | // the same with newVariable replaced with existingItem; the binding works |
3723 | // the same except that for one ObjCForCollectionStmt::getElement() returns |
3724 | // a DeclStmt and the other returns a DeclRefExpr. |
3725 | |
3726 | CFGBlock *LoopSuccessor = nullptr; |
3727 | |
3728 | if (Block) { |
3729 | if (badCFG) |
3730 | return nullptr; |
3731 | LoopSuccessor = Block; |
3732 | Block = nullptr; |
3733 | } else |
3734 | LoopSuccessor = Succ; |
3735 | |
3736 | // Build the condition blocks. |
3737 | CFGBlock *ExitConditionBlock = createBlock(add_successor: false); |
3738 | |
3739 | // Set the terminator for the "exit" condition block. |
3740 | ExitConditionBlock->setTerminator(S); |
3741 | |
3742 | // The last statement in the block should be the ObjCForCollectionStmt, which |
3743 | // performs the actual binding to 'element' and determines if there are any |
3744 | // more items in the collection. |
3745 | appendStmt(B: ExitConditionBlock, S); |
3746 | Block = ExitConditionBlock; |
3747 | |
3748 | // Walk the 'element' expression to see if there are any side-effects. We |
3749 | // generate new blocks as necessary. We DON'T add the statement by default to |
3750 | // the CFG unless it contains control-flow. |
3751 | CFGBlock *EntryConditionBlock = Visit(S: S->getElement(), |
3752 | asc: AddStmtChoice::NotAlwaysAdd); |
3753 | if (Block) { |
3754 | if (badCFG) |
3755 | return nullptr; |
3756 | Block = nullptr; |
3757 | } |
3758 | |
3759 | // The condition block is the implicit successor for the loop body as well as |
3760 | // any code above the loop. |
3761 | Succ = EntryConditionBlock; |
3762 | |
3763 | // Now create the true branch. |
3764 | { |
3765 | // Save the current values for Succ, continue and break targets. |
3766 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
3767 | SaveAndRestore save_continue(ContinueJumpTarget), |
3768 | save_break(BreakJumpTarget); |
3769 | |
3770 | // Add an intermediate block between the BodyBlock and the |
3771 | // EntryConditionBlock to represent the "loop back" transition, for looping |
3772 | // back to the head of the loop. |
3773 | CFGBlock *LoopBackBlock = nullptr; |
3774 | Succ = LoopBackBlock = createBlock(); |
3775 | LoopBackBlock->setLoopTarget(S); |
3776 | |
3777 | BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); |
3778 | ContinueJumpTarget = JumpTarget(Succ, ScopePos); |
3779 | |
3780 | CFGBlock *BodyBlock = addStmt(S: S->getBody()); |
3781 | |
3782 | if (!BodyBlock) |
3783 | BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;" |
3784 | else if (Block) { |
3785 | if (badCFG) |
3786 | return nullptr; |
3787 | } |
3788 | |
3789 | // This new body block is a successor to our "exit" condition block. |
3790 | addSuccessor(B: ExitConditionBlock, S: BodyBlock); |
3791 | } |
3792 | |
3793 | // Link up the condition block with the code that follows the loop. |
3794 | // (the false branch). |
3795 | addSuccessor(B: ExitConditionBlock, S: LoopSuccessor); |
3796 | |
3797 | // Now create a prologue block to contain the collection expression. |
3798 | Block = createBlock(); |
3799 | return addStmt(S: S->getCollection()); |
3800 | } |
3801 | |
3802 | CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) { |
3803 | // Inline the body. |
3804 | return addStmt(S: S->getSubStmt()); |
3805 | // TODO: consider adding cleanups for the end of @autoreleasepool scope. |
3806 | } |
3807 | |
3808 | CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) { |
3809 | // FIXME: Add locking 'primitives' to CFG for @synchronized. |
3810 | |
3811 | // Inline the body. |
3812 | CFGBlock *SyncBlock = addStmt(S: S->getSynchBody()); |
3813 | |
3814 | // The sync body starts its own basic block. This makes it a little easier |
3815 | // for diagnostic clients. |
3816 | if (SyncBlock) { |
3817 | if (badCFG) |
3818 | return nullptr; |
3819 | |
3820 | Block = nullptr; |
3821 | Succ = SyncBlock; |
3822 | } |
3823 | |
3824 | // Add the @synchronized to the CFG. |
3825 | autoCreateBlock(); |
3826 | appendStmt(B: Block, S); |
3827 | |
3828 | // Inline the sync expression. |
3829 | return addStmt(S: S->getSynchExpr()); |
3830 | } |
3831 | |
3832 | CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) { |
3833 | autoCreateBlock(); |
3834 | |
3835 | // Add the PseudoObject as the last thing. |
3836 | appendStmt(B: Block, S: E); |
3837 | |
3838 | CFGBlock *lastBlock = Block; |
3839 | |
3840 | // Before that, evaluate all of the semantics in order. In |
3841 | // CFG-land, that means appending them in reverse order. |
3842 | for (unsigned i = E->getNumSemanticExprs(); i != 0; ) { |
3843 | Expr *Semantic = E->getSemanticExpr(index: --i); |
3844 | |
3845 | // If the semantic is an opaque value, we're being asked to bind |
3846 | // it to its source expression. |
3847 | if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Val: Semantic)) |
3848 | Semantic = OVE->getSourceExpr(); |
3849 | |
3850 | if (CFGBlock *B = Visit(S: Semantic)) |
3851 | lastBlock = B; |
3852 | } |
3853 | |
3854 | return lastBlock; |
3855 | } |
3856 | |
3857 | CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) { |
3858 | CFGBlock *LoopSuccessor = nullptr; |
3859 | |
3860 | // Save local scope position because in case of condition variable ScopePos |
3861 | // won't be restored when traversing AST. |
3862 | SaveAndRestore save_scope_pos(ScopePos); |
3863 | |
3864 | // Create local scope for possible condition variable. |
3865 | // Store scope position for continue statement. |
3866 | LocalScope::const_iterator LoopBeginScopePos = ScopePos; |
3867 | if (VarDecl *VD = W->getConditionVariable()) { |
3868 | addLocalScopeForVarDecl(VD); |
3869 | addAutomaticObjHandling(B: ScopePos, E: LoopBeginScopePos, S: W); |
3870 | } |
3871 | addLoopExit(LoopStmt: W); |
3872 | |
3873 | // "while" is a control-flow statement. Thus we stop processing the current |
3874 | // block. |
3875 | if (Block) { |
3876 | if (badCFG) |
3877 | return nullptr; |
3878 | LoopSuccessor = Block; |
3879 | Block = nullptr; |
3880 | } else { |
3881 | LoopSuccessor = Succ; |
3882 | } |
3883 | |
3884 | CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr; |
3885 | |
3886 | // Process the loop body. |
3887 | { |
3888 | assert(W->getBody()); |
3889 | |
3890 | // Save the current values for Block, Succ, continue and break targets. |
3891 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
3892 | SaveAndRestore save_continue(ContinueJumpTarget), |
3893 | save_break(BreakJumpTarget); |
3894 | |
3895 | // Create an empty block to represent the transition block for looping back |
3896 | // to the head of the loop. |
3897 | Succ = TransitionBlock = createBlock(add_successor: false); |
3898 | TransitionBlock->setLoopTarget(W); |
3899 | ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos); |
3900 | |
3901 | // All breaks should go to the code following the loop. |
3902 | BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); |
3903 | |
3904 | // Loop body should end with destructor of Condition variable (if any). |
3905 | addAutomaticObjHandling(B: ScopePos, E: LoopBeginScopePos, S: W); |
3906 | |
3907 | // If body is not a compound statement create implicit scope |
3908 | // and add destructors. |
3909 | if (!isa<CompoundStmt>(Val: W->getBody())) |
3910 | addLocalScopeAndDtors(S: W->getBody()); |
3911 | |
3912 | // Create the body. The returned block is the entry to the loop body. |
3913 | BodyBlock = addStmt(S: W->getBody()); |
3914 | |
3915 | if (!BodyBlock) |
3916 | BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;" |
3917 | else if (Block && badCFG) |
3918 | return nullptr; |
3919 | } |
3920 | |
3921 | // Because of short-circuit evaluation, the condition of the loop can span |
3922 | // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that |
3923 | // evaluate the condition. |
3924 | CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr; |
3925 | |
3926 | do { |
3927 | Expr *C = W->getCond(); |
3928 | |
3929 | // Specially handle logical operators, which have a slightly |
3930 | // more optimal CFG representation. |
3931 | if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(Val: C->IgnoreParens())) |
3932 | if (Cond->isLogicalOp()) { |
3933 | std::tie(args&: EntryConditionBlock, args&: ExitConditionBlock) = |
3934 | VisitLogicalOperator(B: Cond, Term: W, TrueBlock: BodyBlock, FalseBlock: LoopSuccessor); |
3935 | break; |
3936 | } |
3937 | |
3938 | // The default case when not handling logical operators. |
3939 | ExitConditionBlock = createBlock(add_successor: false); |
3940 | ExitConditionBlock->setTerminator(W); |
3941 | |
3942 | // Now add the actual condition to the condition block. |
3943 | // Because the condition itself may contain control-flow, new blocks may |
3944 | // be created. Thus we update "Succ" after adding the condition. |
3945 | Block = ExitConditionBlock; |
3946 | Block = EntryConditionBlock = addStmt(S: C); |
3947 | |
3948 | // If this block contains a condition variable, add both the condition |
3949 | // variable and initializer to the CFG. |
3950 | if (VarDecl *VD = W->getConditionVariable()) { |
3951 | if (Expr *Init = VD->getInit()) { |
3952 | autoCreateBlock(); |
3953 | const DeclStmt *DS = W->getConditionVariableDeclStmt(); |
3954 | assert(DS->isSingleDecl()); |
3955 | findConstructionContexts( |
3956 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), |
3957 | Item: const_cast<DeclStmt *>(DS)), |
3958 | Child: Init); |
3959 | appendStmt(B: Block, S: DS); |
3960 | EntryConditionBlock = addStmt(S: Init); |
3961 | assert(Block == EntryConditionBlock); |
3962 | maybeAddScopeBeginForVarDecl(B: EntryConditionBlock, VD, S: C); |
3963 | } |
3964 | } |
3965 | |
3966 | if (Block && badCFG) |
3967 | return nullptr; |
3968 | |
3969 | // See if this is a known constant. |
3970 | const TryResult& KnownVal = tryEvaluateBool(S: C); |
3971 | |
3972 | // Add the loop body entry as a successor to the condition. |
3973 | addSuccessor(B: ExitConditionBlock, S: KnownVal.isFalse() ? nullptr : BodyBlock); |
3974 | // Link up the condition block with the code that follows the loop. (the |
3975 | // false branch). |
3976 | addSuccessor(B: ExitConditionBlock, |
3977 | S: KnownVal.isTrue() ? nullptr : LoopSuccessor); |
3978 | } while(false); |
3979 | |
3980 | // Link up the loop-back block to the entry condition block. |
3981 | addSuccessor(B: TransitionBlock, S: EntryConditionBlock); |
3982 | |
3983 | // There can be no more statements in the condition block since we loop back |
3984 | // to this block. NULL out Block to force lazy creation of another block. |
3985 | Block = nullptr; |
3986 | |
3987 | // Return the condition block, which is the dominating block for the loop. |
3988 | Succ = EntryConditionBlock; |
3989 | return EntryConditionBlock; |
3990 | } |
3991 | |
3992 | CFGBlock *CFGBuilder::VisitArrayInitLoopExpr(ArrayInitLoopExpr *A, |
3993 | AddStmtChoice asc) { |
3994 | if (asc.alwaysAdd(builder&: *this, stmt: A)) { |
3995 | autoCreateBlock(); |
3996 | appendStmt(B: Block, S: A); |
3997 | } |
3998 | |
3999 | CFGBlock *B = Block; |
4000 | |
4001 | if (CFGBlock *R = Visit(S: A->getSubExpr())) |
4002 | B = R; |
4003 | |
4004 | auto *OVE = dyn_cast<OpaqueValueExpr>(Val: A->getCommonExpr()); |
4005 | assert(OVE && "ArrayInitLoopExpr->getCommonExpr() should be wrapped in an " |
4006 | "OpaqueValueExpr!" ); |
4007 | if (CFGBlock *R = Visit(S: OVE->getSourceExpr())) |
4008 | B = R; |
4009 | |
4010 | return B; |
4011 | } |
4012 | |
4013 | CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *CS) { |
4014 | // ObjCAtCatchStmt are treated like labels, so they are the first statement |
4015 | // in a block. |
4016 | |
4017 | // Save local scope position because in case of exception variable ScopePos |
4018 | // won't be restored when traversing AST. |
4019 | SaveAndRestore save_scope_pos(ScopePos); |
4020 | |
4021 | if (CS->getCatchBody()) |
4022 | addStmt(S: CS->getCatchBody()); |
4023 | |
4024 | CFGBlock *CatchBlock = Block; |
4025 | if (!CatchBlock) |
4026 | CatchBlock = createBlock(); |
4027 | |
4028 | appendStmt(B: CatchBlock, S: CS); |
4029 | |
4030 | // Also add the ObjCAtCatchStmt as a label, like with regular labels. |
4031 | CatchBlock->setLabel(CS); |
4032 | |
4033 | // Bail out if the CFG is bad. |
4034 | if (badCFG) |
4035 | return nullptr; |
4036 | |
4037 | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
4038 | Block = nullptr; |
4039 | |
4040 | return CatchBlock; |
4041 | } |
4042 | |
4043 | CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) { |
4044 | // If we were in the middle of a block we stop processing that block. |
4045 | if (badCFG) |
4046 | return nullptr; |
4047 | |
4048 | // Create the new block. |
4049 | Block = createBlock(add_successor: false); |
4050 | |
4051 | if (TryTerminatedBlock) |
4052 | // The current try statement is the only successor. |
4053 | addSuccessor(B: Block, S: TryTerminatedBlock); |
4054 | else |
4055 | // otherwise the Exit block is the only successor. |
4056 | addSuccessor(B: Block, S: &cfg->getExit()); |
4057 | |
4058 | // Add the statement to the block. This may create new blocks if S contains |
4059 | // control-flow (short-circuit operations). |
4060 | return VisitStmt(S, asc: AddStmtChoice::AlwaysAdd); |
4061 | } |
4062 | |
4063 | CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *Terminator) { |
4064 | // "@try"/"@catch" is a control-flow statement. Thus we stop processing the |
4065 | // current block. |
4066 | CFGBlock *TrySuccessor = nullptr; |
4067 | |
4068 | if (Block) { |
4069 | if (badCFG) |
4070 | return nullptr; |
4071 | TrySuccessor = Block; |
4072 | } else |
4073 | TrySuccessor = Succ; |
4074 | |
4075 | // FIXME: Implement @finally support. |
4076 | if (Terminator->getFinallyStmt()) |
4077 | return NYS(); |
4078 | |
4079 | CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock; |
4080 | |
4081 | // Create a new block that will contain the try statement. |
4082 | CFGBlock *NewTryTerminatedBlock = createBlock(add_successor: false); |
4083 | // Add the terminator in the try block. |
4084 | NewTryTerminatedBlock->setTerminator(Terminator); |
4085 | |
4086 | bool HasCatchAll = false; |
4087 | for (ObjCAtCatchStmt *CS : Terminator->catch_stmts()) { |
4088 | // The code after the try is the implicit successor. |
4089 | Succ = TrySuccessor; |
4090 | if (CS->hasEllipsis()) { |
4091 | HasCatchAll = true; |
4092 | } |
4093 | Block = nullptr; |
4094 | CFGBlock *CatchBlock = VisitObjCAtCatchStmt(CS); |
4095 | if (!CatchBlock) |
4096 | return nullptr; |
4097 | // Add this block to the list of successors for the block with the try |
4098 | // statement. |
4099 | addSuccessor(B: NewTryTerminatedBlock, S: CatchBlock); |
4100 | } |
4101 | |
4102 | // FIXME: This needs updating when @finally support is added. |
4103 | if (!HasCatchAll) { |
4104 | if (PrevTryTerminatedBlock) |
4105 | addSuccessor(B: NewTryTerminatedBlock, S: PrevTryTerminatedBlock); |
4106 | else |
4107 | addSuccessor(B: NewTryTerminatedBlock, S: &cfg->getExit()); |
4108 | } |
4109 | |
4110 | // The code after the try is the implicit successor. |
4111 | Succ = TrySuccessor; |
4112 | |
4113 | // Save the current "try" context. |
4114 | SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock); |
4115 | cfg->addTryDispatchBlock(block: TryTerminatedBlock); |
4116 | |
4117 | assert(Terminator->getTryBody() && "try must contain a non-NULL body" ); |
4118 | Block = nullptr; |
4119 | return addStmt(S: Terminator->getTryBody()); |
4120 | } |
4121 | |
4122 | CFGBlock *CFGBuilder::VisitObjCMessageExpr(ObjCMessageExpr *ME, |
4123 | AddStmtChoice asc) { |
4124 | findConstructionContextsForArguments(E: ME); |
4125 | |
4126 | autoCreateBlock(); |
4127 | appendObjCMessage(B: Block, ME); |
4128 | |
4129 | return VisitChildren(S: ME); |
4130 | } |
4131 | |
4132 | CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) { |
4133 | // If we were in the middle of a block we stop processing that block. |
4134 | if (badCFG) |
4135 | return nullptr; |
4136 | |
4137 | // Create the new block. |
4138 | Block = createBlock(add_successor: false); |
4139 | |
4140 | if (TryTerminatedBlock) |
4141 | // The current try statement is the only successor. |
4142 | addSuccessor(B: Block, S: TryTerminatedBlock); |
4143 | else |
4144 | // otherwise the Exit block is the only successor. |
4145 | addSuccessor(B: Block, S: &cfg->getExit()); |
4146 | |
4147 | // Add the statement to the block. This may create new blocks if S contains |
4148 | // control-flow (short-circuit operations). |
4149 | return VisitStmt(S: T, asc: AddStmtChoice::AlwaysAdd); |
4150 | } |
4151 | |
4152 | CFGBlock *CFGBuilder::VisitCXXTypeidExpr(CXXTypeidExpr *S, AddStmtChoice asc) { |
4153 | if (asc.alwaysAdd(builder&: *this, stmt: S)) { |
4154 | autoCreateBlock(); |
4155 | appendStmt(B: Block, S); |
4156 | } |
4157 | |
4158 | // C++ [expr.typeid]p3: |
4159 | // When typeid is applied to an expression other than an glvalue of a |
4160 | // polymorphic class type [...] [the] expression is an unevaluated |
4161 | // operand. [...] |
4162 | // We add only potentially evaluated statements to the block to avoid |
4163 | // CFG generation for unevaluated operands. |
4164 | if (!S->isTypeDependent() && S->isPotentiallyEvaluated()) |
4165 | return VisitChildren(S); |
4166 | |
4167 | // Return block without CFG for unevaluated operands. |
4168 | return Block; |
4169 | } |
4170 | |
4171 | CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) { |
4172 | CFGBlock *LoopSuccessor = nullptr; |
4173 | |
4174 | addLoopExit(LoopStmt: D); |
4175 | |
4176 | // "do...while" is a control-flow statement. Thus we stop processing the |
4177 | // current block. |
4178 | if (Block) { |
4179 | if (badCFG) |
4180 | return nullptr; |
4181 | LoopSuccessor = Block; |
4182 | } else |
4183 | LoopSuccessor = Succ; |
4184 | |
4185 | // Because of short-circuit evaluation, the condition of the loop can span |
4186 | // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that |
4187 | // evaluate the condition. |
4188 | CFGBlock *ExitConditionBlock = createBlock(add_successor: false); |
4189 | CFGBlock *EntryConditionBlock = ExitConditionBlock; |
4190 | |
4191 | // Set the terminator for the "exit" condition block. |
4192 | ExitConditionBlock->setTerminator(D); |
4193 | |
4194 | // Now add the actual condition to the condition block. Because the condition |
4195 | // itself may contain control-flow, new blocks may be created. |
4196 | if (Stmt *C = D->getCond()) { |
4197 | Block = ExitConditionBlock; |
4198 | EntryConditionBlock = addStmt(S: C); |
4199 | if (Block) { |
4200 | if (badCFG) |
4201 | return nullptr; |
4202 | } |
4203 | } |
4204 | |
4205 | // The condition block is the implicit successor for the loop body. |
4206 | Succ = EntryConditionBlock; |
4207 | |
4208 | // See if this is a known constant. |
4209 | const TryResult &KnownVal = tryEvaluateBool(S: D->getCond()); |
4210 | |
4211 | // Process the loop body. |
4212 | CFGBlock *BodyBlock = nullptr; |
4213 | { |
4214 | assert(D->getBody()); |
4215 | |
4216 | // Save the current values for Block, Succ, and continue and break targets |
4217 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
4218 | SaveAndRestore save_continue(ContinueJumpTarget), |
4219 | save_break(BreakJumpTarget); |
4220 | |
4221 | // All continues within this loop should go to the condition block |
4222 | ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos); |
4223 | |
4224 | // All breaks should go to the code following the loop. |
4225 | BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); |
4226 | |
4227 | // NULL out Block to force lazy instantiation of blocks for the body. |
4228 | Block = nullptr; |
4229 | |
4230 | // If body is not a compound statement create implicit scope |
4231 | // and add destructors. |
4232 | if (!isa<CompoundStmt>(Val: D->getBody())) |
4233 | addLocalScopeAndDtors(S: D->getBody()); |
4234 | |
4235 | // Create the body. The returned block is the entry to the loop body. |
4236 | BodyBlock = addStmt(S: D->getBody()); |
4237 | |
4238 | if (!BodyBlock) |
4239 | BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)" |
4240 | else if (Block) { |
4241 | if (badCFG) |
4242 | return nullptr; |
4243 | } |
4244 | |
4245 | // Add an intermediate block between the BodyBlock and the |
4246 | // ExitConditionBlock to represent the "loop back" transition. Create an |
4247 | // empty block to represent the transition block for looping back to the |
4248 | // head of the loop. |
4249 | // FIXME: Can we do this more efficiently without adding another block? |
4250 | Block = nullptr; |
4251 | Succ = BodyBlock; |
4252 | CFGBlock *LoopBackBlock = createBlock(); |
4253 | LoopBackBlock->setLoopTarget(D); |
4254 | |
4255 | if (!KnownVal.isFalse()) |
4256 | // Add the loop body entry as a successor to the condition. |
4257 | addSuccessor(B: ExitConditionBlock, S: LoopBackBlock); |
4258 | else |
4259 | addSuccessor(B: ExitConditionBlock, S: nullptr); |
4260 | } |
4261 | |
4262 | // Link up the condition block with the code that follows the loop. |
4263 | // (the false branch). |
4264 | addSuccessor(B: ExitConditionBlock, S: KnownVal.isTrue() ? nullptr : LoopSuccessor); |
4265 | |
4266 | // There can be no more statements in the body block(s) since we loop back to |
4267 | // the body. NULL out Block to force lazy creation of another block. |
4268 | Block = nullptr; |
4269 | |
4270 | // Return the loop body, which is the dominating block for the loop. |
4271 | Succ = BodyBlock; |
4272 | return BodyBlock; |
4273 | } |
4274 | |
4275 | CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) { |
4276 | // "continue" is a control-flow statement. Thus we stop processing the |
4277 | // current block. |
4278 | if (badCFG) |
4279 | return nullptr; |
4280 | |
4281 | // Now create a new block that ends with the continue statement. |
4282 | Block = createBlock(add_successor: false); |
4283 | Block->setTerminator(C); |
4284 | |
4285 | // If there is no target for the continue, then we are looking at an |
4286 | // incomplete AST. This means the CFG cannot be constructed. |
4287 | if (ContinueJumpTarget.block) { |
4288 | addAutomaticObjHandling(B: ScopePos, E: ContinueJumpTarget.scopePosition, S: C); |
4289 | addSuccessor(B: Block, S: ContinueJumpTarget.block); |
4290 | } else |
4291 | badCFG = true; |
4292 | |
4293 | return Block; |
4294 | } |
4295 | |
4296 | CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E, |
4297 | AddStmtChoice asc) { |
4298 | if (asc.alwaysAdd(builder&: *this, stmt: E)) { |
4299 | autoCreateBlock(); |
4300 | appendStmt(B: Block, S: E); |
4301 | } |
4302 | |
4303 | // VLA types have expressions that must be evaluated. |
4304 | // Evaluation is done only for `sizeof`. |
4305 | |
4306 | if (E->getKind() != UETT_SizeOf) |
4307 | return Block; |
4308 | |
4309 | CFGBlock *lastBlock = Block; |
4310 | |
4311 | if (E->isArgumentType()) { |
4312 | for (const VariableArrayType *VA =FindVA(t: E->getArgumentType().getTypePtr()); |
4313 | VA != nullptr; VA = FindVA(t: VA->getElementType().getTypePtr())) |
4314 | lastBlock = addStmt(S: VA->getSizeExpr()); |
4315 | } |
4316 | return lastBlock; |
4317 | } |
4318 | |
4319 | /// VisitStmtExpr - Utility method to handle (nested) statement |
4320 | /// expressions (a GCC extension). |
4321 | CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) { |
4322 | if (asc.alwaysAdd(builder&: *this, stmt: SE)) { |
4323 | autoCreateBlock(); |
4324 | appendStmt(B: Block, S: SE); |
4325 | } |
4326 | return VisitCompoundStmt(C: SE->getSubStmt(), /*ExternallyDestructed=*/true); |
4327 | } |
4328 | |
4329 | CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) { |
4330 | // "switch" is a control-flow statement. Thus we stop processing the current |
4331 | // block. |
4332 | CFGBlock *SwitchSuccessor = nullptr; |
4333 | |
4334 | // Save local scope position because in case of condition variable ScopePos |
4335 | // won't be restored when traversing AST. |
4336 | SaveAndRestore save_scope_pos(ScopePos); |
4337 | |
4338 | // Create local scope for C++17 switch init-stmt if one exists. |
4339 | if (Stmt *Init = Terminator->getInit()) |
4340 | addLocalScopeForStmt(S: Init); |
4341 | |
4342 | // Create local scope for possible condition variable. |
4343 | // Store scope position. Add implicit destructor. |
4344 | if (VarDecl *VD = Terminator->getConditionVariable()) |
4345 | addLocalScopeForVarDecl(VD); |
4346 | |
4347 | addAutomaticObjHandling(B: ScopePos, E: save_scope_pos.get(), S: Terminator); |
4348 | |
4349 | if (Block) { |
4350 | if (badCFG) |
4351 | return nullptr; |
4352 | SwitchSuccessor = Block; |
4353 | } else SwitchSuccessor = Succ; |
4354 | |
4355 | // Save the current "switch" context. |
4356 | SaveAndRestore save_switch(SwitchTerminatedBlock), |
4357 | save_default(DefaultCaseBlock); |
4358 | SaveAndRestore save_break(BreakJumpTarget); |
4359 | |
4360 | // Set the "default" case to be the block after the switch statement. If the |
4361 | // switch statement contains a "default:", this value will be overwritten with |
4362 | // the block for that code. |
4363 | DefaultCaseBlock = SwitchSuccessor; |
4364 | |
4365 | // Create a new block that will contain the switch statement. |
4366 | SwitchTerminatedBlock = createBlock(add_successor: false); |
4367 | |
4368 | // Now process the switch body. The code after the switch is the implicit |
4369 | // successor. |
4370 | Succ = SwitchSuccessor; |
4371 | BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos); |
4372 | |
4373 | // When visiting the body, the case statements should automatically get linked |
4374 | // up to the switch. We also don't keep a pointer to the body, since all |
4375 | // control-flow from the switch goes to case/default statements. |
4376 | assert(Terminator->getBody() && "switch must contain a non-NULL body" ); |
4377 | Block = nullptr; |
4378 | |
4379 | // For pruning unreachable case statements, save the current state |
4380 | // for tracking the condition value. |
4381 | SaveAndRestore save_switchExclusivelyCovered(switchExclusivelyCovered, false); |
4382 | |
4383 | // Determine if the switch condition can be explicitly evaluated. |
4384 | assert(Terminator->getCond() && "switch condition must be non-NULL" ); |
4385 | Expr::EvalResult result; |
4386 | bool b = tryEvaluate(S: Terminator->getCond(), outResult&: result); |
4387 | SaveAndRestore save_switchCond(switchCond, b ? &result : nullptr); |
4388 | |
4389 | // If body is not a compound statement create implicit scope |
4390 | // and add destructors. |
4391 | if (!isa<CompoundStmt>(Val: Terminator->getBody())) |
4392 | addLocalScopeAndDtors(S: Terminator->getBody()); |
4393 | |
4394 | addStmt(S: Terminator->getBody()); |
4395 | if (Block) { |
4396 | if (badCFG) |
4397 | return nullptr; |
4398 | } |
4399 | |
4400 | // If we have no "default:" case, the default transition is to the code |
4401 | // following the switch body. Moreover, take into account if all the |
4402 | // cases of a switch are covered (e.g., switching on an enum value). |
4403 | // |
4404 | // Note: We add a successor to a switch that is considered covered yet has no |
4405 | // case statements if the enumeration has no enumerators. |
4406 | bool SwitchAlwaysHasSuccessor = false; |
4407 | SwitchAlwaysHasSuccessor |= switchExclusivelyCovered; |
4408 | SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() && |
4409 | Terminator->getSwitchCaseList(); |
4410 | addSuccessor(B: SwitchTerminatedBlock, S: DefaultCaseBlock, |
4411 | IsReachable: !SwitchAlwaysHasSuccessor); |
4412 | |
4413 | // Add the terminator and condition in the switch block. |
4414 | SwitchTerminatedBlock->setTerminator(Terminator); |
4415 | Block = SwitchTerminatedBlock; |
4416 | CFGBlock *LastBlock = addStmt(S: Terminator->getCond()); |
4417 | |
4418 | // If the SwitchStmt contains a condition variable, add both the |
4419 | // SwitchStmt and the condition variable initialization to the CFG. |
4420 | if (VarDecl *VD = Terminator->getConditionVariable()) { |
4421 | if (Expr *Init = VD->getInit()) { |
4422 | autoCreateBlock(); |
4423 | appendStmt(B: Block, S: Terminator->getConditionVariableDeclStmt()); |
4424 | LastBlock = addStmt(S: Init); |
4425 | maybeAddScopeBeginForVarDecl(B: LastBlock, VD, S: Init); |
4426 | } |
4427 | } |
4428 | |
4429 | // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG. |
4430 | if (Stmt *Init = Terminator->getInit()) { |
4431 | autoCreateBlock(); |
4432 | LastBlock = addStmt(S: Init); |
4433 | } |
4434 | |
4435 | return LastBlock; |
4436 | } |
4437 | |
4438 | static bool shouldAddCase(bool &switchExclusivelyCovered, |
4439 | const Expr::EvalResult *switchCond, |
4440 | const CaseStmt *CS, |
4441 | ASTContext &Ctx) { |
4442 | if (!switchCond) |
4443 | return true; |
4444 | |
4445 | bool addCase = false; |
4446 | |
4447 | if (!switchExclusivelyCovered) { |
4448 | if (switchCond->Val.isInt()) { |
4449 | // Evaluate the LHS of the case value. |
4450 | const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx); |
4451 | const llvm::APSInt &condInt = switchCond->Val.getInt(); |
4452 | |
4453 | if (condInt == lhsInt) { |
4454 | addCase = true; |
4455 | switchExclusivelyCovered = true; |
4456 | } |
4457 | else if (condInt > lhsInt) { |
4458 | if (const Expr *RHS = CS->getRHS()) { |
4459 | // Evaluate the RHS of the case value. |
4460 | const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx); |
4461 | if (V2 >= condInt) { |
4462 | addCase = true; |
4463 | switchExclusivelyCovered = true; |
4464 | } |
4465 | } |
4466 | } |
4467 | } |
4468 | else |
4469 | addCase = true; |
4470 | } |
4471 | return addCase; |
4472 | } |
4473 | |
4474 | CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) { |
4475 | // CaseStmts are essentially labels, so they are the first statement in a |
4476 | // block. |
4477 | CFGBlock *TopBlock = nullptr, *LastBlock = nullptr; |
4478 | |
4479 | if (Stmt *Sub = CS->getSubStmt()) { |
4480 | // For deeply nested chains of CaseStmts, instead of doing a recursion |
4481 | // (which can blow out the stack), manually unroll and create blocks |
4482 | // along the way. |
4483 | while (isa<CaseStmt>(Val: Sub)) { |
4484 | CFGBlock *currentBlock = createBlock(add_successor: false); |
4485 | currentBlock->setLabel(CS); |
4486 | |
4487 | if (TopBlock) |
4488 | addSuccessor(B: LastBlock, S: currentBlock); |
4489 | else |
4490 | TopBlock = currentBlock; |
4491 | |
4492 | addSuccessor(B: SwitchTerminatedBlock, |
4493 | S: shouldAddCase(switchExclusivelyCovered, switchCond, |
4494 | CS, Ctx&: *Context) |
4495 | ? currentBlock : nullptr); |
4496 | |
4497 | LastBlock = currentBlock; |
4498 | CS = cast<CaseStmt>(Val: Sub); |
4499 | Sub = CS->getSubStmt(); |
4500 | } |
4501 | |
4502 | addStmt(S: Sub); |
4503 | } |
4504 | |
4505 | CFGBlock *CaseBlock = Block; |
4506 | if (!CaseBlock) |
4507 | CaseBlock = createBlock(); |
4508 | |
4509 | // Cases statements partition blocks, so this is the top of the basic block we |
4510 | // were processing (the "case XXX:" is the label). |
4511 | CaseBlock->setLabel(CS); |
4512 | |
4513 | if (badCFG) |
4514 | return nullptr; |
4515 | |
4516 | // Add this block to the list of successors for the block with the switch |
4517 | // statement. |
4518 | assert(SwitchTerminatedBlock); |
4519 | addSuccessor(B: SwitchTerminatedBlock, S: CaseBlock, |
4520 | IsReachable: shouldAddCase(switchExclusivelyCovered, switchCond, |
4521 | CS, Ctx&: *Context)); |
4522 | |
4523 | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
4524 | Block = nullptr; |
4525 | |
4526 | if (TopBlock) { |
4527 | addSuccessor(B: LastBlock, S: CaseBlock); |
4528 | Succ = TopBlock; |
4529 | } else { |
4530 | // This block is now the implicit successor of other blocks. |
4531 | Succ = CaseBlock; |
4532 | } |
4533 | |
4534 | return Succ; |
4535 | } |
4536 | |
4537 | CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) { |
4538 | if (Terminator->getSubStmt()) |
4539 | addStmt(S: Terminator->getSubStmt()); |
4540 | |
4541 | DefaultCaseBlock = Block; |
4542 | |
4543 | if (!DefaultCaseBlock) |
4544 | DefaultCaseBlock = createBlock(); |
4545 | |
4546 | // Default statements partition blocks, so this is the top of the basic block |
4547 | // we were processing (the "default:" is the label). |
4548 | DefaultCaseBlock->setLabel(Terminator); |
4549 | |
4550 | if (badCFG) |
4551 | return nullptr; |
4552 | |
4553 | // Unlike case statements, we don't add the default block to the successors |
4554 | // for the switch statement immediately. This is done when we finish |
4555 | // processing the switch statement. This allows for the default case |
4556 | // (including a fall-through to the code after the switch statement) to always |
4557 | // be the last successor of a switch-terminated block. |
4558 | |
4559 | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
4560 | Block = nullptr; |
4561 | |
4562 | // This block is now the implicit successor of other blocks. |
4563 | Succ = DefaultCaseBlock; |
4564 | |
4565 | return DefaultCaseBlock; |
4566 | } |
4567 | |
4568 | CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) { |
4569 | // "try"/"catch" is a control-flow statement. Thus we stop processing the |
4570 | // current block. |
4571 | CFGBlock *TrySuccessor = nullptr; |
4572 | |
4573 | if (Block) { |
4574 | if (badCFG) |
4575 | return nullptr; |
4576 | TrySuccessor = Block; |
4577 | } else |
4578 | TrySuccessor = Succ; |
4579 | |
4580 | CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock; |
4581 | |
4582 | // Create a new block that will contain the try statement. |
4583 | CFGBlock *NewTryTerminatedBlock = createBlock(add_successor: false); |
4584 | // Add the terminator in the try block. |
4585 | NewTryTerminatedBlock->setTerminator(Terminator); |
4586 | |
4587 | bool HasCatchAll = false; |
4588 | for (unsigned I = 0, E = Terminator->getNumHandlers(); I != E; ++I) { |
4589 | // The code after the try is the implicit successor. |
4590 | Succ = TrySuccessor; |
4591 | CXXCatchStmt *CS = Terminator->getHandler(i: I); |
4592 | if (CS->getExceptionDecl() == nullptr) { |
4593 | HasCatchAll = true; |
4594 | } |
4595 | Block = nullptr; |
4596 | CFGBlock *CatchBlock = VisitCXXCatchStmt(S: CS); |
4597 | if (!CatchBlock) |
4598 | return nullptr; |
4599 | // Add this block to the list of successors for the block with the try |
4600 | // statement. |
4601 | addSuccessor(B: NewTryTerminatedBlock, S: CatchBlock); |
4602 | } |
4603 | if (!HasCatchAll) { |
4604 | if (PrevTryTerminatedBlock) |
4605 | addSuccessor(B: NewTryTerminatedBlock, S: PrevTryTerminatedBlock); |
4606 | else |
4607 | addSuccessor(B: NewTryTerminatedBlock, S: &cfg->getExit()); |
4608 | } |
4609 | |
4610 | // The code after the try is the implicit successor. |
4611 | Succ = TrySuccessor; |
4612 | |
4613 | // Save the current "try" context. |
4614 | SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock); |
4615 | cfg->addTryDispatchBlock(block: TryTerminatedBlock); |
4616 | |
4617 | assert(Terminator->getTryBlock() && "try must contain a non-NULL body" ); |
4618 | Block = nullptr; |
4619 | return addStmt(S: Terminator->getTryBlock()); |
4620 | } |
4621 | |
4622 | CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) { |
4623 | // CXXCatchStmt are treated like labels, so they are the first statement in a |
4624 | // block. |
4625 | |
4626 | // Save local scope position because in case of exception variable ScopePos |
4627 | // won't be restored when traversing AST. |
4628 | SaveAndRestore save_scope_pos(ScopePos); |
4629 | |
4630 | // Create local scope for possible exception variable. |
4631 | // Store scope position. Add implicit destructor. |
4632 | if (VarDecl *VD = CS->getExceptionDecl()) { |
4633 | LocalScope::const_iterator BeginScopePos = ScopePos; |
4634 | addLocalScopeForVarDecl(VD); |
4635 | addAutomaticObjHandling(B: ScopePos, E: BeginScopePos, S: CS); |
4636 | } |
4637 | |
4638 | if (CS->getHandlerBlock()) |
4639 | addStmt(S: CS->getHandlerBlock()); |
4640 | |
4641 | CFGBlock *CatchBlock = Block; |
4642 | if (!CatchBlock) |
4643 | CatchBlock = createBlock(); |
4644 | |
4645 | // CXXCatchStmt is more than just a label. They have semantic meaning |
4646 | // as well, as they implicitly "initialize" the catch variable. Add |
4647 | // it to the CFG as a CFGElement so that the control-flow of these |
4648 | // semantics gets captured. |
4649 | appendStmt(B: CatchBlock, S: CS); |
4650 | |
4651 | // Also add the CXXCatchStmt as a label, to mirror handling of regular |
4652 | // labels. |
4653 | CatchBlock->setLabel(CS); |
4654 | |
4655 | // Bail out if the CFG is bad. |
4656 | if (badCFG) |
4657 | return nullptr; |
4658 | |
4659 | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
4660 | Block = nullptr; |
4661 | |
4662 | return CatchBlock; |
4663 | } |
4664 | |
4665 | CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) { |
4666 | // C++0x for-range statements are specified as [stmt.ranged]: |
4667 | // |
4668 | // { |
4669 | // auto && __range = range-init; |
4670 | // for ( auto __begin = begin-expr, |
4671 | // __end = end-expr; |
4672 | // __begin != __end; |
4673 | // ++__begin ) { |
4674 | // for-range-declaration = *__begin; |
4675 | // statement |
4676 | // } |
4677 | // } |
4678 | |
4679 | // Save local scope position before the addition of the implicit variables. |
4680 | SaveAndRestore save_scope_pos(ScopePos); |
4681 | |
4682 | // Create local scopes and destructors for range, begin and end variables. |
4683 | if (Stmt *Range = S->getRangeStmt()) |
4684 | addLocalScopeForStmt(S: Range); |
4685 | if (Stmt *Begin = S->getBeginStmt()) |
4686 | addLocalScopeForStmt(S: Begin); |
4687 | if (Stmt *End = S->getEndStmt()) |
4688 | addLocalScopeForStmt(S: End); |
4689 | addAutomaticObjHandling(B: ScopePos, E: save_scope_pos.get(), S); |
4690 | |
4691 | LocalScope::const_iterator ContinueScopePos = ScopePos; |
4692 | |
4693 | // "for" is a control-flow statement. Thus we stop processing the current |
4694 | // block. |
4695 | CFGBlock *LoopSuccessor = nullptr; |
4696 | if (Block) { |
4697 | if (badCFG) |
4698 | return nullptr; |
4699 | LoopSuccessor = Block; |
4700 | } else |
4701 | LoopSuccessor = Succ; |
4702 | |
4703 | // Save the current value for the break targets. |
4704 | // All breaks should go to the code following the loop. |
4705 | SaveAndRestore save_break(BreakJumpTarget); |
4706 | BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); |
4707 | |
4708 | // The block for the __begin != __end expression. |
4709 | CFGBlock *ConditionBlock = createBlock(add_successor: false); |
4710 | ConditionBlock->setTerminator(S); |
4711 | |
4712 | // Now add the actual condition to the condition block. |
4713 | if (Expr *C = S->getCond()) { |
4714 | Block = ConditionBlock; |
4715 | CFGBlock *BeginConditionBlock = addStmt(S: C); |
4716 | if (badCFG) |
4717 | return nullptr; |
4718 | assert(BeginConditionBlock == ConditionBlock && |
4719 | "condition block in for-range was unexpectedly complex" ); |
4720 | (void)BeginConditionBlock; |
4721 | } |
4722 | |
4723 | // The condition block is the implicit successor for the loop body as well as |
4724 | // any code above the loop. |
4725 | Succ = ConditionBlock; |
4726 | |
4727 | // See if this is a known constant. |
4728 | TryResult KnownVal(true); |
4729 | |
4730 | if (S->getCond()) |
4731 | KnownVal = tryEvaluateBool(S: S->getCond()); |
4732 | |
4733 | // Now create the loop body. |
4734 | { |
4735 | assert(S->getBody()); |
4736 | |
4737 | // Save the current values for Block, Succ, and continue targets. |
4738 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
4739 | SaveAndRestore save_continue(ContinueJumpTarget); |
4740 | |
4741 | // Generate increment code in its own basic block. This is the target of |
4742 | // continue statements. |
4743 | Block = nullptr; |
4744 | Succ = addStmt(S: S->getInc()); |
4745 | if (badCFG) |
4746 | return nullptr; |
4747 | ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos); |
4748 | |
4749 | // The starting block for the loop increment is the block that should |
4750 | // represent the 'loop target' for looping back to the start of the loop. |
4751 | ContinueJumpTarget.block->setLoopTarget(S); |
4752 | |
4753 | // Finish up the increment block and prepare to start the loop body. |
4754 | assert(Block); |
4755 | if (badCFG) |
4756 | return nullptr; |
4757 | Block = nullptr; |
4758 | |
4759 | // Add implicit scope and dtors for loop variable. |
4760 | addLocalScopeAndDtors(S: S->getLoopVarStmt()); |
4761 | |
4762 | // If body is not a compound statement create implicit scope |
4763 | // and add destructors. |
4764 | if (!isa<CompoundStmt>(Val: S->getBody())) |
4765 | addLocalScopeAndDtors(S: S->getBody()); |
4766 | |
4767 | // Populate a new block to contain the loop body and loop variable. |
4768 | addStmt(S: S->getBody()); |
4769 | |
4770 | if (badCFG) |
4771 | return nullptr; |
4772 | CFGBlock *LoopVarStmtBlock = addStmt(S: S->getLoopVarStmt()); |
4773 | if (badCFG) |
4774 | return nullptr; |
4775 | |
4776 | // This new body block is a successor to our condition block. |
4777 | addSuccessor(B: ConditionBlock, |
4778 | S: KnownVal.isFalse() ? nullptr : LoopVarStmtBlock); |
4779 | } |
4780 | |
4781 | // Link up the condition block with the code that follows the loop (the |
4782 | // false branch). |
4783 | addSuccessor(B: ConditionBlock, S: KnownVal.isTrue() ? nullptr : LoopSuccessor); |
4784 | |
4785 | // Add the initialization statements. |
4786 | Block = createBlock(); |
4787 | addStmt(S: S->getBeginStmt()); |
4788 | addStmt(S: S->getEndStmt()); |
4789 | CFGBlock *Head = addStmt(S: S->getRangeStmt()); |
4790 | if (S->getInit()) |
4791 | Head = addStmt(S: S->getInit()); |
4792 | return Head; |
4793 | } |
4794 | |
4795 | CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E, |
4796 | AddStmtChoice asc, bool ExternallyDestructed) { |
4797 | if (BuildOpts.AddTemporaryDtors) { |
4798 | // If adding implicit destructors visit the full expression for adding |
4799 | // destructors of temporaries. |
4800 | TempDtorContext Context; |
4801 | VisitForTemporaryDtors(E: E->getSubExpr(), ExternallyDestructed, Context); |
4802 | |
4803 | // Full expression has to be added as CFGStmt so it will be sequenced |
4804 | // before destructors of it's temporaries. |
4805 | asc = asc.withAlwaysAdd(alwaysAdd: true); |
4806 | } |
4807 | return Visit(S: E->getSubExpr(), asc); |
4808 | } |
4809 | |
4810 | CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E, |
4811 | AddStmtChoice asc) { |
4812 | if (asc.alwaysAdd(builder&: *this, stmt: E)) { |
4813 | autoCreateBlock(); |
4814 | appendStmt(B: Block, S: E); |
4815 | |
4816 | findConstructionContexts( |
4817 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), Item: E), |
4818 | Child: E->getSubExpr()); |
4819 | |
4820 | // We do not want to propagate the AlwaysAdd property. |
4821 | asc = asc.withAlwaysAdd(alwaysAdd: false); |
4822 | } |
4823 | return Visit(S: E->getSubExpr(), asc); |
4824 | } |
4825 | |
4826 | CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C, |
4827 | AddStmtChoice asc) { |
4828 | // If the constructor takes objects as arguments by value, we need to properly |
4829 | // construct these objects. Construction contexts we find here aren't for the |
4830 | // constructor C, they're for its arguments only. |
4831 | findConstructionContextsForArguments(E: C); |
4832 | |
4833 | autoCreateBlock(); |
4834 | appendConstructor(B: Block, CE: C); |
4835 | |
4836 | return VisitChildren(S: C); |
4837 | } |
4838 | |
4839 | CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE, |
4840 | AddStmtChoice asc) { |
4841 | autoCreateBlock(); |
4842 | appendStmt(B: Block, S: NE); |
4843 | |
4844 | findConstructionContexts( |
4845 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), Item: NE), |
4846 | Child: const_cast<CXXConstructExpr *>(NE->getConstructExpr())); |
4847 | |
4848 | if (NE->getInitializer()) |
4849 | Block = Visit(S: NE->getInitializer()); |
4850 | |
4851 | if (BuildOpts.AddCXXNewAllocator) |
4852 | appendNewAllocator(B: Block, NE); |
4853 | |
4854 | if (NE->isArray() && *NE->getArraySize()) |
4855 | Block = Visit(S: *NE->getArraySize()); |
4856 | |
4857 | for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(), |
4858 | E = NE->placement_arg_end(); I != E; ++I) |
4859 | Block = Visit(S: *I); |
4860 | |
4861 | return Block; |
4862 | } |
4863 | |
4864 | CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE, |
4865 | AddStmtChoice asc) { |
4866 | autoCreateBlock(); |
4867 | appendStmt(B: Block, S: DE); |
4868 | QualType DTy = DE->getDestroyedType(); |
4869 | if (!DTy.isNull()) { |
4870 | DTy = DTy.getNonReferenceType(); |
4871 | CXXRecordDecl *RD = Context->getBaseElementType(QT: DTy)->getAsCXXRecordDecl(); |
4872 | if (RD) { |
4873 | if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor()) |
4874 | appendDeleteDtor(B: Block, RD, DE); |
4875 | } |
4876 | } |
4877 | |
4878 | return VisitChildren(S: DE); |
4879 | } |
4880 | |
4881 | CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E, |
4882 | AddStmtChoice asc) { |
4883 | if (asc.alwaysAdd(builder&: *this, stmt: E)) { |
4884 | autoCreateBlock(); |
4885 | appendStmt(B: Block, S: E); |
4886 | // We do not want to propagate the AlwaysAdd property. |
4887 | asc = asc.withAlwaysAdd(alwaysAdd: false); |
4888 | } |
4889 | return Visit(S: E->getSubExpr(), asc); |
4890 | } |
4891 | |
4892 | CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C, |
4893 | AddStmtChoice asc) { |
4894 | // If the constructor takes objects as arguments by value, we need to properly |
4895 | // construct these objects. Construction contexts we find here aren't for the |
4896 | // constructor C, they're for its arguments only. |
4897 | findConstructionContextsForArguments(E: C); |
4898 | |
4899 | autoCreateBlock(); |
4900 | appendConstructor(B: Block, CE: C); |
4901 | return VisitChildren(S: C); |
4902 | } |
4903 | |
4904 | CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E, |
4905 | AddStmtChoice asc) { |
4906 | if (asc.alwaysAdd(builder&: *this, stmt: E)) { |
4907 | autoCreateBlock(); |
4908 | appendStmt(B: Block, S: E); |
4909 | } |
4910 | |
4911 | if (E->getCastKind() == CK_IntegralToBoolean) |
4912 | tryEvaluateBool(S: E->getSubExpr()->IgnoreParens()); |
4913 | |
4914 | return Visit(S: E->getSubExpr(), asc: AddStmtChoice()); |
4915 | } |
4916 | |
4917 | CFGBlock *CFGBuilder::VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc) { |
4918 | return Visit(S: E->getSubExpr(), asc: AddStmtChoice()); |
4919 | } |
4920 | |
4921 | CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) { |
4922 | // Lazily create the indirect-goto dispatch block if there isn't one already. |
4923 | CFGBlock *IBlock = cfg->getIndirectGotoBlock(); |
4924 | |
4925 | if (!IBlock) { |
4926 | IBlock = createBlock(add_successor: false); |
4927 | cfg->setIndirectGotoBlock(IBlock); |
4928 | } |
4929 | |
4930 | // IndirectGoto is a control-flow statement. Thus we stop processing the |
4931 | // current block and create a new one. |
4932 | if (badCFG) |
4933 | return nullptr; |
4934 | |
4935 | Block = createBlock(add_successor: false); |
4936 | Block->setTerminator(I); |
4937 | addSuccessor(B: Block, S: IBlock); |
4938 | return addStmt(S: I->getTarget()); |
4939 | } |
4940 | |
4941 | CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed, |
4942 | TempDtorContext &Context) { |
4943 | assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors); |
4944 | |
4945 | tryAgain: |
4946 | if (!E) { |
4947 | badCFG = true; |
4948 | return nullptr; |
4949 | } |
4950 | switch (E->getStmtClass()) { |
4951 | default: |
4952 | return VisitChildrenForTemporaryDtors(E, ExternallyDestructed: false, Context); |
4953 | |
4954 | case Stmt::InitListExprClass: |
4955 | return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context); |
4956 | |
4957 | case Stmt::BinaryOperatorClass: |
4958 | return VisitBinaryOperatorForTemporaryDtors(E: cast<BinaryOperator>(Val: E), |
4959 | ExternallyDestructed, |
4960 | Context); |
4961 | |
4962 | case Stmt::CXXBindTemporaryExprClass: |
4963 | return VisitCXXBindTemporaryExprForTemporaryDtors( |
4964 | E: cast<CXXBindTemporaryExpr>(Val: E), ExternallyDestructed, Context); |
4965 | |
4966 | case Stmt::BinaryConditionalOperatorClass: |
4967 | case Stmt::ConditionalOperatorClass: |
4968 | return VisitConditionalOperatorForTemporaryDtors( |
4969 | E: cast<AbstractConditionalOperator>(Val: E), ExternallyDestructed, Context); |
4970 | |
4971 | case Stmt::ImplicitCastExprClass: |
4972 | // For implicit cast we want ExternallyDestructed to be passed further. |
4973 | E = cast<CastExpr>(Val: E)->getSubExpr(); |
4974 | goto tryAgain; |
4975 | |
4976 | case Stmt::CXXFunctionalCastExprClass: |
4977 | // For functional cast we want ExternallyDestructed to be passed further. |
4978 | E = cast<CXXFunctionalCastExpr>(Val: E)->getSubExpr(); |
4979 | goto tryAgain; |
4980 | |
4981 | case Stmt::ConstantExprClass: |
4982 | E = cast<ConstantExpr>(Val: E)->getSubExpr(); |
4983 | goto tryAgain; |
4984 | |
4985 | case Stmt::ParenExprClass: |
4986 | E = cast<ParenExpr>(Val: E)->getSubExpr(); |
4987 | goto tryAgain; |
4988 | |
4989 | case Stmt::MaterializeTemporaryExprClass: { |
4990 | const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(Val: E); |
4991 | ExternallyDestructed = (MTE->getStorageDuration() != SD_FullExpression); |
4992 | SmallVector<const Expr *, 2> CommaLHSs; |
4993 | SmallVector<SubobjectAdjustment, 2> Adjustments; |
4994 | // Find the expression whose lifetime needs to be extended. |
4995 | E = const_cast<Expr *>( |
4996 | cast<MaterializeTemporaryExpr>(Val: E) |
4997 | ->getSubExpr() |
4998 | ->skipRValueSubobjectAdjustments(CommaLHS&: CommaLHSs, Adjustments)); |
4999 | // Visit the skipped comma operator left-hand sides for other temporaries. |
5000 | for (const Expr *CommaLHS : CommaLHSs) { |
5001 | VisitForTemporaryDtors(E: const_cast<Expr *>(CommaLHS), |
5002 | /*ExternallyDestructed=*/false, Context); |
5003 | } |
5004 | goto tryAgain; |
5005 | } |
5006 | |
5007 | case Stmt::BlockExprClass: |
5008 | // Don't recurse into blocks; their subexpressions don't get evaluated |
5009 | // here. |
5010 | return Block; |
5011 | |
5012 | case Stmt::LambdaExprClass: { |
5013 | // For lambda expressions, only recurse into the capture initializers, |
5014 | // and not the body. |
5015 | auto *LE = cast<LambdaExpr>(Val: E); |
5016 | CFGBlock *B = Block; |
5017 | for (Expr *Init : LE->capture_inits()) { |
5018 | if (Init) { |
5019 | if (CFGBlock *R = VisitForTemporaryDtors( |
5020 | E: Init, /*ExternallyDestructed=*/true, Context)) |
5021 | B = R; |
5022 | } |
5023 | } |
5024 | return B; |
5025 | } |
5026 | |
5027 | case Stmt::StmtExprClass: |
5028 | // Don't recurse into statement expressions; any cleanups inside them |
5029 | // will be wrapped in their own ExprWithCleanups. |
5030 | return Block; |
5031 | |
5032 | case Stmt::CXXDefaultArgExprClass: |
5033 | E = cast<CXXDefaultArgExpr>(Val: E)->getExpr(); |
5034 | goto tryAgain; |
5035 | |
5036 | case Stmt::CXXDefaultInitExprClass: |
5037 | E = cast<CXXDefaultInitExpr>(Val: E)->getExpr(); |
5038 | goto tryAgain; |
5039 | } |
5040 | } |
5041 | |
5042 | CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E, |
5043 | bool ExternallyDestructed, |
5044 | TempDtorContext &Context) { |
5045 | if (isa<LambdaExpr>(Val: E)) { |
5046 | // Do not visit the children of lambdas; they have their own CFGs. |
5047 | return Block; |
5048 | } |
5049 | |
5050 | // When visiting children for destructors we want to visit them in reverse |
5051 | // order that they will appear in the CFG. Because the CFG is built |
5052 | // bottom-up, this means we visit them in their natural order, which |
5053 | // reverses them in the CFG. |
5054 | CFGBlock *B = Block; |
5055 | for (Stmt *Child : E->children()) |
5056 | if (Child) |
5057 | if (CFGBlock *R = VisitForTemporaryDtors(E: Child, ExternallyDestructed, Context)) |
5058 | B = R; |
5059 | |
5060 | return B; |
5061 | } |
5062 | |
5063 | CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors( |
5064 | BinaryOperator *E, bool ExternallyDestructed, TempDtorContext &Context) { |
5065 | if (E->isCommaOp()) { |
5066 | // For the comma operator, the LHS expression is evaluated before the RHS |
5067 | // expression, so prepend temporary destructors for the LHS first. |
5068 | CFGBlock *LHSBlock = VisitForTemporaryDtors(E: E->getLHS(), ExternallyDestructed: false, Context); |
5069 | CFGBlock *RHSBlock = VisitForTemporaryDtors(E: E->getRHS(), ExternallyDestructed, Context); |
5070 | return RHSBlock ? RHSBlock : LHSBlock; |
5071 | } |
5072 | |
5073 | if (E->isLogicalOp()) { |
5074 | VisitForTemporaryDtors(E: E->getLHS(), ExternallyDestructed: false, Context); |
5075 | TryResult RHSExecuted = tryEvaluateBool(S: E->getLHS()); |
5076 | if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr) |
5077 | RHSExecuted.negate(); |
5078 | |
5079 | // We do not know at CFG-construction time whether the right-hand-side was |
5080 | // executed, thus we add a branch node that depends on the temporary |
5081 | // constructor call. |
5082 | TempDtorContext RHSContext( |
5083 | bothKnownTrue(R1: Context.KnownExecuted, R2: RHSExecuted)); |
5084 | VisitForTemporaryDtors(E: E->getRHS(), ExternallyDestructed: false, Context&: RHSContext); |
5085 | InsertTempDtorDecisionBlock(Context: RHSContext); |
5086 | |
5087 | return Block; |
5088 | } |
5089 | |
5090 | if (E->isAssignmentOp()) { |
5091 | // For assignment operators, the RHS expression is evaluated before the LHS |
5092 | // expression, so prepend temporary destructors for the RHS first. |
5093 | CFGBlock *RHSBlock = VisitForTemporaryDtors(E: E->getRHS(), ExternallyDestructed: false, Context); |
5094 | CFGBlock *LHSBlock = VisitForTemporaryDtors(E: E->getLHS(), ExternallyDestructed: false, Context); |
5095 | return LHSBlock ? LHSBlock : RHSBlock; |
5096 | } |
5097 | |
5098 | // Any other operator is visited normally. |
5099 | return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context); |
5100 | } |
5101 | |
5102 | CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors( |
5103 | CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context) { |
5104 | // First add destructors for temporaries in subexpression. |
5105 | // Because VisitCXXBindTemporaryExpr calls setDestructed: |
5106 | CFGBlock *B = VisitForTemporaryDtors(E: E->getSubExpr(), ExternallyDestructed: true, Context); |
5107 | if (!ExternallyDestructed) { |
5108 | // If lifetime of temporary is not prolonged (by assigning to constant |
5109 | // reference) add destructor for it. |
5110 | |
5111 | const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor(); |
5112 | |
5113 | if (Dtor->getParent()->isAnyDestructorNoReturn()) { |
5114 | // If the destructor is marked as a no-return destructor, we need to |
5115 | // create a new block for the destructor which does not have as a |
5116 | // successor anything built thus far. Control won't flow out of this |
5117 | // block. |
5118 | if (B) Succ = B; |
5119 | Block = createNoReturnBlock(); |
5120 | } else if (Context.needsTempDtorBranch()) { |
5121 | // If we need to introduce a branch, we add a new block that we will hook |
5122 | // up to a decision block later. |
5123 | if (B) Succ = B; |
5124 | Block = createBlock(); |
5125 | } else { |
5126 | autoCreateBlock(); |
5127 | } |
5128 | if (Context.needsTempDtorBranch()) { |
5129 | Context.setDecisionPoint(S: Succ, E); |
5130 | } |
5131 | appendTemporaryDtor(B: Block, E); |
5132 | |
5133 | B = Block; |
5134 | } |
5135 | return B; |
5136 | } |
5137 | |
5138 | void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context, |
5139 | CFGBlock *FalseSucc) { |
5140 | if (!Context.TerminatorExpr) { |
5141 | // If no temporary was found, we do not need to insert a decision point. |
5142 | return; |
5143 | } |
5144 | assert(Context.TerminatorExpr); |
5145 | CFGBlock *Decision = createBlock(add_successor: false); |
5146 | Decision->setTerminator(CFGTerminator(Context.TerminatorExpr, |
5147 | CFGTerminator::TemporaryDtorsBranch)); |
5148 | addSuccessor(B: Decision, S: Block, IsReachable: !Context.KnownExecuted.isFalse()); |
5149 | addSuccessor(B: Decision, S: FalseSucc ? FalseSucc : Context.Succ, |
5150 | IsReachable: !Context.KnownExecuted.isTrue()); |
5151 | Block = Decision; |
5152 | } |
5153 | |
5154 | CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors( |
5155 | AbstractConditionalOperator *E, bool ExternallyDestructed, |
5156 | TempDtorContext &Context) { |
5157 | VisitForTemporaryDtors(E: E->getCond(), ExternallyDestructed: false, Context); |
5158 | CFGBlock *ConditionBlock = Block; |
5159 | CFGBlock *ConditionSucc = Succ; |
5160 | TryResult ConditionVal = tryEvaluateBool(S: E->getCond()); |
5161 | TryResult NegatedVal = ConditionVal; |
5162 | if (NegatedVal.isKnown()) NegatedVal.negate(); |
5163 | |
5164 | TempDtorContext TrueContext( |
5165 | bothKnownTrue(R1: Context.KnownExecuted, R2: ConditionVal)); |
5166 | VisitForTemporaryDtors(E: E->getTrueExpr(), ExternallyDestructed, Context&: TrueContext); |
5167 | CFGBlock *TrueBlock = Block; |
5168 | |
5169 | Block = ConditionBlock; |
5170 | Succ = ConditionSucc; |
5171 | TempDtorContext FalseContext( |
5172 | bothKnownTrue(R1: Context.KnownExecuted, R2: NegatedVal)); |
5173 | VisitForTemporaryDtors(E: E->getFalseExpr(), ExternallyDestructed, Context&: FalseContext); |
5174 | |
5175 | if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) { |
5176 | InsertTempDtorDecisionBlock(Context: FalseContext, FalseSucc: TrueBlock); |
5177 | } else if (TrueContext.TerminatorExpr) { |
5178 | Block = TrueBlock; |
5179 | InsertTempDtorDecisionBlock(Context: TrueContext); |
5180 | } else { |
5181 | InsertTempDtorDecisionBlock(Context: FalseContext); |
5182 | } |
5183 | return Block; |
5184 | } |
5185 | |
5186 | CFGBlock *CFGBuilder::VisitOMPExecutableDirective(OMPExecutableDirective *D, |
5187 | AddStmtChoice asc) { |
5188 | if (asc.alwaysAdd(builder&: *this, stmt: D)) { |
5189 | autoCreateBlock(); |
5190 | appendStmt(B: Block, S: D); |
5191 | } |
5192 | |
5193 | // Iterate over all used expression in clauses. |
5194 | CFGBlock *B = Block; |
5195 | |
5196 | // Reverse the elements to process them in natural order. Iterators are not |
5197 | // bidirectional, so we need to create temp vector. |
5198 | SmallVector<Stmt *, 8> Used( |
5199 | OMPExecutableDirective::used_clauses_children(Clauses: D->clauses())); |
5200 | for (Stmt *S : llvm::reverse(C&: Used)) { |
5201 | assert(S && "Expected non-null used-in-clause child." ); |
5202 | if (CFGBlock *R = Visit(S)) |
5203 | B = R; |
5204 | } |
5205 | // Visit associated structured block if any. |
5206 | if (!D->isStandaloneDirective()) { |
5207 | Stmt *S = D->getRawStmt(); |
5208 | if (!isa<CompoundStmt>(Val: S)) |
5209 | addLocalScopeAndDtors(S); |
5210 | if (CFGBlock *R = addStmt(S)) |
5211 | B = R; |
5212 | } |
5213 | |
5214 | return B; |
5215 | } |
5216 | |
5217 | /// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has |
5218 | /// no successors or predecessors. If this is the first block created in the |
5219 | /// CFG, it is automatically set to be the Entry and Exit of the CFG. |
5220 | CFGBlock *CFG::createBlock() { |
5221 | bool first_block = begin() == end(); |
5222 | |
5223 | // Create the block. |
5224 | CFGBlock *Mem = new (getAllocator()) CFGBlock(NumBlockIDs++, BlkBVC, this); |
5225 | Blocks.push_back(Elt: Mem, C&: BlkBVC); |
5226 | |
5227 | // If this is the first block, set it as the Entry and Exit. |
5228 | if (first_block) |
5229 | Entry = Exit = &back(); |
5230 | |
5231 | // Return the block. |
5232 | return &back(); |
5233 | } |
5234 | |
5235 | /// buildCFG - Constructs a CFG from an AST. |
5236 | std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement, |
5237 | ASTContext *C, const BuildOptions &BO) { |
5238 | CFGBuilder Builder(C, BO); |
5239 | return Builder.buildCFG(D, Statement); |
5240 | } |
5241 | |
5242 | bool CFG::isLinear() const { |
5243 | // Quick path: if we only have the ENTRY block, the EXIT block, and some code |
5244 | // in between, then we have no room for control flow. |
5245 | if (size() <= 3) |
5246 | return true; |
5247 | |
5248 | // Traverse the CFG until we find a branch. |
5249 | // TODO: While this should still be very fast, |
5250 | // maybe we should cache the answer. |
5251 | llvm::SmallPtrSet<const CFGBlock *, 4> Visited; |
5252 | const CFGBlock *B = Entry; |
5253 | while (B != Exit) { |
5254 | auto IteratorAndFlag = Visited.insert(Ptr: B); |
5255 | if (!IteratorAndFlag.second) { |
5256 | // We looped back to a block that we've already visited. Not linear. |
5257 | return false; |
5258 | } |
5259 | |
5260 | // Iterate over reachable successors. |
5261 | const CFGBlock *FirstReachableB = nullptr; |
5262 | for (const CFGBlock::AdjacentBlock &AB : B->succs()) { |
5263 | if (!AB.isReachable()) |
5264 | continue; |
5265 | |
5266 | if (FirstReachableB == nullptr) { |
5267 | FirstReachableB = &*AB; |
5268 | } else { |
5269 | // We've encountered a branch. It's not a linear CFG. |
5270 | return false; |
5271 | } |
5272 | } |
5273 | |
5274 | if (!FirstReachableB) { |
5275 | // We reached a dead end. EXIT is unreachable. This is linear enough. |
5276 | return true; |
5277 | } |
5278 | |
5279 | // There's only one way to move forward. Proceed. |
5280 | B = FirstReachableB; |
5281 | } |
5282 | |
5283 | // We reached EXIT and found no branches. |
5284 | return true; |
5285 | } |
5286 | |
5287 | const CXXDestructorDecl * |
5288 | CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const { |
5289 | switch (getKind()) { |
5290 | case CFGElement::Initializer: |
5291 | case CFGElement::NewAllocator: |
5292 | case CFGElement::LoopExit: |
5293 | case CFGElement::LifetimeEnds: |
5294 | case CFGElement::Statement: |
5295 | case CFGElement::Constructor: |
5296 | case CFGElement::CXXRecordTypedCall: |
5297 | case CFGElement::ScopeBegin: |
5298 | case CFGElement::ScopeEnd: |
5299 | case CFGElement::CleanupFunction: |
5300 | llvm_unreachable("getDestructorDecl should only be used with " |
5301 | "ImplicitDtors" ); |
5302 | case CFGElement::AutomaticObjectDtor: { |
5303 | const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl(); |
5304 | QualType ty = var->getType(); |
5305 | |
5306 | // FIXME: See CFGBuilder::addLocalScopeForVarDecl. |
5307 | // |
5308 | // Lifetime-extending constructs are handled here. This works for a single |
5309 | // temporary in an initializer expression. |
5310 | if (ty->isReferenceType()) { |
5311 | if (const Expr *Init = var->getInit()) { |
5312 | ty = getReferenceInitTemporaryType(Init); |
5313 | } |
5314 | } |
5315 | |
5316 | while (const ArrayType *arrayType = astContext.getAsArrayType(T: ty)) { |
5317 | ty = arrayType->getElementType(); |
5318 | } |
5319 | |
5320 | // The situation when the type of the lifetime-extending reference |
5321 | // does not correspond to the type of the object is supposed |
5322 | // to be handled by now. In particular, 'ty' is now the unwrapped |
5323 | // record type. |
5324 | const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl(); |
5325 | assert(classDecl); |
5326 | return classDecl->getDestructor(); |
5327 | } |
5328 | case CFGElement::DeleteDtor: { |
5329 | const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr(); |
5330 | QualType DTy = DE->getDestroyedType(); |
5331 | DTy = DTy.getNonReferenceType(); |
5332 | const CXXRecordDecl *classDecl = |
5333 | astContext.getBaseElementType(QT: DTy)->getAsCXXRecordDecl(); |
5334 | return classDecl->getDestructor(); |
5335 | } |
5336 | case CFGElement::TemporaryDtor: { |
5337 | const CXXBindTemporaryExpr *bindExpr = |
5338 | castAs<CFGTemporaryDtor>().getBindTemporaryExpr(); |
5339 | const CXXTemporary *temp = bindExpr->getTemporary(); |
5340 | return temp->getDestructor(); |
5341 | } |
5342 | case CFGElement::MemberDtor: { |
5343 | const FieldDecl *field = castAs<CFGMemberDtor>().getFieldDecl(); |
5344 | QualType ty = field->getType(); |
5345 | |
5346 | while (const ArrayType *arrayType = astContext.getAsArrayType(T: ty)) { |
5347 | ty = arrayType->getElementType(); |
5348 | } |
5349 | |
5350 | const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl(); |
5351 | assert(classDecl); |
5352 | return classDecl->getDestructor(); |
5353 | } |
5354 | case CFGElement::BaseDtor: |
5355 | // Not yet supported. |
5356 | return nullptr; |
5357 | } |
5358 | llvm_unreachable("getKind() returned bogus value" ); |
5359 | } |
5360 | |
5361 | //===----------------------------------------------------------------------===// |
5362 | // CFGBlock operations. |
5363 | //===----------------------------------------------------------------------===// |
5364 | |
5365 | CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable) |
5366 | : ReachableBlock(IsReachable ? B : nullptr), |
5367 | UnreachableBlock(!IsReachable ? B : nullptr, |
5368 | B && IsReachable ? AB_Normal : AB_Unreachable) {} |
5369 | |
5370 | CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock) |
5371 | : ReachableBlock(B), |
5372 | UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock, |
5373 | B == AlternateBlock ? AB_Alternate : AB_Normal) {} |
5374 | |
5375 | void CFGBlock::addSuccessor(AdjacentBlock Succ, |
5376 | BumpVectorContext &C) { |
5377 | if (CFGBlock *B = Succ.getReachableBlock()) |
5378 | B->Preds.push_back(Elt: AdjacentBlock(this, Succ.isReachable()), C); |
5379 | |
5380 | if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock()) |
5381 | UnreachableB->Preds.push_back(Elt: AdjacentBlock(this, false), C); |
5382 | |
5383 | Succs.push_back(Elt: Succ, C); |
5384 | } |
5385 | |
5386 | bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F, |
5387 | const CFGBlock *From, const CFGBlock *To) { |
5388 | if (F.IgnoreNullPredecessors && !From) |
5389 | return true; |
5390 | |
5391 | if (To && From && F.IgnoreDefaultsWithCoveredEnums) { |
5392 | // If the 'To' has no label or is labeled but the label isn't a |
5393 | // CaseStmt then filter this edge. |
5394 | if (const SwitchStmt *S = |
5395 | dyn_cast_or_null<SwitchStmt>(Val: From->getTerminatorStmt())) { |
5396 | if (S->isAllEnumCasesCovered()) { |
5397 | const Stmt *L = To->getLabel(); |
5398 | if (!L || !isa<CaseStmt>(Val: L)) |
5399 | return true; |
5400 | } |
5401 | } |
5402 | } |
5403 | |
5404 | return false; |
5405 | } |
5406 | |
5407 | //===----------------------------------------------------------------------===// |
5408 | // CFG pretty printing |
5409 | //===----------------------------------------------------------------------===// |
5410 | |
5411 | namespace { |
5412 | |
5413 | class StmtPrinterHelper : public PrinterHelper { |
5414 | using StmtMapTy = llvm::DenseMap<const Stmt *, std::pair<unsigned, unsigned>>; |
5415 | using DeclMapTy = llvm::DenseMap<const Decl *, std::pair<unsigned, unsigned>>; |
5416 | |
5417 | StmtMapTy StmtMap; |
5418 | DeclMapTy DeclMap; |
5419 | signed currentBlock = 0; |
5420 | unsigned currStmt = 0; |
5421 | const LangOptions &LangOpts; |
5422 | |
5423 | public: |
5424 | StmtPrinterHelper(const CFG* cfg, const LangOptions &LO) |
5425 | : LangOpts(LO) { |
5426 | if (!cfg) |
5427 | return; |
5428 | for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) { |
5429 | unsigned j = 1; |
5430 | for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ; |
5431 | BI != BEnd; ++BI, ++j ) { |
5432 | if (std::optional<CFGStmt> SE = BI->getAs<CFGStmt>()) { |
5433 | const Stmt *stmt= SE->getStmt(); |
5434 | std::pair<unsigned, unsigned> P((*I)->getBlockID(), j); |
5435 | StmtMap[stmt] = P; |
5436 | |
5437 | switch (stmt->getStmtClass()) { |
5438 | case Stmt::DeclStmtClass: |
5439 | DeclMap[cast<DeclStmt>(Val: stmt)->getSingleDecl()] = P; |
5440 | break; |
5441 | case Stmt::IfStmtClass: { |
5442 | const VarDecl *var = cast<IfStmt>(Val: stmt)->getConditionVariable(); |
5443 | if (var) |
5444 | DeclMap[var] = P; |
5445 | break; |
5446 | } |
5447 | case Stmt::ForStmtClass: { |
5448 | const VarDecl *var = cast<ForStmt>(Val: stmt)->getConditionVariable(); |
5449 | if (var) |
5450 | DeclMap[var] = P; |
5451 | break; |
5452 | } |
5453 | case Stmt::WhileStmtClass: { |
5454 | const VarDecl *var = |
5455 | cast<WhileStmt>(Val: stmt)->getConditionVariable(); |
5456 | if (var) |
5457 | DeclMap[var] = P; |
5458 | break; |
5459 | } |
5460 | case Stmt::SwitchStmtClass: { |
5461 | const VarDecl *var = |
5462 | cast<SwitchStmt>(Val: stmt)->getConditionVariable(); |
5463 | if (var) |
5464 | DeclMap[var] = P; |
5465 | break; |
5466 | } |
5467 | case Stmt::CXXCatchStmtClass: { |
5468 | const VarDecl *var = |
5469 | cast<CXXCatchStmt>(Val: stmt)->getExceptionDecl(); |
5470 | if (var) |
5471 | DeclMap[var] = P; |
5472 | break; |
5473 | } |
5474 | default: |
5475 | break; |
5476 | } |
5477 | } |
5478 | } |
5479 | } |
5480 | } |
5481 | |
5482 | ~StmtPrinterHelper() override = default; |
5483 | |
5484 | const LangOptions &getLangOpts() const { return LangOpts; } |
5485 | void setBlockID(signed i) { currentBlock = i; } |
5486 | void setStmtID(unsigned i) { currStmt = i; } |
5487 | |
5488 | bool handledStmt(Stmt *S, raw_ostream &OS) override { |
5489 | StmtMapTy::iterator I = StmtMap.find(Val: S); |
5490 | |
5491 | if (I == StmtMap.end()) |
5492 | return false; |
5493 | |
5494 | if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock |
5495 | && I->second.second == currStmt) { |
5496 | return false; |
5497 | } |
5498 | |
5499 | OS << "[B" << I->second.first << "." << I->second.second << "]" ; |
5500 | return true; |
5501 | } |
5502 | |
5503 | bool handleDecl(const Decl *D, raw_ostream &OS) { |
5504 | DeclMapTy::iterator I = DeclMap.find(Val: D); |
5505 | |
5506 | if (I == DeclMap.end()) |
5507 | return false; |
5508 | |
5509 | if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock |
5510 | && I->second.second == currStmt) { |
5511 | return false; |
5512 | } |
5513 | |
5514 | OS << "[B" << I->second.first << "." << I->second.second << "]" ; |
5515 | return true; |
5516 | } |
5517 | }; |
5518 | |
5519 | class CFGBlockTerminatorPrint |
5520 | : public StmtVisitor<CFGBlockTerminatorPrint,void> { |
5521 | raw_ostream &OS; |
5522 | StmtPrinterHelper* Helper; |
5523 | PrintingPolicy Policy; |
5524 | |
5525 | public: |
5526 | CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper, |
5527 | const PrintingPolicy &Policy) |
5528 | : OS(os), Helper(helper), Policy(Policy) { |
5529 | this->Policy.IncludeNewlines = false; |
5530 | } |
5531 | |
5532 | void VisitIfStmt(IfStmt *I) { |
5533 | OS << "if " ; |
5534 | if (Stmt *C = I->getCond()) |
5535 | C->printPretty(OS, Helper, Policy); |
5536 | } |
5537 | |
5538 | // Default case. |
5539 | void VisitStmt(Stmt *Terminator) { |
5540 | Terminator->printPretty(OS, Helper, Policy); |
5541 | } |
5542 | |
5543 | void VisitDeclStmt(DeclStmt *DS) { |
5544 | VarDecl *VD = cast<VarDecl>(Val: DS->getSingleDecl()); |
5545 | OS << "static init " << VD->getName(); |
5546 | } |
5547 | |
5548 | void VisitForStmt(ForStmt *F) { |
5549 | OS << "for (" ; |
5550 | if (F->getInit()) |
5551 | OS << "..." ; |
5552 | OS << "; " ; |
5553 | if (Stmt *C = F->getCond()) |
5554 | C->printPretty(OS, Helper, Policy); |
5555 | OS << "; " ; |
5556 | if (F->getInc()) |
5557 | OS << "..." ; |
5558 | OS << ")" ; |
5559 | } |
5560 | |
5561 | void VisitWhileStmt(WhileStmt *W) { |
5562 | OS << "while " ; |
5563 | if (Stmt *C = W->getCond()) |
5564 | C->printPretty(OS, Helper, Policy); |
5565 | } |
5566 | |
5567 | void VisitDoStmt(DoStmt *D) { |
5568 | OS << "do ... while " ; |
5569 | if (Stmt *C = D->getCond()) |
5570 | C->printPretty(OS, Helper, Policy); |
5571 | } |
5572 | |
5573 | void VisitSwitchStmt(SwitchStmt *Terminator) { |
5574 | OS << "switch " ; |
5575 | Terminator->getCond()->printPretty(OS, Helper, Policy); |
5576 | } |
5577 | |
5578 | void VisitCXXTryStmt(CXXTryStmt *) { OS << "try ..." ; } |
5579 | |
5580 | void VisitObjCAtTryStmt(ObjCAtTryStmt *) { OS << "@try ..." ; } |
5581 | |
5582 | void VisitSEHTryStmt(SEHTryStmt *CS) { OS << "__try ..." ; } |
5583 | |
5584 | void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) { |
5585 | if (Stmt *Cond = C->getCond()) |
5586 | Cond->printPretty(OS, Helper, Policy); |
5587 | OS << " ? ... : ..." ; |
5588 | } |
5589 | |
5590 | void VisitChooseExpr(ChooseExpr *C) { |
5591 | OS << "__builtin_choose_expr( " ; |
5592 | if (Stmt *Cond = C->getCond()) |
5593 | Cond->printPretty(OS, Helper, Policy); |
5594 | OS << " )" ; |
5595 | } |
5596 | |
5597 | void VisitIndirectGotoStmt(IndirectGotoStmt *I) { |
5598 | OS << "goto *" ; |
5599 | if (Stmt *T = I->getTarget()) |
5600 | T->printPretty(OS, Helper, Policy); |
5601 | } |
5602 | |
5603 | void VisitBinaryOperator(BinaryOperator* B) { |
5604 | if (!B->isLogicalOp()) { |
5605 | VisitExpr(E: B); |
5606 | return; |
5607 | } |
5608 | |
5609 | if (B->getLHS()) |
5610 | B->getLHS()->printPretty(OS, Helper, Policy); |
5611 | |
5612 | switch (B->getOpcode()) { |
5613 | case BO_LOr: |
5614 | OS << " || ..." ; |
5615 | return; |
5616 | case BO_LAnd: |
5617 | OS << " && ..." ; |
5618 | return; |
5619 | default: |
5620 | llvm_unreachable("Invalid logical operator." ); |
5621 | } |
5622 | } |
5623 | |
5624 | void VisitExpr(Expr *E) { |
5625 | E->printPretty(OS, Helper, Policy); |
5626 | } |
5627 | |
5628 | public: |
5629 | void print(CFGTerminator T) { |
5630 | switch (T.getKind()) { |
5631 | case CFGTerminator::StmtBranch: |
5632 | Visit(S: T.getStmt()); |
5633 | break; |
5634 | case CFGTerminator::TemporaryDtorsBranch: |
5635 | OS << "(Temp Dtor) " ; |
5636 | Visit(S: T.getStmt()); |
5637 | break; |
5638 | case CFGTerminator::VirtualBaseBranch: |
5639 | OS << "(See if most derived ctor has already initialized vbases)" ; |
5640 | break; |
5641 | } |
5642 | } |
5643 | }; |
5644 | |
5645 | } // namespace |
5646 | |
5647 | static void print_initializer(raw_ostream &OS, StmtPrinterHelper &Helper, |
5648 | const CXXCtorInitializer *I) { |
5649 | if (I->isBaseInitializer()) |
5650 | OS << I->getBaseClass()->getAsCXXRecordDecl()->getName(); |
5651 | else if (I->isDelegatingInitializer()) |
5652 | OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName(); |
5653 | else |
5654 | OS << I->getAnyMember()->getName(); |
5655 | OS << "(" ; |
5656 | if (Expr *IE = I->getInit()) |
5657 | IE->printPretty(OS, Helper: &Helper, Policy: PrintingPolicy(Helper.getLangOpts())); |
5658 | OS << ")" ; |
5659 | |
5660 | if (I->isBaseInitializer()) |
5661 | OS << " (Base initializer)" ; |
5662 | else if (I->isDelegatingInitializer()) |
5663 | OS << " (Delegating initializer)" ; |
5664 | else |
5665 | OS << " (Member initializer)" ; |
5666 | } |
5667 | |
5668 | static void print_construction_context(raw_ostream &OS, |
5669 | StmtPrinterHelper &Helper, |
5670 | const ConstructionContext *CC) { |
5671 | SmallVector<const Stmt *, 3> Stmts; |
5672 | switch (CC->getKind()) { |
5673 | case ConstructionContext::SimpleConstructorInitializerKind: { |
5674 | OS << ", " ; |
5675 | const auto *SICC = cast<SimpleConstructorInitializerConstructionContext>(Val: CC); |
5676 | print_initializer(OS, Helper, I: SICC->getCXXCtorInitializer()); |
5677 | return; |
5678 | } |
5679 | case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind: { |
5680 | OS << ", " ; |
5681 | const auto *CICC = |
5682 | cast<CXX17ElidedCopyConstructorInitializerConstructionContext>(Val: CC); |
5683 | print_initializer(OS, Helper, I: CICC->getCXXCtorInitializer()); |
5684 | Stmts.push_back(Elt: CICC->getCXXBindTemporaryExpr()); |
5685 | break; |
5686 | } |
5687 | case ConstructionContext::SimpleVariableKind: { |
5688 | const auto *SDSCC = cast<SimpleVariableConstructionContext>(Val: CC); |
5689 | Stmts.push_back(Elt: SDSCC->getDeclStmt()); |
5690 | break; |
5691 | } |
5692 | case ConstructionContext::CXX17ElidedCopyVariableKind: { |
5693 | const auto *CDSCC = cast<CXX17ElidedCopyVariableConstructionContext>(Val: CC); |
5694 | Stmts.push_back(Elt: CDSCC->getDeclStmt()); |
5695 | Stmts.push_back(Elt: CDSCC->getCXXBindTemporaryExpr()); |
5696 | break; |
5697 | } |
5698 | case ConstructionContext::NewAllocatedObjectKind: { |
5699 | const auto *NECC = cast<NewAllocatedObjectConstructionContext>(Val: CC); |
5700 | Stmts.push_back(Elt: NECC->getCXXNewExpr()); |
5701 | break; |
5702 | } |
5703 | case ConstructionContext::SimpleReturnedValueKind: { |
5704 | const auto *RSCC = cast<SimpleReturnedValueConstructionContext>(Val: CC); |
5705 | Stmts.push_back(Elt: RSCC->getReturnStmt()); |
5706 | break; |
5707 | } |
5708 | case ConstructionContext::CXX17ElidedCopyReturnedValueKind: { |
5709 | const auto *RSCC = |
5710 | cast<CXX17ElidedCopyReturnedValueConstructionContext>(Val: CC); |
5711 | Stmts.push_back(Elt: RSCC->getReturnStmt()); |
5712 | Stmts.push_back(Elt: RSCC->getCXXBindTemporaryExpr()); |
5713 | break; |
5714 | } |
5715 | case ConstructionContext::SimpleTemporaryObjectKind: { |
5716 | const auto *TOCC = cast<SimpleTemporaryObjectConstructionContext>(Val: CC); |
5717 | Stmts.push_back(Elt: TOCC->getCXXBindTemporaryExpr()); |
5718 | Stmts.push_back(Elt: TOCC->getMaterializedTemporaryExpr()); |
5719 | break; |
5720 | } |
5721 | case ConstructionContext::ElidedTemporaryObjectKind: { |
5722 | const auto *TOCC = cast<ElidedTemporaryObjectConstructionContext>(Val: CC); |
5723 | Stmts.push_back(Elt: TOCC->getCXXBindTemporaryExpr()); |
5724 | Stmts.push_back(Elt: TOCC->getMaterializedTemporaryExpr()); |
5725 | Stmts.push_back(Elt: TOCC->getConstructorAfterElision()); |
5726 | break; |
5727 | } |
5728 | case ConstructionContext::LambdaCaptureKind: { |
5729 | const auto *LCC = cast<LambdaCaptureConstructionContext>(Val: CC); |
5730 | Helper.handledStmt(S: const_cast<LambdaExpr *>(LCC->getLambdaExpr()), OS); |
5731 | OS << "+" << LCC->getIndex(); |
5732 | return; |
5733 | } |
5734 | case ConstructionContext::ArgumentKind: { |
5735 | const auto *ACC = cast<ArgumentConstructionContext>(Val: CC); |
5736 | if (const Stmt *BTE = ACC->getCXXBindTemporaryExpr()) { |
5737 | OS << ", " ; |
5738 | Helper.handledStmt(S: const_cast<Stmt *>(BTE), OS); |
5739 | } |
5740 | OS << ", " ; |
5741 | Helper.handledStmt(S: const_cast<Expr *>(ACC->getCallLikeExpr()), OS); |
5742 | OS << "+" << ACC->getIndex(); |
5743 | return; |
5744 | } |
5745 | } |
5746 | for (auto I: Stmts) |
5747 | if (I) { |
5748 | OS << ", " ; |
5749 | Helper.handledStmt(S: const_cast<Stmt *>(I), OS); |
5750 | } |
5751 | } |
5752 | |
5753 | static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper, |
5754 | const CFGElement &E); |
5755 | |
5756 | void CFGElement::dumpToStream(llvm::raw_ostream &OS) const { |
5757 | LangOptions LangOpts; |
5758 | StmtPrinterHelper Helper(nullptr, LangOpts); |
5759 | print_elem(OS, Helper, E: *this); |
5760 | } |
5761 | |
5762 | static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper, |
5763 | const CFGElement &E) { |
5764 | switch (E.getKind()) { |
5765 | case CFGElement::Kind::Statement: |
5766 | case CFGElement::Kind::CXXRecordTypedCall: |
5767 | case CFGElement::Kind::Constructor: { |
5768 | CFGStmt CS = E.castAs<CFGStmt>(); |
5769 | const Stmt *S = CS.getStmt(); |
5770 | assert(S != nullptr && "Expecting non-null Stmt" ); |
5771 | |
5772 | // special printing for statement-expressions. |
5773 | if (const StmtExpr *SE = dyn_cast<StmtExpr>(Val: S)) { |
5774 | const CompoundStmt *Sub = SE->getSubStmt(); |
5775 | |
5776 | auto Children = Sub->children(); |
5777 | if (Children.begin() != Children.end()) { |
5778 | OS << "({ ... ; " ; |
5779 | Helper.handledStmt(S: *SE->getSubStmt()->body_rbegin(),OS); |
5780 | OS << " })\n" ; |
5781 | return; |
5782 | } |
5783 | } |
5784 | // special printing for comma expressions. |
5785 | if (const BinaryOperator* B = dyn_cast<BinaryOperator>(Val: S)) { |
5786 | if (B->getOpcode() == BO_Comma) { |
5787 | OS << "... , " ; |
5788 | Helper.handledStmt(S: B->getRHS(),OS); |
5789 | OS << '\n'; |
5790 | return; |
5791 | } |
5792 | } |
5793 | S->printPretty(OS, Helper: &Helper, Policy: PrintingPolicy(Helper.getLangOpts())); |
5794 | |
5795 | if (auto VTC = E.getAs<CFGCXXRecordTypedCall>()) { |
5796 | if (isa<CXXOperatorCallExpr>(Val: S)) |
5797 | OS << " (OperatorCall)" ; |
5798 | OS << " (CXXRecordTypedCall" ; |
5799 | print_construction_context(OS, Helper, CC: VTC->getConstructionContext()); |
5800 | OS << ")" ; |
5801 | } else if (isa<CXXOperatorCallExpr>(Val: S)) { |
5802 | OS << " (OperatorCall)" ; |
5803 | } else if (isa<CXXBindTemporaryExpr>(Val: S)) { |
5804 | OS << " (BindTemporary)" ; |
5805 | } else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Val: S)) { |
5806 | OS << " (CXXConstructExpr" ; |
5807 | if (std::optional<CFGConstructor> CE = E.getAs<CFGConstructor>()) { |
5808 | print_construction_context(OS, Helper, CC: CE->getConstructionContext()); |
5809 | } |
5810 | OS << ", " << CCE->getType() << ")" ; |
5811 | } else if (const CastExpr *CE = dyn_cast<CastExpr>(Val: S)) { |
5812 | OS << " (" << CE->getStmtClassName() << ", " << CE->getCastKindName() |
5813 | << ", " << CE->getType() << ")" ; |
5814 | } |
5815 | |
5816 | // Expressions need a newline. |
5817 | if (isa<Expr>(Val: S)) |
5818 | OS << '\n'; |
5819 | |
5820 | break; |
5821 | } |
5822 | |
5823 | case CFGElement::Kind::Initializer: |
5824 | print_initializer(OS, Helper, I: E.castAs<CFGInitializer>().getInitializer()); |
5825 | OS << '\n'; |
5826 | break; |
5827 | |
5828 | case CFGElement::Kind::AutomaticObjectDtor: { |
5829 | CFGAutomaticObjDtor DE = E.castAs<CFGAutomaticObjDtor>(); |
5830 | const VarDecl *VD = DE.getVarDecl(); |
5831 | Helper.handleDecl(D: VD, OS); |
5832 | |
5833 | QualType T = VD->getType(); |
5834 | if (T->isReferenceType()) |
5835 | T = getReferenceInitTemporaryType(Init: VD->getInit(), FoundMTE: nullptr); |
5836 | |
5837 | OS << ".~" ; |
5838 | T.getUnqualifiedType().print(OS, Policy: PrintingPolicy(Helper.getLangOpts())); |
5839 | OS << "() (Implicit destructor)\n" ; |
5840 | break; |
5841 | } |
5842 | |
5843 | case CFGElement::Kind::CleanupFunction: |
5844 | OS << "CleanupFunction (" |
5845 | << E.castAs<CFGCleanupFunction>().getFunctionDecl()->getName() << ")\n" ; |
5846 | break; |
5847 | |
5848 | case CFGElement::Kind::LifetimeEnds: |
5849 | Helper.handleDecl(D: E.castAs<CFGLifetimeEnds>().getVarDecl(), OS); |
5850 | OS << " (Lifetime ends)\n" ; |
5851 | break; |
5852 | |
5853 | case CFGElement::Kind::LoopExit: |
5854 | OS << E.castAs<CFGLoopExit>().getLoopStmt()->getStmtClassName() << " (LoopExit)\n" ; |
5855 | break; |
5856 | |
5857 | case CFGElement::Kind::ScopeBegin: |
5858 | OS << "CFGScopeBegin(" ; |
5859 | if (const VarDecl *VD = E.castAs<CFGScopeBegin>().getVarDecl()) |
5860 | OS << VD->getQualifiedNameAsString(); |
5861 | OS << ")\n" ; |
5862 | break; |
5863 | |
5864 | case CFGElement::Kind::ScopeEnd: |
5865 | OS << "CFGScopeEnd(" ; |
5866 | if (const VarDecl *VD = E.castAs<CFGScopeEnd>().getVarDecl()) |
5867 | OS << VD->getQualifiedNameAsString(); |
5868 | OS << ")\n" ; |
5869 | break; |
5870 | |
5871 | case CFGElement::Kind::NewAllocator: |
5872 | OS << "CFGNewAllocator(" ; |
5873 | if (const CXXNewExpr *AllocExpr = E.castAs<CFGNewAllocator>().getAllocatorExpr()) |
5874 | AllocExpr->getType().print(OS, Policy: PrintingPolicy(Helper.getLangOpts())); |
5875 | OS << ")\n" ; |
5876 | break; |
5877 | |
5878 | case CFGElement::Kind::DeleteDtor: { |
5879 | CFGDeleteDtor DE = E.castAs<CFGDeleteDtor>(); |
5880 | const CXXRecordDecl *RD = DE.getCXXRecordDecl(); |
5881 | if (!RD) |
5882 | return; |
5883 | CXXDeleteExpr *DelExpr = |
5884 | const_cast<CXXDeleteExpr*>(DE.getDeleteExpr()); |
5885 | Helper.handledStmt(S: cast<Stmt>(Val: DelExpr->getArgument()), OS); |
5886 | OS << "->~" << RD->getName().str() << "()" ; |
5887 | OS << " (Implicit destructor)\n" ; |
5888 | break; |
5889 | } |
5890 | |
5891 | case CFGElement::Kind::BaseDtor: { |
5892 | const CXXBaseSpecifier *BS = E.castAs<CFGBaseDtor>().getBaseSpecifier(); |
5893 | OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()" ; |
5894 | OS << " (Base object destructor)\n" ; |
5895 | break; |
5896 | } |
5897 | |
5898 | case CFGElement::Kind::MemberDtor: { |
5899 | const FieldDecl *FD = E.castAs<CFGMemberDtor>().getFieldDecl(); |
5900 | const Type *T = FD->getType()->getBaseElementTypeUnsafe(); |
5901 | OS << "this->" << FD->getName(); |
5902 | OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()" ; |
5903 | OS << " (Member object destructor)\n" ; |
5904 | break; |
5905 | } |
5906 | |
5907 | case CFGElement::Kind::TemporaryDtor: { |
5908 | const CXXBindTemporaryExpr *BT = |
5909 | E.castAs<CFGTemporaryDtor>().getBindTemporaryExpr(); |
5910 | OS << "~" ; |
5911 | BT->getType().print(OS, Policy: PrintingPolicy(Helper.getLangOpts())); |
5912 | OS << "() (Temporary object destructor)\n" ; |
5913 | break; |
5914 | } |
5915 | } |
5916 | } |
5917 | |
5918 | static void print_block(raw_ostream &OS, const CFG* cfg, |
5919 | const CFGBlock &B, |
5920 | StmtPrinterHelper &Helper, bool print_edges, |
5921 | bool ShowColors) { |
5922 | Helper.setBlockID(B.getBlockID()); |
5923 | |
5924 | // Print the header. |
5925 | if (ShowColors) |
5926 | OS.changeColor(Color: raw_ostream::YELLOW, Bold: true); |
5927 | |
5928 | OS << "\n [B" << B.getBlockID(); |
5929 | |
5930 | if (&B == &cfg->getEntry()) |
5931 | OS << " (ENTRY)]\n" ; |
5932 | else if (&B == &cfg->getExit()) |
5933 | OS << " (EXIT)]\n" ; |
5934 | else if (&B == cfg->getIndirectGotoBlock()) |
5935 | OS << " (INDIRECT GOTO DISPATCH)]\n" ; |
5936 | else if (B.hasNoReturnElement()) |
5937 | OS << " (NORETURN)]\n" ; |
5938 | else |
5939 | OS << "]\n" ; |
5940 | |
5941 | if (ShowColors) |
5942 | OS.resetColor(); |
5943 | |
5944 | // Print the label of this block. |
5945 | if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) { |
5946 | if (print_edges) |
5947 | OS << " " ; |
5948 | |
5949 | if (LabelStmt *L = dyn_cast<LabelStmt>(Val: Label)) |
5950 | OS << L->getName(); |
5951 | else if (CaseStmt *C = dyn_cast<CaseStmt>(Val: Label)) { |
5952 | OS << "case " ; |
5953 | if (const Expr *LHS = C->getLHS()) |
5954 | LHS->printPretty(OS, Helper: &Helper, Policy: PrintingPolicy(Helper.getLangOpts())); |
5955 | if (const Expr *RHS = C->getRHS()) { |
5956 | OS << " ... " ; |
5957 | RHS->printPretty(OS, Helper: &Helper, Policy: PrintingPolicy(Helper.getLangOpts())); |
5958 | } |
5959 | } else if (isa<DefaultStmt>(Val: Label)) |
5960 | OS << "default" ; |
5961 | else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Val: Label)) { |
5962 | OS << "catch (" ; |
5963 | if (const VarDecl *ED = CS->getExceptionDecl()) |
5964 | ED->print(Out&: OS, Policy: PrintingPolicy(Helper.getLangOpts()), Indentation: 0); |
5965 | else |
5966 | OS << "..." ; |
5967 | OS << ")" ; |
5968 | } else if (ObjCAtCatchStmt *CS = dyn_cast<ObjCAtCatchStmt>(Val: Label)) { |
5969 | OS << "@catch (" ; |
5970 | if (const VarDecl *PD = CS->getCatchParamDecl()) |
5971 | PD->print(Out&: OS, Policy: PrintingPolicy(Helper.getLangOpts()), Indentation: 0); |
5972 | else |
5973 | OS << "..." ; |
5974 | OS << ")" ; |
5975 | } else if (SEHExceptStmt *ES = dyn_cast<SEHExceptStmt>(Val: Label)) { |
5976 | OS << "__except (" ; |
5977 | ES->getFilterExpr()->printPretty(OS, Helper: &Helper, |
5978 | Policy: PrintingPolicy(Helper.getLangOpts()), Indentation: 0); |
5979 | OS << ")" ; |
5980 | } else |
5981 | llvm_unreachable("Invalid label statement in CFGBlock." ); |
5982 | |
5983 | OS << ":\n" ; |
5984 | } |
5985 | |
5986 | // Iterate through the statements in the block and print them. |
5987 | unsigned j = 1; |
5988 | |
5989 | for (CFGBlock::const_iterator I = B.begin(), E = B.end() ; |
5990 | I != E ; ++I, ++j ) { |
5991 | // Print the statement # in the basic block and the statement itself. |
5992 | if (print_edges) |
5993 | OS << " " ; |
5994 | |
5995 | OS << llvm::format(Fmt: "%3d" , Vals: j) << ": " ; |
5996 | |
5997 | Helper.setStmtID(j); |
5998 | |
5999 | print_elem(OS, Helper, E: *I); |
6000 | } |
6001 | |
6002 | // Print the terminator of this block. |
6003 | if (B.getTerminator().isValid()) { |
6004 | if (ShowColors) |
6005 | OS.changeColor(Color: raw_ostream::GREEN); |
6006 | |
6007 | OS << " T: " ; |
6008 | |
6009 | Helper.setBlockID(-1); |
6010 | |
6011 | PrintingPolicy PP(Helper.getLangOpts()); |
6012 | CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP); |
6013 | TPrinter.print(T: B.getTerminator()); |
6014 | OS << '\n'; |
6015 | |
6016 | if (ShowColors) |
6017 | OS.resetColor(); |
6018 | } |
6019 | |
6020 | if (print_edges) { |
6021 | // Print the predecessors of this block. |
6022 | if (!B.pred_empty()) { |
6023 | const raw_ostream::Colors Color = raw_ostream::BLUE; |
6024 | if (ShowColors) |
6025 | OS.changeColor(Color); |
6026 | OS << " Preds " ; |
6027 | if (ShowColors) |
6028 | OS.resetColor(); |
6029 | OS << '(' << B.pred_size() << "):" ; |
6030 | unsigned i = 0; |
6031 | |
6032 | if (ShowColors) |
6033 | OS.changeColor(Color); |
6034 | |
6035 | for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end(); |
6036 | I != E; ++I, ++i) { |
6037 | if (i % 10 == 8) |
6038 | OS << "\n " ; |
6039 | |
6040 | CFGBlock *B = *I; |
6041 | bool Reachable = true; |
6042 | if (!B) { |
6043 | Reachable = false; |
6044 | B = I->getPossiblyUnreachableBlock(); |
6045 | } |
6046 | |
6047 | OS << " B" << B->getBlockID(); |
6048 | if (!Reachable) |
6049 | OS << "(Unreachable)" ; |
6050 | } |
6051 | |
6052 | if (ShowColors) |
6053 | OS.resetColor(); |
6054 | |
6055 | OS << '\n'; |
6056 | } |
6057 | |
6058 | // Print the successors of this block. |
6059 | if (!B.succ_empty()) { |
6060 | const raw_ostream::Colors Color = raw_ostream::MAGENTA; |
6061 | if (ShowColors) |
6062 | OS.changeColor(Color); |
6063 | OS << " Succs " ; |
6064 | if (ShowColors) |
6065 | OS.resetColor(); |
6066 | OS << '(' << B.succ_size() << "):" ; |
6067 | unsigned i = 0; |
6068 | |
6069 | if (ShowColors) |
6070 | OS.changeColor(Color); |
6071 | |
6072 | for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end(); |
6073 | I != E; ++I, ++i) { |
6074 | if (i % 10 == 8) |
6075 | OS << "\n " ; |
6076 | |
6077 | CFGBlock *B = *I; |
6078 | |
6079 | bool Reachable = true; |
6080 | if (!B) { |
6081 | Reachable = false; |
6082 | B = I->getPossiblyUnreachableBlock(); |
6083 | } |
6084 | |
6085 | if (B) { |
6086 | OS << " B" << B->getBlockID(); |
6087 | if (!Reachable) |
6088 | OS << "(Unreachable)" ; |
6089 | } |
6090 | else { |
6091 | OS << " NULL" ; |
6092 | } |
6093 | } |
6094 | |
6095 | if (ShowColors) |
6096 | OS.resetColor(); |
6097 | OS << '\n'; |
6098 | } |
6099 | } |
6100 | } |
6101 | |
6102 | /// dump - A simple pretty printer of a CFG that outputs to stderr. |
6103 | void CFG::dump(const LangOptions &LO, bool ShowColors) const { |
6104 | print(OS&: llvm::errs(), LO, ShowColors); |
6105 | } |
6106 | |
6107 | /// print - A simple pretty printer of a CFG that outputs to an ostream. |
6108 | void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const { |
6109 | StmtPrinterHelper Helper(this, LO); |
6110 | |
6111 | // Print the entry block. |
6112 | print_block(OS, cfg: this, B: getEntry(), Helper, print_edges: true, ShowColors); |
6113 | |
6114 | // Iterate through the CFGBlocks and print them one by one. |
6115 | for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) { |
6116 | // Skip the entry block, because we already printed it. |
6117 | if (&(**I) == &getEntry() || &(**I) == &getExit()) |
6118 | continue; |
6119 | |
6120 | print_block(OS, cfg: this, B: **I, Helper, print_edges: true, ShowColors); |
6121 | } |
6122 | |
6123 | // Print the exit block. |
6124 | print_block(OS, cfg: this, B: getExit(), Helper, print_edges: true, ShowColors); |
6125 | OS << '\n'; |
6126 | OS.flush(); |
6127 | } |
6128 | |
6129 | size_t CFGBlock::getIndexInCFG() const { |
6130 | return llvm::find(Range&: *getParent(), Val: this) - getParent()->begin(); |
6131 | } |
6132 | |
6133 | /// dump - A simply pretty printer of a CFGBlock that outputs to stderr. |
6134 | void CFGBlock::dump(const CFG* cfg, const LangOptions &LO, |
6135 | bool ShowColors) const { |
6136 | print(OS&: llvm::errs(), cfg, LO, ShowColors); |
6137 | } |
6138 | |
6139 | LLVM_DUMP_METHOD void CFGBlock::dump() const { |
6140 | dump(cfg: getParent(), LO: LangOptions(), ShowColors: false); |
6141 | } |
6142 | |
6143 | /// print - A simple pretty printer of a CFGBlock that outputs to an ostream. |
6144 | /// Generally this will only be called from CFG::print. |
6145 | void CFGBlock::print(raw_ostream &OS, const CFG* cfg, |
6146 | const LangOptions &LO, bool ShowColors) const { |
6147 | StmtPrinterHelper Helper(cfg, LO); |
6148 | print_block(OS, cfg, B: *this, Helper, print_edges: true, ShowColors); |
6149 | OS << '\n'; |
6150 | } |
6151 | |
6152 | /// printTerminator - A simple pretty printer of the terminator of a CFGBlock. |
6153 | void CFGBlock::printTerminator(raw_ostream &OS, |
6154 | const LangOptions &LO) const { |
6155 | CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO)); |
6156 | TPrinter.print(T: getTerminator()); |
6157 | } |
6158 | |
6159 | /// printTerminatorJson - Pretty-prints the terminator in JSON format. |
6160 | void CFGBlock::printTerminatorJson(raw_ostream &Out, const LangOptions &LO, |
6161 | bool AddQuotes) const { |
6162 | std::string Buf; |
6163 | llvm::raw_string_ostream TempOut(Buf); |
6164 | |
6165 | printTerminator(OS&: TempOut, LO); |
6166 | |
6167 | Out << JsonFormat(RawSR: TempOut.str(), AddQuotes); |
6168 | } |
6169 | |
6170 | // Returns true if by simply looking at the block, we can be sure that it |
6171 | // results in a sink during analysis. This is useful to know when the analysis |
6172 | // was interrupted, and we try to figure out if it would sink eventually. |
6173 | // There may be many more reasons why a sink would appear during analysis |
6174 | // (eg. checkers may generate sinks arbitrarily), but here we only consider |
6175 | // sinks that would be obvious by looking at the CFG. |
6176 | static bool isImmediateSinkBlock(const CFGBlock *Blk) { |
6177 | if (Blk->hasNoReturnElement()) |
6178 | return true; |
6179 | |
6180 | // FIXME: Throw-expressions are currently generating sinks during analysis: |
6181 | // they're not supported yet, and also often used for actually terminating |
6182 | // the program. So we should treat them as sinks in this analysis as well, |
6183 | // at least for now, but once we have better support for exceptions, |
6184 | // we'd need to carefully handle the case when the throw is being |
6185 | // immediately caught. |
6186 | if (llvm::any_of(Range: *Blk, P: [](const CFGElement &Elm) { |
6187 | if (std::optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>()) |
6188 | if (isa<CXXThrowExpr>(Val: StmtElm->getStmt())) |
6189 | return true; |
6190 | return false; |
6191 | })) |
6192 | return true; |
6193 | |
6194 | return false; |
6195 | } |
6196 | |
6197 | bool CFGBlock::isInevitablySinking() const { |
6198 | const CFG &Cfg = *getParent(); |
6199 | |
6200 | const CFGBlock *StartBlk = this; |
6201 | if (isImmediateSinkBlock(Blk: StartBlk)) |
6202 | return true; |
6203 | |
6204 | llvm::SmallVector<const CFGBlock *, 32> DFSWorkList; |
6205 | llvm::SmallPtrSet<const CFGBlock *, 32> Visited; |
6206 | |
6207 | DFSWorkList.push_back(Elt: StartBlk); |
6208 | while (!DFSWorkList.empty()) { |
6209 | const CFGBlock *Blk = DFSWorkList.back(); |
6210 | DFSWorkList.pop_back(); |
6211 | Visited.insert(Ptr: Blk); |
6212 | |
6213 | // If at least one path reaches the CFG exit, it means that control is |
6214 | // returned to the caller. For now, say that we are not sure what |
6215 | // happens next. If necessary, this can be improved to analyze |
6216 | // the parent StackFrameContext's call site in a similar manner. |
6217 | if (Blk == &Cfg.getExit()) |
6218 | return false; |
6219 | |
6220 | for (const auto &Succ : Blk->succs()) { |
6221 | if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) { |
6222 | if (!isImmediateSinkBlock(Blk: SuccBlk) && !Visited.count(Ptr: SuccBlk)) { |
6223 | // If the block has reachable child blocks that aren't no-return, |
6224 | // add them to the worklist. |
6225 | DFSWorkList.push_back(Elt: SuccBlk); |
6226 | } |
6227 | } |
6228 | } |
6229 | } |
6230 | |
6231 | // Nothing reached the exit. It can only mean one thing: there's no return. |
6232 | return true; |
6233 | } |
6234 | |
6235 | const Expr *CFGBlock::getLastCondition() const { |
6236 | // If the terminator is a temporary dtor or a virtual base, etc, we can't |
6237 | // retrieve a meaningful condition, bail out. |
6238 | if (Terminator.getKind() != CFGTerminator::StmtBranch) |
6239 | return nullptr; |
6240 | |
6241 | // Also, if this method was called on a block that doesn't have 2 successors, |
6242 | // this block doesn't have retrievable condition. |
6243 | if (succ_size() < 2) |
6244 | return nullptr; |
6245 | |
6246 | // FIXME: Is there a better condition expression we can return in this case? |
6247 | if (size() == 0) |
6248 | return nullptr; |
6249 | |
6250 | auto StmtElem = rbegin()->getAs<CFGStmt>(); |
6251 | if (!StmtElem) |
6252 | return nullptr; |
6253 | |
6254 | const Stmt *Cond = StmtElem->getStmt(); |
6255 | if (isa<ObjCForCollectionStmt>(Val: Cond) || isa<DeclStmt>(Val: Cond)) |
6256 | return nullptr; |
6257 | |
6258 | // Only ObjCForCollectionStmt is known not to be a non-Expr terminator, hence |
6259 | // the cast<>. |
6260 | return cast<Expr>(Val: Cond)->IgnoreParens(); |
6261 | } |
6262 | |
6263 | Stmt *CFGBlock::getTerminatorCondition(bool StripParens) { |
6264 | Stmt *Terminator = getTerminatorStmt(); |
6265 | if (!Terminator) |
6266 | return nullptr; |
6267 | |
6268 | Expr *E = nullptr; |
6269 | |
6270 | switch (Terminator->getStmtClass()) { |
6271 | default: |
6272 | break; |
6273 | |
6274 | case Stmt::CXXForRangeStmtClass: |
6275 | E = cast<CXXForRangeStmt>(Val: Terminator)->getCond(); |
6276 | break; |
6277 | |
6278 | case Stmt::ForStmtClass: |
6279 | E = cast<ForStmt>(Val: Terminator)->getCond(); |
6280 | break; |
6281 | |
6282 | case Stmt::WhileStmtClass: |
6283 | E = cast<WhileStmt>(Val: Terminator)->getCond(); |
6284 | break; |
6285 | |
6286 | case Stmt::DoStmtClass: |
6287 | E = cast<DoStmt>(Val: Terminator)->getCond(); |
6288 | break; |
6289 | |
6290 | case Stmt::IfStmtClass: |
6291 | E = cast<IfStmt>(Val: Terminator)->getCond(); |
6292 | break; |
6293 | |
6294 | case Stmt::ChooseExprClass: |
6295 | E = cast<ChooseExpr>(Val: Terminator)->getCond(); |
6296 | break; |
6297 | |
6298 | case Stmt::IndirectGotoStmtClass: |
6299 | E = cast<IndirectGotoStmt>(Val: Terminator)->getTarget(); |
6300 | break; |
6301 | |
6302 | case Stmt::SwitchStmtClass: |
6303 | E = cast<SwitchStmt>(Val: Terminator)->getCond(); |
6304 | break; |
6305 | |
6306 | case Stmt::BinaryConditionalOperatorClass: |
6307 | E = cast<BinaryConditionalOperator>(Val: Terminator)->getCond(); |
6308 | break; |
6309 | |
6310 | case Stmt::ConditionalOperatorClass: |
6311 | E = cast<ConditionalOperator>(Val: Terminator)->getCond(); |
6312 | break; |
6313 | |
6314 | case Stmt::BinaryOperatorClass: // '&&' and '||' |
6315 | E = cast<BinaryOperator>(Val: Terminator)->getLHS(); |
6316 | break; |
6317 | |
6318 | case Stmt::ObjCForCollectionStmtClass: |
6319 | return Terminator; |
6320 | } |
6321 | |
6322 | if (!StripParens) |
6323 | return E; |
6324 | |
6325 | return E ? E->IgnoreParens() : nullptr; |
6326 | } |
6327 | |
6328 | //===----------------------------------------------------------------------===// |
6329 | // CFG Graphviz Visualization |
6330 | //===----------------------------------------------------------------------===// |
6331 | |
6332 | static StmtPrinterHelper *GraphHelper; |
6333 | |
6334 | void CFG::viewCFG(const LangOptions &LO) const { |
6335 | StmtPrinterHelper H(this, LO); |
6336 | GraphHelper = &H; |
6337 | llvm::ViewGraph(G: this,Name: "CFG" ); |
6338 | GraphHelper = nullptr; |
6339 | } |
6340 | |
6341 | namespace llvm { |
6342 | |
6343 | template<> |
6344 | struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits { |
6345 | DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} |
6346 | |
6347 | static std::string getNodeLabel(const CFGBlock *Node, const CFG *Graph) { |
6348 | std::string OutSStr; |
6349 | llvm::raw_string_ostream Out(OutSStr); |
6350 | print_block(OS&: Out,cfg: Graph, B: *Node, Helper&: *GraphHelper, print_edges: false, ShowColors: false); |
6351 | std::string& OutStr = Out.str(); |
6352 | |
6353 | if (OutStr[0] == '\n') OutStr.erase(position: OutStr.begin()); |
6354 | |
6355 | // Process string output to make it nicer... |
6356 | for (unsigned i = 0; i != OutStr.length(); ++i) |
6357 | if (OutStr[i] == '\n') { // Left justify |
6358 | OutStr[i] = '\\'; |
6359 | OutStr.insert(p: OutStr.begin()+i+1, c: 'l'); |
6360 | } |
6361 | |
6362 | return OutStr; |
6363 | } |
6364 | }; |
6365 | |
6366 | } // namespace llvm |
6367 | |