1 | //===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// This file implements classes for searching and analyzing source code clones. |
10 | /// |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/Analysis/CloneDetection.h" |
14 | #include "clang/AST/Attr.h" |
15 | #include "clang/AST/DataCollection.h" |
16 | #include "clang/AST/DeclTemplate.h" |
17 | #include "clang/Basic/SourceManager.h" |
18 | #include "llvm/Support/MD5.h" |
19 | #include "llvm/Support/Path.h" |
20 | |
21 | using namespace clang; |
22 | |
23 | StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D, |
24 | unsigned StartIndex, unsigned EndIndex) |
25 | : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) { |
26 | assert(Stmt && "Stmt must not be a nullptr" ); |
27 | assert(StartIndex < EndIndex && "Given array should not be empty" ); |
28 | assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt" ); |
29 | } |
30 | |
31 | StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D) |
32 | : S(Stmt), D(D), StartIndex(0), EndIndex(0) {} |
33 | |
34 | StmtSequence::StmtSequence() |
35 | : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {} |
36 | |
37 | bool StmtSequence::contains(const StmtSequence &Other) const { |
38 | // If both sequences reside in different declarations, they can never contain |
39 | // each other. |
40 | if (D != Other.D) |
41 | return false; |
42 | |
43 | const SourceManager &SM = getASTContext().getSourceManager(); |
44 | |
45 | // Otherwise check if the start and end locations of the current sequence |
46 | // surround the other sequence. |
47 | bool StartIsInBounds = |
48 | SM.isBeforeInTranslationUnit(LHS: getBeginLoc(), RHS: Other.getBeginLoc()) || |
49 | getBeginLoc() == Other.getBeginLoc(); |
50 | if (!StartIsInBounds) |
51 | return false; |
52 | |
53 | bool EndIsInBounds = |
54 | SM.isBeforeInTranslationUnit(LHS: Other.getEndLoc(), RHS: getEndLoc()) || |
55 | Other.getEndLoc() == getEndLoc(); |
56 | return EndIsInBounds; |
57 | } |
58 | |
59 | StmtSequence::iterator StmtSequence::begin() const { |
60 | if (!holdsSequence()) { |
61 | return &S; |
62 | } |
63 | auto CS = cast<CompoundStmt>(Val: S); |
64 | return CS->body_begin() + StartIndex; |
65 | } |
66 | |
67 | StmtSequence::iterator StmtSequence::end() const { |
68 | if (!holdsSequence()) { |
69 | return reinterpret_cast<StmtSequence::iterator>(&S) + 1; |
70 | } |
71 | auto CS = cast<CompoundStmt>(Val: S); |
72 | return CS->body_begin() + EndIndex; |
73 | } |
74 | |
75 | ASTContext &StmtSequence::getASTContext() const { |
76 | assert(D); |
77 | return D->getASTContext(); |
78 | } |
79 | |
80 | SourceLocation StmtSequence::getBeginLoc() const { |
81 | return front()->getBeginLoc(); |
82 | } |
83 | |
84 | SourceLocation StmtSequence::getEndLoc() const { return back()->getEndLoc(); } |
85 | |
86 | SourceRange StmtSequence::getSourceRange() const { |
87 | return SourceRange(getBeginLoc(), getEndLoc()); |
88 | } |
89 | |
90 | void CloneDetector::analyzeCodeBody(const Decl *D) { |
91 | assert(D); |
92 | assert(D->hasBody()); |
93 | |
94 | Sequences.push_back(Elt: StmtSequence(D->getBody(), D)); |
95 | } |
96 | |
97 | /// Returns true if and only if \p Stmt contains at least one other |
98 | /// sequence in the \p Group. |
99 | static bool containsAnyInGroup(StmtSequence &Seq, |
100 | CloneDetector::CloneGroup &Group) { |
101 | for (StmtSequence &GroupSeq : Group) { |
102 | if (Seq.contains(Other: GroupSeq)) |
103 | return true; |
104 | } |
105 | return false; |
106 | } |
107 | |
108 | /// Returns true if and only if all sequences in \p OtherGroup are |
109 | /// contained by a sequence in \p Group. |
110 | static bool containsGroup(CloneDetector::CloneGroup &Group, |
111 | CloneDetector::CloneGroup &OtherGroup) { |
112 | // We have less sequences in the current group than we have in the other, |
113 | // so we will never fulfill the requirement for returning true. This is only |
114 | // possible because we know that a sequence in Group can contain at most |
115 | // one sequence in OtherGroup. |
116 | if (Group.size() < OtherGroup.size()) |
117 | return false; |
118 | |
119 | for (StmtSequence &Stmt : Group) { |
120 | if (!containsAnyInGroup(Seq&: Stmt, Group&: OtherGroup)) |
121 | return false; |
122 | } |
123 | return true; |
124 | } |
125 | |
126 | void OnlyLargestCloneConstraint::constrain( |
127 | std::vector<CloneDetector::CloneGroup> &Result) { |
128 | std::vector<unsigned> IndexesToRemove; |
129 | |
130 | // Compare every group in the result with the rest. If one groups contains |
131 | // another group, we only need to return the bigger group. |
132 | // Note: This doesn't scale well, so if possible avoid calling any heavy |
133 | // function from this loop to minimize the performance impact. |
134 | for (unsigned i = 0; i < Result.size(); ++i) { |
135 | for (unsigned j = 0; j < Result.size(); ++j) { |
136 | // Don't compare a group with itself. |
137 | if (i == j) |
138 | continue; |
139 | |
140 | if (containsGroup(Group&: Result[j], OtherGroup&: Result[i])) { |
141 | IndexesToRemove.push_back(x: i); |
142 | break; |
143 | } |
144 | } |
145 | } |
146 | |
147 | // Erasing a list of indexes from the vector should be done with decreasing |
148 | // indexes. As IndexesToRemove is constructed with increasing values, we just |
149 | // reverse iterate over it to get the desired order. |
150 | for (unsigned I : llvm::reverse(C&: IndexesToRemove)) |
151 | Result.erase(position: Result.begin() + I); |
152 | } |
153 | |
154 | bool FilenamePatternConstraint::isAutoGenerated( |
155 | const CloneDetector::CloneGroup &Group) { |
156 | if (IgnoredFilesPattern.empty() || Group.empty() || |
157 | !IgnoredFilesRegex->isValid()) |
158 | return false; |
159 | |
160 | for (const StmtSequence &S : Group) { |
161 | const SourceManager &SM = S.getASTContext().getSourceManager(); |
162 | StringRef Filename = llvm::sys::path::filename( |
163 | path: SM.getFilename(SpellingLoc: S.getContainingDecl()->getLocation())); |
164 | if (IgnoredFilesRegex->match(String: Filename)) |
165 | return true; |
166 | } |
167 | |
168 | return false; |
169 | } |
170 | |
171 | /// This class defines what a type II code clone is: If it collects for two |
172 | /// statements the same data, then those two statements are considered to be |
173 | /// clones of each other. |
174 | /// |
175 | /// All collected data is forwarded to the given data consumer of the type T. |
176 | /// The data consumer class needs to provide a member method with the signature: |
177 | /// update(StringRef Str) |
178 | namespace { |
179 | template <class T> |
180 | class CloneTypeIIStmtDataCollector |
181 | : public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> { |
182 | ASTContext &Context; |
183 | /// The data sink to which all data is forwarded. |
184 | T &DataConsumer; |
185 | |
186 | template <class Ty> void addData(const Ty &Data) { |
187 | data_collection::addDataToConsumer(DataConsumer, Data); |
188 | } |
189 | |
190 | public: |
191 | CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context, |
192 | T &DataConsumer) |
193 | : Context(Context), DataConsumer(DataConsumer) { |
194 | this->Visit(S); |
195 | } |
196 | |
197 | // Define a visit method for each class to collect data and subsequently visit |
198 | // all parent classes. This uses a template so that custom visit methods by us |
199 | // take precedence. |
200 | #define DEF_ADD_DATA(CLASS, CODE) \ |
201 | template <class = void> void Visit##CLASS(const CLASS *S) { \ |
202 | CODE; \ |
203 | ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \ |
204 | } |
205 | |
206 | #include "clang/AST/StmtDataCollectors.inc" |
207 | |
208 | // Type II clones ignore variable names and literals, so let's skip them. |
209 | #define SKIP(CLASS) \ |
210 | void Visit##CLASS(const CLASS *S) { \ |
211 | ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \ |
212 | } |
213 | SKIP(DeclRefExpr) |
214 | SKIP(MemberExpr) |
215 | SKIP(IntegerLiteral) |
216 | SKIP(FloatingLiteral) |
217 | SKIP(StringLiteral) |
218 | SKIP(CXXBoolLiteralExpr) |
219 | SKIP(CharacterLiteral) |
220 | #undef SKIP |
221 | }; |
222 | } // end anonymous namespace |
223 | |
224 | static size_t createHash(llvm::MD5 &Hash) { |
225 | size_t HashCode; |
226 | |
227 | // Create the final hash code for the current Stmt. |
228 | llvm::MD5::MD5Result HashResult; |
229 | Hash.final(Result&: HashResult); |
230 | |
231 | // Copy as much as possible of the generated hash code to the Stmt's hash |
232 | // code. |
233 | std::memcpy(dest: &HashCode, src: &HashResult, |
234 | n: std::min(a: sizeof(HashCode), b: sizeof(HashResult))); |
235 | |
236 | return HashCode; |
237 | } |
238 | |
239 | /// Generates and saves a hash code for the given Stmt. |
240 | /// \param S The given Stmt. |
241 | /// \param D The Decl containing S. |
242 | /// \param StmtsByHash Output parameter that will contain the hash codes for |
243 | /// each StmtSequence in the given Stmt. |
244 | /// \return The hash code of the given Stmt. |
245 | /// |
246 | /// If the given Stmt is a CompoundStmt, this method will also generate |
247 | /// hashes for all possible StmtSequences in the children of this Stmt. |
248 | static size_t |
249 | saveHash(const Stmt *S, const Decl *D, |
250 | std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) { |
251 | llvm::MD5 Hash; |
252 | ASTContext &Context = D->getASTContext(); |
253 | |
254 | CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash); |
255 | |
256 | auto CS = dyn_cast<CompoundStmt>(Val: S); |
257 | SmallVector<size_t, 8> ChildHashes; |
258 | |
259 | for (const Stmt *Child : S->children()) { |
260 | if (Child == nullptr) { |
261 | ChildHashes.push_back(Elt: 0); |
262 | continue; |
263 | } |
264 | size_t ChildHash = saveHash(S: Child, D, StmtsByHash); |
265 | Hash.update( |
266 | Str: StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash))); |
267 | ChildHashes.push_back(Elt: ChildHash); |
268 | } |
269 | |
270 | if (CS) { |
271 | // If we're in a CompoundStmt, we hash all possible combinations of child |
272 | // statements to find clones in those subsequences. |
273 | // We first go through every possible starting position of a subsequence. |
274 | for (unsigned Pos = 0; Pos < CS->size(); ++Pos) { |
275 | // Then we try all possible lengths this subsequence could have and |
276 | // reuse the same hash object to make sure we only hash every child |
277 | // hash exactly once. |
278 | llvm::MD5 Hash; |
279 | for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) { |
280 | // Grab the current child hash and put it into our hash. We do |
281 | // -1 on the index because we start counting the length at 1. |
282 | size_t ChildHash = ChildHashes[Pos + Length - 1]; |
283 | Hash.update( |
284 | Str: StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash))); |
285 | // If we have at least two elements in our subsequence, we can start |
286 | // saving it. |
287 | if (Length > 1) { |
288 | llvm::MD5 SubHash = Hash; |
289 | StmtsByHash.push_back(x: std::make_pair( |
290 | x: createHash(Hash&: SubHash), y: StmtSequence(CS, D, Pos, Pos + Length))); |
291 | } |
292 | } |
293 | } |
294 | } |
295 | |
296 | size_t HashCode = createHash(Hash); |
297 | StmtsByHash.push_back(x: std::make_pair(x&: HashCode, y: StmtSequence(S, D))); |
298 | return HashCode; |
299 | } |
300 | |
301 | namespace { |
302 | /// Wrapper around FoldingSetNodeID that it can be used as the template |
303 | /// argument of the StmtDataCollector. |
304 | class FoldingSetNodeIDWrapper { |
305 | |
306 | llvm::FoldingSetNodeID &FS; |
307 | |
308 | public: |
309 | FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {} |
310 | |
311 | void update(StringRef Str) { FS.AddString(String: Str); } |
312 | }; |
313 | } // end anonymous namespace |
314 | |
315 | /// Writes the relevant data from all statements and child statements |
316 | /// in the given StmtSequence into the given FoldingSetNodeID. |
317 | static void CollectStmtSequenceData(const StmtSequence &Sequence, |
318 | FoldingSetNodeIDWrapper &OutputData) { |
319 | for (const Stmt *S : Sequence) { |
320 | CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>( |
321 | S, Sequence.getASTContext(), OutputData); |
322 | |
323 | for (const Stmt *Child : S->children()) { |
324 | if (!Child) |
325 | continue; |
326 | |
327 | CollectStmtSequenceData(Sequence: StmtSequence(Child, Sequence.getContainingDecl()), |
328 | OutputData); |
329 | } |
330 | } |
331 | } |
332 | |
333 | /// Returns true if both sequences are clones of each other. |
334 | static bool areSequencesClones(const StmtSequence &LHS, |
335 | const StmtSequence &RHS) { |
336 | // We collect the data from all statements in the sequence as we did before |
337 | // when generating a hash value for each sequence. But this time we don't |
338 | // hash the collected data and compare the whole data set instead. This |
339 | // prevents any false-positives due to hash code collisions. |
340 | llvm::FoldingSetNodeID DataLHS, DataRHS; |
341 | FoldingSetNodeIDWrapper LHSWrapper(DataLHS); |
342 | FoldingSetNodeIDWrapper RHSWrapper(DataRHS); |
343 | |
344 | CollectStmtSequenceData(Sequence: LHS, OutputData&: LHSWrapper); |
345 | CollectStmtSequenceData(Sequence: RHS, OutputData&: RHSWrapper); |
346 | |
347 | return DataLHS == DataRHS; |
348 | } |
349 | |
350 | void RecursiveCloneTypeIIHashConstraint::constrain( |
351 | std::vector<CloneDetector::CloneGroup> &Sequences) { |
352 | // FIXME: Maybe we can do this in-place and don't need this additional vector. |
353 | std::vector<CloneDetector::CloneGroup> Result; |
354 | |
355 | for (CloneDetector::CloneGroup &Group : Sequences) { |
356 | // We assume in the following code that the Group is non-empty, so we |
357 | // skip all empty groups. |
358 | if (Group.empty()) |
359 | continue; |
360 | |
361 | std::vector<std::pair<size_t, StmtSequence>> StmtsByHash; |
362 | |
363 | // Generate hash codes for all children of S and save them in StmtsByHash. |
364 | for (const StmtSequence &S : Group) { |
365 | saveHash(S: S.front(), D: S.getContainingDecl(), StmtsByHash); |
366 | } |
367 | |
368 | // Sort hash_codes in StmtsByHash. |
369 | llvm::stable_sort(Range&: StmtsByHash, C: llvm::less_first()); |
370 | |
371 | // Check for each StmtSequence if its successor has the same hash value. |
372 | // We don't check the last StmtSequence as it has no successor. |
373 | // Note: The 'size - 1 ' in the condition is safe because we check for an |
374 | // empty Group vector at the beginning of this function. |
375 | for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) { |
376 | const auto Current = StmtsByHash[i]; |
377 | |
378 | // It's likely that we just found a sequence of StmtSequences that |
379 | // represent a CloneGroup, so we create a new group and start checking and |
380 | // adding the StmtSequences in this sequence. |
381 | CloneDetector::CloneGroup NewGroup; |
382 | |
383 | size_t PrototypeHash = Current.first; |
384 | |
385 | for (; i < StmtsByHash.size(); ++i) { |
386 | // A different hash value means we have reached the end of the sequence. |
387 | if (PrototypeHash != StmtsByHash[i].first) { |
388 | // The current sequence could be the start of a new CloneGroup. So we |
389 | // decrement i so that we visit it again in the outer loop. |
390 | // Note: i can never be 0 at this point because we are just comparing |
391 | // the hash of the Current StmtSequence with itself in the 'if' above. |
392 | assert(i != 0); |
393 | --i; |
394 | break; |
395 | } |
396 | // Same hash value means we should add the StmtSequence to the current |
397 | // group. |
398 | NewGroup.push_back(Elt: StmtsByHash[i].second); |
399 | } |
400 | |
401 | // We created a new clone group with matching hash codes and move it to |
402 | // the result vector. |
403 | Result.push_back(x: NewGroup); |
404 | } |
405 | } |
406 | // Sequences is the output parameter, so we copy our result into it. |
407 | Sequences = Result; |
408 | } |
409 | |
410 | void RecursiveCloneTypeIIVerifyConstraint::constrain( |
411 | std::vector<CloneDetector::CloneGroup> &Sequences) { |
412 | CloneConstraint::splitCloneGroups( |
413 | CloneGroups&: Sequences, Compare: [](const StmtSequence &A, const StmtSequence &B) { |
414 | return areSequencesClones(LHS: A, RHS: B); |
415 | }); |
416 | } |
417 | |
418 | size_t MinComplexityConstraint::calculateStmtComplexity( |
419 | const StmtSequence &Seq, std::size_t Limit, |
420 | const std::string &ParentMacroStack) { |
421 | if (Seq.empty()) |
422 | return 0; |
423 | |
424 | size_t Complexity = 1; |
425 | |
426 | ASTContext &Context = Seq.getASTContext(); |
427 | |
428 | // Look up what macros expanded into the current statement. |
429 | std::string MacroStack = |
430 | data_collection::getMacroStack(Loc: Seq.getBeginLoc(), Context); |
431 | |
432 | // First, check if ParentMacroStack is not empty which means we are currently |
433 | // dealing with a parent statement which was expanded from a macro. |
434 | // If this parent statement was expanded from the same macros as this |
435 | // statement, we reduce the initial complexity of this statement to zero. |
436 | // This causes that a group of statements that were generated by a single |
437 | // macro expansion will only increase the total complexity by one. |
438 | // Note: This is not the final complexity of this statement as we still |
439 | // add the complexity of the child statements to the complexity value. |
440 | if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) { |
441 | Complexity = 0; |
442 | } |
443 | |
444 | // Iterate over the Stmts in the StmtSequence and add their complexity values |
445 | // to the current complexity value. |
446 | if (Seq.holdsSequence()) { |
447 | for (const Stmt *S : Seq) { |
448 | Complexity += calculateStmtComplexity( |
449 | Seq: StmtSequence(S, Seq.getContainingDecl()), Limit, ParentMacroStack: MacroStack); |
450 | if (Complexity >= Limit) |
451 | return Limit; |
452 | } |
453 | } else { |
454 | for (const Stmt *S : Seq.front()->children()) { |
455 | Complexity += calculateStmtComplexity( |
456 | Seq: StmtSequence(S, Seq.getContainingDecl()), Limit, ParentMacroStack: MacroStack); |
457 | if (Complexity >= Limit) |
458 | return Limit; |
459 | } |
460 | } |
461 | return Complexity; |
462 | } |
463 | |
464 | void MatchingVariablePatternConstraint::constrain( |
465 | std::vector<CloneDetector::CloneGroup> &CloneGroups) { |
466 | CloneConstraint::splitCloneGroups( |
467 | CloneGroups, Compare: [](const StmtSequence &A, const StmtSequence &B) { |
468 | VariablePattern PatternA(A); |
469 | VariablePattern PatternB(B); |
470 | return PatternA.countPatternDifferences(Other: PatternB) == 0; |
471 | }); |
472 | } |
473 | |
474 | void CloneConstraint::splitCloneGroups( |
475 | std::vector<CloneDetector::CloneGroup> &CloneGroups, |
476 | llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)> |
477 | Compare) { |
478 | std::vector<CloneDetector::CloneGroup> Result; |
479 | for (auto &HashGroup : CloneGroups) { |
480 | // Contains all indexes in HashGroup that were already added to a |
481 | // CloneGroup. |
482 | std::vector<char> Indexes; |
483 | Indexes.resize(new_size: HashGroup.size()); |
484 | |
485 | for (unsigned i = 0; i < HashGroup.size(); ++i) { |
486 | // Skip indexes that are already part of a CloneGroup. |
487 | if (Indexes[i]) |
488 | continue; |
489 | |
490 | // Pick the first unhandled StmtSequence and consider it as the |
491 | // beginning |
492 | // of a new CloneGroup for now. |
493 | // We don't add i to Indexes because we never iterate back. |
494 | StmtSequence Prototype = HashGroup[i]; |
495 | CloneDetector::CloneGroup PotentialGroup = {Prototype}; |
496 | ++Indexes[i]; |
497 | |
498 | // Check all following StmtSequences for clones. |
499 | for (unsigned j = i + 1; j < HashGroup.size(); ++j) { |
500 | // Skip indexes that are already part of a CloneGroup. |
501 | if (Indexes[j]) |
502 | continue; |
503 | |
504 | // If a following StmtSequence belongs to our CloneGroup, we add it. |
505 | const StmtSequence &Candidate = HashGroup[j]; |
506 | |
507 | if (!Compare(Prototype, Candidate)) |
508 | continue; |
509 | |
510 | PotentialGroup.push_back(Elt: Candidate); |
511 | // Make sure we never visit this StmtSequence again. |
512 | ++Indexes[j]; |
513 | } |
514 | |
515 | // Otherwise, add it to the result and continue searching for more |
516 | // groups. |
517 | Result.push_back(x: PotentialGroup); |
518 | } |
519 | |
520 | assert(llvm::all_of(Indexes, [](char c) { return c == 1; })); |
521 | } |
522 | CloneGroups = Result; |
523 | } |
524 | |
525 | void VariablePattern::addVariableOccurence(const VarDecl *VarDecl, |
526 | const Stmt *Mention) { |
527 | // First check if we already reference this variable |
528 | for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) { |
529 | if (Variables[KindIndex] == VarDecl) { |
530 | // If yes, add a new occurrence that points to the existing entry in |
531 | // the Variables vector. |
532 | Occurences.emplace_back(args&: KindIndex, args&: Mention); |
533 | return; |
534 | } |
535 | } |
536 | // If this variable wasn't already referenced, add it to the list of |
537 | // referenced variables and add a occurrence that points to this new entry. |
538 | Occurences.emplace_back(args: Variables.size(), args&: Mention); |
539 | Variables.push_back(x: VarDecl); |
540 | } |
541 | |
542 | void VariablePattern::addVariables(const Stmt *S) { |
543 | // Sometimes we get a nullptr (such as from IfStmts which often have nullptr |
544 | // children). We skip such statements as they don't reference any |
545 | // variables. |
546 | if (!S) |
547 | return; |
548 | |
549 | // Check if S is a reference to a variable. If yes, add it to the pattern. |
550 | if (auto D = dyn_cast<DeclRefExpr>(Val: S)) { |
551 | if (auto VD = dyn_cast<VarDecl>(Val: D->getDecl()->getCanonicalDecl())) |
552 | addVariableOccurence(VarDecl: VD, Mention: D); |
553 | } |
554 | |
555 | // Recursively check all children of the given statement. |
556 | for (const Stmt *Child : S->children()) { |
557 | addVariables(S: Child); |
558 | } |
559 | } |
560 | |
561 | unsigned VariablePattern::countPatternDifferences( |
562 | const VariablePattern &Other, |
563 | VariablePattern::SuspiciousClonePair *FirstMismatch) { |
564 | unsigned NumberOfDifferences = 0; |
565 | |
566 | assert(Other.Occurences.size() == Occurences.size()); |
567 | for (unsigned i = 0; i < Occurences.size(); ++i) { |
568 | auto ThisOccurence = Occurences[i]; |
569 | auto OtherOccurence = Other.Occurences[i]; |
570 | if (ThisOccurence.KindID == OtherOccurence.KindID) |
571 | continue; |
572 | |
573 | ++NumberOfDifferences; |
574 | |
575 | // If FirstMismatch is not a nullptr, we need to store information about |
576 | // the first difference between the two patterns. |
577 | if (FirstMismatch == nullptr) |
578 | continue; |
579 | |
580 | // Only proceed if we just found the first difference as we only store |
581 | // information about the first difference. |
582 | if (NumberOfDifferences != 1) |
583 | continue; |
584 | |
585 | const VarDecl *FirstSuggestion = nullptr; |
586 | // If there is a variable available in the list of referenced variables |
587 | // which wouldn't break the pattern if it is used in place of the |
588 | // current variable, we provide this variable as the suggested fix. |
589 | if (OtherOccurence.KindID < Variables.size()) |
590 | FirstSuggestion = Variables[OtherOccurence.KindID]; |
591 | |
592 | // Store information about the first clone. |
593 | FirstMismatch->FirstCloneInfo = |
594 | VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo( |
595 | Variables[ThisOccurence.KindID], ThisOccurence.Mention, |
596 | FirstSuggestion); |
597 | |
598 | // Same as above but with the other clone. We do this for both clones as |
599 | // we don't know which clone is the one containing the unintended |
600 | // pattern error. |
601 | const VarDecl *SecondSuggestion = nullptr; |
602 | if (ThisOccurence.KindID < Other.Variables.size()) |
603 | SecondSuggestion = Other.Variables[ThisOccurence.KindID]; |
604 | |
605 | // Store information about the second clone. |
606 | FirstMismatch->SecondCloneInfo = |
607 | VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo( |
608 | Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention, |
609 | SecondSuggestion); |
610 | |
611 | // SuspiciousClonePair guarantees that the first clone always has a |
612 | // suggested variable associated with it. As we know that one of the two |
613 | // clones in the pair always has suggestion, we swap the two clones |
614 | // in case the first clone has no suggested variable which means that |
615 | // the second clone has a suggested variable and should be first. |
616 | if (!FirstMismatch->FirstCloneInfo.Suggestion) |
617 | std::swap(a&: FirstMismatch->FirstCloneInfo, b&: FirstMismatch->SecondCloneInfo); |
618 | |
619 | // This ensures that we always have at least one suggestion in a pair. |
620 | assert(FirstMismatch->FirstCloneInfo.Suggestion); |
621 | } |
622 | |
623 | return NumberOfDifferences; |
624 | } |
625 | |