1 | //===---------- ExprMutationAnalyzer.cpp ----------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | #include "clang/Analysis/Analyses/ExprMutationAnalyzer.h" |
9 | #include "clang/AST/Expr.h" |
10 | #include "clang/AST/OperationKinds.h" |
11 | #include "clang/ASTMatchers/ASTMatchFinder.h" |
12 | #include "clang/ASTMatchers/ASTMatchers.h" |
13 | #include "llvm/ADT/STLExtras.h" |
14 | |
15 | namespace clang { |
16 | using namespace ast_matchers; |
17 | |
18 | // Check if result of Source expression could be a Target expression. |
19 | // Checks: |
20 | // - Implicit Casts |
21 | // - Binary Operators |
22 | // - ConditionalOperator |
23 | // - BinaryConditionalOperator |
24 | static bool canExprResolveTo(const Expr *Source, const Expr *Target) { |
25 | |
26 | const auto IgnoreDerivedToBase = [](const Expr *E, auto Matcher) { |
27 | if (Matcher(E)) |
28 | return true; |
29 | if (const auto *Cast = dyn_cast<ImplicitCastExpr>(Val: E)) { |
30 | if ((Cast->getCastKind() == CK_DerivedToBase || |
31 | Cast->getCastKind() == CK_UncheckedDerivedToBase) && |
32 | Matcher(Cast->getSubExpr())) |
33 | return true; |
34 | } |
35 | return false; |
36 | }; |
37 | |
38 | const auto EvalCommaExpr = [](const Expr *E, auto Matcher) { |
39 | const Expr *Result = E; |
40 | while (const auto *BOComma = |
41 | dyn_cast_or_null<BinaryOperator>(Val: Result->IgnoreParens())) { |
42 | if (!BOComma->isCommaOp()) |
43 | break; |
44 | Result = BOComma->getRHS(); |
45 | } |
46 | |
47 | return Result != E && Matcher(Result); |
48 | }; |
49 | |
50 | // The 'ConditionalOperatorM' matches on `<anything> ? <expr> : <expr>`. |
51 | // This matching must be recursive because `<expr>` can be anything resolving |
52 | // to the `InnerMatcher`, for example another conditional operator. |
53 | // The edge-case `BaseClass &b = <cond> ? DerivedVar1 : DerivedVar2;` |
54 | // is handled, too. The implicit cast happens outside of the conditional. |
55 | // This is matched by `IgnoreDerivedToBase(canResolveToExpr(InnerMatcher))` |
56 | // below. |
57 | const auto ConditionalOperatorM = [Target](const Expr *E) { |
58 | if (const auto *OP = dyn_cast<ConditionalOperator>(Val: E)) { |
59 | if (const auto *TE = OP->getTrueExpr()->IgnoreParens()) |
60 | if (canExprResolveTo(Source: TE, Target)) |
61 | return true; |
62 | if (const auto *FE = OP->getFalseExpr()->IgnoreParens()) |
63 | if (canExprResolveTo(Source: FE, Target)) |
64 | return true; |
65 | } |
66 | return false; |
67 | }; |
68 | |
69 | const auto ElvisOperator = [Target](const Expr *E) { |
70 | if (const auto *OP = dyn_cast<BinaryConditionalOperator>(Val: E)) { |
71 | if (const auto *TE = OP->getTrueExpr()->IgnoreParens()) |
72 | if (canExprResolveTo(Source: TE, Target)) |
73 | return true; |
74 | if (const auto *FE = OP->getFalseExpr()->IgnoreParens()) |
75 | if (canExprResolveTo(Source: FE, Target)) |
76 | return true; |
77 | } |
78 | return false; |
79 | }; |
80 | |
81 | const Expr *SourceExprP = Source->IgnoreParens(); |
82 | return IgnoreDerivedToBase(SourceExprP, |
83 | [&](const Expr *E) { |
84 | return E == Target || ConditionalOperatorM(E) || |
85 | ElvisOperator(E); |
86 | }) || |
87 | EvalCommaExpr(SourceExprP, [&](const Expr *E) { |
88 | return IgnoreDerivedToBase( |
89 | E->IgnoreParens(), [&](const Expr *EE) { return EE == Target; }); |
90 | }); |
91 | } |
92 | |
93 | namespace { |
94 | |
95 | AST_MATCHER_P(LambdaExpr, hasCaptureInit, const Expr *, E) { |
96 | return llvm::is_contained(Range: Node.capture_inits(), Element: E); |
97 | } |
98 | |
99 | AST_MATCHER_P(CXXForRangeStmt, hasRangeStmt, |
100 | ast_matchers::internal::Matcher<DeclStmt>, InnerMatcher) { |
101 | const DeclStmt *const Range = Node.getRangeStmt(); |
102 | return InnerMatcher.matches(Node: *Range, Finder, Builder); |
103 | } |
104 | |
105 | AST_MATCHER_P(Stmt, canResolveToExpr, const Stmt *, Inner) { |
106 | auto *Exp = dyn_cast<Expr>(Val: &Node); |
107 | if (!Exp) |
108 | return true; |
109 | auto *Target = dyn_cast<Expr>(Val: Inner); |
110 | if (!Target) |
111 | return false; |
112 | return canExprResolveTo(Source: Exp, Target); |
113 | } |
114 | |
115 | // Similar to 'hasAnyArgument', but does not work because 'InitListExpr' does |
116 | // not have the 'arguments()' method. |
117 | AST_MATCHER_P(InitListExpr, hasAnyInit, ast_matchers::internal::Matcher<Expr>, |
118 | InnerMatcher) { |
119 | for (const Expr *Arg : Node.inits()) { |
120 | ast_matchers::internal::BoundNodesTreeBuilder Result(*Builder); |
121 | if (InnerMatcher.matches(Node: *Arg, Finder, Builder: &Result)) { |
122 | *Builder = std::move(Result); |
123 | return true; |
124 | } |
125 | } |
126 | return false; |
127 | } |
128 | |
129 | const ast_matchers::internal::VariadicDynCastAllOfMatcher<Stmt, CXXTypeidExpr> |
130 | cxxTypeidExpr; |
131 | |
132 | AST_MATCHER(CXXTypeidExpr, isPotentiallyEvaluated) { |
133 | return Node.isPotentiallyEvaluated(); |
134 | } |
135 | |
136 | AST_MATCHER(CXXMemberCallExpr, isConstCallee) { |
137 | const Decl *CalleeDecl = Node.getCalleeDecl(); |
138 | const auto *VD = dyn_cast_or_null<ValueDecl>(Val: CalleeDecl); |
139 | if (!VD) |
140 | return false; |
141 | const QualType T = VD->getType().getCanonicalType(); |
142 | const auto *MPT = dyn_cast<MemberPointerType>(Val: T); |
143 | const auto *FPT = MPT ? cast<FunctionProtoType>(Val: MPT->getPointeeType()) |
144 | : dyn_cast<FunctionProtoType>(Val: T); |
145 | if (!FPT) |
146 | return false; |
147 | return FPT->isConst(); |
148 | } |
149 | |
150 | AST_MATCHER_P(GenericSelectionExpr, hasControllingExpr, |
151 | ast_matchers::internal::Matcher<Expr>, InnerMatcher) { |
152 | if (Node.isTypePredicate()) |
153 | return false; |
154 | return InnerMatcher.matches(Node: *Node.getControllingExpr(), Finder, Builder); |
155 | } |
156 | |
157 | template <typename T> |
158 | ast_matchers::internal::Matcher<T> |
159 | findFirst(const ast_matchers::internal::Matcher<T> &Matcher) { |
160 | return anyOf(Matcher, hasDescendant(Matcher)); |
161 | } |
162 | |
163 | const auto nonConstReferenceType = [] { |
164 | return hasUnqualifiedDesugaredType( |
165 | InnerMatcher: referenceType(pointee(unless(isConstQualified())))); |
166 | }; |
167 | |
168 | const auto nonConstPointerType = [] { |
169 | return hasUnqualifiedDesugaredType( |
170 | InnerMatcher: pointerType(pointee(unless(isConstQualified())))); |
171 | }; |
172 | |
173 | const auto isMoveOnly = [] { |
174 | return cxxRecordDecl( |
175 | hasMethod(InnerMatcher: cxxConstructorDecl(isMoveConstructor(), unless(isDeleted()))), |
176 | hasMethod(InnerMatcher: cxxMethodDecl(isMoveAssignmentOperator(), unless(isDeleted()))), |
177 | unless(anyOf(hasMethod(InnerMatcher: cxxConstructorDecl(isCopyConstructor(), |
178 | unless(isDeleted()))), |
179 | hasMethod(InnerMatcher: cxxMethodDecl(isCopyAssignmentOperator(), |
180 | unless(isDeleted())))))); |
181 | }; |
182 | |
183 | template <class T> struct NodeID; |
184 | template <> struct NodeID<Expr> { static constexpr StringRef value = "expr" ; }; |
185 | template <> struct NodeID<Decl> { static constexpr StringRef value = "decl" ; }; |
186 | constexpr StringRef NodeID<Expr>::value; |
187 | constexpr StringRef NodeID<Decl>::value; |
188 | |
189 | template <class T, |
190 | class F = const Stmt *(ExprMutationAnalyzer::Analyzer::*)(const T *)> |
191 | const Stmt *tryEachMatch(ArrayRef<ast_matchers::BoundNodes> Matches, |
192 | ExprMutationAnalyzer::Analyzer *Analyzer, F Finder) { |
193 | const StringRef ID = NodeID<T>::value; |
194 | for (const auto &Nodes : Matches) { |
195 | if (const Stmt *S = (Analyzer->*Finder)(Nodes.getNodeAs<T>(ID))) |
196 | return S; |
197 | } |
198 | return nullptr; |
199 | } |
200 | |
201 | } // namespace |
202 | |
203 | const Stmt *ExprMutationAnalyzer::Analyzer::findMutation(const Expr *Exp) { |
204 | return findMutationMemoized( |
205 | Exp, |
206 | Finders: {&ExprMutationAnalyzer::Analyzer::findDirectMutation, |
207 | &ExprMutationAnalyzer::Analyzer::findMemberMutation, |
208 | &ExprMutationAnalyzer::Analyzer::findArrayElementMutation, |
209 | &ExprMutationAnalyzer::Analyzer::findCastMutation, |
210 | &ExprMutationAnalyzer::Analyzer::findRangeLoopMutation, |
211 | &ExprMutationAnalyzer::Analyzer::findReferenceMutation, |
212 | &ExprMutationAnalyzer::Analyzer::findFunctionArgMutation}, |
213 | MemoizedResults&: Memorized.Results); |
214 | } |
215 | |
216 | const Stmt *ExprMutationAnalyzer::Analyzer::findMutation(const Decl *Dec) { |
217 | return tryEachDeclRef(Dec, Finder: &ExprMutationAnalyzer::Analyzer::findMutation); |
218 | } |
219 | |
220 | const Stmt * |
221 | ExprMutationAnalyzer::Analyzer::findPointeeMutation(const Expr *Exp) { |
222 | return findMutationMemoized(Exp, Finders: {/*TODO*/}, MemoizedResults&: Memorized.PointeeResults); |
223 | } |
224 | |
225 | const Stmt * |
226 | ExprMutationAnalyzer::Analyzer::findPointeeMutation(const Decl *Dec) { |
227 | return tryEachDeclRef(Dec, |
228 | Finder: &ExprMutationAnalyzer::Analyzer::findPointeeMutation); |
229 | } |
230 | |
231 | const Stmt *ExprMutationAnalyzer::Analyzer::findMutationMemoized( |
232 | const Expr *Exp, llvm::ArrayRef<MutationFinder> Finders, |
233 | Memoized::ResultMap &MemoizedResults) { |
234 | const auto Memoized = MemoizedResults.find(Val: Exp); |
235 | if (Memoized != MemoizedResults.end()) |
236 | return Memoized->second; |
237 | |
238 | // Assume Exp is not mutated before analyzing Exp. |
239 | MemoizedResults[Exp] = nullptr; |
240 | if (isUnevaluated(Exp)) |
241 | return nullptr; |
242 | |
243 | for (const auto &Finder : Finders) { |
244 | if (const Stmt *S = (this->*Finder)(Exp)) |
245 | return MemoizedResults[Exp] = S; |
246 | } |
247 | |
248 | return nullptr; |
249 | } |
250 | |
251 | const Stmt * |
252 | ExprMutationAnalyzer::Analyzer::tryEachDeclRef(const Decl *Dec, |
253 | MutationFinder Finder) { |
254 | const auto Refs = match( |
255 | Matcher: findAll( |
256 | Matcher: declRefExpr(to( |
257 | // `Dec` or a binding if `Dec` is a decomposition. |
258 | InnerMatcher: anyOf(equalsNode(Other: Dec), |
259 | bindingDecl(forDecomposition(InnerMatcher: equalsNode(Other: Dec)))) |
260 | // |
261 | )) |
262 | .bind(ID: NodeID<Expr>::value)), |
263 | Node: Stm, Context); |
264 | for (const auto &RefNodes : Refs) { |
265 | const auto *E = RefNodes.getNodeAs<Expr>(ID: NodeID<Expr>::value); |
266 | if ((this->*Finder)(E)) |
267 | return E; |
268 | } |
269 | return nullptr; |
270 | } |
271 | |
272 | bool ExprMutationAnalyzer::Analyzer::isUnevaluated(const Stmt *Exp, |
273 | const Stmt &Stm, |
274 | ASTContext &Context) { |
275 | return selectFirst<Stmt>( |
276 | BoundTo: NodeID<Expr>::value, |
277 | Results: match( |
278 | Matcher: findFirst( |
279 | Matcher: stmt(canResolveToExpr(Inner: Exp), |
280 | anyOf( |
281 | // `Exp` is part of the underlying expression of |
282 | // decltype/typeof if it has an ancestor of |
283 | // typeLoc. |
284 | hasAncestor(typeLoc(unless( |
285 | hasAncestor(unaryExprOrTypeTraitExpr())))), |
286 | hasAncestor(expr(anyOf( |
287 | // `UnaryExprOrTypeTraitExpr` is unevaluated |
288 | // unless it's sizeof on VLA. |
289 | unaryExprOrTypeTraitExpr(unless(sizeOfExpr( |
290 | InnerMatcher: hasArgumentOfType(InnerMatcher: variableArrayType())))), |
291 | // `CXXTypeidExpr` is unevaluated unless it's |
292 | // applied to an expression of glvalue of |
293 | // polymorphic class type. |
294 | cxxTypeidExpr( |
295 | unless(isPotentiallyEvaluated())), |
296 | // The controlling expression of |
297 | // `GenericSelectionExpr` is unevaluated. |
298 | genericSelectionExpr(hasControllingExpr( |
299 | InnerMatcher: hasDescendant(equalsNode(Other: Exp)))), |
300 | cxxNoexceptExpr()))))) |
301 | .bind(ID: NodeID<Expr>::value)), |
302 | Node: Stm, Context)) != nullptr; |
303 | } |
304 | |
305 | bool ExprMutationAnalyzer::Analyzer::isUnevaluated(const Expr *Exp) { |
306 | return isUnevaluated(Exp, Stm, Context); |
307 | } |
308 | |
309 | const Stmt * |
310 | ExprMutationAnalyzer::Analyzer::findExprMutation(ArrayRef<BoundNodes> Matches) { |
311 | return tryEachMatch<Expr>(Matches, Analyzer: this, |
312 | Finder: &ExprMutationAnalyzer::Analyzer::findMutation); |
313 | } |
314 | |
315 | const Stmt * |
316 | ExprMutationAnalyzer::Analyzer::findDeclMutation(ArrayRef<BoundNodes> Matches) { |
317 | return tryEachMatch<Decl>(Matches, Analyzer: this, |
318 | Finder: &ExprMutationAnalyzer::Analyzer::findMutation); |
319 | } |
320 | |
321 | const Stmt *ExprMutationAnalyzer::Analyzer::findExprPointeeMutation( |
322 | ArrayRef<ast_matchers::BoundNodes> Matches) { |
323 | return tryEachMatch<Expr>( |
324 | Matches, Analyzer: this, Finder: &ExprMutationAnalyzer::Analyzer::findPointeeMutation); |
325 | } |
326 | |
327 | const Stmt *ExprMutationAnalyzer::Analyzer::findDeclPointeeMutation( |
328 | ArrayRef<ast_matchers::BoundNodes> Matches) { |
329 | return tryEachMatch<Decl>( |
330 | Matches, Analyzer: this, Finder: &ExprMutationAnalyzer::Analyzer::findPointeeMutation); |
331 | } |
332 | |
333 | const Stmt * |
334 | ExprMutationAnalyzer::Analyzer::findDirectMutation(const Expr *Exp) { |
335 | // LHS of any assignment operators. |
336 | const auto AsAssignmentLhs = |
337 | binaryOperator(isAssignmentOperator(), hasLHS(InnerMatcher: canResolveToExpr(Inner: Exp))); |
338 | |
339 | // Operand of increment/decrement operators. |
340 | const auto AsIncDecOperand = |
341 | unaryOperator(anyOf(hasOperatorName(Name: "++" ), hasOperatorName(Name: "--" )), |
342 | hasUnaryOperand(InnerMatcher: canResolveToExpr(Inner: Exp))); |
343 | |
344 | // Invoking non-const member function. |
345 | // A member function is assumed to be non-const when it is unresolved. |
346 | const auto NonConstMethod = cxxMethodDecl(unless(isConst())); |
347 | |
348 | const auto AsNonConstThis = expr(anyOf( |
349 | cxxMemberCallExpr(on(InnerMatcher: canResolveToExpr(Inner: Exp)), unless(isConstCallee())), |
350 | cxxOperatorCallExpr(callee(InnerMatcher: NonConstMethod), |
351 | hasArgument(N: 0, InnerMatcher: canResolveToExpr(Inner: Exp))), |
352 | // In case of a templated type, calling overloaded operators is not |
353 | // resolved and modelled as `binaryOperator` on a dependent type. |
354 | // Such instances are considered a modification, because they can modify |
355 | // in different instantiations of the template. |
356 | binaryOperator(isTypeDependent(), |
357 | hasEitherOperand(InnerMatcher: ignoringImpCasts(InnerMatcher: canResolveToExpr(Inner: Exp)))), |
358 | // A fold expression may contain `Exp` as it's initializer. |
359 | // We don't know if the operator modifies `Exp` because the |
360 | // operator is type dependent due to the parameter pack. |
361 | cxxFoldExpr(hasFoldInit(InnerMacher: ignoringImpCasts(InnerMatcher: canResolveToExpr(Inner: Exp)))), |
362 | // Within class templates and member functions the member expression might |
363 | // not be resolved. In that case, the `callExpr` is considered to be a |
364 | // modification. |
365 | callExpr(callee(InnerMatcher: expr(anyOf( |
366 | unresolvedMemberExpr(hasObjectExpression(InnerMatcher: canResolveToExpr(Inner: Exp))), |
367 | cxxDependentScopeMemberExpr( |
368 | hasObjectExpression(InnerMatcher: canResolveToExpr(Inner: Exp))))))), |
369 | // Match on a call to a known method, but the call itself is type |
370 | // dependent (e.g. `vector<T> v; v.push(T{});` in a templated function). |
371 | callExpr(allOf( |
372 | isTypeDependent(), |
373 | callee(InnerMatcher: memberExpr(hasDeclaration(InnerMatcher: NonConstMethod), |
374 | hasObjectExpression(InnerMatcher: canResolveToExpr(Inner: Exp)))))))); |
375 | |
376 | // Taking address of 'Exp'. |
377 | // We're assuming 'Exp' is mutated as soon as its address is taken, though in |
378 | // theory we can follow the pointer and see whether it escaped `Stm` or is |
379 | // dereferenced and then mutated. This is left for future improvements. |
380 | const auto AsAmpersandOperand = |
381 | unaryOperator(hasOperatorName(Name: "&" ), |
382 | // A NoOp implicit cast is adding const. |
383 | unless(hasParent(implicitCastExpr(hasCastKind(Kind: CK_NoOp)))), |
384 | hasUnaryOperand(InnerMatcher: canResolveToExpr(Inner: Exp))); |
385 | const auto AsPointerFromArrayDecay = castExpr( |
386 | hasCastKind(Kind: CK_ArrayToPointerDecay), |
387 | unless(hasParent(arraySubscriptExpr())), has(canResolveToExpr(Inner: Exp))); |
388 | // Treat calling `operator->()` of move-only classes as taking address. |
389 | // These are typically smart pointers with unique ownership so we treat |
390 | // mutation of pointee as mutation of the smart pointer itself. |
391 | const auto AsOperatorArrowThis = cxxOperatorCallExpr( |
392 | hasOverloadedOperatorName(Name: "->" ), |
393 | callee( |
394 | InnerMatcher: cxxMethodDecl(ofClass(InnerMatcher: isMoveOnly()), returns(InnerMatcher: nonConstPointerType()))), |
395 | argumentCountIs(N: 1), hasArgument(N: 0, InnerMatcher: canResolveToExpr(Inner: Exp))); |
396 | |
397 | // Used as non-const-ref argument when calling a function. |
398 | // An argument is assumed to be non-const-ref when the function is unresolved. |
399 | // Instantiated template functions are not handled here but in |
400 | // findFunctionArgMutation which has additional smarts for handling forwarding |
401 | // references. |
402 | const auto NonConstRefParam = forEachArgumentWithParamType( |
403 | ArgMatcher: anyOf(canResolveToExpr(Inner: Exp), |
404 | memberExpr(hasObjectExpression(InnerMatcher: canResolveToExpr(Inner: Exp)))), |
405 | ParamMatcher: nonConstReferenceType()); |
406 | const auto NotInstantiated = unless(hasDeclaration(InnerMatcher: isInstantiated())); |
407 | |
408 | const auto AsNonConstRefArg = |
409 | anyOf(callExpr(NonConstRefParam, NotInstantiated), |
410 | cxxConstructExpr(NonConstRefParam, NotInstantiated), |
411 | // If the call is type-dependent, we can't properly process any |
412 | // argument because required type conversions and implicit casts |
413 | // will be inserted only after specialization. |
414 | callExpr(isTypeDependent(), hasAnyArgument(InnerMatcher: canResolveToExpr(Inner: Exp))), |
415 | cxxUnresolvedConstructExpr(hasAnyArgument(InnerMatcher: canResolveToExpr(Inner: Exp))), |
416 | // Previous False Positive in the following Code: |
417 | // `template <typename T> void f() { int i = 42; new Type<T>(i); }` |
418 | // Where the constructor of `Type` takes its argument as reference. |
419 | // The AST does not resolve in a `cxxConstructExpr` because it is |
420 | // type-dependent. |
421 | parenListExpr(hasDescendant(expr(canResolveToExpr(Inner: Exp)))), |
422 | // If the initializer is for a reference type, there is no cast for |
423 | // the variable. Values are cast to RValue first. |
424 | initListExpr(hasAnyInit(InnerMatcher: expr(canResolveToExpr(Inner: Exp))))); |
425 | |
426 | // Captured by a lambda by reference. |
427 | // If we're initializing a capture with 'Exp' directly then we're initializing |
428 | // a reference capture. |
429 | // For value captures there will be an ImplicitCastExpr <LValueToRValue>. |
430 | const auto AsLambdaRefCaptureInit = lambdaExpr(hasCaptureInit(E: Exp)); |
431 | |
432 | // Returned as non-const-ref. |
433 | // If we're returning 'Exp' directly then it's returned as non-const-ref. |
434 | // For returning by value there will be an ImplicitCastExpr <LValueToRValue>. |
435 | // For returning by const-ref there will be an ImplicitCastExpr <NoOp> (for |
436 | // adding const.) |
437 | const auto AsNonConstRefReturn = |
438 | returnStmt(hasReturnValue(InnerMatcher: canResolveToExpr(Inner: Exp))); |
439 | |
440 | // It is used as a non-const-reference for initializing a range-for loop. |
441 | const auto AsNonConstRefRangeInit = cxxForRangeStmt(hasRangeInit(InnerMatcher: declRefExpr( |
442 | allOf(canResolveToExpr(Inner: Exp), hasType(InnerMatcher: nonConstReferenceType()))))); |
443 | |
444 | const auto Matches = match( |
445 | Matcher: traverse( |
446 | TK: TK_AsIs, |
447 | InnerMatcher: findFirst(Matcher: stmt(anyOf(AsAssignmentLhs, AsIncDecOperand, AsNonConstThis, |
448 | AsAmpersandOperand, AsPointerFromArrayDecay, |
449 | AsOperatorArrowThis, AsNonConstRefArg, |
450 | AsLambdaRefCaptureInit, AsNonConstRefReturn, |
451 | AsNonConstRefRangeInit)) |
452 | .bind(ID: "stmt" ))), |
453 | Node: Stm, Context); |
454 | return selectFirst<Stmt>(BoundTo: "stmt" , Results: Matches); |
455 | } |
456 | |
457 | const Stmt * |
458 | ExprMutationAnalyzer::Analyzer::findMemberMutation(const Expr *Exp) { |
459 | // Check whether any member of 'Exp' is mutated. |
460 | const auto MemberExprs = match( |
461 | Matcher: findAll(Matcher: expr(anyOf(memberExpr(hasObjectExpression(InnerMatcher: canResolveToExpr(Inner: Exp))), |
462 | cxxDependentScopeMemberExpr( |
463 | hasObjectExpression(InnerMatcher: canResolveToExpr(Inner: Exp))), |
464 | binaryOperator(hasOperatorName(Name: ".*" ), |
465 | hasLHS(InnerMatcher: equalsNode(Other: Exp))))) |
466 | .bind(ID: NodeID<Expr>::value)), |
467 | Node: Stm, Context); |
468 | return findExprMutation(Matches: MemberExprs); |
469 | } |
470 | |
471 | const Stmt * |
472 | ExprMutationAnalyzer::Analyzer::findArrayElementMutation(const Expr *Exp) { |
473 | // Check whether any element of an array is mutated. |
474 | const auto SubscriptExprs = match( |
475 | Matcher: findAll(Matcher: arraySubscriptExpr( |
476 | anyOf(hasBase(InnerMatcher: canResolveToExpr(Inner: Exp)), |
477 | hasBase(InnerMatcher: implicitCastExpr(allOf( |
478 | hasCastKind(Kind: CK_ArrayToPointerDecay), |
479 | hasSourceExpression(InnerMatcher: canResolveToExpr(Inner: Exp))))))) |
480 | .bind(ID: NodeID<Expr>::value)), |
481 | Node: Stm, Context); |
482 | return findExprMutation(Matches: SubscriptExprs); |
483 | } |
484 | |
485 | const Stmt *ExprMutationAnalyzer::Analyzer::findCastMutation(const Expr *Exp) { |
486 | // If the 'Exp' is explicitly casted to a non-const reference type the |
487 | // 'Exp' is considered to be modified. |
488 | const auto ExplicitCast = |
489 | match(Matcher: findFirst(Matcher: stmt(castExpr(hasSourceExpression(InnerMatcher: canResolveToExpr(Inner: Exp)), |
490 | explicitCastExpr(hasDestinationType( |
491 | InnerMatcher: nonConstReferenceType())))) |
492 | .bind(ID: "stmt" )), |
493 | Node: Stm, Context); |
494 | |
495 | if (const auto *CastStmt = selectFirst<Stmt>(BoundTo: "stmt" , Results: ExplicitCast)) |
496 | return CastStmt; |
497 | |
498 | // If 'Exp' is casted to any non-const reference type, check the castExpr. |
499 | const auto Casts = match( |
500 | Matcher: findAll(Matcher: expr(castExpr(hasSourceExpression(InnerMatcher: canResolveToExpr(Inner: Exp)), |
501 | anyOf(explicitCastExpr(hasDestinationType( |
502 | InnerMatcher: nonConstReferenceType())), |
503 | implicitCastExpr(hasImplicitDestinationType( |
504 | InnerMatcher: nonConstReferenceType()))))) |
505 | .bind(ID: NodeID<Expr>::value)), |
506 | Node: Stm, Context); |
507 | |
508 | if (const Stmt *S = findExprMutation(Matches: Casts)) |
509 | return S; |
510 | // Treat std::{move,forward} as cast. |
511 | const auto Calls = |
512 | match(Matcher: findAll(Matcher: callExpr(callee(InnerMatcher: namedDecl( |
513 | hasAnyName("::std::move" , "::std::forward" ))), |
514 | hasArgument(N: 0, InnerMatcher: canResolveToExpr(Inner: Exp))) |
515 | .bind(ID: "expr" )), |
516 | Node: Stm, Context); |
517 | return findExprMutation(Matches: Calls); |
518 | } |
519 | |
520 | const Stmt * |
521 | ExprMutationAnalyzer::Analyzer::findRangeLoopMutation(const Expr *Exp) { |
522 | // Keep the ordering for the specific initialization matches to happen first, |
523 | // because it is cheaper to match all potential modifications of the loop |
524 | // variable. |
525 | |
526 | // The range variable is a reference to a builtin array. In that case the |
527 | // array is considered modified if the loop-variable is a non-const reference. |
528 | const auto DeclStmtToNonRefToArray = declStmt(hasSingleDecl(InnerMatcher: varDecl(hasType( |
529 | InnerMatcher: hasUnqualifiedDesugaredType(InnerMatcher: referenceType(pointee(arrayType()))))))); |
530 | const auto RefToArrayRefToElements = match( |
531 | Matcher: findFirst(Matcher: stmt(cxxForRangeStmt( |
532 | hasLoopVariable( |
533 | InnerMatcher: varDecl(anyOf(hasType(InnerMatcher: nonConstReferenceType()), |
534 | hasType(InnerMatcher: nonConstPointerType()))) |
535 | .bind(ID: NodeID<Decl>::value)), |
536 | hasRangeStmt(InnerMatcher: DeclStmtToNonRefToArray), |
537 | hasRangeInit(InnerMatcher: canResolveToExpr(Inner: Exp)))) |
538 | .bind(ID: "stmt" )), |
539 | Node: Stm, Context); |
540 | |
541 | if (const auto *BadRangeInitFromArray = |
542 | selectFirst<Stmt>(BoundTo: "stmt" , Results: RefToArrayRefToElements)) |
543 | return BadRangeInitFromArray; |
544 | |
545 | // Small helper to match special cases in range-for loops. |
546 | // |
547 | // It is possible that containers do not provide a const-overload for their |
548 | // iterator accessors. If this is the case, the variable is used non-const |
549 | // no matter what happens in the loop. This requires special detection as it |
550 | // is then faster to find all mutations of the loop variable. |
551 | // It aims at a different modification as well. |
552 | const auto HasAnyNonConstIterator = |
553 | anyOf(allOf(hasMethod(InnerMatcher: allOf(hasName(Name: "begin" ), unless(isConst()))), |
554 | unless(hasMethod(InnerMatcher: allOf(hasName(Name: "begin" ), isConst())))), |
555 | allOf(hasMethod(InnerMatcher: allOf(hasName(Name: "end" ), unless(isConst()))), |
556 | unless(hasMethod(InnerMatcher: allOf(hasName(Name: "end" ), isConst()))))); |
557 | |
558 | const auto DeclStmtToNonConstIteratorContainer = declStmt( |
559 | hasSingleDecl(InnerMatcher: varDecl(hasType(InnerMatcher: hasUnqualifiedDesugaredType(InnerMatcher: referenceType( |
560 | pointee(hasDeclaration(InnerMatcher: cxxRecordDecl(HasAnyNonConstIterator))))))))); |
561 | |
562 | const auto RefToContainerBadIterators = match( |
563 | Matcher: findFirst(Matcher: stmt(cxxForRangeStmt(allOf( |
564 | hasRangeStmt(InnerMatcher: DeclStmtToNonConstIteratorContainer), |
565 | hasRangeInit(InnerMatcher: canResolveToExpr(Inner: Exp))))) |
566 | .bind(ID: "stmt" )), |
567 | Node: Stm, Context); |
568 | |
569 | if (const auto *BadIteratorsContainer = |
570 | selectFirst<Stmt>(BoundTo: "stmt" , Results: RefToContainerBadIterators)) |
571 | return BadIteratorsContainer; |
572 | |
573 | // If range for looping over 'Exp' with a non-const reference loop variable, |
574 | // check all declRefExpr of the loop variable. |
575 | const auto LoopVars = |
576 | match(Matcher: findAll(Matcher: cxxForRangeStmt( |
577 | hasLoopVariable(InnerMatcher: varDecl(hasType(InnerMatcher: nonConstReferenceType())) |
578 | .bind(ID: NodeID<Decl>::value)), |
579 | hasRangeInit(InnerMatcher: canResolveToExpr(Inner: Exp)))), |
580 | Node: Stm, Context); |
581 | return findDeclMutation(Matches: LoopVars); |
582 | } |
583 | |
584 | const Stmt * |
585 | ExprMutationAnalyzer::Analyzer::findReferenceMutation(const Expr *Exp) { |
586 | // Follow non-const reference returned by `operator*()` of move-only classes. |
587 | // These are typically smart pointers with unique ownership so we treat |
588 | // mutation of pointee as mutation of the smart pointer itself. |
589 | const auto Ref = match( |
590 | Matcher: findAll(Matcher: cxxOperatorCallExpr( |
591 | hasOverloadedOperatorName(Name: "*" ), |
592 | callee(InnerMatcher: cxxMethodDecl(ofClass(InnerMatcher: isMoveOnly()), |
593 | returns(InnerMatcher: nonConstReferenceType()))), |
594 | argumentCountIs(N: 1), hasArgument(N: 0, InnerMatcher: canResolveToExpr(Inner: Exp))) |
595 | .bind(ID: NodeID<Expr>::value)), |
596 | Node: Stm, Context); |
597 | if (const Stmt *S = findExprMutation(Matches: Ref)) |
598 | return S; |
599 | |
600 | // If 'Exp' is bound to a non-const reference, check all declRefExpr to that. |
601 | const auto Refs = match( |
602 | Matcher: stmt(forEachDescendant( |
603 | varDecl(hasType(InnerMatcher: nonConstReferenceType()), |
604 | hasInitializer(InnerMatcher: anyOf( |
605 | canResolveToExpr(Inner: Exp), |
606 | memberExpr(hasObjectExpression(InnerMatcher: canResolveToExpr(Inner: Exp))))), |
607 | hasParent(declStmt().bind(ID: "stmt" )), |
608 | // Don't follow the reference in range statement, we've |
609 | // handled that separately. |
610 | unless(hasParent(declStmt(hasParent(cxxForRangeStmt( |
611 | hasRangeStmt(InnerMatcher: equalsBoundNode(ID: "stmt" )))))))) |
612 | .bind(ID: NodeID<Decl>::value))), |
613 | Node: Stm, Context); |
614 | return findDeclMutation(Matches: Refs); |
615 | } |
616 | |
617 | const Stmt * |
618 | ExprMutationAnalyzer::Analyzer::findFunctionArgMutation(const Expr *Exp) { |
619 | const auto NonConstRefParam = forEachArgumentWithParam( |
620 | ArgMatcher: canResolveToExpr(Inner: Exp), |
621 | ParamMatcher: parmVarDecl(hasType(InnerMatcher: nonConstReferenceType())).bind(ID: "parm" )); |
622 | const auto IsInstantiated = hasDeclaration(InnerMatcher: isInstantiated()); |
623 | const auto FuncDecl = hasDeclaration(InnerMatcher: functionDecl().bind(ID: "func" )); |
624 | const auto Matches = match( |
625 | Matcher: traverse( |
626 | TK: TK_AsIs, |
627 | InnerMatcher: findAll( |
628 | Matcher: expr(anyOf(callExpr(NonConstRefParam, IsInstantiated, FuncDecl, |
629 | unless(callee(InnerMatcher: namedDecl(hasAnyName( |
630 | "::std::move" , "::std::forward" ))))), |
631 | cxxConstructExpr(NonConstRefParam, IsInstantiated, |
632 | FuncDecl))) |
633 | .bind(ID: NodeID<Expr>::value))), |
634 | Node: Stm, Context); |
635 | for (const auto &Nodes : Matches) { |
636 | const auto *Exp = Nodes.getNodeAs<Expr>(ID: NodeID<Expr>::value); |
637 | const auto *Func = Nodes.getNodeAs<FunctionDecl>(ID: "func" ); |
638 | if (!Func->getBody() || !Func->getPrimaryTemplate()) |
639 | return Exp; |
640 | |
641 | const auto *Parm = Nodes.getNodeAs<ParmVarDecl>(ID: "parm" ); |
642 | const ArrayRef<ParmVarDecl *> AllParams = |
643 | Func->getPrimaryTemplate()->getTemplatedDecl()->parameters(); |
644 | QualType ParmType = |
645 | AllParams[std::min<size_t>(a: Parm->getFunctionScopeIndex(), |
646 | b: AllParams.size() - 1)] |
647 | ->getType(); |
648 | if (const auto *T = ParmType->getAs<PackExpansionType>()) |
649 | ParmType = T->getPattern(); |
650 | |
651 | // If param type is forwarding reference, follow into the function |
652 | // definition and see whether the param is mutated inside. |
653 | if (const auto *RefType = ParmType->getAs<RValueReferenceType>()) { |
654 | if (!RefType->getPointeeType().getQualifiers() && |
655 | RefType->getPointeeType()->getAs<TemplateTypeParmType>()) { |
656 | FunctionParmMutationAnalyzer *Analyzer = |
657 | FunctionParmMutationAnalyzer::getFunctionParmMutationAnalyzer( |
658 | Func: *Func, Context, Memorized); |
659 | if (Analyzer->findMutation(Parm)) |
660 | return Exp; |
661 | continue; |
662 | } |
663 | } |
664 | // Not forwarding reference. |
665 | return Exp; |
666 | } |
667 | return nullptr; |
668 | } |
669 | |
670 | FunctionParmMutationAnalyzer::FunctionParmMutationAnalyzer( |
671 | const FunctionDecl &Func, ASTContext &Context, |
672 | ExprMutationAnalyzer::Memoized &Memorized) |
673 | : BodyAnalyzer(*Func.getBody(), Context, Memorized) { |
674 | if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Val: &Func)) { |
675 | // CXXCtorInitializer might also mutate Param but they're not part of |
676 | // function body, check them eagerly here since they're typically trivial. |
677 | for (const CXXCtorInitializer *Init : Ctor->inits()) { |
678 | ExprMutationAnalyzer::Analyzer InitAnalyzer(*Init->getInit(), Context, |
679 | Memorized); |
680 | for (const ParmVarDecl *Parm : Ctor->parameters()) { |
681 | if (Results.contains(Val: Parm)) |
682 | continue; |
683 | if (const Stmt *S = InitAnalyzer.findMutation(Dec: Parm)) |
684 | Results[Parm] = S; |
685 | } |
686 | } |
687 | } |
688 | } |
689 | |
690 | const Stmt * |
691 | FunctionParmMutationAnalyzer::findMutation(const ParmVarDecl *Parm) { |
692 | const auto Memoized = Results.find(Val: Parm); |
693 | if (Memoized != Results.end()) |
694 | return Memoized->second; |
695 | // To handle call A -> call B -> call A. Assume parameters of A is not mutated |
696 | // before analyzing parameters of A. Then when analyzing the second "call A", |
697 | // FunctionParmMutationAnalyzer can use this memoized value to avoid infinite |
698 | // recursion. |
699 | Results[Parm] = nullptr; |
700 | if (const Stmt *S = BodyAnalyzer.findMutation(Dec: Parm)) |
701 | return Results[Parm] = S; |
702 | return Results[Parm]; |
703 | } |
704 | |
705 | } // namespace clang |
706 | |