1//===- ThreadSafety.cpp ---------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// A intra-procedural analysis for thread safety (e.g. deadlocks and race
10// conditions), based off of an annotation system.
11//
12// See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
13// for more information.
14//
15//===----------------------------------------------------------------------===//
16
17#include "clang/Analysis/Analyses/ThreadSafety.h"
18#include "clang/AST/Attr.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclGroup.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/OperationKinds.h"
25#include "clang/AST/Stmt.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/AST/Type.h"
28#include "clang/Analysis/Analyses/PostOrderCFGView.h"
29#include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
30#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
31#include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
32#include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
33#include "clang/Analysis/AnalysisDeclContext.h"
34#include "clang/Analysis/CFG.h"
35#include "clang/Basic/Builtins.h"
36#include "clang/Basic/LLVM.h"
37#include "clang/Basic/OperatorKinds.h"
38#include "clang/Basic/SourceLocation.h"
39#include "clang/Basic/Specifiers.h"
40#include "llvm/ADT/ArrayRef.h"
41#include "llvm/ADT/DenseMap.h"
42#include "llvm/ADT/ImmutableMap.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/StringRef.h"
46#include "llvm/Support/Allocator.h"
47#include "llvm/Support/Casting.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/raw_ostream.h"
50#include <algorithm>
51#include <cassert>
52#include <functional>
53#include <iterator>
54#include <memory>
55#include <optional>
56#include <string>
57#include <type_traits>
58#include <utility>
59#include <vector>
60
61using namespace clang;
62using namespace threadSafety;
63
64// Key method definition
65ThreadSafetyHandler::~ThreadSafetyHandler() = default;
66
67/// Issue a warning about an invalid lock expression
68static void warnInvalidLock(ThreadSafetyHandler &Handler,
69 const Expr *MutexExp, const NamedDecl *D,
70 const Expr *DeclExp, StringRef Kind) {
71 SourceLocation Loc;
72 if (DeclExp)
73 Loc = DeclExp->getExprLoc();
74
75 // FIXME: add a note about the attribute location in MutexExp or D
76 if (Loc.isValid())
77 Handler.handleInvalidLockExp(Loc);
78}
79
80namespace {
81
82/// A set of CapabilityExpr objects, which are compiled from thread safety
83/// attributes on a function.
84class CapExprSet : public SmallVector<CapabilityExpr, 4> {
85public:
86 /// Push M onto list, but discard duplicates.
87 void push_back_nodup(const CapabilityExpr &CapE) {
88 if (llvm::none_of(Range&: *this, P: [=](const CapabilityExpr &CapE2) {
89 return CapE.equals(other: CapE2);
90 }))
91 push_back(Elt: CapE);
92 }
93};
94
95class FactManager;
96class FactSet;
97
98/// This is a helper class that stores a fact that is known at a
99/// particular point in program execution. Currently, a fact is a capability,
100/// along with additional information, such as where it was acquired, whether
101/// it is exclusive or shared, etc.
102///
103/// FIXME: this analysis does not currently support re-entrant locking.
104class FactEntry : public CapabilityExpr {
105public:
106 /// Where a fact comes from.
107 enum SourceKind {
108 Acquired, ///< The fact has been directly acquired.
109 Asserted, ///< The fact has been asserted to be held.
110 Declared, ///< The fact is assumed to be held by callers.
111 Managed, ///< The fact has been acquired through a scoped capability.
112 };
113
114private:
115 /// Exclusive or shared.
116 LockKind LKind : 8;
117
118 // How it was acquired.
119 SourceKind Source : 8;
120
121 /// Where it was acquired.
122 SourceLocation AcquireLoc;
123
124public:
125 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
126 SourceKind Src)
127 : CapabilityExpr(CE), LKind(LK), Source(Src), AcquireLoc(Loc) {}
128 virtual ~FactEntry() = default;
129
130 LockKind kind() const { return LKind; }
131 SourceLocation loc() const { return AcquireLoc; }
132
133 bool asserted() const { return Source == Asserted; }
134 bool declared() const { return Source == Declared; }
135 bool managed() const { return Source == Managed; }
136
137 virtual void
138 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
139 SourceLocation JoinLoc, LockErrorKind LEK,
140 ThreadSafetyHandler &Handler) const = 0;
141 virtual void handleLock(FactSet &FSet, FactManager &FactMan,
142 const FactEntry &entry,
143 ThreadSafetyHandler &Handler) const = 0;
144 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
145 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
146 bool FullyRemove,
147 ThreadSafetyHandler &Handler) const = 0;
148
149 // Return true if LKind >= LK, where exclusive > shared
150 bool isAtLeast(LockKind LK) const {
151 return (LKind == LK_Exclusive) || (LK == LK_Shared);
152 }
153};
154
155using FactID = unsigned short;
156
157/// FactManager manages the memory for all facts that are created during
158/// the analysis of a single routine.
159class FactManager {
160private:
161 std::vector<std::unique_ptr<const FactEntry>> Facts;
162
163public:
164 FactID newFact(std::unique_ptr<FactEntry> Entry) {
165 Facts.push_back(x: std::move(Entry));
166 return static_cast<unsigned short>(Facts.size() - 1);
167 }
168
169 const FactEntry &operator[](FactID F) const { return *Facts[F]; }
170};
171
172/// A FactSet is the set of facts that are known to be true at a
173/// particular program point. FactSets must be small, because they are
174/// frequently copied, and are thus implemented as a set of indices into a
175/// table maintained by a FactManager. A typical FactSet only holds 1 or 2
176/// locks, so we can get away with doing a linear search for lookup. Note
177/// that a hashtable or map is inappropriate in this case, because lookups
178/// may involve partial pattern matches, rather than exact matches.
179class FactSet {
180private:
181 using FactVec = SmallVector<FactID, 4>;
182
183 FactVec FactIDs;
184
185public:
186 using iterator = FactVec::iterator;
187 using const_iterator = FactVec::const_iterator;
188
189 iterator begin() { return FactIDs.begin(); }
190 const_iterator begin() const { return FactIDs.begin(); }
191
192 iterator end() { return FactIDs.end(); }
193 const_iterator end() const { return FactIDs.end(); }
194
195 bool isEmpty() const { return FactIDs.size() == 0; }
196
197 // Return true if the set contains only negative facts
198 bool isEmpty(FactManager &FactMan) const {
199 for (const auto FID : *this) {
200 if (!FactMan[FID].negative())
201 return false;
202 }
203 return true;
204 }
205
206 void addLockByID(FactID ID) { FactIDs.push_back(Elt: ID); }
207
208 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
209 FactID F = FM.newFact(Entry: std::move(Entry));
210 FactIDs.push_back(Elt: F);
211 return F;
212 }
213
214 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
215 unsigned n = FactIDs.size();
216 if (n == 0)
217 return false;
218
219 for (unsigned i = 0; i < n-1; ++i) {
220 if (FM[FactIDs[i]].matches(other: CapE)) {
221 FactIDs[i] = FactIDs[n-1];
222 FactIDs.pop_back();
223 return true;
224 }
225 }
226 if (FM[FactIDs[n-1]].matches(other: CapE)) {
227 FactIDs.pop_back();
228 return true;
229 }
230 return false;
231 }
232
233 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
234 return std::find_if(first: begin(), last: end(), pred: [&](FactID ID) {
235 return FM[ID].matches(other: CapE);
236 });
237 }
238
239 const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
240 auto I = std::find_if(first: begin(), last: end(), pred: [&](FactID ID) {
241 return FM[ID].matches(other: CapE);
242 });
243 return I != end() ? &FM[*I] : nullptr;
244 }
245
246 const FactEntry *findLockUniv(FactManager &FM,
247 const CapabilityExpr &CapE) const {
248 auto I = std::find_if(first: begin(), last: end(), pred: [&](FactID ID) -> bool {
249 return FM[ID].matchesUniv(CapE);
250 });
251 return I != end() ? &FM[*I] : nullptr;
252 }
253
254 const FactEntry *findPartialMatch(FactManager &FM,
255 const CapabilityExpr &CapE) const {
256 auto I = std::find_if(first: begin(), last: end(), pred: [&](FactID ID) -> bool {
257 return FM[ID].partiallyMatches(other: CapE);
258 });
259 return I != end() ? &FM[*I] : nullptr;
260 }
261
262 bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
263 auto I = std::find_if(first: begin(), last: end(), pred: [&](FactID ID) -> bool {
264 return FM[ID].valueDecl() == Vd;
265 });
266 return I != end();
267 }
268};
269
270class ThreadSafetyAnalyzer;
271
272} // namespace
273
274namespace clang {
275namespace threadSafety {
276
277class BeforeSet {
278private:
279 using BeforeVect = SmallVector<const ValueDecl *, 4>;
280
281 struct BeforeInfo {
282 BeforeVect Vect;
283 int Visited = 0;
284
285 BeforeInfo() = default;
286 BeforeInfo(BeforeInfo &&) = default;
287 };
288
289 using BeforeMap =
290 llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>;
291 using CycleMap = llvm::DenseMap<const ValueDecl *, bool>;
292
293public:
294 BeforeSet() = default;
295
296 BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
297 ThreadSafetyAnalyzer& Analyzer);
298
299 BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
300 ThreadSafetyAnalyzer &Analyzer);
301
302 void checkBeforeAfter(const ValueDecl* Vd,
303 const FactSet& FSet,
304 ThreadSafetyAnalyzer& Analyzer,
305 SourceLocation Loc, StringRef CapKind);
306
307private:
308 BeforeMap BMap;
309 CycleMap CycMap;
310};
311
312} // namespace threadSafety
313} // namespace clang
314
315namespace {
316
317class LocalVariableMap;
318
319using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>;
320
321/// A side (entry or exit) of a CFG node.
322enum CFGBlockSide { CBS_Entry, CBS_Exit };
323
324/// CFGBlockInfo is a struct which contains all the information that is
325/// maintained for each block in the CFG. See LocalVariableMap for more
326/// information about the contexts.
327struct CFGBlockInfo {
328 // Lockset held at entry to block
329 FactSet EntrySet;
330
331 // Lockset held at exit from block
332 FactSet ExitSet;
333
334 // Context held at entry to block
335 LocalVarContext EntryContext;
336
337 // Context held at exit from block
338 LocalVarContext ExitContext;
339
340 // Location of first statement in block
341 SourceLocation EntryLoc;
342
343 // Location of last statement in block.
344 SourceLocation ExitLoc;
345
346 // Used to replay contexts later
347 unsigned EntryIndex;
348
349 // Is this block reachable?
350 bool Reachable = false;
351
352 const FactSet &getSet(CFGBlockSide Side) const {
353 return Side == CBS_Entry ? EntrySet : ExitSet;
354 }
355
356 SourceLocation getLocation(CFGBlockSide Side) const {
357 return Side == CBS_Entry ? EntryLoc : ExitLoc;
358 }
359
360private:
361 CFGBlockInfo(LocalVarContext EmptyCtx)
362 : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {}
363
364public:
365 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
366};
367
368// A LocalVariableMap maintains a map from local variables to their currently
369// valid definitions. It provides SSA-like functionality when traversing the
370// CFG. Like SSA, each definition or assignment to a variable is assigned a
371// unique name (an integer), which acts as the SSA name for that definition.
372// The total set of names is shared among all CFG basic blocks.
373// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
374// with their SSA-names. Instead, we compute a Context for each point in the
375// code, which maps local variables to the appropriate SSA-name. This map
376// changes with each assignment.
377//
378// The map is computed in a single pass over the CFG. Subsequent analyses can
379// then query the map to find the appropriate Context for a statement, and use
380// that Context to look up the definitions of variables.
381class LocalVariableMap {
382public:
383 using Context = LocalVarContext;
384
385 /// A VarDefinition consists of an expression, representing the value of the
386 /// variable, along with the context in which that expression should be
387 /// interpreted. A reference VarDefinition does not itself contain this
388 /// information, but instead contains a pointer to a previous VarDefinition.
389 struct VarDefinition {
390 public:
391 friend class LocalVariableMap;
392
393 // The original declaration for this variable.
394 const NamedDecl *Dec;
395
396 // The expression for this variable, OR
397 const Expr *Exp = nullptr;
398
399 // Reference to another VarDefinition
400 unsigned Ref = 0;
401
402 // The map with which Exp should be interpreted.
403 Context Ctx;
404
405 bool isReference() const { return !Exp; }
406
407 private:
408 // Create ordinary variable definition
409 VarDefinition(const NamedDecl *D, const Expr *E, Context C)
410 : Dec(D), Exp(E), Ctx(C) {}
411
412 // Create reference to previous definition
413 VarDefinition(const NamedDecl *D, unsigned R, Context C)
414 : Dec(D), Ref(R), Ctx(C) {}
415 };
416
417private:
418 Context::Factory ContextFactory;
419 std::vector<VarDefinition> VarDefinitions;
420 std::vector<std::pair<const Stmt *, Context>> SavedContexts;
421
422public:
423 LocalVariableMap() {
424 // index 0 is a placeholder for undefined variables (aka phi-nodes).
425 VarDefinitions.push_back(x: VarDefinition(nullptr, 0u, getEmptyContext()));
426 }
427
428 /// Look up a definition, within the given context.
429 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
430 const unsigned *i = Ctx.lookup(K: D);
431 if (!i)
432 return nullptr;
433 assert(*i < VarDefinitions.size());
434 return &VarDefinitions[*i];
435 }
436
437 /// Look up the definition for D within the given context. Returns
438 /// NULL if the expression is not statically known. If successful, also
439 /// modifies Ctx to hold the context of the return Expr.
440 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
441 const unsigned *P = Ctx.lookup(K: D);
442 if (!P)
443 return nullptr;
444
445 unsigned i = *P;
446 while (i > 0) {
447 if (VarDefinitions[i].Exp) {
448 Ctx = VarDefinitions[i].Ctx;
449 return VarDefinitions[i].Exp;
450 }
451 i = VarDefinitions[i].Ref;
452 }
453 return nullptr;
454 }
455
456 Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
457
458 /// Return the next context after processing S. This function is used by
459 /// clients of the class to get the appropriate context when traversing the
460 /// CFG. It must be called for every assignment or DeclStmt.
461 Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) {
462 if (SavedContexts[CtxIndex+1].first == S) {
463 CtxIndex++;
464 Context Result = SavedContexts[CtxIndex].second;
465 return Result;
466 }
467 return C;
468 }
469
470 void dumpVarDefinitionName(unsigned i) {
471 if (i == 0) {
472 llvm::errs() << "Undefined";
473 return;
474 }
475 const NamedDecl *Dec = VarDefinitions[i].Dec;
476 if (!Dec) {
477 llvm::errs() << "<<NULL>>";
478 return;
479 }
480 Dec->printName(OS&: llvm::errs());
481 llvm::errs() << "." << i << " " << ((const void*) Dec);
482 }
483
484 /// Dumps an ASCII representation of the variable map to llvm::errs()
485 void dump() {
486 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
487 const Expr *Exp = VarDefinitions[i].Exp;
488 unsigned Ref = VarDefinitions[i].Ref;
489
490 dumpVarDefinitionName(i);
491 llvm::errs() << " = ";
492 if (Exp) Exp->dump();
493 else {
494 dumpVarDefinitionName(i: Ref);
495 llvm::errs() << "\n";
496 }
497 }
498 }
499
500 /// Dumps an ASCII representation of a Context to llvm::errs()
501 void dumpContext(Context C) {
502 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
503 const NamedDecl *D = I.getKey();
504 D->printName(OS&: llvm::errs());
505 llvm::errs() << " -> ";
506 dumpVarDefinitionName(i: I.getData());
507 llvm::errs() << "\n";
508 }
509 }
510
511 /// Builds the variable map.
512 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
513 std::vector<CFGBlockInfo> &BlockInfo);
514
515protected:
516 friend class VarMapBuilder;
517
518 // Get the current context index
519 unsigned getContextIndex() { return SavedContexts.size()-1; }
520
521 // Save the current context for later replay
522 void saveContext(const Stmt *S, Context C) {
523 SavedContexts.push_back(x: std::make_pair(x&: S, y&: C));
524 }
525
526 // Adds a new definition to the given context, and returns a new context.
527 // This method should be called when declaring a new variable.
528 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
529 assert(!Ctx.contains(D));
530 unsigned newID = VarDefinitions.size();
531 Context NewCtx = ContextFactory.add(Old: Ctx, K: D, D: newID);
532 VarDefinitions.push_back(x: VarDefinition(D, Exp, Ctx));
533 return NewCtx;
534 }
535
536 // Add a new reference to an existing definition.
537 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
538 unsigned newID = VarDefinitions.size();
539 Context NewCtx = ContextFactory.add(Old: Ctx, K: D, D: newID);
540 VarDefinitions.push_back(x: VarDefinition(D, i, Ctx));
541 return NewCtx;
542 }
543
544 // Updates a definition only if that definition is already in the map.
545 // This method should be called when assigning to an existing variable.
546 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
547 if (Ctx.contains(K: D)) {
548 unsigned newID = VarDefinitions.size();
549 Context NewCtx = ContextFactory.remove(Old: Ctx, K: D);
550 NewCtx = ContextFactory.add(Old: NewCtx, K: D, D: newID);
551 VarDefinitions.push_back(x: VarDefinition(D, Exp, Ctx));
552 return NewCtx;
553 }
554 return Ctx;
555 }
556
557 // Removes a definition from the context, but keeps the variable name
558 // as a valid variable. The index 0 is a placeholder for cleared definitions.
559 Context clearDefinition(const NamedDecl *D, Context Ctx) {
560 Context NewCtx = Ctx;
561 if (NewCtx.contains(K: D)) {
562 NewCtx = ContextFactory.remove(Old: NewCtx, K: D);
563 NewCtx = ContextFactory.add(Old: NewCtx, K: D, D: 0);
564 }
565 return NewCtx;
566 }
567
568 // Remove a definition entirely frmo the context.
569 Context removeDefinition(const NamedDecl *D, Context Ctx) {
570 Context NewCtx = Ctx;
571 if (NewCtx.contains(K: D)) {
572 NewCtx = ContextFactory.remove(Old: NewCtx, K: D);
573 }
574 return NewCtx;
575 }
576
577 Context intersectContexts(Context C1, Context C2);
578 Context createReferenceContext(Context C);
579 void intersectBackEdge(Context C1, Context C2);
580};
581
582} // namespace
583
584// This has to be defined after LocalVariableMap.
585CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
586 return CFGBlockInfo(M.getEmptyContext());
587}
588
589namespace {
590
591/// Visitor which builds a LocalVariableMap
592class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> {
593public:
594 LocalVariableMap* VMap;
595 LocalVariableMap::Context Ctx;
596
597 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
598 : VMap(VM), Ctx(C) {}
599
600 void VisitDeclStmt(const DeclStmt *S);
601 void VisitBinaryOperator(const BinaryOperator *BO);
602};
603
604} // namespace
605
606// Add new local variables to the variable map
607void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) {
608 bool modifiedCtx = false;
609 const DeclGroupRef DGrp = S->getDeclGroup();
610 for (const auto *D : DGrp) {
611 if (const auto *VD = dyn_cast_or_null<VarDecl>(Val: D)) {
612 const Expr *E = VD->getInit();
613
614 // Add local variables with trivial type to the variable map
615 QualType T = VD->getType();
616 if (T.isTrivialType(Context: VD->getASTContext())) {
617 Ctx = VMap->addDefinition(D: VD, Exp: E, Ctx);
618 modifiedCtx = true;
619 }
620 }
621 }
622 if (modifiedCtx)
623 VMap->saveContext(S, C: Ctx);
624}
625
626// Update local variable definitions in variable map
627void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) {
628 if (!BO->isAssignmentOp())
629 return;
630
631 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
632
633 // Update the variable map and current context.
634 if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: LHSExp)) {
635 const ValueDecl *VDec = DRE->getDecl();
636 if (Ctx.lookup(K: VDec)) {
637 if (BO->getOpcode() == BO_Assign)
638 Ctx = VMap->updateDefinition(D: VDec, Exp: BO->getRHS(), Ctx);
639 else
640 // FIXME -- handle compound assignment operators
641 Ctx = VMap->clearDefinition(D: VDec, Ctx);
642 VMap->saveContext(S: BO, C: Ctx);
643 }
644 }
645}
646
647// Computes the intersection of two contexts. The intersection is the
648// set of variables which have the same definition in both contexts;
649// variables with different definitions are discarded.
650LocalVariableMap::Context
651LocalVariableMap::intersectContexts(Context C1, Context C2) {
652 Context Result = C1;
653 for (const auto &P : C1) {
654 const NamedDecl *Dec = P.first;
655 const unsigned *i2 = C2.lookup(K: Dec);
656 if (!i2) // variable doesn't exist on second path
657 Result = removeDefinition(D: Dec, Ctx: Result);
658 else if (*i2 != P.second) // variable exists, but has different definition
659 Result = clearDefinition(D: Dec, Ctx: Result);
660 }
661 return Result;
662}
663
664// For every variable in C, create a new variable that refers to the
665// definition in C. Return a new context that contains these new variables.
666// (We use this for a naive implementation of SSA on loop back-edges.)
667LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
668 Context Result = getEmptyContext();
669 for (const auto &P : C)
670 Result = addReference(D: P.first, i: P.second, Ctx: Result);
671 return Result;
672}
673
674// This routine also takes the intersection of C1 and C2, but it does so by
675// altering the VarDefinitions. C1 must be the result of an earlier call to
676// createReferenceContext.
677void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
678 for (const auto &P : C1) {
679 unsigned i1 = P.second;
680 VarDefinition *VDef = &VarDefinitions[i1];
681 assert(VDef->isReference());
682
683 const unsigned *i2 = C2.lookup(K: P.first);
684 if (!i2 || (*i2 != i1))
685 VDef->Ref = 0; // Mark this variable as undefined
686 }
687}
688
689// Traverse the CFG in topological order, so all predecessors of a block
690// (excluding back-edges) are visited before the block itself. At
691// each point in the code, we calculate a Context, which holds the set of
692// variable definitions which are visible at that point in execution.
693// Visible variables are mapped to their definitions using an array that
694// contains all definitions.
695//
696// At join points in the CFG, the set is computed as the intersection of
697// the incoming sets along each edge, E.g.
698//
699// { Context | VarDefinitions }
700// int x = 0; { x -> x1 | x1 = 0 }
701// int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
702// if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... }
703// else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... }
704// ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... }
705//
706// This is essentially a simpler and more naive version of the standard SSA
707// algorithm. Those definitions that remain in the intersection are from blocks
708// that strictly dominate the current block. We do not bother to insert proper
709// phi nodes, because they are not used in our analysis; instead, wherever
710// a phi node would be required, we simply remove that definition from the
711// context (E.g. x above).
712//
713// The initial traversal does not capture back-edges, so those need to be
714// handled on a separate pass. Whenever the first pass encounters an
715// incoming back edge, it duplicates the context, creating new definitions
716// that refer back to the originals. (These correspond to places where SSA
717// might have to insert a phi node.) On the second pass, these definitions are
718// set to NULL if the variable has changed on the back-edge (i.e. a phi
719// node was actually required.) E.g.
720//
721// { Context | VarDefinitions }
722// int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
723// while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; }
724// x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... }
725// ... { y -> y1 | x3 = 2, x2 = 1, ... }
726void LocalVariableMap::traverseCFG(CFG *CFGraph,
727 const PostOrderCFGView *SortedGraph,
728 std::vector<CFGBlockInfo> &BlockInfo) {
729 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
730
731 for (const auto *CurrBlock : *SortedGraph) {
732 unsigned CurrBlockID = CurrBlock->getBlockID();
733 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
734
735 VisitedBlocks.insert(Block: CurrBlock);
736
737 // Calculate the entry context for the current block
738 bool HasBackEdges = false;
739 bool CtxInit = true;
740 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
741 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
742 // if *PI -> CurrBlock is a back edge, so skip it
743 if (*PI == nullptr || !VisitedBlocks.alreadySet(Block: *PI)) {
744 HasBackEdges = true;
745 continue;
746 }
747
748 unsigned PrevBlockID = (*PI)->getBlockID();
749 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
750
751 if (CtxInit) {
752 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
753 CtxInit = false;
754 }
755 else {
756 CurrBlockInfo->EntryContext =
757 intersectContexts(C1: CurrBlockInfo->EntryContext,
758 C2: PrevBlockInfo->ExitContext);
759 }
760 }
761
762 // Duplicate the context if we have back-edges, so we can call
763 // intersectBackEdges later.
764 if (HasBackEdges)
765 CurrBlockInfo->EntryContext =
766 createReferenceContext(C: CurrBlockInfo->EntryContext);
767
768 // Create a starting context index for the current block
769 saveContext(S: nullptr, C: CurrBlockInfo->EntryContext);
770 CurrBlockInfo->EntryIndex = getContextIndex();
771
772 // Visit all the statements in the basic block.
773 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
774 for (const auto &BI : *CurrBlock) {
775 switch (BI.getKind()) {
776 case CFGElement::Statement: {
777 CFGStmt CS = BI.castAs<CFGStmt>();
778 VMapBuilder.Visit(S: CS.getStmt());
779 break;
780 }
781 default:
782 break;
783 }
784 }
785 CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
786
787 // Mark variables on back edges as "unknown" if they've been changed.
788 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
789 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
790 // if CurrBlock -> *SI is *not* a back edge
791 if (*SI == nullptr || !VisitedBlocks.alreadySet(Block: *SI))
792 continue;
793
794 CFGBlock *FirstLoopBlock = *SI;
795 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
796 Context LoopEnd = CurrBlockInfo->ExitContext;
797 intersectBackEdge(C1: LoopBegin, C2: LoopEnd);
798 }
799 }
800
801 // Put an extra entry at the end of the indexed context array
802 unsigned exitID = CFGraph->getExit().getBlockID();
803 saveContext(S: nullptr, C: BlockInfo[exitID].ExitContext);
804}
805
806/// Find the appropriate source locations to use when producing diagnostics for
807/// each block in the CFG.
808static void findBlockLocations(CFG *CFGraph,
809 const PostOrderCFGView *SortedGraph,
810 std::vector<CFGBlockInfo> &BlockInfo) {
811 for (const auto *CurrBlock : *SortedGraph) {
812 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
813
814 // Find the source location of the last statement in the block, if the
815 // block is not empty.
816 if (const Stmt *S = CurrBlock->getTerminatorStmt()) {
817 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc();
818 } else {
819 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
820 BE = CurrBlock->rend(); BI != BE; ++BI) {
821 // FIXME: Handle other CFGElement kinds.
822 if (std::optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
823 CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc();
824 break;
825 }
826 }
827 }
828
829 if (CurrBlockInfo->ExitLoc.isValid()) {
830 // This block contains at least one statement. Find the source location
831 // of the first statement in the block.
832 for (const auto &BI : *CurrBlock) {
833 // FIXME: Handle other CFGElement kinds.
834 if (std::optional<CFGStmt> CS = BI.getAs<CFGStmt>()) {
835 CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc();
836 break;
837 }
838 }
839 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
840 CurrBlock != &CFGraph->getExit()) {
841 // The block is empty, and has a single predecessor. Use its exit
842 // location.
843 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
844 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
845 } else if (CurrBlock->succ_size() == 1 && *CurrBlock->succ_begin()) {
846 // The block is empty, and has a single successor. Use its entry
847 // location.
848 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
849 BlockInfo[(*CurrBlock->succ_begin())->getBlockID()].EntryLoc;
850 }
851 }
852}
853
854namespace {
855
856class LockableFactEntry : public FactEntry {
857public:
858 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
859 SourceKind Src = Acquired)
860 : FactEntry(CE, LK, Loc, Src) {}
861
862 void
863 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
864 SourceLocation JoinLoc, LockErrorKind LEK,
865 ThreadSafetyHandler &Handler) const override {
866 if (!asserted() && !negative() && !isUniversal()) {
867 Handler.handleMutexHeldEndOfScope(Kind: getKind(), LockName: toString(), LocLocked: loc(), LocEndOfScope: JoinLoc,
868 LEK);
869 }
870 }
871
872 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
873 ThreadSafetyHandler &Handler) const override {
874 Handler.handleDoubleLock(Kind: entry.getKind(), LockName: entry.toString(), LocLocked: loc(),
875 LocDoubleLock: entry.loc());
876 }
877
878 void handleUnlock(FactSet &FSet, FactManager &FactMan,
879 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
880 bool FullyRemove,
881 ThreadSafetyHandler &Handler) const override {
882 FSet.removeLock(FM&: FactMan, CapE: Cp);
883 if (!Cp.negative()) {
884 FSet.addLock(FM&: FactMan, Entry: std::make_unique<LockableFactEntry>(
885 args: !Cp, args: LK_Exclusive, args&: UnlockLoc));
886 }
887 }
888};
889
890class ScopedLockableFactEntry : public FactEntry {
891private:
892 enum UnderlyingCapabilityKind {
893 UCK_Acquired, ///< Any kind of acquired capability.
894 UCK_ReleasedShared, ///< Shared capability that was released.
895 UCK_ReleasedExclusive, ///< Exclusive capability that was released.
896 };
897
898 struct UnderlyingCapability {
899 CapabilityExpr Cap;
900 UnderlyingCapabilityKind Kind;
901 };
902
903 SmallVector<UnderlyingCapability, 2> UnderlyingMutexes;
904
905public:
906 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc)
907 : FactEntry(CE, LK_Exclusive, Loc, Acquired) {}
908
909 void addLock(const CapabilityExpr &M) {
910 UnderlyingMutexes.push_back(Elt: UnderlyingCapability{.Cap: M, .Kind: UCK_Acquired});
911 }
912
913 void addExclusiveUnlock(const CapabilityExpr &M) {
914 UnderlyingMutexes.push_back(Elt: UnderlyingCapability{.Cap: M, .Kind: UCK_ReleasedExclusive});
915 }
916
917 void addSharedUnlock(const CapabilityExpr &M) {
918 UnderlyingMutexes.push_back(Elt: UnderlyingCapability{.Cap: M, .Kind: UCK_ReleasedShared});
919 }
920
921 void
922 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
923 SourceLocation JoinLoc, LockErrorKind LEK,
924 ThreadSafetyHandler &Handler) const override {
925 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
926 const auto *Entry = FSet.findLock(FM&: FactMan, CapE: UnderlyingMutex.Cap);
927 if ((UnderlyingMutex.Kind == UCK_Acquired && Entry) ||
928 (UnderlyingMutex.Kind != UCK_Acquired && !Entry)) {
929 // If this scoped lock manages another mutex, and if the underlying
930 // mutex is still/not held, then warn about the underlying mutex.
931 Handler.handleMutexHeldEndOfScope(Kind: UnderlyingMutex.Cap.getKind(),
932 LockName: UnderlyingMutex.Cap.toString(), LocLocked: loc(),
933 LocEndOfScope: JoinLoc, LEK);
934 }
935 }
936 }
937
938 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
939 ThreadSafetyHandler &Handler) const override {
940 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
941 if (UnderlyingMutex.Kind == UCK_Acquired)
942 lock(FSet, FactMan, Cp: UnderlyingMutex.Cap, kind: entry.kind(), loc: entry.loc(),
943 Handler: &Handler);
944 else
945 unlock(FSet, FactMan, Cp: UnderlyingMutex.Cap, loc: entry.loc(), Handler: &Handler);
946 }
947 }
948
949 void handleUnlock(FactSet &FSet, FactManager &FactMan,
950 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
951 bool FullyRemove,
952 ThreadSafetyHandler &Handler) const override {
953 assert(!Cp.negative() && "Managing object cannot be negative.");
954 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
955 // Remove/lock the underlying mutex if it exists/is still unlocked; warn
956 // on double unlocking/locking if we're not destroying the scoped object.
957 ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler;
958 if (UnderlyingMutex.Kind == UCK_Acquired) {
959 unlock(FSet, FactMan, Cp: UnderlyingMutex.Cap, loc: UnlockLoc, Handler: TSHandler);
960 } else {
961 LockKind kind = UnderlyingMutex.Kind == UCK_ReleasedShared
962 ? LK_Shared
963 : LK_Exclusive;
964 lock(FSet, FactMan, Cp: UnderlyingMutex.Cap, kind, loc: UnlockLoc, Handler: TSHandler);
965 }
966 }
967 if (FullyRemove)
968 FSet.removeLock(FM&: FactMan, CapE: Cp);
969 }
970
971private:
972 void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
973 LockKind kind, SourceLocation loc,
974 ThreadSafetyHandler *Handler) const {
975 if (const FactEntry *Fact = FSet.findLock(FM&: FactMan, CapE: Cp)) {
976 if (Handler)
977 Handler->handleDoubleLock(Kind: Cp.getKind(), LockName: Cp.toString(), LocLocked: Fact->loc(),
978 LocDoubleLock: loc);
979 } else {
980 FSet.removeLock(FM&: FactMan, CapE: !Cp);
981 FSet.addLock(FM&: FactMan,
982 Entry: std::make_unique<LockableFactEntry>(args: Cp, args&: kind, args&: loc, args: Managed));
983 }
984 }
985
986 void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
987 SourceLocation loc, ThreadSafetyHandler *Handler) const {
988 if (FSet.findLock(FM&: FactMan, CapE: Cp)) {
989 FSet.removeLock(FM&: FactMan, CapE: Cp);
990 FSet.addLock(FM&: FactMan, Entry: std::make_unique<LockableFactEntry>(
991 args: !Cp, args: LK_Exclusive, args&: loc));
992 } else if (Handler) {
993 SourceLocation PrevLoc;
994 if (const FactEntry *Neg = FSet.findLock(FM&: FactMan, CapE: !Cp))
995 PrevLoc = Neg->loc();
996 Handler->handleUnmatchedUnlock(Kind: Cp.getKind(), LockName: Cp.toString(), Loc: loc, LocPreviousUnlock: PrevLoc);
997 }
998 }
999};
1000
1001/// Class which implements the core thread safety analysis routines.
1002class ThreadSafetyAnalyzer {
1003 friend class BuildLockset;
1004 friend class threadSafety::BeforeSet;
1005
1006 llvm::BumpPtrAllocator Bpa;
1007 threadSafety::til::MemRegionRef Arena;
1008 threadSafety::SExprBuilder SxBuilder;
1009
1010 ThreadSafetyHandler &Handler;
1011 const FunctionDecl *CurrentFunction;
1012 LocalVariableMap LocalVarMap;
1013 // Maps constructed objects to `this` placeholder prior to initialization.
1014 llvm::SmallDenseMap<const Expr *, til::LiteralPtr *> ConstructedObjects;
1015 FactManager FactMan;
1016 std::vector<CFGBlockInfo> BlockInfo;
1017
1018 BeforeSet *GlobalBeforeSet;
1019
1020public:
1021 ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
1022 : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
1023
1024 bool inCurrentScope(const CapabilityExpr &CapE);
1025
1026 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
1027 bool ReqAttr = false);
1028 void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
1029 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind);
1030
1031 template <typename AttrType>
1032 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1033 const NamedDecl *D, til::SExpr *Self = nullptr);
1034
1035 template <class AttrType>
1036 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1037 const NamedDecl *D,
1038 const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1039 Expr *BrE, bool Neg);
1040
1041 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1042 bool &Negate);
1043
1044 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1045 const CFGBlock* PredBlock,
1046 const CFGBlock *CurrBlock);
1047
1048 bool join(const FactEntry &a, const FactEntry &b, bool CanModify);
1049
1050 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1051 SourceLocation JoinLoc, LockErrorKind EntryLEK,
1052 LockErrorKind ExitLEK);
1053
1054 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1055 SourceLocation JoinLoc, LockErrorKind LEK) {
1056 intersectAndWarn(EntrySet, ExitSet, JoinLoc, EntryLEK: LEK, ExitLEK: LEK);
1057 }
1058
1059 void runAnalysis(AnalysisDeclContext &AC);
1060
1061 void warnIfMutexNotHeld(const FactSet &FSet, const NamedDecl *D,
1062 const Expr *Exp, AccessKind AK, Expr *MutexExp,
1063 ProtectedOperationKind POK, til::LiteralPtr *Self,
1064 SourceLocation Loc);
1065 void warnIfMutexHeld(const FactSet &FSet, const NamedDecl *D, const Expr *Exp,
1066 Expr *MutexExp, til::LiteralPtr *Self,
1067 SourceLocation Loc);
1068
1069 void checkAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK,
1070 ProtectedOperationKind POK);
1071 void checkPtAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK,
1072 ProtectedOperationKind POK);
1073};
1074
1075} // namespace
1076
1077/// Process acquired_before and acquired_after attributes on Vd.
1078BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
1079 ThreadSafetyAnalyzer& Analyzer) {
1080 // Create a new entry for Vd.
1081 BeforeInfo *Info = nullptr;
1082 {
1083 // Keep InfoPtr in its own scope in case BMap is modified later and the
1084 // reference becomes invalid.
1085 std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
1086 if (!InfoPtr)
1087 InfoPtr.reset(p: new BeforeInfo());
1088 Info = InfoPtr.get();
1089 }
1090
1091 for (const auto *At : Vd->attrs()) {
1092 switch (At->getKind()) {
1093 case attr::AcquiredBefore: {
1094 const auto *A = cast<AcquiredBeforeAttr>(Val: At);
1095
1096 // Read exprs from the attribute, and add them to BeforeVect.
1097 for (const auto *Arg : A->args()) {
1098 CapabilityExpr Cp =
1099 Analyzer.SxBuilder.translateAttrExpr(AttrExp: Arg, Ctx: nullptr);
1100 if (const ValueDecl *Cpvd = Cp.valueDecl()) {
1101 Info->Vect.push_back(Elt: Cpvd);
1102 const auto It = BMap.find(Val: Cpvd);
1103 if (It == BMap.end())
1104 insertAttrExprs(Vd: Cpvd, Analyzer);
1105 }
1106 }
1107 break;
1108 }
1109 case attr::AcquiredAfter: {
1110 const auto *A = cast<AcquiredAfterAttr>(Val: At);
1111
1112 // Read exprs from the attribute, and add them to BeforeVect.
1113 for (const auto *Arg : A->args()) {
1114 CapabilityExpr Cp =
1115 Analyzer.SxBuilder.translateAttrExpr(AttrExp: Arg, Ctx: nullptr);
1116 if (const ValueDecl *ArgVd = Cp.valueDecl()) {
1117 // Get entry for mutex listed in attribute
1118 BeforeInfo *ArgInfo = getBeforeInfoForDecl(Vd: ArgVd, Analyzer);
1119 ArgInfo->Vect.push_back(Elt: Vd);
1120 }
1121 }
1122 break;
1123 }
1124 default:
1125 break;
1126 }
1127 }
1128
1129 return Info;
1130}
1131
1132BeforeSet::BeforeInfo *
1133BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
1134 ThreadSafetyAnalyzer &Analyzer) {
1135 auto It = BMap.find(Val: Vd);
1136 BeforeInfo *Info = nullptr;
1137 if (It == BMap.end())
1138 Info = insertAttrExprs(Vd, Analyzer);
1139 else
1140 Info = It->second.get();
1141 assert(Info && "BMap contained nullptr?");
1142 return Info;
1143}
1144
1145/// Return true if any mutexes in FSet are in the acquired_before set of Vd.
1146void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
1147 const FactSet& FSet,
1148 ThreadSafetyAnalyzer& Analyzer,
1149 SourceLocation Loc, StringRef CapKind) {
1150 SmallVector<BeforeInfo*, 8> InfoVect;
1151
1152 // Do a depth-first traversal of Vd.
1153 // Return true if there are cycles.
1154 std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
1155 if (!Vd)
1156 return false;
1157
1158 BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
1159
1160 if (Info->Visited == 1)
1161 return true;
1162
1163 if (Info->Visited == 2)
1164 return false;
1165
1166 if (Info->Vect.empty())
1167 return false;
1168
1169 InfoVect.push_back(Elt: Info);
1170 Info->Visited = 1;
1171 for (const auto *Vdb : Info->Vect) {
1172 // Exclude mutexes in our immediate before set.
1173 if (FSet.containsMutexDecl(FM&: Analyzer.FactMan, Vd: Vdb)) {
1174 StringRef L1 = StartVd->getName();
1175 StringRef L2 = Vdb->getName();
1176 Analyzer.Handler.handleLockAcquiredBefore(Kind: CapKind, L1Name: L1, L2Name: L2, Loc);
1177 }
1178 // Transitively search other before sets, and warn on cycles.
1179 if (traverse(Vdb)) {
1180 if (!CycMap.contains(Val: Vd)) {
1181 CycMap.insert(KV: std::make_pair(x&: Vd, y: true));
1182 StringRef L1 = Vd->getName();
1183 Analyzer.Handler.handleBeforeAfterCycle(L1Name: L1, Loc: Vd->getLocation());
1184 }
1185 }
1186 }
1187 Info->Visited = 2;
1188 return false;
1189 };
1190
1191 traverse(StartVd);
1192
1193 for (auto *Info : InfoVect)
1194 Info->Visited = 0;
1195}
1196
1197/// Gets the value decl pointer from DeclRefExprs or MemberExprs.
1198static const ValueDecl *getValueDecl(const Expr *Exp) {
1199 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Val: Exp))
1200 return getValueDecl(Exp: CE->getSubExpr());
1201
1202 if (const auto *DR = dyn_cast<DeclRefExpr>(Val: Exp))
1203 return DR->getDecl();
1204
1205 if (const auto *ME = dyn_cast<MemberExpr>(Val: Exp))
1206 return ME->getMemberDecl();
1207
1208 return nullptr;
1209}
1210
1211namespace {
1212
1213template <typename Ty>
1214class has_arg_iterator_range {
1215 using yes = char[1];
1216 using no = char[2];
1217
1218 template <typename Inner>
1219 static yes& test(Inner *I, decltype(I->args()) * = nullptr);
1220
1221 template <typename>
1222 static no& test(...);
1223
1224public:
1225 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
1226};
1227
1228} // namespace
1229
1230bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
1231 const threadSafety::til::SExpr *SExp = CapE.sexpr();
1232 assert(SExp && "Null expressions should be ignored");
1233
1234 if (const auto *LP = dyn_cast<til::LiteralPtr>(Val: SExp)) {
1235 const ValueDecl *VD = LP->clangDecl();
1236 // Variables defined in a function are always inaccessible.
1237 if (!VD || !VD->isDefinedOutsideFunctionOrMethod())
1238 return false;
1239 // For now we consider static class members to be inaccessible.
1240 if (isa<CXXRecordDecl>(Val: VD->getDeclContext()))
1241 return false;
1242 // Global variables are always in scope.
1243 return true;
1244 }
1245
1246 // Members are in scope from methods of the same class.
1247 if (const auto *P = dyn_cast<til::Project>(Val: SExp)) {
1248 if (!isa_and_nonnull<CXXMethodDecl>(Val: CurrentFunction))
1249 return false;
1250 const ValueDecl *VD = P->clangDecl();
1251 return VD->getDeclContext() == CurrentFunction->getDeclContext();
1252 }
1253
1254 return false;
1255}
1256
1257/// Add a new lock to the lockset, warning if the lock is already there.
1258/// \param ReqAttr -- true if this is part of an initial Requires attribute.
1259void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
1260 std::unique_ptr<FactEntry> Entry,
1261 bool ReqAttr) {
1262 if (Entry->shouldIgnore())
1263 return;
1264
1265 if (!ReqAttr && !Entry->negative()) {
1266 // look for the negative capability, and remove it from the fact set.
1267 CapabilityExpr NegC = !*Entry;
1268 const FactEntry *Nen = FSet.findLock(FM&: FactMan, CapE: NegC);
1269 if (Nen) {
1270 FSet.removeLock(FM&: FactMan, CapE: NegC);
1271 }
1272 else {
1273 if (inCurrentScope(CapE: *Entry) && !Entry->asserted())
1274 Handler.handleNegativeNotHeld(Kind: Entry->getKind(), LockName: Entry->toString(),
1275 Neg: NegC.toString(), Loc: Entry->loc());
1276 }
1277 }
1278
1279 // Check before/after constraints
1280 if (Handler.issueBetaWarnings() &&
1281 !Entry->asserted() && !Entry->declared()) {
1282 GlobalBeforeSet->checkBeforeAfter(StartVd: Entry->valueDecl(), FSet, Analyzer&: *this,
1283 Loc: Entry->loc(), CapKind: Entry->getKind());
1284 }
1285
1286 // FIXME: Don't always warn when we have support for reentrant locks.
1287 if (const FactEntry *Cp = FSet.findLock(FM&: FactMan, CapE: *Entry)) {
1288 if (!Entry->asserted())
1289 Cp->handleLock(FSet, FactMan, entry: *Entry, Handler);
1290 } else {
1291 FSet.addLock(FM&: FactMan, Entry: std::move(Entry));
1292 }
1293}
1294
1295/// Remove a lock from the lockset, warning if the lock is not there.
1296/// \param UnlockLoc The source location of the unlock (only used in error msg)
1297void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
1298 SourceLocation UnlockLoc,
1299 bool FullyRemove, LockKind ReceivedKind) {
1300 if (Cp.shouldIgnore())
1301 return;
1302
1303 const FactEntry *LDat = FSet.findLock(FM&: FactMan, CapE: Cp);
1304 if (!LDat) {
1305 SourceLocation PrevLoc;
1306 if (const FactEntry *Neg = FSet.findLock(FM&: FactMan, CapE: !Cp))
1307 PrevLoc = Neg->loc();
1308 Handler.handleUnmatchedUnlock(Kind: Cp.getKind(), LockName: Cp.toString(), Loc: UnlockLoc,
1309 LocPreviousUnlock: PrevLoc);
1310 return;
1311 }
1312
1313 // Generic lock removal doesn't care about lock kind mismatches, but
1314 // otherwise diagnose when the lock kinds are mismatched.
1315 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
1316 Handler.handleIncorrectUnlockKind(Kind: Cp.getKind(), LockName: Cp.toString(), Expected: LDat->kind(),
1317 Received: ReceivedKind, LocLocked: LDat->loc(), LocUnlock: UnlockLoc);
1318 }
1319
1320 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler);
1321}
1322
1323/// Extract the list of mutexIDs from the attribute on an expression,
1324/// and push them onto Mtxs, discarding any duplicates.
1325template <typename AttrType>
1326void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1327 const Expr *Exp, const NamedDecl *D,
1328 til::SExpr *Self) {
1329 if (Attr->args_size() == 0) {
1330 // The mutex held is the "this" object.
1331 CapabilityExpr Cp = SxBuilder.translateAttrExpr(AttrExp: nullptr, D, DeclExp: Exp, Self);
1332 if (Cp.isInvalid()) {
1333 warnInvalidLock(Handler, MutexExp: nullptr, D, DeclExp: Exp, Kind: Cp.getKind());
1334 return;
1335 }
1336 //else
1337 if (!Cp.shouldIgnore())
1338 Mtxs.push_back_nodup(CapE: Cp);
1339 return;
1340 }
1341
1342 for (const auto *Arg : Attr->args()) {
1343 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, Self);
1344 if (Cp.isInvalid()) {
1345 warnInvalidLock(Handler, MutexExp: nullptr, D, DeclExp: Exp, Kind: Cp.getKind());
1346 continue;
1347 }
1348 //else
1349 if (!Cp.shouldIgnore())
1350 Mtxs.push_back_nodup(CapE: Cp);
1351 }
1352}
1353
1354/// Extract the list of mutexIDs from a trylock attribute. If the
1355/// trylock applies to the given edge, then push them onto Mtxs, discarding
1356/// any duplicates.
1357template <class AttrType>
1358void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1359 const Expr *Exp, const NamedDecl *D,
1360 const CFGBlock *PredBlock,
1361 const CFGBlock *CurrBlock,
1362 Expr *BrE, bool Neg) {
1363 // Find out which branch has the lock
1364 bool branch = false;
1365 if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(Val: BrE))
1366 branch = BLE->getValue();
1367 else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(Val: BrE))
1368 branch = ILE->getValue().getBoolValue();
1369
1370 int branchnum = branch ? 0 : 1;
1371 if (Neg)
1372 branchnum = !branchnum;
1373
1374 // If we've taken the trylock branch, then add the lock
1375 int i = 0;
1376 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1377 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1378 if (*SI == CurrBlock && i == branchnum)
1379 getMutexIDs(Mtxs, Attr, Exp, D);
1380 }
1381}
1382
1383static bool getStaticBooleanValue(Expr *E, bool &TCond) {
1384 if (isa<CXXNullPtrLiteralExpr>(Val: E) || isa<GNUNullExpr>(Val: E)) {
1385 TCond = false;
1386 return true;
1387 } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(Val: E)) {
1388 TCond = BLE->getValue();
1389 return true;
1390 } else if (const auto *ILE = dyn_cast<IntegerLiteral>(Val: E)) {
1391 TCond = ILE->getValue().getBoolValue();
1392 return true;
1393 } else if (auto *CE = dyn_cast<ImplicitCastExpr>(Val: E))
1394 return getStaticBooleanValue(E: CE->getSubExpr(), TCond);
1395 return false;
1396}
1397
1398// If Cond can be traced back to a function call, return the call expression.
1399// The negate variable should be called with false, and will be set to true
1400// if the function call is negated, e.g. if (!mu.tryLock(...))
1401const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1402 LocalVarContext C,
1403 bool &Negate) {
1404 if (!Cond)
1405 return nullptr;
1406
1407 if (const auto *CallExp = dyn_cast<CallExpr>(Val: Cond)) {
1408 if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect)
1409 return getTrylockCallExpr(Cond: CallExp->getArg(Arg: 0), C, Negate);
1410 return CallExp;
1411 }
1412 else if (const auto *PE = dyn_cast<ParenExpr>(Val: Cond))
1413 return getTrylockCallExpr(Cond: PE->getSubExpr(), C, Negate);
1414 else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Val: Cond))
1415 return getTrylockCallExpr(Cond: CE->getSubExpr(), C, Negate);
1416 else if (const auto *FE = dyn_cast<FullExpr>(Val: Cond))
1417 return getTrylockCallExpr(Cond: FE->getSubExpr(), C, Negate);
1418 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: Cond)) {
1419 const Expr *E = LocalVarMap.lookupExpr(D: DRE->getDecl(), Ctx&: C);
1420 return getTrylockCallExpr(Cond: E, C, Negate);
1421 }
1422 else if (const auto *UOP = dyn_cast<UnaryOperator>(Val: Cond)) {
1423 if (UOP->getOpcode() == UO_LNot) {
1424 Negate = !Negate;
1425 return getTrylockCallExpr(Cond: UOP->getSubExpr(), C, Negate);
1426 }
1427 return nullptr;
1428 }
1429 else if (const auto *BOP = dyn_cast<BinaryOperator>(Val: Cond)) {
1430 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1431 if (BOP->getOpcode() == BO_NE)
1432 Negate = !Negate;
1433
1434 bool TCond = false;
1435 if (getStaticBooleanValue(E: BOP->getRHS(), TCond)) {
1436 if (!TCond) Negate = !Negate;
1437 return getTrylockCallExpr(Cond: BOP->getLHS(), C, Negate);
1438 }
1439 TCond = false;
1440 if (getStaticBooleanValue(E: BOP->getLHS(), TCond)) {
1441 if (!TCond) Negate = !Negate;
1442 return getTrylockCallExpr(Cond: BOP->getRHS(), C, Negate);
1443 }
1444 return nullptr;
1445 }
1446 if (BOP->getOpcode() == BO_LAnd) {
1447 // LHS must have been evaluated in a different block.
1448 return getTrylockCallExpr(Cond: BOP->getRHS(), C, Negate);
1449 }
1450 if (BOP->getOpcode() == BO_LOr)
1451 return getTrylockCallExpr(Cond: BOP->getRHS(), C, Negate);
1452 return nullptr;
1453 } else if (const auto *COP = dyn_cast<ConditionalOperator>(Val: Cond)) {
1454 bool TCond, FCond;
1455 if (getStaticBooleanValue(E: COP->getTrueExpr(), TCond) &&
1456 getStaticBooleanValue(E: COP->getFalseExpr(), TCond&: FCond)) {
1457 if (TCond && !FCond)
1458 return getTrylockCallExpr(Cond: COP->getCond(), C, Negate);
1459 if (!TCond && FCond) {
1460 Negate = !Negate;
1461 return getTrylockCallExpr(Cond: COP->getCond(), C, Negate);
1462 }
1463 }
1464 }
1465 return nullptr;
1466}
1467
1468/// Find the lockset that holds on the edge between PredBlock
1469/// and CurrBlock. The edge set is the exit set of PredBlock (passed
1470/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1471void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1472 const FactSet &ExitSet,
1473 const CFGBlock *PredBlock,
1474 const CFGBlock *CurrBlock) {
1475 Result = ExitSet;
1476
1477 const Stmt *Cond = PredBlock->getTerminatorCondition();
1478 // We don't acquire try-locks on ?: branches, only when its result is used.
1479 if (!Cond || isa<ConditionalOperator>(Val: PredBlock->getTerminatorStmt()))
1480 return;
1481
1482 bool Negate = false;
1483 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1484 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1485
1486 const auto *Exp = getTrylockCallExpr(Cond, C: LVarCtx, Negate);
1487 if (!Exp)
1488 return;
1489
1490 auto *FunDecl = dyn_cast_or_null<NamedDecl>(Val: Exp->getCalleeDecl());
1491 if(!FunDecl || !FunDecl->hasAttrs())
1492 return;
1493
1494 CapExprSet ExclusiveLocksToAdd;
1495 CapExprSet SharedLocksToAdd;
1496
1497 // If the condition is a call to a Trylock function, then grab the attributes
1498 for (const auto *Attr : FunDecl->attrs()) {
1499 switch (Attr->getKind()) {
1500 case attr::TryAcquireCapability: {
1501 auto *A = cast<TryAcquireCapabilityAttr>(Val: Attr);
1502 getMutexIDs(Mtxs&: A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, Attr: A,
1503 Exp, D: FunDecl, PredBlock, CurrBlock, BrE: A->getSuccessValue(),
1504 Neg: Negate);
1505 break;
1506 };
1507 case attr::ExclusiveTrylockFunction: {
1508 const auto *A = cast<ExclusiveTrylockFunctionAttr>(Val: Attr);
1509 getMutexIDs(Mtxs&: ExclusiveLocksToAdd, Attr: A, Exp, D: FunDecl, PredBlock, CurrBlock,
1510 BrE: A->getSuccessValue(), Neg: Negate);
1511 break;
1512 }
1513 case attr::SharedTrylockFunction: {
1514 const auto *A = cast<SharedTrylockFunctionAttr>(Val: Attr);
1515 getMutexIDs(Mtxs&: SharedLocksToAdd, Attr: A, Exp, D: FunDecl, PredBlock, CurrBlock,
1516 BrE: A->getSuccessValue(), Neg: Negate);
1517 break;
1518 }
1519 default:
1520 break;
1521 }
1522 }
1523
1524 // Add and remove locks.
1525 SourceLocation Loc = Exp->getExprLoc();
1526 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
1527 addLock(FSet&: Result, Entry: std::make_unique<LockableFactEntry>(args: ExclusiveLockToAdd,
1528 args: LK_Exclusive, args&: Loc));
1529 for (const auto &SharedLockToAdd : SharedLocksToAdd)
1530 addLock(FSet&: Result, Entry: std::make_unique<LockableFactEntry>(args: SharedLockToAdd,
1531 args: LK_Shared, args&: Loc));
1532}
1533
1534namespace {
1535
1536/// We use this class to visit different types of expressions in
1537/// CFGBlocks, and build up the lockset.
1538/// An expression may cause us to add or remove locks from the lockset, or else
1539/// output error messages related to missing locks.
1540/// FIXME: In future, we may be able to not inherit from a visitor.
1541class BuildLockset : public ConstStmtVisitor<BuildLockset> {
1542 friend class ThreadSafetyAnalyzer;
1543
1544 ThreadSafetyAnalyzer *Analyzer;
1545 FactSet FSet;
1546 // The fact set for the function on exit.
1547 const FactSet &FunctionExitFSet;
1548 LocalVariableMap::Context LVarCtx;
1549 unsigned CtxIndex;
1550
1551 // helper functions
1552
1553 void checkAccess(const Expr *Exp, AccessKind AK,
1554 ProtectedOperationKind POK = POK_VarAccess) {
1555 Analyzer->checkAccess(FSet, Exp, AK, POK);
1556 }
1557 void checkPtAccess(const Expr *Exp, AccessKind AK,
1558 ProtectedOperationKind POK = POK_VarAccess) {
1559 Analyzer->checkPtAccess(FSet, Exp, AK, POK);
1560 }
1561
1562 void handleCall(const Expr *Exp, const NamedDecl *D,
1563 til::LiteralPtr *Self = nullptr,
1564 SourceLocation Loc = SourceLocation());
1565 void examineArguments(const FunctionDecl *FD,
1566 CallExpr::const_arg_iterator ArgBegin,
1567 CallExpr::const_arg_iterator ArgEnd,
1568 bool SkipFirstParam = false);
1569
1570public:
1571 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info,
1572 const FactSet &FunctionExitFSet)
1573 : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet),
1574 FunctionExitFSet(FunctionExitFSet), LVarCtx(Info.EntryContext),
1575 CtxIndex(Info.EntryIndex) {}
1576
1577 void VisitUnaryOperator(const UnaryOperator *UO);
1578 void VisitBinaryOperator(const BinaryOperator *BO);
1579 void VisitCastExpr(const CastExpr *CE);
1580 void VisitCallExpr(const CallExpr *Exp);
1581 void VisitCXXConstructExpr(const CXXConstructExpr *Exp);
1582 void VisitDeclStmt(const DeclStmt *S);
1583 void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Exp);
1584 void VisitReturnStmt(const ReturnStmt *S);
1585};
1586
1587} // namespace
1588
1589/// Warn if the LSet does not contain a lock sufficient to protect access
1590/// of at least the passed in AccessKind.
1591void ThreadSafetyAnalyzer::warnIfMutexNotHeld(
1592 const FactSet &FSet, const NamedDecl *D, const Expr *Exp, AccessKind AK,
1593 Expr *MutexExp, ProtectedOperationKind POK, til::LiteralPtr *Self,
1594 SourceLocation Loc) {
1595 LockKind LK = getLockKindFromAccessKind(AK);
1596 CapabilityExpr Cp = SxBuilder.translateAttrExpr(AttrExp: MutexExp, D, DeclExp: Exp, Self);
1597 if (Cp.isInvalid()) {
1598 warnInvalidLock(Handler, MutexExp, D, DeclExp: Exp, Kind: Cp.getKind());
1599 return;
1600 } else if (Cp.shouldIgnore()) {
1601 return;
1602 }
1603
1604 if (Cp.negative()) {
1605 // Negative capabilities act like locks excluded
1606 const FactEntry *LDat = FSet.findLock(FM&: FactMan, CapE: !Cp);
1607 if (LDat) {
1608 Handler.handleFunExcludesLock(Kind: Cp.getKind(), FunName: D->getNameAsString(),
1609 LockName: (!Cp).toString(), Loc);
1610 return;
1611 }
1612
1613 // If this does not refer to a negative capability in the same class,
1614 // then stop here.
1615 if (!inCurrentScope(CapE: Cp))
1616 return;
1617
1618 // Otherwise the negative requirement must be propagated to the caller.
1619 LDat = FSet.findLock(FM&: FactMan, CapE: Cp);
1620 if (!LDat) {
1621 Handler.handleNegativeNotHeld(D, LockName: Cp.toString(), Loc);
1622 }
1623 return;
1624 }
1625
1626 const FactEntry *LDat = FSet.findLockUniv(FM&: FactMan, CapE: Cp);
1627 bool NoError = true;
1628 if (!LDat) {
1629 // No exact match found. Look for a partial match.
1630 LDat = FSet.findPartialMatch(FM&: FactMan, CapE: Cp);
1631 if (LDat) {
1632 // Warn that there's no precise match.
1633 std::string PartMatchStr = LDat->toString();
1634 StringRef PartMatchName(PartMatchStr);
1635 Handler.handleMutexNotHeld(Kind: Cp.getKind(), D, POK, LockName: Cp.toString(), LK, Loc,
1636 PossibleMatch: &PartMatchName);
1637 } else {
1638 // Warn that there's no match at all.
1639 Handler.handleMutexNotHeld(Kind: Cp.getKind(), D, POK, LockName: Cp.toString(), LK, Loc);
1640 }
1641 NoError = false;
1642 }
1643 // Make sure the mutex we found is the right kind.
1644 if (NoError && LDat && !LDat->isAtLeast(LK)) {
1645 Handler.handleMutexNotHeld(Kind: Cp.getKind(), D, POK, LockName: Cp.toString(), LK, Loc);
1646 }
1647}
1648
1649/// Warn if the LSet contains the given lock.
1650void ThreadSafetyAnalyzer::warnIfMutexHeld(const FactSet &FSet,
1651 const NamedDecl *D, const Expr *Exp,
1652 Expr *MutexExp,
1653 til::LiteralPtr *Self,
1654 SourceLocation Loc) {
1655 CapabilityExpr Cp = SxBuilder.translateAttrExpr(AttrExp: MutexExp, D, DeclExp: Exp, Self);
1656 if (Cp.isInvalid()) {
1657 warnInvalidLock(Handler, MutexExp, D, DeclExp: Exp, Kind: Cp.getKind());
1658 return;
1659 } else if (Cp.shouldIgnore()) {
1660 return;
1661 }
1662
1663 const FactEntry *LDat = FSet.findLock(FM&: FactMan, CapE: Cp);
1664 if (LDat) {
1665 Handler.handleFunExcludesLock(Kind: Cp.getKind(), FunName: D->getNameAsString(),
1666 LockName: Cp.toString(), Loc);
1667 }
1668}
1669
1670/// Checks guarded_by and pt_guarded_by attributes.
1671/// Whenever we identify an access (read or write) to a DeclRefExpr that is
1672/// marked with guarded_by, we must ensure the appropriate mutexes are held.
1673/// Similarly, we check if the access is to an expression that dereferences
1674/// a pointer marked with pt_guarded_by.
1675void ThreadSafetyAnalyzer::checkAccess(const FactSet &FSet, const Expr *Exp,
1676 AccessKind AK,
1677 ProtectedOperationKind POK) {
1678 Exp = Exp->IgnoreImplicit()->IgnoreParenCasts();
1679
1680 SourceLocation Loc = Exp->getExprLoc();
1681
1682 // Local variables of reference type cannot be re-assigned;
1683 // map them to their initializer.
1684 while (const auto *DRE = dyn_cast<DeclRefExpr>(Val: Exp)) {
1685 const auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl()->getCanonicalDecl());
1686 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
1687 if (const auto *E = VD->getInit()) {
1688 // Guard against self-initialization. e.g., int &i = i;
1689 if (E == Exp)
1690 break;
1691 Exp = E;
1692 continue;
1693 }
1694 }
1695 break;
1696 }
1697
1698 if (const auto *UO = dyn_cast<UnaryOperator>(Val: Exp)) {
1699 // For dereferences
1700 if (UO->getOpcode() == UO_Deref)
1701 checkPtAccess(FSet, Exp: UO->getSubExpr(), AK, POK);
1702 return;
1703 }
1704
1705 if (const auto *BO = dyn_cast<BinaryOperator>(Val: Exp)) {
1706 switch (BO->getOpcode()) {
1707 case BO_PtrMemD: // .*
1708 return checkAccess(FSet, Exp: BO->getLHS(), AK, POK);
1709 case BO_PtrMemI: // ->*
1710 return checkPtAccess(FSet, Exp: BO->getLHS(), AK, POK);
1711 default:
1712 return;
1713 }
1714 }
1715
1716 if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Val: Exp)) {
1717 checkPtAccess(FSet, Exp: AE->getLHS(), AK, POK);
1718 return;
1719 }
1720
1721 if (const auto *ME = dyn_cast<MemberExpr>(Val: Exp)) {
1722 if (ME->isArrow())
1723 checkPtAccess(FSet, Exp: ME->getBase(), AK, POK);
1724 else
1725 checkAccess(FSet, Exp: ME->getBase(), AK, POK);
1726 }
1727
1728 const ValueDecl *D = getValueDecl(Exp);
1729 if (!D || !D->hasAttrs())
1730 return;
1731
1732 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(FactMan)) {
1733 Handler.handleNoMutexHeld(D, POK, AK, Loc);
1734 }
1735
1736 for (const auto *I : D->specific_attrs<GuardedByAttr>())
1737 warnIfMutexNotHeld(FSet, D, Exp, AK, MutexExp: I->getArg(), POK, Self: nullptr, Loc);
1738}
1739
1740/// Checks pt_guarded_by and pt_guarded_var attributes.
1741/// POK is the same operationKind that was passed to checkAccess.
1742void ThreadSafetyAnalyzer::checkPtAccess(const FactSet &FSet, const Expr *Exp,
1743 AccessKind AK,
1744 ProtectedOperationKind POK) {
1745 while (true) {
1746 if (const auto *PE = dyn_cast<ParenExpr>(Val: Exp)) {
1747 Exp = PE->getSubExpr();
1748 continue;
1749 }
1750 if (const auto *CE = dyn_cast<CastExpr>(Val: Exp)) {
1751 if (CE->getCastKind() == CK_ArrayToPointerDecay) {
1752 // If it's an actual array, and not a pointer, then it's elements
1753 // are protected by GUARDED_BY, not PT_GUARDED_BY;
1754 checkAccess(FSet, Exp: CE->getSubExpr(), AK, POK);
1755 return;
1756 }
1757 Exp = CE->getSubExpr();
1758 continue;
1759 }
1760 break;
1761 }
1762
1763 // Pass by reference warnings are under a different flag.
1764 ProtectedOperationKind PtPOK = POK_VarDereference;
1765 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
1766 if (POK == POK_ReturnByRef)
1767 PtPOK = POK_PtReturnByRef;
1768
1769 const ValueDecl *D = getValueDecl(Exp);
1770 if (!D || !D->hasAttrs())
1771 return;
1772
1773 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(FactMan))
1774 Handler.handleNoMutexHeld(D, POK: PtPOK, AK, Loc: Exp->getExprLoc());
1775
1776 for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
1777 warnIfMutexNotHeld(FSet, D, Exp, AK, MutexExp: I->getArg(), POK: PtPOK, Self: nullptr,
1778 Loc: Exp->getExprLoc());
1779}
1780
1781/// Process a function call, method call, constructor call,
1782/// or destructor call. This involves looking at the attributes on the
1783/// corresponding function/method/constructor/destructor, issuing warnings,
1784/// and updating the locksets accordingly.
1785///
1786/// FIXME: For classes annotated with one of the guarded annotations, we need
1787/// to treat const method calls as reads and non-const method calls as writes,
1788/// and check that the appropriate locks are held. Non-const method calls with
1789/// the same signature as const method calls can be also treated as reads.
1790///
1791/// \param Exp The call expression.
1792/// \param D The callee declaration.
1793/// \param Self If \p Exp = nullptr, the implicit this argument or the argument
1794/// of an implicitly called cleanup function.
1795/// \param Loc If \p Exp = nullptr, the location.
1796void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D,
1797 til::LiteralPtr *Self, SourceLocation Loc) {
1798 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
1799 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
1800 CapExprSet ScopedReqsAndExcludes;
1801
1802 // Figure out if we're constructing an object of scoped lockable class
1803 CapabilityExpr Scp;
1804 if (Exp) {
1805 assert(!Self);
1806 const auto *TagT = Exp->getType()->getAs<TagType>();
1807 if (TagT && Exp->isPRValue()) {
1808 std::pair<til::LiteralPtr *, StringRef> Placeholder =
1809 Analyzer->SxBuilder.createThisPlaceholder(Exp);
1810 [[maybe_unused]] auto inserted =
1811 Analyzer->ConstructedObjects.insert(KV: {Exp, Placeholder.first});
1812 assert(inserted.second && "Are we visiting the same expression again?");
1813 if (isa<CXXConstructExpr>(Val: Exp))
1814 Self = Placeholder.first;
1815 if (TagT->getDecl()->hasAttr<ScopedLockableAttr>())
1816 Scp = CapabilityExpr(Placeholder.first, Placeholder.second, false);
1817 }
1818
1819 assert(Loc.isInvalid());
1820 Loc = Exp->getExprLoc();
1821 }
1822
1823 for(const Attr *At : D->attrs()) {
1824 switch (At->getKind()) {
1825 // When we encounter a lock function, we need to add the lock to our
1826 // lockset.
1827 case attr::AcquireCapability: {
1828 const auto *A = cast<AcquireCapabilityAttr>(Val: At);
1829 Analyzer->getMutexIDs(Mtxs&: A->isShared() ? SharedLocksToAdd
1830 : ExclusiveLocksToAdd,
1831 Attr: A, Exp, D, Self);
1832 break;
1833 }
1834
1835 // An assert will add a lock to the lockset, but will not generate
1836 // a warning if it is already there, and will not generate a warning
1837 // if it is not removed.
1838 case attr::AssertExclusiveLock: {
1839 const auto *A = cast<AssertExclusiveLockAttr>(Val: At);
1840
1841 CapExprSet AssertLocks;
1842 Analyzer->getMutexIDs(Mtxs&: AssertLocks, Attr: A, Exp, D, Self);
1843 for (const auto &AssertLock : AssertLocks)
1844 Analyzer->addLock(
1845 FSet, Entry: std::make_unique<LockableFactEntry>(
1846 args: AssertLock, args: LK_Exclusive, args&: Loc, args: FactEntry::Asserted));
1847 break;
1848 }
1849 case attr::AssertSharedLock: {
1850 const auto *A = cast<AssertSharedLockAttr>(Val: At);
1851
1852 CapExprSet AssertLocks;
1853 Analyzer->getMutexIDs(Mtxs&: AssertLocks, Attr: A, Exp, D, Self);
1854 for (const auto &AssertLock : AssertLocks)
1855 Analyzer->addLock(
1856 FSet, Entry: std::make_unique<LockableFactEntry>(
1857 args: AssertLock, args: LK_Shared, args&: Loc, args: FactEntry::Asserted));
1858 break;
1859 }
1860
1861 case attr::AssertCapability: {
1862 const auto *A = cast<AssertCapabilityAttr>(Val: At);
1863 CapExprSet AssertLocks;
1864 Analyzer->getMutexIDs(Mtxs&: AssertLocks, Attr: A, Exp, D, Self);
1865 for (const auto &AssertLock : AssertLocks)
1866 Analyzer->addLock(FSet, Entry: std::make_unique<LockableFactEntry>(
1867 args: AssertLock,
1868 args: A->isShared() ? LK_Shared : LK_Exclusive,
1869 args&: Loc, args: FactEntry::Asserted));
1870 break;
1871 }
1872
1873 // When we encounter an unlock function, we need to remove unlocked
1874 // mutexes from the lockset, and flag a warning if they are not there.
1875 case attr::ReleaseCapability: {
1876 const auto *A = cast<ReleaseCapabilityAttr>(Val: At);
1877 if (A->isGeneric())
1878 Analyzer->getMutexIDs(Mtxs&: GenericLocksToRemove, Attr: A, Exp, D, Self);
1879 else if (A->isShared())
1880 Analyzer->getMutexIDs(Mtxs&: SharedLocksToRemove, Attr: A, Exp, D, Self);
1881 else
1882 Analyzer->getMutexIDs(Mtxs&: ExclusiveLocksToRemove, Attr: A, Exp, D, Self);
1883 break;
1884 }
1885
1886 case attr::RequiresCapability: {
1887 const auto *A = cast<RequiresCapabilityAttr>(Val: At);
1888 for (auto *Arg : A->args()) {
1889 Analyzer->warnIfMutexNotHeld(FSet, D, Exp,
1890 AK: A->isShared() ? AK_Read : AK_Written,
1891 MutexExp: Arg, POK: POK_FunctionCall, Self, Loc);
1892 // use for adopting a lock
1893 if (!Scp.shouldIgnore())
1894 Analyzer->getMutexIDs(Mtxs&: ScopedReqsAndExcludes, Attr: A, Exp, D, Self);
1895 }
1896 break;
1897 }
1898
1899 case attr::LocksExcluded: {
1900 const auto *A = cast<LocksExcludedAttr>(Val: At);
1901 for (auto *Arg : A->args()) {
1902 Analyzer->warnIfMutexHeld(FSet, D, Exp, MutexExp: Arg, Self, Loc);
1903 // use for deferring a lock
1904 if (!Scp.shouldIgnore())
1905 Analyzer->getMutexIDs(Mtxs&: ScopedReqsAndExcludes, Attr: A, Exp, D, Self);
1906 }
1907 break;
1908 }
1909
1910 // Ignore attributes unrelated to thread-safety
1911 default:
1912 break;
1913 }
1914 }
1915
1916 // Remove locks first to allow lock upgrading/downgrading.
1917 // FIXME -- should only fully remove if the attribute refers to 'this'.
1918 bool Dtor = isa<CXXDestructorDecl>(Val: D);
1919 for (const auto &M : ExclusiveLocksToRemove)
1920 Analyzer->removeLock(FSet, Cp: M, UnlockLoc: Loc, FullyRemove: Dtor, ReceivedKind: LK_Exclusive);
1921 for (const auto &M : SharedLocksToRemove)
1922 Analyzer->removeLock(FSet, Cp: M, UnlockLoc: Loc, FullyRemove: Dtor, ReceivedKind: LK_Shared);
1923 for (const auto &M : GenericLocksToRemove)
1924 Analyzer->removeLock(FSet, Cp: M, UnlockLoc: Loc, FullyRemove: Dtor, ReceivedKind: LK_Generic);
1925
1926 // Add locks.
1927 FactEntry::SourceKind Source =
1928 !Scp.shouldIgnore() ? FactEntry::Managed : FactEntry::Acquired;
1929 for (const auto &M : ExclusiveLocksToAdd)
1930 Analyzer->addLock(FSet, Entry: std::make_unique<LockableFactEntry>(args: M, args: LK_Exclusive,
1931 args&: Loc, args&: Source));
1932 for (const auto &M : SharedLocksToAdd)
1933 Analyzer->addLock(
1934 FSet, Entry: std::make_unique<LockableFactEntry>(args: M, args: LK_Shared, args&: Loc, args&: Source));
1935
1936 if (!Scp.shouldIgnore()) {
1937 // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1938 auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(args&: Scp, args&: Loc);
1939 for (const auto &M : ExclusiveLocksToAdd)
1940 ScopedEntry->addLock(M);
1941 for (const auto &M : SharedLocksToAdd)
1942 ScopedEntry->addLock(M);
1943 for (const auto &M : ScopedReqsAndExcludes)
1944 ScopedEntry->addLock(M);
1945 for (const auto &M : ExclusiveLocksToRemove)
1946 ScopedEntry->addExclusiveUnlock(M);
1947 for (const auto &M : SharedLocksToRemove)
1948 ScopedEntry->addSharedUnlock(M);
1949 Analyzer->addLock(FSet, Entry: std::move(ScopedEntry));
1950 }
1951}
1952
1953/// For unary operations which read and write a variable, we need to
1954/// check whether we hold any required mutexes. Reads are checked in
1955/// VisitCastExpr.
1956void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) {
1957 switch (UO->getOpcode()) {
1958 case UO_PostDec:
1959 case UO_PostInc:
1960 case UO_PreDec:
1961 case UO_PreInc:
1962 checkAccess(Exp: UO->getSubExpr(), AK: AK_Written);
1963 break;
1964 default:
1965 break;
1966 }
1967}
1968
1969/// For binary operations which assign to a variable (writes), we need to check
1970/// whether we hold any required mutexes.
1971/// FIXME: Deal with non-primitive types.
1972void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) {
1973 if (!BO->isAssignmentOp())
1974 return;
1975
1976 // adjust the context
1977 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S: BO, C: LVarCtx);
1978
1979 checkAccess(Exp: BO->getLHS(), AK: AK_Written);
1980}
1981
1982/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1983/// need to ensure we hold any required mutexes.
1984/// FIXME: Deal with non-primitive types.
1985void BuildLockset::VisitCastExpr(const CastExpr *CE) {
1986 if (CE->getCastKind() != CK_LValueToRValue)
1987 return;
1988 checkAccess(Exp: CE->getSubExpr(), AK: AK_Read);
1989}
1990
1991void BuildLockset::examineArguments(const FunctionDecl *FD,
1992 CallExpr::const_arg_iterator ArgBegin,
1993 CallExpr::const_arg_iterator ArgEnd,
1994 bool SkipFirstParam) {
1995 // Currently we can't do anything if we don't know the function declaration.
1996 if (!FD)
1997 return;
1998
1999 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it
2000 // only turns off checking within the body of a function, but we also
2001 // use it to turn off checking in arguments to the function. This
2002 // could result in some false negatives, but the alternative is to
2003 // create yet another attribute.
2004 if (FD->hasAttr<NoThreadSafetyAnalysisAttr>())
2005 return;
2006
2007 const ArrayRef<ParmVarDecl *> Params = FD->parameters();
2008 auto Param = Params.begin();
2009 if (SkipFirstParam)
2010 ++Param;
2011
2012 // There can be default arguments, so we stop when one iterator is at end().
2013 for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd;
2014 ++Param, ++Arg) {
2015 QualType Qt = (*Param)->getType();
2016 if (Qt->isReferenceType())
2017 checkAccess(Exp: *Arg, AK: AK_Read, POK: POK_PassByRef);
2018 }
2019}
2020
2021void BuildLockset::VisitCallExpr(const CallExpr *Exp) {
2022 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Val: Exp)) {
2023 const auto *ME = dyn_cast<MemberExpr>(Val: CE->getCallee());
2024 // ME can be null when calling a method pointer
2025 const CXXMethodDecl *MD = CE->getMethodDecl();
2026
2027 if (ME && MD) {
2028 if (ME->isArrow()) {
2029 // Should perhaps be AK_Written if !MD->isConst().
2030 checkPtAccess(Exp: CE->getImplicitObjectArgument(), AK: AK_Read);
2031 } else {
2032 // Should perhaps be AK_Written if !MD->isConst().
2033 checkAccess(Exp: CE->getImplicitObjectArgument(), AK: AK_Read);
2034 }
2035 }
2036
2037 examineArguments(FD: CE->getDirectCallee(), ArgBegin: CE->arg_begin(), ArgEnd: CE->arg_end());
2038 } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Val: Exp)) {
2039 OverloadedOperatorKind OEop = OE->getOperator();
2040 switch (OEop) {
2041 case OO_Equal:
2042 case OO_PlusEqual:
2043 case OO_MinusEqual:
2044 case OO_StarEqual:
2045 case OO_SlashEqual:
2046 case OO_PercentEqual:
2047 case OO_CaretEqual:
2048 case OO_AmpEqual:
2049 case OO_PipeEqual:
2050 case OO_LessLessEqual:
2051 case OO_GreaterGreaterEqual:
2052 checkAccess(Exp: OE->getArg(Arg: 1), AK: AK_Read);
2053 [[fallthrough]];
2054 case OO_PlusPlus:
2055 case OO_MinusMinus:
2056 checkAccess(Exp: OE->getArg(Arg: 0), AK: AK_Written);
2057 break;
2058 case OO_Star:
2059 case OO_ArrowStar:
2060 case OO_Arrow:
2061 case OO_Subscript:
2062 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
2063 // Grrr. operator* can be multiplication...
2064 checkPtAccess(Exp: OE->getArg(Arg: 0), AK: AK_Read);
2065 }
2066 [[fallthrough]];
2067 default: {
2068 // TODO: get rid of this, and rely on pass-by-ref instead.
2069 const Expr *Obj = OE->getArg(Arg: 0);
2070 checkAccess(Exp: Obj, AK: AK_Read);
2071 // Check the remaining arguments. For method operators, the first
2072 // argument is the implicit self argument, and doesn't appear in the
2073 // FunctionDecl, but for non-methods it does.
2074 const FunctionDecl *FD = OE->getDirectCallee();
2075 examineArguments(FD, ArgBegin: std::next(x: OE->arg_begin()), ArgEnd: OE->arg_end(),
2076 /*SkipFirstParam*/ !isa<CXXMethodDecl>(Val: FD));
2077 break;
2078 }
2079 }
2080 } else {
2081 examineArguments(FD: Exp->getDirectCallee(), ArgBegin: Exp->arg_begin(), ArgEnd: Exp->arg_end());
2082 }
2083
2084 auto *D = dyn_cast_or_null<NamedDecl>(Val: Exp->getCalleeDecl());
2085 if(!D || !D->hasAttrs())
2086 return;
2087 handleCall(Exp, D);
2088}
2089
2090void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) {
2091 const CXXConstructorDecl *D = Exp->getConstructor();
2092 if (D && D->isCopyConstructor()) {
2093 const Expr* Source = Exp->getArg(Arg: 0);
2094 checkAccess(Exp: Source, AK: AK_Read);
2095 } else {
2096 examineArguments(FD: D, ArgBegin: Exp->arg_begin(), ArgEnd: Exp->arg_end());
2097 }
2098 if (D && D->hasAttrs())
2099 handleCall(Exp, D);
2100}
2101
2102static const Expr *UnpackConstruction(const Expr *E) {
2103 if (auto *CE = dyn_cast<CastExpr>(Val: E))
2104 if (CE->getCastKind() == CK_NoOp)
2105 E = CE->getSubExpr()->IgnoreParens();
2106 if (auto *CE = dyn_cast<CastExpr>(Val: E))
2107 if (CE->getCastKind() == CK_ConstructorConversion ||
2108 CE->getCastKind() == CK_UserDefinedConversion)
2109 E = CE->getSubExpr();
2110 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Val: E))
2111 E = BTE->getSubExpr();
2112 return E;
2113}
2114
2115void BuildLockset::VisitDeclStmt(const DeclStmt *S) {
2116 // adjust the context
2117 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, C: LVarCtx);
2118
2119 for (auto *D : S->getDeclGroup()) {
2120 if (auto *VD = dyn_cast_or_null<VarDecl>(Val: D)) {
2121 const Expr *E = VD->getInit();
2122 if (!E)
2123 continue;
2124 E = E->IgnoreParens();
2125
2126 // handle constructors that involve temporaries
2127 if (auto *EWC = dyn_cast<ExprWithCleanups>(Val: E))
2128 E = EWC->getSubExpr()->IgnoreParens();
2129 E = UnpackConstruction(E);
2130
2131 if (auto Object = Analyzer->ConstructedObjects.find(Val: E);
2132 Object != Analyzer->ConstructedObjects.end()) {
2133 Object->second->setClangDecl(VD);
2134 Analyzer->ConstructedObjects.erase(I: Object);
2135 }
2136 }
2137 }
2138}
2139
2140void BuildLockset::VisitMaterializeTemporaryExpr(
2141 const MaterializeTemporaryExpr *Exp) {
2142 if (const ValueDecl *ExtD = Exp->getExtendingDecl()) {
2143 if (auto Object = Analyzer->ConstructedObjects.find(
2144 Val: UnpackConstruction(E: Exp->getSubExpr()));
2145 Object != Analyzer->ConstructedObjects.end()) {
2146 Object->second->setClangDecl(ExtD);
2147 Analyzer->ConstructedObjects.erase(I: Object);
2148 }
2149 }
2150}
2151
2152void BuildLockset::VisitReturnStmt(const ReturnStmt *S) {
2153 if (Analyzer->CurrentFunction == nullptr)
2154 return;
2155 const Expr *RetVal = S->getRetValue();
2156 if (!RetVal)
2157 return;
2158
2159 // If returning by reference, check that the function requires the appropriate
2160 // capabilities.
2161 const QualType ReturnType =
2162 Analyzer->CurrentFunction->getReturnType().getCanonicalType();
2163 if (ReturnType->isLValueReferenceType()) {
2164 Analyzer->checkAccess(
2165 FSet: FunctionExitFSet, Exp: RetVal,
2166 AK: ReturnType->getPointeeType().isConstQualified() ? AK_Read : AK_Written,
2167 POK: POK_ReturnByRef);
2168 }
2169}
2170
2171/// Given two facts merging on a join point, possibly warn and decide whether to
2172/// keep or replace.
2173///
2174/// \param CanModify Whether we can replace \p A by \p B.
2175/// \return false if we should keep \p A, true if we should take \p B.
2176bool ThreadSafetyAnalyzer::join(const FactEntry &A, const FactEntry &B,
2177 bool CanModify) {
2178 if (A.kind() != B.kind()) {
2179 // For managed capabilities, the destructor should unlock in the right mode
2180 // anyway. For asserted capabilities no unlocking is needed.
2181 if ((A.managed() || A.asserted()) && (B.managed() || B.asserted())) {
2182 // The shared capability subsumes the exclusive capability, if possible.
2183 bool ShouldTakeB = B.kind() == LK_Shared;
2184 if (CanModify || !ShouldTakeB)
2185 return ShouldTakeB;
2186 }
2187 Handler.handleExclusiveAndShared(Kind: B.getKind(), LockName: B.toString(), Loc1: B.loc(),
2188 Loc2: A.loc());
2189 // Take the exclusive capability to reduce further warnings.
2190 return CanModify && B.kind() == LK_Exclusive;
2191 } else {
2192 // The non-asserted capability is the one we want to track.
2193 return CanModify && A.asserted() && !B.asserted();
2194 }
2195}
2196
2197/// Compute the intersection of two locksets and issue warnings for any
2198/// locks in the symmetric difference.
2199///
2200/// This function is used at a merge point in the CFG when comparing the lockset
2201/// of each branch being merged. For example, given the following sequence:
2202/// A; if () then B; else C; D; we need to check that the lockset after B and C
2203/// are the same. In the event of a difference, we use the intersection of these
2204/// two locksets at the start of D.
2205///
2206/// \param EntrySet A lockset for entry into a (possibly new) block.
2207/// \param ExitSet The lockset on exiting a preceding block.
2208/// \param JoinLoc The location of the join point for error reporting
2209/// \param EntryLEK The warning if a mutex is missing from \p EntrySet.
2210/// \param ExitLEK The warning if a mutex is missing from \p ExitSet.
2211void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &EntrySet,
2212 const FactSet &ExitSet,
2213 SourceLocation JoinLoc,
2214 LockErrorKind EntryLEK,
2215 LockErrorKind ExitLEK) {
2216 FactSet EntrySetOrig = EntrySet;
2217
2218 // Find locks in ExitSet that conflict or are not in EntrySet, and warn.
2219 for (const auto &Fact : ExitSet) {
2220 const FactEntry &ExitFact = FactMan[Fact];
2221
2222 FactSet::iterator EntryIt = EntrySet.findLockIter(FM&: FactMan, CapE: ExitFact);
2223 if (EntryIt != EntrySet.end()) {
2224 if (join(A: FactMan[*EntryIt], B: ExitFact,
2225 CanModify: EntryLEK != LEK_LockedSomeLoopIterations))
2226 *EntryIt = Fact;
2227 } else if (!ExitFact.managed()) {
2228 ExitFact.handleRemovalFromIntersection(FSet: ExitSet, FactMan, JoinLoc,
2229 LEK: EntryLEK, Handler);
2230 }
2231 }
2232
2233 // Find locks in EntrySet that are not in ExitSet, and remove them.
2234 for (const auto &Fact : EntrySetOrig) {
2235 const FactEntry *EntryFact = &FactMan[Fact];
2236 const FactEntry *ExitFact = ExitSet.findLock(FM&: FactMan, CapE: *EntryFact);
2237
2238 if (!ExitFact) {
2239 if (!EntryFact->managed() || ExitLEK == LEK_LockedSomeLoopIterations)
2240 EntryFact->handleRemovalFromIntersection(FSet: EntrySetOrig, FactMan, JoinLoc,
2241 LEK: ExitLEK, Handler);
2242 if (ExitLEK == LEK_LockedSomePredecessors)
2243 EntrySet.removeLock(FM&: FactMan, CapE: *EntryFact);
2244 }
2245 }
2246}
2247
2248// Return true if block B never continues to its successors.
2249static bool neverReturns(const CFGBlock *B) {
2250 if (B->hasNoReturnElement())
2251 return true;
2252 if (B->empty())
2253 return false;
2254
2255 CFGElement Last = B->back();
2256 if (std::optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2257 if (isa<CXXThrowExpr>(Val: S->getStmt()))
2258 return true;
2259 }
2260 return false;
2261}
2262
2263/// Check a function's CFG for thread-safety violations.
2264///
2265/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2266/// at the end of each block, and issue warnings for thread safety violations.
2267/// Each block in the CFG is traversed exactly once.
2268void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2269 // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
2270 // For now, we just use the walker to set things up.
2271 threadSafety::CFGWalker walker;
2272 if (!walker.init(AC))
2273 return;
2274
2275 // AC.dumpCFG(true);
2276 // threadSafety::printSCFG(walker);
2277
2278 CFG *CFGraph = walker.getGraph();
2279 const NamedDecl *D = walker.getDecl();
2280 CurrentFunction = dyn_cast<FunctionDecl>(Val: D);
2281
2282 if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
2283 return;
2284
2285 // FIXME: Do something a bit more intelligent inside constructor and
2286 // destructor code. Constructors and destructors must assume unique access
2287 // to 'this', so checks on member variable access is disabled, but we should
2288 // still enable checks on other objects.
2289 if (isa<CXXConstructorDecl>(Val: D))
2290 return; // Don't check inside constructors.
2291 if (isa<CXXDestructorDecl>(Val: D))
2292 return; // Don't check inside destructors.
2293
2294 Handler.enterFunction(FD: CurrentFunction);
2295
2296 BlockInfo.resize(new_size: CFGraph->getNumBlockIDs(),
2297 x: CFGBlockInfo::getEmptyBlockInfo(M&: LocalVarMap));
2298
2299 // We need to explore the CFG via a "topological" ordering.
2300 // That way, we will be guaranteed to have information about required
2301 // predecessor locksets when exploring a new block.
2302 const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
2303 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2304
2305 CFGBlockInfo &Initial = BlockInfo[CFGraph->getEntry().getBlockID()];
2306 CFGBlockInfo &Final = BlockInfo[CFGraph->getExit().getBlockID()];
2307
2308 // Mark entry block as reachable
2309 Initial.Reachable = true;
2310
2311 // Compute SSA names for local variables
2312 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2313
2314 // Fill in source locations for all CFGBlocks.
2315 findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2316
2317 CapExprSet ExclusiveLocksAcquired;
2318 CapExprSet SharedLocksAcquired;
2319 CapExprSet LocksReleased;
2320
2321 // Add locks from exclusive_locks_required and shared_locks_required
2322 // to initial lockset. Also turn off checking for lock and unlock functions.
2323 // FIXME: is there a more intelligent way to check lock/unlock functions?
2324 if (!SortedGraph->empty() && D->hasAttrs()) {
2325 assert(*SortedGraph->begin() == &CFGraph->getEntry());
2326 FactSet &InitialLockset = Initial.EntrySet;
2327
2328 CapExprSet ExclusiveLocksToAdd;
2329 CapExprSet SharedLocksToAdd;
2330
2331 SourceLocation Loc = D->getLocation();
2332 for (const auto *Attr : D->attrs()) {
2333 Loc = Attr->getLocation();
2334 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Val: Attr)) {
2335 getMutexIDs(Mtxs&: A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, Attr: A,
2336 Exp: nullptr, D);
2337 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Val: Attr)) {
2338 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2339 // We must ignore such methods.
2340 if (A->args_size() == 0)
2341 return;
2342 getMutexIDs(Mtxs&: A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, Attr: A,
2343 Exp: nullptr, D);
2344 getMutexIDs(Mtxs&: LocksReleased, Attr: A, Exp: nullptr, D);
2345 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Val: Attr)) {
2346 if (A->args_size() == 0)
2347 return;
2348 getMutexIDs(Mtxs&: A->isShared() ? SharedLocksAcquired
2349 : ExclusiveLocksAcquired,
2350 Attr: A, Exp: nullptr, D);
2351 } else if (isa<ExclusiveTrylockFunctionAttr>(Val: Attr)) {
2352 // Don't try to check trylock functions for now.
2353 return;
2354 } else if (isa<SharedTrylockFunctionAttr>(Val: Attr)) {
2355 // Don't try to check trylock functions for now.
2356 return;
2357 } else if (isa<TryAcquireCapabilityAttr>(Val: Attr)) {
2358 // Don't try to check trylock functions for now.
2359 return;
2360 }
2361 }
2362
2363 // FIXME -- Loc can be wrong here.
2364 for (const auto &Mu : ExclusiveLocksToAdd) {
2365 auto Entry = std::make_unique<LockableFactEntry>(args: Mu, args: LK_Exclusive, args&: Loc,
2366 args: FactEntry::Declared);
2367 addLock(FSet&: InitialLockset, Entry: std::move(Entry), ReqAttr: true);
2368 }
2369 for (const auto &Mu : SharedLocksToAdd) {
2370 auto Entry = std::make_unique<LockableFactEntry>(args: Mu, args: LK_Shared, args&: Loc,
2371 args: FactEntry::Declared);
2372 addLock(FSet&: InitialLockset, Entry: std::move(Entry), ReqAttr: true);
2373 }
2374 }
2375
2376 // Compute the expected exit set.
2377 // By default, we expect all locks held on entry to be held on exit.
2378 FactSet ExpectedFunctionExitSet = Initial.EntrySet;
2379
2380 // Adjust the expected exit set by adding or removing locks, as declared
2381 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then
2382 // issue the appropriate warning.
2383 // FIXME: the location here is not quite right.
2384 for (const auto &Lock : ExclusiveLocksAcquired)
2385 ExpectedFunctionExitSet.addLock(
2386 FM&: FactMan, Entry: std::make_unique<LockableFactEntry>(args: Lock, args: LK_Exclusive,
2387 args: D->getLocation()));
2388 for (const auto &Lock : SharedLocksAcquired)
2389 ExpectedFunctionExitSet.addLock(
2390 FM&: FactMan,
2391 Entry: std::make_unique<LockableFactEntry>(args: Lock, args: LK_Shared, args: D->getLocation()));
2392 for (const auto &Lock : LocksReleased)
2393 ExpectedFunctionExitSet.removeLock(FM&: FactMan, CapE: Lock);
2394
2395 for (const auto *CurrBlock : *SortedGraph) {
2396 unsigned CurrBlockID = CurrBlock->getBlockID();
2397 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2398
2399 // Use the default initial lockset in case there are no predecessors.
2400 VisitedBlocks.insert(Block: CurrBlock);
2401
2402 // Iterate through the predecessor blocks and warn if the lockset for all
2403 // predecessors is not the same. We take the entry lockset of the current
2404 // block to be the intersection of all previous locksets.
2405 // FIXME: By keeping the intersection, we may output more errors in future
2406 // for a lock which is not in the intersection, but was in the union. We
2407 // may want to also keep the union in future. As an example, let's say
2408 // the intersection contains Mutex L, and the union contains L and M.
2409 // Later we unlock M. At this point, we would output an error because we
2410 // never locked M; although the real error is probably that we forgot to
2411 // lock M on all code paths. Conversely, let's say that later we lock M.
2412 // In this case, we should compare against the intersection instead of the
2413 // union because the real error is probably that we forgot to unlock M on
2414 // all code paths.
2415 bool LocksetInitialized = false;
2416 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2417 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
2418 // if *PI -> CurrBlock is a back edge
2419 if (*PI == nullptr || !VisitedBlocks.alreadySet(Block: *PI))
2420 continue;
2421
2422 unsigned PrevBlockID = (*PI)->getBlockID();
2423 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2424
2425 // Ignore edges from blocks that can't return.
2426 if (neverReturns(B: *PI) || !PrevBlockInfo->Reachable)
2427 continue;
2428
2429 // Okay, we can reach this block from the entry.
2430 CurrBlockInfo->Reachable = true;
2431
2432 FactSet PrevLockset;
2433 getEdgeLockset(Result&: PrevLockset, ExitSet: PrevBlockInfo->ExitSet, PredBlock: *PI, CurrBlock);
2434
2435 if (!LocksetInitialized) {
2436 CurrBlockInfo->EntrySet = PrevLockset;
2437 LocksetInitialized = true;
2438 } else {
2439 // Surprisingly 'continue' doesn't always produce back edges, because
2440 // the CFG has empty "transition" blocks where they meet with the end
2441 // of the regular loop body. We still want to diagnose them as loop.
2442 intersectAndWarn(
2443 EntrySet&: CurrBlockInfo->EntrySet, ExitSet: PrevLockset, JoinLoc: CurrBlockInfo->EntryLoc,
2444 LEK: isa_and_nonnull<ContinueStmt>(Val: (*PI)->getTerminatorStmt())
2445 ? LEK_LockedSomeLoopIterations
2446 : LEK_LockedSomePredecessors);
2447 }
2448 }
2449
2450 // Skip rest of block if it's not reachable.
2451 if (!CurrBlockInfo->Reachable)
2452 continue;
2453
2454 BuildLockset LocksetBuilder(this, *CurrBlockInfo, ExpectedFunctionExitSet);
2455
2456 // Visit all the statements in the basic block.
2457 for (const auto &BI : *CurrBlock) {
2458 switch (BI.getKind()) {
2459 case CFGElement::Statement: {
2460 CFGStmt CS = BI.castAs<CFGStmt>();
2461 LocksetBuilder.Visit(S: CS.getStmt());
2462 break;
2463 }
2464 // Ignore BaseDtor and MemberDtor for now.
2465 case CFGElement::AutomaticObjectDtor: {
2466 CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>();
2467 const auto *DD = AD.getDestructorDecl(astContext&: AC.getASTContext());
2468 if (!DD->hasAttrs())
2469 break;
2470
2471 LocksetBuilder.handleCall(Exp: nullptr, D: DD,
2472 Self: SxBuilder.createVariable(VD: AD.getVarDecl()),
2473 Loc: AD.getTriggerStmt()->getEndLoc());
2474 break;
2475 }
2476
2477 case CFGElement::CleanupFunction: {
2478 const CFGCleanupFunction &CF = BI.castAs<CFGCleanupFunction>();
2479 LocksetBuilder.handleCall(/*Exp=*/nullptr, D: CF.getFunctionDecl(),
2480 Self: SxBuilder.createVariable(VD: CF.getVarDecl()),
2481 Loc: CF.getVarDecl()->getLocation());
2482 break;
2483 }
2484
2485 case CFGElement::TemporaryDtor: {
2486 auto TD = BI.castAs<CFGTemporaryDtor>();
2487
2488 // Clean up constructed object even if there are no attributes to
2489 // keep the number of objects in limbo as small as possible.
2490 if (auto Object = ConstructedObjects.find(
2491 Val: TD.getBindTemporaryExpr()->getSubExpr());
2492 Object != ConstructedObjects.end()) {
2493 const auto *DD = TD.getDestructorDecl(astContext&: AC.getASTContext());
2494 if (DD->hasAttrs())
2495 // TODO: the location here isn't quite correct.
2496 LocksetBuilder.handleCall(Exp: nullptr, D: DD, Self: Object->second,
2497 Loc: TD.getBindTemporaryExpr()->getEndLoc());
2498 ConstructedObjects.erase(I: Object);
2499 }
2500 break;
2501 }
2502 default:
2503 break;
2504 }
2505 }
2506 CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2507
2508 // For every back edge from CurrBlock (the end of the loop) to another block
2509 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2510 // the one held at the beginning of FirstLoopBlock. We can look up the
2511 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2512 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2513 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
2514 // if CurrBlock -> *SI is *not* a back edge
2515 if (*SI == nullptr || !VisitedBlocks.alreadySet(Block: *SI))
2516 continue;
2517
2518 CFGBlock *FirstLoopBlock = *SI;
2519 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2520 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2521 intersectAndWarn(EntrySet&: PreLoop->EntrySet, ExitSet: LoopEnd->ExitSet, JoinLoc: PreLoop->EntryLoc,
2522 LEK: LEK_LockedSomeLoopIterations);
2523 }
2524 }
2525
2526 // Skip the final check if the exit block is unreachable.
2527 if (!Final.Reachable)
2528 return;
2529
2530 // FIXME: Should we call this function for all blocks which exit the function?
2531 intersectAndWarn(EntrySet&: ExpectedFunctionExitSet, ExitSet: Final.ExitSet, JoinLoc: Final.ExitLoc,
2532 EntryLEK: LEK_LockedAtEndOfFunction, ExitLEK: LEK_NotLockedAtEndOfFunction);
2533
2534 Handler.leaveFunction(FD: CurrentFunction);
2535}
2536
2537/// Check a function's CFG for thread-safety violations.
2538///
2539/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2540/// at the end of each block, and issue warnings for thread safety violations.
2541/// Each block in the CFG is traversed exactly once.
2542void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2543 ThreadSafetyHandler &Handler,
2544 BeforeSet **BSet) {
2545 if (!*BSet)
2546 *BSet = new BeforeSet;
2547 ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
2548 Analyzer.runAnalysis(AC);
2549}
2550
2551void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
2552
2553/// Helper function that returns a LockKind required for the given level
2554/// of access.
2555LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
2556 switch (AK) {
2557 case AK_Read :
2558 return LK_Shared;
2559 case AK_Written :
2560 return LK_Exclusive;
2561 }
2562 llvm_unreachable("Unknown AccessKind");
2563}
2564