1 | //===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This is the code that handles AST -> LLVM type lowering. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H |
14 | #define LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H |
15 | |
16 | #include "CGCall.h" |
17 | #include "clang/Basic/ABI.h" |
18 | #include "clang/CodeGen/CGFunctionInfo.h" |
19 | #include "llvm/ADT/DenseMap.h" |
20 | #include "llvm/IR/Module.h" |
21 | |
22 | namespace llvm { |
23 | class FunctionType; |
24 | class DataLayout; |
25 | class Type; |
26 | class LLVMContext; |
27 | class StructType; |
28 | } |
29 | |
30 | namespace clang { |
31 | class ASTContext; |
32 | template <typename> class CanQual; |
33 | class CXXConstructorDecl; |
34 | class CXXMethodDecl; |
35 | class CodeGenOptions; |
36 | class FunctionProtoType; |
37 | class QualType; |
38 | class RecordDecl; |
39 | class TagDecl; |
40 | class TargetInfo; |
41 | class Type; |
42 | typedef CanQual<Type> CanQualType; |
43 | class GlobalDecl; |
44 | |
45 | namespace CodeGen { |
46 | class ABIInfo; |
47 | class CGCXXABI; |
48 | class CGRecordLayout; |
49 | class CodeGenModule; |
50 | class RequiredArgs; |
51 | |
52 | /// This class organizes the cross-module state that is used while lowering |
53 | /// AST types to LLVM types. |
54 | class CodeGenTypes { |
55 | CodeGenModule &CGM; |
56 | // Some of this stuff should probably be left on the CGM. |
57 | ASTContext &Context; |
58 | llvm::Module &TheModule; |
59 | const TargetInfo &Target; |
60 | CGCXXABI &TheCXXABI; |
61 | |
62 | // This should not be moved earlier, since its initialization depends on some |
63 | // of the previous reference members being already initialized |
64 | const ABIInfo &TheABIInfo; |
65 | |
66 | /// The opaque type map for Objective-C interfaces. All direct |
67 | /// manipulation is done by the runtime interfaces, which are |
68 | /// responsible for coercing to the appropriate type; these opaque |
69 | /// types are never refined. |
70 | llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes; |
71 | |
72 | /// Maps clang struct type with corresponding record layout info. |
73 | llvm::DenseMap<const Type*, std::unique_ptr<CGRecordLayout>> CGRecordLayouts; |
74 | |
75 | /// Contains the LLVM IR type for any converted RecordDecl. |
76 | llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes; |
77 | |
78 | /// Hold memoized CGFunctionInfo results. |
79 | llvm::FoldingSet<CGFunctionInfo> FunctionInfos{FunctionInfosLog2InitSize}; |
80 | |
81 | llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed; |
82 | |
83 | /// True if we didn't layout a function due to a being inside |
84 | /// a recursive struct conversion, set this to true. |
85 | bool SkippedLayout; |
86 | |
87 | /// True if any instance of long double types are used. |
88 | bool LongDoubleReferenced; |
89 | |
90 | /// This map keeps cache of llvm::Types and maps clang::Type to |
91 | /// corresponding llvm::Type. |
92 | llvm::DenseMap<const Type *, llvm::Type *> TypeCache; |
93 | |
94 | llvm::DenseMap<const Type *, llvm::Type *> RecordsWithOpaqueMemberPointers; |
95 | |
96 | static constexpr unsigned FunctionInfosLog2InitSize = 9; |
97 | /// Helper for ConvertType. |
98 | llvm::Type *ConvertFunctionTypeInternal(QualType FT); |
99 | |
100 | public: |
101 | CodeGenTypes(CodeGenModule &cgm); |
102 | ~CodeGenTypes(); |
103 | |
104 | const llvm::DataLayout &getDataLayout() const { |
105 | return TheModule.getDataLayout(); |
106 | } |
107 | CodeGenModule &getCGM() const { return CGM; } |
108 | ASTContext &getContext() const { return Context; } |
109 | const ABIInfo &getABIInfo() const { return TheABIInfo; } |
110 | const TargetInfo &getTarget() const { return Target; } |
111 | CGCXXABI &getCXXABI() const { return TheCXXABI; } |
112 | llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); } |
113 | const CodeGenOptions &getCodeGenOpts() const; |
114 | |
115 | /// Convert clang calling convention to LLVM callilng convention. |
116 | unsigned ClangCallConvToLLVMCallConv(CallingConv CC); |
117 | |
118 | /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR |
119 | /// qualification. |
120 | CanQualType DeriveThisType(const CXXRecordDecl *RD, const CXXMethodDecl *MD); |
121 | |
122 | /// ConvertType - Convert type T into a llvm::Type. |
123 | llvm::Type *ConvertType(QualType T); |
124 | |
125 | /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from |
126 | /// ConvertType in that it is used to convert to the memory representation for |
127 | /// a type. For example, the scalar representation for _Bool is i1, but the |
128 | /// memory representation is usually i8 or i32, depending on the target. |
129 | llvm::Type *ConvertTypeForMem(QualType T); |
130 | |
131 | /// Check whether the given type needs to be laid out in memory |
132 | /// using an opaque byte-array type because its load/store type |
133 | /// does not have the correct alloc size in the LLVM data layout. |
134 | /// If this is false, the load/store type (convertTypeForLoadStore) |
135 | /// and memory representation type (ConvertTypeForMem) will |
136 | /// be the same type. |
137 | bool typeRequiresSplitIntoByteArray(QualType ASTTy, |
138 | llvm::Type *LLVMTy = nullptr); |
139 | |
140 | /// Given that T is a scalar type, return the IR type that should |
141 | /// be used for load and store operations. For example, this might |
142 | /// be i8 for _Bool or i96 for _BitInt(65). The store size of the |
143 | /// load/store type (as reported by LLVM's data layout) is always |
144 | /// the same as the alloc size of the memory representation type |
145 | /// returned by ConvertTypeForMem. |
146 | /// |
147 | /// As an optimization, if you already know the scalar value type |
148 | /// for T (as would be returned by ConvertType), you can pass |
149 | /// it as the second argument so that it does not need to be |
150 | /// recomputed in common cases where the value type and |
151 | /// load/store type are the same. |
152 | llvm::Type *convertTypeForLoadStore(QualType T, llvm::Type *LLVMTy = nullptr); |
153 | |
154 | /// GetFunctionType - Get the LLVM function type for \arg Info. |
155 | llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info); |
156 | |
157 | llvm::FunctionType *GetFunctionType(GlobalDecl GD); |
158 | |
159 | /// isFuncTypeConvertible - Utility to check whether a function type can |
160 | /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag |
161 | /// type). |
162 | bool isFuncTypeConvertible(const FunctionType *FT); |
163 | bool isFuncParamTypeConvertible(QualType Ty); |
164 | |
165 | /// Determine if a C++ inheriting constructor should have parameters matching |
166 | /// those of its inherited constructor. |
167 | bool inheritingCtorHasParams(const InheritedConstructor &Inherited, |
168 | CXXCtorType Type); |
169 | |
170 | /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable, |
171 | /// given a CXXMethodDecl. If the method to has an incomplete return type, |
172 | /// and/or incomplete argument types, this will return the opaque type. |
173 | llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD); |
174 | |
175 | const CGRecordLayout &getCGRecordLayout(const RecordDecl*); |
176 | |
177 | /// UpdateCompletedType - When we find the full definition for a TagDecl, |
178 | /// replace the 'opaque' type we previously made for it if applicable. |
179 | void UpdateCompletedType(const TagDecl *TD); |
180 | |
181 | /// Remove stale types from the type cache when an inheritance model |
182 | /// gets assigned to a class. |
183 | void RefreshTypeCacheForClass(const CXXRecordDecl *RD); |
184 | |
185 | // The arrangement methods are split into three families: |
186 | // - those meant to drive the signature and prologue/epilogue |
187 | // of a function declaration or definition, |
188 | // - those meant for the computation of the LLVM type for an abstract |
189 | // appearance of a function, and |
190 | // - those meant for performing the IR-generation of a call. |
191 | // They differ mainly in how they deal with optional (i.e. variadic) |
192 | // arguments, as well as unprototyped functions. |
193 | // |
194 | // Key points: |
195 | // - The CGFunctionInfo for emitting a specific call site must include |
196 | // entries for the optional arguments. |
197 | // - The function type used at the call site must reflect the formal |
198 | // signature of the declaration being called, or else the call will |
199 | // go awry. |
200 | // - For the most part, unprototyped functions are called by casting to |
201 | // a formal signature inferred from the specific argument types used |
202 | // at the call-site. However, some targets (e.g. x86-64) screw with |
203 | // this for compatibility reasons. |
204 | |
205 | const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD); |
206 | |
207 | /// Given a function info for a declaration, return the function info |
208 | /// for a call with the given arguments. |
209 | /// |
210 | /// Often this will be able to simply return the declaration info. |
211 | const CGFunctionInfo &arrangeCall(const CGFunctionInfo &declFI, |
212 | const CallArgList &args); |
213 | |
214 | /// Free functions are functions that are compatible with an ordinary |
215 | /// C function pointer type. |
216 | const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD); |
217 | const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args, |
218 | const FunctionType *Ty, |
219 | bool ChainCall); |
220 | const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty); |
221 | const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty); |
222 | |
223 | /// A nullary function is a freestanding function of type 'void ()'. |
224 | /// This method works for both calls and declarations. |
225 | const CGFunctionInfo &arrangeNullaryFunction(); |
226 | |
227 | /// A builtin function is a freestanding function using the default |
228 | /// C conventions. |
229 | const CGFunctionInfo & |
230 | arrangeBuiltinFunctionDeclaration(QualType resultType, |
231 | const FunctionArgList &args); |
232 | const CGFunctionInfo & |
233 | arrangeBuiltinFunctionDeclaration(CanQualType resultType, |
234 | ArrayRef<CanQualType> argTypes); |
235 | const CGFunctionInfo &arrangeBuiltinFunctionCall(QualType resultType, |
236 | const CallArgList &args); |
237 | |
238 | /// Objective-C methods are C functions with some implicit parameters. |
239 | const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD); |
240 | const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, |
241 | QualType receiverType); |
242 | const CGFunctionInfo &arrangeUnprototypedObjCMessageSend( |
243 | QualType returnType, |
244 | const CallArgList &args); |
245 | |
246 | /// Block invocation functions are C functions with an implicit parameter. |
247 | const CGFunctionInfo &arrangeBlockFunctionDeclaration( |
248 | const FunctionProtoType *type, |
249 | const FunctionArgList &args); |
250 | const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args, |
251 | const FunctionType *type); |
252 | |
253 | /// C++ methods have some special rules and also have implicit parameters. |
254 | const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD); |
255 | const CGFunctionInfo &arrangeCXXStructorDeclaration(GlobalDecl GD); |
256 | const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args, |
257 | const CXXConstructorDecl *D, |
258 | CXXCtorType CtorKind, |
259 | unsigned , |
260 | unsigned , |
261 | bool PassProtoArgs = true); |
262 | |
263 | const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args, |
264 | const FunctionProtoType *type, |
265 | RequiredArgs required, |
266 | unsigned numPrefixArgs); |
267 | const CGFunctionInfo & |
268 | arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD); |
269 | const CGFunctionInfo &arrangeMSCtorClosure(const CXXConstructorDecl *CD, |
270 | CXXCtorType CT); |
271 | const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD, |
272 | const FunctionProtoType *FTP, |
273 | const CXXMethodDecl *MD); |
274 | |
275 | /// "Arrange" the LLVM information for a call or type with the given |
276 | /// signature. This is largely an internal method; other clients |
277 | /// should use one of the above routines, which ultimately defer to |
278 | /// this. |
279 | /// |
280 | /// \param argTypes - must all actually be canonical as params |
281 | const CGFunctionInfo &arrangeLLVMFunctionInfo( |
282 | CanQualType returnType, FnInfoOpts opts, ArrayRef<CanQualType> argTypes, |
283 | FunctionType::ExtInfo info, |
284 | ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, |
285 | RequiredArgs args); |
286 | |
287 | /// Compute a new LLVM record layout object for the given record. |
288 | std::unique_ptr<CGRecordLayout> ComputeRecordLayout(const RecordDecl *D, |
289 | llvm::StructType *Ty); |
290 | |
291 | /// addRecordTypeName - Compute a name from the given record decl with an |
292 | /// optional suffix and name the given LLVM type using it. |
293 | void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty, |
294 | StringRef suffix); |
295 | |
296 | |
297 | public: // These are internal details of CGT that shouldn't be used externally. |
298 | /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union. |
299 | llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD); |
300 | |
301 | /// getExpandedTypes - Expand the type \arg Ty into the LLVM |
302 | /// argument types it would be passed as. See ABIArgInfo::Expand. |
303 | void getExpandedTypes(QualType Ty, |
304 | SmallVectorImpl<llvm::Type *>::iterator &TI); |
305 | |
306 | /// IsZeroInitializable - Return whether a type can be |
307 | /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer. |
308 | bool isZeroInitializable(QualType T); |
309 | |
310 | /// Check if the pointer type can be zero-initialized (in the C++ sense) |
311 | /// with an LLVM zeroinitializer. |
312 | bool isPointerZeroInitializable(QualType T); |
313 | |
314 | /// IsZeroInitializable - Return whether a record type can be |
315 | /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer. |
316 | bool isZeroInitializable(const RecordDecl *RD); |
317 | |
318 | bool isLongDoubleReferenced() const { return LongDoubleReferenced; } |
319 | bool isRecordLayoutComplete(const Type *Ty) const; |
320 | unsigned getTargetAddressSpace(QualType T) const; |
321 | }; |
322 | |
323 | } // end namespace CodeGen |
324 | } // end namespace clang |
325 | |
326 | #endif |
327 | |