1 | //===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file provides Sema routines for C++ access control semantics. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/ASTContext.h" |
14 | #include "clang/AST/CXXInheritance.h" |
15 | #include "clang/AST/DeclCXX.h" |
16 | #include "clang/AST/DeclFriend.h" |
17 | #include "clang/AST/DeclObjC.h" |
18 | #include "clang/AST/DependentDiagnostic.h" |
19 | #include "clang/AST/ExprCXX.h" |
20 | #include "clang/Basic/Specifiers.h" |
21 | #include "clang/Sema/DelayedDiagnostic.h" |
22 | #include "clang/Sema/Initialization.h" |
23 | #include "clang/Sema/Lookup.h" |
24 | #include "clang/Sema/SemaInternal.h" |
25 | #include "llvm/ADT/STLForwardCompat.h" |
26 | |
27 | using namespace clang; |
28 | using namespace sema; |
29 | |
30 | /// A copy of Sema's enum without AR_delayed. |
31 | enum AccessResult { |
32 | AR_accessible, |
33 | AR_inaccessible, |
34 | AR_dependent |
35 | }; |
36 | |
37 | bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl, |
38 | NamedDecl *PrevMemberDecl, |
39 | AccessSpecifier LexicalAS) { |
40 | if (!PrevMemberDecl) { |
41 | // Use the lexical access specifier. |
42 | MemberDecl->setAccess(LexicalAS); |
43 | return false; |
44 | } |
45 | |
46 | // C++ [class.access.spec]p3: When a member is redeclared its access |
47 | // specifier must be same as its initial declaration. |
48 | if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) { |
49 | Diag(Loc: MemberDecl->getLocation(), |
50 | DiagID: diag::err_class_redeclared_with_different_access) |
51 | << MemberDecl << LexicalAS; |
52 | Diag(Loc: PrevMemberDecl->getLocation(), DiagID: diag::note_previous_access_declaration) |
53 | << PrevMemberDecl << PrevMemberDecl->getAccess(); |
54 | |
55 | MemberDecl->setAccess(LexicalAS); |
56 | return true; |
57 | } |
58 | |
59 | MemberDecl->setAccess(PrevMemberDecl->getAccess()); |
60 | return false; |
61 | } |
62 | |
63 | static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) { |
64 | DeclContext *DC = D->getDeclContext(); |
65 | |
66 | // This can only happen at top: enum decls only "publish" their |
67 | // immediate members. |
68 | if (isa<EnumDecl>(Val: DC)) |
69 | DC = cast<EnumDecl>(Val: DC)->getDeclContext(); |
70 | |
71 | CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(Val: DC); |
72 | while (DeclaringClass->isAnonymousStructOrUnion()) |
73 | DeclaringClass = cast<CXXRecordDecl>(Val: DeclaringClass->getDeclContext()); |
74 | return DeclaringClass; |
75 | } |
76 | |
77 | namespace { |
78 | struct EffectiveContext { |
79 | EffectiveContext() : Inner(nullptr), Dependent(false) {} |
80 | |
81 | explicit EffectiveContext(DeclContext *DC) |
82 | : Inner(DC), |
83 | Dependent(DC->isDependentContext()) { |
84 | |
85 | // An implicit deduction guide is semantically in the context enclosing the |
86 | // class template, but for access purposes behaves like the constructor |
87 | // from which it was produced. |
88 | if (auto *DGD = dyn_cast<CXXDeductionGuideDecl>(Val: DC)) { |
89 | if (DGD->isImplicit()) { |
90 | DC = DGD->getCorrespondingConstructor(); |
91 | if (!DC) { |
92 | // The copy deduction candidate doesn't have a corresponding |
93 | // constructor. |
94 | DC = cast<DeclContext>(Val: DGD->getDeducedTemplate()->getTemplatedDecl()); |
95 | } |
96 | } |
97 | } |
98 | |
99 | // C++11 [class.access.nest]p1: |
100 | // A nested class is a member and as such has the same access |
101 | // rights as any other member. |
102 | // C++11 [class.access]p2: |
103 | // A member of a class can also access all the names to which |
104 | // the class has access. A local class of a member function |
105 | // may access the same names that the member function itself |
106 | // may access. |
107 | // This almost implies that the privileges of nesting are transitive. |
108 | // Technically it says nothing about the local classes of non-member |
109 | // functions (which can gain privileges through friendship), but we |
110 | // take that as an oversight. |
111 | while (true) { |
112 | // We want to add canonical declarations to the EC lists for |
113 | // simplicity of checking, but we need to walk up through the |
114 | // actual current DC chain. Otherwise, something like a local |
115 | // extern or friend which happens to be the canonical |
116 | // declaration will really mess us up. |
117 | |
118 | if (isa<CXXRecordDecl>(Val: DC)) { |
119 | CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: DC); |
120 | Records.push_back(Elt: Record->getCanonicalDecl()); |
121 | DC = Record->getDeclContext(); |
122 | } else if (isa<FunctionDecl>(Val: DC)) { |
123 | FunctionDecl *Function = cast<FunctionDecl>(Val: DC); |
124 | Functions.push_back(Elt: Function->getCanonicalDecl()); |
125 | if (Function->getFriendObjectKind()) |
126 | DC = Function->getLexicalDeclContext(); |
127 | else |
128 | DC = Function->getDeclContext(); |
129 | } else if (DC->isFileContext()) { |
130 | break; |
131 | } else { |
132 | DC = DC->getParent(); |
133 | } |
134 | } |
135 | } |
136 | |
137 | bool isDependent() const { return Dependent; } |
138 | |
139 | bool includesClass(const CXXRecordDecl *R) const { |
140 | R = R->getCanonicalDecl(); |
141 | return llvm::is_contained(Range: Records, Element: R); |
142 | } |
143 | |
144 | /// Retrieves the innermost "useful" context. Can be null if we're |
145 | /// doing access-control without privileges. |
146 | DeclContext *getInnerContext() const { |
147 | return Inner; |
148 | } |
149 | |
150 | typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator; |
151 | |
152 | DeclContext *Inner; |
153 | SmallVector<FunctionDecl*, 4> Functions; |
154 | SmallVector<CXXRecordDecl*, 4> Records; |
155 | bool Dependent; |
156 | }; |
157 | |
158 | /// Like sema::AccessedEntity, but kindly lets us scribble all over |
159 | /// it. |
160 | struct AccessTarget : public AccessedEntity { |
161 | AccessTarget(const AccessedEntity &Entity) |
162 | : AccessedEntity(Entity) { |
163 | initialize(); |
164 | } |
165 | |
166 | AccessTarget(ASTContext &Context, |
167 | MemberNonce _, |
168 | CXXRecordDecl *NamingClass, |
169 | DeclAccessPair FoundDecl, |
170 | QualType BaseObjectType) |
171 | : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass, |
172 | FoundDecl, BaseObjectType) { |
173 | initialize(); |
174 | } |
175 | |
176 | AccessTarget(ASTContext &Context, |
177 | BaseNonce _, |
178 | CXXRecordDecl *BaseClass, |
179 | CXXRecordDecl *DerivedClass, |
180 | AccessSpecifier Access) |
181 | : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass, |
182 | Access) { |
183 | initialize(); |
184 | } |
185 | |
186 | bool isInstanceMember() const { |
187 | return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember()); |
188 | } |
189 | |
190 | bool hasInstanceContext() const { |
191 | return HasInstanceContext; |
192 | } |
193 | |
194 | class SavedInstanceContext { |
195 | public: |
196 | SavedInstanceContext(SavedInstanceContext &&S) |
197 | : Target(S.Target), Has(S.Has) { |
198 | S.Target = nullptr; |
199 | } |
200 | |
201 | // The move assignment operator is defined as deleted pending further |
202 | // motivation. |
203 | SavedInstanceContext &operator=(SavedInstanceContext &&) = delete; |
204 | |
205 | // The copy constrcutor and copy assignment operator is defined as deleted |
206 | // pending further motivation. |
207 | SavedInstanceContext(const SavedInstanceContext &) = delete; |
208 | SavedInstanceContext &operator=(const SavedInstanceContext &) = delete; |
209 | |
210 | ~SavedInstanceContext() { |
211 | if (Target) |
212 | Target->HasInstanceContext = Has; |
213 | } |
214 | |
215 | private: |
216 | friend struct AccessTarget; |
217 | explicit SavedInstanceContext(AccessTarget &Target) |
218 | : Target(&Target), Has(Target.HasInstanceContext) {} |
219 | AccessTarget *Target; |
220 | bool Has; |
221 | }; |
222 | |
223 | SavedInstanceContext saveInstanceContext() { |
224 | return SavedInstanceContext(*this); |
225 | } |
226 | |
227 | void suppressInstanceContext() { |
228 | HasInstanceContext = false; |
229 | } |
230 | |
231 | const CXXRecordDecl *resolveInstanceContext(Sema &S) const { |
232 | assert(HasInstanceContext); |
233 | if (CalculatedInstanceContext) |
234 | return InstanceContext; |
235 | |
236 | CalculatedInstanceContext = true; |
237 | DeclContext *IC = S.computeDeclContext(T: getBaseObjectType()); |
238 | InstanceContext = (IC ? cast<CXXRecordDecl>(Val: IC)->getCanonicalDecl() |
239 | : nullptr); |
240 | return InstanceContext; |
241 | } |
242 | |
243 | const CXXRecordDecl *getDeclaringClass() const { |
244 | return DeclaringClass; |
245 | } |
246 | |
247 | /// The "effective" naming class is the canonical non-anonymous |
248 | /// class containing the actual naming class. |
249 | const CXXRecordDecl *getEffectiveNamingClass() const { |
250 | const CXXRecordDecl *namingClass = getNamingClass(); |
251 | while (namingClass->isAnonymousStructOrUnion()) |
252 | namingClass = cast<CXXRecordDecl>(Val: namingClass->getParent()); |
253 | return namingClass->getCanonicalDecl(); |
254 | } |
255 | |
256 | private: |
257 | void initialize() { |
258 | HasInstanceContext = (isMemberAccess() && |
259 | !getBaseObjectType().isNull() && |
260 | getTargetDecl()->isCXXInstanceMember()); |
261 | CalculatedInstanceContext = false; |
262 | InstanceContext = nullptr; |
263 | |
264 | if (isMemberAccess()) |
265 | DeclaringClass = FindDeclaringClass(D: getTargetDecl()); |
266 | else |
267 | DeclaringClass = getBaseClass(); |
268 | DeclaringClass = DeclaringClass->getCanonicalDecl(); |
269 | } |
270 | |
271 | bool HasInstanceContext : 1; |
272 | mutable bool CalculatedInstanceContext : 1; |
273 | mutable const CXXRecordDecl *InstanceContext; |
274 | const CXXRecordDecl *DeclaringClass; |
275 | }; |
276 | |
277 | } |
278 | |
279 | /// Checks whether one class might instantiate to the other. |
280 | static bool MightInstantiateTo(const CXXRecordDecl *From, |
281 | const CXXRecordDecl *To) { |
282 | // Declaration names are always preserved by instantiation. |
283 | if (From->getDeclName() != To->getDeclName()) |
284 | return false; |
285 | |
286 | const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext(); |
287 | const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext(); |
288 | if (FromDC == ToDC) return true; |
289 | if (FromDC->isFileContext() || ToDC->isFileContext()) return false; |
290 | |
291 | // Be conservative. |
292 | return true; |
293 | } |
294 | |
295 | /// Checks whether one class is derived from another, inclusively. |
296 | /// Properly indicates when it couldn't be determined due to |
297 | /// dependence. |
298 | /// |
299 | /// This should probably be donated to AST or at least Sema. |
300 | static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived, |
301 | const CXXRecordDecl *Target) { |
302 | assert(Derived->getCanonicalDecl() == Derived); |
303 | assert(Target->getCanonicalDecl() == Target); |
304 | |
305 | if (Derived == Target) return AR_accessible; |
306 | |
307 | bool CheckDependent = Derived->isDependentContext(); |
308 | if (CheckDependent && MightInstantiateTo(From: Derived, To: Target)) |
309 | return AR_dependent; |
310 | |
311 | AccessResult OnFailure = AR_inaccessible; |
312 | SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack |
313 | |
314 | while (true) { |
315 | if (Derived->isDependentContext() && !Derived->hasDefinition() && |
316 | !Derived->isLambda()) |
317 | return AR_dependent; |
318 | |
319 | for (const auto &I : Derived->bases()) { |
320 | const CXXRecordDecl *RD; |
321 | |
322 | QualType T = I.getType(); |
323 | if (const RecordType *RT = T->getAs<RecordType>()) { |
324 | RD = cast<CXXRecordDecl>(Val: RT->getDecl()); |
325 | } else if (const InjectedClassNameType *IT |
326 | = T->getAs<InjectedClassNameType>()) { |
327 | RD = IT->getDecl(); |
328 | } else { |
329 | assert(T->isDependentType() && "non-dependent base wasn't a record?" ); |
330 | OnFailure = AR_dependent; |
331 | continue; |
332 | } |
333 | |
334 | RD = RD->getCanonicalDecl(); |
335 | if (RD == Target) return AR_accessible; |
336 | if (CheckDependent && MightInstantiateTo(From: RD, To: Target)) |
337 | OnFailure = AR_dependent; |
338 | |
339 | Queue.push_back(Elt: RD); |
340 | } |
341 | |
342 | if (Queue.empty()) break; |
343 | |
344 | Derived = Queue.pop_back_val(); |
345 | } |
346 | |
347 | return OnFailure; |
348 | } |
349 | |
350 | |
351 | static bool MightInstantiateTo(Sema &S, DeclContext *Context, |
352 | DeclContext *Friend) { |
353 | if (Friend == Context) |
354 | return true; |
355 | |
356 | assert(!Friend->isDependentContext() && |
357 | "can't handle friends with dependent contexts here" ); |
358 | |
359 | if (!Context->isDependentContext()) |
360 | return false; |
361 | |
362 | if (Friend->isFileContext()) |
363 | return false; |
364 | |
365 | // TODO: this is very conservative |
366 | return true; |
367 | } |
368 | |
369 | // Asks whether the type in 'context' can ever instantiate to the type |
370 | // in 'friend'. |
371 | static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) { |
372 | if (Friend == Context) |
373 | return true; |
374 | |
375 | if (!Friend->isDependentType() && !Context->isDependentType()) |
376 | return false; |
377 | |
378 | // TODO: this is very conservative. |
379 | return true; |
380 | } |
381 | |
382 | static bool MightInstantiateTo(Sema &S, |
383 | FunctionDecl *Context, |
384 | FunctionDecl *Friend) { |
385 | if (Context->getDeclName() != Friend->getDeclName()) |
386 | return false; |
387 | |
388 | if (!MightInstantiateTo(S, |
389 | Context: Context->getDeclContext(), |
390 | Friend: Friend->getDeclContext())) |
391 | return false; |
392 | |
393 | CanQual<FunctionProtoType> FriendTy |
394 | = S.Context.getCanonicalType(T: Friend->getType()) |
395 | ->getAs<FunctionProtoType>(); |
396 | CanQual<FunctionProtoType> ContextTy |
397 | = S.Context.getCanonicalType(T: Context->getType()) |
398 | ->getAs<FunctionProtoType>(); |
399 | |
400 | // There isn't any way that I know of to add qualifiers |
401 | // during instantiation. |
402 | if (FriendTy.getQualifiers() != ContextTy.getQualifiers()) |
403 | return false; |
404 | |
405 | if (FriendTy->getNumParams() != ContextTy->getNumParams()) |
406 | return false; |
407 | |
408 | if (!MightInstantiateTo(S, Context: ContextTy->getReturnType(), |
409 | Friend: FriendTy->getReturnType())) |
410 | return false; |
411 | |
412 | for (unsigned I = 0, E = FriendTy->getNumParams(); I != E; ++I) |
413 | if (!MightInstantiateTo(S, Context: ContextTy->getParamType(i: I), |
414 | Friend: FriendTy->getParamType(i: I))) |
415 | return false; |
416 | |
417 | return true; |
418 | } |
419 | |
420 | static bool MightInstantiateTo(Sema &S, |
421 | FunctionTemplateDecl *Context, |
422 | FunctionTemplateDecl *Friend) { |
423 | return MightInstantiateTo(S, |
424 | Context: Context->getTemplatedDecl(), |
425 | Friend: Friend->getTemplatedDecl()); |
426 | } |
427 | |
428 | static AccessResult MatchesFriend(Sema &S, |
429 | const EffectiveContext &EC, |
430 | const CXXRecordDecl *Friend) { |
431 | if (EC.includesClass(R: Friend)) |
432 | return AR_accessible; |
433 | |
434 | if (EC.isDependent()) { |
435 | for (const CXXRecordDecl *Context : EC.Records) { |
436 | if (MightInstantiateTo(From: Context, To: Friend)) |
437 | return AR_dependent; |
438 | } |
439 | } |
440 | |
441 | return AR_inaccessible; |
442 | } |
443 | |
444 | static AccessResult MatchesFriend(Sema &S, |
445 | const EffectiveContext &EC, |
446 | CanQualType Friend) { |
447 | if (const RecordType *RT = Friend->getAs<RecordType>()) |
448 | return MatchesFriend(S, EC, Friend: cast<CXXRecordDecl>(Val: RT->getDecl())); |
449 | |
450 | // TODO: we can do better than this |
451 | if (Friend->isDependentType()) |
452 | return AR_dependent; |
453 | |
454 | return AR_inaccessible; |
455 | } |
456 | |
457 | /// Determines whether the given friend class template matches |
458 | /// anything in the effective context. |
459 | static AccessResult MatchesFriend(Sema &S, |
460 | const EffectiveContext &EC, |
461 | ClassTemplateDecl *Friend) { |
462 | AccessResult OnFailure = AR_inaccessible; |
463 | |
464 | // Check whether the friend is the template of a class in the |
465 | // context chain. |
466 | for (SmallVectorImpl<CXXRecordDecl*>::const_iterator |
467 | I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) { |
468 | CXXRecordDecl *Record = *I; |
469 | |
470 | // Figure out whether the current class has a template: |
471 | ClassTemplateDecl *CTD; |
472 | |
473 | // A specialization of the template... |
474 | if (isa<ClassTemplateSpecializationDecl>(Val: Record)) { |
475 | CTD = cast<ClassTemplateSpecializationDecl>(Val: Record) |
476 | ->getSpecializedTemplate(); |
477 | |
478 | // ... or the template pattern itself. |
479 | } else { |
480 | CTD = Record->getDescribedClassTemplate(); |
481 | if (!CTD) continue; |
482 | } |
483 | |
484 | // It's a match. |
485 | if (Friend == CTD->getCanonicalDecl()) |
486 | return AR_accessible; |
487 | |
488 | // If the context isn't dependent, it can't be a dependent match. |
489 | if (!EC.isDependent()) |
490 | continue; |
491 | |
492 | // If the template names don't match, it can't be a dependent |
493 | // match. |
494 | if (CTD->getDeclName() != Friend->getDeclName()) |
495 | continue; |
496 | |
497 | // If the class's context can't instantiate to the friend's |
498 | // context, it can't be a dependent match. |
499 | if (!MightInstantiateTo(S, Context: CTD->getDeclContext(), |
500 | Friend: Friend->getDeclContext())) |
501 | continue; |
502 | |
503 | // Otherwise, it's a dependent match. |
504 | OnFailure = AR_dependent; |
505 | } |
506 | |
507 | return OnFailure; |
508 | } |
509 | |
510 | /// Determines whether the given friend function matches anything in |
511 | /// the effective context. |
512 | static AccessResult MatchesFriend(Sema &S, |
513 | const EffectiveContext &EC, |
514 | FunctionDecl *Friend) { |
515 | AccessResult OnFailure = AR_inaccessible; |
516 | |
517 | for (SmallVectorImpl<FunctionDecl*>::const_iterator |
518 | I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) { |
519 | if (Friend == *I) |
520 | return AR_accessible; |
521 | |
522 | if (EC.isDependent() && MightInstantiateTo(S, Context: *I, Friend)) |
523 | OnFailure = AR_dependent; |
524 | } |
525 | |
526 | return OnFailure; |
527 | } |
528 | |
529 | /// Determines whether the given friend function template matches |
530 | /// anything in the effective context. |
531 | static AccessResult MatchesFriend(Sema &S, |
532 | const EffectiveContext &EC, |
533 | FunctionTemplateDecl *Friend) { |
534 | if (EC.Functions.empty()) return AR_inaccessible; |
535 | |
536 | AccessResult OnFailure = AR_inaccessible; |
537 | |
538 | for (SmallVectorImpl<FunctionDecl*>::const_iterator |
539 | I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) { |
540 | |
541 | FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate(); |
542 | if (!FTD) |
543 | FTD = (*I)->getDescribedFunctionTemplate(); |
544 | if (!FTD) |
545 | continue; |
546 | |
547 | FTD = FTD->getCanonicalDecl(); |
548 | |
549 | if (Friend == FTD) |
550 | return AR_accessible; |
551 | |
552 | if (EC.isDependent() && MightInstantiateTo(S, Context: FTD, Friend)) |
553 | OnFailure = AR_dependent; |
554 | } |
555 | |
556 | return OnFailure; |
557 | } |
558 | |
559 | /// Determines whether the given friend declaration matches anything |
560 | /// in the effective context. |
561 | static AccessResult MatchesFriend(Sema &S, |
562 | const EffectiveContext &EC, |
563 | FriendDecl *FriendD) { |
564 | // Whitelist accesses if there's an invalid or unsupported friend |
565 | // declaration. |
566 | if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend()) |
567 | return AR_accessible; |
568 | |
569 | if (TypeSourceInfo *T = FriendD->getFriendType()) |
570 | return MatchesFriend(S, EC, Friend: T->getType()->getCanonicalTypeUnqualified()); |
571 | |
572 | NamedDecl *Friend |
573 | = cast<NamedDecl>(Val: FriendD->getFriendDecl()->getCanonicalDecl()); |
574 | |
575 | // FIXME: declarations with dependent or templated scope. |
576 | |
577 | if (isa<ClassTemplateDecl>(Val: Friend)) |
578 | return MatchesFriend(S, EC, Friend: cast<ClassTemplateDecl>(Val: Friend)); |
579 | |
580 | if (isa<FunctionTemplateDecl>(Val: Friend)) |
581 | return MatchesFriend(S, EC, Friend: cast<FunctionTemplateDecl>(Val: Friend)); |
582 | |
583 | if (isa<CXXRecordDecl>(Val: Friend)) |
584 | return MatchesFriend(S, EC, Friend: cast<CXXRecordDecl>(Val: Friend)); |
585 | |
586 | assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind" ); |
587 | return MatchesFriend(S, EC, Friend: cast<FunctionDecl>(Val: Friend)); |
588 | } |
589 | |
590 | static AccessResult GetFriendKind(Sema &S, |
591 | const EffectiveContext &EC, |
592 | const CXXRecordDecl *Class) { |
593 | AccessResult OnFailure = AR_inaccessible; |
594 | |
595 | // Okay, check friends. |
596 | for (auto *Friend : Class->friends()) { |
597 | switch (MatchesFriend(S, EC, FriendD: Friend)) { |
598 | case AR_accessible: |
599 | return AR_accessible; |
600 | |
601 | case AR_inaccessible: |
602 | continue; |
603 | |
604 | case AR_dependent: |
605 | OnFailure = AR_dependent; |
606 | break; |
607 | } |
608 | } |
609 | |
610 | // That's it, give up. |
611 | return OnFailure; |
612 | } |
613 | |
614 | namespace { |
615 | |
616 | /// A helper class for checking for a friend which will grant access |
617 | /// to a protected instance member. |
618 | struct ProtectedFriendContext { |
619 | Sema &S; |
620 | const EffectiveContext &EC; |
621 | const CXXRecordDecl *NamingClass; |
622 | bool CheckDependent; |
623 | bool EverDependent; |
624 | |
625 | /// The path down to the current base class. |
626 | SmallVector<const CXXRecordDecl*, 20> CurPath; |
627 | |
628 | ProtectedFriendContext(Sema &S, const EffectiveContext &EC, |
629 | const CXXRecordDecl *InstanceContext, |
630 | const CXXRecordDecl *NamingClass) |
631 | : S(S), EC(EC), NamingClass(NamingClass), |
632 | CheckDependent(InstanceContext->isDependentContext() || |
633 | NamingClass->isDependentContext()), |
634 | EverDependent(false) {} |
635 | |
636 | /// Check classes in the current path for friendship, starting at |
637 | /// the given index. |
638 | bool checkFriendshipAlongPath(unsigned I) { |
639 | assert(I < CurPath.size()); |
640 | for (unsigned E = CurPath.size(); I != E; ++I) { |
641 | switch (GetFriendKind(S, EC, Class: CurPath[I])) { |
642 | case AR_accessible: return true; |
643 | case AR_inaccessible: continue; |
644 | case AR_dependent: EverDependent = true; continue; |
645 | } |
646 | } |
647 | return false; |
648 | } |
649 | |
650 | /// Perform a search starting at the given class. |
651 | /// |
652 | /// PrivateDepth is the index of the last (least derived) class |
653 | /// along the current path such that a notional public member of |
654 | /// the final class in the path would have access in that class. |
655 | bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) { |
656 | // If we ever reach the naming class, check the current path for |
657 | // friendship. We can also stop recursing because we obviously |
658 | // won't find the naming class there again. |
659 | if (Cur == NamingClass) |
660 | return checkFriendshipAlongPath(I: PrivateDepth); |
661 | |
662 | if (CheckDependent && MightInstantiateTo(From: Cur, To: NamingClass)) |
663 | EverDependent = true; |
664 | |
665 | // Recurse into the base classes. |
666 | for (const auto &I : Cur->bases()) { |
667 | // If this is private inheritance, then a public member of the |
668 | // base will not have any access in classes derived from Cur. |
669 | unsigned BasePrivateDepth = PrivateDepth; |
670 | if (I.getAccessSpecifier() == AS_private) |
671 | BasePrivateDepth = CurPath.size() - 1; |
672 | |
673 | const CXXRecordDecl *RD; |
674 | |
675 | QualType T = I.getType(); |
676 | if (const RecordType *RT = T->getAs<RecordType>()) { |
677 | RD = cast<CXXRecordDecl>(Val: RT->getDecl()); |
678 | } else if (const InjectedClassNameType *IT |
679 | = T->getAs<InjectedClassNameType>()) { |
680 | RD = IT->getDecl(); |
681 | } else { |
682 | assert(T->isDependentType() && "non-dependent base wasn't a record?" ); |
683 | EverDependent = true; |
684 | continue; |
685 | } |
686 | |
687 | // Recurse. We don't need to clean up if this returns true. |
688 | CurPath.push_back(Elt: RD); |
689 | if (findFriendship(Cur: RD->getCanonicalDecl(), PrivateDepth: BasePrivateDepth)) |
690 | return true; |
691 | CurPath.pop_back(); |
692 | } |
693 | |
694 | return false; |
695 | } |
696 | |
697 | bool findFriendship(const CXXRecordDecl *Cur) { |
698 | assert(CurPath.empty()); |
699 | CurPath.push_back(Elt: Cur); |
700 | return findFriendship(Cur, PrivateDepth: 0); |
701 | } |
702 | }; |
703 | } |
704 | |
705 | /// Search for a class P that EC is a friend of, under the constraint |
706 | /// InstanceContext <= P |
707 | /// if InstanceContext exists, or else |
708 | /// NamingClass <= P |
709 | /// and with the additional restriction that a protected member of |
710 | /// NamingClass would have some natural access in P, which implicitly |
711 | /// imposes the constraint that P <= NamingClass. |
712 | /// |
713 | /// This isn't quite the condition laid out in the standard. |
714 | /// Instead of saying that a notional protected member of NamingClass |
715 | /// would have to have some natural access in P, it says the actual |
716 | /// target has to have some natural access in P, which opens up the |
717 | /// possibility that the target (which is not necessarily a member |
718 | /// of NamingClass) might be more accessible along some path not |
719 | /// passing through it. That's really a bad idea, though, because it |
720 | /// introduces two problems: |
721 | /// - Most importantly, it breaks encapsulation because you can |
722 | /// access a forbidden base class's members by directly subclassing |
723 | /// it elsewhere. |
724 | /// - It also makes access substantially harder to compute because it |
725 | /// breaks the hill-climbing algorithm: knowing that the target is |
726 | /// accessible in some base class would no longer let you change |
727 | /// the question solely to whether the base class is accessible, |
728 | /// because the original target might have been more accessible |
729 | /// because of crazy subclassing. |
730 | /// So we don't implement that. |
731 | static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC, |
732 | const CXXRecordDecl *InstanceContext, |
733 | const CXXRecordDecl *NamingClass) { |
734 | assert(InstanceContext == nullptr || |
735 | InstanceContext->getCanonicalDecl() == InstanceContext); |
736 | assert(NamingClass->getCanonicalDecl() == NamingClass); |
737 | |
738 | // If we don't have an instance context, our constraints give us |
739 | // that NamingClass <= P <= NamingClass, i.e. P == NamingClass. |
740 | // This is just the usual friendship check. |
741 | if (!InstanceContext) return GetFriendKind(S, EC, Class: NamingClass); |
742 | |
743 | ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass); |
744 | if (PRC.findFriendship(Cur: InstanceContext)) return AR_accessible; |
745 | if (PRC.EverDependent) return AR_dependent; |
746 | return AR_inaccessible; |
747 | } |
748 | |
749 | static AccessResult HasAccess(Sema &S, |
750 | const EffectiveContext &EC, |
751 | const CXXRecordDecl *NamingClass, |
752 | AccessSpecifier Access, |
753 | const AccessTarget &Target) { |
754 | assert(NamingClass->getCanonicalDecl() == NamingClass && |
755 | "declaration should be canonicalized before being passed here" ); |
756 | |
757 | if (Access == AS_public) return AR_accessible; |
758 | assert(Access == AS_private || Access == AS_protected); |
759 | |
760 | AccessResult OnFailure = AR_inaccessible; |
761 | |
762 | for (EffectiveContext::record_iterator |
763 | I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) { |
764 | // All the declarations in EC have been canonicalized, so pointer |
765 | // equality from this point on will work fine. |
766 | const CXXRecordDecl *ECRecord = *I; |
767 | |
768 | // [B2] and [M2] |
769 | if (Access == AS_private) { |
770 | if (ECRecord == NamingClass) |
771 | return AR_accessible; |
772 | |
773 | if (EC.isDependent() && MightInstantiateTo(From: ECRecord, To: NamingClass)) |
774 | OnFailure = AR_dependent; |
775 | |
776 | // [B3] and [M3] |
777 | } else { |
778 | assert(Access == AS_protected); |
779 | switch (IsDerivedFromInclusive(Derived: ECRecord, Target: NamingClass)) { |
780 | case AR_accessible: break; |
781 | case AR_inaccessible: continue; |
782 | case AR_dependent: OnFailure = AR_dependent; continue; |
783 | } |
784 | |
785 | // C++ [class.protected]p1: |
786 | // An additional access check beyond those described earlier in |
787 | // [class.access] is applied when a non-static data member or |
788 | // non-static member function is a protected member of its naming |
789 | // class. As described earlier, access to a protected member is |
790 | // granted because the reference occurs in a friend or member of |
791 | // some class C. If the access is to form a pointer to member, |
792 | // the nested-name-specifier shall name C or a class derived from |
793 | // C. All other accesses involve a (possibly implicit) object |
794 | // expression. In this case, the class of the object expression |
795 | // shall be C or a class derived from C. |
796 | // |
797 | // We interpret this as a restriction on [M3]. |
798 | |
799 | // In this part of the code, 'C' is just our context class ECRecord. |
800 | |
801 | // These rules are different if we don't have an instance context. |
802 | if (!Target.hasInstanceContext()) { |
803 | // If it's not an instance member, these restrictions don't apply. |
804 | if (!Target.isInstanceMember()) return AR_accessible; |
805 | |
806 | // If it's an instance member, use the pointer-to-member rule |
807 | // that the naming class has to be derived from the effective |
808 | // context. |
809 | |
810 | // Emulate a MSVC bug where the creation of pointer-to-member |
811 | // to protected member of base class is allowed but only from |
812 | // static member functions. |
813 | if (S.getLangOpts().MSVCCompat && !EC.Functions.empty()) |
814 | if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(Val: EC.Functions.front())) |
815 | if (MD->isStatic()) return AR_accessible; |
816 | |
817 | // Despite the standard's confident wording, there is a case |
818 | // where you can have an instance member that's neither in a |
819 | // pointer-to-member expression nor in a member access: when |
820 | // it names a field in an unevaluated context that can't be an |
821 | // implicit member. Pending clarification, we just apply the |
822 | // same naming-class restriction here. |
823 | // FIXME: we're probably not correctly adding the |
824 | // protected-member restriction when we retroactively convert |
825 | // an expression to being evaluated. |
826 | |
827 | // We know that ECRecord derives from NamingClass. The |
828 | // restriction says to check whether NamingClass derives from |
829 | // ECRecord, but that's not really necessary: two distinct |
830 | // classes can't be recursively derived from each other. So |
831 | // along this path, we just need to check whether the classes |
832 | // are equal. |
833 | if (NamingClass == ECRecord) return AR_accessible; |
834 | |
835 | // Otherwise, this context class tells us nothing; on to the next. |
836 | continue; |
837 | } |
838 | |
839 | assert(Target.isInstanceMember()); |
840 | |
841 | const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S); |
842 | if (!InstanceContext) { |
843 | OnFailure = AR_dependent; |
844 | continue; |
845 | } |
846 | |
847 | switch (IsDerivedFromInclusive(Derived: InstanceContext, Target: ECRecord)) { |
848 | case AR_accessible: return AR_accessible; |
849 | case AR_inaccessible: continue; |
850 | case AR_dependent: OnFailure = AR_dependent; continue; |
851 | } |
852 | } |
853 | } |
854 | |
855 | // [M3] and [B3] say that, if the target is protected in N, we grant |
856 | // access if the access occurs in a friend or member of some class P |
857 | // that's a subclass of N and where the target has some natural |
858 | // access in P. The 'member' aspect is easy to handle because P |
859 | // would necessarily be one of the effective-context records, and we |
860 | // address that above. The 'friend' aspect is completely ridiculous |
861 | // to implement because there are no restrictions at all on P |
862 | // *unless* the [class.protected] restriction applies. If it does, |
863 | // however, we should ignore whether the naming class is a friend, |
864 | // and instead rely on whether any potential P is a friend. |
865 | if (Access == AS_protected && Target.isInstanceMember()) { |
866 | // Compute the instance context if possible. |
867 | const CXXRecordDecl *InstanceContext = nullptr; |
868 | if (Target.hasInstanceContext()) { |
869 | InstanceContext = Target.resolveInstanceContext(S); |
870 | if (!InstanceContext) return AR_dependent; |
871 | } |
872 | |
873 | switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) { |
874 | case AR_accessible: return AR_accessible; |
875 | case AR_inaccessible: return OnFailure; |
876 | case AR_dependent: return AR_dependent; |
877 | } |
878 | llvm_unreachable("impossible friendship kind" ); |
879 | } |
880 | |
881 | switch (GetFriendKind(S, EC, Class: NamingClass)) { |
882 | case AR_accessible: return AR_accessible; |
883 | case AR_inaccessible: return OnFailure; |
884 | case AR_dependent: return AR_dependent; |
885 | } |
886 | |
887 | // Silence bogus warnings |
888 | llvm_unreachable("impossible friendship kind" ); |
889 | } |
890 | |
891 | /// Finds the best path from the naming class to the declaring class, |
892 | /// taking friend declarations into account. |
893 | /// |
894 | /// C++0x [class.access.base]p5: |
895 | /// A member m is accessible at the point R when named in class N if |
896 | /// [M1] m as a member of N is public, or |
897 | /// [M2] m as a member of N is private, and R occurs in a member or |
898 | /// friend of class N, or |
899 | /// [M3] m as a member of N is protected, and R occurs in a member or |
900 | /// friend of class N, or in a member or friend of a class P |
901 | /// derived from N, where m as a member of P is public, private, |
902 | /// or protected, or |
903 | /// [M4] there exists a base class B of N that is accessible at R, and |
904 | /// m is accessible at R when named in class B. |
905 | /// |
906 | /// C++0x [class.access.base]p4: |
907 | /// A base class B of N is accessible at R, if |
908 | /// [B1] an invented public member of B would be a public member of N, or |
909 | /// [B2] R occurs in a member or friend of class N, and an invented public |
910 | /// member of B would be a private or protected member of N, or |
911 | /// [B3] R occurs in a member or friend of a class P derived from N, and an |
912 | /// invented public member of B would be a private or protected member |
913 | /// of P, or |
914 | /// [B4] there exists a class S such that B is a base class of S accessible |
915 | /// at R and S is a base class of N accessible at R. |
916 | /// |
917 | /// Along a single inheritance path we can restate both of these |
918 | /// iteratively: |
919 | /// |
920 | /// First, we note that M1-4 are equivalent to B1-4 if the member is |
921 | /// treated as a notional base of its declaring class with inheritance |
922 | /// access equivalent to the member's access. Therefore we need only |
923 | /// ask whether a class B is accessible from a class N in context R. |
924 | /// |
925 | /// Let B_1 .. B_n be the inheritance path in question (i.e. where |
926 | /// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of |
927 | /// B_i). For i in 1..n, we will calculate ACAB(i), the access to the |
928 | /// closest accessible base in the path: |
929 | /// Access(a, b) = (* access on the base specifier from a to b *) |
930 | /// Merge(a, forbidden) = forbidden |
931 | /// Merge(a, private) = forbidden |
932 | /// Merge(a, b) = min(a,b) |
933 | /// Accessible(c, forbidden) = false |
934 | /// Accessible(c, private) = (R is c) || IsFriend(c, R) |
935 | /// Accessible(c, protected) = (R derived from c) || IsFriend(c, R) |
936 | /// Accessible(c, public) = true |
937 | /// ACAB(n) = public |
938 | /// ACAB(i) = |
939 | /// let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in |
940 | /// if Accessible(B_i, AccessToBase) then public else AccessToBase |
941 | /// |
942 | /// B is an accessible base of N at R iff ACAB(1) = public. |
943 | /// |
944 | /// \param FinalAccess the access of the "final step", or AS_public if |
945 | /// there is no final step. |
946 | /// \return null if friendship is dependent |
947 | static CXXBasePath *FindBestPath(Sema &S, |
948 | const EffectiveContext &EC, |
949 | AccessTarget &Target, |
950 | AccessSpecifier FinalAccess, |
951 | CXXBasePaths &Paths) { |
952 | // Derive the paths to the desired base. |
953 | const CXXRecordDecl *Derived = Target.getNamingClass(); |
954 | const CXXRecordDecl *Base = Target.getDeclaringClass(); |
955 | |
956 | // FIXME: fail correctly when there are dependent paths. |
957 | bool isDerived = Derived->isDerivedFrom(Base: const_cast<CXXRecordDecl*>(Base), |
958 | Paths); |
959 | assert(isDerived && "derived class not actually derived from base" ); |
960 | (void) isDerived; |
961 | |
962 | CXXBasePath *BestPath = nullptr; |
963 | |
964 | assert(FinalAccess != AS_none && "forbidden access after declaring class" ); |
965 | |
966 | bool AnyDependent = false; |
967 | |
968 | // Derive the friend-modified access along each path. |
969 | for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end(); |
970 | PI != PE; ++PI) { |
971 | AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext(); |
972 | |
973 | // Walk through the path backwards. |
974 | AccessSpecifier PathAccess = FinalAccess; |
975 | CXXBasePath::iterator I = PI->end(), E = PI->begin(); |
976 | while (I != E) { |
977 | --I; |
978 | |
979 | assert(PathAccess != AS_none); |
980 | |
981 | // If the declaration is a private member of a base class, there |
982 | // is no level of friendship in derived classes that can make it |
983 | // accessible. |
984 | if (PathAccess == AS_private) { |
985 | PathAccess = AS_none; |
986 | break; |
987 | } |
988 | |
989 | const CXXRecordDecl *NC = I->Class->getCanonicalDecl(); |
990 | |
991 | AccessSpecifier BaseAccess = I->Base->getAccessSpecifier(); |
992 | PathAccess = std::max(a: PathAccess, b: BaseAccess); |
993 | |
994 | switch (HasAccess(S, EC, NamingClass: NC, Access: PathAccess, Target)) { |
995 | case AR_inaccessible: break; |
996 | case AR_accessible: |
997 | PathAccess = AS_public; |
998 | |
999 | // Future tests are not against members and so do not have |
1000 | // instance context. |
1001 | Target.suppressInstanceContext(); |
1002 | break; |
1003 | case AR_dependent: |
1004 | AnyDependent = true; |
1005 | goto Next; |
1006 | } |
1007 | } |
1008 | |
1009 | // Note that we modify the path's Access field to the |
1010 | // friend-modified access. |
1011 | if (BestPath == nullptr || PathAccess < BestPath->Access) { |
1012 | BestPath = &*PI; |
1013 | BestPath->Access = PathAccess; |
1014 | |
1015 | // Short-circuit if we found a public path. |
1016 | if (BestPath->Access == AS_public) |
1017 | return BestPath; |
1018 | } |
1019 | |
1020 | Next: ; |
1021 | } |
1022 | |
1023 | assert((!BestPath || BestPath->Access != AS_public) && |
1024 | "fell out of loop with public path" ); |
1025 | |
1026 | // We didn't find a public path, but at least one path was subject |
1027 | // to dependent friendship, so delay the check. |
1028 | if (AnyDependent) |
1029 | return nullptr; |
1030 | |
1031 | return BestPath; |
1032 | } |
1033 | |
1034 | /// Given that an entity has protected natural access, check whether |
1035 | /// access might be denied because of the protected member access |
1036 | /// restriction. |
1037 | /// |
1038 | /// \return true if a note was emitted |
1039 | static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC, |
1040 | AccessTarget &Target) { |
1041 | // Only applies to instance accesses. |
1042 | if (!Target.isInstanceMember()) |
1043 | return false; |
1044 | |
1045 | assert(Target.isMemberAccess()); |
1046 | |
1047 | const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass(); |
1048 | |
1049 | for (EffectiveContext::record_iterator |
1050 | I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) { |
1051 | const CXXRecordDecl *ECRecord = *I; |
1052 | switch (IsDerivedFromInclusive(Derived: ECRecord, Target: NamingClass)) { |
1053 | case AR_accessible: break; |
1054 | case AR_inaccessible: continue; |
1055 | case AR_dependent: continue; |
1056 | } |
1057 | |
1058 | // The effective context is a subclass of the declaring class. |
1059 | // Check whether the [class.protected] restriction is limiting |
1060 | // access. |
1061 | |
1062 | // To get this exactly right, this might need to be checked more |
1063 | // holistically; it's not necessarily the case that gaining |
1064 | // access here would grant us access overall. |
1065 | |
1066 | NamedDecl *D = Target.getTargetDecl(); |
1067 | |
1068 | // If we don't have an instance context, [class.protected] says the |
1069 | // naming class has to equal the context class. |
1070 | if (!Target.hasInstanceContext()) { |
1071 | // If it does, the restriction doesn't apply. |
1072 | if (NamingClass == ECRecord) continue; |
1073 | |
1074 | // TODO: it would be great to have a fixit here, since this is |
1075 | // such an obvious error. |
1076 | S.Diag(Loc: D->getLocation(), DiagID: diag::note_access_protected_restricted_noobject) |
1077 | << S.Context.getTypeDeclType(Decl: ECRecord); |
1078 | return true; |
1079 | } |
1080 | |
1081 | const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S); |
1082 | assert(InstanceContext && "diagnosing dependent access" ); |
1083 | |
1084 | switch (IsDerivedFromInclusive(Derived: InstanceContext, Target: ECRecord)) { |
1085 | case AR_accessible: continue; |
1086 | case AR_dependent: continue; |
1087 | case AR_inaccessible: |
1088 | break; |
1089 | } |
1090 | |
1091 | // Okay, the restriction seems to be what's limiting us. |
1092 | |
1093 | // Use a special diagnostic for constructors and destructors. |
1094 | if (isa<CXXConstructorDecl>(Val: D) || isa<CXXDestructorDecl>(Val: D) || |
1095 | (isa<FunctionTemplateDecl>(Val: D) && |
1096 | isa<CXXConstructorDecl>( |
1097 | Val: cast<FunctionTemplateDecl>(Val: D)->getTemplatedDecl()))) { |
1098 | return S.Diag(Loc: D->getLocation(), |
1099 | DiagID: diag::note_access_protected_restricted_ctordtor) |
1100 | << isa<CXXDestructorDecl>(Val: D->getAsFunction()); |
1101 | } |
1102 | |
1103 | // Otherwise, use the generic diagnostic. |
1104 | return S.Diag(Loc: D->getLocation(), |
1105 | DiagID: diag::note_access_protected_restricted_object) |
1106 | << S.Context.getTypeDeclType(Decl: ECRecord); |
1107 | } |
1108 | |
1109 | return false; |
1110 | } |
1111 | |
1112 | /// We are unable to access a given declaration due to its direct |
1113 | /// access control; diagnose that. |
1114 | static void diagnoseBadDirectAccess(Sema &S, |
1115 | const EffectiveContext &EC, |
1116 | AccessTarget &entity) { |
1117 | assert(entity.isMemberAccess()); |
1118 | NamedDecl *D = entity.getTargetDecl(); |
1119 | |
1120 | if (D->getAccess() == AS_protected && |
1121 | TryDiagnoseProtectedAccess(S, EC, Target&: entity)) |
1122 | return; |
1123 | |
1124 | // Find an original declaration. |
1125 | while (D->isOutOfLine()) { |
1126 | NamedDecl *PrevDecl = nullptr; |
1127 | if (VarDecl *VD = dyn_cast<VarDecl>(Val: D)) |
1128 | PrevDecl = VD->getPreviousDecl(); |
1129 | else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) |
1130 | PrevDecl = FD->getPreviousDecl(); |
1131 | else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(Val: D)) |
1132 | PrevDecl = TND->getPreviousDecl(); |
1133 | else if (TagDecl *TD = dyn_cast<TagDecl>(Val: D)) { |
1134 | if (isa<RecordDecl>(Val: D) && cast<RecordDecl>(Val: D)->isInjectedClassName()) |
1135 | break; |
1136 | PrevDecl = TD->getPreviousDecl(); |
1137 | } |
1138 | if (!PrevDecl) break; |
1139 | D = PrevDecl; |
1140 | } |
1141 | |
1142 | CXXRecordDecl *DeclaringClass = FindDeclaringClass(D); |
1143 | Decl *ImmediateChild; |
1144 | if (D->getDeclContext() == DeclaringClass) |
1145 | ImmediateChild = D; |
1146 | else { |
1147 | DeclContext *DC = D->getDeclContext(); |
1148 | while (DC->getParent() != DeclaringClass) |
1149 | DC = DC->getParent(); |
1150 | ImmediateChild = cast<Decl>(Val: DC); |
1151 | } |
1152 | |
1153 | // Check whether there's an AccessSpecDecl preceding this in the |
1154 | // chain of the DeclContext. |
1155 | bool isImplicit = true; |
1156 | for (const auto *I : DeclaringClass->decls()) { |
1157 | if (I == ImmediateChild) break; |
1158 | if (isa<AccessSpecDecl>(Val: I)) { |
1159 | isImplicit = false; |
1160 | break; |
1161 | } |
1162 | } |
1163 | |
1164 | S.Diag(Loc: D->getLocation(), DiagID: diag::note_access_natural) |
1165 | << (unsigned) (D->getAccess() == AS_protected) |
1166 | << isImplicit; |
1167 | } |
1168 | |
1169 | /// Diagnose the path which caused the given declaration or base class |
1170 | /// to become inaccessible. |
1171 | static void DiagnoseAccessPath(Sema &S, |
1172 | const EffectiveContext &EC, |
1173 | AccessTarget &entity) { |
1174 | // Save the instance context to preserve invariants. |
1175 | AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext(); |
1176 | |
1177 | // This basically repeats the main algorithm but keeps some more |
1178 | // information. |
1179 | |
1180 | // The natural access so far. |
1181 | AccessSpecifier accessSoFar = AS_public; |
1182 | |
1183 | // Check whether we have special rights to the declaring class. |
1184 | if (entity.isMemberAccess()) { |
1185 | NamedDecl *D = entity.getTargetDecl(); |
1186 | accessSoFar = D->getAccess(); |
1187 | const CXXRecordDecl *declaringClass = entity.getDeclaringClass(); |
1188 | |
1189 | switch (HasAccess(S, EC, NamingClass: declaringClass, Access: accessSoFar, Target: entity)) { |
1190 | // If the declaration is accessible when named in its declaring |
1191 | // class, then we must be constrained by the path. |
1192 | case AR_accessible: |
1193 | accessSoFar = AS_public; |
1194 | entity.suppressInstanceContext(); |
1195 | break; |
1196 | |
1197 | case AR_inaccessible: |
1198 | if (accessSoFar == AS_private || |
1199 | declaringClass == entity.getEffectiveNamingClass()) |
1200 | return diagnoseBadDirectAccess(S, EC, entity); |
1201 | break; |
1202 | |
1203 | case AR_dependent: |
1204 | llvm_unreachable("cannot diagnose dependent access" ); |
1205 | } |
1206 | } |
1207 | |
1208 | CXXBasePaths paths; |
1209 | CXXBasePath &path = *FindBestPath(S, EC, Target&: entity, FinalAccess: accessSoFar, Paths&: paths); |
1210 | assert(path.Access != AS_public); |
1211 | |
1212 | CXXBasePath::iterator i = path.end(), e = path.begin(); |
1213 | CXXBasePath::iterator constrainingBase = i; |
1214 | while (i != e) { |
1215 | --i; |
1216 | |
1217 | assert(accessSoFar != AS_none && accessSoFar != AS_private); |
1218 | |
1219 | // Is the entity accessible when named in the deriving class, as |
1220 | // modified by the base specifier? |
1221 | const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl(); |
1222 | const CXXBaseSpecifier *base = i->Base; |
1223 | |
1224 | // If the access to this base is worse than the access we have to |
1225 | // the declaration, remember it. |
1226 | AccessSpecifier baseAccess = base->getAccessSpecifier(); |
1227 | if (baseAccess > accessSoFar) { |
1228 | constrainingBase = i; |
1229 | accessSoFar = baseAccess; |
1230 | } |
1231 | |
1232 | switch (HasAccess(S, EC, NamingClass: derivingClass, Access: accessSoFar, Target: entity)) { |
1233 | case AR_inaccessible: break; |
1234 | case AR_accessible: |
1235 | accessSoFar = AS_public; |
1236 | entity.suppressInstanceContext(); |
1237 | constrainingBase = nullptr; |
1238 | break; |
1239 | case AR_dependent: |
1240 | llvm_unreachable("cannot diagnose dependent access" ); |
1241 | } |
1242 | |
1243 | // If this was private inheritance, but we don't have access to |
1244 | // the deriving class, we're done. |
1245 | if (accessSoFar == AS_private) { |
1246 | assert(baseAccess == AS_private); |
1247 | assert(constrainingBase == i); |
1248 | break; |
1249 | } |
1250 | } |
1251 | |
1252 | // If we don't have a constraining base, the access failure must be |
1253 | // due to the original declaration. |
1254 | if (constrainingBase == path.end()) |
1255 | return diagnoseBadDirectAccess(S, EC, entity); |
1256 | |
1257 | // We're constrained by inheritance, but we want to say |
1258 | // "declared private here" if we're diagnosing a hierarchy |
1259 | // conversion and this is the final step. |
1260 | unsigned diagnostic; |
1261 | if (entity.isMemberAccess() || |
1262 | constrainingBase + 1 != path.end()) { |
1263 | diagnostic = diag::note_access_constrained_by_path; |
1264 | } else { |
1265 | diagnostic = diag::note_access_natural; |
1266 | } |
1267 | |
1268 | const CXXBaseSpecifier *base = constrainingBase->Base; |
1269 | |
1270 | S.Diag(Loc: base->getSourceRange().getBegin(), DiagID: diagnostic) |
1271 | << base->getSourceRange() |
1272 | << (base->getAccessSpecifier() == AS_protected) |
1273 | << (base->getAccessSpecifierAsWritten() == AS_none); |
1274 | |
1275 | if (entity.isMemberAccess()) |
1276 | S.Diag(Loc: entity.getTargetDecl()->getLocation(), |
1277 | DiagID: diag::note_member_declared_at); |
1278 | } |
1279 | |
1280 | static void DiagnoseBadAccess(Sema &S, SourceLocation Loc, |
1281 | const EffectiveContext &EC, |
1282 | AccessTarget &Entity) { |
1283 | const CXXRecordDecl *NamingClass = Entity.getNamingClass(); |
1284 | const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass(); |
1285 | NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : nullptr); |
1286 | |
1287 | S.Diag(Loc, PD: Entity.getDiag()) |
1288 | << (Entity.getAccess() == AS_protected) |
1289 | << (D ? D->getDeclName() : DeclarationName()) |
1290 | << S.Context.getTypeDeclType(Decl: NamingClass) |
1291 | << S.Context.getTypeDeclType(Decl: DeclaringClass); |
1292 | DiagnoseAccessPath(S, EC, entity&: Entity); |
1293 | } |
1294 | |
1295 | /// MSVC has a bug where if during an using declaration name lookup, |
1296 | /// the declaration found is unaccessible (private) and that declaration |
1297 | /// was bring into scope via another using declaration whose target |
1298 | /// declaration is accessible (public) then no error is generated. |
1299 | /// Example: |
1300 | /// class A { |
1301 | /// public: |
1302 | /// int f(); |
1303 | /// }; |
1304 | /// class B : public A { |
1305 | /// private: |
1306 | /// using A::f; |
1307 | /// }; |
1308 | /// class C : public B { |
1309 | /// private: |
1310 | /// using B::f; |
1311 | /// }; |
1312 | /// |
1313 | /// Here, B::f is private so this should fail in Standard C++, but |
1314 | /// because B::f refers to A::f which is public MSVC accepts it. |
1315 | static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S, |
1316 | SourceLocation AccessLoc, |
1317 | AccessTarget &Entity) { |
1318 | if (UsingShadowDecl *Shadow = |
1319 | dyn_cast<UsingShadowDecl>(Val: Entity.getTargetDecl())) |
1320 | if (UsingDecl *UD = dyn_cast<UsingDecl>(Val: Shadow->getIntroducer())) { |
1321 | const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl(); |
1322 | if (Entity.getTargetDecl()->getAccess() == AS_private && |
1323 | (OrigDecl->getAccess() == AS_public || |
1324 | OrigDecl->getAccess() == AS_protected)) { |
1325 | S.Diag(Loc: AccessLoc, DiagID: diag::ext_ms_using_declaration_inaccessible) |
1326 | << UD->getQualifiedNameAsString() |
1327 | << OrigDecl->getQualifiedNameAsString(); |
1328 | return true; |
1329 | } |
1330 | } |
1331 | return false; |
1332 | } |
1333 | |
1334 | /// Determines whether the accessed entity is accessible. Public members |
1335 | /// have been weeded out by this point. |
1336 | static AccessResult IsAccessible(Sema &S, |
1337 | const EffectiveContext &EC, |
1338 | AccessTarget &Entity) { |
1339 | // Determine the actual naming class. |
1340 | const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass(); |
1341 | |
1342 | AccessSpecifier UnprivilegedAccess = Entity.getAccess(); |
1343 | assert(UnprivilegedAccess != AS_public && "public access not weeded out" ); |
1344 | |
1345 | // Before we try to recalculate access paths, try to white-list |
1346 | // accesses which just trade in on the final step, i.e. accesses |
1347 | // which don't require [M4] or [B4]. These are by far the most |
1348 | // common forms of privileged access. |
1349 | if (UnprivilegedAccess != AS_none) { |
1350 | switch (HasAccess(S, EC, NamingClass, Access: UnprivilegedAccess, Target: Entity)) { |
1351 | case AR_dependent: |
1352 | // This is actually an interesting policy decision. We don't |
1353 | // *have* to delay immediately here: we can do the full access |
1354 | // calculation in the hope that friendship on some intermediate |
1355 | // class will make the declaration accessible non-dependently. |
1356 | // But that's not cheap, and odds are very good (note: assertion |
1357 | // made without data) that the friend declaration will determine |
1358 | // access. |
1359 | return AR_dependent; |
1360 | |
1361 | case AR_accessible: return AR_accessible; |
1362 | case AR_inaccessible: break; |
1363 | } |
1364 | } |
1365 | |
1366 | AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext(); |
1367 | |
1368 | // We lower member accesses to base accesses by pretending that the |
1369 | // member is a base class of its declaring class. |
1370 | AccessSpecifier FinalAccess; |
1371 | |
1372 | if (Entity.isMemberAccess()) { |
1373 | // Determine if the declaration is accessible from EC when named |
1374 | // in its declaring class. |
1375 | NamedDecl *Target = Entity.getTargetDecl(); |
1376 | const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass(); |
1377 | |
1378 | FinalAccess = Target->getAccess(); |
1379 | switch (HasAccess(S, EC, NamingClass: DeclaringClass, Access: FinalAccess, Target: Entity)) { |
1380 | case AR_accessible: |
1381 | // Target is accessible at EC when named in its declaring class. |
1382 | // We can now hill-climb and simply check whether the declaring |
1383 | // class is accessible as a base of the naming class. This is |
1384 | // equivalent to checking the access of a notional public |
1385 | // member with no instance context. |
1386 | FinalAccess = AS_public; |
1387 | Entity.suppressInstanceContext(); |
1388 | break; |
1389 | case AR_inaccessible: break; |
1390 | case AR_dependent: return AR_dependent; // see above |
1391 | } |
1392 | |
1393 | if (DeclaringClass == NamingClass) |
1394 | return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible); |
1395 | } else { |
1396 | FinalAccess = AS_public; |
1397 | } |
1398 | |
1399 | assert(Entity.getDeclaringClass() != NamingClass); |
1400 | |
1401 | // Append the declaration's access if applicable. |
1402 | CXXBasePaths Paths; |
1403 | CXXBasePath *Path = FindBestPath(S, EC, Target&: Entity, FinalAccess, Paths); |
1404 | if (!Path) |
1405 | return AR_dependent; |
1406 | |
1407 | assert(Path->Access <= UnprivilegedAccess && |
1408 | "access along best path worse than direct?" ); |
1409 | if (Path->Access == AS_public) |
1410 | return AR_accessible; |
1411 | return AR_inaccessible; |
1412 | } |
1413 | |
1414 | static void DelayDependentAccess(Sema &S, |
1415 | const EffectiveContext &EC, |
1416 | SourceLocation Loc, |
1417 | const AccessTarget &Entity) { |
1418 | assert(EC.isDependent() && "delaying non-dependent access" ); |
1419 | DeclContext *DC = EC.getInnerContext(); |
1420 | assert(DC->isDependentContext() && "delaying non-dependent access" ); |
1421 | DependentDiagnostic::Create(Context&: S.Context, Parent: DC, : DependentDiagnostic::Access, |
1422 | Loc, |
1423 | IsMemberAccess: Entity.isMemberAccess(), |
1424 | AS: Entity.getAccess(), |
1425 | TargetDecl: Entity.getTargetDecl(), |
1426 | NamingClass: Entity.getNamingClass(), |
1427 | BaseObjectType: Entity.getBaseObjectType(), |
1428 | PDiag: Entity.getDiag()); |
1429 | } |
1430 | |
1431 | /// Checks access to an entity from the given effective context. |
1432 | static AccessResult CheckEffectiveAccess(Sema &S, |
1433 | const EffectiveContext &EC, |
1434 | SourceLocation Loc, |
1435 | AccessTarget &Entity) { |
1436 | assert(Entity.getAccess() != AS_public && "called for public access!" ); |
1437 | |
1438 | switch (IsAccessible(S, EC, Entity)) { |
1439 | case AR_dependent: |
1440 | DelayDependentAccess(S, EC, Loc, Entity); |
1441 | return AR_dependent; |
1442 | |
1443 | case AR_inaccessible: |
1444 | if (S.getLangOpts().MSVCCompat && |
1445 | IsMicrosoftUsingDeclarationAccessBug(S, AccessLoc: Loc, Entity)) |
1446 | return AR_accessible; |
1447 | if (!Entity.isQuiet()) |
1448 | DiagnoseBadAccess(S, Loc, EC, Entity); |
1449 | return AR_inaccessible; |
1450 | |
1451 | case AR_accessible: |
1452 | return AR_accessible; |
1453 | } |
1454 | |
1455 | // silence unnecessary warning |
1456 | llvm_unreachable("invalid access result" ); |
1457 | } |
1458 | |
1459 | static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc, |
1460 | AccessTarget &Entity) { |
1461 | // If the access path is public, it's accessible everywhere. |
1462 | if (Entity.getAccess() == AS_public) |
1463 | return Sema::AR_accessible; |
1464 | |
1465 | // If we're currently parsing a declaration, we may need to delay |
1466 | // access control checking, because our effective context might be |
1467 | // different based on what the declaration comes out as. |
1468 | // |
1469 | // For example, we might be parsing a declaration with a scope |
1470 | // specifier, like this: |
1471 | // A::private_type A::foo() { ... } |
1472 | // |
1473 | // friend declaration should not be delayed because it may lead to incorrect |
1474 | // redeclaration chain, such as: |
1475 | // class D { |
1476 | // class E{ |
1477 | // class F{}; |
1478 | // friend void foo(D::E::F& q); |
1479 | // }; |
1480 | // friend void foo(D::E::F& q); |
1481 | // }; |
1482 | if (S.DelayedDiagnostics.shouldDelayDiagnostics()) { |
1483 | // [class.friend]p9: |
1484 | // A member nominated by a friend declaration shall be accessible in the |
1485 | // class containing the friend declaration. The meaning of the friend |
1486 | // declaration is the same whether the friend declaration appears in the |
1487 | // private, protected, or public ([class.mem]) portion of the class |
1488 | // member-specification. |
1489 | Scope *TS = S.getCurScope(); |
1490 | bool IsFriendDeclaration = false; |
1491 | while (TS && !IsFriendDeclaration) { |
1492 | IsFriendDeclaration = TS->isFriendScope(); |
1493 | TS = TS->getParent(); |
1494 | } |
1495 | if (!IsFriendDeclaration) { |
1496 | S.DelayedDiagnostics.add(diag: DelayedDiagnostic::makeAccess(Loc, Entity)); |
1497 | return Sema::AR_delayed; |
1498 | } |
1499 | } |
1500 | |
1501 | EffectiveContext EC(S.CurContext); |
1502 | switch (CheckEffectiveAccess(S, EC, Loc, Entity)) { |
1503 | case AR_accessible: return Sema::AR_accessible; |
1504 | case AR_inaccessible: return Sema::AR_inaccessible; |
1505 | case AR_dependent: return Sema::AR_dependent; |
1506 | } |
1507 | llvm_unreachable("invalid access result" ); |
1508 | } |
1509 | |
1510 | void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *D) { |
1511 | // Access control for names used in the declarations of functions |
1512 | // and function templates should normally be evaluated in the context |
1513 | // of the declaration, just in case it's a friend of something. |
1514 | // However, this does not apply to local extern declarations. |
1515 | |
1516 | DeclContext *DC = D->getDeclContext(); |
1517 | if (D->isLocalExternDecl()) { |
1518 | DC = D->getLexicalDeclContext(); |
1519 | } else if (FunctionDecl *FN = dyn_cast<FunctionDecl>(Val: D)) { |
1520 | DC = FN; |
1521 | } else if (TemplateDecl *TD = dyn_cast<TemplateDecl>(Val: D)) { |
1522 | if (isa<DeclContext>(Val: TD->getTemplatedDecl())) |
1523 | DC = cast<DeclContext>(Val: TD->getTemplatedDecl()); |
1524 | } else if (auto *RD = dyn_cast<RequiresExprBodyDecl>(Val: D)) { |
1525 | DC = RD; |
1526 | } |
1527 | |
1528 | EffectiveContext EC(DC); |
1529 | |
1530 | AccessTarget Target(DD.getAccessData()); |
1531 | |
1532 | if (CheckEffectiveAccess(S&: *this, EC, Loc: DD.Loc, Entity&: Target) == ::AR_inaccessible) |
1533 | DD.Triggered = true; |
1534 | } |
1535 | |
1536 | void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD, |
1537 | const MultiLevelTemplateArgumentList &TemplateArgs) { |
1538 | SourceLocation Loc = DD.getAccessLoc(); |
1539 | AccessSpecifier Access = DD.getAccess(); |
1540 | |
1541 | Decl *NamingD = FindInstantiatedDecl(Loc, D: DD.getAccessNamingClass(), |
1542 | TemplateArgs); |
1543 | if (!NamingD) return; |
1544 | Decl *TargetD = FindInstantiatedDecl(Loc, D: DD.getAccessTarget(), |
1545 | TemplateArgs); |
1546 | if (!TargetD) return; |
1547 | |
1548 | if (DD.isAccessToMember()) { |
1549 | CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(Val: NamingD); |
1550 | NamedDecl *TargetDecl = cast<NamedDecl>(Val: TargetD); |
1551 | QualType BaseObjectType = DD.getAccessBaseObjectType(); |
1552 | if (!BaseObjectType.isNull()) { |
1553 | BaseObjectType = SubstType(T: BaseObjectType, TemplateArgs, Loc, |
1554 | Entity: DeclarationName()); |
1555 | if (BaseObjectType.isNull()) return; |
1556 | } |
1557 | |
1558 | AccessTarget Entity(Context, |
1559 | AccessTarget::Member, |
1560 | NamingClass, |
1561 | DeclAccessPair::make(D: TargetDecl, AS: Access), |
1562 | BaseObjectType); |
1563 | Entity.setDiag(DD.getDiagnostic()); |
1564 | CheckAccess(S&: *this, Loc, Entity); |
1565 | } else { |
1566 | AccessTarget Entity(Context, |
1567 | AccessTarget::Base, |
1568 | cast<CXXRecordDecl>(Val: TargetD), |
1569 | cast<CXXRecordDecl>(Val: NamingD), |
1570 | Access); |
1571 | Entity.setDiag(DD.getDiagnostic()); |
1572 | CheckAccess(S&: *this, Loc, Entity); |
1573 | } |
1574 | } |
1575 | |
1576 | Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E, |
1577 | DeclAccessPair Found) { |
1578 | if (!getLangOpts().AccessControl || |
1579 | !E->getNamingClass() || |
1580 | Found.getAccess() == AS_public) |
1581 | return AR_accessible; |
1582 | |
1583 | AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(), |
1584 | Found, QualType()); |
1585 | Entity.setDiag(diag::err_access) << E->getSourceRange(); |
1586 | |
1587 | return CheckAccess(S&: *this, Loc: E->getNameLoc(), Entity); |
1588 | } |
1589 | |
1590 | Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E, |
1591 | DeclAccessPair Found) { |
1592 | if (!getLangOpts().AccessControl || |
1593 | Found.getAccess() == AS_public) |
1594 | return AR_accessible; |
1595 | |
1596 | QualType BaseType = E->getBaseType(); |
1597 | if (E->isArrow()) |
1598 | BaseType = BaseType->castAs<PointerType>()->getPointeeType(); |
1599 | |
1600 | AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(), |
1601 | Found, BaseType); |
1602 | Entity.setDiag(diag::err_access) << E->getSourceRange(); |
1603 | |
1604 | return CheckAccess(S&: *this, Loc: E->getMemberLoc(), Entity); |
1605 | } |
1606 | |
1607 | bool Sema::isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass, |
1608 | DeclAccessPair Found, |
1609 | QualType ObjectType, |
1610 | SourceLocation Loc, |
1611 | const PartialDiagnostic &Diag) { |
1612 | // Fast path. |
1613 | if (Found.getAccess() == AS_public || !getLangOpts().AccessControl) |
1614 | return true; |
1615 | |
1616 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found, |
1617 | ObjectType); |
1618 | |
1619 | // Suppress diagnostics. |
1620 | Entity.setDiag(Diag); |
1621 | |
1622 | switch (CheckAccess(S&: *this, Loc, Entity)) { |
1623 | case AR_accessible: return true; |
1624 | case AR_inaccessible: return false; |
1625 | case AR_dependent: llvm_unreachable("dependent for =delete computation" ); |
1626 | case AR_delayed: llvm_unreachable("cannot delay =delete computation" ); |
1627 | } |
1628 | llvm_unreachable("bad access result" ); |
1629 | } |
1630 | |
1631 | Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc, |
1632 | CXXDestructorDecl *Dtor, |
1633 | const PartialDiagnostic &PDiag, |
1634 | QualType ObjectTy) { |
1635 | if (!getLangOpts().AccessControl) |
1636 | return AR_accessible; |
1637 | |
1638 | // There's never a path involved when checking implicit destructor access. |
1639 | AccessSpecifier Access = Dtor->getAccess(); |
1640 | if (Access == AS_public) |
1641 | return AR_accessible; |
1642 | |
1643 | CXXRecordDecl *NamingClass = Dtor->getParent(); |
1644 | if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(Decl: NamingClass); |
1645 | |
1646 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, |
1647 | DeclAccessPair::make(D: Dtor, AS: Access), |
1648 | ObjectTy); |
1649 | Entity.setDiag(PDiag); // TODO: avoid copy |
1650 | |
1651 | return CheckAccess(S&: *this, Loc, Entity); |
1652 | } |
1653 | |
1654 | Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc, |
1655 | CXXConstructorDecl *Constructor, |
1656 | DeclAccessPair Found, |
1657 | const InitializedEntity &Entity, |
1658 | bool IsCopyBindingRefToTemp) { |
1659 | if (!getLangOpts().AccessControl || Found.getAccess() == AS_public) |
1660 | return AR_accessible; |
1661 | |
1662 | PartialDiagnostic PD(PDiag()); |
1663 | switch (Entity.getKind()) { |
1664 | default: |
1665 | PD = PDiag(DiagID: IsCopyBindingRefToTemp |
1666 | ? diag::ext_rvalue_to_reference_access_ctor |
1667 | : diag::err_access_ctor); |
1668 | |
1669 | break; |
1670 | |
1671 | case InitializedEntity::EK_Base: |
1672 | PD = PDiag(DiagID: diag::err_access_base_ctor); |
1673 | PD << Entity.isInheritedVirtualBase() |
1674 | << Entity.getBaseSpecifier()->getType() |
1675 | << llvm::to_underlying(E: getSpecialMember(MD: Constructor)); |
1676 | break; |
1677 | |
1678 | case InitializedEntity::EK_Member: |
1679 | case InitializedEntity::EK_ParenAggInitMember: { |
1680 | const FieldDecl *Field = cast<FieldDecl>(Val: Entity.getDecl()); |
1681 | PD = PDiag(DiagID: diag::err_access_field_ctor); |
1682 | PD << Field->getType() |
1683 | << llvm::to_underlying(E: getSpecialMember(MD: Constructor)); |
1684 | break; |
1685 | } |
1686 | |
1687 | case InitializedEntity::EK_LambdaCapture: { |
1688 | StringRef VarName = Entity.getCapturedVarName(); |
1689 | PD = PDiag(DiagID: diag::err_access_lambda_capture); |
1690 | PD << VarName << Entity.getType() |
1691 | << llvm::to_underlying(E: getSpecialMember(MD: Constructor)); |
1692 | break; |
1693 | } |
1694 | |
1695 | } |
1696 | |
1697 | return CheckConstructorAccess(Loc: UseLoc, D: Constructor, FoundDecl: Found, Entity, PDiag: PD); |
1698 | } |
1699 | |
1700 | Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc, |
1701 | CXXConstructorDecl *Constructor, |
1702 | DeclAccessPair Found, |
1703 | const InitializedEntity &Entity, |
1704 | const PartialDiagnostic &PD) { |
1705 | if (!getLangOpts().AccessControl || |
1706 | Found.getAccess() == AS_public) |
1707 | return AR_accessible; |
1708 | |
1709 | CXXRecordDecl *NamingClass = Constructor->getParent(); |
1710 | |
1711 | // Initializing a base sub-object is an instance method call on an |
1712 | // object of the derived class. Otherwise, we have an instance method |
1713 | // call on an object of the constructed type. |
1714 | // |
1715 | // FIXME: If we have a parent, we're initializing the base class subobject |
1716 | // in aggregate initialization. It's not clear whether the object class |
1717 | // should be the base class or the derived class in that case. |
1718 | CXXRecordDecl *ObjectClass; |
1719 | if ((Entity.getKind() == InitializedEntity::EK_Base || |
1720 | Entity.getKind() == InitializedEntity::EK_Delegating) && |
1721 | !Entity.getParent()) { |
1722 | ObjectClass = cast<CXXConstructorDecl>(Val: CurContext)->getParent(); |
1723 | } else if (auto *Shadow = |
1724 | dyn_cast<ConstructorUsingShadowDecl>(Val: Found.getDecl())) { |
1725 | // If we're using an inheriting constructor to construct an object, |
1726 | // the object class is the derived class, not the base class. |
1727 | ObjectClass = Shadow->getParent(); |
1728 | } else { |
1729 | ObjectClass = NamingClass; |
1730 | } |
1731 | |
1732 | AccessTarget AccessEntity( |
1733 | Context, AccessTarget::Member, NamingClass, |
1734 | DeclAccessPair::make(D: Constructor, AS: Found.getAccess()), |
1735 | Context.getTypeDeclType(Decl: ObjectClass)); |
1736 | AccessEntity.setDiag(PD); |
1737 | |
1738 | return CheckAccess(S&: *this, Loc: UseLoc, Entity&: AccessEntity); |
1739 | } |
1740 | |
1741 | Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc, |
1742 | SourceRange PlacementRange, |
1743 | CXXRecordDecl *NamingClass, |
1744 | DeclAccessPair Found, |
1745 | bool Diagnose) { |
1746 | if (!getLangOpts().AccessControl || |
1747 | !NamingClass || |
1748 | Found.getAccess() == AS_public) |
1749 | return AR_accessible; |
1750 | |
1751 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found, |
1752 | QualType()); |
1753 | if (Diagnose) |
1754 | Entity.setDiag(diag::err_access) |
1755 | << PlacementRange; |
1756 | |
1757 | return CheckAccess(S&: *this, Loc: OpLoc, Entity); |
1758 | } |
1759 | |
1760 | Sema::AccessResult Sema::CheckMemberAccess(SourceLocation UseLoc, |
1761 | CXXRecordDecl *NamingClass, |
1762 | DeclAccessPair Found) { |
1763 | if (!getLangOpts().AccessControl || |
1764 | !NamingClass || |
1765 | Found.getAccess() == AS_public) |
1766 | return AR_accessible; |
1767 | |
1768 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, |
1769 | Found, QualType()); |
1770 | |
1771 | return CheckAccess(S&: *this, Loc: UseLoc, Entity); |
1772 | } |
1773 | |
1774 | Sema::AccessResult |
1775 | Sema::CheckStructuredBindingMemberAccess(SourceLocation UseLoc, |
1776 | CXXRecordDecl *DecomposedClass, |
1777 | DeclAccessPair Field) { |
1778 | if (!getLangOpts().AccessControl || |
1779 | Field.getAccess() == AS_public) |
1780 | return AR_accessible; |
1781 | |
1782 | AccessTarget Entity(Context, AccessTarget::Member, DecomposedClass, Field, |
1783 | Context.getRecordType(Decl: DecomposedClass)); |
1784 | Entity.setDiag(diag::err_decomp_decl_inaccessible_field); |
1785 | |
1786 | return CheckAccess(S&: *this, Loc: UseLoc, Entity); |
1787 | } |
1788 | |
1789 | Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc, |
1790 | Expr *ObjectExpr, |
1791 | const SourceRange &Range, |
1792 | DeclAccessPair Found) { |
1793 | if (!getLangOpts().AccessControl || Found.getAccess() == AS_public) |
1794 | return AR_accessible; |
1795 | |
1796 | const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>(); |
1797 | CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(Val: RT->getDecl()); |
1798 | |
1799 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found, |
1800 | ObjectExpr->getType()); |
1801 | Entity.setDiag(diag::err_access) << ObjectExpr->getSourceRange() << Range; |
1802 | |
1803 | return CheckAccess(S&: *this, Loc: OpLoc, Entity); |
1804 | } |
1805 | |
1806 | Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc, |
1807 | Expr *ObjectExpr, |
1808 | Expr *ArgExpr, |
1809 | DeclAccessPair Found) { |
1810 | return CheckMemberOperatorAccess( |
1811 | OpLoc, ObjectExpr, Range: ArgExpr ? ArgExpr->getSourceRange() : SourceRange(), |
1812 | Found); |
1813 | } |
1814 | |
1815 | Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc, |
1816 | Expr *ObjectExpr, |
1817 | ArrayRef<Expr *> ArgExprs, |
1818 | DeclAccessPair FoundDecl) { |
1819 | SourceRange R; |
1820 | if (!ArgExprs.empty()) { |
1821 | R = SourceRange(ArgExprs.front()->getBeginLoc(), |
1822 | ArgExprs.back()->getEndLoc()); |
1823 | } |
1824 | |
1825 | return CheckMemberOperatorAccess(OpLoc, ObjectExpr, Range: R, Found: FoundDecl); |
1826 | } |
1827 | |
1828 | Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) { |
1829 | assert(isa<CXXMethodDecl>(target->getAsFunction())); |
1830 | |
1831 | // Friendship lookup is a redeclaration lookup, so there's never an |
1832 | // inheritance path modifying access. |
1833 | AccessSpecifier access = target->getAccess(); |
1834 | |
1835 | if (!getLangOpts().AccessControl || access == AS_public) |
1836 | return AR_accessible; |
1837 | |
1838 | CXXMethodDecl *method = cast<CXXMethodDecl>(Val: target->getAsFunction()); |
1839 | |
1840 | AccessTarget entity(Context, AccessTarget::Member, |
1841 | cast<CXXRecordDecl>(Val: target->getDeclContext()), |
1842 | DeclAccessPair::make(D: target, AS: access), |
1843 | /*no instance context*/ QualType()); |
1844 | entity.setDiag(diag::err_access_friend_function) |
1845 | << (method->getQualifier() ? method->getQualifierLoc().getSourceRange() |
1846 | : method->getNameInfo().getSourceRange()); |
1847 | |
1848 | // We need to bypass delayed-diagnostics because we might be called |
1849 | // while the ParsingDeclarator is active. |
1850 | EffectiveContext EC(CurContext); |
1851 | switch (CheckEffectiveAccess(S&: *this, EC, Loc: target->getLocation(), Entity&: entity)) { |
1852 | case ::AR_accessible: return Sema::AR_accessible; |
1853 | case ::AR_inaccessible: return Sema::AR_inaccessible; |
1854 | case ::AR_dependent: return Sema::AR_dependent; |
1855 | } |
1856 | llvm_unreachable("invalid access result" ); |
1857 | } |
1858 | |
1859 | Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr, |
1860 | DeclAccessPair Found) { |
1861 | if (!getLangOpts().AccessControl || |
1862 | Found.getAccess() == AS_none || |
1863 | Found.getAccess() == AS_public) |
1864 | return AR_accessible; |
1865 | |
1866 | OverloadExpr *Ovl = OverloadExpr::find(E: OvlExpr).Expression; |
1867 | CXXRecordDecl *NamingClass = Ovl->getNamingClass(); |
1868 | |
1869 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found, |
1870 | /*no instance context*/ QualType()); |
1871 | Entity.setDiag(diag::err_access) |
1872 | << Ovl->getSourceRange(); |
1873 | |
1874 | return CheckAccess(S&: *this, Loc: Ovl->getNameLoc(), Entity); |
1875 | } |
1876 | |
1877 | Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc, |
1878 | QualType Base, |
1879 | QualType Derived, |
1880 | const CXXBasePath &Path, |
1881 | unsigned DiagID, |
1882 | bool ForceCheck, |
1883 | bool ForceUnprivileged) { |
1884 | if (!ForceCheck && !getLangOpts().AccessControl) |
1885 | return AR_accessible; |
1886 | |
1887 | if (Path.Access == AS_public) |
1888 | return AR_accessible; |
1889 | |
1890 | CXXRecordDecl *BaseD, *DerivedD; |
1891 | BaseD = cast<CXXRecordDecl>(Val: Base->castAs<RecordType>()->getDecl()); |
1892 | DerivedD = cast<CXXRecordDecl>(Val: Derived->castAs<RecordType>()->getDecl()); |
1893 | |
1894 | AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD, |
1895 | Path.Access); |
1896 | if (DiagID) |
1897 | Entity.setDiag(DiagID) << Derived << Base; |
1898 | |
1899 | if (ForceUnprivileged) { |
1900 | switch (CheckEffectiveAccess(S&: *this, EC: EffectiveContext(), |
1901 | Loc: AccessLoc, Entity)) { |
1902 | case ::AR_accessible: return Sema::AR_accessible; |
1903 | case ::AR_inaccessible: return Sema::AR_inaccessible; |
1904 | case ::AR_dependent: return Sema::AR_dependent; |
1905 | } |
1906 | llvm_unreachable("unexpected result from CheckEffectiveAccess" ); |
1907 | } |
1908 | return CheckAccess(S&: *this, Loc: AccessLoc, Entity); |
1909 | } |
1910 | |
1911 | void Sema::CheckLookupAccess(const LookupResult &R) { |
1912 | assert(getLangOpts().AccessControl |
1913 | && "performing access check without access control" ); |
1914 | assert(R.getNamingClass() && "performing access check without naming class" ); |
1915 | |
1916 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
1917 | if (I.getAccess() != AS_public) { |
1918 | AccessTarget Entity(Context, AccessedEntity::Member, |
1919 | R.getNamingClass(), I.getPair(), |
1920 | R.getBaseObjectType()); |
1921 | Entity.setDiag(diag::err_access); |
1922 | CheckAccess(S&: *this, Loc: R.getNameLoc(), Entity); |
1923 | } |
1924 | } |
1925 | } |
1926 | |
1927 | bool Sema::IsSimplyAccessible(NamedDecl *Target, CXXRecordDecl *NamingClass, |
1928 | QualType BaseType) { |
1929 | // Perform the C++ accessibility checks first. |
1930 | if (Target->isCXXClassMember() && NamingClass) { |
1931 | if (!getLangOpts().CPlusPlus) |
1932 | return false; |
1933 | // The unprivileged access is AS_none as we don't know how the member was |
1934 | // accessed, which is described by the access in DeclAccessPair. |
1935 | // `IsAccessible` will examine the actual access of Target (i.e. |
1936 | // Decl->getAccess()) when calculating the access. |
1937 | AccessTarget Entity(Context, AccessedEntity::Member, NamingClass, |
1938 | DeclAccessPair::make(D: Target, AS: AS_none), BaseType); |
1939 | EffectiveContext EC(CurContext); |
1940 | return ::IsAccessible(S&: *this, EC, Entity) != ::AR_inaccessible; |
1941 | } |
1942 | |
1943 | if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Val: Target)) { |
1944 | // @public and @package ivars are always accessible. |
1945 | if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public || |
1946 | Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package) |
1947 | return true; |
1948 | |
1949 | // If we are inside a class or category implementation, determine the |
1950 | // interface we're in. |
1951 | ObjCInterfaceDecl *ClassOfMethodDecl = nullptr; |
1952 | if (ObjCMethodDecl *MD = getCurMethodDecl()) |
1953 | ClassOfMethodDecl = MD->getClassInterface(); |
1954 | else if (FunctionDecl *FD = getCurFunctionDecl()) { |
1955 | if (ObjCImplDecl *Impl |
1956 | = dyn_cast<ObjCImplDecl>(Val: FD->getLexicalDeclContext())) { |
1957 | if (ObjCImplementationDecl *IMPD |
1958 | = dyn_cast<ObjCImplementationDecl>(Val: Impl)) |
1959 | ClassOfMethodDecl = IMPD->getClassInterface(); |
1960 | else if (ObjCCategoryImplDecl* CatImplClass |
1961 | = dyn_cast<ObjCCategoryImplDecl>(Val: Impl)) |
1962 | ClassOfMethodDecl = CatImplClass->getClassInterface(); |
1963 | } |
1964 | } |
1965 | |
1966 | // If we're not in an interface, this ivar is inaccessible. |
1967 | if (!ClassOfMethodDecl) |
1968 | return false; |
1969 | |
1970 | // If we're inside the same interface that owns the ivar, we're fine. |
1971 | if (declaresSameEntity(D1: ClassOfMethodDecl, D2: Ivar->getContainingInterface())) |
1972 | return true; |
1973 | |
1974 | // If the ivar is private, it's inaccessible. |
1975 | if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private) |
1976 | return false; |
1977 | |
1978 | return Ivar->getContainingInterface()->isSuperClassOf(I: ClassOfMethodDecl); |
1979 | } |
1980 | |
1981 | return true; |
1982 | } |
1983 | |